
Gabriela Ochoa
Francisco Chicano (Eds.)

 123

LN
CS

 9
02

6

15th European Conference, EvoCOP 2015
Copenhagen, Denmark, April 8–10, 2015
Proceedings

Evolutionary Computation
in Combinatorial Optimization

Lecture Notes in Computer Science 9026

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Gabriela Ochoa • Francisco Chicano (Eds.)

Evolutionary Computation
in Combinatorial Optimization
15th European Conference, EvoCOP 2015
Copenhagen, Denmark, April 8–10, 2015
Proceedings

123

Editors
Gabriela Ochoa
University of Stirling
Stirling
UK

Francisco Chicano
University of Málaga
Málaga
Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-16467-0 ISBN 978-3-319-16468-7 (eBook)
DOI 10.1007/978-3-319-16468-7

Library of Congress Control Number: 2015933497

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Cover illustration: Designed by Mauro Castelli, ISEGI, Universidade Nova de Lisboa, Portugal

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

Combinatorial optimization is the discipline of decision making dealing with discrete
alternatives. The field is at the interface between discrete mathematics, computing
science, operational research, and recently also machine learning, and includes a
diversity of algorithms and hybrid methods. Stochastic local search (metaheuristics),
evolutionary, and other nature-inspired algorithms are a family of methods able to
provide robust, high quality solutions to problems of a realistic size in reasonable time.
These methods are also relatively simple to design and implement, and offer high
flexibility. Many challenging applications in science, industry, and commerce can be
formulated as optimization problems. A growing number of them have been suc-
cessfully solved using the sort of computational methods mentioned above, which are
the main content of these proceedings.

EvoCOP was held for the first time in 2001, as the first workshop specifically
devoted to evolutionary computation in combinatorial optimization. In 2004 it became
a conference, and since then it runs annually. This volume contains the proceedings of
EvoCOP 2015, the 15th European Conference on Evolutionary Computation in
Combinatorial Optimization, which was held in Copenhagen, Denmark, during April
8–10, 2015. EvoCOP is one of the four events of Evostar 2015. The other three are
EuroGP (18th European Conference on Genetic Programming), EvoMUSART (4th
International Conference on Evolutionary and Biologically Inspired Music, Sound, Art,
and Design), and EvoApplications (18th European Conference on the Applications of
Evolutionary Computation, formerly known as EvoWorkshops).

Previous EvoCOP proceedings were published by Springer in the series Lecture
Notes in Computer Science (LNCS Volumes 2037, 2279, 2611, 3004, 3448, 3906,
4446, 4972, 5482, 6022, 6622, 7245, 7832, 8600). The table in the next page reports
the statistics for each conference.

This year, 19 out of 46 papers were accepted after our rigorous double-blind process,
resulting in a 41.3 % acceptance rate, the tighter since 2010. We would like to thank the
quality and timeliness of our PC members work, especially since this year's time frame
overlapped with the Christmas break. Decisions considered both the reviewers report and
evaluation of the Program Chairs. The number of submissions this year shows an increase
and we hope this will be maintained as a future trend. The 19 accepted papers covered
methodology, applications, and theoretical studies. The methods included evolutionary
and memetic (hybrid) algorithms, iterated local search, variable neighborhood search, ant
colony optimization, artificial immune systems, hyper-heuristics, and other adaptive
approaches. The applications included both traditional domains, such as graph coloring,
knapsack, vehicle routing, job-shop scheduling, the p-median, and the orienteering
problems; and new(er) domains such as designing deep recurrent neural networks,
detecting network community structure, lock scheduling of ships, cloud resource man-
agement, the firefighter problem, and AI planning. The theoretical studies involved
approximation ratio, runtime, and black-box complexity analyses. The consideration of

multiple objectives, dynamic, and noisy environments was also present in a number of
articles. This makes the EvoCOP proceedings an important source for current research
trends in combinatorial optimization.

We would like to express our appreciation to the various persons and institutions
making this a successful event. First, we thank the Local Organizers Paolo Burelli from
the Aalborg University and Sebastian Risi from the IT University of Copenhagen. We
extend our acknowledgment to Pablo García Sánchez from the Universidad de Granada
and Mauro Castelli from the Universidade Nova de Lisboa for excellent website and
publicity material. We thank Marc Schoenauer from Inria (France) for his continued
assistance in providing MyReview conference management system. Thanks are also
due to Jennifer Willies and the Institute for Informatics and Digital Innovation at
Edinburgh Napier University, UK, for administrative support and event coordination.
Finally, we want to thank the National Museum of Denmark at Copenhagen, where the
conference was held, and the prominent keynote speakers, Paulien Hogeweg from
Utrecht University and Pierre-Yves Oudeyer, Research Director at Inria Paris.

Special thanks also to Carlos Cotta, Peter Cowling, Jens Gottlieb, Jin-Kao Hao, Jano
van Hemert, Peter Merz, Martin Middendorf, Günther R. Raidl, and Christian Blum for
their hard work and dedication at past editions of EvoCOP, making this one of the
reference international events in evolutionary computation and metaheuristics.

April 2015 Gabriela Ochoa
Francisco Chicano

EvoCOP Submitted Accepted Acceptance (%)

2015 46 19 41.3
2014 42 20 47.6
2013 50 23 46.0
2012 48 22 45.8
2011 42 22 52.4
2010 69 24 34.8
2009 53 21 39.6
2008 69 24 34.8
2007 81 21 25.9
2006 77 24 31.2
2005 66 24 36.4
2004 86 23 26.7
2003 39 19 48.7
2002 32 18 56.3
2001 31 23 74.2

VI Preface

Organization

EvoCOP 2015 was organized jointly with EuroGP 2015, EvoMUSART 2015, and
EvoApplications 2015.

Organizing Committee

PC Chairs

Gabriela Ochoa University of Stirling, UK
Francisco Chicano University of Málaga, Spain

Local Organization

Paolo Burelli Aalborg University, Denmark
Sebastian Risi IT University of Copenhagen, Denmark

Publicity Chairs

Pablo García Sánchez Universidad de Granada, Spain
Mauro Castelli Universidade Nova de Lisboa, Portugal

EvoCOP Steering Committee

Carlos Cotta Universidad de Málaga, Spain
Peter Cowling University of York, UK
Jens Gottlieb SAP AG, Germany
Jin-Kao Hao University of Angers, France
Jano van Hemert University of Edinburgh, UK
Peter Merz Hannover University of Applied Sciences and Arts,

Germany
Martin Middendorf University of Leipzig, Germany
Günther Raidl Vienna University of Technology, Austria

Program Committee

Adnan Acan Eastern Mediterranean University, Turkey
Enrique Alba Universidad de Málaga, Spain
Mehmet Emin Aydin University of Bedfordshire, UK
Ruibin Bai University of Nottingham, UK
Thomas Bartz-Beielstein Cologne University of Applied Sciences, Germany
Matthieu Basseur University of Angers, France
Maria J. Blesa Universitat Politècnica de Catalunya, Spain
Christian Blum IKERBASQUE and University of the Basque

Country, Spain
Sandy Brownlee University of Stirling, UK

Pedro Castillo Universidad de Granada, Spain
Francisco Chicano Universidad de Málaga, Spain
Carlos Coello Coello CINVESTAV-IPN, Mexico
Peter Cowling University of York, UK
Karl Doerner Johannes Kepler University Linz, Austria
Benjamin Doerr LIX, École Polytechnique, France
Bernd Freisleben University of Marburg, Germany
Adrien Goeffon University of Angers, France
Jens Gottlieb SAP AG, Germany
Walter Gutjahr University of Vienna, Austria
Jin-Kao Hao University of Angers, France
Emma Hart Edinburgh Napier University, UK
Richard F. Hartl University of Vienna, Austria
Geir Hasle SINTEF Applied Mathematics, Norway
István Juhos University of Szeged, Hungary
Graham Kendall University of Nottingham, UK
Joshua Knowles University of Manchester, UK
Mario Köppen Kyushu Institute of Technology, Japan
Frédéric Lardeux University of Angers, France
Rhyd Lewis Cardiff University, UK
Arnaud Liefooghe Université des Sciences et Technologies de Lille,

France
José Antonio Lozano University of the Basque Country, Spain
Gabriel Luque Universidad de Málaga, Spain
Penousal Machado University of Coimbra, Portugal
Jorge Maturana Universidad Austral de Chile, Chile
Barry McCollum Queen’s University Belfast, UK
David Meignan University of Osnabrück, Germany
Juan Julián Merelo Universidad de Granada, Spain
Peter Merz Hannover University of Applied Sciences and Arts,

Germany
Martin Middendorf Universität Leipzig, Germany
Julian Molina Universidad de Málaga, Spain
Eric Monfroy University of Nantes, France
Christine L. Mumford Cardiff University, UK
Nysret Musliu Vienna University of Technology, Austria
Gabriela Ochoa University of Stirling, UK
Beatrice Ombuki-Berman Brock University, Canada
Mario Pavone University of Catania, Italy
Francisco J.B. Pereira University of Coimbra, Portugal
Jakob Puchinger Austrian Institute of Technology, Austria
Günther Raidl Vienna University of Technology, Austria
Marcus Randall Bond University, Australia
Marc Reimann University of Graz, Austria
Eduardo Rodriguez-Tello Cinvestav - Tamaulipas, Mexico
Peter Ross Edinburgh Napier University, UK

VIII Organization

Frédéric Saubion University of Angers, France
Marc Schoenauer Inria, France
Patrick Siarry Université Paris-Est Créteil Val-de-Marne, France
Kevin Sim Edinburgh Napier University, UK
Jim Smith University of the West of England, UK
Giovanni Squillero Politecnico di Torino, Italy
Thomas Stützle Université Libre de Bruxelles, Belgium
Andrew M. Sutton Friedrich-Schiller-University Jena, Germany
El-Ghazali Talbi Université des Sciences et Technologies de Lille,

France
Renato Tinós University of São Paulo, Brazil
Jano van Hemert University of Edinburgh, UK
Nadarajen Veerapen University of Stirling, UK
Sébastien Verel Université du Littoral Côte d’Opale, France
Takeshi Yamada NTT Communication Science Laboratories, Japan
Shengxiang Yang De Montfort University, UK

Organization IX

Contents

A Biased Random-Key Genetic Algorithm for the Cloud Resource
Management Problem . 1

Leonard Heilig, Eduardo Lalla-Ruiz, and Stefan Voß

A Computational Comparison of Different Algorithms for Very Large
p-median Problems . 13

Pascal Rebreyend, Laurent Lemarchand, and Reinhardt Euler

A New Solution Representation for the Firefighter Problem 25
Bin Hu, Andreas Windbichler, and Günther R. Raidl

A Variable Neighborhood Search Approach for the Interdependent Lock
Scheduling Problem. 36

Matthias Prandtstetter, Ulrike Ritzinger, Peter Schmidt,
and Mario Ruthmair

A Variable Neighborhood Search for the Generalized Vehicle Routing Problem
with Stochastic Demands . 48

Benjamin Biesinger, Bin Hu, and Günther Raidl

An Iterated Local Search Algorithm for Solving the Orienteering Problem
with Time Windows . 61

Aldy Gunawan, Hoong Chuin Lau, and Kun Lu

Analysis of Solution Quality of a Multiobjective Optimization-Based
Evolutionary Algorithm for Knapsack Problem . 74

Jun He, Yong Wang, and Yuren Zhou

Evolving Deep Recurrent Neural Networks Using Ant Colony Optimization . . . 86
Travis Desell, Sophine Clachar, James Higgins, and Brandon Wild

Hyper-heuristic Operator Selection and Acceptance Criteria 99
Richard J. Marshall, Mark Johnston, and Mengjie Zhang

Improving the Performance of the Germinal Center Artificial Immune System
Using �-Dominance: A Multi-objective Knapsack Problem Case Study 114

Ayush Joshi, Jonathan E. Rowe, and Christine Zarges

Mixing Network Extremal Optimization for Community
Structure Detection . 126

Mihai Suciu, Rodica Ioana Lung, and Noémi Gaskó

http://dx.doi.org/10.1007/978-3-319-16468-7_1
http://dx.doi.org/10.1007/978-3-319-16468-7_1
http://dx.doi.org/10.1007/978-3-319-16468-7_2
http://dx.doi.org/10.1007/978-3-319-16468-7_2
http://dx.doi.org/10.1007/978-3-319-16468-7_3
http://dx.doi.org/10.1007/978-3-319-16468-7_4
http://dx.doi.org/10.1007/978-3-319-16468-7_4
http://dx.doi.org/10.1007/978-3-319-16468-7_5
http://dx.doi.org/10.1007/978-3-319-16468-7_5
http://dx.doi.org/10.1007/978-3-319-16468-7_6
http://dx.doi.org/10.1007/978-3-319-16468-7_6
http://dx.doi.org/10.1007/978-3-319-16468-7_7
http://dx.doi.org/10.1007/978-3-319-16468-7_7
http://dx.doi.org/10.1007/978-3-319-16468-7_8
http://dx.doi.org/10.1007/978-3-319-16468-7_9
http://dx.doi.org/10.1007/978-3-319-16468-7_10
http://dx.doi.org/10.1007/978-3-319-16468-7_10
http://dx.doi.org/10.1007/978-3-319-16468-7_10
http://dx.doi.org/10.1007/978-3-319-16468-7_11
http://dx.doi.org/10.1007/978-3-319-16468-7_11

Multi-start Iterated Local Search for the Mixed Fleet Vehicle Routing Problem
with Heterogenous Electric Vehicles . 138

Ons Sassi, W. Ramdane Cherif-Khettaf, and Ammar Oulamara

On the Complexity of Searching the Linear Ordering
Problem Neighborhoods. 150

Benjamin Correal and Philippe Galinier

Runtime Analysis of ð1þ 1Þ Evolutionary Algorithm Controlled
with Q-learning Using Greedy Exploration Strategy
on ONEMAX+ZEROMAX Problem . 160

Denis Antipov, Maxim Buzdalov, and Benjamin Doerr

The New Memetic Algorithm HEAD for Graph Coloring: An Easy Way
for Managing Diversity . 173

Laurent Moalic and Alexandre Gondran

The Sim-EA Algorithm with Operator Autoadaptation
for the Multiobjective Firefighter Problem . 184

Krzysztof Michalak

True Pareto Fronts for Multi-objective AI Planning Instances 197
Alexandre Quemy and Marc Schoenauer

Upper and Lower Bounds on Unrestricted Black-Box Complexity
of Jumpn;‘ . 209

Maxim Buzdalov, Mikhail Kever, and Benjamin Doerr

Using Local Search to Evaluate Dispatching Rules in Dynamic Job
Shop Scheduling . 222

Rachel Hunt, Mark Johnston, and Mengjie Zhang

Author Index . 235

XII Contents

http://dx.doi.org/10.1007/978-3-319-16468-7_12
http://dx.doi.org/10.1007/978-3-319-16468-7_12
http://dx.doi.org/10.1007/978-3-319-16468-7_13
http://dx.doi.org/10.1007/978-3-319-16468-7_13
http://dx.doi.org/10.1007/978-3-319-16468-7_14
http://dx.doi.org/10.1007/978-3-319-16468-7_14
http://dx.doi.org/10.1007/978-3-319-16468-7_14
http://dx.doi.org/10.1007/978-3-319-16468-7_14
http://dx.doi.org/10.1007/978-3-319-16468-7_15
http://dx.doi.org/10.1007/978-3-319-16468-7_15
http://dx.doi.org/10.1007/978-3-319-16468-7_15
http://dx.doi.org/10.1007/978-3-319-16468-7_16
http://dx.doi.org/10.1007/978-3-319-16468-7_16
http://dx.doi.org/10.1007/978-3-319-16468-7_17
http://dx.doi.org/10.1007/978-3-319-16468-7_18
http://dx.doi.org/10.1007/978-3-319-16468-7_18
http://dx.doi.org/10.1007/978-3-319-16468-7_19
http://dx.doi.org/10.1007/978-3-319-16468-7_19

A Biased Random-Key Genetic Algorithm
for the Cloud Resource Management Problem

Leonard Heilig1(B), Eduardo Lalla-Ruiz2, and Stefan Voß1

1 Institute of Information Systems (IWI), University of Hamburg, Hamburg,
Germany

{leonard.heilig,stefan.voss}@uni-hamburg.de
2 Department of Computer and Systems Engineering, University of La Laguna,

Santa Cruz de Tenerife, Spain
elalla@ull.es

Abstract. Flexible use options and associated cost savings of cloud
computing are increasingly attracting the interest from both researchers
and practitioners. Since cloud providers offer various cloud services in
different forms, there is a large potential of optimizing the selection of
those services from the consumer perspective. In this paper, we address
the Cloud Resource Management Problem that is a recent optimization
problem aimed at reducing the payment cost and the execution time of
consumer applications. In the related literature, there is one approach
that successfully addresses this problem based on a Greedy Random-
ized Adaptive Search Procedure. Due to the fact that consumers require
fast and high-quality solutions to economically automate cloud resource
management and deployment processes, we propose an efficient Biased
Random-Key Genetic Algorithm. The computational experiments over
a benchmark suite generated based on real cloud market offerings indi-
cate that the performance of our approach outperforms the approaches
proposed in the literature.

Keywords: Cloud computing · Cloud resource management · Genetic
algorithm · Optimization

1 Introduction

Cloud computing has revolutionized the way information technologies (IT) and
related services are offered and consumed by providers and consumers, respec-
tively [1]. In a cloud ecosystem, a cloud service provider (CSP) offers different
IT services to multiple consumers, mainly, virtual computing resources (infra-
structure as a service – IaaS), development platforms (platform as a service –
PaaS), or web-based applications (software as a service – SaaS) [2]. Based on
virtualization technology, a multi-tenant model enables that computing resources
can be pooled to serve multiple consumers facilitating a cost and energy-efficient
utilization of available computing resources assuming that they are allocated effi-
ciently. The consumer may benefit from this by purchasing cloud-based IT ser-
vices at a lower price. However, the main potentials for consumers are reflected by
c© Springer International Publishing Switzerland 2015
G. Ochoa and F. Chicano (Eds.): EvoCOP 2015, LNCS 9026, pp. 1–12, 2015.
DOI: 10.1007/978-3-319-16468-7 1

2 L. Heilig et al.

the flexible and scalable usage options as well as by usage-oriented pricing models
associated with on-demand cloud services. As a result, the consumer can adjust
the use of cloud services according to the actual and current demand thus avoid-
ing the provision of unused and costly in-house IT infrastructure. There can also
be cloud brokers acting on behalf of consumers to negotiate with multiple CSPs
in order to bundle demand and achieve better service contracts [3]. As there are
several manifestations and options of those cloud services, there are many poten-
tials of optimizing the consumption of cloud services. Both industry and research
groups would largely benefit, specifically the research area related to eScience,
big data analytics, and high performance computing [4]. While a lot of research
is primarily focused on the efficient use of cloud resources from the perspective
of CSPs, in particular regarding cost (see, e.g., [5]) and energy-efficiency (see,
e.g., [6]), only a few works have considered the consumer perspective in recent
years (see, e.g., [7–10]). According to Heilig and Voß [11] and Marston et al. [1],
research for understanding and solving consumer-related issues of cloud comput-
ing becomes increasingly important to achieve its potentials. As the fast moving
cloud market consists of multiple cloud providers that offer multiple resources
with various prices and features, it becomes increasingly difficult, in terms of cost
and time, for consumers and cloud brokers to choose an appropriate configura-
tion of cloud resources to deploy individual applications. For a general overview
on the economics and elasticity challenges of deploying tasks and applications
on cloud environments the reader is referred to the work of Suleiman et al. [12].

The previous discussion leads to the development of mathematical models
and algorithms for supporting consumers and cloud brokers when choosing and
scheduling appropriate configurations of the cloud resources at hand. In this
regard, the employed algorithms should assist consumers while optimizing costs
and improving the overall performance of service in terms of the consumer spe-
cific requirements and preferences. At this point, it is worth highlighting the
importance of the computational time within this process. That is, in order to
further automate the deployment of the processes, the required computational
time of the respective optimization models and algorithms should be consider-
ably low with the aim of allowing users to define cloud resource configurations
according to the real-time resource demands of the services. Consequently, fast
problem solving techniques, proving satisfactory solutions, are required.

Recently, Coutinho et al. [13] proposed the Cloud Resource Management
Problem (CRMP), which is a novel multi-criteria optimization model taking
into account both, cost and performance preferences of consumers. The authors
present an integer programming (IP) formulation, referred to as CC-IP, which
considers resource demands of applications, budget limits, and various resource
packages that describe the physical capabilities of associated virtual machine
(VM) instances. A Greedy Randomized Adaptive Search Procedure (GRASP)
is proposed for solving multiple problem instances. Using CC-IP or GRASP,
however, is computationally expensive for multiple problem instances (between
minutes and almost an hour for some problem instances). As the computation
time plays a decisive role for an efficient decision support allowing the automation

A Biased Random-Key Genetic Algorithm for the Cloud Resource 3

of deployment processes, such as discussed in Heilig et al. [14], there is an urgent
need of providing a faster algorithm for solving the CRMP.

The goals of this paper are, on the one hand, to propose a Biased Random-
Key Genetic Algorithm (BRKGA) approach for solving the CRMP, referred to
as BRKGA-CC. On the other hand, we aim to develop a fast algorithm that pro-
vides high-quality solutions in terms of objective function value, that supports
either, consumers and cloud brokers, when addressing the packages selection.
It should be noted that fast algorithms may be desirable from the consumer
viewpoint, as such an algorithm could be executed on a standard user computer
without requiring expensive high performance computing. For evaluating its per-
formance, we undertake an extensive experimentation over the benchmark suite
proposed for this problem in Coutinho et al. [13]. In a nutshell, our evolutionary
approach noticeably outperforms recent approaches within small computation
times in the millisecond range, on average. This represents an important step
towards real-time decision support for deploying applications in the cloud, which
is not only essential for individual consumers, but also for cloud brokers as dis-
cussed in Lucas-Simarro et al. [15] and Tordsson et al. [16].

The remainder of this paper is organized as follows. In Sect. 2, the CRMP is
described. Section 3 presents the proposed BRKGA-CC for solving this problem.
Computational results are given in Sect. 4. Finally, conclusions and some lines
for future work are stated in Sect. 5.

2 Cloud Resource Management Problem

The CRMP is proposed by Coutinho et al. [13] as a cloud computing opti-
mization problem oriented towards consumers and cloud brokers. That is, in
the CRPM, we specifically focus on IaaS enabling consumers to select and
utilize resizable computational resources to run their applications, after the con-
sumer has decided which CSP will be used (for example, Amazon Web Ser-
vices, Google Cloud Platform, etc.). In this problem, the main difficulty lies
in finding an appropriate combination of cloud resources that satisfy applica-
tion requirements and specific consumer requirements, which may be predefined
by budget and performance constraints. Application requirements may include
the minimum number of Giga floating point operations (Gflop) to execute the
application, total memory requirements (in Gigabytes), and maximum hard disk
capacity (in Gigabytes). As depicted in Fig. 1, a CSP offers different packages
of VM instances. A package describes the specific attributes and a respective
price. The attributes include processor capacity (measured in Gflop), memory
capacity, platform architecture (32-bit/64-bit), and hard disk capacity. Not sur-
prisingly, the price for a package with high computational resource capacities is
higher than for lower capacities. Vice versa, the performance of packages with
high computational resource capacities is higher thus enabling an application
to be executed faster. Consequently, a conflict of objectives is likely to occur.
To handle cost-performance trade-offs, the consumer must specify the weight of
such factors. Based on the multicriteria objective function, an optimal selection

4 L. Heilig et al.

of cloud resources must be determined, considering application and consumer
requirements. Finally, the consumer utilizes the selected resources by deploying
its applications.

Package
14

IaaS

Package
1

Package
2

Package
n

... ...

Memory
Gflops

Platform
Disk
Price
...

Memory
Gflops

Platform
Disk
Price
...

Memory
Gflops

Platform
Disk
Price
...

CSP
Application
requirements
- Min. Gflop
- Total memory
- Max. disk capacity

Consumer
requirements
- Max. costs / budget
- Max. time

Resource Selection

Consumer preferences
- weight costs
- weight performance

Package
11

Package
5

Selection
Result /
Configuration

Deployment

Enterprise
Consumer

Decision

Fig. 1. Cloud resource management problem

2.1 Mathematical Formulation

In the following, with the aim of making this paper self-contained, we include
the mathematical formulation of the CRMP as presented in Coutinho et al. [13].

For a consumer, we define both, a set of application requirements and a
set of consumer requirements. The set of application requirements consists of a
minimum demand of processing capacity of Gf Gflop, memory capacity of mp,
and hard disk capacity of DS . On the other hand, the consumer requirements
consist of the maximum payment cost CM , expressing the consumer’s willingness
to pay (i.e., budget limit), as well as an execution time limit TM associated with
the deployment of an application in the cloud of a CSP. Considering the CSP’s
offer, let P denote the package types of a VM offered during a set of time periods
t ∈ T = {1, 2, ..., TM}. Each package type p ∈ P has associated computational
resource capacities expressed by the processing capacity of gp Gflop per period
t (Gflop(t)), memory capacity mp, and hard disk capacity dp. The cost c per
period for running a VM of package type p is denoted as cp, which corresponds
to the price of package type p charged by the CSP in each period. Moreover,
a maximum limit of NM packages that can be purchased at each time period
is defined according to common policies used by CSPs. A binary variable xpit

is modeled for each p ∈ P , i ∈ {1, 2, ..., NM} and t ∈ T , such that xpit = 1 if
package i of type p is consumed at time t and xpit = 0, otherwise. The variable tm
denotes the last time period in which a package was purchased by the consumer.

A Biased Random-Key Genetic Algorithm for the Cloud Resource 5

For a detailed description the reader is referred to Coutinho et al. [13].

(CC-IP) minimize (α1

∑

p∈P

NM∑

i=1

∑

t∈T

cpxpit + α2tm) (1)

subject to:
∑

p∈P

NM∑

i=1

∑

t∈T

cpxpit ≤ CM (2)

∑

p∈P

NM∑

i=1

dpxxip ≥ DS xp′i′t,∀t ∈ T,∀p′ ∈ P,∀i′ ∈ {1, ..., NM} (3)

∑

p∈P

NM∑

i=1

mpxxip ≥ MC xp′i′t,∀t ∈ T,∀p′ ∈ P,∀i′ ∈ {1, ..., NM} (4)

∑

p∈P

NM∑

i=1

∑

t∈T

gpxpit ≤ Gf (5)

∑

p∈P

NM∑

i=1

xpit ≤ NM ,∀t ∈ T (6)

tm ≥ t xpit,∀t ∈ T,∀p ∈ P,∀i ∈ {1, ..., NM} (7)

xpit+1 ≤ xpit,∀t ∈ T,∀p ∈ P,∀i ∈ {1, ..., NM} (8)

xpi+1t ≤ xpit,∀t ∈ T,∀p ∈ P,∀i ∈ {1, ..., NM − 1} (9)

xpit ∈ {0, 1},∀t ∈ T,∀p ∈ P,∀i ∈ {1, ..., NM}, tm ∈ Z (10)

where (α1 + α2) = 1.
The objective function of the CC-IP model (1) seeks both the minimization

of costs and execution time (i.e., total purchased time). As these objectives are
conflicting, there is no common alternative for providing an optimal solution
for both objectives simultaneously. To handle the cost-performance trade-off,
the target weights α1 and α2 enable the consumer to specify the importance
of each objective. For values of α1 close to 1, the consumer prefers low-budget
solutions at an expense of larger total execution time. For values of α2 close to
1, correspondingly, the consumer prefers a short execution time at an expense
of higher total costs. Constraints (2) ensure that the cost for purchasing pack-
ages do not exceed the budget limit of the consumer. Constraints (3) and (4)
state the minimum application resource demands in terms of memory and hard
disk capacity at each time period. Equally, constraints (5) guarantee that the
purchased processing capacity is large enough to satisfy the overall demand.
Constraints (6) ensure that the maximum limit of packages per time period is
not exceeded. Constraints (7) define the properties of variable tm, while con-
straints (8) guarantee that there are no gaps of time in a feasible solution. In
this regard, a package that is selected at time t + 1, is also selected at time t.
Constraints (9) establish an order between packages and eliminates symmetries.
Constraints (10) define the binary and integer variables xpit and tm.

