
A Pseudo de Bruijn Graph Representation
for Discretization Orders for Distance Geometry

Antonio Mucherino

IRISA, University of Rennes 1, Rennes, France
antonio.mucherino@irisa.fr

Abstract. Instances of the distance geometry can be represented by a simple
weighted undirected graph G. Vertex orders on such graphs are discretization
orders if they allow for the discretization of the K-dimensional search space of
the distance geometry. A pseudo de Bruijn graph B associated to G is proposed
in this paper, where vertices correspond to (K +1)-cliques of G, and there is an
arc from one vertex to another if, and only if, they admit an overlap, consisting of
K vertices of G. This pseudo de Bruijn graph B can be exploited for constructing
discretization orders for G for which the consecutivity assumption is satisfied. A
new atomic order for protein backbones is presented, which is optimal in terms
of length.

1 Introduction

The ordering associated to the atoms of a given molecule plays a fundamental role in
the discretization of Molecular Distance Geometry Problems (MDGPs) [15,19]. The
MDGP is the problem of finding suitable three-dimensional conformations for a given
molecule by exploiting the information concerning known distances between atom
pairs. A simple weighted undirected graph G = (V,E,d) can be formally used for rep-
resenting an MDGP instance, where vertices u and v ∈ V represent atoms, and there is
an edge (u,v) ∈ E between u and v if the corresponding distance is known. The weights
associated to the edges provide the numerical values for such distances. These values
can be either exact or represented by a real-valued interval. The MDGP basically asks
whether the graph G can be embedded in dimension K = 3. Notice, however, that the
same problem can be defined for any dimension K > 0.

The discretization of the MDGP allows for reducing the search conformational space
of the problem to a tree [16]. While atoms can generally take any position in a contin-
uous portion of the space (e.g. a (hyper)sphere containing the entire molecule), the
discretization makes it possible to consider a discrete and finite subset of possible posi-
tions for each atom of the molecule. This space reduction does not decrease the problem
complexity (which is NP-hard [21]), but it allows for the development of ad-hoc algo-
rithms on search trees for discovering one solution (or even several solutions) to the
problem [14].

A discretization order is an order given to the vertices of the graph G that allows for
the discretization [11]. In previous works, discretization orders have been either hand-
crafted [7,13] or automatically generated [11,18]. When handcrafted, the orders have
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been particularly designed for an important class of molecules: the proteins. These
molecules, in fact, perform several (often vital) functions in living beings. They are
chains of amino acids, which are bonded to each other through peptide bonds. The sim-
ple examination of the known chemical structure of the 20 amino acids involved in the
protein synthesis (which implies knowledge on distances) allowed for the identifica-
tion of discretization orders for the protein backbone [13] and its side chains [7]. These
handcrafted orders can also be seen as sequences of overlapping cliques of atoms (see
Section 2 for more details): the possible positions for an atom u can be computed by
using the information related to the atoms that immediately precede u in the order (these
“reference” atoms belong to a common clique). This class of discretization orders satis-
fies the so-called consecutivity assumption, because all reference atoms are consecutive
and they immediately precede u in the order.

The problem of finding a discretization order satisfying the consecutivity assumption
is NP-complete [4]. When this assumption is relaxed, so that an atom u can have, as a
reference, atoms that are not its immediate predecessors in the order, then the problem
of finding the order has polynomial complexity [11]. A greedy algorithm for an auto-
matic detection of discretization orders that do not necessarely satisfy the consecutivity
assumption was proposed in [11,18].

When the consecutivity assumption is satisfied, it is possible to verify in advance
whether the discretization distances (that are, for a given atom, grouped in the same
clique) are compatible and are able to provide a finite number of positions for an atom
of the molecule. For each u, since the reference atoms belong to a common clique,
all relative distances are a priori known, so that their feasibility can be verified. This
is not true anymore when the assumption is not satisfied: not all distances, necessary
for the feasibility verification, may be available. On the one hand, therefore, orders
satisfying the consecutivity assumption should be favored; on the other hand, however,
the problem of identifying such orders is NP-complete.

In this work, the problem of finding discretization orders with the consecutivity as-
sumption is studied, and, to this purpose, a pseudo de Bruijn graph representation [2]
for cliques contained in MDGP instances is proposed. This novel representation allows
in fact for an easier search for this kind of discretization orders. In this representation,
cliques of G are vertices of a directed graph B = (VB,AB), where there is an arc from
the vertex b to the vertex c ∈VB when the two corresponding cliques overlap. As a con-
sequence, a discretization order can be seen as a path on the graph B, such that every
atom of G appears at least once in the sequence of cliques. Orders induced from these
paths on B are discretization orders satisfying the consecutivity assumption.

