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Abstract. In this paper, we use software rejuvenation as a preventive
and proactive fault-tolerance technique to maximize the level of relia-
bility for continuous and safety critical systems. We take both transient
faults caused by software aging effects and network transmission faults
into consideration and mathematically analyze the optimal software re-
juvenation period that maximizes system’s reliability. The theoretical
result is verified through empirical studies.
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1 Introduction

Reliability is a critical criteria for many computer applications, specially for
systems that directly interact with physical environment. For long lasting and
continuous applications, such as factory control systems and deep space explo-
ration vehicles, software aging caused system performance degradations, such as
increased resource usage or prolonged execution time, can result in catastrophe
consequences [1, 2]. Maintaining long lasting and continuous system’s reliability
has been both a research and an engineering challenge for many years [3–5].

Aging happens both at hardware and software levels, and both hardware and
software aging can affect system reliability. Hardware aging not only increases
the system’s transient failure rate but also slows down the system performance.
However, hardware aging often takes much longer time to show effects on a
system [6]; while on the other hand, software aging happens more frequently
as compared to hardware aging. As pointed in [7], nowadays, computer system
outages are caused more by software failures than by hardware failures.

It is an easily observable trend that software systems become larger and more
complex over time. Applications are built on top of operating systems and frame-
works; they run in virtual environments and use third party software components
and services. The situation makes it more difficult or virtually impossible to
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develop a non-trivial software to be completely error-free. A class of residual
software errors produces non-catastrophic results where applications continue to
provide their functionality but with a degraded performance or increased use of
resources. This process is typically referred to as software aging [8]. Those soft-
ware errors that cause software aging are often difficult and costly to find and
verify. Even well established softwares may have aging effects caused by such
errors.

To provide evidences for such slowdown phenomena, we have conducted a
simple experiment which opens and closes the Matlab R2012b [9] and records
the Matlab startup time. The experiment runs on a virtual machine which is
pinned to an Xeon E5-2400 core with 1.9Ghz frequency, and has 2048M RAM,
and 40G HDD. The operating system of the virtual machine is Window 7 and
the test program is the only application running on the virtual machine.
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Fig. 1. Aging Effect on Matlab Startup Time

Fig. 1 shows the measurements of the Mathlab startup times over a week.
Each time points represents the average Matlab startup time over 6-hour time
interval. As shown in the figure, opening the Matlab takes 10% more time than
when the system starts a week ago.

For a short time period after system starts running, some software aging effects
only degrade the system response time rather than lead to failure. However, for
long lasting and continuous control systems, if software aging issue is not dealt
with, performance degradation, resource utilization, and error accumulation can
lead to catastrophe consequences. For instance, the Mars Surveyor ’98 Orbiter
that launched in 1998 is designed for long term mission on studying the climate
on Mars. However, due to a small software error in unit conversion component,
the accumulated conversion error caused the Orbiter to lose connections nine
months after it was launched [2]. Another tragic instance is the Ariane 5 rocket
explosion occurred in 1996. The rocket exploded 37 seconds after it was launched
due to digit conversion error [1]. Hence, software aging has to be probably han-
dled for systems that have a stringent reliability requirement.

Fault-tolerance is a widely studied topic for ensuring system reliability. Com-
monly used fault-tolerance mechanisms include time redundancy, such as check-
pointing and re-execution [10, 11], and space redundancy, such as replication
and voting [12–14]. However, all these mechanisms tend to improve the system
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reliability in a passive way, i.e., they handle faults after their occurrences. Other
than the passive fault-tolerance methods, another group of mechanisms are pro-
posed to proactively improve the system reliability, such as fault prediction [15]
and software rejuvenation [8, 16, 13].

In this paper, we present an approach that uses software rejuvenation to
maximize long lasting and continuous (24 × 7) system’s reliability. Different
from existing work in the literature, we take both transient faults caused by
software aging and network transmission faults when migrating tasks between
main and backup processors into consideration, and decide an optimal software
rejuvenation period that maximizes system reliability.

