
The MetaboX Library: Building Metabolic

Networks from KEGG Database

Francesco Maiorano1, Luca Ambrosino2 and Mario Rosario Guarracino1

1 Laboratory for Genomics, Transcriptomics and Proteomics,
Institute for High-Performance Computing and Networking,

National Research Council of Italy
2 Dept. of Agricultural Sciences, University of Naples Federico II

Abstract. In many key applications of metabolomics, such as toxicol-
ogy or nutrigenomics, it is of interest to profile and detect changes in
metabolic processes, usually represented in the form of pathways. As
an alternative, a broader point of view would enable investigators to
better understand the relations between entities that exist in different
processes. Therefore, relating a possible perturbation to several known
processes represents a new approach to this field of study. We propose
to use a network representation of metabolism in terms of reactants, en-
zymes and metabolites. To model these systems, it is possible to describe
both reactions and relations among enzymes and metabolites. In this
way, analysis of the impact of changes in some metabolites or enzymes
on different processes are easier to understand, detect and predict.

Results.We release the MetaboX library, an open source PHP frame-
work for developing metabolic networks from a set of compounds. This li-
brary uses data stored in the Kyoto Encyclopedia for Genes and Genomes
(KEGG) database using its RESTful Application Programming Inter-
faces (APIs), and methods to enhance manipulation of the information
retrieved from the KEGG webservice. The MetaboX library includes
methods to extract information about a resource of interest (e.g. metabo-
lite, reaction and/or enzyme) and to build reactants network, bipartite
enzyme-metabolite and unipartite enzyme networks. These networks can
be exported in different formats for data visualization with standard
tools. As a case study, the networks built from a subset of the Glycolysis
pathway are described and discussed.

Conclusions.The advantages of using such a library imply the ability
to model complex systems with few starting information represented by
a collection of metabolites KEGG IDs.

1 Background

In metabolomics applications it is often of interest to model relationships and
interactions among compounds and enzymes, such as protein-protein interac-
tions, metabolite pathways or pathway flows. One of the main challenges in
metabolomics is to model these interactions in the form of networks [1,2]. Such
networks make it easier to understand the topological and functional structure of

F. Ortuño and I. Rojas (Eds.): IWBBIO 2015, Part I, LNCS 9043, pp. 565–576, 2015.
c© Springer International Publishing Switzerland 2015

566 F. Maiorano, L. Ambrosino, and M.R. Guarracino

molecules and their interactions. Furthermore, once the network has been built,
various statistics can be obtained for characterization and comparison. Indeed,
a network represents a convenient way to model objects and their relationships
as complex systems. Modeling a network of metabolites provides several ways
to further analyze types of interactions, to understand the role of each metabo-
lite in a particular pathway and to detect changes. The problem we address is
to build reaction, unipartite enzymes and bipartite enzyme-metabolite networks,
starting from a list of metabolites and information on metabolism gathered from
a database. These networks models were used in other research studies in order
to identify so-called reporter metabolites [3]. In a metabolite reaction network,
two metabolites are connected if they are known to react in the same reaction.
In a unipartite enzyme network, two enzymes are connected if they share at least
one metabolite in the reactions they catalyze. In a bipartite enzyme-compound
network, each enzyme is connected to every metabolite that is present in the
reactions it catalyzes.

There are several publicly available databases that store and distribute in-
formation on molecular compounds providing different access methods. Among
these we cite MetaCyc [4], EcoCyc [5], HMDB [6], Lipid Maps [7], BioCyc [8],
Reactome [9], PubChem [10], Chebi [11], ChemSpider [12], Meltin [13], IIMDB
[14], and KEGG [15]. It is out of the scope of this paper to describe the charac-
teristics of all these databases, and we focus our attention on the latter.

KEGG is a database containing the largest collection of metabolites, as well as
enzymes, reactions and other information[16]. It is possible to query the database
with a web interface using one compound, and obtain information on the reac-
tions in which it is involved, the stoichiometric equations, enzymes that catalyze
the reaction, and metabolic pathways in which these reactions are involved. Its
website graphically displays the stored pathways, but there is no functionality
to build networks with a custom topology. To overcome these difficulties, some
software exist, and partially solve these problems.

