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Abstract. In this work we consider the generalized vehicle routing prob-
lem with stochastic demands (GVRPSD) being a combination of the
generalized vehicle routing problem, in which the nodes are partitioned
into clusters, and the vehicle routing problem with stochastic demands,
where the exact demands of the nodes are not known beforehand. It
is an NP-hard problem for which we propose a variable neighborhood
search (VNS) approach to minimize the expected tour length through
all clusters. We use a permutation encoding for the cluster sequence and
consider the preventive restocking strategy where the vehicle restocks
before it potentially runs out of goods. The exact solution evaluation is
based on dynamic programming and is very time-consuming. Therefore
we propose a multi-level evaluation scheme to significantly reduce the
time needed for solution evaluations. Two different algorithms for find-
ing an initial solution and three well-known neighborhood structures for
permutations are used within the VNS. Results show that the multi-level
evaluation scheme is able to drastically reduce the overall run-time of the
algorithm and that it is essential to be able to tackle larger instances. A
comparison to an exact approach shows that the VNS is able to find an
optimal or near-optimal solution in much shorter time.

Keywords: Generalized vehicle routing problem · Stochastic vehicle
routing problem · Variable neighborhood search · Stochastic optimiza-
tion

1 Introduction

The generalized vehicle routing problem with stochastic demands (GVRPSD)
combines the vehicle routing problem with stochastic demands (VRPSD) with
the generalized vehicle routing problem (GVRP) and is a stochastic combinato-
rial optimization problem.

In the GVRPSD we are given a weighted complete undirected graph G =
(V,E) with a set of nodes V and a set of edges E. The edges (i, l) ∈ E are
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weighted with distances dil ≥ 0. The set of nodes is partitioned into m disjoint
subsets or clusters C = {C0, C1, . . . , Cm}, C0, . . . , Cm ⊆ V, such that C0 ∪ C1 ∪
· · · ∪ Cm = V . Node v0 ∈ V is a dedicated depot and the only node of cluster
C0. Each other cluster Cj ,∀j = 1, . . . , m has an associated demand ξj which is
a random variable following a known discrete probability distribution, i.e., we
know for each cluster Cj the probability pjk = P (ξj = k) that cluster j has a
demand of k ≥ 0. Furthermore, we are given a vehicle with a limited capacity
Q. For avoiding the necessity of multiple visits we assume that pjk = 0, ∀j =
1, . . . ,m, ∀k > Q. The aim is to find a route visiting exactly one node from
each cluster C1, . . . , Cm exactly once and thereby distributing goods according
to the clusters’ actual demands. The current load of the vehicle decreases each
time a cluster demand is satisfied but is refilled to Q each time it returns to the
depot. The amount of how much the load gets decreased by visiting cluster j
is dependent on the actual realization of ξj , which becomes known only upon
arrival. Possibly, the vehicle will get empty, i.e., the current load becomes zero
and the vehicle has to restock at the depot before continuing the route. Such
an event is called a stockout. A common approach for solving such stochastic
optimization problems is the use of a-priori routes, which has already been used
for several probabilistic problems [3,4,13]. A-priori tours are planned before the
actual realizations of the random variables are known but taking their probability
distributions into account. The aim of the problem is to minimize the expected
length of the tour under all possible a-posteriori tours.

In the literature there are several restocking strategies described for the
VRPSD which can be adapted to the GVRPSD as well. The by far most common
is the standard restocking policy [7,12,15,20] where on each stockout the vehicle
returns to the depot, refills its load, and continues its tour at the last visited
node. Another method for handling stockouts is re-optimization [22]: whenever
a stockout occurs the vehicle returns to the depot and then the tour through
the remaining clusters is re-planned. Apart from the re-optimization approach,
which can be problematic when implemented in practical applications, the pre-
ventive restocking policy [4,16,17,24] is the most cost efficient.

