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Abstract. Earlier research has shown that an adaptive hyper-heuristic
can be a successful approach to solving combinatorial optimisation
problems. By using a pairing of an operator (low-level heuristic) selection
vector and a solution acceptance criterion, an adaptive hyper-heuristic
can manage development of a “good” solution within an unseen low-
level problem domain in a commercially realistic computational time.
However not all selection vectors and solution acceptance criteria pairings
deliver competitive results when faced with differing problem instance
features and computational time limits. We evaluate pairings of six differ-
ent operator selection vectors and eight solution acceptance criteria, and
monitor the performance of the adaptive hyper-heuristic when applying
each pairing to a set of Capacitated Vehicle Routing Problem instances
of the same size but with different features. The results show that a few
pairings of operator selection vector and acceptance criterion perform
consistently well, while others require a longer computational time to
deliver competitive results. We also investigate some of the features of
a problem instance that may influence the performance of the selection
vector and acceptance criterion pairings.

1 Introduction

Traditional methods of solving combinatorial optimisation problems use algo-
rithms and heuristics, such as a branch-and-bound algorithm [4] or meta-heuristic
search (e.g. tabu search [5]). These methods can achieve good results but often
require detailed domain information and can be complex and time consuming
to design and execute. A hyper-heuristic is useful where a more general (domain
independent) approach is required. The term hyper-heuristic was defined by
Cowling et al. [2] as “heuristics to choose heuristics”. In this respect, we use a
hyper-heuristic to select and execute operators (heuristics) from an unseen set of
low-level (domain specific) operators, which in turn incrementally build and/or
modify a solution to each problem instance. Understanding what makes a par-
ticular hyper-heuristic efficient and effective would enable the trade-off between
computational speed and quality of the result to be managed when faced with
larger problem instances and more complex problem domains.
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The winning entry of the First Cross-domain Heuristic Search Challenge
(CHeSC) [8] in 2011 was an adaptive hyper-heuristic designed by Misir et al. [7].
Marshall et al. [6] illustrate that even a simplified version of the adaptive hyper-
heuristic designed by Misir et al. [7] performs well when applied to unseen prob-
lems in seven different combinatorial optimisation problem domains. The key
components to the adaptive hyper-heuristic are the operator selection vector,
which determines which operator to apply next, and the solution acceptance cri-
terion which determines whether a new solution is retained or discarded. In [6],
the simplified adaptive hyper-heuristic used a single operator selection vector
and a solution was only accepted if it was better than or equally as good as
the solution it may replace. This paper investigates whether providing a wider
choice of operator selection vector and solution acceptance criteria can improve
the effectiveness of the adaptive hyper-heuristic. We increase the number of pos-
sible operator selection vectors to six, and the number of solution acceptance
criteria to eight.

The remainder of this paper is organised as follows. A brief background is
given in Sect. 2, including an overview of the adaptive hyper-heuristic. Section 3
describes the operator selection vectors and solution acceptance criteria. The
experimental design, results and discussion are in Sects. 4 and 5. Finally, Sect. 6
gives our conclusions.

2 Background

This paper uses an adaptive hyper-heuristic (AdaptiveHH) compatible with the
HyFlex (Hyper-heuristic Flexible) framework [9]. We focus on using a Capaci-
tated Vehicle Routing Problem (CVRP) [12] domain. However, since the hyper-
heuristic has no problem domain dependent processes, the hyper-heuristic can
readily be applied to other problem domains. Importantly, the hyper-heuristic
has no knowledge of the size or features of the problem instance it is working
on. This means that the specified computational time limit may be excessive or
insufficient to arrive at a “good” solution to the problem instance. The hyper-
heuristic must be able to make the best use of the available time and, ideally,
terminate processing early when the available time is excessive.

2.1 Adaptive Hyper-heuristic

The AdaptiveHH in this paper is a simplified version of the hyper-heuristic
developed by Misir et al. [7]. Conceptually, AdaptiveHH iteratively selects and
applies an unseen operator from the problem domain. The resulting solution is
then accepted or discarded based on the acceptance criterion specified by Adap-
tiveHH. AdaptiveHH requires a number of parameters which set the computa-
tional time limit, the number of intermediate decision points (phases), and the
choice of operator selection vector and acceptance criterion to use (see Fig. 1).
Parameters also set the rules about how AdaptiveHH responds if progress
towards improving the current solution is stalled.
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Fig. 1. Overview of how an adaptive hyper-heuristic interacts with a low-level problem
domain across the domain barrier.