KEGGgraph [17] represents an interface between KEGG pathways and graph
objects. It parses KGML (KEGG XML) files into graph models. This tool only
provides modeling for KEGG pathways and it is only available for R. MetaboAn-
alyst [18] provides a web-based analytical pipeline for metabolomic studies. Its
web interface can be used to load data as a list, for statistical analysis, as well as
pathway analysis. When queried with a list of compounds, it returns information
on pathways taken from KEGG but, for reasons related to XML representation
of KEGG pathways, information concerning reactions and substrates are par-
tially lost. Therefore, the resulting metabolic network is often disconnected and
it does not represent a good model for graph analysis. The source code is not
available, neither it provides APIs of any form.

INMEX [19], introduces an integrative meta-analysis of expression data and
a web-based tool to support meta-analysis. It provides a web interface to per-
form complex operations step-by-step. While it supports custom data processing,
annotation and visualization, it does not provide any APIs to extend core func-
tionalities and it cannot be deployed in a custom environment. MetaboLyzer [20]

The MetaboX Library: Building Metabolic Networks from KEGG Database 567

implements a workflow for statistical analysis of metabolomics data. It aims at
both simplifying analysis for investigators who are new to metabolomics, and
providing the flexibility to conduct sophisticated analysis to experienced in-
vestigators. It uses KEGG, HMDB, Lipid Maps, and BioCyc for putative ion
identification. However, it is specifically suited for analysis of post-processed liq-
uid chromatography-mass spectrometry (LCMS)-based metabolomic data sets.
Finally, a tool that implements network construction is MetaboNetworks [21]
which builds the networks using main reaction pairs and provide analyses for
specific organisms. Although these software give the possibility to model a new
network starting from a list of compounds, providing relevant tools for statisti-
cal and functional analyses, they miss the cabability to programmatically query
metabolomics resources in order to develop novel applications and the software
development choices made them suited for very specific environments raising
difficulties to use them in production. With the aim to fill that gap, we intro-
duce the MetaboX library which is a framework that enables investigators to
extract information that is not visible at a first glance in KEGG. In fact, it is
possible to retrieve many information available in the database with just a col-
lection of KEGG IDs and then connect the gathered data in ways KEGG does
not provide. The MetaboX library is written in PHP and it is platform indepen-
tent. The latest version is available under the AGPL license on gitHub repository
(https://github.com/Gregmayo/MetaboX-Library).On the other hand, it is pos-
sible to programmatically query the database, obtaining such information in the
form of flat files. For large lists of input nodes it can be very difficult to manu-
ally gather information of interest to build a network, as well as other metadata
useful to get a complete understanding of the biological system. With respect
to the tools presented above, MetaboX provides a framework to model custom
network layouts from a list of input nodes. Based on the nature of input nodes,
we provide a set of classes to gather related information and programmatically
build a network. The design of the MetaboX library is suited for web produc-
tion environments, in fact it can be embedded in a custom webservice as it is
released under the AGPL license. Therefore, the MetaboX library is an open
source framework that aims to get a growing community of researchers and
developers to support metabolomic analysis. With the MetaboX library, devel-
opers are able to model a network in different ways using the available methods
to create a custom network layout that meets their needs. The library design
is modular, with the aim to give developers the ability to implement different
types of network builders from lists of compounds. Thus, gathering information
and detecting interactions programmatically represents a benefit when working
with large lists of metabolites. In the network construction process, MetaboX
handles the following steps: (i) connect to the resource provider database us-
ing the PHP libcurl library. (ii) query a resource provider using methods
to retrieve nodes and interactions. As KEGG does not provide a structured
query response, we built a translation layer to extract information from flat
files. (iii) extract requested resource attributes from returned data, parsing and
storing them. This task is achieved using regular expressions. (iv) cache resource

