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Abstract. Genome wide association studies (GWAS) are typically designed as 
case-control studies, collecting thousands of sick and healthy individuals, geno-
typing hundreds of thousands of SNPs, and documenting the SNPs which are 
more abundant in one group or the other. Direct-to-consumer genetic testing has 
opened the possibility for a regular person to receive data about his/her geno-
type, but the validity of risk assessment procedures and the final genetic risk es-
timate have been questioned. Many authors have discussed the advantage of use 
of the asymptotic Bayes factor (ABF) to measure the strength of SNP/trait asso-
ciations, over the use of p-values. We propose a ABF based heuristic to filter-
our and select SNP/trait associations to be used in multigenic risk assessment. 

A raw genotype result from the 23andMe web service was merged with the 
GWAS catalog, and SNP/trait associations were filtered and selected using the 
R programming language together with free and publicly available databases. 

From the initial 3195 SNP/trait associations, only 425 remained after the ini-
tial filters on descent, replicated findings, qualitative trait and availability of the 
number of cases and controls in the study. Selecting only one SNP/trait associa-
tion from repeated studies and studies done with proxy SNPs left us with 377 
SNP/trait associations available for multigenic risk assessment. After excluding 
the associations with unsatisfying ABF, only 300 SNP/trait associations remain 
for the multigenic risk assessment. 

Whatever the link between SNP/trait associations and final DTC multigenic 
risk assessment for a given trait is, the final value of a risk score is heavily in-
fluenced by the number, as well as strength of evidence for individual SNP/trait 
pairs that are used for calculation. The ABF provides an unambiguous and sim-
ple criterion for ranking and including SNP/trait associations in multigenic risk 
assessment. 

Keywords: GWAS, multigenic risk assessment, Bayes factor, SNP selection, 
direct to consumer. 

1 Introduction 

Genome wide association studies (GWAS) test for association between a disease or a 
quantitative trait and multiple genetic markers. These associations fall under the 



 Risk Quantification of Multigenic Conditions for SNP Array 265 

 

“common disease – common variant” hypothesis. The hypothesis suggests that the 
occurrence of common complex diseases is influenced by a moderate number of (inte-
racting) disease alleles, called “casual variants”. The most common type of markers 
are single nucleotide polymorphisms (SNPs). Nowadays, the SNP array technology 
offers the possibility to determine the state of even more than one million SNPs in one 
experiment. A typical GWAS is designed as a case-control study, collecting thou-
sands of sick and healthy individuals, genotyping hundred thousand SNPs, and docu-
menting the SNP-genotypes which are more abundant in one group or the other. They 
have been increasingly popular since almost a decade ago, but have been criticized, 
among other things, for lack of reproducibility or unclear utility for clinicians [1]. 
Nevertheless, GWAS have successfully identified many genetic variants contributing 
to the susceptibility for complex diseases. 

To this day thousands of SNPs have been flagged as associated with hundreds of 
diseases, but the ability to predict one’s disease status based solely on SNPs fails short 
of what would be expected, having in mind the high heritability of these diseases. One 
explanation could be that many phenotypes might be defined by a large group of 
SNPs with tiny effects, and present day GWAS are underpowered to detect them. For 
instance, an author estimated the overall number of SNPs which affect height to be 
93,000 [2]. The naïve idea that it is enough to use the SNPs flagged as significantly 
associated with diseases or traits in GWAS has lead to low predictive value of risk 
assessments done in this way, as a large number of SNPs remain outside that scope. 

Direct-to-consumer (DTC) genetic testing applies to the situations where genetic 
tests are marketed directly to the consumer via television, print advertisements or the 
Internet, as opposed to being ordered through healthcare providers such as physicians 
or genetic counselors. The upside of DTC genetic testing is that its growing market 
might promote awareness of genetic diseases and even more importantly allow  
patients/consumers to have a more proactive role in their health care, change their 
lifestyle, and organize their life better. There are, however, significant risks, as con-
sumers might be misled by the results of invalid tests, or take important decisions 
regarding their health based on incomplete or misunderstood information [1]. 