The two main components of AdaptiveHH are:

1. The Operator Selection Vector. This vector is used to select the next
operator to apply. The vector is updated at the start of each phase based
on the performance of the operator in the preceding phase(s). It gives the
probability of each operator being selected and applied to the current solution.

2. The Solution Acceptance Criteria. Once an operator modifies a solution
to create a new solution, the hyper-heuristic needs to decide whether to accept
(retain) or discard the new solution.

2.2 HyFlex Framework

The HyFlex framework [9] was originally developed in 2011 for the First Cross-
domain Heuristic Search Challenge (CHeSC) [8]. The framework includes six
in-built combinatorial optimisation problem domains. Associated with each in-
built problem domain is a set of between 8 and 15 unseen low-level operators
(heuristics). Each set contains at least one operator belonging to each of the
four defined operator types: mutation, ruin-recreate, local search and crossover.
A crossover operator swaps parts of one solution with another solution in an
attempt to create a better solution.

Each operator can use (if appropriate) the two HyFlex parameters α and β,
where (0 ≤ α, β ≤ 1). The Intensity of Mutation parameter, α, affects the
scale of any mutation or ruin operation, e.g., 0.5 would mean half the current
solution would be altered by an operator using this parameter. The Depth of
Search parameter, β, defines a range or number of repetitions an operator will
undertake to find an improved solution in a single execution of the operator.
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Each operator is only visible to the hyper-heuristic to the extent allowed by
the HyFlex [9] specifications. Operator visibility is restricted to the following
properties:

1. Operator Type. A mandatory attribute of each operator contained within
a HyFlex problem domain. There are four defined operator types:
(a) Mutation operators add or reposition an element in a solution. Operators

of this type would generally only involve simple manipulations requiring
a short computational time which is only marginally affected by the size
of the problem instance.

(b) Ruin-Recreate operators destroy a segment of an existing solution, cho-
sen by the operator implementation, and then rebuild the segment to
form a new solution. These operators are more complex than a mutation
operator and typically require a longer computational time. The compu-
tational time may vary substantially depending on the size of the problem
instance.

(c) Local Search operators define and search a solution neighbourhood for
improvements. These operators generally apply a degree of logic to the
search so can be expected to have a higher chance of improving a solu-
tion, or verify no further local improvements are possible, than the other
operator types. However, the computational time may be much longer,
and could escalate polynomially (or worse) as the problem instance size
increases.

(d) Crossover operators combine elements of two current solutions to form
a new solution. The computational time of a crossover operator varies but
is often similar to a ruin-recreate operator.

2. Uses Intensity of Mutation. An indicator to show whether this operator
uses the global Intensity of Mutation, α, parameter.

3. Uses Depth of Search. An indicator to show whether this operator uses
the global Depth of Search, β, parameter.

4. Call Record. The number of times the operator has been executed during
a run is calculated and is visible to the hyper-heuristic on demand.

5. Call Time Record. The aggregate of the execution time of each operator
during a run is recorded and is visible to the hyper-heuristic on demand.

3 The Method

We test the effectiveness of AdaptiveHH by rating each solution generated
against the best solution objective value achieved within the computational time
limit. We use different pairings of operator selection vector and acceptance crite-
rion. There are 48 possible pairings of operator selection vector (6) and solution
acceptance criteria (8).



Hyper-heuristic Operator Selection and Acceptance Criteria 103

3.1 Operator Selection Vector Design

AdaptiveHH operates for a specified time limit which is broken down into phases.
The operator selection vector is updated at the end of each phase. The choice
of selection vector and acceptance criterion is fixed at the beginning of the run
and is not altered during the run. The selection vector consists of an array of
operators, each with a probability of selection. In the initial selection vector
(regardless of type) all operators have an equal probability of selection.

We follow the example of Misir et al. [7] and allow some of the selection
vectors described below to exclude operators for one or more phases (i.e. the
selection probability is zero). The number of phases an operator is excluded
is based on a performance penalty. The first time an operator is excluded the
performance penalty is set to one. This means the operator is readmitted to the
selection vector at the end of the next phase (i.e. one phase exclusion) with a
probability of 0.01 prior to normalisation. If the operator is immediately excluded
again during the vector update process at the end of the readmission phase, the
performance penalty, and hence the number of exclusion phases, is increased by
one. Should the operator be readmitted and survive the vector update process
into the succeeding phase, then the performance penalty is reset to one.