By exploiting the proposed pseudo de Bruijn graph representation, a new discretiza-
tion order for protein backbones was identified. In comparison to the order previously
proposed in [13], this new ordering contains fewer atomic repetitions, and it is optimal
in terms of length. The de Bruijn graph representation provides a support for the identi-
fication of this particular class of orders. When no ordering can be found by exploiting
this representation, then orders that the greedy algorithm in [11,18] is able to identify
can be considered as valid alternatives, even if this algorithm cannot ensure that the
consecutivity assumption be satisfied.
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Two different graphs will be considered throughout the paper. The graph G=(V,E,d)
represents an instance of the MDGP, where vertices u, v, etc., are atoms and weighted
edges are distances. The edge set E is partitioned in E ′ and its complement E \E ′, where
E ′ only contains edges referring to exact distances. The graph B = (VB,AB) represents
the pseudo de Bruijn graph containing cliques of G, where the arc from the vertex b to
the vertex c indicates that the two corresponding cliques overlap (see Section 2 for the
rigorous definitions).

The rest of the paper is organized as follows. In Section 2, the pseudo de Bruijn graph
representation for cliques in MDGP instances is presented and commented in details.
By exploiting this novel representation, new discretization orders for the MDGP where
the consecutivity assumption is satisfied can be found. Section 3 will present one of
such orders for the protein backbones, that will result to be optimal in length. Section 4
will conclude the paper with a discussion.

2 de Bruijn Graph Representation

Graphs of de Bruijn are widely employed for formalizing problems related to DNA
assembly [5,6,8,9]. New generation technologies are able to provide researches with
subsequences of DNA (named reads) that need to be successively assembled into one
unique sequence, which is the final DNA molecule. The best way to formalize this
problem is to consider a graph where vertices represent reads, i.e. the subsequences,
and where there is arc from a vertex to another when the ending of the former coincides
with the beginning of the latter (there is an overlap).

The graph B considered in this work is an extension of the classical de Bruijn graph
[2] which is used in the DNA application. If G represents an instance of the MDGP, the
vertices of the pseudo de Bruijn graph B = (VB,AB) are (K + 1)-cliques of the graph
G, where K is the dimension of the search space. A vertex b ∈ VB can be seen as a
subsequence of K + 1 atoms admitting an internal ordering.

In the standard de Bruijn graph, there is an arc from b to c if there is an overlap.
In other words, if the ending of the subsequence b coincides with the beginning of the
subsequence c, then the arc (b,c) is added in AB. In this application, since the vertices
in VB cannot be considered as static objects (the internal order of their atoms is not
constant), the standard definition of de Bruijn graph needs to be extended. Consider
for example that c ∈ VB is a (K + 1)-clique composed by exact edges (all distances are
exact): in this case, the K + 1 atoms in the clique can be reordered (K + 1)! times. If
instead b ∈ VB contains one interval distance, there are 2(K − 1)! permutations of the
atoms that allow the extremes of the interval distance to be the first and the last atom
in the clique (see Def. 2.5). In this application, it is necessary for the overlap to have
length equal to K. Notice that, even if the main application of this work is to biological
molecules, the theory presented in the following holds for any dimension K > 0.

Definition 2.1. There is a K-overlap from the vertices b to the vertex c of VB if there
exists an internal order for the atoms in b and an internal order for the atoms in c for
which the K-suffix of b coincides with the K-prefix of c.
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Algorithm 1. An algorithm for constructing an induced order r for the vertices of G
from a total K-valid path on the pseudo de Bruijn graph B associated to G.
1: find induced order in: P = {p1, p2, . . . , pn} out: order r
2: i = 1
3: for all u ∈ p1 in the internal order do
4: ri = u; i++
5: end for
6: for ( j = 2, n) do
7: u = last vertex in internal order of p j
8: ri = u; i++
9: end for

Notice that this definition applies to any kind of clique (either consisting of exact
distances, or containing interval data).

The interest in constructing the graph B = (VB,AB) from the graph G is evident.
When a set of coordinates has already been assigned to its first K atoms (in a given in-
ternal order), each (K+1)-clique allows for computing a finite set of possible positions
for its last atom [12]. When all the distances in the clique are exact, there are only 2
possible positions for the atom; when the distances between the first and the last atom
is represented by a real-valued interval, the positions for the last atom lie on two arcs,
which can be discretized [13]. Each clique in the suitable path on B gives therefore the
necessary information for computing a finite set of possible positions for each atom
of the molecule. A path of K-overlapping (K + 1)-cliques naturally implies a sorted
sequence of atoms, i.e. an order for the vertices of the graph G.