Risk assessment is often defined as the determination of quantitative or qualitative 
value of risk related to a concrete situation and a recognized threat, and is also an 
essential part of genetic testing and counseling. It must be calculated as accurately as 
possible to enable the clinician and the patient to make sound health-related decisions. 
The calculation of genetic risk should incorporate all available information at a par-
ticular point in time. It should be considered an ongoing process of analysis of esti-
mates [3]. As for DTC risk assessment, two trends dominate the industry [4]. First, 
practiced for instance by the web services Promethease, Interpretome, or LiveWello 
limits itself to listing SNP-wise (allele or genotype) based risk, as extracted from 
dbSNP database [5]. This information might be enriched with ClinVar entry provid-
ing the basis for dividing those SNP-wise risks into “good news” and “bad news”  
[6], with unquestionable scientific background, but yet not coherent enough to direct 
potential health related intervention. Higher level of DTC risk assessment implies 
combining SNP-wise evaluated risks into some form of multigenic risk score for a 
given trait. This has proven to be tricky, because we are far from knowing how these 
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SNPs interact shaping the influence on any phenotype. The three leading companies 
(23andMe, deCODE, Navigenics) use both absolute lifetime risk and relative risk 
compared to the general population, as obtained from odds ratios for individual SNPs 
under multiplicative effect assumption. Both approaches require high level of transpa-
rency regarding the exact method used, since there are numerous sources of potential 
bias (starting with inappropriate specification of disease prevalence in the control 
population, to unclear assumptions about prior odds), not to mention the high variabil-
ity of the risk estimates even when well defined workflow is strictly followed [7].  
These sources of compromised validity have been recognized by the Federal Drug 
and Administration agency, which  resulted in the (in)famous ban of the 23andMe 
health reports [8]. 

In the frequentist inference, an association of a marker with a disease is evaluated 
based on whether or not the p-value of an association test is less than a significance 
level. The markers that have significant p-values are tested for replication in subse-
quent studies. A typical significance level for GWA studies is determined by Bonfer-
roni procedure, and it lies somewhere around  5x10-7, although other levels have 
emerged and have been evaluated in the literature [9, 10]. However, this significance 
level is used in practice independently of the sample size of studies, the effect size of 
associated markers, and the power to detect association [10]. For many common dis-
eases, the effect size in studies is small, having an odds ratio in the range of 1.1-1.5. 
Therefore, markers with true associations can have p-values greater than the signific-
ance level, or even be ranked far away from the top, if based solely on p-values [11]. 

In Bayesian hypothesis testing, Bayes factor (BF) is often used and reported to 
measure the strength of association. The BF is a ratio of the probabilities of the  
observed data under the alternative H1 and the null H0 hypotheses, in which all the 
parameters are treated as random and averaged out with respect to their prior distribu-
tions [12, 13]. Many authors have discussed the advantage of BF over p-values for 
genetic association studies [14-16]. It measures the strength of association by integrat-
ing the significance of association with the power to detect it, while the p-value only 
measures the significance of association [15, 16]. When the sample size is large 
enough (thousands of cases and thousands of controls), large BF values (log10BF > 5) 
strongly support observed small p-values and therefore the association. On the other 
hand, small BF values (log10BF < 0) can be used to exclude the markers with small p-
values as false positives with high confidence [15]. In addition, to compare results 
across studies, the BF is a better measure that the p-value, since it integrates both the 
significance of association and the power (sample size and effect size), as demonstrat-
ed by simulating different studies with different sample sizes and genetic effects, 
showing that different studies had different BFs, while the p-values remained the 
same [15]. The more widespread use of the Bayes factor has been hampered by  
the need for prior distributions to be specified for all of the unknown parameters in 
the model, and the need to evaluate multidimensional integrals, a complex computa-
tional task. Still, Wakefield [14, 17] has proposed the asymptotic Bayes factor (ABF) 
which avoids each of these requirements. 