In the preventive restocking method return trips to the depot can also be
performed before an actual stockout occurs. It originates from the observation
that a repeated visit of the same node after a restocking is usually expensive
and can often be avoided if the restocking is done after servicing the preceding
cluster. Especially on instances where the triangle inequalities hold, a restocking
from the preceding cluster is always more cost efficient. Another advantage from
using the preventive restocking strategy is that it is sufficient to plan one giant
tour through all clusters when the problem is not further constrained. Yang
et al. [24] proved this property for the VRPSD and it can be directly applied to
the GVRPSD as well. Along with that proof they also proposed an evaluation
procedure for the giant tour representation, which we will discuss in Sect. 3.

Like the GVRP this problem can be applied to the field of healthcare logistics,
in which medical supplies are delivered to districts and the distributing company
does not know beforehand how much supply is needed. If it does not matter to
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which hospital in each district these supplies are delivered this problem can be
modelled as a GVRPSD. Another application domain is urban waste manage-
ment, where refuse collecting vehicles gather waste from districts returning it to
a central landfill site and the total amount of waste is not known beforehand.

In this work we describe a variable neighborhood search (VNS) [10] approach
for the GVRPSD with preventive restocking. We use the giant tour represen-
tation and an evaluation procedure similar to the one used for the VRPSD
[24], which is based on dynamic programming (DP). In addition to this solu-
tion evaluation procedure we also propose a multi-level evaluation scheme which
iteratively approximates the quality of a solution candidate until it can be dis-
carded as being inferior or the exact objective is obtained. In the next section the
related work for this problem is discussed. Section 3 is dedicated to the solution
representation and the associated evaluation procedure including the multi-level
evaluation scheme. The actual variable neighborhood search and its operators
are described in Sect. 4. We present computational results for this approach in
Sect. 5 and draw conclusion of our work along with thoughts on future work in
Sect. 6.

2 Related Work

To the best of our knowledge the GVRPSD has not been considered in the
literature so far. However, there are many related problems which have been
broadly discussed like the VRPSD, which is a special case of the GVRPSD but
each cluster is a singleton. Especially the work by Yang et al. [24] and Bianchi
et al. [4], which both used the preventive restocking strategy, has been inspiring
to the approach for the GVRPSD presented here. Yang et al. [24] showed that
planning multiple tours cannot lead to a better solution in the VRPSD. They
also presented an evaluation procedure based on dynamic programming for the
giant tour representation. The same evaluation is also used by Bianchi et al.
[4] who developed several metaheuristics and an approximate delta evaluation
for the VRPSD. The most recent work for the VRPSD utilizing the preventive
restocking policy is by Marinakis et al. [17] who also applied the same evaluation
procedure and presented a clonal selection algorithm. They reported promising
results on their benchmark set and compared their algorithm to two versions
of a particle swarm optimization [16], to a differential evolution, and a genetic
algorithm.

Another related problem is the GVRP, which is the special case of the
GVRPSD with deterministic demands. There are usually capacity or distance
constraints on the used vehicles and therefore several routes have to be devised.
There are several exact and heuristic solution approaches in the literature [1,2,
8,18,19]. Since we are considering a giant tour approach the generalized travel-
ing salesman problem (GTSP) is also closely related. The GTSP was originally
introduced independently in [11,21,23]. In Fischetti et al. [5,6] integer linear pro-
gramming models are formulated and analyzed. For our construction heuristic
we use one of their formulations.
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3 Solution Representation and Evaluation

In the introduction we mentioned that it is sufficient to plan one giant tour
through all clusters and therefore we use a solution representation based on
the sequence of clusters that are visited in the tour. From this permutation of
clusters we compute the expected cost using a DP algorithm based on the DP for
the VRPSD [24]. We adapt it to the GVRPSD by also considering that we only
have to visit one node per cluster. The worst case run-time complexity remains
O(|V |Q2).

