
Energy-Efficient Architecture for DP Local

Sequence Alignment: Exploiting ILP and DLP�

Miguel Tairum Cruz, Pedro Tomás, and Nuno Roma

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal
{miguel.tairum,pedro.tomas,nuno.roma}@inesc-id.pt

Abstract. Typical approaches to solve Dynamic Programming algo-
rithms explore data level parallelism by relying on specialized vector
instructions. However, the fully-parallelizable scheme is often not com-
pliant with the memory organization of general purpose processors, lead-
ing to a less optimal parallelism exploitation, with worse performance.
The proposed processor architecture overcomes this issue by relying on a
data stream loader and a set of especially designed instructions. Further-
more, to make it compliant with the strict power and energy limitations
of embedded systems, it maximizes resource utilization by exploiting
both data and instruction level parallelism, by statically scheduling a
bundle of instructions to several vector execution units. To evaluate the
proposed architecture, we compare it with two embedded processors,
an ARM Cortex-A9 and an application-specific processor with SIMD
extensions, using two benchmarks from the sequence alignment domain,
namely Smith-Waterman and Viterbi. The obtained results show that the
proposed architecture achieves up to 5.16x and 2.19x better performance-
energy efficiency and up to 5.44x and 1.25x better energy efficiency than
the ARM Cortex-A9 and the dedicated processor, respectively.

Keywords: Low-Power Architecture, DLP, ILP, VLIW, Dynamic Pro-
gramming, Sequence Alignment.

1 Introduction

Sequence alignment applications frequently make use of Dynamic Programming
(DP) algorithms to extract information from large databases [1]. As an example,
the Smith-Waterman (SW)algorithm [2] iswidely adopted for local sequence align-
ment, computing the alignment score by filling up a scoringmatrix, where each cell
presents a vertical, horizontal and diagonal dependency with its neighbors. Simi-
larly, the Viterbi algorithm [3], used to find the most probable state sequence in a
HiddenMarkovModel (HMM), can also be represented in a matrix form, resulting
in similar computations steps and dependencies as the SWalgorithm.Accordingly,
Data Level Parallelism(DLP) can be naturally exploited in these algorithmsby us-
ing Single InstructionMultipleData (SIMD) extensions (often present inmost pro-
cessors), as long as the computation is performed along the matrix anti-diagonal.

� This work was partially supported by national funds through Fundação para a
Ciência e a Tecnologia (FCT), under projects: Threads (PTDC/EEAELC/117329/
2010) and project UID/CEC/50021/2013.

F. Ortuño and I. Rojas (Eds.): IWBBIO 2015, Part II, LNCS 9044, pp. 194–206, 2015.
c© Springer International Publishing Switzerland 2015



Energy-Efficient Architecture for DP Local Sequence Alignment 195

Due to the gradual adoption of embedded systems in these type of appli-
cations (e.g. portable biochips [4]), efficient solutions are highly required, not
only to guarantee the performance results required by these applications, but
also to comply with strict power and energy consumption constraints. Typical
processing solutions rely on General Purpose Processors (GPPs) [5,6] and ded-
icated hardware [7], that make use of SIMD extensions to exploit the DLP. On
the other hand, the amount of memory that is required to accommodate the
dependencies between states on DP algorithms is often very large, requiring the
implementation of techniques to cache and reuse results from previous state com-
putations, in order to quickly retrieve them without redundant computations.
Furthermore, the previously referred anti-diagonal parallelism usually requires
non-adjacent memory accesses, leading to a large performance impact in GPP
implementations. To overcome this issue, GPP implementations often adopt a
different processing pattern that better complies with a traditional GPP memory
organization, such as vertical or horizontal simultaneous processing pattern, re-
sulting in a better performance at the cost of introducing additional lazy loops to
the algorithm computations. Dedicated implementations can approach this prob-
lem with special memory organization or special data management mechanisms,
often resulting in better performance results [7]. However, these implementations
only focus on a particular algorithm, disregarding any support for a broader class
or different types of algorithms, thus limiting the range of application support.