Whatever is the link between SNP/trait associations and final DTC multigenic risk 
assessment for a given trait, the final value of any multigenic risk score is heavily 
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influenced by the number, as well as strength of evidence for individual SNP/trait 
pairs that are used for calculation. This is where ABF based inference can provide 
unambiguous and simple criterion for the ranking of SNP/trait associations, which 
embeds all the relevant information at the same time. In the present work we demon-
strate the usefulness of ABF values in selecting SNP/trait associations for DTC multi-
genic risk assessment. 

2 Methodology 

Our subject was a European 30-year old Caucasian man, from the Balkan peninsula. 
He had received his raw genotype data from the 23andMe web service [18] and ex-
pressed interest in gaining knowledge regarding his own genetic risks. 

2.1 Importing Data and Associating SNPs with GWAS 

Raw data were a tab delimited text file, downloaded from the 23andMe website, with 
four columns: rsid (SNP marker ID), chromosome, genomic position and (unphased) 
genotype. 

The data.frame with raw genotypes was merged with data from the National Hu-
man Genome Research Institute (NHGRI) GWAS catalog [19] using the gwascat R 
package [20]. This way we had several additional columns, describing all the GWAS 
that have implied some kind of trait association with our SNPs. 

The rows with the “strongest risk allele” entry from a GWAS study matching any 
of the genotyped alleles for a particular SNP were retained for the future analysis, 
representing the body of evidence for this subject’s genotype/trait risk estimation. 

2.2 Filtering SNP-Trait Associations 

After reducing our data.frame to only the SNPs with “risk” alleles, we applied several 
filters to account for the subject’s origin and to rule out studies which had insufficient 
information by our criteria. Filters were created using regular expressions, defined as 
sequences of characters which form a search pattern, implemented through the stringr 
R package [21]. 

First we filtered out studies which were not done on European population, then 
studies which were not replicated. Finally we excluded  studies which had no odds 
ratios (OR) and/or confidence intervals (CI). 
Before calculating the ABF, number of cases and controls in each study were ex-
tracted using regular expressions. 

2.3 Asymptotic Bayes Factor Calculation 

Prior probability of H1 was set to be equal for all the SNPs, dependent only on the num-
ber of SNPs investigated in the particular study. The logic behind such approach was 
that, for given trait, only about 100-1000 SNPs are truly expected to be associated, so 



268 S. Bojić and S. Mandić-Rajčević 

 

the probability that a given SNP (on a given platform) is one of them approximates to 
500/number of SNPs printed on the platform. That gave us prior probabilities in the 
range of 10-4 to 10-5, which was in accordance with previous studies [22]. 

Asymptotic Bayes factor was calculated for each SNP/trait association, according 
to the formula: 

଴ܨܤܣ            ൌ ට௏ାௐ௏ ݌ݔ݁ ቀെ ௭మௐଶሺ௏ାௐሻቁ                     (1) 

where V is the estimated variance of the parameter θ, W is the variance of the prior 
probability of null hypothesis,  zଶ ൌ θ෠ଶ/V is the usual Wald statistic, and expሺθሻ is 
estimated odds ratio [14]. Subscript “0” is there for this form of ABF summarizes the 
evidence for/against null hypothesis, whilst its reciprocal value ሺ1 ABF଴ሻ⁄  then sup-
ports the working hypothesis - the evidence for the association. The crucial property 
of the relationship between the power of the study (represented with V of the esti-
mated parameter θ) and evidence pro H1 is that, providing all other elements, except 
V, of the equation (1) are fixed, the evidence for H1 would grow as the power de-
creases, but only until it reaches its maximum at V ൌ W ሺzଶ െ 1ሻ⁄ . After that, ABF 
for H1 would decline, since the power is not sufficient to provide strong evidence. 
This contrasts strongly with the behavior of the p-values, where very small departures 
from H0 would produce small p-values when the power is high [14].  

Parameters of prior variances were set as advised by Kraft and Evangelou [23, 24]. 
The usage of ABF guaranteed comparability of the “amount of evidence” for each 
SNP/trait association across studies, and allowed for the filtering procedures that fol-
lowed [16]. We assumed autosomal-dominant model of inheritance at this point for 
the sake of simplicity. 

