Evolving Deep Recurrent Neural Networks
Using Ant Colony Optimization

Travis Desell' ™), Sophine Clachar', James Higgins?, and Brandon Wild?

! Department of Computer Science, University of North Dakota, Grand Forks, USA
tdesell@cs.und.edu, sophine.clachar@my.und.edu
2 Department of Aviation, University of North Dakota, Grand Forks, USA
{jhiggins,bwild}@aero.und.edu

Abstract. This paper presents a novel strategy for using ant colony
optimization (ACO) to evolve the structure of deep recurrent neural
networks. While versions of ACO for continuous parameter optimization
have been previously used to train the weights of neural networks, to the
authors’ knowledge they have not been used to actually design neural
networks. The strategy presented is used to evolve deep neural networks
with up to 5 hidden and 5 recurrent layers for the challenging task of
predicting general aviation flight data, and is shown to provide improve-
ments of 63 % for airspeed, a 97 % for altitude and 120 % for pitch over
previously best published results, while at the same time not requiring
additional input neurons for residual values. The strategy presented also
has many benefits for neuro evolution, including the fact that it is easily
parallizable and scalable, and can operate using any method for training
neural networks. Further, the networks it evolves can typically be trained
in fewer iterations than fully connected networks.

Keywords: Ant colony optimization + Time-series prediction - Neural
networks - Flight prediction - Aviation informatics

1 Introduction

Neural networks have been widely used for time series data prediction [11,43].
Unfortunately, current popular techniques for designing and training neural net-
works such as convolutional and deep learning strategies, popular within com-
puter vision, do not easily apply to time series prediction. This is in part because
the number of input parameters is relatively small (compared to pixels within
images), the fact they do not easily deal with recurrent memory neurons, and
the goal is prediction, as opposed to classification. Even more problematic, these
strategies do not help address the rather challenging problem of determining the
best performing structure for those neural networks. Automated strategies for
simultaneously evolving the structure and weights of neural networks have been
examined through strategies such as NeuroEvolution of Augmenting Topologies
(NEAT) [37] and Hyper-NEAT [38], and while these can evolve recurrent con-
nections, they require non-trivial modification to evolve the recurrent memory
nureons typically used for time series prediction.

© Springer International Publishing Switzerland 2015
G. Ochoa and F. Chicano (Eds.): EvoCOP 2015, LNCS 9026, pp. 86-98, 2015.
DOI: 10.1007/978-3-319-16468-7_8

Evolving Deep Recurrent Neural Networks Using Ant Colony Optimization 87

Recent work in using neural networks for time series prediction has involved
utilizing residuals or lags similar to the Auto-Regressive Integrated Moving Aver-
age (ARIMA) model [42], as done by Khashei et al. [23] and Omer et al. [30].
Other work has investigated strategies for cooperative co-evolution for Elman
recurrent neural networks [9,10], however these strategies involve single parame-
ter time series data such as the Mackey-Glass, Lorenz and Sunspot data sets.

Ant colony optimization (ACO) [6,17,19] is an optimization technique orig-
inally designed for use on discrete problems, with a common example being the
Traveling Salesman Problem [18]. It has since been extended for use in continuous
optimization problems [5,20,27,34-36], including training artificial neural net-
works [3,7,24,31,40]. While ACO has been studied for training artificial neural
networks (ANNs), to the authors’ knowledge there is little work in using ACO
to actually design neural networks, with the closest being Sivagaminathan et al.
using ACO to select input features for neural networks [33].

This work presents a novel strategy based on ant colony optimization which
evolves the structure of recurrent deep neural networks with multiple input data
parameters. While ant colony optimization is used to evolve the network struc-
ture, any number of optimization techniques can be used to optimize the weights
of those neural networks. Trained neural networks with good fitness will be used
to update the pheromones, reinforcing connections between neurons that pro-
vide good solutions. The algorithm is easily parallelizable and scalable, using a
steady state population of best performing neural networks to determine when
pheromones are incremented, and any number of worker processes can asynchro-
nously train neural networks generated by the ant colony optimization strategy.