In this paper, a new low-power programmable processor capable of supporting
different DP algorithms is proposed, focusing on the performance extraction
and optimization of sequence alignment algorithms, namely the SW and the
Viterbi algorithms. The objective is not only to provide a high-performance
processor for DP algorithms, but also to provide an energy-efficient solution
suitable for low-power embedded environments. To attain the aimed performance
levels with a low-power consumption, the architecture exploits: i) both DLP and
Instruction Level Parallelism (ILP), supporting concurrent data computation in
several independent and parallel execution units, with the minimal hardware
requirements to accommodate it; and ii) a concurrent memory access mechanism,
supported on a Data Stream Unit (DSU) that accesses the memory in parallel
with the algorithm computations, thus maximizing the performance obtained
with the most parallel processing scheme (e.g. the anti-diagonal parallelism).

This paper is organized as follows. After a brief overview of the studied DP
algorithms and corresponding parallelism, in section 2, the proposed architecture
is detailed in section 3. Section 4 briefly describes the prototyping and scalability
evaluation of the proposed architecture, followed, in section 5, by a performance
and energy efficiency evaluation of the architecture, against different state-of-
the-art architectures. Finally, the conclusions are drawn in section 6.

2 Dynamic Programming Algorithms

DP algorithms are often represented in matrix form, where each cell corresponds
to a sub-problem that depends on the adjacent cells (sub-problem dependencies).



196 M.T. Cruz, P. Tomás, and N. Roma

This results in a final matrix where the value of the last cell can only be de-
termined after all the previous cells have been computed (optimal substructure
property). In a 2D matrix, each cell frequently presents horizontal, vertical and
diagonal dependencies, allowing for DLP extraction along the anti-diagonal of
the matrix. Furthermore, since all sub-problems are similar, they will require
the exact same loop to be computed, allowing for an ILP exploitation by com-
puting different steps of the loop at the same time. Popular sequence alignment
algorithms such as the SW and the Viterbi algorithms, manifest the referred
proprieties of DP algorithms and thus will be considered as two particular and
independent case-studies.

2.1 Smith-Waterman

The SW algorithm computes the optimal local alignment between two sequences
by considering a predefined substitution score matrix and a gap penalty function
[2]. Gotoh [8] subsequently improved such algorithm definition by using an affine
gap penalty model, allowing multiple sized gap penalties.

Given an arbitrary pair composed by a query and a reference sequences, to-
gether with a substitution score matrix and a gap initialization and extension
penalties, the score matrix can be computed by solving three recursive relations,
which correspond to a diagonal, horizontal and vertical dependencies, thus result-
ing in an anti-diagonal processing direction to extract the maximum parallelism.
After the score matrix is filled, a traceback runs over such matrix, returning the
local alignment.

2.2 HMM Viterbi

The Viterbi algorithm [3] is a DP algorithm that finds the most likely sequence
path of hidden states in a HMM for a given sequence of observed outputs. A
HMM consists in a stochastic model, where the future states of a process de-
pend only on the present state and not on the complete sequence of states that
preceded it. Furthemore, some (or all) states are hidden from the observer, with
only the sequence of outputs generated by the model visible to the observer.

HMMs can be used to model alignment profiles, thus permitting the Viterbi
algorithm to solve sequence alignment problems, similarly to the SW algorithm.
These profiles model a family of sequences by highlighting the common features
of them. They are usually generated by an initial multiple alignment, followed
by a probabilistic breakdown of the elements present in each position.

A Profile HMM contains three different main interconnected states: Match
States (M), that represent each column of the profile sequence; Insertion States
(I), that represent the gaps in the alignment, and Deletion States (D), that rep-
resent the portions of the profile not matched by the sequence. Additional special
states are also included, to support multiple local alignments. These states con-
sist of flanking states, which delimit the sub-regions of the local alignment (i.e.,
they separate an aligned region from an unmatched region, in the sequence).
When using Profile HMMs, the Viterbi algorithm becomes very similar to the



Energy-Efficient Architecture for DP Local Sequence Alignment 197

SW algorithm, with diagonal, horizontal and vertical recursions, resulting in the
same anti-diagonal parallel processing pattern.