Definition 2.2. A K-valid path P= {p1, p2, . . . , pn} on B is a sequence of K-overlapping
cliques pi where the internal order of each clique is preserved when referring to pi−1 and
pi+1. When every atom u ∈ V is included in at least one clique pi, then the path is said
“total”.

Notice that the condition on the clique internal order is not necessary when standard de
Bruijn graphs are concerned.

A total K-valid path on B implies the definition of an order r : N+ −→V ∪{♣} with
length |r| ∈N (for which ri =♣ for all i > |r|) for the vertices of G. Alg. 1 is a sketch of
the simple algorithm that is necessary to apply to this purpose. Let P be a total K-valid
path on B. The first K labels are assigned to the atoms of p1 ∈ P (the internal order of
the clique has to be preserved). Then, for all other p j, with j ≥ 2, the last atom of the
clique p j, in the internal order, is added to the induced order.

Proposition 2.3. Any order r constructed by Alg. 1 from a total K-valid path P on B is
a discretization order for which the consecutivity assumption is satisfied.

Proof. By construction. �

A simple verification for the existence of a total K-valid path on B is to check its
connectivity. Naturally, if B is not connected, no total paths can be constructed. But
even when B is connected, a total path on B may not exist, as it is the case for the
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protein backbone, even if all its (K+1)-cliques are considered. To overcome this issue,
auxiliary cliques can be added in B.

Definition 2.4. An auxiliary (K + 1)-clique is a clique

{v1,v2, . . . ,vK ,v1}
where {v1,v2, . . . ,vK} is a K-clique of V having edges in E ′ (all distances are exact).

It is important to remark that several auxiliary cliques can be generated from one
K-clique, depending on the selected internal order of its atoms. The set of vertices
{v1,v2, . . . ,vK ,v1} evidently form a clique, because the distances between the dupli-
cated v1 and all other vertices are known. Moreover, the distance between the first and
second copy of v1 is exact and equal to 0. When deadling with protein backbones, the
identification of a total K-valid path on B is only possible when auxiliary cliques are
included in the pseudo de Bruijn graph B (see Section 3).

One immediate consequence in using auxiliary cliques is that atoms may be repeated
one (or even several times) in the induced orders. The auxiliary clique allows for locally
reordering a given subset of atoms, so that a K-overlap can become possible with other
cliques. Every time an auxiliary clique is involved, an atom is repeated in the atomic
sequence, exactly K places after its previous copy. This kind of orders were previously
formalized in [13] and named re-orders. Recall that E ′ is the subset of E containing
exact distances only.

Definition 2.5. A repetition order (re-order) is a function r :N+ →V ∪{♣} with length
|r| ∈N+ (for which ri =♣ for all i > |r|) such that:

– G[{r1,r2, . . . ,rK}] is a clique with edge set in E ′,
– ∀i ∈ {K + 1, . . . , |r|} and ∀ j ∈ {i−K+ 1, . . . , i− 1}, (r j ,ri) ∈ E ′,
– ∀i ∈ {K + 1, . . . , |r|}, either (ri−K ,ri) ∈ E or ri−K = ri.

Since every re-order is a discretization order where the consecutivity assumption is
satisfied, the following proposition holds.

Proposition 2.6. Induced orders from total K-valid paths P on pseudo de Bruijn graphs
B generated from G (with or without auxiliary cliques) are re-orders for the vertices of
the graph G.

3 Discretization Orders for Protein Backbones

Proteins are important molecules that perform vital functions in the bodies of living
beings. They are chains of smaller molecules named amino acids, whose order is a priori
known (in other words, every amino acid is known with its rank/position in the chain).
The protein backbone is defined by this chain, and basically contains, in sequence for
each amino acid, a nitrogen N, a carbon Cα and another carbon C, plus some additional
atoms chemically bonded to them. Only 20 different amino acids can be involved in
the protein synthesis. A group of atoms attached to the carbon Cα makes the 20 amino
acids different from each other. Since this latter group of atoms looks like “hanging”
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Fig. 1. The chemical structure of the considered 3-amino acid protein backbone. Some atoms are
omitted because they can be positioned uniquely once the considered ones have been placed. Side
chains may be attached to the atoms Cα through the bonds represented by the dashed gray lines.

from the protein backbone, it is said this is the side chain of the amino acid. Due to
the complexity of the problem of identifying protein conformations, many proposed
methods focus on protein backbones, and the information about the side chains is either
approximated or negleted. In fact, once a suitable conformation for a protein backbone
has been identified, there are methods that attempt the positioning of the side chains
[3,10].