First we describe the notations used in the DP. The function used for the
recursion fij(q) is defined for all q = 0, . . . , Q, j = 0, . . . ,m, i = 0, . . . , |Cj |
and can be interpreted as the remaining cost of the tour after servicing the
i-th node of cluster j with the residual vehicle capacity q. We also define an
auxiliary function bj(l) which returns the l-th node of cluster j. Let us assume
that the clusters of the tour we want to evaluate are relabeled such that the tour
is t = (C0, C1, . . . , Cm, C0). Then the DP recursion is given by:

fij(q) = min{fp
ij(q), f

r
ij(q)}

fp
ij(q) = min

l=0,...,|Cj+1|
{dbj(i),bj+1(l) +

q∑

k=0

fl,j+1(q − k)pj+1,k

+
Q∑

k=q+1

2dbj+1(l),0 + fl,j+1(q + Q − k)pj+1,k}

fr
ij(q) = dbj(i),0 + min

l=0,...,|Cj+1|
{d0,bj+1(l) +

Q∑

k=0

fl,j+1(Q − k)pj+1,k}

∀q = 0, . . . , Q, j = 0, . . . ,m, i = 0, . . . , |Cj |
and the boundary condition

fim(q) = dbm(i),0, ∀q = 0, . . . , Q, i = 0, . . . , |Cm|

The basic principle of this recursion is that for each node i and each vehicle load
q it is computed if it is more cost-efficient to proceed directly to the next cluster
which costs fp

ij(q) or to make a preventive restock which costs fr
ij(q). The total

expected cost of the tour t is then given by the value of f0,0(Q). For our VNS
such an expensive solution evalution is inconvenient for larger instances with a
large vehicle capacity. In the next section we describe a method to potentially
reduce the run-time of the solution evaluation within the VNS framework, which
can also be applied to other metaheuristics.

3.1 Multi-level Evaluation Scheme

In this section we describe a multi-level evaluation scheme (ML-ES) to itera-
tively estimate the exact objective value of a solution candidate with increasing
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accuracy until we either know that it cannot be better than the best solution
found so far or we know its exact value. The basic idea is to scale down both the
vehicle capacity and the probability distribution of the demand for each cluster
accordingly. Since the time needed for the solution evaluation is quadratically
dependent on Q, a large performance gain in terms of run-time is expected when
Q is decreased.

In our ML-ES there are log2 Q levels of approximation, where level 0 is the
exact evaluation and log2 Q is the roughest approximation level. Starting with
level 0, increasing the level by one means to scale down the vehicle capacity Q
and all demand distributions pjk by a factor of two. We introduce a new vehicle
capacity Qi and new probabilities pijk subject to level i, which are defined in the
following way:

Q0 = Q (1)

p0jk = pjk ∀j = 1, . . . , |C|, k = 0, . . . , Q (2)

Qi =
⌈

Qi−1

2

⌉
∀i = 1, . . . , �log2 Q� (3)

pijk = pi−1
j,2k + pi−1

j,2k+1 ∀j = 1, . . . , |C|, k = 0, . . . , Qi, (4)

∀i = 1, . . . , �log2 Q�
Figure 1 shows exemplarily for one cluster how the probability distribution for
the demand changes at each level.

Not only is level i ≥ 1 an approximation, but its objective value is also a
lower bound for the objective value of the preceding level i − 1, which we will
show next.

Lemma 1. With increasing level i the ratio of the scaled expected demand of
each cluster to the vehicle capacity Qi is non-increasing.

Proof. We have to show for each cluster j and each demand 0 ≤ k ≤ Q that

∑Qi

k=0 kpijk
Qi

≤
∑Qi−1

k=0 kpi−1
jk

Qi−1
, ∀i = 1, . . . , �log2 Q�

is valid. Suppose to the contrary that for one cluster j and one demand k the
following holds:

kpijk
Qi

=
k(pi−1

j,2k + pi−1
j,2k+1)

Qi−1

2

>
2kpi−1

j,2k + (2k + 1)pi−1
j,2k+1

Qi−1
=

kpi−1
jk

Qi−1

2kpi−1
j,2k + 2kpi−1

j,2k+1 > 2kpi−1
j,2k + 2kpi−1

j,2k+1 + pi−1
j,2k+1

0 > pi−1
j,2k+1

Obviously, this is a contradiction because all probabilities must be non-negative.

Therefore, as no kpi
jk

Qi can be larger than
kpi−1

jk

Qi−1 for any cluster j this also holds
for the sum over all demands, which proves the Lemma. 
�
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Fig. 1. An exemplary demand probability distribution and its different levels of approx-
imation.

