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Abstract. Several mathematical models have been developed to simu-
late, analyse and understand the dynamics of β-cells, insulin and glucose.
In this paper we study the effect of obesity on type 2 diabetes in people
with genetic predisposition to diabetes. Equilibrium analysis and stabil-
ity analysis are studied and the model shows three equilibrium points:
a stable trivial pathological equilibrium point P0, a stable physiological
equilibrium point P1 and a saddle point P2. A simulation is carried out
to understand the models behaviour.
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1 Introduction

According to the International Diabetes Federation (IDF) 2013, 8.3% of adults
(382 million people) are living with diabetes all over the world with a particular
growing trend of type 2 diabetes. [1]

Obesity is thought to be the primary cause of type 2 diabetes, especially for
people having a genetic predisposition to the disease [2, 3]. Actually, an elevated
level of Free Fatty Acids (FFA) leads to a chronic insulin resistance and thus
β-cell apoptosis that consequently raises the blood glucose level [4].

Several studies have been carried out in order to understand the dynamics of
insulin and glucose leading to diabetes. Bolie (1961) introduced a simple linear
model, using ordinary differential equations in glucose and insulin [5]. Bergman
et al. published the minimal model [6]. Diverse models based on the minimal
model were published by different authors, including Derouich and Boutayeb
(adding physical effort) [7], Roy and Parker dealt with the interaction between
insulin, glucose and FFA [8]. Other authors introduced the dynamics of β-cells
in the mechanisms leading to diabetes. Topp et al incorporate the β-cell mass,
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insulin, and glucose kinetics [9]. Hernandez et al. proposed an extension of the
Topp model by adding the surface insulin receptor dynamics [10]. Boutayeb et
al. extended Topps model by stressing the effect of genetic predisposition to
diabetes [11].

Our model is based on mathematical models published by Boutayeb et al[11],
Roy et al[8] and Hernandez et al[10].

2 The Mathematical Model

In this model we assume, for glucose dynamics that the concentration of glucose
in the blood is determined by a differential equation of the form:

a− bG(t)− cI(t)R(t)G(t) +m1(F (t)− Fb)[9, 10].
Where G(t)(g/l) is the concentration of glucose that increases by a rate a (in
mg/(dl.d)) (glucose production by liver and kidneys) and decreases by a rate
bG(t) where b in (d−1)(independent of insulin) and a rate cI(t)R(t)G(t) repre-
senting the glucose uptake due to insulin sensitivity c[10].We assume that the
concentration of glucose increases by a ratem1(F (t)−Fb) wherem1 (in l/dμmol)
which is the effect of FFA on glucose uptake.

Insulin dynamics is governed by the differential equation of the form:
dβ(t)
1+R(t)

G(t)2

e+G(t)2 −fI(t)−fR(t)I(t), which has the same expression used by Henan-

dez et al. Where I(t)( ( μU)/ml) is the plasma insulin concentration [10]. The
dynamics of β-cell mass for predisposed people to type 2 to diabetes[2] as used
in the model of Topp et al. takes the form: (−g + hG(t) − iG(t)2). Where β(t)
(mg) is the β-cell mass [10].

For the insulin receptors dynamics we keep the expression used by Hernandez
et al.: j(1 − R(t)) − kI(t)R(t) − lR(t). Where R(t) is the insulin receptor [10].
The concentration of FFA increases by a rate m3(G(t) − Gb)which represents
the excess glucose used in lipogenesis and decreases by m2(F (t)− F (t)b) which
is the effect of the rate of insulin on FFA. Where F (t) ( ( μmol)/l)

So, the model is written as follows:

dG(t)

dt
= a− bG(t)− cI(t)R(t)G(t) +m1(F (t) − Fb)

dI(t)

dt
=

dβ(t)

1 +R(t)

G(t)2

e+G(t)2
− fI(t)− fR(t)I(t)

dβ(t)

dt
= (−g + hG(t)− iG(t)2)

dR(t)

dt
= j(1−R(t))− kI(t)R(t)− lR(t)

dF (t)

dt
= −m2(F (t)− F (t)b) +m3(G(t)−Gb)
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3 Equilibrium Analysis

The steady state solutions are the solutions of the equations:

a− bG(t)− cI(t)R(t)G(t) +m1(F (t)− Fb) = 0

dβ(t)

1 +R(t)