As in previous publications about discretization orders [13,18], a small 3-amino acid
backbone will be considered in the following. Since the chemical structure of protein
backbones is repetitive (no side chains ⇒ no difference among the 20 amino acids), the
identification of an order for a small molecule with 3 amino acids is sufficient, because
this order can be trivially extended to protein backbones of any length.

Figure 1 shows the chemical structure of the considered 3-amino acid backbone. For
every chemical bond (light gray lines in the picture), there is a known exact distance
that can be considered for the discretization. Moreover, the relative distance between
atoms bonded to another common atom is known, and can also be considered as exact.
Finally, every quadruplet of consecutive bonded atoms form a torsion angle, from which
a lower and an upper bound can be obtained for the distance between the first and the
last atom of the quadruplet. Since peptide bonds, which chemically connect consecutive
amino acids, give a rigid configuration to a part of the backbone structure, some of
the distances derived from torsion angles can be considered as exact [17].

Table 1 shows the (non-auxiliary) cliques that can be found in the 3-amino acid
backbone. Only information deduced from its chemical structure are considered in the
table: the distances derived from experiments of Nuclear Magnetic Resonance (NMR)
[1] are here not considered. In fact, the interest is in finding orders that are suitable
for every protein backbone, so that only instance-independent distances are used for
defining the 4-cliques of the pseudo de Bruijn graph B.
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Table 1. 4-cliques contained in the graph representing an instance related to a 3-amino acid
backbone. Auxiliary cliques are not reported.

name atoms edge {ri−3,ri} name atoms edge {ri−3,ri}
c1 N1 C1

α H1
α C1 exact c7 N2 C2

α H2
α C2 exact

c2 H1
α C1

α C1 N2 interval c8 H2
α C2

α C2 N3 interval
c3 C1

α C1 N2 H2 exact c9 C2
α C2 N3 H3 exact

c4 C1
α C1 N2 C2

α exact c10 C2
α C2 N3 C3

α exact
c5 C1 N2 H2 C2

α exact c11 C2 N3 H3 C3
α exact

c6 H2 N2 C2
α H2

α interval c12 H3 N3 C3
α H3

α interval
c13 N3 C3

α H3
α C3 exact

In [13], a discretization order for the protein backbones was previously proposed.
This order was handcrafted and satisfies the consecutivity assumption (it is a re-order,
see Def. 2.5). Since then, it was generally used for discretizing MDGPs, as for example
in [20], where real NMR data were considered for the first time when working with a
discrete approach to distance geometry. In terms of de Bruijn graph, the handcrafted
order corresponds to the following total 3-valid path in dimension 3:

(first amino acid) ♦→ c1 → c2

(second amino acid) → c4 → c5 →♦→♦→ c6 → c7 →♦→ c8 →♦ (1)
(third amino acid) → c10 → c11 →♦→♦→ c12 → c13 .

The symbol ♦ indicates that an auxiliary clique is used in the order. The de Bruijn graph
representation of the handcrafted order starts with the auxiliary clique (C1

α,N
1,H1,C1

α).
Notice that the two hydrogens bonded to the nitrogen atom N1 of the first amino acid, as
well as the two oxygens bonded to the carbon C3 of the last amino acid, are here omitted.
In fact, positions for these atoms can be calculated at the end of the computation, when
a position has already been assigned to all other atoms. In the path (1), there are 7
auxiliary cliques; in general, for a protein backbone consisting of naa amino acids, 1+
4 ·(naa−2)+2 auxiliary cliques are necessary for constructing this path. Notice that the
second amino acid can be repeated as many times as necessary in a protein backbone
formed by naa > 3 amino acids.

The following is another possible path for the 3-amino acid backbone:

(first amino acid) c1 → c2

(second amino acid) → c3 → c5 →♦→ c6 →♦→ c7 → c8 (2)
(third amino acid) → c9 → c11 →♦→ c12 →♦→ c13 .

In this case, there are two auxiliary cliques in second amino acid, and other two auxiliary
cliques in the third one. As a consequence, two atoms are duplicated in each amino acid
in the corresponding induced re-order. In general, for naa amino acids, 2 · (naa − 1)
repetitions are necessary. The internal order of the starting clique c1 is: N1, H1, C1

α, C1.
Naturally, this is only one possible path that can be identified on the pseudo de Bruijn
graph B. It requires fewer auxiliary cliques than the handcrafted order. However, in
order to verify whether there are other possible paths for which the number of necessary
auxiliary cliques is smaller (implying therefore fewer repetitions), one could attempt the
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Fig. 2. An optimal (in terms of length) re-order for the protein backbone (in green). In the back-
ground, in light red, a previously proposed handcrafted order.

construction of all possible 3-valid total paths on the graph B by an exhaustive search.
Naturally, even if an exhaustive search might be feasible for small instances, this is
not an advisable procedure. For the considered 3-amino acid backbone, it is possible
to prove that the discretization order induced from the path (2) is optimal in terms of
length.