Theorem 1. Let ci(t) be the objective value of a tour t on approximation level
i. For each tour t it holds that ci(t) ≤ ci−1(t),∀i = 1, . . . , �log2 Q�.
Proof. Due to Lemma 1 it follows that the total expected relative demand of all
clusters on level i is smaller or equal to that of level i − 1. So we can possibly
service more customers before a restocking is needed and therefore the resulting
objective ci(t) value is a lower bound to the exact objective value c0(t) and to
the objective value at the preceding level ci−1(t). 
�
Algorithm 1 describes our ML-ES in pseudocode, where DP(t, i) executes the DP
described above with the scaled vehicle capacity and probability distributions
according to (1–4). Algorithm 1 returns either the exact objective value of t if
DP(t, 0) is executed or a lower bound to the exact value otherwise. In the latter
case the solution candidate can immediately be discarded because we know that
it cannot be better than the best solution found so far.
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Algorithm 1. ML-ES(t, bestObj )
Input : tour t, objective value of best solution found so far bestObj
Output: exact or approximate objective value
obj = 0;
i = �log2 Q�;
while obj < bestObj ∧ i ≥ 0 do

obj = DP(t, i);
i = i − 1;

return obj ;

4 Variable Neighborhood Search

The proposed VNS follows the general variable neighborhood search scheme as
described in [9]. The underlying variable neighborhood descent (VND) considers
three neighborhood structures which are well-known for the TSP: 1-shift, 2-opt,
and Or-opt. As a shaking procedure for diversification we perform k2 moves in
the k-th neighborhood with k = 1, . . . , 3.

4.1 Initial Solution

For finding an initial solution two types of construction heuristics are considered.
The first, farthest insertion, is well-known for the classical traveling salesman
problem and suited for Euclidean instances only. It builds iteratively a tour by
starting at the depot cluster and inserting the cluster which is farthest away
from the last inserted cluster at the best possible position. For that purpose
we have to define distances between clusters, which is done by computing the
geometric centers of clusters by taking the average of the x- and y-coordinates
of its nodes. Then the distance between two clusters is the Euclidean distance
between their centers.

An alternative but much more time-consuming method for finding a starting
solution is solving the GTSP relaxation of the problem. From the solution of
the GTSP relaxation we extract the cluster sequence which is then our initial
solution. The GTSP is solved exactly by using a branch-and-cut algorithm with
CPLEX and the E-GTSP formulation described in [6].

4.2 Neighborhood Structures

Three types of neighborhood structures are used in the VND part, which are
searched with a best improvement step function in the order they are described
here.

1-shift: A cluster is shifted to another position of the tour.

2-opt: A subsequence of the tour is inverted.
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Or-opt: First two, then three consecutive clusters are shifted to another position
of the tour. Note that Or-opt usually starts by shifting only one cluster in the
tour but we covered this case by our first neighborhood structure and omit it
here.

5 Computational Results

The VNS is implemented in C++ and for the GTSP starting solution CPLEX
in version 12.5 is used. All our tests were carried out on a single core of an Intel
Xeon with 2.53 GHz and 3GB RAM. We created Euclidean instances for the
GVRPSD1 based on instances for the GVRP [2] by assigning the original demand
values to be the expected demands and deciding independently at random for
each cluster if it is a low spread or a high spread cluster. For low spread clusters
the set of possible demands is ±10% of the expected value and for the high
spread it is ±30%. All of these demand values are considered equally likely,
so we assumed a uniform distribution over these values. We do not consider
demand values smaller than zero or larger than Q. Due to space limitations the
numerical results presented in this section are based on a representative selection
of 37 instances out of the originally proposed 158 instances. These instances are
selected such that a comparison to an existing exact method is possible. The full
result tables can be found at our website (see Footnote 1).

In the following tables the column Instance contains the name of the instance,
followed by the number of nodes n and the number of clusters m. Additionally
the expected number of restocks E[nr] are presented. Then the results for the
different configurations are given with their (average) objective values, their
standard deviations (sd) if applicable and either the total run-time in seconds t[s]
for the deterministic configurations or the average time when the best solution
is identified t∗[s].