2.3 Parallelism Exploitation

The anti-diagonal processing pattern that is present in DP algorithms raises two
problems to its exploitation: harder memory organization / access and a large
amount of resource hardware requirements with a reduced utilization. While the
former can be solved by implementing specialized memory access units to gather
cell values in non-adjacent memory positions, the latter requires exploiting a
different type of parallelism, namely ILP. Since the operations over a vector of
elements along the anti-diagonal are independent, different parallel instructions
can simultaneously compute different operations. This not only increases the
potential for additional parallelism, but also reduces the hardware requirements,
specially the number of FUs. The use of ILP is also supported by the common
steps in a DP algorithm. Usually, these steps consist in dependency loads, fol-
lowed by cell computations, and are finalized with the results storing. Hence,
by assigning these different steps of the algorithms to the different elements in
the vector, not only ensures ILP while maintaining data coherence (given the
independence between the elements), but also improves the FUs utilization ratio.

In accordance, the proposed architecture reduces the hardware control by
exploiting static ILP alongside DLP. This is achieved by issuing instructions
in bundles, composed of several different parallel instructions, each operating
over a vector of independent elements (DLP) (see Fig. 1(a)) in different and
independent execution units (ILP). This way, instead of using a single large
vector computing the same instruction as it is typical in vector architectures,
the architecture has several smaller SIMD vectors, each computing their own
instruction, in a similar fashion to a Very Long Instruction Word (VLIW) archi-
tecture. Parallelizing cells of a DP algorithm in different steps of the algorithm
can, however, lead to data races between the cells if two conditions are not met:
all cells currently being processed must be independent; and the cells that are
being processed in advance must never have dependencies to the results of the
other cells simultaneously being executed. The first condition is easily solved in
the presented algorithms by following an anti-diagonal processing pattern. The
impact caused by the irregular memory accesses referred by this parallelization
scheme will be mitigated by an additional unit that performs the memory access
operations concurrently to the main algorithm execution - a DSU. The second
condition requires that the units operating over the down-left cells of the matrix
are in advance regarding the units computing the cells at the top-right section
(see Fig. 1(b)), due to the existing data dependencies.

3 Proposed Architecture

To exploit both DLP and ILP, as proposed in the previous section, the proposed
architecture (see Fig. 2(a)) is composed of a bundle of vector execution units



198 M.T. Cruz, P. Tomás, and N. Roma

U0 U1U0 U1

(a) Anti-diagonal example with
the respective dependencies

...

Clock
Cycles

n

n+1

n+2
n+3

i2
i2 i0

i0 i0 i1
i0 i1 i1 i2
i1 i2 i2
i2 i0

U0 U1

Clock
Cycles

n

n+1

n+2

n+3
(b) Advancing units example.
Unit 1 has a 1-instruction delay.

Fig. 1. Anti-diagonal DLP (left) and the adopted ILP based on an advancing units
scheme (right). Both figures illustrate an example of two execution units with 2-cell
vectors. 3 instructions (1 clock cycle each) are required to compute each cell: i0, i1 and
i2. The dependencies are represented by the arrows.

(each with an independent register bank) and a DSU (to allow autonomous data-
transfers from the main shared memory). The architecture’s instruction word
thus consists in a bundle of several smaller SIMD instructions packed in a VLIW
macro word: one for each execution units and one for the DSU. The architecture
is also characterized by a pipeline structure (see Fig. 2(b)) with 4 pipeline stages,
namely FETCH, DECODE, EXECUTE and WRITE-BACK stages, with data forwarding
mechanisms to minimize the number of stalls due to data dependencies.

The architecture includes support for both scalar and vector functional units,
a large main shared memory and a smaller local fast memory. All these blocks
can be accessed by all the execution units, provided that no structural hazards
occur. The DSU can only communicate with the main memory. If conflicts arise
when accessing registers or FUs, a stall mechanism is implemented in a priority
list manner, where the processor is stalled until all conflicts have been resolved
(taking the instructions more clock cycles to compute).

The execution units, registers, memories and FUs share the same maximum
vector width, with support for different word widths. This design paradigm al-
lows for different accuracy compromises, improving algorithm performance if
higher accuracy is not required (using more but smaller SIMD words), while
still supporting problems that require a higher level of precision (using fewer
but larger SIMD words).