6 L. Heilig et al.

3 Biased Random-Key Genetic Algorithm

The Biased Random Key Genetic Algorithm, BRKGA, (see [17,18]) is presented
as a variation of the Random Key Genetic Algorithm (RKGA) proposed by
Bean [19]. It differs in the way the crossover is performed. That is, for generating
the offspring, BRKGA selects one parent from an elite population and the other
one from the rest of the population. Moreover, in the crossover process, for giving
more probability to the elite parent genes, a biased coin favouring the elite parent
is tossed, so the child would have more probability of inhering the keys of its elite
parent. This strategy implies an implicit learning from the best solutions along
the generations. In the BRKGA, we have a fixed-size population, Pop, consisting
of |Pop| individuals, where each individual is a sequence of randomly generated
numbers (random keys) in the real interval [0, 1]. Through a decoder, a vector of
random keys r is translated to a solution of the optimization problem at hand
with a fitness value f(r) for that vector. At each iteration of the algorithm, the
population is partitioned into a smaller set Pope of elite individuals and a larger
set Popc with the remaining individuals of Pop. The evolutionary process within
BRKGA is as follow. First, all elite individuals are copied, without change, to
the population of the next generation. Then, a set Popm of mutant individuals,
generated in the same way as an individual of the initial population is inserted
into the population of the next generation. Finally, the rest of the population is
filled with the offspring obtained through parameterized uniform crossover with
an inheritance probability ς. This crossover follows an elitist strategy, i.e., one
parent, rka, from Pope and one, rkb, from Popc are selected at random. For a
more detailed explanation the reader is referred to [17,18].

3.1 BRKGA Application for the CRMP

Initial Population. The initial population is composed of |Pop| chromosomes,
each randomly generated.

Coding. The solutions for the CRMP are encoded with an n-dimensional array
R = (r1, r2, ..., r|2·P |), where |P | is the number of types of packages. Each com-
ponent ri (i = 1, ..., n) is a real number in the interval [0, 1].

Decoding. In the decoding process, a random key vector is mapped in the
solution space of the CRMP. In this regard, through each random key vector,
R, we determine the preference and quantity of packages used. For this purpose,
the random key vector is divided into two parts:

1. Firstly, we order increasingly the first |P | random keys of R, from the leftmost
gene up to the |P |-th rightmost gene, giving rise to a sorted random key vector
denoted as R1 = (r′

1, r
′
2, ..., r

′
|P |), where r′

i ≤ r′
i+1, i = 1, 2, ..., |P | − 1. The

position, k, that each gene r′
i ∈ R1 occupies in R determines the k-type of

package preference used when determining the quantity of packages in the
next step. Thus, for example, the position of the gene with lowest value in

A Biased Random-Key Genetic Algorithm for the Cloud Resource 7

the disordered sequence, R, establishes the package type with the highest
preference when assigning the number of packages in the next point. The
preference array obtained in this step is denoted as O = (o1, o2, ..., o|P |),
where each oi, i = 1, 2, ..., |P |, is a type of package.

2. The interval [0, 1] is equally divided by variable δ, which is defined as the
number of maximum packages, NM , minus the number of packages already
assigned in the decodification process. Hence, initially δ = NM , which results
in NM subintervals corresponding to the possible quantity of packages we
can assign. Once we have the δ intervals, we traverse R for i = |P | + 1, ..., |2 ·
P |, if the ri value is within an interval, then the quantity represented by
that interval is selected to be assigned to the package type established by
oi−|P |. Note that this preference array, O, is determined in the previous step.
Once that happens, the δ value is updated. The process of determining the
quantities may also finish when δ = 0.

3. Once the package types and quantities are determined, we have a profile per
each time step. This profile is repeated until all the Gf required are provided.
Note that this repetition may cause a surplus of Gflops. To address this,
we use an algorithm for reducing that surplus and, therefore, the total cost.
The algorithm reduces the Gflops as much as possible by considering the unit
reduction of the packages. This reduction considers the constraints established
for the problem.

Crossover. Crossover is carried out by combining the genes of two chromo-
somes, one randomly chosen from Pe and one from the rest of the population.
The combination strategy used is the parameterized uniform crossover, where
an inheritance probability ς has been selected.

Mutation. The mutation is carried out in order to prevent premature conver-
gence and expand the search space. Unlike genetic recombination, where muta-
tion is performed by modifying genes of certain chromosomes in the population,
the mutation strategy used in this work is based on the criterion of immigration
(see [19]). That is, at each generation a small number |Popm| of individuals are
randomly generated and included in the new population.

Reproduction. The reproduction strategy used in this algorithm is based on
elitism. That is, the best individuals of the population Pope are copied from one
generation to the next one. The advantage of this strategy is that it maintains
the best solutions while the population is being improved and ensures a constant
number of good individuals for mating.

4 Computational Results

This section is devoted to assess the performance of our proposed algorithm. In
doing so, we have tested it over a set of problem instances based on real cloud

8 L. Heilig et al.

Table 1. Instance description of Coutinho et al. [13]

Instance Memory Storage Gflop (t) Time Max. Cost ($)

(GB) (GB) (hr.) Packages

nug22-sbb 77 51 5,067,533 12 20 343

nug24-sbb 154 103 14,741,914 48 20 998

nug25-sbb 214 142 28,792,800 60 20 1,950

nug28-sbb 528 352 67,720,666 72 20 4,586

nug30-sbb 918 612 120,929,760 84 20 8,190

nug22-cbb 77 51 20,270,131 12 20 343

nug24-cbb 154 154 88,451,482 72 20 1,498

nug25-cbb 214 214 230,342,400 120 20 3,900

nug28-cbb 528 528 541,765,325 144 20 9,173

nug30-cbb 918 918 967,438,080 168 20 16,380

mod-gen 4 2 3,317,760 24 20 100

raxml 3 2 3,317,760 24 20 100

segemehl 64 600 28,748,390 4 20 192

cms-1000 1500 20 216,000,000 24 30 1,728

cms-1250 1875 25 270,000,000 24 40 2,304

cms-1500 2250 30 324,000,000 24 45 2,592

market offerings proposed in Coutinho et al. [13]. These instances include differ-
ent requirement sets on Gflop, memory, and hard disk capacity of five real appli-
cations [13]: a branch-and-bound algorithm for solving the Quadratic Assignment
Problem (QAP) [20], three algorithms that tackle the manipulation of a biolog-
ical sequence problem (RAXML [21], ModelGenerator [22] and Segemehl [23]),
and a typical user analysis job for the CMS experiment [24]. Each instance fur-
ther includes a maximum allowed execution time and payment cost, defined by
the consumer. Moreover, two sets of VM packages available in two commercial
clouds, namely Amazon EC2 and Google Compute Engine, are used to define
available package types for each instance as well as a maximum limit of pack-
ages that can be purchased in each period of time, defined by the respective
CSP. Having the data of different CSPs, a comparison between multiple CSPs
is possible. Table 1 describes the used instances.

The proposed optimization technique has been implemented in JAVA and
executed on a computer equipped with an Intel 3.16 GHz and 4 GB of RAM. By
preliminary experiments, we identified the following parameters. A population,
Pop, consisting of 100 individuals is used, within which an elite population, Pope,
of 10 and a mutation population, Popm, of 10 individuals are considered. The
inheritance probability, ς, is set to 0.8. For each instance, we have performed 20
executions. Table 2 illustrates the results provided by CC-IP [13], GRASP-CC
[13] and our approach, BRKGA-CC for the instances proposed by [13] using the

A Biased Random-Key Genetic Algorithm for the Cloud Resource 9

Table 2. Computational results of GraspCC [13], CC-IP [13], and BRKGA-CC with
α1 = 0.5 and α2 = 0.5. ∗ indicate that CPLEX reached time limit. ∗∗ indicate that the
reported value is not feasible.

CC-IP GraspCC BRKGA-CC

Instances Obj. t(s.) Obj. Gap (%) t(s.) Obj. Gap (%) t(s.)

nug22-sbb am 2.75 0.59 2.75 0.00 0.01 2.75 0.00 0.03

nug24-sbb am 6.55 6.79 6.55 0.00 0.02 6.55 0.00 0.05

nug25-sbb am 9.05 10.98 9.05 0.00 0.05 9.05 0.00 0.07

nug28-sbb am 20.90 27.23 20.90 0.00 0.07 20.90 0.00 0.04

nug30-sbb am 68.25 32.42 68.25 0.00 0.08 68.25 0.00 0.07

nug22-cbb am 6.40 0.77 6.40 0.00 0.03 6.40 0.00 0.02

nug24-cbb am 24.10 5.81 24.10 0.00 0.17 24.10 0.00 0.03

nug25-cbb am 61.35 12.01 61.35 0.00 0.91 61.35 0.00 0.02

nug28-cbb am 18.95 21.20 18.95 0.00 0.07 18.95 0.00 0.03

nug30-cbb am 528.85 118.42 528.85 0.00 3.63 528.85 0.00 0.04

mod-gen am 1.55 0.50 1.55 0.00 0.00 1.55 0.00 0.06

raxml am 1.55 0.48 1.55 0.00 0.00 1.55 0.00 0.08

segemehl am 8.90 0.26 8.90 0.00 0.07 8.90 0.00 0.06

cms-1000 am 139.60 31.82 139.60 0.00 0.18 139.60 0.00 0.17

cms-1250 am 172.10 39.50 172.10 0.00 0.53 172.10 0.00 0.13

cms-1500 am 207.20 32.83 207.20 0.00 0.53 207.20 0.00 0.16

nug22-sbb go 2.94 77.72 2.95 0.34 5.36 2.94 0.00 0.14

nug24-sbb go∗∗ 7.98∗∗ 9194.37 7.98∗∗ 0.00 20.74 8.48 6.27 0.16

nug25-sbb go 16.27 28081.33 16.27 0.00 38.90 16.27 0.00 0.29

nug28-sbb go 46.72 35278.98 46.72 0.00 133.66 46.72 0.00 0.20

nug30-sbb go 106.64 73656.27 106.64 0.00 42.98 106.64 0.00 1.18

nug22-cbb go 10.28 246.79 10.28 0.00 17.97 10.28 0.00 0.19

nug24-cbb go 45.46 19695.32 45.46 0.00 177.53 45.46 0.00 0.28

nug25-cbb go 124.50 64758.31 124.50 0.00 1186.05 124.50 0.00 0.18

nug28-cbb go∗ 37.82 86400.00∗ 37.87 0.12 60.00 37.82 0.00 0.21

nug30-cbb go 827.11 5085.60 827.11 0.00 2987.79 827.11 0.00 0.74

mod-gen go 2.08 32.71 2.08 0.00 2.97 2.08 0.00 0.22

raxml go 2.08 29.34 2.08 0.00 2.91 2.08 0.00 0.29

segemehl go 14.61 23.52 14.61 0.00 52.40 14.61 0.00 0.29

cms-1000 go 198.85 4458.83 198.85 0.00 27.56 198.85 0.00 2.31

cms-1250 go 230.76 34210.73 230.76 0.00 153.13 230.76 0.00 0.87

cms-1500 go∗ 293.43 86400.00∗ 293.43 0.00 53.27 293.23 -0.07 1.84

Average 101.42 13999.11 101.43 155.30 101.43 0.33

same α values, i.e., α1 = 0.5 and α2 = 0.5. Both, CC-IP and GRASP-CC, as
indicated in [13] were executed on a computer equipped with an Intel Core i7
3.4 GHz and 12 GB of RAM. For each instance, we report the best objective

10 L. Heilig et al.

value (Obj.) and the running time of each approach (t(s.)) measured in seconds.
Finally, for each approximate approach we include the relative error (Gap(%))
based on the values reported by CC-IP.

As can be checked in Table 2, BRKGA-CC outperforms CC-IP and GraspCC
in terms of running time. This characteristic is relevant if we take into account
that the required computational times should be considerably low with the aim of
allowing an automatic selection and deployment of cloud resources according to
the real-time resource demands of applications. In this sense, low-computational
times as the ones reported by BRKGA-CC allow consumers and cloud brokers
to test different profiles or to evaluate more possibilities when several cloud
providers have to be selected. Furthermore, concerning the quality of the solu-
tions in terms of the objective function value, we can highlight that the BRKGA-
CC presents a competitive performance, allowing the improvement of solutions
in comparison with GraspCC and provide a new best value for an instance (cms-
1500 go) where CPLEX reaches a time limit.

Problem Instance Nug-24-sbb go. As provided in Table 2, the objective
values reported by CC-IP and GraspCC are not feasible in terms of the math-
ematical formulation. As shown in Table 1, we are required to fulfill 14,741,914
Gflop and we have a maximum number of 20 packages per time period. Moreover,
as included in the instance, the maximum Gflop that a package can contribute
is (166.4 · 3600 = 599,040). Hence, if 20 of those packages are selected, then,
at most 11,980,800 Gflop can be obtained in each time step. Therefore, we will
need more than tm = 1 to fulfill the amount of Gflop required.

5 Conclusions

In this paper, we propose a Biased Random-Key Genetic Algorithm, BRKGA-
CC, for solving the CRMP. This recent cloud computing optimization problem
is aimed at finding an appropriate configuration while satisfying application
demands, in particular if respective decision makers have multiple, possibly con-
flicting objectives. The development of algorithms for providing decision support
when choosing sets of VM packages (offered by cloud providers) becomes increas-
ingly important. In this sense, the algorithms should assist consumers while
optimizing costs and improving the overall performance of service in terms of
consumer specific requirements (e.g., budget constraints, maximum allowed exe-
cution time) and preferences (e.g., low-budget versus high-performance compu-
tations). The required computational time of the respective optimization models
and algorithms should be considerably low with the aim of allowing an automatic
selection and deployment of cloud resources according to the real-time resource
demands of applications. In return, the consumer is able to better utilize the
flexible use options and attractive prices of resources in the cloud over time in
order to achieve reduced operational costs and a higher quality of service for
deployed applications.

A Biased Random-Key Genetic Algorithm for the Cloud Resource 11

The computational experiments reported by BRKGA-CC over a benchmark
suite generated based on real data indicate that the performance of our app-
roach outperforms the approaches that were recently proposed in the literature
in terms of computational time and quality. Our algorithm provides high qual-
ity solutions, compared to recent approaches, and achieves computation times
in the millisecond range for all instances. As a result, thanks to the CPU-time
advantage of BRKGA-CC, it enables real-time decision support for deploying
applications in the cloud both important for cloud consumers and brokers. More-
over, it can be indicated that BRKGA-CC is a suitable algorithm for being used
either isolatedly or within integration schemes when addressing cloud resource
management related problems.

For future work, we intend to extend the model with brokers acting on behalf
of multiple consumers with individual preferences and constraints. In this sce-
nario, the broker selects sets of configurations offered by multiple CSPs in order
to satisfy individual consumer requirements.

Acknowledgements. This work has been partially funded by the European Regional
Development Fund, the Spanish Ministry of Economy and Competitiveness (project
TIN2012-32608). Eduardo Lalla-Ruiz thanks the Canary Government for the finan-
cial support he receives through his doctoral grant. We thank the authors of [13] for
providing their data.

References

1. Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., Ghalsasi, A.: Cloud computing -
the business perspective. Decis. Support. Syst. 51(1), 176–189 (2011)

2. Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the clouds:
towards a cloud definition. ACM SIGCOMM Comput. Commun. Rev. 39(1), 50–55
(2009)

3. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging IT platforms: vision, hype, and reality for delivering computing as
the 5th utility. Future Gener. Comput. Syst. 25(6), 599–616 (2009)

4. Hoffa, C., Mehta, G., Freeman, T., Deelman, E., Keahey, K., Berriman, B.,
Good, J.: On the use of cloud computing for scientific workflows. In: 4th Inter-
national Conference on eScience (eScience 2008), pp. 640–645. IEEE (2008)

5. Van den Bossche, R., Vanmechelen, K., Broeckhove, J.: Cost-optimal scheduling in
hybrid IaaS clouds for deadline constrained workloads. In: 3rd IEEE International
Conference on Cloud Computing (CLOUD 2010), pp. 228–235. IEEE (2010)

6. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuris-
tics for efficient management of data centers for cloud computing. Future Gener.
Comput. Syst. 28(5), 755–768 (2012)

7. Gutierrez-Garcia, J.O., Sim, K.M.: A family of heuristics for agent-based elas-
tic cloud bag-of-tasks concurrent scheduling. Future Gener. Comput. Syst. 29(7),
1682–1699 (2013)

8. Mao, M., Li, J., Humphrey, M.: Cloud auto-scaling with deadline and budget
constraints. In: 11th IEEE/ACM International Conference on Grid Computing
(GRID 2010), pp. 41–48. IEEE (2010)

12 L. Heilig et al.

9. Netjinda, N., Achalakul, T., Sirinaovakul, B.: Cloud provisioning for workflow
application with deadline using discrete PSO. ECTI Trans. Comput. Inf. Tech-
nol. 7(1), 43–51 (2013)

10. Oprescu, A., Kielmann, T.: Bag-of-tasks scheduling under budget constraints. In:
IEEE Second International Conference on Cloud Computing Technology and Sci-
ence (CloudCom 2010), pp. 351–359. IEEE (2010)

11. Heilig, L., Voß, S.: A scientometric analysis of cloud computing literature. IEEE
Trans. Cloud Comput. 2(3), 266–278 (2014)

12. Suleiman, B., Sakr, S., Jeffery, R., Liu, A.: On understanding the economics and
elasticity challenges of deploying business applications on public cloud infrastruc-
ture. J. Internet Serv. Appl. 3(2), 173–193 (2012)

13. Coutinho, R.d.C., Drummond, L.M.A., Frota, Y.: Optimization of a cloud resource
management problem from a consumer perspective. In: an Mey, D., et al. (eds.)
Euro-Par 2013. LNCS, vol. 8374, pp. 218–227. Springer, Heidelberg (2014)

14. Heilig, L., Voß, S., Wulfken, L.: Building clouds: An integrative approach for an
automated deployment of elastic cloud services. In: Chang, V., Walters, R., Wills,
G. (eds.) Delivery and Adoption of Cloud Computing Services in Contemporary
Organizations. IGI Global (2015, to appear)

15. Lucas-Simarro, J.L., Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.:
Scheduling strategies for optimal service deployment across multiple clouds. Future
Gener. Comput. Syst. 29(6), 1431–1441 (2013)

16. Tordsson, J., Montero, R.S., Moreno-Vozmediano, R., Llorente, I.M.: Cloud bro-
kering mechanisms for optimized placement of virtual machines across multiple
providers. Future Gener. Comput. Syst. 28(2), 358–367 (2012)

17. Ericsson, M., Resende, M., Pardalos, P.M.: A genetic algorithm for the weight
setting problem in OSPF routing. J. Comb. Optim. 6, 299–333 (2002)

18. Gonçalves, J.F., Resende, M.: Biased random-key genetic algorithms for combina-
torial optimization. J. Heuristics 17, 487–525 (2011)

19. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization.
RSA J. Comput. 6, 154–160 (1994)

20. Gonçalves, J.F., Drummond, L.M., Pessoa, A.A., Hahn, P.: Improving lower
bounds for the quadratic assignment problem by applying a distributed dual ascent
algorithm. arXiv preprint arXiv:1304.0267 (2013)

21. Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analy-
ses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690
(2006)

22. Keane, T.M., Creevey, C.J., Pentony, M.M., Naughton, T.J., Mclnerney, J.O.:
Assessment of methods for amino acid matrix selection and their use on empirical
data shows that ad hoc assumptions for choice of matrix are not justified. BMC
Evol. Biol. 6(1), 1–17 (2006)

23. Hoffmann, S., Otto, C., Kurtz, S., Sharma, C.M., Khaitovich, P., Vogel, J., Stadler,
P.F., Hackermüller, J.: Fast mapping of short sequences with mismatches, inser-
tions and deletions using index structures. PLoS Comput. Biol. 5(9), 1–10 (2009)

24. Chatrchyan, S., Hmayakyan, G., Khachatryan, V., Sirunyan, A., Adam, W., Bauer,
T., Bergauer, T., Bergauer, H., Dragicevic, M., Erö, J., et al.: The CMS experiment
at the CERN LHC. J. Instrum. 3(8) (2008)

http://arxiv.org/abs/1304.0267

A Computational Comparison of Different
Algorithms for Very Large p-median Problems

Pascal Rebreyend1(B), Laurent Lemarchand2, and Reinhardt Euler2

1 School of Technology and Business Studies, Dalarna University, Falun, Sweden
prb@du.se

2 Lab-STICC/UBO, Université Européenne de Bretagne, Brest, France
{laurent.lemarchand,reinhardt.euler}@univ-brest.fr

Abstract. In this paper, we propose a new method for solving large
scale p-median problem instances based on real data. We compare dif-
ferent approaches in terms of runtime, memory footprint and quality of
solutions obtained. In order to test the different methods on real data,
we introduce a new benchmark for the p-median problem based on real
Swedish data. Because of the size of the problem addressed, up to 1938
candidate nodes, a number of algorithms, both exact and heuristic, are
considered. We also propose an improved hybrid version of a genetic
algorithm called impGA. Experiments show that impGA behaves as well
as other methods for the standard set of medium-size problems taken
from Beasley’s benchmark, but produces comparatively good results in
terms of quality, runtime and memory footprint on our specific bench-
mark based on real Swedish data.

1 Introduction

Facility location problems consider a set of demand points to be served from a
set of possible locations. Solution quality takes into account costs for associating
demand points to locations and also costs of choosing a particular location. In the
p-median version, the latter is not considered, i.e., we can describe the p-median
problem as finding a set of p facilities such that the sum of distances between
demand points and the closest facility is minimized. The p-median problem has
been introduced by Hakimi [15] who describes its basic properties.

Previous approaches to the p-median problem [1,11,14] have included numer-
ical tests using Beasley’s benchmark [7]. The largest graph of this benchmark
has 900 candidate nodes on which we can locate facilities. Graphs are generated
with a uniform distribution of the demand, which is not representing accurately
a true problem since the population in most countries and therefore the demand
is not uniformly distributed due to the presence of natural factors like islands,
lakes, mountains, rivers,. . . , and the concentration areas related to urbanization.
Further, to represent most regional or national location problems with just 900
candidate nodes is rather limited and implies a high degree of problem simplifica-
tion together with a loss of information accuracy. Another set of abstract graphs
has been used by Avella [4], with the same drawback of uniform distribution of
the demand.
c© Springer International Publishing Switzerland 2015
G. Ochoa and F. Chicano (Eds.): EvoCOP 2015, LNCS 9026, pp. 13–24, 2015.
DOI: 10.1007/978-3-319-16468-7 2

14 P. Rebreyend et al.

Due to these two limitations of the Beasley benchmark, one of our interest in
this paper is to introduce and use a new set of problem instances based on real
data. This new set is based on Swedish real data. Sweden is a good candidate
to test methods for the p-median problem since the distribution of population
is not uniform as we can see in Fig. 1. The size of the country (449, 964 km2)
is big enough to test algorithms designed for country-related problems. Swe-
den exhibits also some particular characteristics which make a clear difference
between an abstract graph and those obtained from real data such as the pres-
ence of natural barriers i.e., lakes or mountains. The non-uniform distribution
of the population is also taken into account by distinguishing between demand
nodes and candidate nodes. Demand nodes indicate where people are living while
candidate nodes are possible locations for a facility. The number of facilities p
will vary from 10 to 100 in our cases to cover different practical p-median prob-
lems such as locating universities (p = 10), courts, public hospitals (p = 100),. . . .
Locating hospitals is the practical problem we focus on, without limitation on
the capacity of a facility. This corresponds to most of the computational exper-
iments done so far [22].

Some tests on larger graphs have been carried out by Avella [4] using the
Birch set of abstract graphs (with up to 89 000 nodes). Birch graphs have sim-
ilar to those of Beasley a uniform distribution of the demand but points are
grouped into clusters. Real graphs with up to 67,000 nodes have been used by
Rebreyend et al. [21] to investigate effects of the quality of different road net-
works on the p-median problem. But in their case only one heuristic method was
tested and the number of candidate nodes to locate on was high in comparison
to the geographical area as was the number of nodes representing locations of
population, since data represent only a single Swedish province. The authors of
[21] conclude that fewer nodes lead to better results also because they are using
an approximate method.

Sweden has an asymmetrical distribution of the population and natural bar-
riers are spread all over the country. Therefore, we need to use the road distances
since Euclidian distances may lead to poor results [9].

The p-median problem is described in the next section. Section 3 presents
previous work and algorithms related to the p-median problem. A detailed expla-
nation on the algorithms we have used is given in Sect. 4. Section 5 describes our
new algorithm. Section 6 presents the data used. Results in terms of quality,
runtime and memory footprint for the tested algorithms in Sects. 7, and Sect. 8
concludes the paper.

2 The p-median Problem

In the rest of this paper, the following terms are used:

– N for the number of candidate nodes (number of possible locations for a
facility),

– D for the number of demand nodes,
– p for the number of facilities to allocate.

A Computational Comparison of Different Algorithms 15

Fig. 1. Distribution of two populations, Dalecarlia province on the left, Sweden on the
right

A common formulation of the p-median problem due to Revelle and Swain
[23] is the following:

minimize
D∑

i=1

N∑

j=1

hidijYij (1)

subject to
N∑

j=1

Yij = 1 ∀i, 1 ≤ i ≤ D (2)

N∑

j=1

Xj = p (3)

Yij − Xj ≤ 0 ∀i, j, 1 ≤ i ≤ D, 1 ≤ j ≤ N (4)
Xj ∈ {0, 1} ∀j, 1 ≤ j ≤ N (5)
Yij ∈ {0, 1} ∀i, j, 1 ≤ i ≤ D, 1 ≤ j ≤ N (6)

where

– hi is the weight of the demand of customer i,
– dij is the distance between customer i and facility j,
– Xi is a decision variable, indicating whether facility i is selected or not,
– Yij is a decision variable, indicating whether customer i is served by facility j

or not,
– p is the number of facilities to be selected.

16 P. Rebreyend et al.

Equation (2) ensures that a customer is served by exactly one facility. The
number of facilities is fixed by Eq. (3). Constraint set (4) reflects the objective
that demand points are assigned only to a selected facility. Binary decision vari-
ables X and Y are defined by Eqs. (5) and (6).

At least one optimal location exists if the facilities are located on the nodes
of the graph only [15]. Kariv and Hakimi [16] have shown that the p-median
problem is NP-Hard.

3 Related Work

Reese [22] has recently published a bibliography on the main methods used for
solving the p-median problem. A survey of metaheuristics has been published by
Mladenovic [20]. The earliest solution techniques mentioned are enumeration-
based or heuristics such as vertex-substitution [3,18]. Simulated Annealing (SA)
based approaches have also been applied to the p-median problem [1,9,20].
Genetic algorithms (GA) have been used in [2,11]. Some approaches rely on
hardware to improve runtimes, and thus enlarge the applicability of algorithms.
Parallel versions of GA-based approaches have also been implemented [8]. More
specifically, GPU-based implementations of the Vertex substitution heuristic [17]
or of the Volume algorithm onto multi-core systems [14] can lead to impressive
speedups. Exact methods like 0-1 programming have also been proposed [5].

In this paper we focus on sequential algorithms that are suitable for very
large problem instances. A detailed description will be given in the next section.

4 Tested Algorithms

4.1 CPlex

The p-median problem can be formulated as a 0-1 programming problem (BP)
and then be solved by a Mixed Integer Problem (MIP) solver, using a branch and
cut approach. In our tests, we have used the CPlex software from IBM (version
12.6, Linux 64 bits) to test the BP approach. Some parameters of the solver have
been tuned in order to adapt CPlex to work on large problem instances, i.e.,
removing default computation time limits, allowing intermediate data storage,
and tuning branch & cut search tree strategies according to [13]. In the following
we will refer to this implementation as CPLEX.

4.2 Volume

Barahona and Anbil have given in [6] a description of the Volume algorithm.
This algorithm solves Mixed Integer Programs (MIP) by working on the dual of
a linear problem using the sub-gradient method [14]. At each iteration approx-
imations of the primal variable values are computed in addition. By working
both on the primal and dual problem, the Volume algorithm computes lower
and upper bounds for a given problem instance very efficiently, thanks to the

A Computational Comparison of Different Algorithms 17

subgradient method. The Volume algorithm has been successfully tested on the
p-median problem by specializing it to the associated LP-relaxation. The relaxed
solution is then exploited by fast heuristics to compute an integral solution of
the original p-median problem [10,14].

The version of the Volume algorithm we used1 to solve the p-median problem
is based on the formulation given in Sect. 2, except that constraint (4) is replaced
by the following [10]:

∑

i�=j

Yij + Xj = 1,∀j, 1 ≤ j ≤ N (7)

Yij ≤ Xj ,∀i, j, 1 ≤ i ≤ D, 1 ≤ j ≤ N (8)

Equation (7) indicates that either a node is selected, or it is connected to one
candidate. Equation 8 is identical to constraint (4). As a first step for solving a
p-median problem instance, the LP-relaxation of the dual problem is formulated,
and the heuristic of Bourges-Cleraux [10] is used to find a feasible integer solution
from the vector of real numbers found: the p highest values of this vector are
selected as the set of locations used. The second step is to select for each customer
the closest facility. This is done by sorting edges of the graph according to their
distance, from the shortest to the highest and going through them. The next step
is to go through all edges in this order. If an edge connects a selected location to
a customer with no location assigned to, the corresponding location is assigned
to this customer. Altogether, the complexity of this heuristic is O(m log m) if m
is the number of edges since a sort on all edges is done. Default values have been
used for the different parameters.

4.3 Simulated Annealing

Al-Khedhairi presents a general version of a Simulated Annealing (SA) algorithm
for the p-median problem [1]. Carling et al. have later used a similar approach
to solve the p-median problem in the real context of a Swedish province [9,21].