First we compare the results of the different starting solutions, farthest inser-
tion (FI) and GTSP, with a subsequent VND using the neighborhood structures
and the order described in Sect. 4.2. Table 1 shows the (deterministic) numerical
results for these configurations. Additionally it contains a third configuration
where the ML-ES is used along with the GTSP starting solution.

The results indicate that both starting solutions produce similarly good
results for the instances with up to 75 nodes. However, when considering larger
instances with 76 nodes and more, FI is not competitive anymore. When start-
ing from an inferior solution produced by FI the VND needs too much time and
could not even be completed within the time limit of 10000 s. When comparing
run-time we also see the advantage of using the GTSP over the FI; for most of
the instances, especially for the larger ones, it pays off to invest more time to get
a better starting solution so that the subsequent VND does not need so many
iterations. We also applied the ML-ES to the GTSP + VND configuration and
we observe a huge drop in run-time. It is clear that the resulting solution is the
same as in the GTSP + VND configuration but the run-time could be reduced
1 https://www.ads.tuwien.ac.at/w/Research/Problem Instances#Generalized

Vehicle Routing Problem with Stochastic Demands.

https://www.ads.tuwien.ac.at/w/Research/Problem_Instances#Generalized_Vehicle_Routing_Problem_with_Stochastic_Demands
https://www.ads.tuwien.ac.at/w/Research/Problem_Instances#Generalized_Vehicle_Routing_Problem_with_Stochastic_Demands
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Table 1. Results for the different configurations of the VND.

FI + VND GTSP + VND GTSP + VND +

ML-ES

Instance n m E[nr] obj t[s] obj t[s] obj t[s]

