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Abstract. Understanding of transcriptional regulation through the dis-
covery of transcription factor binding sites (TFBS) is a fundamental
problem in molecular biology research. Here we propose a new com-
putational method for motif discovery by mixing a genetic algorithm
structure with several statistical coefficients. The algorithm was tested
with 56 data sets from four different species. The motifs obtained were
compared to the known motifs for each one of the data sets, and the
accuracy in this prediction compared to 14 other methods both at nu-
cleotide and site level. The results, though did not stand out in detection
of false positives, showed a remarkable performance in most of the cases
in sensitivity and in overall performance at site level, generally outper-
forming the other methods in these statistics, and suggesting that the
algorithm can be a useful tool to successfully predict motifs in different
kinds of sets of DNA sequences.

Keywords: Motif finding, Genetic Algorithm, Transcription Factor
Binding Site, Statistical significance.

1 Introduction

Sequence motifs are short nucleic acid patterns that are repeated very often and
have some biological significance. Their function is usually to serve as sequence-
specific binding sites for proteins such as transcription factors (TF). The dis-
covery of these sequence elements in order to get a better understanding of
transcriptional regulation is a fundamental problem in molecular biology re-
search. Traditionally, the most common methods to determine binding sites
were DNase footprinting, and gel-shift or reporter construct assays. Currently,
however, the use of computational methods to discover motifs by searching for
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overrepresented (and/or conserved) DNA patterns in sets of functionally related
genes (such as genes with similar functional annotation or genes with similar
expression patterns) considerably facilitates the search. The existence of both
computationally and experimentally derived sequence motifs aplenty, as well as
the increasing usefulness of these motifs in the definition of genetic regulatory
networks and in the decoding of the regulatory program of individual genes,
make motif finding a fundamental problem in the post-genomic era.

One of such many strategies for motif discovery relies on the use of Genetic
Algorithms (GA).

Genetic Algorithms. A genetic algorithm is a search heuristic that tries to
imitate the process of natural selection in order to find exact or approximate
solutions to optimization or search problems. The motivation for using genetic
algorithms comes from the idea of reducing the number of searches in a high
number of large DNA sequences.

The basic structure of a genetic algorithm consists of evolving a population
of candidate solutions (individuals) in order to find the best solution or set of
solutions possible. This is performed through an iterative process in which the
population in each iteration will be considered a generation. In each one of these
generations, the fitness (the score given to measure how good the individual is as
a solution for the problem) of every individual in the population is evaluated. The
fittest individuals are selected from the current population, and a new generation
is created by crossover and mutation of these fit individuals. The new generation
is then used in the next iteration of the algorithm. The algorithm will normally
terminate when either a satisfactory solution has been found or a maximum
number of generations has been reached. The main challenge therefore resides
in successfully defining the population, and the fitness, crossover and mutation
functions.

The most common approach for motif finding using Genetic Algorithms [1]
assumes that every input sequence contains an instance of the motif, and relies
on the following elements:

– Each individual is represented by a vector P = {p1, p2, ..., pN} storing the
starting positions for each one of the TFBS instances for the given set of
N sequences S = {S1, S2, ..., SN}. Thus P represents a possible solution set
M = {m1,m2, ...,mN}, where each mi is an instance with length w from
sequence Si.

– The fitness of each individual is computed using the similarity score of the
consensus string produced by an individual, using the PWM (position weight
matrix).

Fitness(M) =
w∑

i=1

fmax(i) (1)

where M is a candidate motif, w is the motif length and fmax(i) is the
maximum frequency value in column i in the PWM.
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Current Situation. As well as the standard GA, most of the existing motif
finding methods deal with a set of DNA sequences in which all of the sequences
(or at least most of them) are expected to contain at least one instance of each
one of the transcription factor binding sites (TFBS) that the method will report,
sustaining the search on the statistical enrichment of these TFBS in the set of
sequences.

In the last years, new statistical properties of TFBS have been discovered [2].
By the use of this statistical information, this research explores the efficiency of
the application of a different sort of genetic algorithm, with fewer restrictions
about the input sequences, the presence of instances and the size of the datasets,
and able to work with large datasets without consuming a great amount of
time. In the method here described, we would like to find TFBS based on their
statistical enrichment in any of the input sequences (not necessarily most of
them). For that purpose, a new GA-based method was designed, in which the
sequences are treated iteratively, creating random subsets of them in a random
order and analyzing the statistical overrepresentation in several steps.

2 Methods

The method here proposed mixes a genetic algorithm with probabilistic methods,
trying to integrate the advantages of both.