In this paper, we use Carling et al.’s algorithm. The starting point is a random
solution of the p-median problem instance. The neighbourhood of a solution s
is defined as the set of all solutions s′ in which one of the selected nodes of s
has been replaced by another candidate node. All the candidate nodes have the
same probability to be chosen.

The initial temperature of the SA is fixed to 400◦. At every iteration the
temperature is multiplied by 0.95. A main concern with simulated annealing is
the risk to get stuck at a frozen state. To detect such a situation and reheat
the system, we proceed as follows: if 10 consecutive iterations do not result in
any improvement, the following formula is applied to modify the temperature t:
t = t ∗ 3β . The initial value of β has been set to 0.5 after some experiments. If
between two modifications no solution has been accepted, β is increased by 0.5.
1 We thank C. Cleraux for providing us the code.

18 P. Rebreyend et al.

As soon as a solution is accepted, β is reset to its value of 0.5. These parameters
have been set up according to previous experiments done with the p-median
problem [19,21].

4.4 Genetic Algorithm

Several researchers have proposed genetic algorithms (GA) for solving the
p-median problem [2,11]. Most of them use a classical string representation,
i.e. each chromosome is represented as a single string of length p embedding
the index of the selected facilities or nodes. In our experiments, we are using a
genetic algorithm based on Correa et al. [11], that has proven its efficiency for
large scale instances. We add the constraint that in all chromosomes no facility
is duplicated. The initial population of our algorithm is randomly generated and
all the candidate locations have the same probability to be chosen.The crossover
used is the one described in [11]. It takes as input 2 chromosomes (called A
and B) and generates two new offsprings (A’ and B’) which replace the ones
used as input in the global population. The two new chromosomes are generated
by the following procedure:

1. Numbers that appear in both A and B are copied into A’ and B’
2. Two exchange vectors EA and EB are computed as follows: EA (resp. EB)

are integers in A (resp. B) which are not a member of B (resp. A); (obviously
EA and EB have the same size).

3. Let r be a random integer between 0 and the size of EA.
4. r integers are randomly selected from EA and EB and exchanged against each

other.
5. EA (resp. EB) is copied into A’ (resp. B’)

We also reuse the mutation of Correa et al. [11]. For a given chromosome,
let r be a random integer between 1 and p/10. Pick at random r integers from
A and for each of them choose at random an integer not in A to replace it. The
resulting genetic algorithm will be called basic-GA in the rest of the paper.

Correa et al. [11] also introduce a local search method in their GA by means
of a new mutation called hypermutation. This operation works as follows for a
given chromosome: the heuristic loops on all selected facilities represented by
the chromosome. Each selected facility is successively replaced by a facility not
already present in the solution, and for every new chromosome produced in this
way, the best solution with respect to fitness is kept. hyper-GA is the version of
the genetic algorithm which uses hypermutation.

5 Improved Genetic Algorithm

In this section an improved genetic algorithm called imp-GA is proposed. It is
designed to perform well on very large p-median problems to be described in
Sect. 6. This improved algorithm is based on the hyper-GA of Correa et al. [11].
In hyper-GA, the local search is done via hypermutation and has a complexity

A Computational Comparison of Different Algorithms 19

of O(pN). Instead, imp-GA has a lower complexity for its local search which
is shown below as Algorithm 1. It selects a chromosome and returns the best
solution found in its neighborhood.

We have designed a new version of the hypermutation operation which turns
out to work well on very large problem instances. Its main idea is to diminish the
space of the local search in order to reduce the computing cost of hypermutation
as soon as we increase the graph size. The new hypermutation has a complexity
of O(N) since only a small, fixed number F of selected candidates are considered
for replacement.

begin
Let A be the chromosome;
Choose randomly F facilities that appear in A;
foreach facility among the P chosen nodes do

for 0 ≤ i ≤ N do
replace the selected facility by facility i (if i is not already in A);
if fitness(A′) < fitness(A) then

A ←− A′ ;
end

end

end

end
Algorithm 1. The new hypermutation operation

In our experiments, we have limited the number of iterations to 100, and the
parameter F has been set to 5. Since the new hypermutation has a lower com-
plexity, it is run at each iteration of the genetic algorithm in contrast to that of
the hypermutation of the previously described genetic algorithm whose proba-
bility of being used for a given generation is only 0.5%. The new hypermutation
has only a reduced local search space, but this leads to small computation times
and therefore we can apply it more often. All other parameters have been set to
the same values as those used in [11].

We have applied two selections. Correa is using rank selection. The biased
roulette wheel is another selection scheme commonly used [12]. These two selec-
tion methods have been tested and experiments have shown that the roulette
wheel gives better results than the rank selection. Therefore, for the rest of the
article we will only consider the biased roulette wheel selection. It works as fol-
lows: we have n chromosomes. Each of them has a fitness value fi,i = 1, ..., n.
The probability for an individual i to be chosen is p(i) = Max−fi∑

i Max−fi
, where Max

is the highest fitness value among all chromosomes of the population. Once the
probability of each individual is computed, the selection will choose randomly n
new candidates according to their probabilities.

20 P. Rebreyend et al.

Table 1. Results for the Beasley benchmark (40 graphs)

CPlex SA Genetic algorithms Volume

basic-GA hyper-GA imp-GA

1000 iterations 1000 iterations 100 iterations

optimal 40 11 20 20 23 5

Deviation in % 0.0 2.35 0.1 0.14 0.2 4.2

Total time (secs) 64329 2294 70 5246 4862 112

6 Data

For our experiments, we have used two different instance sets. One is the set of
graphs from Beasley [7] which is commonly used for testing p-median algorithms.
The number of candidate nodes varies from 100 to 900. Before running the tested
algorithms, we have precomputed for each instance the matrix of distances.

The second instance set is based on official Swedish data. The distance
matrix is derived from the National Road Database (NVDB) of the Swedish
Road Administration. From the database which stores all road segments, a graph
representing the road network is built by identifying crossings using the x,z,y
coordinates [19]. Islands or strongly connected components are detected and vir-
tual links are added to simulate ferries. Then, the graph is cleaned from data
unnecessary for the p-median problem such as dead-end roads with no people
living along, or points which are neither crossings nor demand nodes. After this
process, we still have several millions of nodes. According to Hakimi [16], these
points are the set of points we should consider for the p-median location nodes.
This graph will be used to compute distances between location and demand
nodes. The set of demand nodes is provided by Statistic Sweden [19] and con-
sists of 188, 325 weighted points. Each point indicates how many persons at the
age of 20 to 64 are living in a square centered around this point (in 2012). The
size of the square varies from 250 by 250 m to 1 km by 1 km depending on its
location. The total size of the population is 5, 411, 373 persons. The average
number of people represented by a point is thus 29 and the highest one 2, 302.

Observe that the approach used by Carling et al., and Rebreyend et al. [9,21]
for the Swedish province of Dalecarlia cannot be used directly due to the lack
of information on the road type. In order to reduce the number of candidate
nodes, and to have a good tradeoff between quality and accuracy, we have there-
fore chosen as candidate node the centers of 1938 Swedish settlements. Some
further arguments can be put forward to justify this approach. First, according
to previous results of [9,21], since p will be small (less than 100 for all Swe-
den), a smaller number of candidate points may not degrade the solution found.
Another argument is that all hospitals in Sweden are located less than 3 Km to
the city center. Finally, settlements represent well the area where most of the
people are located and therefore highly densely populated areas will have more
candidate points than sparse areas which is important when the distribution of
the demand is non-uniform. Smaller tests were created by restricting locations to
the Dalarna province (named Dalarna) and to both the Dalarna and Gävleborg

A Computational Comparison of Different Algorithms 21

 0.001

 0.01

 0.1

 1

 10

 100

 1000

S10
S20

S49
S50

S73
S100

D05
D10

D20
d05

d10
G05

G10
G20

%
 G

ap
 to

 b
es

t k
no

w
n

bo
un

d

data set
CPlex SA bGA hGA iGA vol

Fig. 2. Compared quality of the solutions obtained by different algorithms on the
Swedish benchmark. Quality of a solution is expressed as the percentage of the gap
with respect to the best known bound

provinces (named DalGavle). A third smaller case was created by taking only
54 candidate nodes for Dalarna instead of the 108 settlements.

7 Results

We aim to compare the different algorithms described in Sect. 4, with the one
we designed, imp-GA, applied to the benchmark set of Beasley [7], and then to
the real Swedish data set described in Sect. 6. We want to check the quality of
solution and of the runtimes, and also to verify if similar results are obtained
for standard benchmark and real-life testcases. For the algorithms’ settings, we
have used values by default from the corresponding software for CPlex and the
Volume algorithm. Since SA is sensitive to its starting point, results are the best
of 4 runs from different starting points, each run having 2, 000, 000 iterations.

Table 1 synthesizes our results for the Beasley benchmark set. Average results
in terms of quality are perfect for CPlex, solving all of the cases to optimality: the
benchmark scale (900 nodes maximum) is affordable by up to date software and
hardware. Concerning heuristic approaches, imp-GA solves the most important
set of cases to optimality (23) and is always close to, with a standard deviation
of 0.2 %. Other GAs also perform well, with similar standard deviations. SA is
worst, with a deviation of 2.35 %. The Volume algorithm is the less accurate
approach for those cases, with a standard deviation of 4.2 %, but it is the fastest
in term of global runtime: 112 s vs 4862 s for imp-GA, and 64329 secs for CPlex.
Globally, these results show that all algorithms are applicable to “small” cases
solvable to optimality with an exact approach.

22 P. Rebreyend et al.

Table 2. Results for the Swedish benchmark. (*) excluding Sweden subset

Problem N p Best SA Genetic algorithms Volume

(known CPLEX

lower bound) basic-GA hyper-GA imp-GA

1000 iterations 1000 iterations 100 iterations

Sweden 1938 10 40553 MEM 58590 59398 TIME 57332 62163

20 35338 MEM 38154 37720 TIME 37614 38965

49 19848 MEM 21744 22228 TIME 21042 20487

50 19633 MEM 21661 22346 TIME 20788 20225

73 15633 MEM 171961 17766 TIME 16621 15761

100 12930 MEM 14291 14598 TIME 13689 13095

Dalarna 108 5 19863 19879 19879 20008 19879 19879 20093

10 11660 11673 11673 11674 11673 11674 11661

20 7237 7280 7343 7280 7280 7281 7237

Dalarna54 54 5 20910 21075 21075 21075 21075 21075 21041

10 12270 12323 12323 17510 12323 12323 12275

20 8398 8472 8472 10404 8472 8472 8398

DalGavle 195 5 27937 27948 27948 27948 27948 27948 30221

10 17486 17510 17782 17510 17630 17510 17492

20 10294 10323 10502 10404 10323 10323 10302

% Quality std dev. 0.3(*) 6.7 11.8 0.4(*) 5.0 5.4

Total time (secs) 18128(*) 153595 21717 699(*) 52591 71554

Figure 2 shows our results on the solution quality in a comparative way
for our real-case problem instances of large size. The gap between the result
of a given method and the best known bound is shown. On the abcisse, Sxx
represents the different graphs for the case of Sweden, Gxx represents DalGavle
graphs, Dxx Dalarna graphs and dxx dalarna54 graphs. As shown in Table 2,
some results are missing, due to unterminated solution processes. The table
details the quality results for Sweden data, and also indicates the computational
effort via the total runtime of the different algorithms. TIME and MEM indi-
cate that the corresponding algorithm was not able to complete, either within
a limited amount of time (2 days) or due to memory limitations (the software
aborts before completion on our computer with 32 Gb of memory).

The quality deviation row of Table 2 shows the average deviation in percent
between the solution found by the corresponding algorithm and the best lower
bound. The best lower bound is the lower bound found either by CPlex or by
the Volume algorithm. To compute this standard deviation, we only take into
account the set of problem instances for which the algorithm terminates. This
explains why algorithms which fail on large graphs (like CPlex) have suprisingly
good values. The same explanation holds for global runtimes.

Among the algorithms that can handle all of the Swedish cases, imp-GA pro-
vides the best results on average, with a standard deviation of 5.0 %. It performs
particularly well for small values of p. Concerning runtimes, as opposed to the
Beasley “small” benchmark results, it outperforms the Volume algorithm with
a total benchmark runtime of 52591 s vs 71554 s.

Memory utilization is a major concern for the CPlex algorithm which fails on
some instances. For the Volume algorithm, almost 22 GB of memory are needed

A Computational Comparison of Different Algorithms 23

to work on graphs representing Sweden while Simulated Annealing and imp-GA
use less than 2.8 GB for the largest cases.

8 Conclusion and Future Work

In this paper, we have compared the quality of several algorithms with respect to
real-case instances of the p-median problem, which are large and whose demand
is non-uniformly distributed. For this, we have introduced a new benchmark
including up to 1938 candidates nodes. The CPlex approach is able to find
optimal solutions for all of the Beasley testcases but fails to provide results for
our set of very large graphs. Simulated annealing and the basic genetic approach
exhibit average results. A hybrid genetic algorithm called hyper-GA has been
tested. It improved the results of the basic GA on most of the graphs but failed
on the largest graphs. The Volume algorithm has also been tested but its results
vary in quality depending on the size of the problem instance.

To obtain better results for the large graphs, we have introduced a new
hybrid genetic algorithm called imp-GA. This algorithm outperforms all other
tested methods on large graphs and has a memory footprint which is as small
as that of Simulated Annealing. Its runtime is lower than that of the Volume
algorithm. Our results exhibit well the trade-off between exact and approximate
methods in dependence on the size of the problem. The effect of a hybrid muta-
tion within a genetic algorithm is important. Therefore, a good design of such
a mutation, smartly restricting neighborhood search, leads to an efficient algo-
rithm, especially for large problem instances. Since genetic algorithms can be
efficiently parallelized, the proposed method imp-GA is a good candidate to deal
with large real-case p-median problems.

In the future, we envisage to study other heuristics with respect to large
problem instances. Observe, that in our approach distances have been precom-
puted from the graph. As an alternative we could design methods which extract
an interesting set of candidate nodes from a dense graph, or which better exploit
the planarity which is typical for graphs arising from geographical problems.

References

1. Al-Khedhairi, A.: Simulated annealing metaheuristic for solving p-median problem.
Int. J. Contemp. Math. Sci. 3(25–28), 1357–1365 (2008)

2. Alp, O., Erkut, E., Drezner, Z.: An efficient genetic algorithm for the p-median
problem. Ann. Oper. Res. 122(1–4), 21–42 (2003)

3. Ashayeri, J., Heuts, R., Tammel, B.: A modified simple heuristic for the p-median
problem, with facilities design applications. Robot. Comput. Integr. Manufact.
21(4–5), 451–464 (2005)

4. Avella, P., Boccia, M., Salerno, S., Vasilyev, I.: An aggregation heuristic for large
scale p-median problem. Comput. Oper. Res. 39(7), 1625–1632 (2012)

5. Avella, P., Sassano, A., Vasil’ev, I.: Computational study of large-scale p-median
problems. Math. Program. 109(1), 89–114 (2007)

24 P. Rebreyend et al.

6. Barahona, F., Anbil, R.: The volume algorithm: producing primal solutions with
a subgradient method. Math. Program. 87(3), 385–399 (2000)

7. Beasley, J.E.: OR-library: distributing test problems by electronic mail. J. Oper.
Res. Soc. 41(11), 1069–1072 (1990)

8. Cantú-Paz, E.: A survey of parallel genetic algorithms. Calculateurs Parallèles,
Réseaux et Systèmes Répartis 10, 141–171 (1998)

9. Carling, K., Han, M., H̊akansson, J.: Does Euclidean distance work well when the
p-median model is applied in rural areas? Ann. Oper. Res. 201(1), 83–97 (2012)

10. Cleraux, C., Bourges, P.: Relaxation Lagrangienne et le problème du p-médian.
Master’s thesis, Institut Supérieur d’informatique, de modélisation et de leurs
applications, Campus de Clermont-Ferrand/Les Cézeaux, BP 10125, 63173 Aubière
CEDEX, France (2009)

11. Correa, E., Steiner, M., Freitas, A.A., Carieri, C.: A genetic algorithm for the
P-median problem. In: Proceedings of 2001 Genetic and Evolutionary Computation
Conference (GECCO-2001), pp. 1268–1275 (2001)

12. Corrêa, R., Ferreira, A., Rebreyend, P.: Scheduling multiprocessor tasks with
genetic algorithms. IEEE Trans. Parallel Distrib. Syst. 10(8), 825–837 (1999)

13. CPlex online reference manual
14. Gay, J.: Résolution du Problème du p-médian, Application à la Restructuration

de Bases de Données Semi-Structurées. Ph.D. thesis, Université Blaise-Pascal,
Clermont-II (2011)

15. Hakimi, S.L.: Optimum locations of switching centers and the absolute centers and
medians of a graph. Oper. Res. 12(3), 450–459 (1964)

16. Kariv, O., Hakimi, L.: An algorithmic approach to network location problems.
SIAM J. Appl. Math. 37(3), 539–560 (1979)

17. Lim, G.J., Ma, L.: Gpu-based parallel vertex substitution algorithm for the
p-median problem. Comput. Ind. Eng. 64(1), 381–388 (2013)

18. Lim, G.J., Reese, J., Holder, A.: Fast and robust techniques for the Euclidean
p-median problem with uniform weights. Comput. Ind. Eng. 57(3), 896–905 (2009)

19. Meng, X., Rebreyend, P.: From the road network database to a graph for localiza-
tion purposes. Technical report 2014:09, Dalarna University, Statistics (2014)

20. Mladenoviç, N., Brimberg, J., Hansen, P., Moreno-Pérez, J.A.: The p-median prob-
lem: a survey of metaheuristic approaches. Eur. J. Oper. Res. 179(3), 927–939
(2007)

21. Rebreyend, P., Han, M., H̊akansson, J.: How do different algorithms work when
applied on the different road networks when optimal location of facilities is searched
for in rural areas? In: Huang, Z., Liu, C., He, J., Huang, G. (eds.) WISE Workshops
2013. LNCS, vol. 8182, pp. 284–291. Springer, Heidelberg (2014)

22. Reese, J.: Solution methods for the p-median problem: an annotated bibliography.
Networks 48(3), 125–142 (2006)

23. ReVelle, C.S., Swain, R.W.: Central facilities location. Geogr. Anal. 2(1), 30–42
(1970)

A New Solution Representation
for the Firefighter Problem

Bin Hu(B), Andreas Windbichler, and Günther R. Raidl

Institute of Computer Graphics and Algorithms,
Vienna University of Technology,

Favoritenstraße 9-11/1861, 1040 Vienna, Austria
{hu,raidl}@ads.tuwien.ac.at

windbichler.a@gmail.com

Abstract. The firefighter problem (FFP) is used as a model to simulate
how a fire breaks out and spreads to its surroundings over a discrete time
period. The goal is to deploy a given number of firefighters on strategic
points at each time step to contain the fire in a most efficient way, so that
as many areas are saved from the fire as possible. In this paper we intro-
duce a new solution representation for the FFP which can be applied in
metaheuristic approaches. Compared to the existing approach in the lit-
erature, it is more compact in a sense that the solution space is smaller
although the complexity for evaluating a solution remains unchanged.
We use this representation in conjunction with a variable neighborhood
search (VNS) approach to tackle the FFP. To speed up the optimiza-
tion process, we propose an incremental evaluation technique that omits
unnecessary re-calculations. Computational tests were performed on a
benchmark instance set containing 120 random graphs of different size
and density. Results indicate that our VNS approach is highly competi-
tive with existing state-of-the-art approaches.

Keywords: Firefighter problem · Spreading simulation · Variable
neighborhood search

1 Introduction

The firefighter problem (FFP) was introduced by Hartnell [12] as a model to sim-
ulate the spread and containment of fire or disease over a discrete time period in
a simplified way. In each time step the fire (or other malady) infects surrounding
areas whereas a number of firefighters strategically protect certain regions in
order to seal off the respective area and to prevent further spreading. In recent
years this model has also been used to simulate information or virus spreading
in computer networks.

Formally, the problem is defined on an undirected graph G = 〈V,E〉 where
|V | = n and each vertex v ∈ V is initially flagged as untouched. At time t = 1,

This work is supported by the Austrian Science Fund (FWF) grant P24660-N23.

c© Springer International Publishing Switzerland 2015
G. Ochoa and F. Chicano (Eds.): EvoCOP 2015, LNCS 9026, pp. 25–35, 2015.
DOI: 10.1007/978-3-319-16468-7 3

26 B. Hu et al.

a fire breaks out at a pre-defined set of vertices Binit ⊆ V , and these vertices
are flagged as burnt. For each time step t = 2, 3, . . . , each member of a set
of D firefighters protects a vertex v ∈ V that is not burnt whereas the fire
propagates to the neighboring vertices that are untouched and burns them. This
process continues until the fire is contained, i.e., it cannot spread any further.
The objective is to choose those D vertices in each step to be protected by the
firefighters so that when the fire is contained, the number of vertices that are not
burnt is maximal. It is assumed that protection is permanent, i.e., a vertex will
not catch fire once it is protected, and that firefighters are able to move between
arbitrary vertices from one time step to the next one.

An example is shown in Fig. 1. Suppose the number of firefighters is two,
i.e., D = 2. At time t = 1 the fire starts at v7 (red circle). At t = 2 we protect
the vertices v4 and v9 (blue squares); the fire spreads to vertex v10. At t = 3
we protect the vertices v5 and v12; the fire spreads to vertex v11. At t = 4 we
protect the vertices v6 and v8; the fire is finally contained. The objective value
of this solution is 9 saved vertices.

Fig. 1. Example for a graph with 12 vertices and two firefighters (Color figure online).

The contribution of this paper is to introduce a new compact solution rep-
resentation for metaheuristic approaches for the FFP. We use it in a variable
neighborhood search (VNS) approach along with an incremental evaluation tech-
nique to boost the performance and compare our results with those existing in
the literature.

2 Previous Work

During the last 10 to 20 years, the FFP was studied by several researchers, but
mostly from a theoretical point of view. An extensive survey can be found in [8].
The complexity of FFP was studied on various types of graphs: Finbow et al.
[9] showed that it is NP-hard on trees with maximum degree three, but solvable
in polynomial time if the fire starts at a vertex of degree two. MacGillivray and
Wang [17] showed that it is NP-hard on bipartite graphs. King and MacGillivray
[16] showed that the FFP is NP-hard if G is a cubic graph. In addition to these

A New Solution Representation for the Firefighter Problem 27

graph types, grid structured graphs are particularly interesting due to their rele-
vance in real world scenarios. Properties of the FFP such as the ability to contain
the fire was studied by Fogarty [10] and Moeller et al. [19] on two dimensional
grids. Later the results were generalized for higher dimensions by Develin and
Hartke [7]. Besides the graph structure, complexity also depends on the number
of available firefighters. Cases with more than one firefighter were studied by
Bazgan et al. [1] and Costa et al. [6]. Apart from the complexity, approximation
algorithms for FFP have been extensively studied in the literature, especially the
case where G is a tree caught great interest. While Hartnell et al. [13] considered
greedy approaches, Hartke [11] proposed a linear programming relaxation based
algorithm and Cai et al. [3] proposed a subexponential algorithm. Later the
approximation ratios of these approaches were improved by Iwaikawa et al. [15].

Recently Blum et al. [2] presented the so far only existing metaheuristic app-
roach for the FFP based ant colony optimization (ACO). It uses a permutation
based solution encoding representing the order of vertices that are considered
for protection. The pheromone model contains values for each vertex appearing
at each possible position in the permutation. As an extension, the authors also
presented a hybrid ACO variant where half of the computation time is spent by
the ACO and the latter half is used by further tuning the best solution found
by the ACO via mixed integer programming. For this purpose they apply solu-
tion polishing which is a mechanism in CPLEX that emphasizes on improving
a given solution instead of proving optimality. Surprisingly there are so far no
other metaheuristic approaches in the literature to the best of our knowledge.
Therefore the (hybrid) ACO is the main competitor for our VNS approach with
which we will experimentally compare.

There are other variants of the FFP such as the fractional FFP where fire-
fighters can split their strength into fractions to protect the vertices [10] or the
stochastic variant where spreading is non-deterministic [4]. However, those vari-
ants are not the scope of this work.

3 Proposed Algorithm

The main aspect of this paper is to introduce a new solution representation for
the FFP as a more compact alternative to the permutation based encoding in
[2]. We use this new representation in a general variable neighborhood search
(VNS) approach with variable neighborhood descent (VND) as embedded local
improvement, see [18] for basic information on this kind of metaheuristics.

3.1 Solution Representation

We encode a solution as bitvector P = 〈p1, . . . , pn〉 where pv, v ∈ V , is 1 if the
vertex should be protected and 0 otherwise. The solution does not explicitly state
which vertices to be protected at a particular time step, but this information is
implicitly derived during evaluation by Algorithm 1.

28 B. Hu et al.

Algorithm 1. evaluate(P)
Input: solution P = 〈p1, . . . , pn〉
Output: repaired solution P and its objective
∀v ∈ Binit : status[v] = −1 ; // the fire starts at time step 1

∀v ∈ V \ Binit : status[v] = 0 ; // all other vertices are untouched

t = 2;
freeff = 0 ; // number of available firefighters in each step

burnt = 0 ; // number of burnt vertices

burning = true;
while burning do

burning = false;
freeff = freeff + D;
neededff = 0 ; // number of currently needed firefighters

foreach vertex v adjacent to a burnt vertex at step t − 1 do
if pv == 1 then

neededff = neededff + 1;

// now each vertex that is adjacent to a just burnt one has to be

updated, i.e., either protected or burnt

foreach vertex v adjacent to a burnt vertex at step t − 1 do
if pv == 1 then

// if there are too many vertices that should be protected

in the current step, drop a respective number with

uniform probability

if neededff > freeff and random(1,neededff) > freeff then
pv = 0;
neededff = neededff − 1;

else
status[v] = t ; // protect vertex at step t
freeff = freeff − 1;
neededff = neededff − 1;

if pv == 0 then
status[v] = −t ; // burn vertex at step t
burnt = burnt + 1;
burning = true;

t = t + 1;

return n − burnt;

During this procedure, we store for each vertex its status: 0 for untouched,
a positive number z for protected at time step z and a negative number −z
for burnt at time step z. The number of burnt vertices is stored in burnt and
potentially increases over the time steps. The number of available firefighters
in each time step is indicated by freeff and corresponds to the number of fire-
fighters D minus the number of vertices that would be set on fire at the current
step but are marked as protected. This is the actual time when the vertex gets

A New Solution Representation for the Firefighter Problem 29

protected. Additionally, spare firefighters in freeff can be buffered for future
steps in the case not all of them are required at the current time step. Note
that the concept of buffering does not conflict with the original problem defini-
tion since excess firefighters can be regarded as if they were protecting vertices
that would become relevant later, at a time where more than D firefighters are
required to protect the desired vertices. Then the number of required firefighters
neededff is calculated, which consists of the number of vertices that are next to a
burning vertex but should be protected according to the solution P . If neededff
is larger than freeff at a certain time, the solution is actually infeasible since
there are not enough firefighters to protect all the desired vertices from burning.
Therefore, the evaluation procedure also contains an implicit repair function for
this situation. If too many vertices are required to be protected, only freeff out
of neededff vertices are saved and the others are dropped on a random basis
where each vertex has equal probability. Other than that, the fire spreads over
to adjacent vertices that are labeled as untouched.

An example for this procedure is shown in Fig. 2. The number of firefighters is
again two and the fire starts at v7 (red circle) at time t = 1. The solution vector is
P = 〈1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0〉 and states that vertices v1, v2, v4, v6, v8, v9, v10
should be protected (blue boxes). At t = 2 three protected vertices are adjacent
to a burning vertex: v4, v9 and v10. Since there are only two firefighters, vertex
v4 gets dropped at random and catches fire (red square) while the other two are
protected (blue squares). At t = 3 only one protected vertex v1 is adjacent to
burning vertices, so one spare firefighter is buffered. The unprotected vertex v5
catches fire. At t = 4 three protected vertices are adjacent to burning vertices
and all of them can be saved due to the buffered firefighter. This is equivalent
to as if the spare firefighter had saved one of these vertices in the previous time
step. Now the fire is fully contained and the objective value of this solution is
again 9.

Fig. 2. Solution evaluation example for a graph with 12 vertices and two firefighters
(Color figure online).

The whole evaluation procedure that includes the fire-spreading simulation
runs in time O(|V | + |E|) since each vertex and each edge is considered only
once. This is the same complexity as the evaluation procedure of the ACO in [2].

30 B. Hu et al.

However, the bitvector representation is more compact as its solution space has
a size 2n instead of n! permutations.

3.2 Initial Solution

We tested two different strategies for creating initial solutions. In variant A,
we assign a closeness centrality value cv to each vertex v ∈ V \ Binit. This is
done by calculating for each vertex the sum of its distances to all other vertices
and then taking the inverse value as its closeness. This criterion is often used to
determine the influence of a vertex to spread information through a network [20].
A vertex with a small closeness value indicates that once it burns, it has a high
potential to further spread the fire. Based on the closeness centrality, we protect
each vertex v ∈ V \ Binit with a probability of cmax−cv

2(cmax−cmin)
where cmax and

cmin are the minimal and maximal closeness values over all vertices V \ Binit,
respectively. This means that the vertex with minimal closeness gets protected
with a probability of 50 % whereas the vertex with maximal closeness never gets
protected.