568 F. Maiorano, L. Ambrosino, and M.R. Guarracino

attributes to file using a convenient data structure for serialization and for shar-
ing and processing purposes such as JSON. (v) build a consistent data structure
with information about requested resources using all previous steps, in order
to build a network from collected data. Results consist of a weighted edgelist
and a list of network nodes. It also includes specific resource information. In the
connect step, MetaboX currently supports HTTP, HTTPS, FTP, and ldap pro-
tocols. It also supports HTTPS certificates, POST, PUT and FTP uploading,
which are natively available in the curl library. It is also possible to query the
KEGG database with a list of resources of interest and then parse the response
to firstly separate information about each one and then extract specific data.
In the extract step downloaded data are parsed to produce new files ready for
next steps. We locally cache data to load resource information every time it is
requested again by a new process. We design the caching system for MetaboX
to speed up computation and to produce a sustainable amount of requests to
the resource provider system. It is possible to invalidate the cache in order to
reload updated data, and to manually delete the cache so that the library can
update it. Finally, the build step is intended to put together all gathered in-
formation and output the resulting network. Every build method connects two
nodes differently in each network model, that is Reactant Graph implementation
of the build method is different from both Enzyme Unipartite Graph and Enzyme
Bipartite Graph. In the following section, we report the implementation of the
MetaboX library, detailing how it provides easy access to KEGG database and
data manipulation. We explain how to use the library to build the different net-
works proposed and how to export the result for visualization and analysis with
external tools like Cytoscape [22], which we use to render the figures presented
in this paper. Then, we provide a case study and discuss the results. Finally, we
conclude providing details on future work directions and open problems.

2 Implementation

At the moment of this writing, KEGG only offers a RESTful API interface thus
MetaboX is designed to query these in an appropriate manner. KEGG used to ex-
pose SOAP APIs to standard software but these were suppressed on 31st decem-
ber 2012 and the toolbox does not work anymore (https://www.biocatalogue.org/
announcements/37). KEGG returns plain text upon web-service calls, thus mak-
ing it necessary to parse results and arrange them in a data structure. We query
KEGG multiple times and store the gathered information to file. The file format
we use is JSON which is a lightweight data-interchange format, human-readable
and writable. JSON is a text format that is completely language independent but
uses conventions that are familiar to C-family programmers. These properties
make JSON an ideal data-interchange language. To limit requests to KEGG, the
MetaboX library loads previously processed resources from local storage, if they
are available. A sample request for a resource in KEGG can be achieved using
the following url: http://rest.kegg.jp/<operation>/<argument>. For instance,
http://rest.kegg.jp/get/cpd:C01290 can be used to retrieve metabolite C01290.