The AdaptiveHH reported in [6] used only the Basic Selector. The operator
selection vectors are of our own design, but use components of the single selection
vector used by Misir et al. [7].

1. [FS] Fixed Selector: The initial vector is not altered during the run, so
provides a benchmark against which other selection vectors can be measured.
All operators have an equal probability of selection regardless of performance.

2. [BS] Basic Selector: Updates probabilities by evaluating the success rate
of each operator, ri, since the start of the run:

ri =
number of improvementsi

number of callsi

This vector does not exclude operators and sets a minimum probability of
selection as 0.001 prior to normalisation.

3. [P1] Phase Selector (1): Updates probabilities by evaluating the success
rate of the each operator, ri (as per [BS]), in the most recent phase. During
the update process a threshold is set equal to 1

3 of the success rate of the
best performing operator, rbest, in that phase. If ri ≥ rbest

3 it is included in
the selection vector for the next phase with a probability of ri, minimum
0.01, prior to normalisation. Operators where ri < rbest

3 are excluded from
the vector for the number of phases determined by their performance penalty.

4. [P2] Phase Selector (2): Updates probabilities by evaluating the success
rate of each operator, ri (as per [BS]), in the most recent phase. This vector
does not exclude operators and sets a minimum probability of selection at
0.001 prior to normalisation. It differs from the Basic Selector in that this
selection vector only considers performance during the most recent phase.
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5. [T1] Time Weighted Phase Selector (1): The time weighted selector
uses a time weight, wi, to penalise slower operators. This is calculated using
the average operator execution time, averageOpT ime, during the preceding
phase:

wi =

√
averageOpT imei

averageOpT imefastest

The time weighted success rate of each operator, ri, in the most recent phase
is evaluated:

ri =
number of improvementsi

wi × number of callsi

During the update process a threshold is set equal to 1
3 of rbest. If ri ≥ rbest

3
it is included in the selection vector for the next phase with a probability
of ri, minimum 0.01, prior to normalisation. Operators where ri < rbest

3 are
excluded from the vector for the number of phases determined by their per-
formance penalty.

6. [T2] Time Weighted Phase Selector (2): Calculation of the time weight,
wi, and success rates, ri, are identical to that described for [T1]. For this
selector all ri are ranked highest to lowest, including those excluded from the
selection vector (ri = 0). A threshold, T , is set equal to the ri of the operator
ranked NumberOfOperators

2 (T may be zero). If ri ≥ T , it is included in the
selection vector for the next phase with a probability weighting of 1

rank , prior
to normalisation.

3.2 Acceptance Criteria Design

Each application of an operator takes a current solution and modifies it to create
a new solution. The new solution is then considered for acceptance into the small
population of solutions. If the new solution is not accepted then it is discarded.
If the new solution is at least as good as the solution it will replace, then it is
automatically accepted into the population of solutions regardless of the accep-
tance criteria specified by the hyper-heuristic. The following eight acceptance
criteria are those proposed by Sabar et al. [10] with minor modifications. As far
as possible we have retained the labels and arbitrary parameter values proposed
by Sabar et al. [10] and only made changes which are necessary to satisfy the
HyFlex framework [9] constraints. In all cases, the new solution is compared to
the solution it will replace (if accepted) in the population of solutions.

1. [IO] Improving or Equal Only: Only improving (better objective value)
or equally good solutions are accepted. All other solutions are discarded.

2. [AM] Accept Move: All new solutions are accepted.
3. [SA] Simulated Annealing: Non-improving solutions are accepted with

a probability e−δ/t, where δ is the change in the objective value between
the old and new solutions. The “temperature”, t, is 0.5 × Sbest × 0.85phase−1,
where Sbest is the current best solution objective value [1,11]. The probability
of a non-improving solution being accepted decreases as (a) the change in
objective value increases and (b) as time progresses.
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4. [MC] Exponential Monte Carlo: Non-improving solutions are accepted
with a probability e−δ, where δ is the change in the objective value between
the old and new solutions. The probability of a non-improving solution being
accepted decreases as the change in objective value, δ, increases.

5. [RR] Record to Record Travel: Non-improving solutions are accepted if
the new solution has an objective value less than or equal to 1.03 × Sbest,
where Sbest is the current best solution objective value [3].