In variant B, we just use an empty solution, i.e., where no vertex is set to be
protected. This way we entirely rely on the improvement procedures of the VNS
to set the protection status.

During preliminary tests, we applied local improvement via VND on these
initial solutions and it turned out that no obvious trends between the two vari-
ants could be observed. Over a set of 120 instances (see Sect. 4), variant A was
better in 32 cases and variant B in 49 cases. However the average solution qual-
ity of variant A was better by 0.2 %. On the one hand, it is a good sign that
the improvement procedure works so well since it minimizes the differences of
initial solutions. On the other hand, we also feel that the construction heuristic
certainly has some improvement potentials. Since there was no obvious trend,
we used variant B in the later tests since it is the simpler approach.

3.3 Variable Neighborhood Descent

In order to locally improve a solution, we use VND which considers the follow-
ing neighborhood structure in a best improvement fashion. For neighborhood
Nl(P), l = 1, 2, . . . , we consider in the current solution P a set Wl consisting
of vertices with l unprotected adjacent vertices, respectively. For each vertex
w ∈ Wl, we test if the solution improves by protecting its adjacent vertices, see
Algorithm 2. This procedure maximizes the locality of the neighborhood struc-
ture since correlated vertices are considered together. If an infeasible solution
arises, it is repaired during the evaluation procedure automatically. After that,
the improve procedure tries to add single vertices to the protection until the
solution does not improve.

In order to boost the performance, we implemented an incremental evaluation
scheme on the evaluation procedure. Whenever we change for a vertex v its
protection status pv, we know the time it was processed in the last evaluation

A New Solution Representation for the Firefighter Problem 31

Algorithm 2. VND
Input: solution P = 〈p1, . . . , pn〉, neighborhood l
Output: Improved solution P
Wl = set of vertices with l unprotected adjacent vertices;
Pbest = P ;
foreach w ∈ Wl do

P ′ = P ;
∀v adjacent to w : p′

v = 1;
evaluate(P ′);
improve(P ′);
if P ′ better than Pbest then

Pbest = P ′;

return Pbest;

by looking at status[v]. Either it was protected at time t if status[v] > 0, or
it got burnt if status[v] < 0. Therefore when we evaluate the new solution
after changing pv in the neighborhood search or in the improve-procedure, we
only have to re-calculate vertices w ∈ V with |status[w]| > t and possibly
untouched vertices. In other words, the fire spreading simulation until time t with
the status values of corresponding vertices will not change. We only have to take
the existing status values from the previous evaluation, calculate the number
of spare firefighters freeff and set Binit to those vertices burnt at time t − 1 to
continue the fire simulation. If the protection status of more than one vertex gets
changed, we have to continue the fire simulation at the smallest time where these
vertices were processed. During preliminary tests this incremental evaluation
scheme was able to speed up the whole approach by a significant amount. One
variant we also considered was to use a first improvement strategy where we could
cascade the neighborhood solutions in a way that solutions requiring less re-
calculations are evaluated first to maximize the potential gain of the incremental
evaluation. However, the best improvement strategy still produced better results
in comparable time.

3.4 Variable Neighborhood Search

We use the general VNS framework with shaking when VND is not able to
improve the solution any further. A common situation where VND gets stuck in
local optima is that when evaluating and repairing an infeasible solution, vertices
close to Binit are less likely to become dropped from protection than vertices that
are farther away. This is due to the repair mechanism that always “activates” the
protection for vertices close to Binit first. If there are too many vertices marked
for protection at a certain time step, it repairs the solution by dropping vertices
from the current step. However, dropping vertices from previous time steps would
actually also work since excess firefighters would be buffered and carried over
to the time where the deficit arises. Since this is not considered in the current

32 B. Hu et al.

implementation, we have a slight bias that prefers vertices close to Binit. While
this is in fact a reasonable strategy most of the time since protecting vertices
close to Binit from early on often has a positive impact, there are situations
where this behaviour causes the VND to get stuck in local optima.

For this reason, if shaking is called with a size k, it drops the protection
status of k vertices selected randomly in the solution so that VND is able to
explore new combinations of protected vertices.

4 Computational Results

We tested our VNS on the benchmark set from [2]. It consists of instances with
50, 100, 500, and 1000 vertices with three different edge densities, respectively.
The edge density describes the probability of having an edge between two vertices
in a random graph and are stated in the Tables 1, 2, 3 and 4. Each combination
of vertex count and edge density contains 10 random instances, which results in
a benchmark set containing 120 instances in total. In addition, each instance is
considered with different number of firefighters D ∈ {1, . . . , 10}. All tests were
carried out on a single core of an Intel Xeon E5540 with 2.53 GHz and 3 GB
RAM. Compared to the hardware used in [2] for the (hybrid) ACO, it is around
twice as fast according to the Standard Performance Evaluation Corporation
(SPEC) benchmark1. Therefore we use half of the ACO runtime for our VNS
which is n/4 seconds for each instance to obtain roughly comparable results.

In Tables 1, 2, 3 and 4 we show the results grouped by the number of vertices
and the edge density. We compare four different approaches: beside our VNS,
the other three are taken from [2] and consist of an exact approach using mixed
integer programming solved via CPLEX, the ACO and the hybrid ACO. Each
line corresponds to a different number of firefighters D whereas each cell shows
the average final solution values over 10 random graphs. Best results are marked
bold. In the last two lines of the tables, we give a summary by showing for each

Table 1. Results for graphs with 50 vertices, time limit of 12.5 s for VNS.

Edge propability pe = 0.1 Edge propability pe = 0.15 Edge propability pe = 0.2
D CPLEX ACO HyACO VNS CPLEX ACO HyACO VNS CPLEX ACO HyACO VNS

1 7.4 7.4 7.4 7.3 4.5 4.5 4.5 4.5 3.1 3.1 3.1 3.1
2 26.6 26.4 26.5 26.6 9.7 9.7 9.7 9.7 7.2 7.2 7.2 7.2
3 41.8 40.9 41.6 41.7 18.8 16.5 18.5 18.7 11.2 11.1 11.2 11.2
4 47.9 47.8 47.9 47.9 31.2 30.5 30.9 31.2 17.5 16.0 17.2 17.2
5 48.5 48.5 48.5 48.5 39.1 36.1 39.1 39.1 27.7 26.1 27.6 27.6
6 48.8 48.8 48.8 48.8 43.7 42.7 43.7 43.7 33.0 31.4 33.0 32.9
7 49.0 49.0 49.0 49.0 46.3 45.4 46.3 46.3 37.5 35.7 37.5 37.5
8 49.0 49.0 49.0 49.0 48.1 46.8 48.1 48.1 42.7 40.3 42.6 42.6
9 49.0 49.0 49.0 49.0 48.6 48.2 48.6 48.6 46.1 44.4 46.1 46.1
10 49.0 49.0 49.0 49.0 48.8 48.8 48.8 48.8 47.5 47.1 47.5 47.5
∑

417.0 415.8 416.7 416.8 338.8 329.2 338.2 338.7 273.5 262.4 273.0 272.9
% 100.00% 99.71% 99.93% 99.95% 100.00% 97.17% 99.82% 99.97% 100.00% 95.94% 99.82% 99.78%

1 www.spec.org/cpu2006.

http://www.spec.org/cpu2006

A New Solution Representation for the Firefighter Problem 33

Table 2. Results for graphs with 100 vertices, time limit of 25 s for VNS.

Edge propability pe = 0.05 Edge propability pe = 0.075 Edge propability pe = 0.1
D CPLEX ACO HyACO VNS CPLEX ACO HyACO VNS CPLEX ACO HyACO VNS

1 9.2 9.1 9.2 9.1 5.4 5.4 5.4 5.4 3.9 3.9 3.9 3.9
2 26.9 25.7 27.6 27.7 11.3 11.2 11.3 11.2 8.5 8.3 8.7 8.7
3 62.8 54.6 62.7 63.6 41.5 41.0 41.6 41.5 21.4 21.0 21.3 21.4
4 85.3 66.3 85.5 86.0 53.7 52.4 53.3 53.8 25.5 24.5 25.5 25.7
5 97.3 92.3 97.3 97.3 65.7 63.5 65.9 66.5 30.2 29.1 29.5 30.1
6 98.5 98.3 98.5 98.5 87.5 75.1 87.3 87.6 41.8 33.9 41.0 42.3
7 98.8 98.8 98.8 98.8 98.1 87.9 98.1 98.1 58.7 46.4 56.3 56.9
8 98.9 98.9 98.9 98.9 98.6 93.5 98.6 98.6 74.8 62.0 74.0 74.8
9 99.0 99.0 99.0 99.0 98.8 98.8 98.8 98.8 89.2 77.3 88.0 89.2
10 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 94.7 85.9 94.4 94.6
∑

775.7 742.0 776.5 777.9 659.6 627.8 659.3 660.5 448.7 392.3 442.6 447.6
% 99.70% 95.37% 99.81% 99.99% 99.83% 95.02% 99.79% 99.97% 99.80% 87.26% 98.44% 99.56%

Table 3. Results for graphs with 500 vertices, time limit of 125 s for VNS.

Edge propability pe = 0.015 Edge propability pe = 0.02 Edge propability pe = 0.025
D CPLEX ACO HyACO VNS CPLEX ACO HyACO VNS CPLEX ACO HyACO VNS

1 7.6 7.5 7.8 7.6 5.3 5.2 5.6 5.7 4.2 4.4 4.3 4.5
2 5.6 13.0 13.6 14.6 10.6 10.4 11.2 11.3 9.1 8.5 9.0 9.3
3 3.1 18.8 21.3 22.3 60.3 63.1 63.6 65.0 12.8 12.7 13.8 13.7
4 150.2 119.9 168.3 170.3 69.5 67.6 70.4 70.0 17.7 16.9 18.6 18.1
5 250.5 218.9 265.9 267.5 45.6 72.7 74.6 75.1 6.5 21.6 22.4 23.2
6 349.1 268.8 363.0 362.9 102.4 123.8 126.5 126.1 25.6 26.3 33.8 28.7
7 448.9 407.6 453.5 453.7 102.7 128.1 130.1 133.1 78.1 77.6 93.0 80.1
8 449.1 453.9 455.0 454.7 299.0 135.8 315.6 316.1 154.2 127.6 173.5 175.5
9 449.1 454.7 456.6 456.9 349.0 317.5 363.8 364.1 223.2 221.8 225.4 223.8
10 498.8 455.5 498.8 498.8 409.2 321.1 410.2 409.3 221.5 225.1 229.6 227.3
∑

2612.0 2418.6 2703.8 2709.3 1462.6 1245.3 1571.6 1575.8 753.0 742.4 823.5 804.2
% 96.39% 89.25% 99.77% 99.98% 92.72% 78.94% 99.63% 99.89% 91.09% 89.80% 99.61% 97.28%

Table 4. Results for graphs with 1000 vertices, time limit of 250 s for VNS.

Edge propability pe = 0.0075 Edge propability pe = 0.01 Edge propability pe = 0.125
D CPLEX ACO HyACO VNS CPLEX ACO HyACO VNS CPLEX ACO HyACO VNS

1 105.2 107.4 107.8 108.0 4.9 5.7 6.0 6.3 4.0 4.9 4.7 5.3
2 107.9 112.7 115.0 114.6 4.4 10.9 10.6 12.1 8.0 9.4 10.1 10.2
3 101.7 118.0 118.0 122.1 13.7 15.9 17.0 17.9 4.6 14.3 13.9 15.4
4 399.4 318.3 415.7 417.9 14.8 21.4 24.1 24.1 99.9 116.6 116.5 117.8
5 399.6 419.0 421.2 422.8 104.3 27.1 123.6 126.6 103.3 120.8 120.9 122.8
6 598.8 423.6 614.2 617.1 201.5 129.1 226.0 228.2 99.9 125.5 126.2 128.7
7 898.1 523.5 902.5 903.3 299.7 525.5 325.2 328.2 199.8 226.7 226.6 228.8
8 998.2 528.6 998.2 998.2 399.5 329.7 424.4 426.5 218.7 231.1 234.8 233.9
9 998.9 905.6 998.9 998.9 399.6 427.9 427.7 431.8 301.0 236.2 332.1 332.6
10 999.0 999.0 999.0 999.0 499.5 432.6 528.4 530.7 602.2 335.0 620.5 619.6
∑

5606.8 4455.7 5690.5 5701.9 1941.8 1725.8 2113.0 2132.4 1641.4 1420.8 1806.3 1815.1
% 98.33% 78.14% 99.79% 99.99% 91.06% 80.93% 99.09% 100.00% 90.34% 78.20% 99.42% 99.90%

approach the summed up average solution values (
∑

) and the percentage of
the best values reached (%) when considering for each line the best performing
approach.

As reported in [2], CPLEX was able to consistently solve all instances with
50 vertices to optimality. On larger instances, it was usually terminated after

34 B. Hu et al.

reaching the time limit. Especially instances with dense graph and a low number
of firefighters proved to be difficult. In these cases CPLEX is outperformed by
the metaheuristic approaches. We observe that our VNS performs slightly better
than the hybrid ACO. On the majority of the instance sets it is better and in
some cases it is worse by a small margin. Compared to the pure ACO approach
the VNS is consistently better. Overall, it seems that VNS performs better on
sparse graphs and on larger instances. The latter is due to the reduced search
complexity of the bitvector representation. On sparse graphs we suspect that it
is more convenient for the VND neighborhood structure to iterate through the
vertices since their degrees are lower and more diverse. Looking at the closeness
of the different approaches, we also think that being able to solve a considerable
part of the instances in this benchmark set optimally by CPLEX shows that they
are not very hard, thus the margin for improvement is rather slim. Therefore
more sophisticated approaches in the future should be tested on more complex
instances so that differences become more obvious.

5 Conclusions and Future Work

We proposed a variable neighborhood search approach for the firefighter problem
based on a bitvector solution representation. By storing for each vertex only its
protection status, it is more compact than a permutation based representation.
We also proposed an incremental evaluation technique to speed up the computa-
tion significantly. Although the VNS is not able to outperform the hybrid ACO
approach in a substantial way, it is typically at least as good when it comes to
solution quality and performs significantly better than the standard ACO.

In future work we want to investigate approaches that make use of both rep-
resentations and associate neighborhood structures since they can be considered
as complementary to each other: The bitvector representation stores the protec-
tion status but the actual order in which the vertices are protected is obtained
during evaluation. The permutation representation stores the order in which the
vertices are considered for protection but whether a vertex is protected or not
is determined during evaluation. It has been shown that solution methods on
combinatorial optimization problems can substantially benefit from using com-
plementary representations, e.g., in the case of generalized minimum spanning
tree problem as shown in [5,14]. Considering the FFP, using both representa-
tions either in a VNS fashion or infusing the ACO from [2] with a local search
method based on the new representation appears to be particularly promising.

References

1. Bazgan, C., Chopin, M., Ries, B.: The firefighter problem with more than one
firefighter on trees. Discrete Appl. Math. 161(7–8), 899–908 (2013)

2. Blum, C., Blesa, M.J., Garćıa-Mart́ınez, C., Rodŕıguez, F.J., Lozano, M.: The
firefighter problem: application of hybrid ant colony optimization algorithms.
In: Blum, C., Ochoa, G. (eds.) EvoCOP 2014. LNCS, vol. 8600, pp. 218–229.
Springer, Heidelberg (2014)

A New Solution Representation for the Firefighter Problem 35

3. Cai, L., Verbin, E., Yang, L.: Firefighting on trees: (1 − 1/e)–approximation,
fixed parameter tractability and a subexponential algorithm. In: Hong, S.-H.,
Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 258–269.
Springer, Heidelberg (2008)

4. Comellas, F., Mitjana, M., Peters, J.G.: Broadcasting in small-world communica-
tion networks. In: Proceedings of the 9th International Colloquium on Structural
Information and Communication Complexity, pp. 73–85 (2002)

5. Corus, D., Lehre, P.K., Neumann, F.: The generalized minimum spanning tree
problem: A parameterized complexity analysis of bi-level optimisation. In: Pro-
ceedings of the 15th Annual Conference on Genetic and Evolutionary Computation
(GECCO), pp. 519–526. ACM (2013)

6. Costa, V., Dantas, S., Dourado, M., Penso, L., Rautenbach, D.: More fires and
more fighters. Discrete Appl. Math. 161(16–17), 2410–2419 (2013)

7. Develin, M., Hartke, S.: Fire containment in grids of dimension three and higher.
Discrete Appl. Math. 155(17), 2257–2268 (2007)

8. Finbow, S., Science, C., Scotia, N., MacGillivray, G.: The firefighter problem: a
survey of results directions and questions. Aust. J. Comb. 43, 57–77 (2009)

9. Finbow, S., King, A., MacGillivray, G., Rizzi, R.: The firefighter problem for graphs
of maximum degree three. Discrete Math. 307(16), 2094–2105 (2007)

10. Fogarty, P.: Catching the fire on grids. Master’s thesis, University of Vermont, USA
(2003)

11. Hartke, S.: Attempting to narrow the integrality gap for the firefighter problem
on trees. In: DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pp. 225–231 (2006)

12. Hartnell, B.: Firefighter! An application of domination. In: 20th Conference on
Numerical Mathematics and Computing, pp. 218–229 (1995)

13. Hartnell, B., Li, Q.: Firefighting on trees: How bad is the greedy algorithm? In:
Proceedings of the Thirty-first Southeastern International Conference on Combi-
natorics, Graph Theory and Computing, pp. 187–192 (2000)

14. Hu, B., Leitner, M., Raidl, G.R.: Combining variable neighborhood search with
integer linear programming for the generalized minimum spanning tree problem.
J. Heuristics 14(5), 473–499 (2008)

15. Iwaikawa, Y., Kamiyama, N., Matsui, T.: Improved approximation algorithms for
firefighter problem on trees. IEICE Trans. E94.D(2), 196–199 (2011)

16. King, A., MacGillivray, G.: The firefighter problem for cubic graphs. Discrete Math.
310(3), 614–621 (2010)

17. MacGillivray, G., Wang, P.: On the firefighter problem. J. Comb. Math. Comb.
Comput. 47, 83–96 (2003)

18. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res.
24(11), 1097–1100 (1997)

19. Moeller, S., Wang, P.: Fire control on graphs. J. Comb. Math. Comb. Comput. 41,
19–34 (2002)

20. Newman, M.J.: A measure of betweenness centrality based on random walks. Soc.
Netw. 27(1), 39–54 (2005)

A Variable Neighborhood Search Approach
for the Interdependent Lock

Scheduling Problem

Matthias Prandtstetter(B), Ulrike Ritzinger, Peter Schmidt,
and Mario Ruthmair

AIT Austrian Institute of Technology, Mobility Department – Dynamic
Transportation Systems, Giefinggasse 2, 1210 Vienna, Austria

{matthias.prandtstetter,ulrike.ritzinger,mario.ruthmair}@ait.ac.at

Abstract. We investigate a so far not examined problem called the Inter-
dependent Lock Scheduling Problem. A Variable Neighborhood Search app-
roach is proposed for finding lock schedules along the Austrian part of the
Danube River in order to minimize the overall ship travel times. In com-
putational experiments the performance of our approach is assessed and
compared to real-world ship trajectories. Notable improvements can be
achieved. In addition, the number of (empty) lockages can be significantly
reduced when taking them into account during optimization without loos-
ing too much of quality in travel time optimization.

Keywords: Interdependent lock scheduling problem · Variable neigh-
borhood search

1 Introduction

Inland navigation can be seen as the most efficient means of transport with respect
to ecological objectives [3]. In combination with transportation via trucks and
trains it builds a strong overland transportation network. Considering today’s
transportation volume and emissions related to (overland) transport in Europe [7]
a shift of transports from trucks towards trains and especially inland navigation
within the next years is highly desired by the European Commission [6].

Among European inland waterways Rhine and Danube are two of the largest
(and most important) ones. While the Rhine heads North-South, mainly connect-
ing Switzerland, France, the West of Austria, Germany, and the Netherlands, to
the North Sea, the Danube heads West-East, connecting the South of Germany,
Austria, Slovakia, Hungary, Croatia, Serbia, Bulgaria, Romania, Moldova, and
the Ukraine, to the Black Sea. In contrast to the Rhine, ships traveling on the
(Austrian part of the) Danube (approx. 350 m) have to pass nine watergates at

This work is partially funded by the Austrian Federal Ministry for Transport, Inno-
vation and Technology (BMVIT) within the strategic programme I2VSplus under
grant 835771 (imFluss).

c© Springer International Publishing Switzerland 2015
G. Ochoa and F. Chicano (Eds.): EvoCOP 2015, LNCS 9026, pp. 36–47, 2015.
DOI: 10.1007/978-3-319-16468-7 4

A Variable Neighborhood Search Approach 37

power plants used for electricity production. Naturally, these watergates build a
bottleneck in the transportation network as ships have to pass through them to
overcome the height difference caused by retaining the river.

It can be seen in the action plan of the Danube Region Strategy [4,5] that
only 10 %–20 % of the potential volume is transported on the Danube. Therefore,
a significant increase in the transport volume will lead to congestion around
watergates [14].

In the Austrian funded project imFluss, the main goal is to revise the cur-
rently applied first-come, first-serve strategy for the scheduling process at water-
gates and investigate the increase of efficiency by applying alternative scheduling
strategies. The slot management is based on an optimization approach which
schedules ships at watergates such that the overall sum of travel times of the
ships is minimized. Furthermore, it allows to reduce congestion at watergates by
providing travel speed advises to the captains. Since ships must traverse mul-
tiple watergates in short distances at the Danube, the interdependence of the
schedules at the watergates has to be considered as well.

Within this paper, we first give a detailed description of the problem domain
and then present a Variable Neighborhood Search (VNS) framework which incor-
porates various Local Search operators. Computational results show the positive
impact of the proposed method on the planning approach, and finally conclusions
sum the work up.

2 Related Work

The Interdependent Lock Scheduling Problem (ILSP), as addressed here, is not
yet defined in the (scientific) literature to the best of our knowledge. However,
various related problem definitions and corresponding solution approaches can
be found in the literature where the most important ones are outlined in this
section. The simplest version of the lock scheduling problem (LSP) optimizes the
traffic flow through a single watergate which consists of a single lock chamber.
The objective is to find a schedule involving up- and downstream vessels which
maximizes the traffic flow. In [2], a polynomial-time dynamic program is pro-
posed to solve this LSP. An extended version of this basic problem is proposed by
Verstichel and Vanden Berghe [13], where multiple parallel lock chambers with
different sizes are available. In addition, they integrate a kind of packing prob-
lem which focuses on the (optimized) placement of ships inside the lock chamber.
They minimize the waiting times of the ships at watergates as the primary objec-
tive, but also consider the minimization of the number of lockage operations as
a secondary goal. Beside heuristics for creating initial solutions, metaheuristic
approaches are applied for improving the so far found solutions. These meta-
heuristics include a variable neighborhood search (VNS), a multiple neighbor-
hood search and a composite neighborhood search approach. In [12], Verstichel
proposes an exact approach based on integer linear programming. However, this
method has unpredictable (long) runtimes which led to a low acceptance by lock
masters. While all of these approaches focus on single watergates only, there are

38 M. Prandtstetter et al.

Fig. 1. Sketch of the Austrian part of the Danube with marks where watergates are
located. Parts of the river between two watergates (or the state border) are referenced
as sections. c©viadonau and DoRIS (http://www.doris.bmvit.at)

some works which consider the ILSP at the Upper Mississippi River in USA [9].
However, the focus in this work is not combinatorial optimization but an estima-
tion of delays based on traffic volume and interdependence among watergates.
In [10,11], the authors investigate various strategies which are applied in vessel
scheduling and report that a shortest processing time first strategy with fairness
constraints is more efficient than the classical first come, first serve strategy.

3 Problem Description

In the Interdependent Lock Scheduling Problem (ILSP) we are given a set of m
watergates G = {1, . . . , m}, successively arranged along the river. The river is
divided into sections which are bounded by watergates or national borders, as
it is depicted in Fig. 1 for the Austrian part of the Danube. Let S be the set
of ships which is partitioned into ships S+ going upstream and ships S− going
downstream, i.e., S = S+ ∪ S−, S+ ∩ S− = ∅. Each ship s ∈ S has to pass
through one or more successive watergates Gs ⊆ G, either up- or downstream.

Each gate g ∈ G consists of two identical and asynchronously operable lock
chambers which allow the ships to overcome the water level difference when
passing through a watergate. The length of a lock chamber is denoted by κg.
A lockage operation is defined to either fill or empty the lock chamber with water.
The time required for this operation is given by τg. Within a lock chamber ships
are positioned in a row possibly allowing multiple ships to pass through a gate
in a single lockage operation. The ships’ positions in a lock chamber define their
entering and exiting sequence.

The trip of ship s ∈ S starts at a given time and ends when it arrives
at its target position. We assume that there are no planned stops for a ship.
Additionally, information about the ship length ks, the ship type rs, and the

http://www.doris.bmvit.at

A Variable Neighborhood Search Approach 39

average travel speed vs is available. According to vs and the positions of the
watergates and borders, the travel time for each ship on each river section can
be determined. Whenever a ship arrives at a watergate and takes part in a
lockage operation it requires some time to enter and to exit the lock chamber,
respectively.

In a feasible solution for the ILSP, each ship s ∈ S must be assigned to
exactly one lock chamber position in exactly one lockage operation at each gate
g ∈ Gs, while respecting the following constraints:

– It must be ensured that only upstream going ships s ∈ S+ can be assigned to
a lockage operation in which the lock chamber is filled up with water, whereas
only downstream going ships s′ ∈ S− can be allocated to a lockage operation
emptying a chamber.

– The sum of lengths of all ships assigned to the same lockage operation must
not exceed the length of the lock chamber κg.

Additionally, for each lockage operation a starting time has to be set, based on
the following limitations:

– A simultaneous operation of both lock chambers at a watergate is not possible.
Therefore, previous lockage operations and the corresponding ships’ exiting
process have to be finished before the next ships can start their entering
process. Only after all ships assigned to the same lockage operation have
finished their entering process, the lockage operation is allowed to start.

– Ships are only allowed to enter (or exit) the lock chamber one after another
because of safety and space limitations at the gates.

– All ships have to arrive at their target position before planning horizon H.

Because of these constraints, waiting times may arise for some of the ships.
The optimization goal of the ILSP is to find a feasible solution such that the
sum of total travel times of all ships is minimized, implicitly minimizing the
sum of waiting times over all ships. As a second weighted term in the objective
function, we optionally consider the minimization of the number of lockage oper-
ations since each lockage reduces the amount of water to be used in electricity
production.

4 Solution Representation and Decoding

As mentioned in the previous section, a solution in the ILSP is defined by the
lockage starting times and a unique assignment of each ship s ∈ S to a lock
chamber position in a lockage operation for all watergates Gs. Thus, a solution
can be stored as a three-dimensional array where the first index refers to a
watergate, the second one to a lockage operation at the watergate and the third
one to the position of the ship in the lock chamber. The actual values stored in
this three-dimensional array correspond to the ship ids. This array can be seen
as a relative schedule without actual lockage starting times.

40 M. Prandtstetter et al.

Algorithm 1. FirstFitConstruction

1 Q ← chronologically ordered queue of watergate passing events
2 while Q �= ∅ do
3 e ← Q.pop()
4 g ← watergate(e)
5 if e can be assigned to the currently last scheduled lockage at g then
6 assign e to last lockage at g
7 else
8 append new lockage(s) at g
9 assign e to now last lockage

10 compute ∀e′ ∈ Q dependent on e new earliest possible lockage times
11 chronologically re-order Q

Based on this representation and the instance data we propose a decoding
procedure to compute the corresponding optimal lockage starting times with
respect to minimizing the sum of waiting times. Note that the number of lockage
operations is implicitly given in the array. It can be easily seen that choosing
the earliest possible starting time for each lockage results in a minimal sum of
ship travel times with respect to the current solution. The earliest possible time
for lockage l at watergate g depends on

– the previous lockage at gate g (if it exists),
– all lockages at neighboring gates which have at least one ship assigned which

is also assigned to l and which has to pass the neighboring gate directly before
g, and

– the start times of ships which start their trips in a neighboring section and
are assigned to l.

Based on a relative schedule, a directed dependency graph can be built with
nodes representing lockages and arcs describing a dependency of the lockage
at the head on the lockage at the tail of the arc. In case of feasible relative
schedules this graph has to be acyclic. Then, the starting times for all the lockage
operations can be computed by traversing the dependency graph such that a
node is only processed (i.e., a lockage starting time is set) if all preceding nodes
have already been completed (i.e., starting times of previous lockages at the same
or neighboring watergates have been fixed).