G(t)2

e+G(t)2
− fI(t)− fR(t)I(t) = 0

−g + hG(t)− iG(t)2 = 0

j(1 −R(t))− kI(t)R(t)− lR(t) = 0

−m2(F (t)− F (t)b) +m3(G(t)−Gb) = 0

This model has three equilibrium points:
P0(G0, I0, β0, R0, F0), P1(G1, I1, β1, R1, F1) ans P2(G2, I2, β2, R2, F2)
• The first equilibrium point P0 = (G0, I0, β0, R0, F0) is a trivial pathological
point.
With:

G0 =
m1m3Gb − am2

m1m3 −m2b
,

I0 = 0,

β0 = 0,

R0 =
j

j + 1
,

F0 =
am3 − bm3Gb −m1m3Fb +m2bFb

−m1m3 +m2b

• The second equilibrium point P1 = (G1, I1, β1, R1, F1) is a physiological
point.

With:

G1 =
h−

√
h2 − 4ig

2i
,

I1 =
−jGb + aj + jm1F

∗
1 − jm1Fb + la+ lm1F

∗
1 − lm1Fb

ak − cjG∗
1 +m1kF ∗

1 −m1kFb
,

β1 =
fI∗1 (R∗

1 + 1)(e+G∗2
1 )

dG∗
1

,

R1 =
ak − cjG∗

1 + km1F
∗
1 − km1Fb)

(G∗
1(bk − cj − cl

,

F1 =
2m2iFb + hm3 −m3

√
h2 − 4ig − 2im3Gb

2im2

The third equilibrium point P2 = (G2, I2, β2, R2, F2)
with:
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G2 =
h+

√
h2 − 4ig

2i
,

I2 =
−jGb + aj + jm1F

∗
2 − jm1Fb + la+ lm1F

∗
2 − lm1Fb

ak − cjG∗
2 +m1kF ∗

2 −m1kFb
,

β2 =
fI∗2 (R

∗
2 + 1)(e+G∗2

2 )

dG∗
2

,

R2 =
ak − cjG∗

2 + km1F
∗
2 − km1Fb

G∗
2(bk − cj − cl)

,

F2 =
2m2iFb + hm3 +m3

√
h2 − 4ig − 2im3Gb

2im2

The conditions of existence of the equilibrium points are presented in the fol-
lowing Table:

Table 1. Conditions of existence

Coordinates Conditions of existence

P0 (G0, I0, β0, R0, F0)
m1m3
m2

< b, a
b
> Gb

P1 (G1, I1, β1, R1, F1)
h−

√
h2−4ig

2i
< Gb , bk > c(j + l)

P2 (G2, I2, β2, R2, F2)
h+

√
h2−4ig

2i
> Gb, bk > c(j + l)

4 Stability Analysis

The stability analysis based on variational principle is used. The variational ma-
trix of the system at any point Pi(i = 0, 1, 2) is written as:

⎛

⎜
⎜
⎜
⎜
⎝

−b− cIR −cRG 0 −cIG m1
2dβGe

(R+1)(e+G2)2 −f − fR dG2

(R+1)(e+G2)
−dβG2

(R+1)2(e+G2) − fI 0

(h− 2iG)β 0 −g + hG− iG2 0 0
0 −kR 0 −j − kI − l 0
m3 0 0 0 −m2

⎞

⎟
⎟
⎟
⎟
⎠

4.1 The Stability Analysis of the P0

The eigenvalues of the variational matrix at P0:

λ1 = −j − l
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λ2 = −g + hG− iG2

λ3 = −1

2
b− 1

2
m2 + 1/2

√
4m1m3 + b2 − 2bm2 +m2

2

λ4 = −1

2
b− 1

2
m2 − 1/2

√
4m1m3 + b2 − 2bm2 +m2

2

λ5 = −f − fR

Since: λ1, λ2, λ3, λ4, λ5 < 0 (following the conditions of existence in Table1) we
conclude that the point P0 is stable.

4.2 The Stability Analysis of the P1:

The calculus of P1s eigenvalues is computed using numerical approximation by
Maple, showing that P1 is a stable node.