The MetaboX Library: Building Metabolic Networks from KEGG Database 569

Network Construction.We deal with compounds, reactions and pathways. To
handle such a variety of entities, the MetaboX library defines proper classes. Ab-
stractResourceLoader is an abstract class that provides methods needed to load
an entity. To model an entity with a new class, this has to extend the abstract
class and implement the abstract load method. When an entity is instatiated,
this method first checks for existing records in the cache. If the requested entity
has not been processed previously, a new file is built upon KEGG response. This
pattern is used to load metabolites, reactions, pathways and enzymes. We pro-
vide several helper methods to extract information about resources from plain
text using regular expressions. When the entity has been successfully processed,
we serialize it to file for further reference. The attributes that define a metabo-
lite are: id, formula, exact mass, molecular weight, reaction list, pathway list,
enzyme list. Lists of other entities of interest that are related to a metabolite,
such as reactions, pathways and enzymes, are loaded with different API call. For
instance, if the load of C01290 returns a list of 10 reactions, we use a RESTful
url to instantiate each of these reactions. It is possible to query KEGG RESTful
APIs using collections of metabolites, reactions, enzymes or pathways. Using this
capability, we designed the MetaboX library to construct queries splitting the
input collection in chunks of 10 items (as this is the maximum chunk size KEGG
supports). For reactions, we collect id, name, definition, equation, enzymes and
pathways. For data manipulation purposes and to conveniently organize reaction
information of input metabolites, we process reaction equations and split reac-
tants from products in a data structure. Cache directories can be set in a config-
uration file. Each resource is stored in a dedicated resource directory and files are
named after resource id (e.g. {resource}/{resource id}.json would result in com-
pound/C00002.json). The configuration file ’config.ini’ is divided in sections and
it is possible to specify storage directories for entities (e.g. config->directory-
>compound or config->directory->reaction) as well as KEGG API urls (e.g.
config->url->compound or config->url->reaction). This approach is helpful if
the entities become available in different urls or from another resource provider.
In the MetaboX library we provide an interface to build several networks. Ab-
stractGraphBuilder is an abstract class that defines the general structure of the
resulting network. Specific network builder classes must implement the abstract
build method provided in the abstract builder which takes one optional param-
eter. This is a list of metabolites out of which a sub network has to be built. To
create a new type of network, a builder class should provide the construction of
a network involving input metabolites and others involved in common reactions,
or other entities, such as enzymes. If the optional parameter is specified, the
builder method should create a network with set of nodes given by input pa-
rameter. When the network-construction process is completed, getGlobalGraph
and getSubGraph methods return a multidimensional array containing the list
of nodes, a weighted edgelist, where the weight represents the times a reaction
has been found, and the list of connected and not connected nodes, in the case
of a sub network.

570 F. Maiorano, L. Ambrosino, and M.R. Guarracino

Reactants Network. A network of reactants G = (V,E) is an undirected
graph where each node represents a metabolite and two given nodes A and B in
V interact with each other only if there is at least one reaction equation where
A and B are involved as reactants. ReactantsGraph class builds a network out
of a list of metabolites. To achieve this task, we first gather metabolites and
reactions data from KEGG (Listing 1.1). We create a list of reactions that in-
volve input metabolites and pass it to the class. In this case, the build method
cycles through the list of reactions and, for each one, the list of substrates is
extracted. We then connect each substrate to one another and when all direct
network interactions have been built, we produce a weighted edgelist. Such edge-
list represents a network including input compounds and all other compounds
involved in processed reactions. We also save a weighted list of interactions that
only include input compounds, this resulting in a smaller network which can
be seen as a sub network of the global weighted interaction list. As shown in
Fig. 1, the sub network is embedded in the global one. A builder class exposes
methods to compute results and pass them to the graph writer classes in order
to produce a file format that is suitable to the needs of further analysis, such
as SIF and XML. The modeling of this class of networks allows to detect which
compounds are directly connected, being reagents of the same reactions. It high-
lights what are the highly connected hubs in a network made up of the collection
of metabolites under analysis. This information is useful for planning metabolic
engineering strategies. It is clear that if we wish to modify a node of this type
of network, it is crucial to know what are other reactants to be considered, so
that the change can effectively impact on the metabolic system of the studied
biological organism.

1 // Retrieve and collect compound information

2 foreach($compounds as $compound){ $_cpd_id = trim($compound);

3 $cpd_loader = new MetaboX\Resource\Loader\ Compound($_cpd_id , $cpdLoaderConfig);

4 $_compounds [$_cpd_id] = $cpd_loader ->load();

5 }

6

7 // Retrieve and collect reactions information

8 foreach($_compounds as $id => $compound){

9 $rn_list = $compound -> reactionIdCollection ;

10

11 if($rn_list){

12 foreach($rn_list as $rn){ $_rn_id = trim($rn);

13 $rn_loader = new MetaboX\Resource\Loader\Reaction($_rn_id , $rnLoaderConfig);

14 $_reactions [$_rn_id] = $rn_loader -> load();

15 } } }

16

17 // Create reactants graph

18 $_graph = new MetaboX\Graph\ReactantsGraph ($_reactions);

19 $_graph ->build($compounds);

Listing 1.1. Loading Metabolites and Reactions metadata from KEGG

1 // Retrieve and collect reactions information

2 foreach($_compounds as $id => $compound){

3 $ec_list = $compound -> enzymeIdCollection ;