This algorithm is evaluated using the real world problem of predicting general
aviation flight data, and compared to previously best published results for a set
of testing data. For three of the four parameters evaluated (airspeed, altitude,
and pitch), this approach improves significantly on previously published results,
while at the same time not requiring additional input nodes for ARIMA residuals.
For the fourth parameter, roll, the strategy performs worse, however this may
be due to the fact that the neural networks were not trained for long enough.
The authors feel that the results provide a strong case for the use of ant colony
optimization in the design of neural networks, given its ability to find novel and
effective neural network topologies that can be easily trained (apart from the
roll parameter which requires further study).

2 Predicting General Aviation Flight Data

General aviation comprises 63 % of all civil aviation activity in the United States;
covering operation of all non-scheduled and non-military aircraft [21,32]. While
general aviation is a valuable and lucrative industry, it has the highest accident
rates within civil aviation [29]. For many years, the general aviation accident and
fatality rates have hovered around 7 and 1.3 per 100,000 flight hours, respec-
tively [1]. The general aviation community and its aircraft are very diverse,
limiting the utility of the traditional flight data monitoring (FDM) approach
used by commercial airlines.

88 T. Desell et al.

The National General Aviation Flight Information Database (NGAFID) has
been developed at the University of North Dakota as a central repository for
general aviation flight data. It consists of per-second flight data recorder (FDR)
data from three fleets of aircraft. As of November 2014, the database stores FDR
readings from over 200,000 flights, with more being added daily. It currently
stores over 750 million per-second records of flight data. The NGAFID provides
an invaluable source of information about general aviation flights, as most of
these flights are from aviation students, where there is a wider variance in flight
parameters than what may normally be expected within data from professionally
piloted flights.

Having algorithms which can accurately predict FDR parameters would be
able to not only warn pilots of problematic flight behavior, but also be used
to predict impending failures of engines and other hardware. As such, investi-
gating predictive strategies such as these has the potential to reduce costs for
maintaining general aviation fleets, and more importantly save lives.

3 Previous Results

In previous work, the authors evaluated a suite of feed forward, Jordan and
Elman recurrent neural networks to predict flight parameters [14]. This work was
novel in that to our knowledge, neural networks have not been previously applied
to predicting general aviation flight data. These results were encouraging in that
some parameters such as altitude and airspeed can be predicted with high accu-
racy, at 0.22-0.62 % for airspeed, 0.026-0.08 % for airspeed, 0.88-1.49 % for pitch
and 0.5-2 % for roll. These neural networks were trained using backpropagation
via stochastic gradient descent, gradient descent from a baseline predictor (which
mimicked how deep neural networks are currently trained by pre-training each
layer to predict its input), and with asychronous differential evolution (ADE).
ADE was shown to significantly outperform both types of backpropagation, pro-
vided solutions with up to 70 % improvement. It was also shown that while ADE
outperformed backpropagation, it still had trouble training the larger fully con-
nected Jordan and Elman recurrent neural networks (which provided the best
predictions), motivating further study.

4 Methodology

The ACO based strategy works as follows. Given a potentially fully connected
recurrent neural network — where each node has a potential connection to every
node in the subsequent layer and to a respective node in the recurrent layer —
each connection between neurons can be seen as a potential path for an ant
(see Fig.1). Every potential connection is initialized with a base amount of
pheromone, and the master process stores the amount of pheromone on each
connection. Worker processes receive neural network designs generated by taking
a selected number of ants, and having them choose a path through the fully con-
nected neural network biased by the amount of pheromone on each connection.

Evolving Deep Recurrent Neural Networks Using Ant Colony Optimization 89

o a é} O InputLayer

Recurrent Layers i

Hidden Layers

|

(0] Output Node

Fig.1. Ants select a forward propa-
gating path through neurons randomly
based on the pheromone on each path,
assuming a fully connected strategy
between the input, hidden and output
layers; and a potential connection from
each hidden node to a respective node
in the recurrent layer that is fully con-

Ant1 Ant2 Ant3
[eJeJole] OOCX? ?OOO
O00O0 0QO0O o000 Oy 0000 000
ejoxejeele) 0000 O00 O0O60O0 0000

Dooo\ﬁi o@o 0000 \ooo

Ant4
[eJo}ele]

OOC(?/Q%(ZO
oood O [¢]
0000 000

o

Fig. 2. The server creates neural net-
works for the workers to evaluate by
combining the paths selected by a given
number of ants. This generates vari-
ous Elmann-like neural networks which
have less training complexity than a
fully connected Elman design.

nected back to its hidden layer.