The architecture can also be easily scaled in two distinct ways: by increasing
the length of each execution unit and thus increasing the vector length (DLP);
and by increasing the number of execution units, and thus increasing the number
of parallel instructions (ILP).



Energy-Efficient Architecture for DP Local Sequence Alignment 199

Data Stream
(DSU)

Execution
Unit 0

Execution
Unit 1...Execution

Unit n

Register
Banks

Local Fast
Memory

Instruction
Memory

Jump
Control PC

(Shared) Vector Functional Units

Sniffing Sniffing Sniffing

Memory

registers

Dual Port Memory

Memory

registers
Memory

registers
Memory

registers

(a) Proposed architecture

Instruction
Memory

Fetch

Decode

Decoder

Execution

Write-Back

Register Banks

Instruction Bundle

Jump
Control

U0U1...Un

MemoriesFunctional
Units

PC

EXEC
Forwarding

WB
Forwarding

U0U1...Un

U0U1...Un

(b) Pipeline Structure

Fig. 2. Proposed architecture scheme and respective pipeline structure

3.1 Architectural Units

As referred before, the architecture presents two distinct memories (in addition
to the instructions memory): a main shared RAM memory and a local fast
memory. The former can be accessed by the DSU and the execution units to
store and read values, while the latter is a small memory that can only be read
by the execution units, storing constant values required by DP algorithms. The
existence of two memories minimizes the delay that is introduced by concurrent
memory accesses and also promotes a better data organization, by separating the
constant data values of the algorithms from the changing intermediary results.
These memories present an access latency of 2 clock cycles: one cycle to index
the correct address, and another cycle to load the value in the previous indexed
address. In fact, there are two instructions to compute these two steps of a
memory load, enabling a parallel usage of a memory load instruction between
two units: one indexing an address, and the other effectively loading a data
word. This allows achieving a throughput of 1 clock cycle with a latency of 2
clock cycles, when loading a value from memory.

The FUs in the architecture are shared by all the execution units. However,
since the number of available FUs is limited, the execution units should not issue
more operations of a given FU type than those available on the architecture, in
order to maximize the processing performance. The FUs implemented in the
architecture consist of SIMD Sum, Maximum, Shift, Logic (AND, OR, XOR)
and Comparison units, with support for easily adding new FUs.

Each execution unit in the architecture has its own private register bank and
a separate small set of 4 shared memory registers, allowing data sharing between
units without memory accesses. Thesememory registers can eliminate the redun-
dant memory loads introduced by some DP algorithms, whenever several cells
(and therefore, execution units) share the same dependencies. Furthermore, these



200 M.T. Cruz, P. Tomás, and N. Roma

Memory

Register file
of Unit 0

Register file
of Unit 1

Register file
of Unit n-1

Register file
of Unit n

Fig. 3. Register Window mechanism: a value is loaded from memory to a register while
the previous register value is shifted between adjacent units

registers will also be used by the DSU to communicate with the main memory
(hence the memory name tag), storing and loading values from it in parallel to
the algorithm computations, thus reducing the memory access latency impact.
To further reduce the impact of memory accesses, the memory registers can
also be used in a register window mechanism. This mechanism allows a memory
load operation to fetch a data value to a memory register in one of the units
on the periphery, while shifting the previous stored value on that register to
the adjacent units (at the same time), as depicted in figure 3. This will update
the selected memory registers in all units, enabling the pre-load of data values
required by future iterations of the algorithms, such as sequence elements that
are computed sequentially in all units.

Additionally, there is also a small subset of registers in the execution units’
register banks, where a sniffing mechanism is implemented. This mechanism
mirrors the sniffed registers to the register bank of the adjacent unit, effectively
storing the register value in the adjacent unit. It is thus possible to share data
values between adjacent units (which are very common in DP algorithms) with-
out resorting to the main shared memory, at the same time that the memory
registers are busy reading or storing values.