6. [GD] Great Deluge: Non-improving solutions are accepted if the new solu-
tion has an objective value less than or equal to (1 + 0.85phase−1) × Sbest,
where Sbest is the current best solution objective value [3]. The probability
of a non-improving solution being accepted decreases as time progresses.

7. [NA] Näıve Acceptance: Non-improving solutions are accepted with 0.5
probability.

8. [AA] Adaptive Acceptance: Non-improving solutions are accepted with a
probability 1 − 1

C , where C > 0 is a counter which increments every 10,000
consecutive operator calls without an improvement in the objective value of
the best solution found so far. The counter is reset to 1 each time an improved
best solution objective value is found. The probability of a non-improving
solution being accepted increases when the search for better solutions reaches
a plateau and new best found solutions become harder to find.

4 Experimental Design

The experiments use our own implementation of a CVRP domain [12] compatible
with the HyFlex [9] framework. We create 50 random 80-node (79 customers +
1 depot) problem instances requiring a minimum of between 3 and 19 routes.
Each problem instance is randomly created using an 80× 80 grid. Each instance
contains three nodes at fixed locations (see Fig. 2), one of which is the depot,
and the other 77 nodes at randomly generated locations. Vehicle capacity is fixed
at 1,000 units and each customer’s demand is a randomly generated integer with
an upper bound ranging from 5 % to 45 % (randomly set for each instance) of
the vehicle capacity, with a minimum demand of 1 unit.

We modify the twelve low-level operators proposed by Walker et al. [13]
for a CVRP-with-time-windows domain by removing the time window elements
from each operator. There are 4 mutation, 2 ruin-recreate, 4 local search and 2
crossover operator types (see Sect. 2.2). The size of the population of solutions
is set at six. The hyper-heuristic is only provided with the number of operators
of each operator type and has no knowledge of the actual function each operator
performs.

We seek to determine:

1. Whether there are particular pairings of operator selection vector and accep-
tance criterion which consistently perform well or poorly compared to other
pairings in arriving at a “good” solution within a short computational time.
We examine how each pairing affects the frequency with which each operator
type is selected.
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2. Whether the location of the depot in relation to the customers influences
the consistency and quality of the solutions. To this end we take a problem
instance (see Fig. 2) and relocate the depot by swapping the grid coordinates
of the depot with one of two customers highlighted. The problem instance is
otherwise unchanged. The alternative depot locations are chosen so that the
depot is geographically: (a) central, (b) off-centre, and (c) remote.

3. Although we use CVRP instances of the same size, the differing customer
demand values mean solutions require a minimum number of routes ranging
from 3 to 19. We examine the influence the number of routes has on the per-
formance of the operator selection vector and acceptance criterion pairings.
This, and the preceding objective, will determine whether the structure of
the problem instance affects performance of the pairings.

Fig. 2. Randomly generated 80-node problem instance on an 80×80 grid, showing the
3 alternative depot locations (highlighted).

We compare the quality of the results from 30 replications on a set of 50 ran-
domly generated 80 node CVRP instances. We rate individual solutions against
the best solution found during the batch of runs (typically 1,440 runs, being 30
replications of 48 pairings) using the following formula (lower ratings are better).

ratingi =
(

100 × (solutioni − solutionbest)
solutionbest

)2

This provides an indication of the relative performance of each pairing compared
to its peers. We use the square of the result to increase the apparent difference
between results and increase the penalties for poor solutions.
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We conduct 25-phase (see Sect. 2.1) experiments using three different depot
locations on 50 CVRP instances. We measure pairing performance using com-
putational time limits of 1, 5, 15, 30, 60, 120 and 300 s. The hyper-heuristic we
use contains a reinitialisation mechanism if no improving solutions are found
for 10,000 consecutive operator calls. It also contains an early termination con-
dition should there still be no improving solutions for two consecutive phases.
The purpose of this mechanism is to allow processing to be halted when the
hyper-heuristic detects there is a very low likelihood of making further improve-
ments to the best found solution so far.