The main characteristics of the method are the following:

– There are no assumptions about the presence of the motifs in the input
sequences. Unlike other methods, which assume that every sequence contains
at least one instance of the motif, in this method the motifs can be distributed
in any way in the given sequences, with the only assumption that they are
overrepresented in at least a few of them.

– It is a heuristic algorithm. Thus, it may produce different results each time
it is run

– Individual motifs are ungapped. Patterns with variable-length gaps might
be predicted split into two or more separate motifs.

– The background set of sequences is generated dynamically throughout the
process by shuffling the candidate motifs to analyze against the sequences
instead of shuffling the sequences themselves.

2.1 Representation

To represent the candidate motifs, initially there were two possible options: either
using a string with the sequence of nucleotides, or using a position in which the
instance is located. As Vijayvargiya and Shukla [1] proved in their experiment,
the approach with positions is more appropriate for a genetic algorithm (GA).
Therefore, that was the approach chosen for our method.

However, in that standard algorithm, as it assumed there was one instance of
the motif in each of the input sequences, each individual was represented by a
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vector with the beginning positions of each one of those instances. In the method
here described, on the other hand, there are no assumptions about the presence
of instances in every sequence, so the individuals are represented by a single
position value in what we call the supersequence.

Supersequence. In order to deal with that, we needed to have a structure
in which a single value for that position represents a unique individual for the
whole set of sequences. For that purpose, all the input sequences are joined in
a single supersequence before starting the algorithm. That way, each individual
will be represented by a unique position in the supersequence. This position, at
the same time, represents the motif given by the position itself, a fixed motif
length and a maximum number of mutations allowed.

It is important to clarify that the supersequence serves only as a means of rep-
resentation of the motifs during the algorithm process and there is no biological
meaning in it. The final solutions will be represented by a position weight matrix,
got by clustering all the predicted instances with a high level of similarity.

Subsequences. In order to discard unfit individuals faster to generate more
diverse solutions, the supersequence is divided in subsequences of an arbitrary
length regardless of the length of each sequence (defined by a parameter that by
default has a value of 500 bp).

For each generation of the population, the fitness will be calculated against
one of the subsequences. In other words, in each iteration the algorithm will
search for overrepresentation of the motifs within the given subsequence. The
purpose of creating the subsequences is only to simplify the fitness function and,
as well as the supersequence, there is no biological meaning in it.

The order of the original sequences will be shuffled every S generations, being
S the total number of subsequences.

Fig. 1 shows how the supersequence and the subsequences are created.

Fig. 1. Creation of the supersequence and the subsequences
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2.2 Evaluation and Selection

The algorithm does not have a typical fitness function, but a combination of
different ones applied at different moments of the process.

Simple Overrepresentation. The first step to measure the quality of the so-
lutions consists of checking if they are overrepresented in the given subsequence.
In order to calculate it, the algorithm follows these steps for each individual of
the population:

1. Getting the candidate motif i given by the position P of the individual and
the fixed motif length l.

2. Shuffling the candidate motif to get a background motif b(i).
3. For both the candidate motif and the backgroundmotif, counting the number

of similar words (SW (x)) in the given subsequence (those words with length
l that are exactly the same as the motif except for as much as m mismatches,
being m the number of mismatches allowed).

4. Storing both values (SW (i) and SW (b(i))) in vectors that are kept along with
the individual.

5. Calculating the difference of similar words between the candidate motif and
the background motif (N(i)):

N(i) = SW (i)− SW (b(i)) (2)

Candidate Selection (First Fitness Measurement). In order to select the
best candidate solutions as survivors and generate new individuals by crossover
of these fit candidates, the Fluffiness Coefficient (FN (i)), inspired by the“fluffy-
tail test” proposed by Abnizova et al. [3], is used for every individual in every
generation.

FN (i) =
N(i)− μs

δs
(3)

where μs and δs are, respectively, the mean and the standard deviation of the
Simple Overrepresentation values (N(i)) for the set of solutions. The individuals
with the lowest Fluffiness value are eliminated from the population.

Solution Selection (Second Fitness Measurement). Once an individual
has survived for at least 10 generations, a new fitness test is performed in order
to decide if the candidates are final solutions to the problem or not. For that
purpose, two different coefficients are used.

– Thinness Coefficient. This coefficient is inspired by the “thin-tail test”
proposed by Shu and Li [4]

TN (i) =
k0 − 2ε

4ε
where ε = 2

√
6

M
and k(i) =

M(fZ(i)− μs)
4

(M − 1)δ4s
− 3 (4)
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M is the total number of individuals in the population, k(i) is the kurtosis of
the individual i and fZ(i) is the number of individuals in the population with
the same fitness value N(i) as i. The individuals with a Thinness coefficient
above 0.6 are eliminated from the population.