5 First Fit Construction Heuristic

In order to find an initial solution which can be further improved by the Variable
Neighborhood Search framework described in the next section, we present a First
Fit construction heuristic. It basically iterates over all watergate passages of
ships in a chronological order and assigns them to lockages, see Algorithm 1 for
a pseudo-code of the approach.

A Variable Neighborhood Search Approach 41

In line 5 it is decided whether a vessel can be added to the (currently) last
lockage operation at the corresponding watergate. This decision includes struc-
tural decisions based on the length of the lock chamber as well as the traveling
direction of the ship. In addition, operational decisions are included such as the
maximum shift in time caused by inclusion of a vessel to a lockage. In our imple-
mentation, additional lockages are added if a lockage will be postponed more
than 30 min, which reflects the amount of time needed for filling (or emptying)
a lock chamber.

6 Variable Neighborhood Search Framework

To improve initial solutions we employ a Variable Neighborhood Search (VNS)
framework [8]. As a local search method within VNS we incorporate Variable
Neighborhood Descent (VND) [8]. The main idea of VNS and VND is to system-
atically examine different neighborhood structures such that local optima with
respect to single neighborhood structures can be overcome.

6.1 Neighborhood Structures for VND

The neighborhood structures incorporated into our VND implementation are
based on the definition of so-called move operators which are used for (slightly)
modifying a given solution by small local adjustments. As it is possible to decode
a given relative schedule such that lockage starting times are optimal with respect
to the sum of travel times, no neighborhood structures are defined on varying
lockage starting times, cf. Sect. 4. All defined moves work on the relative schedule
only. In the following we describe the used neighborhood structures.

Shift Vessels. The main idea of this neighborhood structure is to move one
or more vessels from one lockage to another where the number of ships to be
shifted is an input parameter. For implementation issues we decided to allow only
multiple ships to be moved together if they are assigned to the same lockage. In
general, a shift can only be performed if

– the corresponding watergate stays the same,
– no circular dependencies are introduced in the underlying dependency graph

(cf. Sect. 4), and
– the ships to be shifted fit into the target lock chamber together with all

currently assigned ships.

However, it is not only necessary to decide to which other lockage vessels are
shifted but also at which actual position the ships will be inserted, i.e., the
ordering of the ships in the target lock chamber has to be considered. Note,
however, that the relative order of the shifted ships and the ships in the target
lock chamber do not change.

Based on this definition, the size of this neighborhood can be estimated by
a function linear in the number of lockages per watergate times the maximum
number of vessels concurrently assigned to a lockage.

42 M. Prandtstetter et al.

Swap Vessels. As indicated by the name of this neighborhood structure, the
main idea here is to swap the positions and/or lockages of two vessels. Basically,
the same precondition applies as for shift moves. However, a swap of vessels
scheduled for the same lockage is explicitly included in this move type.

The size of a corresponding neighborhood can therefore be estimated to be
quadratic in the number of ships passing a watergate. This implies that on
average neighborhoods based on this structure will be significantly larger than
neighborhoods based on shifting operations.

Remove Empty Lockages. Since a Shift Vessel move may result in empty
lockages, it is beneficial to remove them with respect to minimizing the number
of lockages. However, removing a single lockage is in most cases not feasible as
each lock chamber has alternating upstream and downstream lockages. Thus,
we try to remove two lockages at the same time. Therefore, the size of the
neighborhood can be estimated by a function which is quadratic in the number
of empty lockages.

6.2 Neighborhood Structures for VNS

Analogously to VND, several neighborhood structures are defined to be used
within VNS for shaking operations. To keep things simple and fast, we decided
to perform a pre-defined number of random shift moves during the shaking
phase. Currently, four neighborhood structures are defined with neighborhood
structure i performing i random shifts, with i ∈ {1, 2, 3, 4}.

7 Experiments and Computational Results

In order to test the performance of the proposed VNS framework and the applied
neighborhood structures we conducted a set of computational experiments. For
this purpose, we decided to generate a set of test instances which were extracted
from real-world data provided by our project partner viadonau who is provid-
ing the Austrian River Information Services called DoRIS. Via DoRIS we got
anonymized sample data including the trajectories of all vessels for selected days
in the period from August 2013 until April 2014. We selected uniformly 30 days
in this period. Since the selected period covers days with both low and high traf-
fic demand a broad range of situations and especially number of trips (from 47
up to 151, cf. Table 1) has been investigated. Note that there are days with even
more trips along the Austrian Danube. We removed, however, all trips which did
not pass at least one watergate as those trips have no particular influence on the
ILSP. A real-world scenario was simulated by using the start and target positions
as well as departure times of ships as input. Travel times were estimated via the
method proposed in [1]—an approach which turned out to be highly accurate.
Finally, we compared historic travel times with the output of our algorithm.
All of our tests were performed on a single core of a Intel Xeon 2600 processor
with 4 GB memory per core (although the average RAM consumption was much

A Variable Neighborhood Search Approach 43

Table 1. Results when only minimizing the total travel time (VNS0) and when addi-
tionally minimizing the number of lockages with weight 1000 (VNS1000). Column hist
vs. VNS0 depicts the average relative performance in percent of VNS0 with respect to
historical data. ColumnsVNS0 vs. VNS1000 show the changes in the relevant key per-
formance indicators (total travel time, number of empty lockages, algorithm runtime)
for VNS1000 compared to VNS0.

Instance #trips hist. vs. VNS0 VNS0 vs. VNS1000

travel time [%] travel time [%] #lockages [%] #empty [%] runtime [%]

123 2014-01-07 56 −13.50 −0.01 +0.00 +0.00 +3.09

145 2014-02-03 65 −18.21 +0.05 +0.00 −0.44 +41.42

125 2014-01-12 67 −12.68 +0.00 −1.14 −3.75 +5.78

194 2014-02-04 69 −16.21 −0.00 −0.09 −0.62 +12.11

203 2014-03-06 71 −12.70 −0.08 −1.29 −4.81 +11.80

167 2013-12-08 78 −9.38 +0.01 −0.96 −4.00 −11.08

179 2013-12-02 82 −14.02 +0.19 +0.00 +0.05 +15.44

182 2014-01-10 83 −13.49 −0.03 −2.21 −9.55 +2.28

221 2013-11-07 84 −13.01 −0.13 −5.87 −20.54 +11.42

203 2013-09-05 87 −8.73 +0.04 −2.77 −12.63 +32.44

197 2014-03-07 90 −5.87 +0.07 −2.27 −8.23 +1.50

188 2014-02-07 94 −5.55 +0.18 −1.51 −11.32 −17.47

180 2013-12-07 98 −9.82 +0.07 +0.11 +0.26 −9.80

208 2014-01-09 99 −7.45 +0.06 −5.07 −20.29 +11.59

254 2013-10-07 102 −4.17 +0.02 −1.81 −6.61 +14.94

184 2013-11-09 104 −8.50 −0.02 −3.19 −13.26 −1.03

118 2013-08-12 107 −5.62 +0.09 −2.82 −11.73 −9.56

234 2013-09-02 108 −5.82 −0.09 −4.14 −15.16 +11.74

210 2013-10-13 111 −0.08 +0.03 −3.04 −12.30 +12.01

258 2013-12-06 115 −11.58 +0.01 −2.19 −13.08 −9.59

134 2013-08-05 119 −12.14 −0.18 −5.55 −26.40 +27.01

138 2013-08-06 122 −3.33 −0.09 −2.24 −7.52 +12.00

250 2013-10-12 124 −0.81 +0.12 −3.33 −11.60 +21.73

268 2013-10-09 127 +1.89 −0.05 −2.53 −10.26 +7.07

299 2013-09-04 128 −6.19 +0.21 −1.11 −4.50 −13.93

289 2013-12-05 130 −5.10 +0.18 −0.40 −5.16 +42.45

156 2013-08-08 138 −9.26 +0.32 −7.64 −34.21 −13.32

283 2013-10-11 141 +7.56 −0.31 −4.93 −20.05 +18.94

332 2013-09-07 149 +0.47 −0.16 −1.63 −5.82 −6.84

358 2013-09-06 156 +8.52 +0.36 −3.00 −14.56 −9.31

below that threshold). In addition, 30 runs were performed for each test instance
and algorithmic setup.

The actual ordering of neighborhood structures in the VND part of the opti-
mization process was chosen such that first a shift of one vessel is examined,
followed by a swap of two ships, a shift of two vessels and a shift of three vessels.
Finally, we apply the Remove Empty Lockages neighborhood search. A next
improvement step function was employed for all neighborhood structures.

44 M. Prandtstetter et al.

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

56 65 67 69 71 78 82 83 84 87 90 94 98 99 102
104
107
108
111
115
119
122
124
127
128
130
138
141
149
156

re
la

tiv
e

pe
rf

or
m

an
ce

number of trips

Avg. travel time VNS0

Fig. 2. Average total travel times (with standard deviations) over 30 runs of VNS0
compared to historical data.

For the historic data provided via DoRIS we currently only have information
of the ship trajectories but not on the actual lock operations. Therefore, we
decided to compare in a first step the measured total travel time of all ships,
with the estimated total travel time when applying a lock schedule as proposed
by the VNS framework. As the number of lockages for the historic data is not yet
known, we conducted two independent test series where in the first, the number
of lockages was not taken into account (in the further context referred to as
VNS0) while for the second one additional lockage is worth 1000 extra seconds
travel time, i.e., we have chosen a weighting ration of 1:1000 between travel time
and number of lockages (referred to as VNS1000 in the following). In Table 1 the
obtained results can be seen in detail.

A graphical representation is shown in Figs. 2 and 3. While in Fig. 2 the
relative improvement of the VNS setups with/without respecting the number of
lockages is given, Fig. 3 shows the relative performance of VNS1000 with respect
to VNS0. The areas around the averages represent standard deviations.

An improvement with respect to the historic trajectories can be found in
almost all cases. However, for some instances the historic solution could not
be beaten. This can be explained by two simple reasons: first, although the
method for estimating travel times is highly accurate, it might still happen
that travel times are underestimated. Second, the estimation how many ships
can be packed into one lock chamber is highly heuristic and there are situ-
ations where the lockmaster was highly efficient while our heuristic approach
decided that putting two specific ships at the same time in the lock cham-
ber is not feasible. However, more important is the observation that VNS1000

A Variable Neighborhood Search Approach 45

0.99

1.00

1.01
travel time

0.90
0.95
1.00
1.05 #lockages

0.60
0.75
0.90
1.05

re
la

tiv
e

pe
rf

or
m

an
ce

#empty lockages

0.00
0.50
1.00
1.50
2.00
2.50

56 65 67 69 71 78 82 83 84 87 90 94 98 99 102

104

107

108

111

115

119

122

124

127

128

130

138

141

149

156

number of trips

runtime

Fig. 3. Relative comparison between VNS0 and VNS1000. The baseline (dashed line)
represents the performance of VNS0. The average performance of VNS1000 in relation
to VNS0 is plotted together with the standard deviations.

results—although having a more complex objective function—in slightly better
results with respect to travel times.

In addition, it can be seen that VNS1000 results in noticeable less empty
lockages which is highly important: Although the objective is to maximize the
traffic flow (i.e. to minimize the travel times) the additional objective of min-
imizing the number of lockages is justified by the fact that the embankment
dams (in Austria) were erected for energy producing reasons. While lockages
with ships can be argued towards an energy supplier, empty lockages are harder
to be explained. Therefore, reducing the number of empty lockages while still
decreasing the overall travel times is highly welcomed. Although the runtimes
of VNS1000 are higher the computation times start at 20 s for smaller instances
and range up 5000 s for the largest instances.

The relative improvement rates for shifts of single ships, swaps, shift of two
vessels, shifts of three vessels and removing empty lockages are 82 %, 37 %, 5 %,
0.02 % and 36 %, respectively.

8 Conclusions and Future Research

Within this work, we introduced the Interdependent Lock Scheduling Problem
(ILSP) and provided a Variable Neighborhood Search (VNS) based approach for
solving the ILSP heuristically. While different approaches exist for simpler ver-
sions of lock scheduling problems, the ILSP aims at finding an optimal lock
schedule for multiple watergates along a river like the Danube. The ILSP is—to

46 M. Prandtstetter et al.

our best knowledge – not yet addressed in the academic literature. Based on real-
world data provided by the Austrian waterway administration, we were able to
show that an optimization approach helps in finding lock schedules resulting in
reduced overall ship travel times. Furthermore, the number of (especially empty)
lockages could be reduced without increasing the runtimes considerably. Since
the ILSP is a highly complex problem, further research will include additional
aspects such as considering fairness according to ship waiting times or consider-
ing a 2D-bin packing for ship placement in lock chambers.

Acknowledgements. We want to thank our project partners viadonau– Österrei-
chische Wasserstraßen-Gesellschaft mbH and Zentralanstalt für Meteorologie und Geo-
dynamik for providing us valuable insights into meteorological as well as nautical
processes and challenges related to them as well as providing us relevant data.

References

1. Asamer, J., Prandtstetter, M.: Estimating ship travel times on inland waterways.
In: TRB (ed.) TRB Annual Meeting Compendium of Papers. 14–3020 (2014)

2. Coene, S., Spieksma, F.C.R.: The Lockmaster’s problem. In: Caprara, A.,
Kontogiannis, S. (eds.) 11th Workshop on Algorithmic Approaches for Trans-
portation Modelling, Optimization, and Systems. OpenAccess Series in Informatics
(OASIcs), vol. 20, pp. 27–37. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl (2011)

3. Dolinsek, M., Hartl, S., Hartl, T., Hintergräber, B., Hofbauer, V., Hrusovsky, M.,
Maierbrugger, G., Matzner, B., Putz, L.M., Sattler, M., Schweighofer, J., Seemann,
L., Simoner, M., Slavicek, D.: Handbuch der Donauschifffahrt. bmvit (2013)

4. European Commission: Action plan accompanying the european union strategy for
the danube region (2010). http://www.danube-region.eu/component/edocman/
action-plan-eusdr-pdf

5. European Commission: European union strategy for danube region (2010). http://
www.danube-region.eu/component/edocman/communication-of-the-commission-
eusdr-pdf

6. European Commission: Roadmap to a single european traffic transport area -
towards a competitive and resource efficient transport system (2011). http://ec.
europa.eu/transport/strategies/doc/2011 white paper/white paper com(2011) 14
4 en.pdf

7. European Commission: EU transport in figures: statistical pocketbook 2013. Pub-
lications Office of the European Union (2013)

8. Hansen, P., Mladenović, N.: Variable neighborhood search: principles and applica-
tions. Eur. J. Oper. Res. 130(3), 449–467 (2001)

9. Martinelli, D., Schonfeld, P.: Approximating delays at interdependent locks. J.
Waterw. Port Coast. Ocean Eng. 121(6), 300–307 (1995)

10. Ting, C.J., Schonfeld, P.: Efficiency versus fairness in priority control: Waterway
lock case. J. Waterw. Port Coast. Ocean Eng. 127(2), 82–88 (2001)

11. Ting, C.J., Schonfeld, P.: Effects of speed control on tow travel costs. J. Waterw.
Port Coast. Ocean Eng. 125(4), 203–206 (1999)

12. Verstichel, J.: The lock scheduling problem. Ph.D. thesis, KU Leuven Faculty of
Engineering Science (2013)

http://www.danube-region.eu/component/edocman/action-plan-eusdr-pdf
http://www.danube-region.eu/component/edocman/action-plan-eusdr-pdf
http://www.danube-region.eu/component/edocman/communication-of-the-commission-eusdr-pdf
http://www.danube-region.eu/component/edocman/communication-of-the-commission-eusdr-pdf
http://www.danube-region.eu/component/edocman/communication-of-the-commission-eusdr-pdf
http://ec.europa.eu/transport/strategies/doc/2011_white_paper/white_paper_com(2011)_144_en.pdf
http://ec.europa.eu/transport/strategies/doc/2011_white_paper/white_paper_com(2011)_144_en.pdf
http://ec.europa.eu/transport/strategies/doc/2011_white_paper/white_paper_com(2011)_144_en.pdf

A Variable Neighborhood Search Approach 47

13. Verstichel, J., Vanden Berghe, G.: A late acceptance algorithm for the lock schedul-
ing problem. In: Voß, S., Pahl, J., Schwarze, S. (eds.) Logistik Management, pp.
457–478. Physica-Verlag HD, Heidelberg (2009)

14. viadonau: Locked-through vessel units (2014). http://www.donauschifffahrt.info/
en/facts figures/statistics/locked through vessel units/

http://www.donauschifffahrt.info/en/facts_figures/statistics/locked_through_vessel_units/
http://www.donauschifffahrt.info/en/facts_figures/statistics/locked_through_vessel_units/

A Variable Neighborhood Search
for the Generalized Vehicle Routing Problem

with Stochastic Demands

Benjamin Biesinger(B), Bin Hu, and Günther R. Raidl

Institute of Computer Graphics and Algorithms, Vienna University of Technology,
Favoritenstraße 9–11/1861, 1040 Vienna, Austria

{biesinger,hu,raidl}@ads.tuwien.ac.at

Abstract. In this work we consider the generalized vehicle routing prob-
lem with stochastic demands (GVRPSD) being a combination of the
generalized vehicle routing problem, in which the nodes are partitioned
into clusters, and the vehicle routing problem with stochastic demands,
where the exact demands of the nodes are not known beforehand. It
is an NP-hard problem for which we propose a variable neighborhood
search (VNS) approach to minimize the expected tour length through
all clusters. We use a permutation encoding for the cluster sequence and
consider the preventive restocking strategy where the vehicle restocks
before it potentially runs out of goods. The exact solution evaluation is
based on dynamic programming and is very time-consuming. Therefore
we propose a multi-level evaluation scheme to significantly reduce the
time needed for solution evaluations. Two different algorithms for find-
ing an initial solution and three well-known neighborhood structures for
permutations are used within the VNS. Results show that the multi-level
evaluation scheme is able to drastically reduce the overall run-time of the
algorithm and that it is essential to be able to tackle larger instances. A
comparison to an exact approach shows that the VNS is able to find an
optimal or near-optimal solution in much shorter time.

Keywords: Generalized vehicle routing problem · Stochastic vehicle
routing problem · Variable neighborhood search · Stochastic optimiza-
tion

1 Introduction

The generalized vehicle routing problem with stochastic demands (GVRPSD)
combines the vehicle routing problem with stochastic demands (VRPSD) with
the generalized vehicle routing problem (GVRP) and is a stochastic combinato-
rial optimization problem.

In the GVRPSD we are given a weighted complete undirected graph G =
(V,E) with a set of nodes V and a set of edges E. The edges (i, l) ∈ E are

This work is supported by the Austrian Science Fund (FWF) grant P24660-N23.

c© Springer International Publishing Switzerland 2015
G. Ochoa and F. Chicano (Eds.): EvoCOP 2015, LNCS 9026, pp. 48–60, 2015.
DOI: 10.1007/978-3-319-16468-7 5

A Variable Neighborhood Search for the Generalized Vehicle 49

weighted with distances dil ≥ 0. The set of nodes is partitioned into m disjoint
subsets or clusters C = {C0, C1, . . . , Cm}, C0, . . . , Cm ⊆ V, such that C0 ∪ C1 ∪
· · · ∪ Cm = V . Node v0 ∈ V is a dedicated depot and the only node of cluster
C0. Each other cluster Cj ,∀j = 1, . . . , m has an associated demand ξj which is
a random variable following a known discrete probability distribution, i.e., we
know for each cluster Cj the probability pjk = P (ξj = k) that cluster j has a
demand of k ≥ 0. Furthermore, we are given a vehicle with a limited capacity
Q. For avoiding the necessity of multiple visits we assume that pjk = 0, ∀j =
1, . . . , m, ∀k > Q. The aim is to find a route visiting exactly one node from
each cluster C1, . . . , Cm exactly once and thereby distributing goods according
to the clusters’ actual demands. The current load of the vehicle decreases each
time a cluster demand is satisfied but is refilled to Q each time it returns to the
depot. The amount of how much the load gets decreased by visiting cluster j
is dependent on the actual realization of ξj , which becomes known only upon
arrival. Possibly, the vehicle will get empty, i.e., the current load becomes zero
and the vehicle has to restock at the depot before continuing the route. Such
an event is called a stockout. A common approach for solving such stochastic
optimization problems is the use of a-priori routes, which has already been used
for several probabilistic problems [3,4,13]. A-priori tours are planned before the
actual realizations of the random variables are known but taking their probability
distributions into account. The aim of the problem is to minimize the expected
length of the tour under all possible a-posteriori tours.

In the literature there are several restocking strategies described for the
VRPSD which can be adapted to the GVRPSD as well. The by far most common
is the standard restocking policy [7,12,15,20] where on each stockout the vehicle
returns to the depot, refills its load, and continues its tour at the last visited
node. Another method for handling stockouts is re-optimization [22]: whenever
a stockout occurs the vehicle returns to the depot and then the tour through
the remaining clusters is re-planned. Apart from the re-optimization approach,
which can be problematic when implemented in practical applications, the pre-
ventive restocking policy [4,16,17,24] is the most cost efficient.

In the preventive restocking method return trips to the depot can also be
performed before an actual stockout occurs. It originates from the observation
that a repeated visit of the same node after a restocking is usually expensive
and can often be avoided if the restocking is done after servicing the preceding
cluster. Especially on instances where the triangle inequalities hold, a restocking
from the preceding cluster is always more cost efficient. Another advantage from
using the preventive restocking strategy is that it is sufficient to plan one giant
tour through all clusters when the problem is not further constrained. Yang
et al. [24] proved this property for the VRPSD and it can be directly applied to
the GVRPSD as well. Along with that proof they also proposed an evaluation
procedure for the giant tour representation, which we will discuss in Sect. 3.

Like the GVRP this problem can be applied to the field of healthcare logistics,
in which medical supplies are delivered to districts and the distributing company
does not know beforehand how much supply is needed. If it does not matter to

50 B. Biesinger et al.

which hospital in each district these supplies are delivered this problem can be
modelled as a GVRPSD. Another application domain is urban waste manage-
ment, where refuse collecting vehicles gather waste from districts returning it to
a central landfill site and the total amount of waste is not known beforehand.

In this work we describe a variable neighborhood search (VNS) [10] approach
for the GVRPSD with preventive restocking. We use the giant tour represen-
tation and an evaluation procedure similar to the one used for the VRPSD
[24], which is based on dynamic programming (DP). In addition to this solu-
tion evaluation procedure we also propose a multi-level evaluation scheme which
iteratively approximates the quality of a solution candidate until it can be dis-
carded as being inferior or the exact objective is obtained. In the next section the
related work for this problem is discussed. Section 3 is dedicated to the solution
representation and the associated evaluation procedure including the multi-level
evaluation scheme. The actual variable neighborhood search and its operators
are described in Sect. 4. We present computational results for this approach in
Sect. 5 and draw conclusion of our work along with thoughts on future work in
Sect. 6.

2 Related Work

To the best of our knowledge the GVRPSD has not been considered in the
literature so far. However, there are many related problems which have been
broadly discussed like the VRPSD, which is a special case of the GVRPSD but
each cluster is a singleton. Especially the work by Yang et al. [24] and Bianchi
et al. [4], which both used the preventive restocking strategy, has been inspiring
to the approach for the GVRPSD presented here. Yang et al. [24] showed that
planning multiple tours cannot lead to a better solution in the VRPSD. They
also presented an evaluation procedure based on dynamic programming for the
giant tour representation. The same evaluation is also used by Bianchi et al.
[4] who developed several metaheuristics and an approximate delta evaluation
for the VRPSD. The most recent work for the VRPSD utilizing the preventive
restocking policy is by Marinakis et al. [17] who also applied the same evaluation
procedure and presented a clonal selection algorithm. They reported promising
results on their benchmark set and compared their algorithm to two versions
of a particle swarm optimization [16], to a differential evolution, and a genetic
algorithm.

Another related problem is the GVRP, which is the special case of the
GVRPSD with deterministic demands. There are usually capacity or distance
constraints on the used vehicles and therefore several routes have to be devised.
There are several exact and heuristic solution approaches in the literature [1,2,
8,18,19]. Since we are considering a giant tour approach the generalized travel-
ing salesman problem (GTSP) is also closely related. The GTSP was originally
introduced independently in [11,21,23]. In Fischetti et al. [5,6] integer linear pro-
gramming models are formulated and analyzed. For our construction heuristic
we use one of their formulations.

A Variable Neighborhood Search for the Generalized Vehicle 51

3 Solution Representation and Evaluation

In the introduction we mentioned that it is sufficient to plan one giant tour
through all clusters and therefore we use a solution representation based on
the sequence of clusters that are visited in the tour. From this permutation of
clusters we compute the expected cost using a DP algorithm based on the DP for
the VRPSD [24]. We adapt it to the GVRPSD by also considering that we only
have to visit one node per cluster. The worst case run-time complexity remains
O(|V |Q2).

First we describe the notations used in the DP. The function used for the
recursion fij(q) is defined for all q = 0, . . . , Q, j = 0, . . . , m, i = 0, . . . , |Cj |
and can be interpreted as the remaining cost of the tour after servicing the
i-th node of cluster j with the residual vehicle capacity q. We also define an
auxiliary function bj(l) which returns the l-th node of cluster j. Let us assume
that the clusters of the tour we want to evaluate are relabeled such that the tour
is t = (C0, C1, . . . , Cm, C0). Then the DP recursion is given by:

fij(q) = min{fp
ij(q), f

r
ij(q)}

fp
ij(q) = min

l=0,...,|Cj+1|
{dbj(i),bj+1(l) +

q∑

k=0

fl,j+1(q − k)pj+1,k

+
Q∑

k=q+1

2dbj+1(l),0 + fl,j+1(q + Q − k)pj+1,k}

fr
ij(q) = dbj(i),0 + min

l=0,...,|Cj+1|
{d0,bj+1(l) +

Q∑

k=0

fl,j+1(Q − k)pj+1,k}

∀q = 0, . . . , Q, j = 0, . . . , m, i = 0, . . . , |Cj |
and the boundary condition

fim(q) = dbm(i),0, ∀q = 0, . . . , Q, i = 0, . . . , |Cm|

The basic principle of this recursion is that for each node i and each vehicle load
q it is computed if it is more cost-efficient to proceed directly to the next cluster
which costs fp

ij(q) or to make a preventive restock which costs fr
ij(q). The total

expected cost of the tour t is then given by the value of f0,0(Q). For our VNS
such an expensive solution evalution is inconvenient for larger instances with a
large vehicle capacity. In the next section we describe a method to potentially
reduce the run-time of the solution evaluation within the VNS framework, which
can also be applied to other metaheuristics.

3.1 Multi-level Evaluation Scheme

In this section we describe a multi-level evaluation scheme (ML-ES) to itera-
tively estimate the exact objective value of a solution candidate with increasing

52 B. Biesinger et al.

accuracy until we either know that it cannot be better than the best solution
found so far or we know its exact value. The basic idea is to scale down both the
vehicle capacity and the probability distribution of the demand for each cluster
accordingly. Since the time needed for the solution evaluation is quadratically
dependent on Q, a large performance gain in terms of run-time is expected when
Q is decreased.

In our ML-ES there are log2 Q levels of approximation, where level 0 is the
exact evaluation and log2 Q is the roughest approximation level. Starting with
level 0, increasing the level by one means to scale down the vehicle capacity Q
and all demand distributions pjk by a factor of two. We introduce a new vehicle
capacity Qi and new probabilities pijk subject to level i, which are defined in the
following way:

Q0 = Q (1)

p0jk = pjk ∀j = 1, . . . , |C|, k = 0, . . . , Q (2)

Qi =
⌈

Qi−1

2

⌉
∀i = 1, . . . , �log2 Q� (3)

pijk = pi−1
j,2k + pi−1

j,2k+1 ∀j = 1, . . . , |C|, k = 0, . . . , Qi, (4)

∀i = 1, . . . , �log2 Q�
Figure 1 shows exemplarily for one cluster how the probability distribution for
the demand changes at each level.

Not only is level i ≥ 1 an approximation, but its objective value is also a
lower bound for the objective value of the preceding level i − 1, which we will
show next.

Lemma 1. With increasing level i the ratio of the scaled expected demand of
each cluster to the vehicle capacity Qi is non-increasing.

Proof. We have to show for each cluster j and each demand 0 ≤ k ≤ Q that

∑Qi

k=0 kpijk
Qi

≤
∑Qi−1

k=0 kpi−1
jk

Qi−1
, ∀i = 1, . . . , �log2 Q�

is valid. Suppose to the contrary that for one cluster j and one demand k the
following holds:

kpijk
Qi

=
k(pi−1

j,2k + pi−1
j,2k+1)

Qi−1

2

>
2kpi−1

j,2k + (2k + 1)pi−1
j,2k+1

Qi−1
=

kpi−1
jk

Qi−1

2kpi−1
j,2k + 2kpi−1

j,2k+1 > 2kpi−1
j,2k + 2kpi−1

j,2k+1 + pi−1
j,2k+1

0 > pi−1
j,2k+1

Obviously, this is a contradiction because all probabilities must be non-negative.