Multiple ants can choose the connections between neurons. Those ant paths
are be combined to construct a neural network design which is sent to worker
processes and trained on the input flights using backpropagation, evolutionary
algorithms or any other neural network training algorithm. The master process
maintains a population of the best neural network designs, and when a worker
reports the accuracy of a newly trained neural network, if it improves the popu-
lation, the master process will increase the pheromone on every connection that
was in that neural network. The master process periodically degrades pheromone
levels, as is done in the standard ACO algorithm. This strategy allows the evolu-
tion of recurrent neural networks with potentially many hidden layers and hidden
nodes, to determine what design can best predict flight parameters (Fig. 2).

5 Results

5.1 Optimization Software, Data and Reproducibility

Given the complexity of examining complex neural networks over per-second
flight data, a package requiring easy use of high performance computing resources
was required. While there exist some standardized evolutionary algorithms pack-
ages [2,8,25,41], as well as those found in the R programming language [4,28]
and MATLAB [26], they do not easily lend themselves towards use in high per-
formance computing environments.

This work utilizes the Toolkit for Asynchronous Optimization (TAO), which
is used by the MilkyWay@Home volunteer computing to perform massively
distributed evolutionary algorithms on tens of thousands of volunteered hosts
[12,15,16]. It is implemented in C++ and MPI, allowing easy use on clusters and

90 T. Desell et al.

supercomputers, and also provides support for systems with multiple graph-
ical processing units. Further, TAO has shown that performing evolutionary
algorithms asynchronously can provide significant improvements to performance
and scalability over iterative approaches [13,39]. TAO is open source and freely
available on GitHub, allowing easy use and extensibility!, and the presented
ACO strategy has been included in that repository. The flight data used in this
work has also been made available online for reproducibility and use by other
researchers?.

5.2 Runtime Environment

All results were gathered using a Beowulf HPC cluster with 32 dual quad-core
compute nodes (for a total of 256 processing cores). Each compute node has
64 GBs of 1600 MHz RAM, two mirrored RAID 146 GB 15K RPM SAS drives,
two quad-core E5-2643 Intel processors which operate at 3.3 Ghz, and run the
Red Hat Enterprise Linux (RHEL) 6.2 operating system. All 32 nodes within
the cluster are linked by a private 56 gigabit (Gb) InfiniBand (IB) FDR 1-to-1
network. The code was compiled and run using MVAPICH2-x [22], to allow
highly optimized use of this network infrastructure.

5.3 Data Cleansing

The flight data required some cleaning for use, as it is stored as raw data from
the flight data recorders uploaded to the NGAFID server and entered in the
database as per second data. When a FDR turns on, some of the sensors are
still calibrating or not immediately online, so the first minute of flight data can
have missing and erroneous values. These initial recordings were removed from
the data the neural networks were trained on. Further, the parameters had wide
ranges and different units, e.g., pitch and roll were in degrees, altitude was in
meters and airspeed was in knots. These were all normalized to values between
0 and 1 for altitude and airspeed, and —0.5 and 0.5 for pitch and roll.

5.4 Experiments

As backpropagation was shown to not be sufficient to train these recurrent neural
networks, particle swarm optimization (PSO) was used to train the neural net-
works generated by ACO. Previous work has shown both particle swarm and
differential evolution as being equally effective in training these networks. PSO
used a population of 200, inertia weight of 0.75, and global and local best weights
of 1.5 for all runs. PSO was allowed to train the neural networks for 250, 500
and 1000 iterations.

The ACO strategy was used to train networks with 3, 4, and 5 hidden layers
(with a similar number of recurrent layers), using 4 and 8 nodes per layer and

! https://github.com/travisdesell /tao.
2 http://people.cs.und.edu/~tdesell /ngafid_releases.php.

https://github.com/travisdesell/tao
http://people.cs.und.edu/~tdesell/ngafid_releases.php

Evolving Deep Recurrent Neural Networks Using Ant Colony Optimization 91

pheromone degradation rates of 10 %, 5% and 1%. The number of ants used
was equal to twice the number of nodes per layer (8 for 4 nodes per layer, and
16 for 8 nodes per layer). Each combination of settings was run 5 times for each
of altitude, airspeed, pitch and roll, for a total of 1080 runs.