4

5 if($ec_list){

6 foreach($ec_list as $ec){

7 $_ec_id = trim($ec);

8 $ec_loader = new MetaboX\Resource\Loader\Enzyme($_ec_id , $ecLoaderConfig);

9 $_enzymes[$_ec_id] = $ec_loader ->load();

10 }

11 }

12 }

Listing 1.2. Loading Enzymes metadata from KEGG

The MetaboX Library: Building Metabolic Networks from KEGG Database 571

(1) A network of reactants ob-
tained from the 11 input metabo-
lites (darker nodes) selected from
glycolysis pathway. This network
shows 108 nodes and 151 edges.

(2) Enzyme-metabolite bipartite
network: 342 nodes and 393 inter-
actions. Darker nodes represent
metabolites.

(3) Enzymes unipartite network:
297 nodes and 7705 interactions.

(4) A standard view of glycolysis.

Bipartite Enzyme-Metabolite Network. A network of enzymes and metabo-
lites is a bipartite undirected graph Z = (U, V,E) with set of nodes U represent-
ing metabolites and V representing enzymes. A metabolite node is connected to
all the enzymes nodes that catalyze a reaction involving that metabolite, and
an enzyme node is connected to all the metabolites that take part in the corre-
sponding reaction. That is, if an enzyme F in V catalyzes a reaction where a
metabolite M in U is a substrate, then an interaction between F and M exists
in the network. We achieve this task using EnzymeBipartiteGraph class which

572 F. Maiorano, L. Ambrosino, and M.R. Guarracino

parameters are: a metabolite collection, an enzyme collection and a reaction col-
lection. We cycle through the list of metabolites and select the related enzymes.
We search current metaboliteM in the substrates of the reaction catalyzed by en-
zyme F . If we have a match, we connect nodes F and M . An enzymes network,
both unipartite and bipartite, provides a kind of visualization that highlights
some aspects that are not observable by a reactants network. If we are analyzing
different time conditions with different concentration levels of some compounds,
for instance, this class of networks would quickly identify which nodes are most
affected, restricting the area of interest to the enzyme directly susceptible to
a particular condition. Therefore, the construction of this type of graphs can
help highlight changes in the enzymatic expression levels or to detect enzymes
with structural or functional defects due to particular conditions of stress. An
example of such a network is shown in Fig. 2.

Unipartite Enzymes Network. A unipartite network of enzymes is an undi-
rected graph G = (V,E) where nodes represent enzymes and two enzymes shar-
ing a common compound in the corresponding reactions are connected to each
other. The class used to model such a network is EnzymeUnipartiteGraph. This
builder class is instantiated with a list of enzymes and a list of reactions. These
lists are created collecting all reactions and enzymes that involve input metabo-
lites (Listing 1.2). For each enzyme in the collection, we load data of the reaction
catalyzed and select all substrates. We cycle through the enzyme collection com-
paring the current enzyme substrates to all others. Given two enzymes T and S
in V , we connect them if the intersection between substrates in T and substrates
in S is not empty. An example of such a network is shown in Fig. 3.

Data Export. In the MetaboX library, there are two classes that can be used to
export the constructed network in other formats. As for the other components, a
AbstractGraphWriter is an abstract class that exposes an abstract write method.
The class constructor takes one parameter, that is a multidimensional array con-
taining the node list and the weighted edgelist of the network. This can be set using
getGlobalGraph or getSubGraph to export respectively a network or a sub network.
The write method has two parameters: the name of the file to be written and the
data thatneeds tobe exported. If the outputneeds tobepreparedormodified some-
how, it is possible to call prepareOutput within thewrite method. This is the case of
CytoscapeGraphWriter class where interactions are converted to string and then
written to file. To work with the D3JS visualization library as well as D3py or Net-
workX [25], theMetaboX library provides several classes to export a network in one
of the formats accepted by other analysis tools. For instance, a D3JSGraphWriter
converts the network to JSON and writes it to file.