Therefore, as no kpi
jk

Qi can be larger than
kpi−1

jk

Qi−1 for any cluster j this also holds
for the sum over all demands, which proves the Lemma.
�

A Variable Neighborhood Search for the Generalized Vehicle 53

0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8

p
ro

b
a
b
il
it
y

Q0 = 8

i = 0

(a) Original probability distribu-
tion

0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4

p
ro

b
a
b
il
it
y

Q1 = 4

i = 1

(b) First level of approximation

0

0.2

0.4

0.6

0.8

1.0

0 1 2

p
ro

b
a
b
il
it
y

Q2 = 2

i = 2

(c) Second level of approxima-
tion

demand demand

demand demand

0

0.2

0.4

0.6

0.8

1.0

0 1

p
ro

b
a
b
il
it
y

Q3 = 1

i = 3

(d) Highest level of approxima-
tion

Fig. 1. An exemplary demand probability distribution and its different levels of approx-
imation.

Theorem 1. Let ci(t) be the objective value of a tour t on approximation level
i. For each tour t it holds that ci(t) ≤ ci−1(t),∀i = 1, . . . , �log2 Q�.
Proof. Due to Lemma 1 it follows that the total expected relative demand of all
clusters on level i is smaller or equal to that of level i − 1. So we can possibly
service more customers before a restocking is needed and therefore the resulting
objective ci(t) value is a lower bound to the exact objective value c0(t) and to
the objective value at the preceding level ci−1(t).
�
Algorithm 1 describes our ML-ES in pseudocode, where DP(t, i) executes the DP
described above with the scaled vehicle capacity and probability distributions
according to (1–4). Algorithm 1 returns either the exact objective value of t if
DP(t, 0) is executed or a lower bound to the exact value otherwise. In the latter
case the solution candidate can immediately be discarded because we know that
it cannot be better than the best solution found so far.

54 B. Biesinger et al.

Algorithm 1. ML-ES(t, bestObj)
Input : tour t, objective value of best solution found so far bestObj
Output: exact or approximate objective value
obj = 0;
i = �log2 Q�;
while obj < bestObj ∧ i ≥ 0 do

obj = DP(t, i);
i = i − 1;

return obj ;

4 Variable Neighborhood Search

The proposed VNS follows the general variable neighborhood search scheme as
described in [9]. The underlying variable neighborhood descent (VND) considers
three neighborhood structures which are well-known for the TSP: 1-shift, 2-opt,
and Or-opt. As a shaking procedure for diversification we perform k2 moves in
the k-th neighborhood with k = 1, . . . , 3.

4.1 Initial Solution

For finding an initial solution two types of construction heuristics are considered.
The first, farthest insertion, is well-known for the classical traveling salesman
problem and suited for Euclidean instances only. It builds iteratively a tour by
starting at the depot cluster and inserting the cluster which is farthest away
from the last inserted cluster at the best possible position. For that purpose
we have to define distances between clusters, which is done by computing the
geometric centers of clusters by taking the average of the x- and y-coordinates
of its nodes. Then the distance between two clusters is the Euclidean distance
between their centers.

An alternative but much more time-consuming method for finding a starting
solution is solving the GTSP relaxation of the problem. From the solution of
the GTSP relaxation we extract the cluster sequence which is then our initial
solution. The GTSP is solved exactly by using a branch-and-cut algorithm with
CPLEX and the E-GTSP formulation described in [6].

4.2 Neighborhood Structures

Three types of neighborhood structures are used in the VND part, which are
searched with a best improvement step function in the order they are described
here.

1-shift: A cluster is shifted to another position of the tour.

2-opt: A subsequence of the tour is inverted.

A Variable Neighborhood Search for the Generalized Vehicle 55

Or-opt: First two, then three consecutive clusters are shifted to another position
of the tour. Note that Or-opt usually starts by shifting only one cluster in the
tour but we covered this case by our first neighborhood structure and omit it
here.

5 Computational Results

The VNS is implemented in C++ and for the GTSP starting solution CPLEX
in version 12.5 is used. All our tests were carried out on a single core of an Intel
Xeon with 2.53 GHz and 3GB RAM. We created Euclidean instances for the
GVRPSD1 based on instances for the GVRP [2] by assigning the original demand
values to be the expected demands and deciding independently at random for
each cluster if it is a low spread or a high spread cluster. For low spread clusters
the set of possible demands is ±10% of the expected value and for the high
spread it is ±30%. All of these demand values are considered equally likely,
so we assumed a uniform distribution over these values. We do not consider
demand values smaller than zero or larger than Q. Due to space limitations the
numerical results presented in this section are based on a representative selection
of 37 instances out of the originally proposed 158 instances. These instances are
selected such that a comparison to an existing exact method is possible. The full
result tables can be found at our website (see Footnote 1).

In the following tables the column Instance contains the name of the instance,
followed by the number of nodes n and the number of clusters m. Additionally
the expected number of restocks E[nr] are presented. Then the results for the
different configurations are given with their (average) objective values, their
standard deviations (sd) if applicable and either the total run-time in seconds t[s]
for the deterministic configurations or the average time when the best solution
is identified t∗[s].

First we compare the results of the different starting solutions, farthest inser-
tion (FI) and GTSP, with a subsequent VND using the neighborhood structures
and the order described in Sect. 4.2. Table 1 shows the (deterministic) numerical
results for these configurations. Additionally it contains a third configuration
where the ML-ES is used along with the GTSP starting solution.

The results indicate that both starting solutions produce similarly good
results for the instances with up to 75 nodes. However, when considering larger
instances with 76 nodes and more, FI is not competitive anymore. When start-
ing from an inferior solution produced by FI the VND needs too much time and
could not even be completed within the time limit of 10000 s. When comparing
run-time we also see the advantage of using the GTSP over the FI; for most of
the instances, especially for the larger ones, it pays off to invest more time to get
a better starting solution so that the subsequent VND does not need so many
iterations. We also applied the ML-ES to the GTSP + VND configuration and
we observe a huge drop in run-time. It is clear that the resulting solution is the
same as in the GTSP + VND configuration but the run-time could be reduced
1 https://www.ads.tuwien.ac.at/w/Research/Problem Instances#Generalized

Vehicle Routing Problem with Stochastic Demands.

https://www.ads.tuwien.ac.at/w/Research/Problem_Instances#Generalized_Vehicle_Routing_Problem_with_Stochastic_Demands
https://www.ads.tuwien.ac.at/w/Research/Problem_Instances#Generalized_Vehicle_Routing_Problem_with_Stochastic_Demands

56 B. Biesinger et al.

Table 1. Results for the different configurations of the VND.

FI + VND GTSP + VND GTSP + VND +

ML-ES

Instance n m E[nr] obj t[s] obj t[s] obj t[s]

P-n19-k2-C7-V1 19 7 0,71 112,105 5 112,105 3 112,105 <1

P-n20-k2-C7-V1 20 7 0,68 117,306 4 117,306 <1 117,306 <1

P-n21-k2-C7-V1 21 7 0,64 117,071 3 117,071 <1 117,071 <1

P-n22-k2-C8-V1 22 8 0,73 111,194 10 111,194 5 111,194 <1

B-n31-k5-C11-V2 31 11 1,38 355,729 25 355,729 16 355,729 5

A-n32-k5-C11-V2 32 11 1,39 386,909 20 388,597 10 388,597 2

A-n33-k5-C11-V2 33 11 1,52 318,028 17 318,028 15 318,028 3

A-n33-k6-C11-V2 33 11 1,91 367,629 23 367,629 16 367,629 4

A-n34-k5-C12-V2 34 12 1,66 419,124 29 419,124 25 419,124 4

B-n34-k5-C12-V2 34 12 1,34 363,089 33 363,089 13 363,089 5

B-n35-k5-C12-V2 35 12 1,54 501,470 32 501,470 14 501,470 6

A-n36-k5-C12-V2 36 12 1,34 404,579 30 399,905 23 399,905 7

A-n37-k5-C13-V2 37 13 1,43 359,133 45 359,133 20 359,133 3

A-n37-k6-C13-V2 37 13 1,95 467,266 31 430,987 32 430,987 7

A-n38-k5-C13-V2 38 13 1,71 371,795 57 371,795 20 371,795 2

B-n38-k6-C13-V2 38 13 1,93 386,195 55 389,241 27 389,241 7

A-n39-k5-C13-V2 39 13 1,48 390,400 47 371,410 20 371,410 8

A-n39-k6-C13-V2 39 13 1,83 417,844 43 417,844 40 417,844 8

B-n39-k5-C13-V2 39 13 1,45 281,482 50 281,482 <1 281,482 <1

P-n40-k5-C14-V2 40 14 1,51 214,775 175 214,753 49 214,753 4

B-n41-k6-C14-V2 41 14 1,82 404,261 93 404,261 34 404,261 11

B-n43-k6-C15-V2 43 15 1,81 394,529 74 347,650 33 347,650 6

A-n44-k6-C15-V2 44 15 2,00 505,129 105 508,981 51 508,981 15

B-n45-k5-C15-V2 45 15 1,51 419,613 116 419,613 59 419,613 8

B-n45-k6-C15-V2 45 15 1,96 358,989 72 358,989 83 358,989 31

P-n45-k5-C15-V2 45 15 1,61 239,568 172 239,357 94 239,357 6

A-n45-k6-C15-V3 45 15 2,09 478,219 105 478,219 56 478,219 12

A-n45-k7-C15-V3 45 15 2,06 516,508 94 488,017 99 488,017 34

A-n46-k7-C16-V3 46 16 2,08 465,624 209 471,980 82 471,980 16

A-n48-k7-C16-V3 48 16 2,13 474,210 150 462,548 95 462,548 35

A-n53-k7-C18-V3 53 18 2,09 450,973 268 443,875 97 443,875 16

A-n54-k7-C18-V3 54 18 2,19 507,805 201 490,544 134 490,544 41

(Continued)

A Variable Neighborhood Search for the Generalized Vehicle 57

Table 1. Continued

FI + VND GTSP + VND GTSP +

VND +

ML-ES

Instance n m E[nr] obj t[s] obj t[s] obj t[s]

A-n55-k9-C19-V3 55 19 2,75 475,919 292 474,048 114 474,048 15

A-n60-k9-C20-V3 60 20 2,80 614,515 517 620,897 361 620,897 117

P-n76-k4-C26-V2 76 26 1,33 461,753 >10000 310,397 4312 310,397 58

P-n76-k5-C26-V2 76 26 1,67 373,937 >10000 310,397 3748 310,397 56

P-n101-k4-C34-V2 101 34 1,25 992,679 >10000 371,926 9979 371,926 397

Table 2. Comparison of the proposed VNS with an exact integer L-shaped method.

L-shaped VNS + GTSP + ML-ES

Instance n m E[nr] obj gap t[s] obj sd t∗[s]

P-n19-k2-C7-V1 19 7 0,71 112,105 0,0% <1 112,105 0,00 <1

P-n20-k2-C7-V1 20 7 0,68 117,306 0,0% <1 117,306 0,00 <1

P-n21-k2-C7-V1 21 7 0,64 117,071 0,0% <1 117,071 0,00 <1

P-n22-k2-C8-V1 22 8 0,73 111,194 0,0% <1 111,194 0,00 <1

B-n31-k5-C11-V2 31 11 1,38 355,729 11,1% >7200 355,729 0,00 5

A-n32-k5-C11-V2 32 11 1,39 386,909 0,0% 1331 386,909 0,00 25

A-n33-k5-C11-V2 33 11 1,52 318,028 0,0% 374 318,028 0,00 2

A-n33-k6-C11-V2 33 11 1,91 364,589 0,0% 598 364,589 0,00 27

A-n34-k5-C12-V2 34 12 1,66 419,124 0,0% 3719 419,124 0,00 4

B-n34-k5-C12-V2 34 12 1,34 363,089 18,1% >7200 363,089 0,00 4

B-n35-k5-C12-V2 35 12 1,54 501,470 26,3% >7200 501,450 0,11 6

A-n36-k5-C12-V2 36 12 1,34 399,905 9,4% >7200 399,905 0,00 7

A-n37-k5-C13-V2 37 13 1,43 359,133 0,0% 98 359,133 0,00 3

A-n37-k6-C13-V2 37 13 1,95 434,865 18,5% >7200 430,987 0,00 7

A-n38-k5-C13-V2 38 13 1,71 371,795 0,0% 588 371,795 0,00 2

B-n38-k6-C13-V2 38 13 1,93 386,195 12,2% >7200 388,734 1,15 8

A-n39-k5-C13-V2 39 13 1,48 371,410 7,6% >7200 371,410 0,00 8

A-n39-k6-C13-V2 39 13 1,83 417,844 5,6% >7200 417,844 0,00 8

B-n39-k5-C13-V2 39 13 1,45 281,482 0,0% 282 281,482 0,00 <1

P-n40-k5-C14-V2 40 14 1,51 214,753 0,0% 392 214,753 0,00 4

B-n41-k6-C14-V2 41 14 1,82 408,977 16,7% >7200 404,261 0,00 10

B-n43-k6-C15-V2 43 15 1,81 347,650 19,7% >7200 347,650 0,00 6

A-n44-k6-C15-V2 44 15 2,00 509,254 16,2% >7200 508,981 0,00 15

B-n45-k5-C15-V2 45 15 1,51 419,613 3,6% >7200 419,096 1,05 8

B-n45-k6-C15-V2 45 15 1,96 367,730 23,6% >7200 358,989 0,00 31

(Continued)

58 B. Biesinger et al.

Table 2. (Continued)

L-shaped VNS + GTSP + ML-ES

Instance n m E[nr] obj gap t[s] obj sd t∗[s]

P-n45-k5-C15-V2 45 15 1,61 239,357 4,6% >7200 239,357 0,00 6

A-n45-k6-C15-V3 45 15 2,09 478,265 16,2% >7200 478,219 0,00 12

A-n45-k7-C15-V3 45 15 2,06 491,539 30,6% >7200 488,017 0,00 34

A-n46-k7-C16-V3 46 16 2,08 465,624 19,0% >7200 471,539 0,51 16

A-n48-k7-C16-V3 48 16 2,13 469,690 28,7% >7200 462,548 0,00 35

A-n53-k7-C18-V3 53 18 2,09 443,873 13,6% >7200 443,875 0,00 16

A-n54-k7-C18-V3 54 18 2,19 500,349 28,6% >7200 490,544 0,00 41

A-n55-k9-C19-V3 55 19 2,75 483,997 21,7% >7200 474,048 0,00 15

A-n60-k9-C20-V3 60 20 2,80 623,528 35,6% >7200 617,575 4,98 118

P-n76-k4-C26-V2 76 26 1,33 310,397 6,1% >7200 310,397 0,00 55

P-n76-k5-C26-V2 76 26 1,67 310,397 5,8% >7200 310,397 0,00 53

P-n101-k4-C34-V2 101 34 1,25 371,926 5,7% >7200 371,926 0,00 379

substantially. Only by using the ML-ES the VND is about 10 times faster on
average with a peak speedup factor of 75 for instance P-n76-k4-C26-V2. During
our tests when a solution is evaluated using ML-ES the procedure could be ter-
minated in the top 30 % of the approximation levels where the acceleration is
the largest.

Next we show how average results over 30 independent runs of the VNS with
the GTSP starting solution and the ML-ES compares to an exact algorithm. The
exact algorithm is the integer L-shaped method [14] applied to the GVRPSD
which is a two-level approach based on a mixed integer programming model for
the GTSP. Within a branch-and-cut framework it iteratively adds cuts generated
in the lower level setting a lower bound on the restocking costs in the upper level.
Due to space limitation this method is not described here in more detail. For
the exact algorithm the optimality gap (gap) and the time needed is stated in
the table.

Table 2 shows the numerical comparison with the exact method. The high
optimality gaps on the medium to large instances show that the GVRPSD is a
hard problem but on the instances where the L-shaped method is able to find a
proven optimal solution the VNS also finds it in substantially less time. In the
extreme case of instance A-n34-k5-C12-V2 the VNS found an optimal solution in
all 30 runs about 865 times faster than the exact algorithm. However, since the
L-shaped method guarantees the optimality of the solution we cannot directly
compare the run-time of these algorithms. Our tests further showed that in the
VNS the ML-ES can be terminated within the top 4 % of the approximation
levels which is even better than for the VND.

A Variable Neighborhood Search for the Generalized Vehicle 59

6 Conclusions and Future Work

In this work a variable neighborhood search approach for the generalized vehicle
routing problem with stochastic demands under the preventive restocking policy
is presented. The problem has not yet been considered so far in the literature
although many real world problems can be modelled in this way. An initial
attempt to solve this hard stochastic combinatorial optimization problem was
made. Therefore, concepts from both, the related VRPSD and the GTSP, are
used. The solution representation and the solution evaluation method that had
proved to work well for the VRPSD were adapted to the GVRPSD. On top
of that a multi-level evaluation scheme was used to substantially reduce the
time needed for evaluating a solution candidate. The computational results show
that the VNS with the GTSP initial solution and the ML-ES is able to find
optimal or near-optimal solutions in short times. Future work can include the
development and improvement of the exact algorithm for the GVRPSD to get
optimal solutions to more instances. In a following step also the combination
of the techniques presented here, especially the ML-ES, and the methods used
for solving this problem exactly should be investigated. Although the ML-ES is
primarily developed for the GVRPSD applications to other similar problems like
the VRPSD are also possible and could lead to a significant performance gain.

References

1. Afsar, H.M., Prins, C., Santos, A.C.: Exact and heuristic algorithms for solving
the generalized vehicle routing problem with flexible fleet size. Int. Trans. Oper.
Res. 21(1), 153–175 (2014)

2. Bektaş, T., Erdoǧan, G., Røpke, S.: Formulations and branch-and-cut algorithms
for the generalized vehicle routing problem. Trans. Sci. 45(3), 299–316 (2011)

3. Bertsimas, D.J.: Probabilistic combinatorial optimization problems. Ph.D. thesis,
Massachusetts Institute of Technology (1988)

4. Bianchi, L., Birattari, M., Chiarandini, M., Manfrin, M., Mastrolilli, M., Paquete,
L., Rossi-Doria, O., Schiavinotto, T.: Hybrid metaheuristics for the vehicle routing
problem with stochastic demands. J. Math. Model. Algorithms 5(1), 91–110 (2006)

5. Fischetti, M., Salazar González, J.J., Toth, P.: The symmetric generalized traveling
salesman polytope. Networks 26(2), 113–123 (1995)

6. Fischetti, M., Salazar González, J.J., Toth, P.: A branch-and-cut algorithm for
the symmetric generalized traveling salesman problem. Oper. Res. 45(3), 378–394
(1997)

7. Gendreau, M., Laporte, G., Séguin, R.: A tabu search heuristic for the vehicle
routing problem with stochastic demands and customers. Oper. Res. 44(3), 469–
477 (1996)

8. Hà, M.H., Bostel, N., Langevin, A., Rousseau, L.M.: An exact algorithm and a
metaheuristic for the generalized vehicle routing problem with flexible fleet size.
Comput. Oper. Res. 43, 9–19 (2014)

9. Hansen, P., Mladenović, N.: Variable neighborhood search. In: Glover, F., Kochen-
berger, G. (eds.) Handbook of Metaheuristics. International Series in Operations
Research & Management Science, vol. 57, pp. 145–184. Springer, US (2003)

60 B. Biesinger et al.

10. Hansen, P., Mladenović, N., Moreno Pérez, J.: Variable neighbourhood search:
methods and applications. Ann. Oper. Res. 175(1), 367–407 (2010)

11. Henry-Labordere: The record balancing problem: a dynamic programming solution
of the generalized traveling salesman problem. RAIRO Oper. Res. B2, 43–49 (1969)

12. Hjorring, C., Holt, J.: New optimality cuts for a single vehicle stochastic routing
problem. Ann. Oper. Res. 86, 569–584 (1999)

13. Jaillet, P.: Probabilistic traveling salesman problems. Ph.D. thesis, Massachusetts
Institute of Technology (1985)

14. Laporte, G., Louveaux, F.V., van Hamme, L.: An integer L-shaped algorithm for
the capacitated vehicle routing problem with stochastic demands. Oper. Res. 50(3),
415–423 (2002)

15. Laporte, G., Louveaux, F.: Solving stochastic routing problems with the integer
L-shaped method. In: Crainic, T., Laporte, G. (eds.) Fleet Management and Logis-
tics, pp. 159–167. Springer, New York (1998)

16. Marinakis, Y., Iordanidou, G.R., Marinaki, M.: Particle swarm optimization for
the vehicle routing problem with stochastic demands. Appl. Soft Comput. 13(4),
1693–1704 (2013)

17. Marinakis, Y., Marinaki, M., Migdalas, A.: A hybrid clonal selection algorithm for
the vehicle routing problem with stochastic demands. In: Pardalos, P.M., Resende,
M.G., Vogiatzis, C., Walteros, J.L. (eds.) LION 2014. LNCS, vol. 8426, pp. 258–
273. Springer, Heidelberg (2014)

18. Pop, P.C., Fuksz, L., Marc, A.H.: A variable neighborhood search approach for
solving the generalized vehicle routing problem. In: Polycarpou, M., de Carvalho,
A.C.P.L.F., Pan, J.-S., Woźniak, M., Quintian, H., Corchado, E. (eds.) HAIS 2014.
LNCS, vol. 8480, pp. 13–24. Springer, Heidelberg (2014)

19. Pop, P.C., Kara, I., Marc, A.H.: New mathematical models of the generalized
vehicle routing problem and extensions. Appl. Math. Model. 36(1), 97–107 (2012)

20. Rei, W., Gendreau, M., Soriano, P.: A hybrid monte carlo local branching algorithm
for the single vehicle routing problem with stochastic demands. Transp. Sci. 44(1),
136–146 (2010)

21. Saskena, J.: Mathematical model of scheduling clients through welfare agencies. J.
Can. Oper. Res. Soc. 8, 185–200 (1970)

22. Secomandi, N., Margot, F.: Reoptimization approaches for the vehicle-routing
problem with stochastic demands. Oper. Res. 57(1), 214–230 (2009)

23. Srivastava, S.S., Kumar, S., Carg, R.C., Sen, P.: Generalized traveling salesman
problem through n sets of nodes. Can. Oper. Res. Soc. J. 7, 97–101 (1969)

24. Yang, W.H., Mathur, K., Ballou, R.H.: Stochastic vehicle routing problem with
restocking. Transp. Sci. 34(1), 99–112 (2000)

An Iterated Local Search Algorithm for Solving
the Orienteering Problem with Time Windows

Aldy Gunawan(B), Hoong Chuin Lau, and Kun Lu

School of Information Systems, Singapore Management University,
80 Stamford Road, Singapore 178902, Singapore

{aldygunawan,hclau,kunlu}@smu.edu.sg

Abstract. The Orienteering Problem with Time Windows (OPTW)
is a variant of the Orienteering Problem (OP). Given a set of nodes
including their scores, service times and time windows, the goal is to
maximize the total of scores collected by a particular route consider-
ing a predefined time window during which the service has to start. We
propose an Iterated Local Search (ILS) algorithm to solve the OPTW,
which is based on several LocalSearch operations, such as swap,
2-opt, insert and replace. We also implement the combination between
AcceptanceCriterion and Perturbation mechanisms to control the
balance between diversification and intensification of the search. In Per-
turbation, Shake strategy is introduced. The computational results
obtained by our proposed algorithm are compared against optimal solu-
tions or best known solution values obtained by state-of-the-art algo-
rithms. We show experimentally that our proposed algorithm is effective
on well-known benchmark instances available in the literature. It is also
able to improve the best known solution of some benchmark instances.

Keywords: Orienteering problem · Time windows · Iterated local search

1 Introduction

The Orienteering Problem (OP) was first introduced by Tsiligirides in [1].
The main objective is to select a subset of nodes and define the sequence of selected
nodes so that the total collected score is maximized while the maximum total travel
time (time budget given) is not exceeded. The recent survey of real-life applica-
tions of the OP and its variants is presented by Vansteenwegen et al. in [2].

The Orienteering Problem with Time Windows (OPTW) is a variant of the
OP with time window constraints that arise in situations where nodes/locations
have to be visited within a predefined time window specified by an earliest and a
latest time into which the service has to start [3]. An early arrival to a particular
node leads to waiting times, while a late arrival causes infeasibility. Given a set of
nodes, each one with a score, the goal is to maximize the total of collected score
by a particular route subject to a time budget and time window constraints. The
OPTW can be extended to the Team Orienteering Problem with Time Windows
(TOPTW) when the number of route considered is more than one route [4].
c© Springer International Publishing Switzerland 2015
G. Ochoa and F. Chicano (Eds.): EvoCOP 2015, LNCS 9026, pp. 61–73, 2015.
DOI: 10.1007/978-3-319-16468-7 6

62 A. Gunawan et al.

In this paper, an Iterated Local Search (ILS) algorithm is proposed to solve
the OPTW. The algorithm starts with generating an initial solution, which is
constructed by inserting nodes subsequently into a route. A set of feasible can-
didate nodes to be inserted is created and the selection of a node to be inserted
is based on roulette-wheel selection [5]. The initial solution is further improved
by ILS. We consider components of ILS: LocalSearch, Perturbation, and
AcceptanceCriterion. The LocalSearch procedure involves several oper-
ations, such as swap, 2-opt, replace and insert.

In Sect. 2, we present the problem description and literature review of the
OPTW. Section 3 is devoted to the proposed algorithm. Section 4 provides the
computation results together with the analysis of the results. Section 5 concludes
the paper and summarizes directions for further research.

2 Problem Description and Literature Review

The OPTW is defined as follows. Let us consider a set of nodes N = {1, 2, · · · , n}
where each node i ∈ N is associated with a score ui and a service time Ti. The
starting and end nodes are assumed to be nodes 1 and n, respectively; therefore,
u1, T1, un, Tn are set to 0. The non-negative travel time between nodes i and j
is represented as tij .

Each node i associates with a time window [ei, li], where ei and li are the
earliest and latest times allowed for starting service at node i. We assume that
e1 = en = 0 and l1 = ln = Tmax. For mathematical formulations for the OPTW,
we refer to [4,6]. The objective of the OPTW is to maximize the total collected
score when visiting a subset of the nodes with respect to following constraints,
as listed below:

– The route starts and ends at nodes 1 and n, respectively.
– Each node i ∈ N is visited at most once.
– The service start time at node i is within a time window [ei, li].
– The time budget is limited by Tmax.

The initial investigation of the OPTW has been presented by Kantor and
Rosenwein in [6]. Since OPTW falls into NP-hard, a heuristic based on the
tree heuristic was proposed. The experiments showed that the tree heuristic
outperforms the insertion heuristic. Righini and Salani [7] proposed an exact
optimization algorithm for the OPTW. The algorithm is based on dynamic pro-
gramming with decremental state space relaxation. The result shows that there
is no domination between the proposed algorithm and the other dynamic pro-
gramming proposed by Boland et al. in [8] for solving benchmark instances.
A new heuristic technique for the initialization of the critical vertex set has also
been proposed in order to reduce the number of iterations and the amount of
computing time required.

The Tourist Trip Design Problems (TTDP) can be formulated as the OPTW
and the TOPTW [4]. A simple, fast and effective Iterated Local Search (ILS)
was proposed to solve both problems. The proposed algorithm only combines

An Iterated Local Search Algorithm for Solving the Orienteering Problem 63

insertion and shaking operations to generate the solutions. New data set was
designed to analyse the performance of the proposed algorithm and to be used
as a benchmark for further research. Montemanni and Gambardella [9] pro-
posed a heuristic approach based on Ant Colony System (ACS). It includes a
local search procedure by exchanging two subchains of nodes of the giant tour.
Experimental results on benchmark instances have proven the effectiveness of
the algorithm. For other related works with further improvement of benchmark
instances’ results, we can refer to [10,11].

A Simulated Annealing-based heuristic was proposed by Lin and Yu in [12]
for solving both OPTW and TOPTW. Two different versions, fast SA (FSA)
and slow SA (SSA), were developed in order to tailor two different scenarios.
The former is mainly for the applications that need quick responses while the
latter is more concerned about the quality of the solutions. The SSA heuristic is
able to find 33 new best solutions. A heuristic based on a Variable Neighborhood
Search (VNS) was proposed in order to tackle the OPTW and the TOPTW [3].
The idea of granularity that includes time constraints and profits in addition to
pure distances is introduced. The proposed algorithm has been able to improve
25 best known solution values.

Hu and Lim [13] proposed an iterative framework which is based on three
components: a local search procedure, a Simulated Annealing procedure and
Route Recombination. The first two components are used to explore the
solution space and discover a set of routes. The last component which focuses on
combining the routes to identify high quality solutions is included. 35 new best
solutions are found and more than 83 % of instances with optimal solutions can
be found.

3 Proposed Algorithm

This section presents the description of our proposed algorithm. The algorithm
is started by generating an initial feasible solution using a greedy construction
heuristic. The initial solution is further improved by Iterated Local Search (ILS).
Components of ILS: LocalSearch, Perturbation and AcceptanceCrite-
rion, are taken into consideration. The differences between our ILS and ILS
proposed by Vansteenwegen et al. [4] would be described below.