2.4 Redundancy Check 

SNP/trait associations were checked for redundancy, and repeated SNP/trait associa-
tions, as well as the trait association with SNPs that are in LD (defined as R2>0.8) 
and/or physically closer than 500bp were discarded, keeping only the SNP/trait pairs 
with the highest ABF within their “redundancy cluster”. We used SNAP web based 
tool [25] for identification of those “proxy” SNPs, and the search was conducted over 
SNPs in 1000GenomesPilot1 data. 

Overall, the data analysis was done using R language and environment [26], with 
additional packages from the Comprehensive R Archive Network (CRAN) and Bio-
conductor [27]. 

3 Results 

3.1 Filtering the SNPs for Multigenic Risk Assessment 

The initial raw genotype file consisted of approximately 700,000 SNPs. Of that num-
ber, around 600,000 passed the genotype quality control. Merging with the NHGRI 
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Fig. 2. Manhattan plot of log10(ABF) values 

offering no firm evidence for those associations. Still, for illustration purposes these 
“unsupported” SNP/trait associations were not excluded from further analysis. 

3.3 Removing Redundant SNP/Trait Association Based on the ABF 

It is a common practice to explore indicated SNP/trait associations in several inde-
pendent GWA studies, as to pursue verification through replication. However, when 
constructing the multigenic risk assessment profile only one estimation of OR and  
CI per SNP should be used in the calculation. A criteria should be defined to consis-
tently select the “correct” OR and CI. Table 1 reports 23 SNP/trait associations, each 
targeted by 2 studies, as well as the estimated odds ratios. The OR from the SNP/trait 
association with highest ABF from every pair was kept for the future analysis  
and bolded in the table. In this step  the initial data.frame was reduced by another  
23 rows. 

Some studies explore the SNP/trait association using a proxy SNP instead of the 
original. A proxy SNP is usually defined as a SNP in LD with the original SNP (R2 > 
0.8). Table 2 reports original SNPs and their proxies for the same trait, along with the 
their respective odds ratios and confidence intervals. The OR and CI of the SNP/trait 
association selected using the ABF to remain in the analysis is bolded in the table. 

Based on the previous steps, we have reduced the initial data.frame from 408 to 
378 SNP/trait associations using the ABF. Having in mind that another 21% of 
SNP/trait association would not pass the strength of evidence criteria considering their 
ABF, our final data.frame would consist of only around 300 rows. These SNP/trait 
associations should pose a high enough reliability to be used downstream in any es-
tablished form of multigenic risk assessment. 
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Table 1. Selected ORs and CI based on the ABF from pairs of studies targeting the same 
SNP/trait association 

rsID Trait OR[CI] - 1 OR [CI] - 2 

rs10737680 
Age-related macular degenera-

tion 
3.11[2.76-3.51] 2.43[2.39-2.47] 

rs2075650 
Age-related macular degenera-

tion 
1.37[1.22-1.54] 1.23[1.13-1.34] 

rs429608 
Age-related macular degenera-

tion 
2.16[1.84-2.53] 1.74[1.68-1.79] 

rs9621532 
Age-related macular degenera-

tion 1.61[1.37-1.89] 1.41[1.27-1.57] 

rs2294008 Bladder cancer 1.15[1.10-1.20] 1.13[1.09-1.17] 

rs4973768 Breast cancer 1.14[1.09-1.19] 1.10[1.08-1.12] 

rs6651252 Crohn's disease 1.23[1.17-1.30] 1.19[1.13-1.25] 

rs7702331 Crohn's disease 1.12[1.07-1.17] 1.09[1.05-1.13] 

rs12700667 Endometriosis 1.20[1.13-1.27] 1.18[1.11-1.25] 

rs6457327 Follicular lymphoma 1.69[1.43-2.00] 1.47[1.27-1.72] 

rs9298506 Intracranial aneurysm 1.35[1.22-1.49] 1.28[1.20-1.38] 

rs6719884 Myasthenia gravis 1.35[1.19-1.53] 1.35[1.19-1.52] 

rs7078160 Orofacial clefts 1.38[1.21-1.58] 1.36[1.21-1.53] 