P-n19-k2-C7-V1 19 7 0,71 112,105 5 112,105 3 112,105 <1

P-n20-k2-C7-V1 20 7 0,68 117,306 4 117,306 <1 117,306 <1

P-n21-k2-C7-V1 21 7 0,64 117,071 3 117,071 <1 117,071 <1

P-n22-k2-C8-V1 22 8 0,73 111,194 10 111,194 5 111,194 <1

B-n31-k5-C11-V2 31 11 1,38 355,729 25 355,729 16 355,729 5

A-n32-k5-C11-V2 32 11 1,39 386,909 20 388,597 10 388,597 2

A-n33-k5-C11-V2 33 11 1,52 318,028 17 318,028 15 318,028 3

A-n33-k6-C11-V2 33 11 1,91 367,629 23 367,629 16 367,629 4

A-n34-k5-C12-V2 34 12 1,66 419,124 29 419,124 25 419,124 4

B-n34-k5-C12-V2 34 12 1,34 363,089 33 363,089 13 363,089 5

B-n35-k5-C12-V2 35 12 1,54 501,470 32 501,470 14 501,470 6

A-n36-k5-C12-V2 36 12 1,34 404,579 30 399,905 23 399,905 7

A-n37-k5-C13-V2 37 13 1,43 359,133 45 359,133 20 359,133 3

A-n37-k6-C13-V2 37 13 1,95 467,266 31 430,987 32 430,987 7

A-n38-k5-C13-V2 38 13 1,71 371,795 57 371,795 20 371,795 2

B-n38-k6-C13-V2 38 13 1,93 386,195 55 389,241 27 389,241 7

A-n39-k5-C13-V2 39 13 1,48 390,400 47 371,410 20 371,410 8

A-n39-k6-C13-V2 39 13 1,83 417,844 43 417,844 40 417,844 8

B-n39-k5-C13-V2 39 13 1,45 281,482 50 281,482 <1 281,482 <1

P-n40-k5-C14-V2 40 14 1,51 214,775 175 214,753 49 214,753 4

B-n41-k6-C14-V2 41 14 1,82 404,261 93 404,261 34 404,261 11

B-n43-k6-C15-V2 43 15 1,81 394,529 74 347,650 33 347,650 6

A-n44-k6-C15-V2 44 15 2,00 505,129 105 508,981 51 508,981 15

B-n45-k5-C15-V2 45 15 1,51 419,613 116 419,613 59 419,613 8

B-n45-k6-C15-V2 45 15 1,96 358,989 72 358,989 83 358,989 31

P-n45-k5-C15-V2 45 15 1,61 239,568 172 239,357 94 239,357 6

A-n45-k6-C15-V3 45 15 2,09 478,219 105 478,219 56 478,219 12

A-n45-k7-C15-V3 45 15 2,06 516,508 94 488,017 99 488,017 34

A-n46-k7-C16-V3 46 16 2,08 465,624 209 471,980 82 471,980 16

A-n48-k7-C16-V3 48 16 2,13 474,210 150 462,548 95 462,548 35

A-n53-k7-C18-V3 53 18 2,09 450,973 268 443,875 97 443,875 16

A-n54-k7-C18-V3 54 18 2,19 507,805 201 490,544 134 490,544 41

(Continued)
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Table 1. Continued

FI + VND GTSP + VND GTSP +

VND +

ML-ES

Instance n m E[nr] obj t[s] obj t[s] obj t[s]

A-n55-k9-C19-V3 55 19 2,75 475,919 292 474,048 114 474,048 15

A-n60-k9-C20-V3 60 20 2,80 614,515 517 620,897 361 620,897 117

P-n76-k4-C26-V2 76 26 1,33 461,753 >10000 310,397 4312 310,397 58

P-n76-k5-C26-V2 76 26 1,67 373,937 >10000 310,397 3748 310,397 56

P-n101-k4-C34-V2 101 34 1,25 992,679 >10000 371,926 9979 371,926 397

Table 2. Comparison of the proposed VNS with an exact integer L-shaped method.

L-shaped VNS + GTSP + ML-ES

Instance n m E[nr] obj gap t[s] obj sd t∗[s]

P-n19-k2-C7-V1 19 7 0,71 112,105 0,0% <1 112,105 0,00 <1

P-n20-k2-C7-V1 20 7 0,68 117,306 0,0% <1 117,306 0,00 <1

P-n21-k2-C7-V1 21 7 0,64 117,071 0,0% <1 117,071 0,00 <1

P-n22-k2-C8-V1 22 8 0,73 111,194 0,0% <1 111,194 0,00 <1

B-n31-k5-C11-V2 31 11 1,38 355,729 11,1% >7200 355,729 0,00 5

A-n32-k5-C11-V2 32 11 1,39 386,909 0,0% 1331 386,909 0,00 25

A-n33-k5-C11-V2 33 11 1,52 318,028 0,0% 374 318,028 0,00 2

A-n33-k6-C11-V2 33 11 1,91 364,589 0,0% 598 364,589 0,00 27

A-n34-k5-C12-V2 34 12 1,66 419,124 0,0% 3719 419,124 0,00 4

B-n34-k5-C12-V2 34 12 1,34 363,089 18,1% >7200 363,089 0,00 4

B-n35-k5-C12-V2 35 12 1,54 501,470 26,3% >7200 501,450 0,11 6

A-n36-k5-C12-V2 36 12 1,34 399,905 9,4% >7200 399,905 0,00 7

A-n37-k5-C13-V2 37 13 1,43 359,133 0,0% 98 359,133 0,00 3

A-n37-k6-C13-V2 37 13 1,95 434,865 18,5% >7200 430,987 0,00 7

A-n38-k5-C13-V2 38 13 1,71 371,795 0,0% 588 371,795 0,00 2

B-n38-k6-C13-V2 38 13 1,93 386,195 12,2% >7200 388,734 1,15 8

A-n39-k5-C13-V2 39 13 1,48 371,410 7,6% >7200 371,410 0,00 8

A-n39-k6-C13-V2 39 13 1,83 417,844 5,6% >7200 417,844 0,00 8

B-n39-k5-C13-V2 39 13 1,45 281,482 0,0% 282 281,482 0,00 <1

P-n40-k5-C14-V2 40 14 1,51 214,753 0,0% 392 214,753 0,00 4

B-n41-k6-C14-V2 41 14 1,82 408,977 16,7% >7200 404,261 0,00 10

B-n43-k6-C15-V2 43 15 1,81 347,650 19,7% >7200 347,650 0,00 6

A-n44-k6-C15-V2 44 15 2,00 509,254 16,2% >7200 508,981 0,00 15

B-n45-k5-C15-V2 45 15 1,51 419,613 3,6% >7200 419,096 1,05 8

B-n45-k6-C15-V2 45 15 1,96 367,730 23,6% >7200 358,989 0,00 31

(Continued)
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Table 2. (Continued)