3.1 Greedy Construction Heuristic

The greedy construction heuristic builds an initial solution from scratch. The
idea is to insert a node subsequently to a route until no more feasible insertion
can be found. A node insertion is feasible if all scheduled nodes after the insertion
still satisfy their respective time windows and the total spent time does not
exceed Tmax.

Let N ′ and N∗ be the sets of unscheduled and scheduled nodes respectively
(N ′∪N∗ = N). The greedy construction heuristic is outlined in Algorithm 1. N∗

is initialized by nodes 1 and n, while N ′ consists of the remaining unscheduled

64 A. Gunawan et al.

nodes. S0 represents the current feasible solution obtained so far, represented as
a vector (1 × |N∗|).

Let F be the set of feasible candidate nodes to be inserted. F is generated
iteratively in order to store feasible candidate unscheduled nodes to be inserted.
The idea of generating F is summarized in Algorithm 2. P is denoted as the set
of all positions of a route. We examine all possibilities of inserting an unsched-
uled node in position p ∈ P . Each element in F , which represents a feasible
insertion of node n in position p of a route, is represented as 〈n, p〉. For each
possible insertion, we calculate the benefit of insertion ration,p by using Eq. (1).
Δn,p represents the difference between the total time spent before and after the
insertion of node n in position p. For example, if the total time spent before the
insertion of node n in position p is 700 time units and the total time spent after
the insertion is increased to 720 time units, the value of Δn,p is 720 − 700 = 20
time units. All elements would be sorted in descending order based on ration,p
values and we only keep f elements in F and remove the rest.

Algorithm 1. Construction (N)

N∗ ← nodes 1 and n
N ′ ← N\ nodes 1 and n
Initialize S0 ← N∗

F ← UpdateF(N ′)
while F �= ∅ do

〈n∗, p∗〉 ← Select(F)
S0 ← 〈n∗, p∗〉
N ′ ← N ′ \ {n∗}
N∗ ← N∗ ∪ {n∗}
F ← UpdateF(N ′)

end while
return S0

Algorithm 2. UpdateF (N ′)
F ← ∅
for all n ∈ N ′ do

for all p ∈ P do
if insert node n in position p is feasible then

calculate ration,p

F ← F ∪ 〈n, p〉
end if

end for
end for
Sort all elements of F in descending order based on ration,p

Select the best f number of elements of F and remove the rest
return F

An Iterated Local Search Algorithm for Solving the Orienteering Problem 65

Algorithm 3. Select (F)

SumRatio ← 0
for all 〈n, p〉 ∈ F do

SumRatio ← SumRatio + ration,p

end for
for all 〈n, p〉 ∈ F do

probn,p ← ration,p/SumRatio
end for
U ← rand(0, 1)
AccumProb ← 0
for all 〈n, p〉 ∈ F do

AccumProb ← AccumProb + probn,p

if U ≤ AccumProb then
〈n∗, p∗〉 ← 〈n, p〉
break

end if
end for
return 〈n∗, p∗〉

ration,p =
(

u2
n

Δn,p

)
∀n ∈ N ′, p ∈ P (1)

If F �= ∅, Algorithm 3 is run in order to select which 〈n∗, p∗〉 to be inserted.
Each 〈n, p〉 corresponds to probability value probn,p. The probability is calcu-
lated by Eq. (2):

probn,p =

(
ration,p∑

〈i,j〉∈F ratioi,j

)
∀n ∈ N ′, p ∈ P (2)

Instead of always selecting an inserted node with the highest value of ration,p
[4], our approach is different. Selecting 〈n∗, p∗〉 from F is based on roulette-wheel
selection [5]. This method assumes that the probability of selection a particular
〈n, p〉 is proportional to the benefit of its insertion, ration,p. A random number
U ∼ [0, 1] is generated. The accumulative of probability values, AccumProb,
is initially set to 0. We select a particular 〈n∗, p∗〉 and update the value of
AccumProb iteratively. This loop will be terminated when (U ≤ AccumProb)
and the corresponding 〈n∗, p∗〉 is selected. S0, N ′ and N∗ will then be updated.
The greedy construction heuristic is terminated when there is no further feasible
insertion (F = ∅).

Due to the time windows, the score of a node insertion is more relevant
compared against the time consumption of an insertion. By removing the square,
the obtained results are worse [4]. Therefore, the square of score is then applied
in Eq. (1). Another main reason is by using the square of score, we increase the
probability of selecting a particular node with a higher ratio (Eq. (2)) since the
main objective is to maximize the collected score.

66 A. Gunawan et al.

3.2 Iterated Local Search

Given the initial solution S0 generated by the greedy construction heuristic,
we propose an Iterated Local Search (ILS) algorithm to further improve the
quality of S0. Three components of ILS: Perturbation, LocalSearch and
AcceptanceCriterion, are taken into consideration. Let S∗ be the best found
solution so far. The outline of ILS is presented in Algorithm 4.

Algorithm 4. ILS (N)

S0 ← Construction(N)
S0 ← LocalSearch(S0, N

∗, N ′)
S∗ ← S0

NoImpr ← 0
while TimeLimit has not been reached do

S0 ← Perturbation(S0, N
∗, N ′)

S0 ← LocalSearch(S0, N
∗, N ′)

if S0 better than S∗ then
S∗ ← S0

NoImpr ← 0
else

NoImpr ← NoImpr + 1
end if
if (NoImpr+1) Mod Threshold1 = 0 then

S0 ← S∗

end if
end while
return S∗

Perturbation is applied to S0 in order to escape from local optima. In
this paper, we implement Shake operation. The Shake operation is adopted
from [4] with some modifications. During Shake operation, one or more nodes
will be removed, which depends on two integer values. The first one indicates
how many consecutive nodes to be removed (denoted as cons), while the second
one indicates the first position of the removed nodes (denoted as post). If the
last scheduled node is reached and there are still some nodes to be removed,
we go back to the start node and include nodes after the start node. Both cons
and post are initially set to 1. After each shake operation, post is increased by
cons. cons remains the same for a fixed number of consecutive iterations, e.g. 2
iterations and it is then increased by 1 subsequently. In [4], cons will always be
increased by 1 for each iteration. If post is greater than the size of the smallest
route, post is subtracted with the size of the smallest route in order to determine
the new position. If cons is greater than the size of the largest route, or S∗ is
updated, cons is reset to one. Again, this differs from [4] where cons is set to
1 if cons is equal to n/3. After removing cons nodes, we generate F based on
Algorithm 2 and select a node to be inserted using Algorithm 3. N ′ and N∗ are
then updated accordingly. This is repeated until F = ∅.

An Iterated Local Search Algorithm for Solving the Orienteering Problem 67

ILS proposed by Vansteenwegen et al. [4] only considers Insert and Shake
operations for generating the solutions. In our LocalSearch, we consider four
different operations that would be explained as follows. Swap is applied by
exchanging two scheduled nodes within a route. All possible combinations of
selecting two different scheduled nodes are examined. Swap is executed if it
increases the remaining travel time and there is no constraint violation. 2-opt
is started by selecting two positions of two scheduled nodes. The sequence of
scheduled nodes is reversed as long as there is no constraint violation and there
is an improvement of the remaining travel time. This would be terminated if no
further improvement in terms of total of remaining travel time.

Insert is applied in order to insert one unscheduled node to a route. It is
started by generating F based on Algorithm 2 and selecting node i ∈ N ′ to be
inserted using Algorithm 3. This is repeated until F = ∅. The idea is the same
with the one introduced in the greedy construction heuristic. The last operation,
Replace, tries to replace one scheduled node i ∈ N∗ with one unscheduled node
j ∈ N ′ with the highest score uj . We then check each position p and examine
whether selected node j can replace the node in position p. The feasibility of
the solution and the improvement of total score are considered in this operation.
Once this operation is successful, we continue with the next unscheduled node j
with the second highest score uj . Otherwise, the operation would be terminated.

Acceptance criterion is described as follows. The new local optimum
solution is always accepted as the initial solution for the next run of local search.
However, if there is no improvement of S∗ obtained for a certain number of
iterations, ((NoImpr+1) Mod Threshold1 = 0), the search is continued by
applying an intensification strategy. This strategy focuses the search once again
starting from the best found solution, S∗ in order to improve the probability of
hitting the global optimum. Finally, the entire algorithm will be run within the
computational budget, TimeLimit.

4 Computational Experiments

4.1 Benchmarks and Experimental Setup

The test problems for the OPTW in the literature were initially proposed by
Righini and Salani in [7], which are generated from Solomon’s [14] and Cordeau
et al.’s instances [15]. 48 Solomon’s instances contain 100 nodes of series (c100,
r100 and rc100). Cordeau et al.’s instances consists of 10 instances with different
number of nodes, varying from 48 to 288 nodes (pr01–pr10). Those instances
were designed for the Vehicle Routing Problem with Time Windows (VRPTW)
and the Multi Depot Periodic VRPTW respectively. In this paper, we only
concern with benchmark instances with the number of route = 1, which related
to the OPTW problem. 37 additional instances were created [9]. 27 instances
are converted from Solomon’s dataset (c200, r200 and rc200) and 10 instances
are converted from Cordeau et al.’s dataset (pr11–pr20).

68 A. Gunawan et al.

Table 1. Estimation of single-thread performance [13].

Algorithm Experimental environment SuperP i Estimate of

single-thread

performance

IterLS Intel Core 2 with 2.5 gigahertz CPU,
3.45 gigabytes RAM

18.6 0.53

ACS∗ Dual AMD Opteron 250 2.4 gigahertz
CPU, 4 gigabytes RAM

Unknown 0.22

SSA Intel Core 2 CPU, 2.5 gigahertz 18.6 0.53

GVNS Intel Pentium (R) IV, 3 gigahertz
CPU

44.3 0.22

I3CH Intel Xeon E5430 CPU clocked at 2.66
gigahertz, 8 gigabytes RAM

14.7 0.67

ILS Intel Core i7-4770 with 3.4 GHz
processor, 16 gigabytes RAM

9.8 1

The experiments were carried out on a personal computer Intel Core i7 -
4770 with 3.4 GHz processor and 16 GB RAM. Vansteenwegen et al. [4] dis-
cussed the difficulty of solving the instances by a commercial solver (CPLEX).
ILS was tested by performing 10 runs with different random seeds per each
instance. The performances of the proposed ILS are compared to the state-of-
the-art methods: Iterated Local Search (IterLS) [4], Ant Colony System (ACS)
[9], Enhanced Ant Colony System (Enhanced ACS) [11], Slow Simulated Anneal-
ing (SSA) [12], Granular Variable Neighborhood Search (GVNS) [3] and Itera-
tive Three-Component Heuristic (I3CH) [13]. Enhanced ACS [11] has empirically
outperformed the original ACS [9]. In this paper, we refer to the results of both,
whichever is better and denote them as ACS∗.

For each instance, ACS∗ was executed in 5 runs whereas ILS and GVNS were
executed 10 times. On the other hand, IterLS, SSA and I3CH were only executed
once and reported only the best found solutions. For comparison purpose, the
solutions of our ILS were compared against the best known solutions (BKs) of
IterLS, ACS∗, SSA, GVNS and I3CH. In order to ensure the fair comparisons,
we refer to the same approach [13] to compare the speed of the computers used
in obtaining the solutions, as shown in Table 1. SuperP i is a single-threaded
program that computes the first 1 million digits of π of a particular processor.
The comparability of processors used by ACS∗ and GVNS is shown in [10] since
the SuperP i for ACS∗ is not available.

By setting the performance of our machine to be 1, we then estimated the
single-thread performance of other processors by multiplying with the single-
thread performance estimation (last column of Table 1). For the details, please
refer to [13]. Among all algorithms, only ACS∗ used one hour of the compu-
tational time for each instance, while the rest use the number of iterations. In
this paper, we are more concerned with solution quality, we then used ACS∗

as our reference. Instead of using 100 % of ACS∗’s computational time, we only

An Iterated Local Search Algorithm for Solving the Orienteering Problem 69

Table 2. New best known solution values found by ILS.

Instance Old BK New BK Instance Old BK New BK Instance Old BK New BK

r203 1021 1026 r209 950 956 rc206 895 899

r204 1086 1093 r211 1046 1049 rc208 1053 1057

r208 1112 1113 rc202 936 938

use 35 % of it. The computational time for each instance is then set to 35 % ×
0.22 × 3600 = 272 s using our processor. Based on the preliminary testing, the
following parameter values seem to have the best performance within a reason-
able computational time: f = 5 and Threshold1 = 10.

4.2 Experimental Results

Table 2 reports the new best known solutions (BKs) obtained by ILS. We dis-
covered 8 new best known solution values for Solomon’s instances. Partial results
obtained by ILS on benchmark instances are reported in Table 3. We only report
the results of Solomon’s instances due to space constraints. The detailed results
can be found online at http://centres.smu.edu.sg/larc/Orienteering-Problem-
Library.

Table 3 consists of two identical structure parts. The first column contains
the instance name, the second column reports the best known solution value BK
from references. The following three columns show maximum, average and min-
imum solution values obtained by our ILS. The “BG (%)” column provides the
best relative percentage deviation, which refers to the percentage gap between
BK and the best solution obtained by ILS. “AG (%)” provides the average
relative percentage deviation, which refers to the percentage gap between BK
and the average solution obtained by ILS. Finally, the last three columns show
maximum, average and minimum computational times required to obtain the
best found.

Take note that the optimal value is indicated in italic and the new BK
obtained by ILS is indicated in bold. There are still 27 and 12 instances of
Solomon’s and Cordeau et al.’s instances where the optimal values are unknown.
ILS is able to obtain 41 out 56 (≈73.2 %) best known solutions (BKs) on
Solomon’s instances. It also improved the best known solutions of 8 out 27
instances (≈30.0 %). For Cordeau et al.’s instances, 12 out 20 (≈60.0 %) BKs
can be found by ILS.

Table 4 summarizes the results of IterLS, ACS∗, GVNS, SSA, I3CH and our
ILS results. The numb column provides the number of instances in a partic-
ular instance set. The table reports the average of AG for each instance set
(AG(%)). However, IterLS, SSA and I3CH only reported their best known solu-
tion obtained; therefore, we report the average of BG (BG(%)) as well. The
best known solutions (BKs) were collected from IterILS, ACS∗, SSA, GVNS
and I3CH results. The computational time (CPU) for ACS∗ and ILS for one
particular instance set reports the average of time spent to obtain the best

http://centres.smu.edu.sg/larc/Orienteering-Problem-Library
http://centres.smu.edu.sg/larc/Orienteering-Problem-Library

70 A. Gunawan et al.
T
a
b
le

3
.
D

et
a
il
ed

re
su

lt
s

o
f
IL

S
o
n

S
o
lo

m
o
n
’s

in
st

a
n
ce

s

In
st
an
ce

BK
IL
S

BG
(%

)
AG

(%
)
C
PU

(s
ec
on

ds
)
In
st
an
ce

BK
IL
S

BG
(%

)
AG

(%
)

C
PU

(s
ec
on
ds
)

M
ax

Av
g

M
in

M
ax

Av
g
M
in

M
ax

Av
g

M
in

M
ax

Av
g

M
in

c1
01

32
0

32
0

32
0.
0
32
0

0.
0

0.
0

0.
5

0.
2

0.
0

c2
01

87
0

87
0

87
0.
0

87
0

0.
0

0.
0

15
7.
8

36
.7

1.
6

c1
02

36
0

36
0

36
0.
0
36
0

0.
0

0.
0

0.
8

0.
3

0.
0

c2
02

93
0

93
0

93
0.
0

93
0

0.
0

0.
0

18
5.
0

59
.0

20
.8

c1
03

40
0

40
0

40
0.
0
40
0

0.
0

0.
0

0.
4

0.
2

0.
1

c2
03

96
0

96
0

96
0.
0

96
0

0.
0

0.
0

24
7.
9
13
7.
2

20
.8

c1
04

42
0

42
0

42
0.
0
42
0

0.
0

0.
0

1.
0

0.
4

0.
1

c2
04

98
0

98
0

97
4.
0

97
0

0.
0

0.
6

24
6.
5
21
7.
6
10
4.
9

c1
05

34
0

34
0

34
0.
0
34
0

0.
0

0.
0

1.
3

0.
4

0.
1

c2
05

91
0

91
0

90
8.
0

90
0

0.
0

0.
2

24
9.
3

56
.2

11
.8

c1
06

34
0

34
0

34
0.
0
34
0

0.
0

0.
0

0.
9

0.
5

0.
1

c2
06

93
0

93
0

92
7.
0

92
0

0.
0

0.
3

21
9.
8
11
1.
5

5.
8

c1
07

37
0

37
0

37
0.
0
37
0

0.
0

0.
0

0.
4

0.
1

0.
0

c2
07

93
0

93
0

93
0.
0

93
0

0.
0

0.
0

14
1.
5

68
.1

12
.5

c1
08

37
0

37
0

37
0.
0
37
0

0.
0

0.
0

0.
9

0.
5

0.
1

c2
08

95
0

95
0

95
0.
0

95
0

0.
0

0.
0

68
.3

33
.3

4.
9

c1
09

38
0

38
0

38
0.
0
38
0

0.
0

0.
0

25
.4

6.
8

0.
6

r1
01

19
8

19
8

19
8.
0
19
8

0.
0

0.
0

0.
4

0.
1

0.
0

r2
01

79
7

79
4

78
8.
7

78
4

0.
4

1.
0

24
3.
4
13
3.
7

34
.4

r1
02

28
6

28
6

28
6.
0
28
6

0.
0

0.
0

0.
5

0.
2

0.
0

r2
02

93
0

92
1

91
0.
3

89
6

1.
0

2.
1

26
9.
8
16
5.
6

25
.4

r1
03

29
3

29
3

29
3.
0
29
3

0.
0

0.
0

3.
9

1.
4

0.
2

r2
03

10
21

10
26

10
11

.3
99

6
-0
.5

1.
0

26
8.
7
21
3.
5
14
8.
1

r1
04

30
3

30
3

30
3.
0
30
3

0.
0

0.
0

6.
2

1.
5

0.
1

r2
04

10
86

10
93

10
82

.8
10

71
-0
.6

0.
3

26
6.
9
17
1.
0

56
.6

r1
05

24
7

24
7

24
7.
0
24
7

0.
0

0.
0

1.
3

0.
7

0.
0

r2
05

95
3

95
3

94
8.
4

94
2

0.
0

0.
5

25
3.
2
16
9.
9

28
.8

r1
06

29
3

29
3

29
3.
0
29
3

0.
0

0.
0

0.
6

0.
2

0.
0

r2
06

10
29

10
22

10
12

.4
10

02
0.
7

1.
6

24
6.
4
12
6.
5

34
.2

r1
07

29
9

29
9

29
9.
0
29
9

0.
0

0.
0

1.
5

0.
5

0.
0

r2
07

10
72

10
67

10
59

.5
10

49
0.
5

1.
2

24
8.
3
17
4.
0

77
.1

r1
08

30
8

30
8

30
8.
0
30
8

0.
0

0.
0

2.
4

0.
9

0.
1

r2
08

11
12

11
13

11
07

.6
11

00
-0
.1

0.
4

26
7.
9
16
5.
6

47
.6

r1
09

27
7

27
7

27
7.
0
27
7

0.
0

0.
0

0.
4

0.
2

0.
0

r2
09

95
0

95
6

94
9.
7

93
8

-0
.6

0.
0

23
1.
6
14
5.
8

76
.3

r1
10

28
4

28
4

28
4.
0
28
4

0.
0

0.
0

3.
8

1.
3

0.
0

r2
10

98
7

97
8

97
0.
8

96
2

0.
9

1.
6

26
3.
0
17
1.
8

14
.5

r1
11

29
7

29
7

29
7.
0
29
7

0.
0

0.
0

50
.3

10
.9

0.
4

r2
11

10
46

10
49

10
40

.4
10

25
-0
.3

0.
5

25
6.
0
14
5.
7

3.
3

r1
12

29
8

29
8

29
8.
0
29
8

0.
0

0.
0

10
.6

3.
3

0.
0

rc
10

1
21
9

21
9

21
9.
0
21
9

0.
0

0.
0

0.
5

0.
2

0.
0

rc
20

1
79

5
79

5
79

5.
0

79
5

0.
0

0.
0

13
2.
1

63
.5

9.
0

rc
10
2

26
6

26
6

26
6.
0
26
6

0.
0

0.
0

1.
7

0.
4

0.
0

rc
20

2
93

6
93

8
92

9.
0

91
8

-0
.2

0.
7

26
2.
1
15
6.
2

31
.1

rc
10
3

26
6

26
6

26
6.
0
26
6

0.
0

0.
0

9.
6

2.
0

0.
1

rc
20

3
10

03
99

9
98

9.
8

96
9

0.
4

1.
3

24
3.
9
11
1.
5

27
.2

rc
10

4
30
1

30
1

30
1.
0
30
1

0.
0

0.
0

0.
7

0.
3

0.
2

rc
20

4
11

40
11

36
11

31
.3

11
28

0.
4

0.
8

26
3.
4
16
5.
0

16
.4

rc
10

5
24
4

24
4

24
4.
0
24
4

0.
0

0.
0

10
.0

4.
3

0.
2

rc
20

5
85

9
85

9
85

4.
7

84
9

0.
0

0.
5

21
9.
0
10
0.
5

11
.4

rc
10
6

25
2

25
2

25
2.
0
25
2

0.
0

0.
0

1.
0

0.
3

0.
0

rc
20

6
89

5
89

9
89

4.
1

88
3

-0
.4

0.
1

25
5.
9
15
2.
0

52
.1

rc
10
7

27
7

27
7

27
7.
0
27
7

0.
0

0.
0

0.
9

0.
3

0.
0

rc
20

7
98

3
98

3
95

2.
1

94
1

0.
0

3.
1

25
2.
9
12
9.
9

14
.7

rc
10
8

29
8

29
8

29
8.
0
29
8

0.
0

0.
0

0.
2

0.
1

0.
0

rc
20

8
10

53
10

57
10

40
.7

10
20

-0
.4

1.
2

15
8.
9

85
.6

15
.0

An Iterated Local Search Algorithm for Solving the Orienteering Problem 71

Table 4. Overall “Average” Comparison of ILS to the state-of-the-art methods.

Instance Set Numb
IterLS ACS∗ SSA GVNS I3CH ILS

BG(%) CPU AG(%) CPU
‡
BG(%) CPU AG(%) CPU BG(%) CPU AG(%) CPU

‡

c100 9 1.11 0.2 0.00 1.4 0.00 11.1 1.22 36.8 0.00 16.8 0.00 1.0
r100 12 1.90 0.1 0.24 84.8 0.11 12.3 2.68 6.5 0.56 19.1 0.00 1.8
rc100 8 2.92 0.1 0.00 31.7 0.00 11.7 3.51 2.2 1.66 17.0 0.00 1.0
c200 8 2.28 0.9 0.58 75.8 0.13 19.8 1.11 42.6 0.40 56.3 0.14 90.0
r200 11 2.90 0.9 3.17 344.4 1.30 24.1 3.38 7.5 1.05 117.4 0.93 162.1
rc200 8 3.43 0.9 2.04 341.7 0.96 26.5 3.96 3.5 2.68 79.6 0.97 120.5
pr01-10 10 4.74 0.9 1.22 359.8 0.98 59.1 1.62 2.7 1.07 72.7 0.74 50.4
pr11-20 10 9.56 1.0 11.87 196.4 3.71 85.6 4.26 5.4 4.28 86.8 2.12 97.9

Grand mean 3.64 0.6 2.49 183.9 0.94 31.9 2.73 12.6 1.44 59.1 0.63 65.6
‡ Average computation time to obtain the best found

found BK (in seconds) from all runs since the experiments were based on the
computational time. On the other hand, IterLS, SSA, GVNS and I3CH report
the average of the computational time for solving each instance (in seconds).
The computational time of all approaches were adjusted according the their
computer’s speed as summarized in Table 1.

From Table 4, we observe that ILS can produce better solutions against those
of ACS∗ and GVNS. The AG’s grand mean of ILS is only 0.63 %, whereas those
of ACS∗ and GVNS are 2.49 % and 0.94 %, respectively. In terms of the compu-
tational time required to obtain the best found, ILS is much faster than ACS∗.
ILS only requires 65.6 s while ACS∗ requires 183.9 s, on average. Comparing
against SSA, ILS finds better solutions at the expense of more computational
time. IterLS is the fastest algorithm but the reported grand mean of BG is the
largest.

Table 5 reports the best solutions obtained for each algorithm. ILS is the best
compared against other methods. The grand mean of BG is only 0.23 %. The
BGs of ILS ranges from −0.04% to 1.33 %, while the ones of IterLS and I3CH
have wider ranges from 1.11 % to 9.56 % and 0.00 % to 4.28 %, respectively. ILS

Table 5. Overall “Best” Comparison of ILS to the state-of-the-art methods.

Instance set Numb IterLS ACS∗ SSA GVNS I3CH ILS

BG(%) BG(%) BG(%) BG(%) BG(%) BG(%)

c100 9 1.11 0.00 0.00 0.56 0.00 0.00

r100 12 1.90 0.00 0.11 1.72 0.56 0.00

rc100 8 2.92 0.00 0.00 1.88 1.66 0.00

c200 8 2.28 0.40 0.13 0.55 0.40 0.00

r200 11 2.90 2.19 1.30 2.45 1.05 0.11

rc200 8 3.43 1.23 0.96 2.53 2.68 −0.04

pr01–10 10 4.74 1.06 0.98 0.56 1.07 0.34

pr11–20 10 9.56 11.13 3.71 3.17 4.28 1.33

Grand mean 3.64 2.09 0.94 1.71 1.44 0.23

72 A. Gunawan et al.

Table 6. Comparison with the same computational time.

Instance set Numb I3CH ILS CPU(s)

BG(%) BG(%) AG(%)

c100 9 0.00 0.00 0.00 16.8

r100 12 0.56 0.00 0.00 19.1

rc100 8 1.66 0.00 0.03 17.0

c200 8 0.40 0.00 0.29 56.3

r200 11 1.05 0.36 1.24 117.4

rc200 8 2.68 0.20 1.30 79.6

pr01–10 10 1.07 0.30 0.80 72.7

pr11–20 10 4.28 1.29 2.30 86.8

Grand mean 1.44 0.28 0.76 59.1

obtains best known solutions for all instances of the first four instances sets. For
rc200 instance set, a negative value of BG represents the improvement of some
BKs.

I3CH outperforms SSA when using the same computational time that had
been adjusted by their computers’ speed [13]. We also compare the performance
of ILS againts I3CH. As shown in Table 6, we found that the BG’s grand mean
of ILS is 1.16 % better than that of I3CH. ILS is able to obtain 0.00 % of BG
for 4 out of 8 instance sets. In terms of AG, ILS can reduce the grand mean of
AG by almost 50 % compared against the one of BG of I3CH.

5 Conclusion

In this paper, we study the Orienteering Problem with Time Windows (OPTW).
An algorithm based on Iterated Local Search (ILS) is proposed to solve the prob-
lem. Computational results have shown that the proposed algorithm is an effec-
tive algorithm. The algorithm has been able to improve 8 best known solution
values of benchmark instances.

Other various mechanisms of ILS could be investigated. For instance, using
other construction heuristics and restarting the algorithm from a new initial
solution. It would also be interesting to consider applying ILS to other variants
of the OP, e.g. the Team Orienteering Problem with Time Windows (TOPTW),
the Time Dependent Orienteering Problem (TDOP) and the Tourist Trip Design
Problem (TTDP).

Acknowledgements. This research is supported by Singapore National Research
Foundation under its International Research Centre @ Singapore Funding Initiative and
administered by the IDM Programme Office, Media Development Authority (MDA).