Each run was done allocating 64 processes across 8 nodes, and was allowed
to train for 1000 evaluations of generated neural networks. Runs with 250 PSO
iterations took around 30min, 500 PSO iterations took around 1h, and 1000
PSO iterations took around 2h.

All runs were done on flight ID 13588 from the NGAFID data release. The
neural networks were trained for individual output parameters, as tests have
shown that trying to train for multiple output parameters simultaneously per-
forms very poorly, with neither backpropagation or evolutionary strategies being
able to find effective weights.

5.5 ACO Parameter Setting Analysis

Figure 3 presents the results of the parameter sweep. In general, there was a
strong correlation between increased PSO iterations and the best fitnesses found.
Across all runs, 4 nodes per layer performed the best, and apart from altitude,
5 hidden layers performed the best. There did not appear to be a strong trend
for the pheromone degradation rate.

5.6 Best Found Neural Networks

Figure 4 displays the best recurrent neural networks evolved by the ACO strat-
egy. For airspeed, pitch and roll, the best networks were the deepest — with
5 hidden and recurrent layers (although all nodes were not used). They also
displayed interesting recurrent topologies, significantly different than the stan-
dard Jordan and Elman recurrent neural networks found in literature. The best
evolved neural network for altitude was also interesting in that it completely
ignored roll as an input parameter. The evolved networks also show some slight
similarity to sparse autoencoders, with some of the middle layers being con-
strained to less nodes and connections.

5.7 Comparison to Prior Results

The performance of the best evolved neural networks was compared to the pre-
viously best published results for flight ID 13588, which were an Elman network
with 2 input lags and 1 hidden layer for airspeed; a Jordan recurrent neural
network with 2 input lags and 0 hidden layers for altitude; an Elman network
with 1 set put input lags and 1 hidden layer for pitch; and an Elman network
with 2 input lags and 1 hidden layer for roll. In addition, results for a random
noise estimator (RNE), which uses the previous value as the prediction for the
next value, prediction(t;+1) = t;, were given as a baseline comparison, as it rep-
resents the best predictive power that can be achieved for random time series
data. If the neural networks did not improve on this, then the results would

92 T. Desell et al.

g ACO Airspeed Estimation - Flight 13588
i
2 000295 fitness range 1
S 0.0029 average _+
o + + “
< 0.00285
g 0.0028
3 X
> 0.00275 L 1 L L 1 L L 1 L L 1
i < < = = = <1 z z 4 z z
£ g g g g g g = £ =2 2 =
g 5
g ACO Altitude Estimation - Flight 13588
5
2 0.00045 ! fitness range 1
S 0.0004 |- average _+
£ 0.00035 |-
£ 0.0003 |-
g "
0.00025 |- & + i
s ool = B A d B E 3L
g] B] k] =] z z z z z
£ g g g g g g £ £ = 2 =
= B g 3 3 % ® - *» » = 0=
g 5
g ACO Pitch Estimation - Flight 13588
E
e ggggﬁ [! ! ! ! fitness range £
ERY [average _+
Z 000610 | . . .
< 0.00()09[: + + +
§ 0.00608
0.00607
gm‘ 0.00606 (- L I L 1 L L 1 L L L
14 = =" - = = = z 4 z z z
£ ¢ 2 2 £ § £ E & E f &
g K

ACO Roll Estimation - Flight 13588

T T T T T -
. T . u fitness range [
average +

0.01572

*
+

o
o558
g
T T

Fitness (Mean Absolute Error)
(=]
=
%
N
=)

0STOSd —
00S OSd
0001 OSd
%01 4dd
%S AAd —
%1¥Ad
€THN |-
+THN |~
SIHN |-
1N
8T1dN —

Fig. 3. Minimum, maximum and average fitness (mean average error) given the dif-
ferent ACO input parameters. Fitness values were averaged over each run with the
parameter specified in the x-axis. Lower fitness is better. PSO is the number of PSO
iterations, PDR is the pheromone degradation rate, NHL is the number of hidden
layers, and NPL is the number of nodes per layer.

have been meaningless and potentially indicate that the data is too noisy (given
weather and other conditions) for prediction (Fig.5).

Additionally, the RNE provides a good baseline in that it is easy for neural
networks to represent the RNE: all weights can be set to 0, except for a single
path from the path from the corresponding input node to the output node having
weights of 1. Because of this, it also provides a good test of the correctness of
the global optimization techniques, at the very least they should be able to train
a network as effective as a RNE; however local optimization techniques (such as
backpropagation) may not reach this if the search area is non-convex and the
initial starting point does not lead to a good minimum.