5 Results and Discussion

Table 1 and Fig. 3 show the results for all pairings from the batches using a
60 s computational time limit for each depot location. Due to space constraints,
Tables 2 and 3 only show results from the five best and five worst performing
pairings identified in Table 1. Widely differing customer demand values mean the
50 CVRP instances require a minimum of between 3 and 19 routes to service all
customers. Table 2 compares the performance of pairings on problem instances
where the minimum number of routes is small (3–5 routes), medium (6–13 routes)
and large (14–19 routes). Table 3 shows the change in performance over different
computational time limits. In Table 3 the performance is measured against the
best solution found in any batch for each CVRP instance and depot location.
Early terminations only affect the data when allowing a 300 s computational
time limit. A negligible number (<0.1 %) of early terminations occurred with a
120 s time limit, and none with the shorter time limits.

Table 1 illustrates the difference in performance when the depot is at dif-
ferent locations. While all pairings provide better results when the depot is
located centrally compared to off-centre, the better performing pairs generally

Fig. 3. Comparison of acceptance criteria and selection vector performance ratings (see
Sect. 4) during 60 s runs shown in Table 1. Lower ratings are better.
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Table 1. Average rating (see Sect. 4) of each selection vector and acceptance criteria
pairing over 3 depot locations × 30 replications × 60 s runs on 50 randomly generated
CVRP instances (80 nodes, 3 depot locations (see Fig. 2)). Lower ratings are better.
Best five performing pairs in bold; five worst in italics.

Acceptance Selection Central Off-centre Remote Average Std.Dev.

Criteria Vector Depot Depot Depot Rating

IO FS 10.33 12.35 13.02 11.90 13.62

IO BS 10.09 12.50 13.04 11.88 13.53

IO P1 9.96 12.29 12.99 11.75 13.50

IO P2 10.09 12.29 12.96 11.78 13.38

IO T1 9.60 11.21 11.99 10.93 12.50

IO T2 9.74 11.63 12.50 11.29 12.85

AM FS 9.01 11.89 10.61 10.51 12.42

AM BS 8.09 11.09 10.02 9.73 11.37

AM P1 8.19 11.74 10.79 10.24 12.27

AM P2 7.51 11.57 10.72 9.93 11.97

AM T1 6.25 10.17 8.86 8.43 10.84

AM T2 7.35 10.78 9.48 9.20 10.95

SA FS 6.81 9.25 9.13 8.40 10.31

SA BS 5.93 8.56 8.94 7.81 10.36

SA P1 7.19 10.34 10.36 9.30 11.52

SA P2 6.74 9.65 10.02 8.80 10.74

SA T1 5.59 8.06 7.83 7.16 9.60

SA T2 6.10 8.80 8.77 7.89 10.35

MC FS 9.75 10.96 12.38 11.03 12.54

MC BS 11.02 13.03 14.70 12.92 14.28

MC P1 11.92 14.34 15.87 14.04 15.28

MC P2 13.49 16.35 17.36 15.73 17.04

MC T1 11.77 15.01 15.37 14.05 15.60

MC T2 9.99 11.05 12.49 11.18 12.96

RR FS 6.77 9.46 9.76 8.66 10.88

RR BS 6.50 9.25 9.63 8.46 10.76

RR P1 7.73 11.30 11.91 10.31 12.27

RR P2 9.21 13.85 14.29 12.45 14.21

RR T1 9.29 13.05 13.16 11.83 13.55

RR T2 6.55 9.30 10.17 8.68 11.01

GD FS 7.66 9.33 9.81 8.93 11.14

GD BS 6.47 7.98 9.22 7.89 10.29

GD P1 8.15 10.35 11.00 9.83 11.92

GD P2 7.57 9.82 10.69 9.36 11.31

GD T1 6.15 8.74 8.42 7.77 10.32

GD T2 6.72 8.49 8.88 8.03 10.33

NA FS 6.71 9.66 8.99 8.45 10.61

NA BS 5.96 8.68 8.11 7.59 10.01

NA P1 6.38 9.63 9.04 8.35 10.51

NA P2 6.33 9.35 8.86 8.18 10.20

NA T1 4.58 7.60 6.95 6.37 8.88

NA T2 5.88 8.64 8.22 7.58 9.84

AA FS 8.58 10.60 9.92 9.70 11.58

AA BS 8.08 9.48 9.51 9.03 10.85

AA P1 8.28 10.31 9.96 9.52 11.55

AA P2 8.12 10.74 10.49 9.78 11.91

AA T1 7.04 9.93 9.26 8.75 11.29

AA T2 7.62 9.55 9.39 8.85 11.04
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show improving performance when the depot is moved even further away from
the centre. In contrast, the poorer performing pairings generally show neutral
to worsening results the farther the depot is located from the geographic centre.
This highlights that the size of the problem instance is not the only factor influ-
encing the performance of the hyper-heuristic. Table 1 also confirms that there
is an inter-dependency between the operator selection vector and the acceptance
criterion and it is insufficient to separately evaluate each, even though they carry
out different functions.