3 Results and Discussion

In order to test MetaboX, we build a network starting from a set of eleven com-
pounds, listed below: Glucose (C00031), Glucose 6-phosphate (C00668), Fructose

The MetaboX Library: Building Metabolic Networks from KEGG Database 573

6-phosphate (C05345), Fructose 1,6-bisphosphate (C05378), Dihydroxyacetone
phosphate (C00111), Glyceraldehyde 3-phosphate (C00118), 1,3-bisphospho-
glycerate (C00236), 3-phosphoglycerate (C00197), 2-phosphoglycerate (C00631),
Phosphoenolpyruvate (C00074), Pyruvate (C00022). These compounds belong
to glycolysis, the metabolic pathway that leads, starting from glucose, to the
production of pyruvic acid through several reactions. Fig. 1 shows the network
of all reactions involving input metabolites. This results in a network that in-
cludes input metabolites as well as others related to them. Here we find 151
interactions between 108 metabolites, including all the input metabolites. An
interaction in this graph means to be reactants of the same reactions, therefore
each node is directly affected by a decrease in the concentration of one of its
neighbors, not by an increase. In this second case, in fact, there would be an
excess of one of the two reactants. For instance, this information is useful if we
want to plan a change in the levels of a compound starting from other compounds
already known. Glucose and Pyruvic acid, as well as representing the start and
the end of the glycolysis, are also hubs, namely highly connected nodes, in the
network shown in Fig. 1.The MetaboX library also outputs a reactants subnet-
work which only contains the nodes and the edges of the input metabolites. In
this case study, the subnetwork results in just few nodes and edges (3 nodes and
2 edges) because the compounds choosen from glycolysis represent a subset of
the glycolysis pathway (map00010) shown in Fig. 4. Therefore, each metabolite
is both a reactant and a product of its neighbors in the pathway. The networks
built with the MetaboX library are not pathway representation of the input
metabolites. A classic pathway view in the form of substrate-product flow is
provided by many databases of metabolic data (KEGG, MetaCyc, MetaboAn-
alyst), and it is not implemented in the MetaboX library. Instead, we mainly
focus our efforts to highlight other information, like the relationships between
metabolites of the same reaction. In this case study, compounds do not follow
the common representation of glycolysis. Indeed, they do not show the same
connections in the reactants network built with the MetaboX library. Another
example we provide is the construction of a unipartite and bipartite enzymes
network. In the first case, in Fig. 3, each node of the network is an enzyme,
and two of them are connected if they share at least one metabolite in the re-
actions they catalyze, with the constraint that the substrate of one enzyme is
the product of another enzyme. We add this constraint to allow the user to
easily have a view of the substrate-product flow, looking at enzymes instead of
metabolites. In this way, we are able to build a unipartite enzymes network with
297 nodes and 7705 interactions. Finally, we build a bipartite enzyme-metabolite
network, in Fig. 2. As already mentioned, this network consists of two sets of
nodes: metabolites and enzymes. Nodes are connected alternatively, that is a
metabolite to an enzyme or vice versa. Connections between two metabolites
or two enzymes are not possible. In the resulting network, we are able to find
342 nodes (11 metabolites and 331 enzymes) and 393 interactions. Looking at
this network, we can easily identify the hubs (namely glucose, pyruvate, glyc-
eraldehyde 3-phosphate and phosphoenolpyruvate) and all the enzymes related