3.2 Instruction Set

While the DSU only performs memory access and shift operations over the mem-
ory registers (enabling the use of the referred register window mechanism), the
execution units compute common arithmetic, logic, memory and control instruc-
tions. Additionally, optimized instructions for the targeted algorithms are also
present, such as the MAXMOV instruction (useful for the SW algorithm), that
not only does a maximum operation, but also adjusts some registers in the
background to support the affine gap model without requiring additional clock
cycles. The instruction set also presents modifiers to the implemented instruc-
tions. These modifiers can change the operand source of an instruction (e.g. use
of immediate values) or add background operations to the instruction, enabling
some algorithmic optimization. An example of the latter consists in a broadcast
sum operation, where up to 3 parallel sums are performed in only 1 clock cycle,
enabling the computation of multiple dependencies in DP algorithms.



Energy-Efficient Architecture for DP Local Sequence Alignment 201

3.3 Interface

In order to allow an efficient interconnection of the proposed architecture with
different processing platforms, it was incorporated an interfacing structure aim-
ing FPGA-based implementations. Such interfacing structure is based on the
Advanced Microcontroller Bus Architecture (AMBA), structured according to
its Advanced eXtensible Interface (AXI), allowing an easy interconnection be-
tween a GPP and the proposed architecture, which acts as an accelerator core.

The only communication requirement between the GPP element and the pro-
posed architecture consists in a writing access directly to the three memories
present in the proposed architecture, namely: i) the instructions memory; ii) the
local fast memory; iii) and the RAM memory. Regarding the instructions mem-
ory, a control unit, outside the proposed architecture, controls the instructions
flow from memory, with the instructions bundles being transferred in parallel
to the architecture core. This control unit is further simplified when accounting
that DP algorithms usually consist in one main loop that is repeated several
times.

The two remaining memories require writing access from inside the proposed
architecture, in addition to write access from the GPP. This way, there will be
multiplexers at the entrance of the writing ports in these memories, where a
control unit (external to the proposed architecture) decides which source will
write to the memories. Therefore, the proposed architecture must stay idle when
large sequences of data are being transferred to the memories (specially to the
main memory). For the targeted sequence alignment algorithms, the idle time
can be minimized by aligning a reference sequence to multiple query sequences,
reducing the transfer times only to the query sequence transfers.

4 Prototyping

The proposed architecture was prototyped in a Zynq SoC 7100 FPGA [9]. The
implemented configuration of the proposed architecture is composed of 1 DSU
and 4 32-bits execution units, each using vectorial instructions to process multi-
ple cells in parallel, resulting in a 128-bit wide VLIW. The word width was de-
fined at 8 bits for the SW algorithm implementation and 16 bits for the Viterbi
algorithm (due to higher precision requirements), resulting in 16 cells and 8 cells
being computed in parallel, respectively. The register banks and memories share
the same word widths.

The resources occupied in the FPGA (post place-&-route) can be seen in
figure 4, accompanied by the operating frequency, power and scalability results.

4.1 Scalability

The impact on the hardware resources, frequency and power, introduced by
both DLP and ILP scalability, is depicted in figure 4. The DLP scalability was
evaluated by increasing the vector length from 32 bits to 40 bits, while the ILP



202 M.T. Cruz, P. Tomás, and N. Roma

Slice
Registers

Slice LUTs BRAMs
Frequency

[MHz]
Power [W]

4x 32-bit units (baseline architecture) 7390 31011 7 111 0,86

4x 40-bit units 9033 37098 7 112 0,97

5x 32-bit units 9089 37635 7 98 0,89

FPGA Total 554800 277400 755

0,1

1

10

100

1000

10000

100000

1000000

Fig. 4. Hardware, frequency and power scalability for the proposed architecture by
increasing the DLP (40-bit vectors) and by increasing the ILP (5 execution units)

scalability was achieved by increasing the number of execution units to 5. In
both cases, the number of slice registers and LUTs increased approximately by
18% and 16%, respectively. The number of BRAMs remained the same, since
it only changes with a greater variation in the vector width. Regarding the
operating frequency and power consumption, the DLP scalability test resulted in
approximately the same frequency as the baseline architecture, with an increase
of 12% in the power consumption. The ILP scalability achieved a frequency
decrease of 12%, with a power consumption increase of 4%.