The rest of the paper is organized as follows: we first discuss related work
in Section 2. System models and assumptions the paper is based upon, and
the formal definition of the problem the paper is to address are presented in
Section 3. Section 4 mathematically analyzes system reliability under the models
and assumptions defined in Section 3. We experimentally verify the theoretical
analysis and discuss the empirical results in Section 5. Conclusions and future
work are pointed out in Section 6.

2 Related Work

System reliability issues have been studied since pretty much the time when
computers are used in safety critical systems. Many fault-tolerance mechanisms
have been developed to improve system’s reliability. Most commonly used fault-
tolerance mechanism is redundancy [12, 13]. Typically, redundancy refers to
systems that use backup components with the same functionality as the run-
ning components. When failures occur, systems switch the functionality to their
backup components to maintain operation continuity. Replication is also a widely
used fault-tolerance mechanism [14]. Replication ensures computation and data
are duplicated on the replicas and a voting scheme is used to decide the cor-
rect answers of the system. Another widely adapted fault-tolerance technique to
deal with system failure is time redundancy, ie., checkpointing and re-execution
[10, 11]. With checkpointing, the failed system is recovered from previously stored
correct state and re-executed only from the checkpointed state. All the fault-
tolerance techniques mentioned above are passive mechanisms in the sense that
they deal with failures when the failures occur.

Software rejuvenation is a preventive and proactive maintenance solution for
handling system aging effects. It can be utilized in many applications, such as
telecommunication systems [8, 13] and long-life deep-space missions [17, 3, 4].
Software rejuvenation is first proposed by Huang et al. [8]. In [8], Huang et.
al. developed a four-state model in which a computer system operates, i.e., the
Robust State, Failure Probable State, Failure State, and Rejuvenation State.

Since then, many rejuvenation models have been developed by the research
committee [8, 13]. For instance, the five-state model [13] added the Preparing
State to represent when systems finish executing tasks or migrate the tasks to
another processor when the system has at least one redundancy. Koutras et al.
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extended the initial rejuvenation model [8] by considering two levels of rejuvena-
tion actions [12, 18], i.e., perfect rejuvenation action and minimal rejuvenation
action. The perfect rejuvenation (cold rejuvenation) results in system returning
to the Robust State (initial state), while the minimal rejuvenation (warm reju-
venation) results in system returning to the Failure Probable State (the state
before rejuvenation). The cost of minimal rejuvenation is much less than the
perfect rejuvenation.

To analyze software aging and study aging related failures, Trivedi et al. [19]
presented two approaches: analytical modeling approach for determining opti-
mal times to rejuvenate and measurement based approach for detection and
validation. Tai et al. [3] identified key factors that may impact system reliability
and developed an approach to maximizing system reliability by analyzing the
optimal interval between maintenances. Okamura et al. [20] discussed an main-
tenance policy that combines aperiodic rejuvenations and periodic checkpoints
to maximize the system availability. The estimators of reliability and availability
were analyzed in [18, 21].

In this paper, we study how we can use both software rejuvenation and backup
mechanism to improve system’s reliability. In the study, both transient failures
caused by aging effects and network transmission failures caused by migrating
applications between main and back processors are taken into consideration in
determining an optimal rejuvenation period that maximizes system reliability
for long lasting and continuous applications.

3 System Models and Problem Formulation

In this section, we first introduce the models and assumptions our work is based
upon and then formulate the problem we are to address in the paper.

3.1 Models and Assumptions

System State Transition Model
We adopt the same model and assumptions used in [8], i.e., we assume the system
has four states, and the state transition model is shown in Fig. 2.

– Robust State S0: the system starts in this state.

– Failure Probable State SP : the system goes into this state after running for
some time.

– Failure State SF : the system may go into the failure state from the failure
probable state SP . Once the system is in failure state it has to be reboot in
order to go back into the robust state S0.

– Rejuvenation State SR: from the failure probable state SP the system may
also go into rejuvenation state SR, the system performs software rejuvenation
once it enters into the rejuvenation state and goes back to the robust state
S0.
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Fig. 2. System State Transition Model with Rejuvenation

The system is unavailable when it goes through either reboot or rejuvenation
process. The system downtime caused by each reboot or rejuvenation is assumed
to be a constant Tb and Tr, respectively. We assume Tr is much smaller than Tb.