574 F. Maiorano, L. Ambrosino, and M.R. Guarracino

to them. To change something in these hubs, the variables (enzymes) to take into
account can be many, and the design of a subsequent experiment in metabolic
engineering would be too complicated. A better solution is represented by focus-
ing on compounds that show only few connections, in order to limit the analysis
to few enzymes and to decrease the complexity of further analyses. Anyhow,
we strongly believe that this type of network significantly simplifies the work
of those who analyze metabolic pathways to understand metabolic disorders, to
connect disease to enzyme defects, to design successful metabolic engineering
strategies. MetaboNetworks provides analyses for specific organisms whereas in
the MetaboX library we do not account for this feature, considering all avail-
able reactions in the first place. In such a way, a user can plan pipelines or
methodologies from a compound-wise point of view, and not an organism-wise
point of view. For instance, in soil remediation from copper, MetaboX provides
access to all known reactions containing copper. A user can then find which or-
ganisms use copper within their metabolic pathways. In the enzyme API call,
KEGG provides the GENES attribute containing a list of genes where that par-
ticular enzyme is involved. Each one of those genes is specific for an organism,
enabling the user to filter organism specific reactions. In conclusion, if we start
without any initial information about compounds concentration and we look at
the topology of the network, the highly connected nodes are fundamental in the
metabolism, and changes in these nodes would have probably led to the death
of the organism. On the contrary, if we start from experimental data, it might
be useful to correlate increases or decreases of the concentration of some com-
pounds to a particular disease or to a particular disorder. Therefore highlighting
compounds within a network should be useful in designing any strategy aimed
at clarifying ways of occurrence of the disease, extracting from that network in-
formation like mumber of edges, enzymes, reactions, etc. The MetaboX library
is a suitable tool created to solve both issues: a first preliminary view and a
second in-depth analysis.

4 Conclusions

In this paper we describe the MetaboX library, a framework to build metabolic
networks using information gathered from the KEGG database. The advantages
of using such a library are: (i) the possibility to gather information from KEGG
using a collection of KEGG IDs. (ii) the possibility to build a representation
of the metabolic processes that can highlight how changes in metabolites or en-
zymes might affect other processes. (iii) the possibility to export the networks
to other formats for visualization and analysis with standard software, such as
Cytoscape, NetworkX, D3JS or D3py. Because of its extensibility, the MetaboX
library may add support to other fields as in the construction of protein-protein
interaction (PPI) networks for performing different topological and functional
analyses [23]. In this case, the MetaboX library should use a resource provider
that stores information about interactions between proteins such as STRING
[24]. An organism filter can be implemented in the MetaboX library, as used

The MetaboX Library: Building Metabolic Networks from KEGG Database 575

in MetaboNetworks, in order to select specific reactions and build a sub net-
work that enables an organism-wise network. This can be achieved building an
organism list for each enzyme of each processed reaction.

The library has been built with the possibility to extend data information
gathering, such as downloading these from databases other than KEGG or merge
information collected from multiple databases. Indeed, in order to make the net-
work construction as complete as possible, the MetaboX library will implement
a merge process among different resource providers. As KEGG information is
limited, it makes sense to gather data about metabolites, reactions, pathways
and enzymes from other databases like MetaCyc.

The MetaboX library is the starting point of a three layer project involving a
web service and a web application. ”Web services provide a standard means of
interoperating between different software applications, running on a variety of
platforms and/or frameworks.”. Following this vision, MetaboX library offers a
framework to work with metabolic networks. On top of that, we will develop a
web service to expose core functionalities to the web. The MetaboX webservice
will work in a RESTful fashion, providing APIs to retrieve resources information,
network construction options and job submission. Moreover, we will implement
alternative ways to make data persistent, such as database storage.

Acknowledgements. This work has been partially funded by MIUR projects
PON02 00619 and Italian Flagship project Interomics.We wish to thank LabGTP
(Laboratory for Genomics, Transcriptomics and Proteomics) researchers from
ICAR CNR for helpful discussion during the early stages of this project and for
testing the MetaboX library giving an important feedback for improvements.