As shown in Table 1, some pairings, such as [SA][T1] and [NA][T1], consis-
tently perform better than other pairings. The pairings using the [MC] and [IO]
acceptance criteria generally perform poorly and require a longer computational
time to achieve results competitive with the better performing pairings.

A possible cause of this difference is the diversity in the population of solu-
tions. Pairings using the [IO] acceptance criterion, and to a lesser extent [MC],
work with a smaller diversity of interim solutions compared to other forms of
acceptance criteria. This means that time and effort are not lost on improving
low quality solutions that may never become the best solution in the current
population of interim solutions. This is a useful trait if the computational time
limit is very short, since effort is directed towards improving a better quality
solution. On the other hand, accepting only improving or equally good solutions
can cause the population of solutions to stagnate and eventually become clones
of the best found solution. Once this stage is reached the crossover operators
become ineffective and there is a tendency for the process to stall. The hyper-
heuristic has a mechanism to reinitialise the population of solutions in the event
of stalling, but this is only effective if the selection vector and acceptance crite-
rion pairing can avoid regenerating the same set of solutions.

An increase in the number of routes (see Table 2) as well as the relative second
location of the depot are influencing factors as well. However, Tables 1 and 2 also

Table 2. Comparison of the ratings (see Sect. 4) of the five best and five worst per-
forming pairings from Table 1 on CVRP instances requiring a small (15 instances),
medium (18 instances) or large (17 instances) minimum number of routes.

Acceptance Selection 3–5 routes 6–13 routes 14–19 routes

NA T1 5.84 7.43 5.54

SA T1 6.30 8.25 6.53

NA T2 5.30 8.77 7.93

NA BS 5.30 8.71 8.01

GD T1 6.41 9.01 7.35

RR P2 7.94 12.97 15.29

MC BS 8.24 14.16 15.03

MC P1 9.56 15.27 16.03

MC T1 11.84 15.99 12.45

MC P2 11.55 16.90 17.56
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Table 3. Average rating of five best and five worst performing pairings from Table 1
on 50 CVRP instances × 3 depot locations × 30 replications, when allowing a differ-
ent computational time limit (in seconds). All ratings are measured against the best
solution to each instance (and depot location) found during any of the seven batches.

Acceptance Selection 1 5 15 30 60 120 300

NA T1 45.27 18.85 12.39 9.25 6.88 5.37 4.07

SA T1 48.08 20.47 14.14 10.52 7.72 5.88 4.28

NA T2 888.03 22.97 13.96 10.81 8.19 6.34 4.67

NA BS 57.72 19.90 13.79 10.89 8.19 6.16 4.49

GD T1 47.08 22.33 14.97 11.27 10.55 6.40 4.63

RR P2 46.62 25.11 18.92 15.88 13.29 10.72 8.16

MC BS 60.19 23.67 18.64 16.06 13.73 11.77 9.69

MC P1 52.42 29.00 21.62 18.00 14.85 12.35 9.93

MC T1 54.62 28.95 21.95 18.82 14.88 12.03 9.83

MC P2 51.74 30.51 23.19 20.01 16.62 13.53 10.96

show that the relative performance of operator selection vector and acceptance
criterion pairings compared to other pairings is not greatly altered by the number
of routes or depot location. A better performing pairing will consistently deliver
higher quality solutions than poorer performing pairings regardless of the depot
location or the minimum number of routes.

Table 3 shows the performance of each pairing improves with a longer com-
putational time limit, but not all improve at the same rate. The [NA][T2] pairing
performs poorly with the 1 s computational time limit but well with longer time
limits, indicating a minimum time limit per phase is necessary for some pairings
before the operator selection vector update process can be effective. In these
experiments the improvement in the performance of the better performing pair-
ings appears to be reaching a plateau with a 300 s time limit. However, the poorer
performing pairings show a non-trivial improvement in performance between 120
and 300 s time limits, suggesting a longer computational time may produce fur-
ther improvements.