Evolving Deep Recurrent Neural Networks Using Ant Colony Optimization 93

Best Airspeed NN: Best Altitude NN: i .

1000 PSO Iterations \ 1000 PSO Iterations [N\

3 Hidden Layers 3 Hidden Layers (‘ \

4 Nodes Per Layer 4 Nodes Per Layer

8 Ants }

1% Pheromone Degradation \ I}
|

8 Ants ‘

1% Pheromone Degradation

2N

7
[-0——@

Best Pitch NN:
1000 PSO Iterations

|
||
N
;

|

z

/)
A
g
AN,

Best Pitch NN:
1000 PSO Iterations \
3 Hidden Layers 3 Hidden Layers
4 Nodes Per Layer 4 Nodes Per Layer
8 Ants i 8 Ants
1% Pheromone Degradation \ [1% Pheromone Degradation k
U
o— —) —) — { —
'%K .
o— @ f—e
/ \ /
O — o - . —— >< >:.

Fig. 4. The best found evolved neural networks across the 1080 runs performed. Input
neurons are in blue, recurrent neurons are in pink, hidden neurons are in green, and
the output neuron is in purple.

Figure 6 compares the best ACO results to the RNE and the previous best
trained neural network for flight ID 13588. Results are the Mean Average Error
(MAE) of the prediction to the actual value. As results were normalized over
a range of 1, the MAE is also the percentage error. These neural networks and
the RNE were also run on four other flights, IDs 15438, 17269, 175755 and
24335 from the NGAFID data release. On average compared to previous best
results, the ACO evolved neural networks provided a 63 % improvement over
airspeed, a 97 % improvement over altitude and a 120 % improvement over pitch,
without requiring additional input neurons for lag values. Given the fact that
these neural networks also performed strongly on all test flights, these results
are quite encouraging.

However, as in previous work, the roll parameter remains quite difficult to
predict, and the ACO evolved neural networks actually resulted in a 14.5%
decrease in prediction accuracy, performing worse than the RNE. Given the
depth and complexity of the evolved neural networks, there is justifiable concern
for over training, which may be the case for this evolved network. Another rea-
son for the poor performance of the ACO evolved neural networks may be due
to the limited amount of training for each generated neural network. Previous
results had the neural networks be trained for 15,000,000 objective function eval-
uations, while the best performing ACO evolved neural networks were trained
with a maximum of 200,000 objective function evaluations (1000 iterations with
population size 200). Given the strong correlation between increased PSO iter-
ations and best fitness found for roll, it is also possible that the neural networks
were not trained long enough for the roll parameter. Lastly, it could be that even
though the input lag nodes were not required for the other parameters, they may
be required for roll, or stand to provide even further prediction improvements.
A further study of this stands for future work.

94 T. Desell et al.

MSL Altitude Estimation

0.5 Predicted MSL Altitude
0.45 ! Actual MSL Altitude

Normalized MSL Altitude
=
W
W

0 1000 2000 3000 4000 5000 6000

Timestep
Airspeed Estimation

0.7

0.6 A ‘: ol o Predicted Airspeed
0.5
0.4 \
03 ‘ \
0.2

0.1

Bl il 1o Actual Airspeed

f !
f \

Normalized Airspeed

-0.1 !
0 1000 2000 3000 4000 5000 6000

Timestep
Pitch Estimation

0.3 T

0.2 ’ Predicted Pitch Attitude
: fih | N Actual Pitch Altitude
0.1 L | il

) | | i ["
) W IV | o

I I Y
al | W 1

A b
AN s

-0.1 /
-0.2
-0.3
-0.4 !
0 1000 2000 3000 4000 5000 6000

Timestep
Roll Estimation

Normalized Pitch

0.8

0.6 Predicted Roll Attitude
: Actual Roll Attitude

0.4 | | | I

LTS \ | |

0.2 | il |

0 j*‘«w.{.‘mumt“\“’*‘] ‘-{,\‘,\xm\l;.\y*\"h\‘awiv‘f“Nnir‘,ﬂm"‘ﬂ'r/‘.‘v‘;M Wil
02 | AR (1
04 A i W
0.6 ‘ :
0 1000 2000 3000 4000 5000 6000

Timestep

Normalized Roll

Fig. 5. The best neural networks trained on Flight #13588 were used to predict the
parameters of Flight #17269. The actual values are in green and the predictions are in
red. Altitude and airspeed were predicted with very high accuracy, however pitch and
roll are more challenging. Time steps are in seconds, and parameters are normalized
over a range of 1. Predicted and actual airspeed are indistinguishable at the scale of
the figure and completely overlap.