5 Evaluation

To evaluate the proposed architecture, different metrics were used to measure
both the performance and energy efficiency. The performance evaluation was
measured in Cell Updates per Second (CUPS) and the energy efficiency was
measured in Cell Updates per Joule (CUPJ). Additionally, the architecture was
also evaluated regarding its performance-energy efficiency, measured in Cell Up-
dates per Joule-Second (CUPJS).

5.1 Reference State-of-the-Art Architectures

To better assess the proposed architecture, it was compared with two state-
of-the-art architectures representing distinct low-power domains: i) a mobile
low-power GPP (ARM Cortex-A9) operating at 533MHz; and ii) a dedicated
programmable ASIP (Bioblaze [7]) operating at 158MHz and implemented in
the same Zynq FPGA (for a fair comparison). Additionally, the proposed ar-
chitecture was also compared with an intel i7 3820 GPP, operating at 3.6GHz,
for a high-performance reference evaluation (although this processor does not
comply with the typical power constraints of embedded biochips). All these ar-
chitectures make use of 128-bit SIMD extensions (ARM’s NEON, Intel’s SSE,
and Bioblaze ISA), ensuring a fair comparison against the proposed architec-
ture. The Bioblaze was used to evaluate only the SW algorithm, since it was



Energy-Efficient Architecture for DP Local Sequence Alignment 203

developed with the objective of accelerating such particular algorithm (although
being programmable), while the remaining architectures were evaluated with
both algorithms.

5.2 Algorithm Implementations

Both the SW and Viterbi algorithm implementations follow the anti-diagonal
processing pattern, which is particularly efficiently exploited in the proposed
architecture. The ILP is explored by having the left-most computing instructions
in advance to the right-most cells. Hence, the SW main loop is composed of
5 instructions per execution unit (namely comparisons, sums and maximum
operations), to process a complete vector of cells. The Viterbi algorithm requires
a total of 23 instructions for an execution unit to compute the cells in its vector.
These instructions mainly consist in simple sum and maximum operations, with
additional loads and stores in the outer loop to account for the special states.

In the proposed architecture, the main memory is pre-loaded with the refer-
ence and query sequence, while both memories (main and local fast memories)
are pre-loaded with all the necessary constants and cost/score values required by
the evaluated algorithms. Therefore, only the algorithm steps are accounted for
in the performed evaluations. Accurate clock cycle measurements of the required
time to execute each biological sequence analysis in the proposed platform were
obtained using Xilinx ISim.

For the remaining evaluated architectures, the algorithms follow the state-
of-art implementations of Farrar [5] and HMMER [6], for the SW and Viterbi
algorithms, respectively. In these implementations, it is used a processing flow
along the query sequence (vertical), leading to the existence of additional lazy
loops in the computations.

In the Bioblaze, the clock cycle measurements were achieved by using Mod-
elsim SE 10.0b [7]. In the ARM Cortex-A9 and Intel Core i7, the system timing
functions were used to determine the total execution time of the DNA sequence
alignment. To improve the measurement accuracy, several repetitions of the same
alignment were done and the obtained values were subsequently divided by the
number of repetitions and the processor clock frequency.

5.3 Smith-Waterman Evaluation

To benchmark the SW algorithm, a DNA dataset composed of several reference
sequences (ranging from 128 to 16384 elements) and a set of query sequences with
length ranging from 20 to 2276 elements was used. The reference sequences corre-
spond to twenty indexed regions of the Homo sapiens breast cancer susceptibility
gene 1 (BRCA1gene) (NC 000017.11). The query sequences were obtained from a
set of 22 biomarkers for diagnosing breast cancer (DI183511.1 to DI183532.1)
and a fragment, with 68 base pairs, of the BRCA1 gene with a mutation related
to the presence of a Serous Papillary Adenocarcinoma (S78558.1).

The evaluation results for the SW algorithm can be observed in Fig. 5, together
with the scalability results introduced in section 4.1.