References

1. H.K., et al.: Metabolic network modeling and simulation for drug targeting and
discovery. Biotechnol J., 30–42 (2011)

2. Cloots, L., et al.: Network-based functional modeling of genomics, transcriptomics
and metabolism in bacteria. Curr Opin Microbiol, 599–607 (2011)

3. Raosaheb, K., et al.: Uncovering transcriptional regulation of metabolism by using
metabolic network topology. PNAS, 2685–2689 (2005)

4. Krieger, C.J., et al.: MetaCyc: a multiorganism database of metabolic pathways
and enzymes. Oxford Journals Nucl. Acids Res, 511–516 (2004)

5. Keseler, I.M., et al.: EcoCyc: fusing model organism databases with systems biol-
ogy, Oxford Journals Nucl. Oxford Journals Nucl. Acids Res, D605-D612 (2013)

6. Wishart, D.S., et al.: HMDB: the Human Metabolome Database. Nucleic Acids
Res, D521-D526 (2007)

7. Sud, M., et al.: LMSD: LIPID MAPS structure database. Oxford Journals Nucl.
Acids Res, 527–532 (2007)

8. Karp, P.D., et al.: Expansion of the BioCyc collection of pathway/genome
databases to 160 genomes. Nucl. Acids Res, 6083–6089 (2005)

9. Matthews, L., et al.: Reactome knowledgebase of human biological pathways and
processes. Nucl. Acids Res, D619-D622 (2009)

576 F. Maiorano, L. Ambrosino, and M.R. Guarracino

10. Wang, Y., et al.: PubChem’s BioAssay Database, Nucl. Nucl. Acids Res, D400-
D412 (2012)

11. Hastings, J., et al.: The ChEBI reference database and ontology for biologically
relevant chemistry: enhancements for 2013. Oxford Journals Nucl. Acids Res, 456–
463 (2013)

12. Pence, H.E., et al.: ChemSpider: An Online Chemical Information Resource. J.
Chem. Educ., 1123–1124 (2010)

13. Smith, C.A., et al.: METLIN: A Metabolite Mass Spectral Database Therapeutic
Drug Monitoring. In: Proc. of the 9th ICTDM, pp. 747–751 (2005)

14. Menikarachchi, L.C., et al.: Silico Enzymatic Synthesis of a 400.000 Compound
Biochemical Database for Nontargeted Metabolomics. J. Chem. Inf. Model., 2483–
2492 (2013)

15. Kanehisa, M., et al.: KEGG for integration and interpretation of large-scale molec-
ular data sets. Nucl. Acid Res. 14, D109-D114 (2011)

16. Altman, T., et al.: A systematic comparison of the MetaCyc and KEGG pathway
databases. BMC Bioinformatics (2013)

17. Jitao, D.Z., et al.: KEGGgraph: a graph approach to KEGG PATHWAY in R and
bioconductor. Bioinformatics, 1470–1471 (2009)

18. Xia, J., et al.: MetaboAnalyst 2.0 - a comprehensive server for metabolomic data
analysis. Nucl. Acids Res., 1–7 (2012)

19. Xia, J., et al.: INMEXa web-based tool for integrative meta-analysis of expression
data. Nucl. Acids Res., W63-70 (2013)

20. Mak, T.D., et al.: MetaboLyzer: A Novel Statistical Workflow for Analyzing Post-
processed LCMS Metabolomics Data. Anal. Chem. Article ASAP, 506–513 (2013)

21. Posma, J.M., et al.: MetaboNetworks, an interactive Matlab-based toolbox for cre-
ating, customizing and exploring sub-networks from KEGG. Bioinformatics (2013)

22. Cline, M.S., et al.: Integration of biological networks and gene expression data
using Cytoscape. Nat Protoc., 2366–2382 (2007)

23. Sharma, A., et al.: Rigidity and flexibility in protein-protein interaction networks:
a case study on neuromuscular disorders, arXiv, arXiv:1402.2304v2 (2014)

24. Franceschini, A., Szklarczyk, D., et al.: STRING v9.1: protein-protein interaction
networks, with increased coverage and integration. Nucleic Acids Res 41, D808–
D815 (2013)

25. Hagberg, A.A., et al.: Exploring Network Structure, Dynamics, and Function using
NetworkX. Proc. SciPy, 11-16 (2008)

	The MetaboX Library: Building Metabolic Networks from KEGG Database
	1 Background
	2 Implementation
	3 Results and Discussion
	4 Conclusions
	References