Evolving Deep Recurrent Neural Networks Using Ant Colony Optimization 95
Airspeed
Method [13588 15438 17269 [175755 [24335
tit1 = t;[0.00512158 [0.00316859 [0.00675531 [0.00508229 [0.00575537
Prior Best[0.00472131 [0.00250284 |0.00656991 [0.00465581 [0.00495454
Best AC0O|0.00279963 0.00145748 [0.00433578 [0.0028908 |0.00305361
Altitude
Method 13588 15438 17269 175755 24335
tit1 = t;[0.00138854 [0.00107117]0.00200011 [0.00137109 [0.00192345
Prior Best|0.000367535 [0.000305193 |0.000895711 [0.000399587 [0.000485329
Best ACO|0.0002183 [0.000160932 [0.000353502 [0.000224827 |0.000249197
Pitch
Method [13588 [15438 [17269 175755 24335
tiy1 = t;[0.0153181 [0.010955]0.0148046 [0.0161251 [0.0173269
Prior Best[0.014918 [0.0100763 [0.0147712 [0.01514 0.0160249
Best ACO[0.00606664 [0.00498241 |0.00837594 [0.005864 [0.00733882
Roll
Method [13588 [15438 [17269 175755 24335
tip1 = t; [0.0158853 [0.00604479]0.0204441 [0.012877 [0.0192648
Prior Best[0.0154541 [0.00587058 [0.0206536 [0.0127999 |0.0182611
Best ACO[0.0155934 [0.00900393]0.0237235 [0.0151416 [0.0200261

Fig. 6. Comparison of the best found ACO evolved neural networks to the random
noise estimator (t;+1 = ;) and the previously published best found results. The mean
average error for the neural networks trained on flight ID 13588 is given when they are
tested on four other flights.

6 Conclusions and Future Work

This paper presents and analyzes a novel strategy for using ant colony opti-
mization for evolving the structure of recurrent neural networks. The strategy
presented is used to evolve deep neural networks with up to 5 hidden and 5 recur-
rent layers for the challenging task of predicting general aviation flight data, and
is shown to provide improvements of 63 % for airspeed, a 97 % for altitude and
120 % for pitch over previously best published results, while at the same time not
requiring additional input neurons for residual values. Finding good predictions
for the roll parameter still remains challenging and an area of future study.
Further, this work opens up interesting opportunites in applying ant colony
optimization to neuro evolution. In particular, the authors feel that the app-
roach could be extended to evolve neural networks for computer vision, by allow-
ing ants to also select what type of activation function each neuron has (e.g.,
ReLU, or max pooling). It may also be possible to utilize this strategy to further
improve convolutional layers in neural networks. Additionally, this work only
tested neural networks with a recurrent depth of one, where each recurrent node
is immediately fed back into the neural network in the next iteration. It may be
possible to use this strategy to generate neural networks with deeper memory,

96 T. Desell et al.

where recurrent nodes can potentially feed back into a deeper layer of recurrent
nodes, and so on.

Finally, the National General Aviation Flight Database (NGAFID) provides
an excellent data source for researching evolutionary algorithms, machine learn-
ing and data mining. Further analysis of these flights along with more advanced
prediction methods will enable more advanced flight sensors, which could pre-
vent accidents and save lives; which is especially important in the field of general
aviation as it is has the highest accident rates within civil aviation [29]. As many
of these flights also contain per-second data of various engine parameters, using
similar predictive methods it may become possible to detect engine and other
hardware failures, aiding in the maintenance process. This work presents a fur-
ther step towards making general aviation safer through machine learning and
evolutionary algorithms.