4.3 The Stability Analysis of the P2:

We put:

A = b+ cIR

B = cRG

C = cIG

D =
2dβGe

(R + 1)(e+G2)2

E =
dG2

(R + 1)(e+G2)

F = f + fR

J =
dβG2

(R + 1)2(e+G2)
+ fI

K = kR

L = j + kl+ l

M = (h− 2iG)β

Given the characteristic polynomial,
λ5 +
(n+ L+ F +A)λ4 +
(m1m3 +m2L+m2F + nA−KJ + LF + LA+DB + FA)λ3 +
(m1m3L−m1m3F−m2KJ+m2LF+m2LA+m2DB+m2FA−KDC−KJA+
LJA+ LDB + LBD + LFA+MBE)λ2 +
(m1m3KJ−m1m3LF −m2KDC−m2KJA+m2LDB+m2LFA+m2MBE−
KEMC + LMBE)λ+
m2KEMC −m2LMBE

Following the conditions of existence of P2 given in Table1: m2KEMC −
m2LMBE < 0, whereas the coefficient of the highest order is positive. We
conclude that P2 is unstable since the necessary condition of routh Hurwitz is
not satisfied.
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5 Simulation

Our simulation is based on the parameters given in Table 2. [8–11].

Table 2. Parameters for an average healthy person

Param Value Units Biological Interpretation

a 864 mg
dl d

glucose production rate by liver when G =0

b 1.44 d−1 glucose clearance rate independent of insulin

c 0.85 ml
μU d

insulin induced glucose uptake rate

d 43.2 μU
ml d mg

β-cell maximum insulin secretory rate

e 20000 mg2

dl2
gives inflection point of sigmoidal function

f 216 d−1 whole body insulin clearance rate

g 0.06 d−1 β-cell natural death rate

h 0.572-3 dl
mg d

determines β-cell glucose tolerance range

i 0.252e-5 dl2

mg2d
determines β-cell glucose tolerance range

j 2.64 1
d

insulin receptor recycling rate

k 0.02 ml
μUd

insulin dependent receptor endocytosis rate

l 0.24 d−1 insulin independent receptor endocytosis rate

m1 0.0864 l
dμmol

the effect of plasma FFA on glucose uptake

m2 43.2 d−1 the influence of insulin
m3 97.92 ml−1 the rate constant representing plasma FFA concentration

Gb 98 md
dl

the basal glucose concentration

Fb 380 μmol
l

the basal FFA concentration

Using the parameters giving in Table 2 yields the results presented in Table 3.

Table 3. Stability analysis using the values of parameters given in Table 2

equilibrium points(G, I, β, R, F ) Stability

(679, 0, 0, 0.9, 1698.2) stable

(82, 12.65, 853.32, 0.85, 343.7) stable

(145, 6.13, 211.25, 0.88, 486.6) instable

In this model we considered the effect of obesity on type 2 diabetes. It was
shown in the first point P0 that an elevated rate of FFA has an impact on insulin
secretion and insulin-resistance and hence on the development of type 2 diabetes.

The results of the simulation using parameters given in Table2 with (I(0)=6.5,
β(0)=220, R(0)=0.87 and F(0)=580) are illustrated by Fig1, Fig2, Fig3, Fig4
and Fig5.
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Fig. 1. Plot of the trajectory of G over 150 days

Fig. 2. Plot of the trajectory of I over 150 days
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Fig. 3. Plot of the trajectory of β over 150 days

Fig. 4. Plot of the trajectory of R over 150 days
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Fig. 5. Plot of the trajectory of FFA over 150 days

The mathematical model has three equilibrium points: a stable pathological
point corresponding to an hyperglycemic state with zero level of β-cell mass and
insulin P0(679, 0, 0, 0.9, 1698), and a high level of FFA, a stable physiological
point with basal values of FFA, glycemia, insulin, insulin receptor and β-cell
mass P1(82, 12.645, 853.32, 0.85, 343.7), and an unstable saddle point with in-
termediate values of FFA, glycemia, insulin, insulin receptor and β-cell mass
P2(145, 6.13, 211.25, 0.88, 486.6).

6 Conclusion

In this model we considered the effect of obesity on type 2 diabetes in presence
of pre-disposition to diabetes on the dynamics of β-cells, insulin, glucose, insulin
receptors and Free Fatty Acids (FFA). It was shown that the pathological and
physiological equilibrium points are stable and the saddle equilibrium point with
intermediate values of Glucose, Insulin, β-cell mass, insulin receptors and FFA
is unstable. An elevated rate of FFA, leads to an evolution towards the patho-
logical point (G=679,I=0,β=0,R=0.9,FFA=1698.2). This model confirms that
FFA has an impact on insulin secretion and insulin-resistance and hence on the
development of type 2 diabetes for people with predisposition to diabetes.
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