Table 4 illustrates how different pairings of operator selection vector and
acceptance criterion affect the frequency with which particular operator types
are called. The number of calls illustrates how the more aggressive of the two
time weighted selection vectors, [T1], biases operator selection towards the faster
mutation and crossover operators and away from the slower local search opera-
tors. The second time weighted selection vector, [T2], maintains a more balanced
selection approach. The Fixed Selector [FS] reflects the 4:2:4:2 balance between
the four operator types in the CVRP domain.

The time-weighted selectors favour the faster mutation operators at the
expense of the slower search operators. This is a trade-off between speed and
quality. Table 4 shows that a large number of operator calls is not critical to the
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Table 4. Average number of operator calls, success rate (ri, as defined in Sect. 3.1) and
mix of operator type selection between the six selection vectors (SV) and the Näıve
Acceptance [NA], Exponential Monte Carlo [MC] and Improving or Equal Only [IO]
acceptance criteria (AC) during experiments using a 60 seconds computational time
limit. Best performing pairs (from Table 1) in bold, worst in italics.

AC SV Num. calls Success Mutation Ruin-rec. Search Crossover

NA FS 236,900 11.82 % 33.34 % 16.66 % 33.33 % 16.67 %

NA BS 168,900 8.12% 12.65% 15.44% 47.01% 24.89%

NA P1 138,300 5.53 % 5.86 % 10.41 % 54.29 % 29.44 %

NA P2 231,000 4.71 % 4.40 % 3.57 % 29.40 % 62.63 %

NA T1 749,400 5.78% 2.34% 2.88% 3.53% 91.24%

NA T2 187,500 6.82% 17.08% 14.81% 45.22% 22.89%

MC FS 220,800 1.43 % 33.36 % 16.64 % 33.34 % 16.66 %

MC BS 253,600 2.38% 7.11% 5.71% 30.27% 56.91%

MC P1 246,100 2.54% 3.41% 2.61% 30.81% 63.17%

MC P2 269,600 2.70% 3.30% 1.64% 23.59% 71.47%

MC T1 821,400 2.73% 1.68% 0.84% 1.68% 95.80%

MC T2 323,800 1.79 % 51.81 % 11.63 % 22.07 % 14.49 %

IO FS 229,900 0.16 % 33.32 % 16.66 % 33.35 % 16.67 %

IO BS 196,100 0.14 % 18.31 % 18.28 % 39.00 % 24.41 %

IO P1 201,000 0.15 % 25.29 % 18.55 % 35.22 % 20.94 %

IO P2 191,800 0.16 % 22.32 % 18.20 % 33.23 % 26.25 %

IO T1 512,100 0.18 % 34.95 % 8.69 % 8.55 % 47.81 %

IO T2 373,200 0.16 % 56.22 % 12.51 % 18.85 % 12.41 %

quality of the solution. This table also illustrates the lower number of calls made
to crossover type operators when the [IO] acceptance criteria is used, reflecting
the reduced effectiveness of these operators in this situation. In contrast, the
time weighted selector [T1] almost exclusively uses the crossover operator with
both the Näıve Acceptance [NA] and Exponential Monte Carlo [MC] acceptance
criteria. With [NA], the resulting solutions are among the best, while with [MC]
they are among the worst. This can be explained by the difference in the diversity
of the population of solutions, as reflected in the relative operator call success
rates. However other factors such as parameter values and the number of early
terminations (42 % during 300 s time limit) due to best found solutions no longer
improving, may also influence the difference in overall solution quality.

6 Conclusions

When comparing the results in Tables 1, 2 and 3 we deduce the following about
the operator selection vector and acceptance criteria pairings.
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1. Generally perform well:
(a) Time Weighted Phase Selectors [T1] and [T2] with the Näıve Acceptance

[NA] criterion.
(b) Time Weighted Phase Selector (1) [T1] with Simulated Annealing [SA]

acceptance criterion.
2. Generally perform poorly: Any operator selection vector with:

(a) The Exponential Monte Carlo acceptance criterion [MC].
(b) The Improving or Equal Only acceptance criterion [IO].

Correctly setting the early termination criteria means the hyper-heuristic can
determine the correct computational time even though it has no knowledge of
the problem instance size or features. We propose to undertake further work on
this feature.

In future research we shall examine whether the relative performance of the
operator selection vector and acceptance criterion pairings is consistent across
problem instances of differing sizes. We shall also evaluate the merits of enabling
the adaptive hyper-heuristic to change the pairing of operator selection vector
and acceptance criteria during an interim phase update.
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