References

1. Aircraft Owners and Pilots Association (AOPA), January 2014

2. Arenas, M., Collet, P., Eiben, A.E., Jelasity, M., Merelo, J.J., Paechter, B.,
Preufl, M., Schoenauer, M.: A framework for distributed evolutionary algorithms.
In: Guervés, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernandez-Villacanas, J.-L.,
Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 665-675. Springer,
Heidelberg (2002)

3. Ashena, R., Moghadasi, J.: Bottom hole pressure estimation using evolved neural
networks by real coded ant colony optimization and genetic algorithm. J. Petrol.
Sci. Eng. 77(3), 375-385 (2011)

4. Bartz-Beielstein, T.: SPOT: an R package for automatic and interactive tuning
of optimization algorithms by sequential parameter optimization. arXiv preprint
arXiv:1006.4645 (2010)

5. Bilchev, G., Parmee, I.C.: The ant colony metaphor for searching continuous design
spaces. In: Fogarty, T.C. (ed.) AISB-WS 1995. LNCS, vol. 993, pp. 25-39. Springer,
Heidelberg (1995)

6. Blum, C., Li, X.: Swarm intelligence in optimization. In: Blum, C., Merkle, D.
(eds.) Swarm Intelligence, pp. 43-85. Springer, Heidelberg (2008)

7. Blum, C., Socha, K.: Training feed-forward neural networks with ant colony opti-
mization: an application to pattern classification. In: Fifth International Conference
on Hybrid Intelligent Systems, 2005, HIS 2005, p. 6. IEEE (2005)

8. Cahon, S., Melab, N., Talbi, E.-G.: Paradiseo: a framework for the reusable design
of parallel and distributed metaheuristics. J. Heuristics 10(3), 357380 (2004)

9. Chandra, R.: Competitive two-island cooperative coevolution for training elman
recurrent networks for time series prediction. In: 2014 International Joint Confer-
ence on Neural Networks (IJCNN), pp. 565-572, July 2014

10. Chandra, R., Zhang, M.: Cooperative coevolution of elman recurrent neural net-
works for chaotic time series prediction. Neurocomputing 86, 116-123 (2012)

11. Crone, S.F., Hibon, M., Nikolopoulos, K.: Advances in forecasting with neural
networks? Empirical evidence from the NN3 competition on time series prediction.
Int. J. Forecast. 27(3), 635-660 (2011)

12. Desell, T.: Asynchronous Global Optimization for Massive Scale Computing. Ph.D.
thesis, Rensselaer Polytechnic Institute (2009)

http://arxiv.org/abs/1006.4645arXiv:1006.4645

Evolving Deep Recurrent Neural Networks Using Ant Colony Optimization 97

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.
30.

Desell, T., Anderson, D., Magdon-Ismail, M., Heidi Newberg, B.S., Varela, C.:
An analysis of massively distributed evolutionary algorithms. In: The 2010 IEEE
Congress on Evolutionary Computation (IEEE CEC 2010), Barcelona, Spain. July
2010

Desell, T., Clachar, S., Higgins, J., Wild, B.: Evolving neural network weights
for time-series prediction of general aviation flight data. In: Bartz-Beielstein, T.,
Branke, J., Filipi¢, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 771-781.
Springer, Heidelberg (2014)

Desell, T., Szymanski, B., Varela, C.: Asynchronous genetic search for scientific
modeling on large-scale heterogeneous environments. In: 17th International Het-
erogeneity in Computing Workshop, Miami, Florida, April 2008

Desell, T., Varela, C., Szymanski, B.: An asynchronous hybrid genetic-simplex
search for modeling the Milky Way galaxy using volunteer computing. In: Genetic
and Evolutionary Computation Conference (GECCO), Atlanta, Georgia, July 2008
Dorigo, M., Birattari, M.: Ant colony optimization. In: Sammut, C., Webb, G.I.
(eds.) Encyclopedia of Machine Learning, pp. 36-39. Springer, Boston (2010)
Dorigo, M., Gambardella, L.M.: Ant colonies for the travelling salesman problem.
BioSystems 43(2), 73-81 (1997)

Dorigo, M., Stiitzle, T.: Ant colony optimization: overview and recent advances.
In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics, pp. 227-263.
Springer, Boston (2010)

Dréo, J., Siarry, P.: A new ant colony algorithm using the heterarchical con-
cept aimed at optimization of multiminima continuous functions. In: Dorigo, M.,
Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463,
pp. 216-221. Springer, Heidelberg (2002)

Elias, B.: Securing General Aviation. DIANE Publishing, Darby (2009)