System Model
We adopt the similar system model as in [3]. The system contains two processors,
a main processor P1 and a backup processor P2. Both processors can execute
application tasks, but we assume that only one processor works on the appli-
cation tasks at any given time, while the other processor either being idle or
performing system maintenance. The system model is shown in Fig. 3.

Fig. 3. System Model

To avoid failure caused by software aging effects, we assume that both pro-
cessors perform rejuvenation periodically with a period ts. Rejuvenation has
overhead Tr, however, we assume Tr < ts. Before one processor starts a reju-
venation process, it must first migrate all its tasks to the other processor. For
planned rejuvenations, the start time of a rejuvenation process is known at a
priori, hence we can reasonably assume that the overhead of task migration be-
tween P1 and P2 is being integrated into tasks’ execution time.

Network Failure Model
We assume the network transmission failure model follows Poison distribution,
i.e., it has a constant failure rate λ0. The task migration between P1 and P2

may fail because of network transmission failures. With constant network trans-
mission failure rate, the probability of a successful task migration is hence a
constant p and does not change over time.



608 C. Guo et al.

Aging Model
Since transient faults are more frequent than permanent faults [22], we only
consider the transient faults for both processors. As the system deteriorates
with aging, we assume that the transient failure rate λ(t) increases with time t.
The CDF (Cumulative Distribution Function) of transient fault is modeled as

F (t) = 1− e−
∫

t
0
λ(x)dx [23].

After each rejuvenation, the system is as good as new, i.e., the failure rate
and the cumulative distribution function after rejuvenation are reset to λ(tf ) =
λ(0) = 0 and F (tf ) = F (0) = 0, where tf is the time when a rejuvenation
process is completed.

Fig. 4 illustrates the behaviors of system rejuvenation and failure rate.

Fig. 4. System Rejuvenation and Failure Rate

3.2 Problem Formulation

Based on the models and assumptions defined in Section 3.1, the system reliabil-
ity decreases over time because of the increased failure rate caused by software
aging. To maintain system reliability level, on one hand, the system should per-
form rejuvenation as frequently as possible, but on the other hand, every rejuve-
nation requires tasks being migrated to and back from the other processor. Due
to unreliable network, frequent migration between processors can negatively af-
fect the system reliability. Hence, there is a balanced point as to how frequently
the system shall perform rejuvenation so that the system reliability can be
maximized.

Problem 1. Given two processors P1 and P2 which are connected through a
network. Assume the transient failure rate of both processors is λ(t), the network
transmission failure rate is λ0, and the system is to operate for L time, determine
an optimal rejuvenation period ts that maximizes the system reliability R(L, ts)
within its operation interval [0, L].

4 System Reliability Maximization

4.1 Reliability

System reliability is defined as the probability that the system operates without
failure within a given time interval [23]. Assume the time interval the system
operates is [0, L], and the system performs (�L/ts�− 1) times rejuvenation, then



Maximize System Reliability for Long Lasting and Continuous Applications 609

tasks migrate 2(�L/ts� − 1) times. The system reliability within its longevity
interval [0, L] is

R(L, ts) = p2(� L
ts
�−1) · F (ts)

� L
ts
�−1 · F (t′) (1)

where t′ = L− ts · (�L/ts� − 1) and F (ts) = 1− F (ts) = e−
∫

ts
0

λ(t)dt.
The following lemma gives the worst case system reliability.

Lemma 1. Let system longevity be L and rejuvenation period be ts, if L mod ts =
0, then the system has the lowest reliability given by Eq. (2)

R(L, ts) = p2(
L
ts

−1) · F (ts)
L
ts (2)

�
Proof. In Eq. (1), the reliability has three factors that are all positive. As L and
ts are given, the first two factors in Eq. (1) are fixed. Hencc, the reliability is
minimal when F (t′) is minimal.

As F (t) decreases with t, F (t′) is minimal when t′ = ts, i.e., L mod ts = 0.
The reliability is minimal when L mod ts = 0, and the minimal reliability is

R(L, ts) = p2(� L
ts
�−1) · F (ts)

� L
ts
�−1 · F (ts) = p2(

L
ts

−1) · F (ts)
L
ts (3)

�
For the following analysis, we focus on the worst case reliability, i.e., Eq. (2).