– Mann-Whitney U Test. The Mann-Whitney U test (also known as
Wilcoxon rank-sum test) is a nonparametric test that, for two populations,
measures if one of them tends to have larger values than the other.

U1 = n1n2 +
n1(n1 + 1)

2
−R1 (5)

where n1 is the sample size for the sample 1, and R1 is the sum of ranks in
the sample 1.
In our algorithm, the first sample corresponds to the vector with the values
stored for the number of similar words for the candidate motif in each genera-
tion, and the second sample is formed by the same values for the background
motif.
If the probability of both data samples coming from the same population is
lower than 0.05, then the motif is considered as a possible final solution.
The final fitness value will be given by the following formula:

FV (i) = pval(i)× w (6)

where pval(i) is the Mann-Whitney U test p-value and w is the motif width.

2.3 Genetic Operators

Crossover. The crossover function is a one-point crossover in which a child is
generated by the parts of both parents joined in reversed order. The parents
are the motifs given by the position of the individuals, and the position of the
newborn child will be the position of the most similar word in the supersequence.

Mutation. Mutation will happen randomly, according to a parameter that
defines the frequency. It will also be applied to random individuals. The mutated
individual will slightly change its position by a random offset between 1 and the
motif length

2.4 Post Processing

Filtering and Clustering of Solutions. After running the algorithm for every
given motif width, the solutions are filtered and clustered to generate the final
solutions, each one of them formed by a combination of instances (preliminary
solutions given by the GA) with a high level of similarity. The fitness of the
clustered solution will be the maximum of the fitnesses of the motifs that are
part of the cluster.

In order to devise the similarity, the algorithm measures the distance between
motifs.
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The distance between motifs is defined by the sum of the distances between
their IUPAC symbols. Each IUPAC symbol represents a subset of the symbols
{A, G, C, T}. The distance between two symbols s1 and s2 is calculated as
follows:

d(s1, s2) = 1− 2
|s1 ∩ s2|
|s1|+ |s2| (7)

So the values will be always between 0 and 1, being 0 for identical symbols
and 1 for disjoint symbols.

The distance between two motifs x and y with sizes m and n respectively is
calculated as follows:

D(x, y) =

min(m,n)∑

i=1

d(xi, yi) + wuu (8)

where u is the number of unpaired bases (|m − n|) and wu is the weight
assigned to them (0.6 by default). All possible shifts aligning the motifs are
considered and the final distance will be the minimum.

Two motifs are considered similar (and clustered in the same motif) if:

D(x, y)

mean(|x|, |y|) ≤ MS (9)

where MS is the Maximum Similarity, a parameter that can be adjusted and
that, by default, will be 0.5.

3 Results

Assessment. The tool was tested using the assessment provided by the study
performed by Tompa et al. [5] to compare the accuracy of motif finding methods.
This assessment provides a benchmark containing 52 data sets of four different
organisms (fly, human, mouse and yeast) and 4 negative controls. The data
sets are of three different types: the real promoter sequences in which the sites
are contained (Type Real), random promoter sequences from the same genome
(Type Generic) and synthetic sequences generated by a Markov chain of order
3 (Type Markov). The assesment compared the efficiency of 14 methods, to
which we compared our method as well. The eight statistics that will define the
accuracy of each tool are the following ones:

– nSn (Sensitivity, nucleotide level), gives the fraction of known site nucleotides
that are predicted:

nSn =
nTP

nTP + nFN
(10)
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– nPPV (Positive Predicted Value, nucleotide level), gives the fraction of pre-
dicted site nucleotides that are known:

nPPV =
nTP

nTP + nFP
(11)

– nSp (Specificity):

nSp =
nTN

nTN + nFP
(12)

– nPC (Performance Coefficient, nucleotide level) [6]:

nPC =
nTP

nTP + nFN + nFP
(13)

– nCC (Correlation Coefficient) [7]:

nCC =
nTP × nTN − nFN × nFP

(nTP + nFN)(nTN + nFP )(nTP + nFP )(nTN + nFN)
(14)

– sSn (Sensitivity, site level), gives the fraction of known sites that are pre-
dicted:

sSn =
sTP

sTP + sFN
(15)

– sPPV (Positive Predicted Value, site level), gives the fraction of predicted
sites that are known:

sPPV =
sTP

sTP + sFP
(16)

– sASP (Average Site Performance) [7]:

sASP =
sSn+ sPPV

2
(17)

Where TP refers to the number of true positives, FP refers to the number
of false positives, TN refers to the number of true negatives, and FN refers to
the number of false negatives. The n before each one of these measures refers to
nucleotide level and the s refers to site level.