L-shaped VNS + GTSP + ML-ES

Instance n m E[nr] obj gap t[s] obj sd t∗[s]

P-n45-k5-C15-V2 45 15 1,61 239,357 4,6% >7200 239,357 0,00 6

A-n45-k6-C15-V3 45 15 2,09 478,265 16,2% >7200 478,219 0,00 12

A-n45-k7-C15-V3 45 15 2,06 491,539 30,6% >7200 488,017 0,00 34

A-n46-k7-C16-V3 46 16 2,08 465,624 19,0% >7200 471,539 0,51 16

A-n48-k7-C16-V3 48 16 2,13 469,690 28,7% >7200 462,548 0,00 35

A-n53-k7-C18-V3 53 18 2,09 443,873 13,6% >7200 443,875 0,00 16

A-n54-k7-C18-V3 54 18 2,19 500,349 28,6% >7200 490,544 0,00 41

A-n55-k9-C19-V3 55 19 2,75 483,997 21,7% >7200 474,048 0,00 15

A-n60-k9-C20-V3 60 20 2,80 623,528 35,6% >7200 617,575 4,98 118

P-n76-k4-C26-V2 76 26 1,33 310,397 6,1% >7200 310,397 0,00 55

P-n76-k5-C26-V2 76 26 1,67 310,397 5,8% >7200 310,397 0,00 53

P-n101-k4-C34-V2 101 34 1,25 371,926 5,7% >7200 371,926 0,00 379

substantially. Only by using the ML-ES the VND is about 10 times faster on
average with a peak speedup factor of 75 for instance P-n76-k4-C26-V2. During
our tests when a solution is evaluated using ML-ES the procedure could be ter-
minated in the top 30 % of the approximation levels where the acceleration is
the largest.

Next we show how average results over 30 independent runs of the VNS with
the GTSP starting solution and the ML-ES compares to an exact algorithm. The
exact algorithm is the integer L-shaped method [14] applied to the GVRPSD
which is a two-level approach based on a mixed integer programming model for
the GTSP. Within a branch-and-cut framework it iteratively adds cuts generated
in the lower level setting a lower bound on the restocking costs in the upper level.
Due to space limitation this method is not described here in more detail. For
the exact algorithm the optimality gap (gap) and the time needed is stated in
the table.

Table 2 shows the numerical comparison with the exact method. The high
optimality gaps on the medium to large instances show that the GVRPSD is a
hard problem but on the instances where the L-shaped method is able to find a
proven optimal solution the VNS also finds it in substantially less time. In the
extreme case of instance A-n34-k5-C12-V2 the VNS found an optimal solution in
all 30 runs about 865 times faster than the exact algorithm. However, since the
L-shaped method guarantees the optimality of the solution we cannot directly
compare the run-time of these algorithms. Our tests further showed that in the
VNS the ML-ES can be terminated within the top 4 % of the approximation
levels which is even better than for the VND.
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6 Conclusions and Future Work

In this work a variable neighborhood search approach for the generalized vehicle
routing problem with stochastic demands under the preventive restocking policy
is presented. The problem has not yet been considered so far in the literature
although many real world problems can be modelled in this way. An initial
attempt to solve this hard stochastic combinatorial optimization problem was
made. Therefore, concepts from both, the related VRPSD and the GTSP, are
used. The solution representation and the solution evaluation method that had
proved to work well for the VRPSD were adapted to the GVRPSD. On top
of that a multi-level evaluation scheme was used to substantially reduce the
time needed for evaluating a solution candidate. The computational results show
that the VNS with the GTSP initial solution and the ML-ES is able to find
optimal or near-optimal solutions in short times. Future work can include the
development and improvement of the exact algorithm for the GVRPSD to get
optimal solutions to more instances. In a following step also the combination
of the techniques presented here, especially the ML-ES, and the methods used
for solving this problem exactly should be investigated. Although the ML-ES is
primarily developed for the GVRPSD applications to other similar problems like
the VRPSD are also possible and could lead to a significant performance gain.
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