4.2 Reliability Maximization

Based on Eq. (2), system reliability is a function of two variables, i.e., L and
ts. To identify the relationship between reliability and rejuvenation period, we
derive the partial derivative of R(L, ts) with respect to the variable ts as follows.

∂R(L,ts)
∂ts

= − 2L
t2s

· p2( L
ts

−1) · F (ts)
L
ts · ln p

+ p2(
L
ts

−1) · F (ts)
L
ts · (− L

t2s
· lnF (ts) +

L
tsF (ts)

· dF (ts)
dts

)

Let ∂R
∂ts

(L, ts) = 0, we have

ts

F (ts)
· dF (ts)

dts
− lnF (ts)− 2 ln p = 0. (4)

As Eq. (2) is a concave function, the optimal rejuvenation period that maxi-
mizes the system reliability can be calculated by solving Eq. (4) with given λ(t)
and p.

Lemma 2. The optimal rejuvenation period is only influenced by network trans-
mission failure rate λ0 and transient fault occurrence rate λ(t), but not by system
longevity L. �
Proof. The lemma can be directly proven by Eq. (4), where F (t) = e−

∫
t
0
λ(x)dx,

and p is a constant with fixed λ0. �
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The Weibull distribution is commonly used to model the distribution of tran-
sient faults [23], with failure rate λ(t) = ktk−1/rk and cumulative distribution

function F (t) = 1− e−(t/r)k , where r > 0 and k > 0 are scale and shape param-
eters. The failure rate increases with time t if k > 1.

In Section 3, we have made the assumption that due to aging effects, the
system transient failure rate increases with time. Hence, we can use Weibull

distribution with k > 1 to model aging effects. Substitute F (t) = e−(t/r)k into
Eq. (4) and solve the equation, we obtain the optimal rejuvenation period that
maximizes the system reliability as follows

t∗s =
k

√
2rk ln p

1− k
. (5)

5 Experimental Results

In this section, we empirically evaluate the relationship between rejuvenation
period and system reliability. In the experiments, we assume the probability of
a successful task migration between P1 and P2 is p = 0.99999 and the system
transient fault distribution follows Weibull distribution with r = 1000 and k = 3,
i.e., λ(t) = 3t2/109 and F (t) = 1−e−(t/1000)3 . We set rejuvenation period ranging
from 1 to 100 as {1, 5, 10, · · · , 95, 100}, and system operation time L = 100, and
1, 000 respectively.

For each rejuvenation period, we use Eq. (1))to calculate the system reliability
R(L, ts). Fig. 5 shows the system reliability under different rejuvenation periods
for both longevity settings.
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Fig. 5. Reliability vs Rejuvenation Period

From Fig. 5, we have the following observations:

1. When the rejuvenation period increases, the system reliability first increases
and then decreases.

2. Neither too small rejuvenation period nor too large rejuvenation period has
positive impact on the system reliability. Too frequent rejuvenation in fact
lowers system reliability.
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3. The experimental optimal rejuvenation period that maximizes the system
reliability is consistent with the mathematical analysis (Eq (4)). In particu-
lar, for both experiment settings the optimal rejuvenation period ts = 20 is
the nearest value with the mathematical analysis result t∗s = 21.54 (Eq (5))
among all provided rejuvenation periods.

4. The system longevity, i.e., its operation time, does not impact the optimal
rejuvenation period for maximizing system reliability which is consistent
with Lemma 2. In particular, the optimal rejuvenation is ts = 20 for both
L = 100 and L = 1000 experiment settings.

6 Conclusion

Passive fault-tolerance techniques are not sufficient to maintain system reliability
for long lasting and continuous applications. Preventive and proactive fault-
tolerance techniques are needed to guarantee system’s reliability. In this paper,
we use both backup and software rejuvenation mechanisms to maximize system’s
reliability. In our study, we take both transient faults caused by software aging
and network transmission faults into consideration and have mathematically
analyzed the optimal rejuvenation period that maximizes system reliability. The
empirical study confirms with the theoretic analysis.
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