Tests. Our algorithm was run 3 times for each data set, using different motif
lengths, and then all the results combined in the post processing stage.

– Motif width 8, allowing 2 mismatches
– Motif width 10, allowing 3 mismatches
– Motif width 12, allowing 4 mismatches

The parameters with which the algorithm was run for all of the data sets are
the following:
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– Population size: 200

– Number of generations: 100

– Maximum number of solutions: 100

– Mutation rate: 0.1

– Subsequence size: 500bp

– Maximum Similarity: 0.7

Fig. 2 summarizes the average values of the mentioned statistics got by each
one of the 14 methods of the assessment and our own method regardless of the
organism and the type of data set. Fig. 3 shows the average values grouped by
organisms. The procedure to calculate the average in every case is as follows:
The values of nTP, nFP, nFN, nTN, sTP, sFP and sFN of the different data
sets are added, and then the given statistic is computed as if the summed values
corresponded to a unique large data set.

Fig. 2. Average statistical values for all 56 data sets

4 Discussion

First of all, as the authors of the assessment [5] in which our tests are based
explain, these statistics should not be taken as an absolute measurement of the
quality of the methods. There are many factors that affect the results:
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Fig. 3. Average statistical values depending on the organism
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– Obviously, the underlying biology is yet to be completely understood, and
therefore there is no standard method to measure the correctness of each
tool in biological terms.

– Each one of the methods was tested by a different person, who made human
choices for the parameters and the post processing of that method.

– The assessment only allows one predicted motif per data set (or none), even
though the data sets of Type Real are most likely to contain several different
binding sites.

– The length of the known motifs is in many cases longer than 30 bp, and our
method, as well as most of the others, was run for motifs no longer than 12
bp.

– The assessment depends uniquely on TRANSFAC [8] for the definition of
the known binding sites, and the TRANSFAC database might also contain
errors.

– The method used to calculate the average of each tool tends to favor the
methods that predict no motif for many data sets, as 0 is taken as the value
for all the statistics in this case.

– The assessment was carried out in 2005, so it does not include methods
developed in the last 10 years.

However, keeping all these in mind, the assessment serves as a powerful tool
to infer some important conclusions about the performance of each method.

Our method shows really high values for three statistics: nSn, sSn, and sASP .
But, on the other hand, the values for the statistics nPPV , nSp, and sPPV
are generally poor. From these, we can conclude that the method succeeds in
predicting many of the sites, given the high number of true positives both at
nucleotide level and site level, but lacks of a mechanism to detect false positives.
This is understandable given the nature of the method. As it predicts sites
according to statistics that measure the overrepresentation, it is very likely to
happen that it reports many sites that are not actual instances of the motif but
are very similar to it. Therefore, it usually finds the known motif, but with more
instances than it actually contains.

As for the different organisms, it is interesting to notice that most of the other
methods offer their best performance with yeast data sets, whereas our method
gives its best results with fly and mouse data sets. There is no apparent reason
for this, and it requires further investigation to figure out why this happens.

It is quite obvious that the main drawback of our method is the absence of
a mechanism to detect false positives. For example, the method that gives the
best overall statistics is Weeder. But this is, to a considerably extent, due to the
fact that it was run in a cautious mode, predicting no motif in most of the cases.
Our method, however, failed to detect the negative controls and predicted at
least one motif for every given dataset, which produced a high number of false
positives.

Even though there have been many different studies about DNA motif find-
ing, it still remains as one of the most complicated challenges for researchers.
Several different approaches have been recently developed and there has been
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an important progress in this area. However, the task of comparing the perfor-
mances of different motif finding tools have proven to be quite a struggle, given
that each tool is designed based on an algorithm and on motif models that are
too diverse and complex. This happens basically because we do not have yet a
clear understanding of the biology of regulatory mechanisms. Therefore, it is not
possible for us to define a standard to measure the quality of tools.

As many studies comparing the performance of different tools suggest [9]
(and as researchers’ experiments corroborate), the best option when trying to
find motifs is using a few complementary tools in combination (selecting the top
predicted motifs of each one), instead of simply relying on a single one.

According to this, we believe that our Statistical GA approach has proven
to be suitable for being one of those complementary tools that can be used
in addition to other ones to successfully predict motifs in any kind of set of
DNA sequences. There is still work to do to improve the method, especially
the addition of a mechanism to detect false positives, but we think that the
method can be useful for researchers and that it might offer new ways for future
development of computer-based motif finding methods.
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