Huang, W., Santhanaraman, G., Jin, H.-W., Gao, Q., Panda, D.K.: Design of high
performance MVAPICH2: MPI2 over InfiniBand. In: Sixth IEEE International
Symposium on Cluster Computing and the Grid, 2006, CCGRID 2006, vol. 1, pp.
43-48. IEEE (2006)

Khashei, M., Bijari, M.: A novel hybridization of artificial neural networks and
arima models for time series forecasting. Appl. Soft Comput. 11(2), 26642675
(2011)

Li, J.-B., Chung, Y.-K.: A novel back-propagation neural network training algo-
rithm designed by an ant colony optimization. In: Transmission and Distribu-
tion Conference and Exhibition: Asia and Pacific, 2005 IEEE/PES, pp. 1-5. IEEE
(2005)

Lukasiewycz, M., Gla8}, M., Reimann, F., Teich, J. Opt4j: a modular framework
for meta-heuristic optimization. In: Proceedings of the 13th Annual Conference
on Genetic and Evolutionary Computation, GECCO 2011, pp. 1723-1730. ACM,
New York (2011)

MathWorks. Global optimization toolbox. Accessed March 2013

Monmarché, N.; Venturini, G., Slimane, M.: On how pachycondyla apicalis ants
suggest a new search algorithm. Future Gener. Comput. Syst. 16(8), 937-946
(2000)

Mullen, K., Ardia, D., Gil, D., Windover, D., Cline, J.: Deoptim: an R package for
global optimization by differential evolution. J. Stat. Softw. 40(6), 1-26 (2011)
National Transportation Safety Board (NTSB) (2012)

Omer Faruk, D.: A hybrid neural network and arima model for water quality time
series prediction. Eng. Appl. Artif. Intell. 23(4), 586594 (2010)

98

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

T. Desell et al.

Pandian, A.: Training neural networks with ant colony optimization. Ph.D. thesis,
California State University, Sacramento (2013)

Shetty, K.I.: Current and historical trends in general aviation in the United States.
Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
(2012)

Sivagaminathan, R.K., Ramakrishnan, S.: A hybrid approach for feature subset
selection using neural networks and ant colony optimization. Expert Syst. Appl.
33(1), 49-60 (2007)

Socha, K.: ACO for continuous and mixed-variable optimization. In: Dorigo, M.,
Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stiitzle, T. (eds.) ANTS
2004. LNCS, vol. 3172, pp. 25-36. Springer, Heidelberg (2004)

Socha, K.: Ant Colony Optimisation for Continuous and Mixed-Variable Domains.
VDM Publishing, Saarbriicken (2009)

Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Eur.
J. Oper. Res. 185(3), 1155-1173 (2008)

Stanley, K., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evol. Comput. 10(2), 99-127 (2002)

Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolv-
ing large-scale neural networks. Artif. life 15(2), 185-212 (2009)

Szymanski, B.K., Desell, T., Varela, C.A.: The effects of heterogeneity on asynchro-
nous panmictic genetic search. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 457-468. Springer,
Heidelberg (2008)

Unal, M., Onat, M., Bal, A.: Cellular neural network training by ant colony opti-
mization algorithm. In: 2010 IEEE 18th Signal Processing and Communications
Applications Conference (SIU), pp. 471-474. IEEE (2010)

Ventura, S., Romero, C., Zafra, A., Delgado, J.A., Hervas, C.: JCLEC: a java
framework for evolutionary computation. Soft Comput. Fusion Found. Methodol.
Appl. 12(4), 381-392 (2008)

Wei, W.W.-S.: Time Series Analysis. Addison-Wesley, Redwood City (1994)
Zhang, G.P.: Neural networks for time-series forecasting. In: Armstrong, J.S. (ed.)
Handbook of Natural Computing, pp. 461-477. Springer, Boston (2012)

	Evolving Deep Recurrent Neural Networks Using Ant Colony Optimization
	1 Introduction
	2 Predicting General Aviation Flight Data
	3 Previous Results
	4 Methodology
	5 Results
	5.1 Optimization Software, Data and Reproducibility
	5.2 Runtime Environment
	5.3 Data Cleansing
	5.4 Experiments
	5.5 ACO Parameter Setting Analysis
	5.6 Best Found Neural Networks
	5.7 Comparison to Prior Results

	6 Conclusions and Future Work
	References