204 M.T. Cruz, P. Tomás, and N. Roma

MCUPS MCUPJ PCUPJS Power
ARM Cortex-A9 124 131 128 0,98
BioBlaze 63 332 176 0,30
Intel Core i7 3820 2274 60 369 38

Baseline Proposed Architecture (4x 32-bit units) 356 416 385 0,58
Proposed Architecture (5x 32-bit units) 393 441 416 0,50
Proposed Architecture (4x 40-bit units) 448 460 454 0,56

1

10

100

1000

10000

Baseline Proposed Architecture (4x 32-bit units) 356 416 385 0,58

Fig. 5. SW algorithm performance and energy-efficiency results for all evaluated ar-
chitectures

When comparing with the low power architectures, namely the ARM Cortex-
A9 and the Bioblaze, the proposed architecture achieves a speedup of 2.86x and
5.65x, respectively. Although the frequency of the ARM processor is 4.8x higher
than the frequency of the proposed architecture, the fact that the algorithm
implementation does not present lazy loops in the proposed architecture results
in a better throughput and therefore in a better performance. Regarding the
energy efficiency, the proposed architecture achieved a better efficiency than the
ARM Cortex-A9 (3.18x) and the Bioblaze (1.25x), with the latter having a lower
power consumption, thus demonstrating that the proposed architecture enables
a more efficient implementation. Finally, the obtained performance-energy effi-
ciency results show that the proposed architecture offers a significant gain over
the ARM (3.02x) and the Bioblaze (2.19x).

As it was expected, in the high-performance domain the proposed architecture
achieved a lower performance (0.16x) and a higher energy efficiency (6.95x) than
the Intel i7, due the disparity in operating frequencies and power consumptions.
Regarding the performance-energy efficiency, the proposed architecture managed
to achieve better results, than the Intel i7, proving again that by efficiently
exploiting the available parallelism it is possible to compensate for the difference
in operating frequency.

Regarding the scalability results, the DLP scalability achieved superior per-
formance and energy efficiency results when compared to the ILP scalability. In
fact, the DLP scalability achieves a speedup of 1.26x and gains of 1.11x and
1.18x (for the performance, energy efficiency and performance-energy efficiency
metrics, respectively) in comparison to the baseline architecture. As it was pre-
viously seen in section 4.1, on top of that, the DLP scalability also resulted
in slightly less hardware resources and a higher operating frequency than the
ILP scalability (only losing to the power consumption), proving to be the best
scalability option given the amount of cell parallelism added.



Energy-Efficient Architecture for DP Local Sequence Alignment 205

MCUPS MCUPJ PCUPJS Power [W]
ARM Cortex-A9 7,9 8,3 8,1 0,95
Intel Core i7 3820 308,9 8,1 50,1 38
Proposed Architecture (4x 32-bit units) 38,6 45,2 41,8 0,584

1,0

10,0

100,0

1000,0

Fig. 6. Viterbi algorithm performance and energy-efficiency results for all evaluated
architectures

5.4 Viterbi Evaluation

To evaluate Viterbi’s algorithm implementation, a sample of 28 HMMs from
the Dfam database of Homo Sapiens DNA [10] was used. The adopted model
lengths vary from 60 to 3000, increasing by a step of roughly 100 model states,
and were created by the HMMER3.1b1 tool [6]. Query sequences (generated by
the HMMER tool [6]) ranging from 20 to 10000 symbols were used to evaluate
the alignment against all the above reference sequences.

The results for the performance and energy efficiency metrics for the Viterbi
algorithm can be observed in Fig. 6. Similarly to the SW results, the proposed
architecture achieved a better performance (4.89x), energy efficiency (5.44x) and
performance-energy efficiency (5.16x) than the ARM Cortex-A9. When compar-
ing to Intel i7, the results for the performance and energy-efficiency were also
similar to those obtained for the SW algorithm, with the proposed architecture
achieving a lower performance (0.13x) and a higher energy efficiency (5.56x).
Regarding the performance-energy efficiency, and contrary to the SW evalua-
tion, the proposed architecture achieved a worse result than the Intel i7 (0.83x).
This result shows that the higher energy efficiency of the proposed architecture,
together with the optimized algorithm implementation, are not enough to sur-
pass the higher performance of the Intel i7, even with a less efficient algorithm
implementation. However, due to its higher power consumption, the Intel i7 ar-
chitecture cannot be seen as a viable option to the targeted low-power embedded
systems domain.