rs7590268 Orofacial clefts 1.42[1.23-1.64] 1.42[1.26-1.59] 

rs8001641 Orofacial clefts 1.35[1.14-1.61] 1.31[1.13-1.51] 

rs11782652 Ovarian cancer 1.24[1.16-1.33] 1.19[1.12-1.26] 

rs3018362 Paget's disease 1.52[1.36-1.70] 1.45[1.34-1.56] 

rs11672691 Prostate cancer 1.11[1.02-1.20] 1.08[1.04-1.12] 

rs10488631 Systemic sclerosis 1.50[1.35-1.67] 1.35[1.20-1.51] 

rs7583877 Type 1 diabetes nephropathy 1.29[1.18-1.40] 1.29[1.17-1.42] 

rs11739663 Ulcerative colitis 1.15[1.09-1.21] 1.07[1.03-1.12] 

rs4728142 Ulcerative colitis 1.10[1.07-1.14] 1.07[1.03-1.11] 

rs6017342 Ulcerative colitis 1.23[1.19-1.27] 1.20[1.15-1.26] 

 
 
Based on the previous steps, we have reduced the initial data.frame from 408 to 

378 SNP/trait associations using the ABF. Having in mind that another 21% of 
SNP/trait association would not pass the strength of evidence criteria considering their 
ABF, our final data.frame would consist of only around 300 rows. These SNP/trait 
associations should pose a high enough reliability to be used downstream in any  
established form of multigenic risk assessment. 
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Table 2. Selected ORs and CIs based on the ABF from paris of studies targeting the SNP/trait 
associations in LD 

SNP-proxy 
pairs 

R2 Trait OR[CI] - 1 OR[CI] - 2 

rs6666258 
rs13376333 

1 Atrial fibrillation 1.18[1.13-1.23] 1.52[1.40-1.64] 

rs646776 
rs599839 

0.90 
Coronary heart 

disease 
1.14[1.09-1.19] 1.11[1.08-1.15] 

rs10490924 
rs3793917 

0.95 
Age-related macu-

lar degeneration 3.67[3.33-4.05] 3.4[2.94-3.94] 

rs10801555 
rs1061147 

1 
Age-related macu-

lar degeneration 2.33[2.08-2.63] 1.4[1.32-1.48] 

rs1329424 
rs1061147 

0.93 
Age-related macu-

lar degeneration 1.88[1.68-2.10] 1.4[1.32-1.48] 

rs1219648 
rs2981579 

0.97 Breast cancer 1.32[1.22-1.42] 1.27[1.24-1.29] 

rs10801555 
rs1329424 

0.93 
Age-related macu-

lar degeneration 
2.33[2.08-2.63] 1.88[1.68-2.10] 

rs4474514 
rs995030 

0.86 Testicular cancer 3.07[2.29-4.13] 2.26[1.95-2.61] 

 

4 Discussion 

Our work focuses on the possibility of performing multigenic risk assessment using 
the raw genotype data from a DTC genomic service, in this case the 23andMe web 
service [18], and utilizing only the publicly and freely available databases and data 
analysis tools. We present an overview of the advantages of using the ABF over p-
values for the selection of “significant” SNP/trait associations, and we illustrate its 
multipurposeness in developing the heuristic for including only the meaningful 
SNP/trait associations in multigenic risk assessment. 

The flow-chart (see Figure 1) depicts how the number of useful SNP/trait associa-
tions rapidly reduces when using just the basic filters on descent, insist on replicated 
findings, and select only SNP/trait associations for qualitative traits (reporting ORs 
and CIs), even before checking for redundancies. 