Theorem 3.1. Let G be a graph representing an MDGP instance related to a protein
backbone. For every amino acid in the protein backbone with rank greater than 2, every
re-order for its atoms requires at least 2 repetitions.

Proof. In a path starting with c2 (see Table 1), the 4th place in the induced order (refer
to Alg. 1) can be either for H1

α or for N2, because of the constraint on the internal orders
for the interval clique c2 (refer to Def. 2.2). However, in order to construct a path to c6

(and not to c1), it is necessary to choose the internal order where N2 is in position 4. At
this point, the clique c2 admits a 3-overlap with both cliques c3 and c4, and whichever
the chosen clique is, the clique c5 can follow either c3 or c4. The position of the atom
H2 in the induced order is the 5th (when c3 is chosen) or the 6th (when c4 is chosen).
In order to add c6 immediately after c5, the atom H2 should be instead in position 4,
which is taken by N2. However, the position 4 was fixed by c2 at the beginning of the
path. An auxiliary clique is therefore necessary for adjusting the internal order of c5

and for making it possible to have a 3-overlap with the clique c6. Naturally, the use of
an auxiliary clique before c6 might be avoided if a different path is rather constructed,
where auxiliary cliques needs to be however involved earlier. This implies that at least
one auxiliary clique is necessary for constructing a path on B from c2 to c6.

Similarly, it is possible to prove that at least one auxiliary clique is needed to step
from the clique c6 to the clique c8. Because of the repetitive structure of protein back-
bones, the theorem is proved. �
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Fig. 2 graphically shows the re-order induced from path (2), in green. Since this path is
basically a sequence of 15 cliques, 4+14 atoms (all atoms contained in the first clique+
one atom for all others) are included in this order (repetitions are also counted). Fig. 2also
shows the order induced from path (1), in light red. In this case, there are more repetitions:
there are 18 cliques in total, and therefore there are 4+ 17 atoms in the induced order.
The order induced by path (2) is optimal, as Theorem 3.1 shows.

4 Discussion and Conclusion

Given a graph G representing an instance of the MDGP, the existence of a discretization
order allows to make the search space discrete and to employ ad-hoc algorithms, such as
the Branch & Prune (BP) algorithm [13,14], for its solution. If the discretization order
satisfies the consecutivity assumption (as it is the case for the re-orders), it is possible to
verify in advance whether all atoms in the molecule admit a finite number of positions.
This advantage motivated this work on the pseudo de Bruijn graph representation of
discretization orders.

The problem of finding a discretization order satisfying the consecutivity assump-
tion is NP-complete [4]. It is expected therefore that the complexity of any possible
algorithm designed for the solution of this problem grows exponentially with its size.
In fact, the exploration of all possible total K-valid paths on the pseudo de Bruijn graph
presented in this paper can be rather expensive in general.

This exploration can, however, still be feasible when considering small molecules,
such as the 3-amino acid backbone considered in this work or the 20 side chains belong-
ing to the 20 amino acids that can form a protein. For the 3-amino acid backbone (see
Section 3), this was not necessary, because it was possible to prove that path (2) is an
optimal one (see Theorem 3.1 in Section 3). For the side chains, instead, an exhaustive
search on all possible paths on the pseudo de Bruijn graph could be performed. Once an
optimal order, in terms of length, will be identified for each of them, the discretization
order for an entire protein can be constructed by combining all found orders, including
the optimal backbone order induced by path (2). The final order will depend on the
amino acid sequence of the considered protein.

This procedure is obviously not applicable to large molecules that cannot be separated
in relevant parts, such as backbone and side chains. The benefits in using the pseudo de
Bruijn graph B and exploring the total paths on B still have to be investigated for this kind
of instances. As already remarked in the Introduction, a current valid alternative is the
greedy algorithm proposed in [11] and extended to interval data in [18]. This algorithm
is able to provide discretization orders (where the consecutivity assumption is however
not ensured) in polynomial time. One possible direction for future research can be the
following. Is it possible to deduce a discretization order with consecutivity assumption
from a generic order provided by the greedy algorithm in [18] ?
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