6 Conclusion

The proposed architecture exploits DLP and ILP to provide a high performance
platform to DP algorithms, offering low-power consumption and high energy
efficiency, to comply to the strict requisites of embedded systems (e.g. biochips).

Furthermore, the proposed architecture is scalable in two distinct fronts: at
a DLP level, by increasing the vector lengths, and at an ILP level, by increas-
ing the number of execution units. In both cases, it was shown speedup and
energy efficiency gains against the baseline architecture, which demonstrates its



206 M.T. Cruz, P. Tomás, and N. Roma

potential scalability. The architecture also provides an extended algorithmic sup-
port when compared with traditional dedicated processors, by implementing a
instruction set with optimized instructions and modifiers. Furthermore, the pro-
posed architecture template permits the addition of new instructions and FUs,
allowing further algorithmic optimization or support.

In face of the conducted evaluations, the proposed architecture can target low
power systems without showing any significant loss against commonly used GPP
alternatives and dedicated architectures. According to the obtained results, it
presents better performance and energy efficiency than all the low-power archi-
tectures. In terms of performance-energy efficiency, the proposed architecture
achieved gains of up to 5.16x against the ARM Cortex-A9 and 2.19x against the
dedicated Bioblaze. For a high-performance reference, the proposed architecture
also managed to obtain a better performance-energy efficiency than the Intel i7
3820 processor.

References

1. Benson, D.A., Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Sayers,
E.W.: Genbank. Nucleic Acids Research (2014)

2. Smith, T.F., Waterman, M.S.: Identification of Common Molecular Subsequences.
Journal of Molecular Biology 147(1), 195–197 (1981)

3. Viterbi, A.: Error Bounds for Convolutional Codes and an Asymptotically Op-
timum Decoding Algorithm. IEEE Transactions on Information Theory 13(2),
260–269 (1967)

4. Cardoso, F., Costa, T., Germano, J., Cardoso, S., Borme, J., Gaspar, J., Fernandes,
J., Piedade, M., Freitas, P.: Integration of Magnetoresistive Biochips on a CMOS
Circuit. IEEE Transactions on Magnetics 48(11), 3784–3787 (2012)

5. Farrar, M.: Striped Smith–Waterman Speeds Database Searches Six Times Over
Other SIMD Implementations. Bioinformatics 23(2), 156–161 (2007)

6. Eddy, S.R.: Profile Hidden Markov Models. Bioinformatics 14(9), 755–763 (1998)
7. Neves, N., Sebastião, N., Matos, D., Tomás, P., Flores, P., Roma, N.: Multicore

SIMD ASIP for Next-Generation Sequencing and Alignment Biochip Platforms.
In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems (in press)
(2015)

8. Gotoh, O.: An improved Algorithm for Matching Biological Sequences. Journal of
Molecular Biology 162(3), 705–708 (1982)

9. Xilinx.: Xilinx DS190 Zynq-7000 All Programmable SoC Overview (2013),
http://www.xilinx.com/support/documentation/data_sheets/

ds190-Zynq-7000-Overview.pdf (last accessed on December 10, 2014)
10. Finn, R.D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R.Y., Eddy, S.R.,

Heger, A., Hetherington, K., Holm, L., Mistry, J., et al.: Pfam: The Protein Families
Database. Nucleic Acids Research, gkt1223 (2014)

http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf

	Energy-Efficient Architecture for DP Local Sequence Alignment: Exploiting ILP and DLP
	1
Introduction
	2
Dynamic Programming Algorithms
	2.1
Smith-Waterman
	2.2
HMM Viterbi
	2.3
Parallelism Exploitation

	3
Proposed Architecture
	3.1
Architectural Units
	3.2
Instruction Set
	3.3
Interface

	4
Prototyping
	4.1
Scalability

	5
Evaluation
	5.1
Reference State-of-the-Art Architectures
	5.2
Algorithm Implementations
	5.3
Smith-Waterman Evaluation
	5.4
Viterbi Evaluation

	6
Conclusion
	References