It is necessary to have in mind that all the SNP/trait associations reported in 
GWAS had been selected based on p-values only, and had passed stringent p-value 
criteria. Nevertheless, the use of p-values only has been characterized as problematic 
by many authors [14, 15], and an alternative has been offered: using log10(ABF) and 
two cut-off criteria for the strength of evidence: log10(ABF) > 5 and log10(ABF) > 0 
[15]. In Figure 2 we demonstrate how the SNP/trait associations would rank under 
the ABF criteria, showing that more than 20% of SNP/trait associations would not 
satisfy the minimum criteria of log10(ABF) > 0, even though their p-values were 
significant enough for reporting in GWAS. It could be claimed that these SNP/trait 
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associations cannot be trusted enough to enter a multigenic risk score. Indeed, all the 
studies that had log10(ABF ) < 0 were seriously overpowered, and the use of evidence 
from them in downstream analysis would be misleading, since, as argued above, such 
conclusion would not account for the adverse effect the high power has on the 
strength of evidence for the true association [14].  

In the following step we examined the common situation where the same SNP/trait 
association is examined in different studies, each of these studies proposing different 
OR estimate. As shown in Table 1, when selecting which study to take into account 
for multigenic risk assessment, the answer is often not the one with larger OR. That is 
paradoxal, but only at first glance, since we should remember that ABF is influenced 
more by the precision of the estimate of OR, not as much by OR itself [17]. The situa-
tion is similar when selecting between studies where the original and a proxy 
SNP/trait association has been explored, as shown in Table 2. An important benefit in 
the method we use is the prevention of an overestimation of the “true” odds ratio. 

The filtering and selection procedure (see Figure 1) has “approved” only around 
300 SNP/trait association for the further downstream use in multigenic risk assess-
ment. We must take into consideration the fact that, at this point, only SNPs with 
sufficiently low p-values are indexed in the NHGRI database. The threshold p-value 
has been decided by each study’s investigators, meaning the SNP/trait associations 
available to us had already been pre-filtered. Since a standard procedure for the selec-
tion of a threshold value might not be well defined [9, 10], there is an immense loss  
of information, and this might prove critical for the downstream procedures that  
are relying on the large initial set of SNPs to work on, such as building predictive 
models [28].  

Furthermore, the Authors are aware that the decision to work only with GWAS 
studies which had the string “European” in the population description field is ques-
tionable. Our subject was from the Balkans, and as pointed out [29], that might imply 
quite different referent minor allele frequencies, LD patterns as well as disease preva-
lence and corrupt validity of risk assessment. Still, facing the scarcity of studies from 
the Balkan peninsula, we compromised on this. 

Another issue was that is that the only output readily available to us, in terms of ef-
fect sizes, was the allelic odds ratio. Since risk ratios are considered more intuitive 
and precise [30], and can be approximated with odds ratios only under the “rare dis-
ease” assumption, we would suggest the NHGRI database report also the risk ratios, 
as well as the number of cases and controls with a specific risk allele, which would 
reduce the potential error due to data mining. Until it becomes common practice, we 
propose the use of an available R package orsk [31] for RR estimation from incom-
plete GWAS based data, with perhaps additional MAF based constraints when choos-
ing the optimal solution for RR. 

Even with a well established method for the filtering and selection of SNP/trait as-
sociations supported by enough evidence to be included into a multigenic risk score, a 
question remains on how a trait is defined, as different GWAS can explore the associ-
ation of SNPs with a “general” trait, or just a characteristic (a “subtrait”) falling under 
the general trait in question. A prospective direction of improvement in conveying the 
risk information might be MeSH term enrichment analysis of the genotype profile as a 
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whole, and some tools have already been developed for this aim [32, 33]. In this sce-
nario, the proper selection of SNPs for which we are positive there is an association 
with a trait plays and even more crucial role. 

In conclusion, the price of DTC genomic services has gone from several thousand 
down to several hundreds of dollars in the last 10 years, dropping even bellow 100$ in 
the past few years [1, 18], and it is easy to see the use of having a genetic report of a 
patient at your doctor’s disposal. We have demonstrated the utility of the ABF in 
developing the criteria for selecting SNP/trait associations supported by strong 
enough evidence for the downstream multigenic risk assessment. Future steps to im-
prove this process include the update of the information reported in the NHGRI data-
base, using risk ratios instead of odds ratios, and MeSH term enrichment. An accurate 
genetic report is crucial to correctly interpret genetic information, but also to influ-
ence a range of health-promoting behaviors. 
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