An Iterated Local Search Algorithm for Solving the Orienteering Problem 73

References

1. Tsiligirides, T.: Heuristic methods applied to orienteering. J. Oper. Res. Soc. 35(9),
797–809 (1984)

2. Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.: The orienteering problem:
a survey. Eur. J. Oper. Res. 209(1), 1–10 (2011)

3. Labadie, N., Mansini, R., Melechovskỳ, J., Calvo, R.W.: The team orienteering
problem with time windows: an LP-based granular variable neighborhood search.
Eur. J. Oper. Res. 220(1), 15–27 (2012)

4. Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., Van Oudheusden, D.: Iter-
ated local search for the team orienteering problem with time windows. Comput.
Operat. Res. 36(12), 3281–3290 (2009)

5. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley, Reading (1989)

6. Kantor, M.G., Rosenwein, M.B.: The orienteering problem with time windows.
J. Oper. Res. Soc. 43(6), 629–635 (1992)

7. Righini, G., Salani, M.: Decremental state space relaxation strategies and initial-
ization heuristics for solving the orienteering problem with time windows with
dynamic programming. Comput. Oper. Res. 36(4), 1191–1203 (2009)

8. Boland, N., Dethridge, J., Dumitrescu, I.: Accelerated label setting algorithms for
the elementary resource constrained shortest path. Oper. Res. Lett. 34(1), 58–68
(2006)

9. Montemanni, R., Gambardella, L.M.: Ant colony system for team orienteering
problem with time windows. Found. Comput. Decis. Sci. 34(4), 287–306 (2009)

10. Labadie, N., Mansini, R., Melechovskỳ, J., Calvo, R.W.: Hybridized evolution-
ary local search algorithm for the team orienteering problem with time windows.
J. Heuristics 17(6), 729–753 (2011)

11. Montemanni, R., Weyland, D., Gambardella, L.M.: An enhanced ant colony system
for the team orienteering problem with time windows. In: Proceedings of 2011
International Symposium on Computer Science and Society (ISCCS), pp. 381–384
(2011)

12. Lin, S.W., Yu, V.F.: A simulated annealing heuristic for the team orienteering
problem with time windows. Eur. J. Oper. Res. 217(1), 94–107 (2012)

13. Hu, Q., Lim, A.: An iterative three-component heuristic for the team orienteering
problem with time windows. Eur. J. Oper. Res. 232(2), 276–286 (2014)

14. Solomon, M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Oper. Res. 35(2), 254–265 (1987)

15. Cordeau, J.F., Grendreau, M., Laporte, G.: A tabu search heuristic for periodic
and multi-depot vehicle routing problems. Networks 30(2), 105–119 (1997)

Analysis of Solution Quality of a Multiobjective
Optimization-Based Evolutionary Algorithm

for Knapsack Problem

Jun He1(B), Yong Wang2, and Yuren Zhou3

1 Department of Computer Science, Aberystwyth University, Aberystwyth, UK
jqh@aber.ac.uk

2 School of Information Science and Engineering, Central South University,
Changsha 410083, China

3 School of Advanced Computing, Sun Yat-sen University,
Guangzhou 510006, China

Abstract. Multi-objective optimisation is regarded as one of the most
promising ways for dealing with constrained optimisation problems in
evolutionary optimisation. This paper presents a theoretical investiga-
tion of a multi-objective optimisation evolutionary algorithm for solving
the 0-1 knapsack problem. Two initialisation methods are considered
in the algorithm: local search initialisation and greedy search initialisa-
tion. Then the solution quality of the algorithm is analysed in terms of
the approximation ratio.

Keywords: Evolutionary algorithm · Knapsack problem · Multi-
objective optimisation · Solution quality · Approximation ratio

1 Introduction

Consider the problem of maximizing an objective function,

max
x

f(x), subject to g(x) ≤ 0. (1)

The above constrained optimisation problem can be transferred into an uncon-
strained bi-objective optimisation problem. That is to optimize the original
objective function plus to minimize the constraint violation simultaneously:

{
maxx f(x),
minx v(x), (2)

where v(x) is the degree of constraint violation, given by

v(x) =
{

0, if g(x) ≤ 0,
g(x), otherwsie. (3)

The use of multi-objectives for single-objective optimisation problems could
be traced back to 1990s [1]. This methodology has been termed multiobjectivisa-
tion [2]. Using multiobjectivization sometimes may help the search more efficient
as shown in [3–6].
c© Springer International Publishing Switzerland 2015
G. Ochoa and F. Chicano (Eds.): EvoCOP 2015, LNCS 9026, pp. 74–85, 2015.
DOI: 10.1007/978-3-319-16468-7 7

Analysis of Solution Quality of a Multiobjective Optimization-Based EA 75

According to the survey [7], multi-objective optimisation is regarded as one
of the most promising ways for dealing with constrained optimisation problems
in evolutionary optimisation. A constrained optimisation problem is often trans-
formed into a bi-objective optimisation problem, in which the first objective is the
original objective function and the second objective is the degree of constraint vio-
lation [8–11]. After this transformation, Pareto dominance is frequently employed
to compare individuals. Currently the research in this area is very active [7]. For
example, a self-adaptive selection method is proposed recently in [12], which aims
to exploit both non-dominated solutions with low constraint violations and fea-
sible solutions with low objective function values. Multi-objective optimisation is
combined with differential evolution in [13] and an infeasible solution replacement
mechanism is proposed. A dynamic hybrid framework is presented in [14], where
the global and local search models are implemented dynamically according to the
feasibility proportion of the population.

This paper aims at analysing the solution quality of evolutionary algorithms
(EAs) in terms of the approximation ratio. It is not intended to demonstrate that
EAs are able to compete with problem-specific approximation algorithms, since
this is unlikely in most cases. Nevertheless, it is still necessary and important to
understand the solution quality of EAs, so the EAs with arbitrarily bad solution
quality could be avoided in applications. The analysis of the approximation
performance of EAs has attracted a lot of interests in recent years [15–17].

This paper investigate an existing multiobjective optimization-based EA [9]
(MOEA) for solving constrained optimisation problems. The MOEA originally
is designed for continuous optimization. Here it is adapted for solving the 0-1
knapsack problem. Although experiment results show its performance is good,
no theoretical analysis exists for this MOEA [9]. This motivates our rigorous
analysis.

The remainder of the paper is organized as follows. The 0-1 knapsack problem
and approximation ratio are introduced in Sect. 2. The MOEA with the local
search initialisation is analysed in Sect. 3. Section 4 is devoted to the analysis of
the MOEA with the greedy search initialisation. Section 5 concludes the article.

2 0-1 Knapsack Problem and Approximation
Ratio of Solutions

Given an instance of the 0-1 knapsack problem with a set of weights wi, values
vi, and capacity W of a knapsack, the task is to find a binary string xmax so as
to maximize the objective function,

max
x

f(x) =
n∑

i=1

vixi, subject to
n∑

i=1

wixi ≤ W, (4)

where x = (x1 · · · xn) is a binary string. xi = 1 if item i is selected in the
knapsack; otherwise xi = 0.

76 J. He et al.

A feasible solution is a knapsack represented by an x which satisfies the
constraint, that is

∑n
i=1 wixi ≤ W . An infeasible one is an x that violates

the constraint. The string (0 . . . 0) represents a null knapsack. Without loss of
generality, assume that a feasible solution always exists and n is large.

There exist well-known approximation algorithms for the 0-1 knapsack prob-
lem [18,19]. Probably the simplest one is the greedy search [18] whose worst-case
approximation performance ratio equals to 1/2 and time complexity is O(n) plus
O(n log n) for the initial sorting. A polynomial-time approximation scheme has
been introduced in [18] whose worse-case performance is k/(1 + k) given an
integer parameter k and its time complexity is O(nk+1). Furthermore, a fully-
polynomial-time approximation scheme is well-known [18] whose time complex-
ity is O(n/ε2) plus O(n log n) for the initial sorting given a parameter ε > 0.

In evolutionary optimisation, the 0-1 knapsack problem has been taken as a
benchmark in computer experiments [20,21] for evaluating the performance of
various constraint-handling techniques. It is also one of favourite problems used
in the theoretical study of EAs [22,23].

In order to assess the solution quality of an EA, an evolutionary approxi-
mation algorithm is defined as below. It follows the definition of conventional
α-approximation algorithms [24, Definition 1].

Definition 1. An EA is an α-approximation algorithm for a constrained opti-
misation problem if for all instances of the problem, the EA can produce a feasible
solution in polynomial running time, whose objective function value is within a
factor of α of that of an optimal solution. The running time of an EA is the
expected number of function evaluations.

In a maximisation problem (assume f(xmax) > 0), a feasible solution x is called
to have an α-approximation ratio if it satisfies

f(x)
f(xmax)

≥ α. (5)

In order to prove that an EA is not an α-approximation algorithm, it is
sufficient to show that an EA needs exponential running time to obtain a feasible
solution with an α-approximation ratio in one instance of the problem.

3 Analysis of MOEA with Local Search Initialisation

The 0-1 knapsack problem can be transformed into a bi-objective optimisation
problem, that is to maximize the objective function f(x) and to minimize the
constrain violation v(x), where v(x) is defined by

v(x) =

⎧
⎨

⎩

0; if x is feasible,
n∑

i=1

wi − W, otherwise. (6)

Although a constrained optimisation problems can be converted into a
bi-objective optimisation problem, there exists an essential difference between

Analysis of Solution Quality of a Multiobjective Optimization-Based EA 77

it and general multi-objective optimisation problems [9]. The target of general
multi-objective optimisation is to obtain a final population with a diverse non-
dominated individuals uniformly distributed on the Pareto front. However in
the bi-objective optimisation problem derived from contained optimisation, the
target is to obtain the optimal feasible solution of the original constrained opti-
misation problem. Consequently, there is no need to care about the uniform
distribution of the resulting solutions on the Pareto front.

The MOEA adopted in this section is a variant of an existing MOEA proposed
in [9]. The fundamental idea in this MOEA is that non-dominated individuals in
a children population are chosen and replace dominated individuals of the parent
population. The algorithm, based on Model 1 of [9], is described in Algorithm 1
for solving the 0-1 knapsack problem.

Algorithm 1. MOEA [9]
1: initialize population Φ0;
2: for t = 0, 1, 2, · · · do
3: perform bitwise mutation and generate a children population Φt.a with N indi-

viduals;
4: evaluate the values of f(x) and v(x);
5: choose the non-dominated individuals from population Φt.a and assume there

are k non-dominated individuals, denoted as {x1, · · · ,xk};
6: set an intermediate population Φt.b ← Φt;
7: for i = 1, · · · , k do
8: let m be the number of individuals in Φt.b which are dominated by xi;
9: if m = 0 then

10: do nothing;
11: else if m = 1 then
12: the corresponding dominated individual is replaced by xi;
13: else
14: if the dominated individuals are feasible then
15: the individual with the smallest objective function value is replaced by

xi;
16: else
17: one of the dominated individuals is randomly chosen and replaced by xi;
18: end if
19: end if
20: end for
21: set the next generation population Φt+1 ← Φt.b.
22: end for

It should be pointed out that the running time of EAs is dependent on initial-
isation. Two initialisation methods are considered in the paper: initialisation by
the local search and by the greedy search. In this section, we investigate the first
one: the local search initialisation, described in Algorithm 2. This initialisation
does not only produce both feasible solutions (local optima), but also infeasible
solutions. Bitwise mutation flips each bit of a binary string with probability 1

n .

78 J. He et al.

Population size N is set to a large constant and for the sake of analysis, assume
that N/4 is an integer.

Algorithm 2. Local Search Initialisation
1: set x = (0 · · · 0);
2: while x is feasible do
3: flip one 0-valued bit of x into 1-valued, denote it by y;
4: if y is feasible then
5: let x ← y;
6: else
7: let x ← y with probability 1/2;
8: end if
9: end while

10: repeat the above steps until N individuals are produced.

We show that the solution quality of the MOEA with the local search initial-
isation might be arbitrarily bad using the following instance of the 0-1 knapsack
problem (Table 1).

Instance 1. In the following table, H, I and J represent index sets. For the sake
of simplicity, assume that n

2 and αn
2 are integers. Fixing a constant α ∈ (0, 1),

choose n an enough large integer so that n > 2
α and 2

α > nα2 ln n

2 .

Table 1. Instance 1

H I J

i 1 2, · · · , n
2

+ 1 n
2

+ 2, · · · , n

vi n 1 αln n

wi n 2
α

α2 ln n

W n

Let xmax represent the global optimum such that x1 = 1 and other bits xi = 0.
The global optimum is unique. Its objective function value is

f(xmax) = n. (7)

Let xloc represent a local optimum1 such that αn
2 bits xi = 1 (where i ∈ I)

and other bits xi = 0. Its objective function value is

f(xloc) =
αn

2
. (8)

1 A feasible solution x is called a local optimum if f(y) < f(x) for any feasible solution
y within Hamming distance d(x,y) = 1.

Analysis of Solution Quality of a Multiobjective Optimization-Based EA 79

f(xloc) is the second largest objective function value among feasible solutions.
The number of such local optima xloc is experiential in n,

(n
2

αn
2

)
≥

(
1
α

)αn
2

. (9)

Let xvio1 denote an infeasible solution such that xi = 1 for αn
2 indexes i ∈ I,

one i ∈ J , and xi = 0 for other i. Its objective function value and violation
value are

f(xvio1) = f(xloc) + αlnn, v(xvio1) = α2 lnn. (10)

The number of such infeasible solutions xvio1 is exponential in n,
(n

2
αn
2

)
n − 1

2
≥ n − 1

2

(
1
α

)αn
2

. (11)

Let xvio2 denote an infeasible solution such that x1 = 1, xi = 1 for one i ∈ J ,
and xi = 0 for any other i. Its objective function value and violation value are

f(xvio2) = f(xmax) + αlnn, v(xvio2) = α2 lnn. (12)

It is easy to verify that the degree of constraint violation v(xvio1) and v(xvio2)
(= αlnn) is the minimum among all infeasible solutions.

Instance 1 is hard since Hamming distance between a local optimum xloc and
the unique global optimum xmax is large ≥ αn/2 and the the number of local
optima is exponential in n. Since the selection used in the MOEA is that non-
dominated individuals in a children population are chosen and replace dominated
individuals of the parent population, it prevents individuals moving from the 2nd
best fitness level to the best fitness level. Thus the EA needs exponential time
to leave the absorbing basin of the local optima.

Theorem 1. For Instance 1 and any constant α ∈ (0, 1), the MOEA with the
local search initialisation needs Ω(n

αn
2) running time to find an α-approximation

solution in the worst case.

Proof. After the initialisation, individuals generated by the local search may
include xmax, local optima xloc and infeasible solutions x with Hamming dis-
tance H(x,xmax) = 1 or H(x,xloc) = 1. The worst case is that after initialisa-
tion, population Φ0 is composed of N local optima xloc and infeasible solutions
xvio1. Notice that the number of local optima xloc and infeasible solutions xvio1

is exponential in n. The individuals in Φ0 may be chosen to be different.
Assume that in the tth generation, population Φt is composed of N local

optima xloc and infeasible solutions xvio1. The approximation ratio between
f(xloc) and f(xmax) is

f(xloc)
f(xmax)

=
α

2
< α. (13)

80 J. He et al.

Since α could be any constant, the above approximation ratio could arbitrarily
bad.

As we know that xmax is the unique solution satisfying f(xmax) > f(xloc),
it is sufficient to prove that the EA needs exponential running time to generate
xmax.

First we consider the event of mutating xloc or xvio1 into a child y. The
event can be decomposed into the following mutually exclusive and exhaustive
sub-events.

1. y is a feasible solution such that f(y) < f(xloc).
Obviously y will not dominate xloc. At the same time, y will not dominate
xvio1 since f(y) < f(xloc) < f(xvio1). Thus y will not dominate any individ-
uals in Φt and cannot be selected into the next generation population.

2. y is a feasible solution such that f(y) = f(xloc), that is, y is a xloc.
3. y is a feasible solution such that f(y) > f(xloc), that is, y is the global

optimum xmax.
In this case, all 1-valued bits xi (where i ∈ I) must be flipped from 1 to 0.
The probability of the event happening is at most

O

(
1
n

)αn
2

. (14)

4. y is an infeasible solution such that v(y) > v(xvio1).
In this case, y will not dominate xloc and xvio1, so it cannot be selected into
the next generation population.

5. y is an infeasible solution such that v(y) = v(xvio1), that implies,
(a) either y is xvio1;
(b) or y is an infeasible solution xvio2.

In the second case, all 1-valued bits xi (where i ∈ I) must be flipped
from 1 to 0. The probability of the event happening is

O

(
1
n

)αn
2

. (15)

From the above analysis, we observe that only when either xmax or an infea-
sible solution xvio2 is generated via mutation, the population status could be
changed. Otherwise the population is still composed of N solutions xloc and
xvio1. The probability of the former event happening is O

(
1
n

)αn
2 .

Next we analyse the role of using a population. Consider the event that a
population includes either xmax or an infeasible solution xvio2 is generated via
mutation. Since N parents are selected and mutated independently, the prob-
ability of the event happening is NO

(
n

2
αn

)
. Thus the expected number of

generations for the EA to reach xmax is 1
N Ω

(
n

αn
2

)
. Since there are N fitness

evaluations at each generation, the expected number of fitness evaluations is
Ω

(
n

αn
2

)
. The required conclusion is then proven. ��

Analysis of Solution Quality of a Multiobjective Optimization-Based EA 81

4 Analysis of MOEA with Greedy Search Initialisation

In order to produce a good quality solution with a guaranteed approximation
ratio, a natural idea is to combine an EA with an approximation algorithm: first
we apply an approximation algorithm to producing approximation solutions as
the initial population, and then apply the MOEA to searching a global opti-
mum. In this section, we consider a 1

2 -approximation algorithm to implement
the initialisation. It a variant of the greedy search [18, Sect. 2.4], described in
Algorithm 3. Notice that the initialisation does not only produce feasible solu-
tions (local optima), but also infeasible solutions.

Algorithm 3. Greedy Search Initialisation
1: sort all the items via their values so that p1 ≥ · · · ≥ pn;
2: then greedily add the items in the above order to the knapsack as long as adding

an item to the knapsack does not exceeding the capacity of the knapsack. Denote
the solution by xa;

3: resort all the items via the ratio of their values to their corresponding weights so
that p1

w1
≥ · · · ≥ pn

wn
;

4: Then greedily add the items in the above order to the knapsack as long as adding
an item to the knapsack does not exceeding the capacity of the knapsack. Denote
the solution by xb;

5: put xa and xb into the initial population;
6: repeat the above procedure until N

2
individuals are produced;

7: for each of these N
2

individuals, add one item and then N
2

infeasible solutions are
produced.

Using the greedy search initialisation, we may find the global optimal solution
of Instance 1 during the initialisation phase. Furthermore, since the greedy search
is a 1/2-approximation algorithm for the 0-1 knapsack problem, the MOEA with
the greedy search initialisation is an evolutionary 1/2-approximation algorithm
too. The advantage of using an EA is the ability to obtain the global optimum
due to the use of bitwise mutation.

In the following we answer the question: can the MOEA with the greedy
search initialisation find a solution with the approximation ratio better than 1/2?
Through analysing the instance described below, we obtain a negative answer
(Table 2).

Instance 2. In the following table, H, I, J and K represent index sets. For the
sake of simplicity, assume that n/4 is an integer.

Let xmax represent the unique global optimum such that xi = 1 for any i ∈ H
and xi = 0 for any other i. Its objective function value is

f(xmax) = 2n. (16)

82 J. He et al.

Table 2. Instance 2

H I J K

i 1, 2 3, · · · , n
4

n
4

+ 1, · · · , n
2

n
2

+ 1, · · · , n

vi n n + 2 n−3 n−3

wi n n + 1 n−4 1
4(1+n−4)

W 2n

Let xloc represent a local optimum such that xi = 1 for one i ∈ I, any i ∈ J
and n

4 − 2 indexes i ∈ K; xi = 0 for all other i. Its objective function value is

f(xloc) = n + 2 +
(n

2
− 2

)
n−3. (17)

f(xloc) is the second largest objective function value among feasible solutions.
Let xvio1 represent an infeasible solution such that xi = 1 for one i ∈ I, any

i ∈ J and n
4 −1 indexes i ∈ K; xi = 0 for all other i. Its objective function value

and violation value are

f(xvio1) = f(xloc) + n−3, v(xvio1) =
1

4(1 + n−4)
. (18)

Let xvio2 represent an infeasible solution such that xi = 1 for any i ∈ H and
one i ∈ K, and xi = 0 for any other i. Its objective function value and violation
value satisfy

f(xvio2) = f(xmax) + n−3, v(xvio2) =
1

4(1 + n−4)
. (19)

Let xvio3 represent an infeasible solution such that xi = 1 for any i ∈ H and
at least one i ∈ J , and xi = 0 for any other i. Its objective function value and
violation value satisfy

f(xmax) < f(xvio3) ≤ f(xmax) +
n−2

4
, 0 < v(xvio3) <

n−3

4
. (20)

Instance 2 is a hard problem to EAs using bitwise mutation since Hamming
distance between a local optimum xloc and the unique global optimum xmax

is large. Another trouble is the number of local optima which is exponential in
n. Thus it is difficult for a population to leave the absorbing basin of the local
optima.

Theorem 2. For Instance 2, the MOEA with the greedy search initialisation
can find a 1

2 -approximation solution after initialisation. But in the worst case,
it needs Ω(n

n
4) running time to find a (12 + 1

n + 1
2n3)-approximation solution.

Proof. The first conclusion is trivial due to the use of the greedy search. After
the initialisation, individuals generated by the greedy search are local optima

Analysis of Solution Quality of a Multiobjective Optimization-Based EA 83

xloc and infeasible solutions x with Hamming distance H(x,xloc) = 1. The
local optimum xloc has an approximation ratio given by

f(xloc)
f(xmax)

=
n + 2 +

(
n
2 − 2

)
n−3

2n
∈

(
1
2
,
1
2

+
1
n

+
1

2n3

)
. (21)

The proof of the second conclusion is similar to that of Theorem 1. The worst
case is that after initialisation, population Φ0 is composed of N local optima xloc

and infeasible solutions xvio1. Notice that the number of local optima xloc and
infeasible solutions xvio1 is exponential in n. The individuals in Φ0 could be
chosen to be different.

Assume that in the tth generation, population Φt is composed of N different
local optima xloc and infeasible solutions xvio1. Let y be a child mutated from
a parent x. The event can be decomposed into the following mutually exclusive
and exhaustive sub-events.

1. (y is feasible such that f(y) < f(xloc).
According to the selection based on the Pareto-dominance, y will not be
selected to the next generation population.

2. y is feasible such that f(y) = f(xloc), that is, y is a local optimum xloc.
3. y is feasible such that f(y) > f(xloc), that is, y is xmax.

In this case, any 1-valued bit xi where i ∈ I ∪ J ∪ K must be flipped from 1
to 0, and x1 and x2 must be flipped from 0 to 1. Thus at least n

4 bits must
be flipped. The probability of this event happening is at most O(n− n

4).
4. y is infeasible such that v(x) = 1

4(1+n−4) , that is
– either y is xvio1;
– or y is xvio2.

In the second case, except one 1-valued bit xi where i ∈ K, any other
1-valued bit xi where i ∈ I ∪ J ∪ K must be flipped from 1 to 0, and x1

and x2 must be flipped from 0 to 1. Thus at least n
4 bits must be flipped.

The probability of this event happening is at most O(n− n
4).

5. y is infeasible such that v(x) < 1
4(1+n−4) , that means, y is xvio3.

In this case, any 1-valued bit xi where i ∈ I ∪ K must be flipped from 1 to
0, and x1 and x2 must be flipped from 0 to 1. Thus at least n

4 bits must be
flipped. The probability of this event happening is at most O(n− n

4).
6. y is infeasible such that v(x) > 1

4(1+n−4) . y will not be selected since it is
dominated by xvio1.

From the above analysis, we observe that the probability of generating a
non-xloc and non-xvio1 child and selecting it to the next generation population
is small, that is O(n− n

4).
Next we analyse the role of using a population. Consider the event that

the next generation population includes a non-xloc or non-xvio1 child. Since N
parents are mutated independently, the probability of the event happening is
at most NO(n− n

4). This implies that the expected number of generations for
the EA to reach xmax is at least 1

N Ω(n
n
4). Since there are N fitness evaluations

at each generation, the expected number of fitness evaluations is Ω(n
n
4). The

required conclusion is then proven. ��

84 J. He et al.

The above theorem shows that the MOEA with the greedy search initialisa-
tion finds a (12 + 1

n + 1
2n3)-approximation solution in Ω(n

n
4) running time. As

n → +∞, the approximation ratio goes towards 1/2. In other words, the MOEA
doesn’t substantially improve the solution quality since the greedy search already
produces a 1/2 approximation solution during initialisation.

5 Conclusions

This paper has assessed the solution quality of an existing MOEA [9] for solving
the 0-1 knapsack problem. The solution quality of an EA is measured in terms
of the approximation ratio. Two different initialization methods are analysed in
the MOEA: local search initialisation and greedy search initialisation.

When the initial population is produced by the local search, the solution
quality of the MOEA might be arbitrarily bad in some instance. That is, given
any constant α ∈ (0, 1), the MOEA needs Ω(n

αn
2) running time to find an

α-approximation solution in the worst case in some instance.
When the initial population is produced by the greedy search, the MOEA

may guarantee a 1/2-approximation solution within polynomial time. However,
this improvement is caused by the use of the greedy search, rather than the
MOEA itself. In some instance, the MOEA with the greedy search initialisa-
tion needs Ω(n

n
4) running time to find a (12 + 1

n + 1
2n3)-approximation solution.

In other words, the MOEA doesn’t substantially improve the solution quality
comparing with the greedy search.

Other types of initialisation, such as random initialisation, are not considered
in the current paper. It is left for future work.

Acknowledgement. This work was partially supported by EPSRC under Grant No.
EP/I009809/1 (He), by NSFC under Grant No. 61170081, 61472143 (Zhou), 61273314
and by the Program for New Century Excellent Talents in University under Grant
NCET-13-0596 (Wang).

References

1. Louis, S.J., Rawlins, G.: Pareto optimality, GA-easiness and deception. In:
Proceedings of 5th International Conference on Genetic Algorithms, Morgan
Kaufmann, pp. 118–123 (1993)

2. Knowles, J.D., Watson, R.A., Corne, D.W.: Reducing local optima in single-
objective problems by multi-objectivization. In: Zitzler, E., Deb, K., Thiele, L.,
Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, p. 269.
Springer, Heidelberg (2001)

3. Jensen, M.T.: Helper-objectives: Using multi-objective evolutionary algorithms for
single-objective optimisation. J. Math. Model. Algorithms 3(4), 323–347 (2005)

4. Neumann, F., Wegener, I.: Minimum spanning trees made easier via multi-objective
optimization. Nat. Comput. 5(3), 305–319 (2006)

Analysis of Solution Quality of a Multiobjective Optimization-Based EA 85

5. Neumann, F.: Expected runtimes of a simple evolutionary algorithm for the multi-
objective minimum spanning tree problem. Eur. J. Oper. Res. 181(3), 1620–1629
(2007)

6. Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approximating
covering problems by randomized search heuristics using multi-objective models.
Evol. Comput. 18(4), 617–633 (2010)

7. Segura, C., Coello, C.A.C., Miranda, G., León, C.: Using multi-objective evolu-
tionary algorithms for single-objective optimization. 4OR 11(3), 201–228 (2013)

8. Zhou, Y., Li, Y., He, J., Kang, L.: Multi-objective and MGG evolutionary algo-
rithm for constrained optimisation. In: Proceedings of 2003 IEEE Congress on
Evolutionary Computation, Canberra, Australia, pp. 1–5. IEEE Press (2003)

9. Cai, Z., Wang, Y.: A multiobjective optimization-based evolutionary algorithm for
constrained optimization. IEEE Trans. Evol. Comput. 10(6), 658–675 (2006)

10. Wang, Y., Cai, Z., Guo, G., Zhou, Y.: Multiobjective optimization and hybrid
evolutionary algorithm to solve constrained optimization problems. IEEE Trans.
Syst. Man Cybern. Part B 37(3), 560–575 (2007)

11. Wang, Y., Cai, Z., Zhou, Y., Zeng, W.: An adaptive tradeoff model for constrained
evolutionary optimization. IEEE Trans. Evol. Comput. 12(1), 80–92 (2008)

12. Jiao, L., Li, L., Shang, R., Liu, F., Stolkin, R.: A novel selection evolutionary
strategy for constrained optimization. Inf. Sci. 239, 122–141 (2013)

13. Wang, Y., Cai, Z.: Combining multiobjective optimization with differential evo-
lution to solve constrained optimization problems. IEEE Trans. Evol. Comput.
16(1), 117–134 (2012)

14. Wang, Y., Cai, Z.: A dynamic hybrid framework for constrained evolutionary opti-
mization. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(1), 203–217 (2012)

15. Friedrich, T., Oliveto, P., Sudholt, D., Witt, C.: Analysis of diversity-preserving
mechanisms for global exploration. Evol. Comput. 17(4), 455–476 (2009)

16. Oliveto, P.S., He, J., Yao, X.: Analysis of the (1+1)-EA for finding approximate
solutions to vertex cover problems. IEEE Trans. Evol. Comput. 13(5), 1006–1029
(2009)

17. Lai, X., Zhou, Y., He, J., Zhang, J.: Performance analysis of evolutionary algo-
rithms for the minimum label spanning tree problem. IEEE Trans. Evol. Comput.
18(6), 860–872 (2014)

18. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implemen-
tations. Wiley, New York (1990)

19. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg
(2004)

20. Michalewicz, Z., Arabas, J.: Genetic algorithms for the 0/1 knapsack problem.
In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS, vol. 869, pp. 134–143.
Springer, Heidelberg (1994)

21. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs,
3rd edn. Springer, New York (1996)

22. Kumar, R., Banerjee, N.: Analysis of a multiobjective evolutionary algorithm on
the 0-1 knapsack problem. Theor. Comput. Sci. 358(1), 104–120 (2006)

23. Zhou, Y., He, J.: A runtime analysis of evolutionary algorithms for constrained
optimization problems. IEEE Trans. Evol. Comput. 11(5), 608–619 (2007)

24. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms.
Cambridge University Press, New York (2011)

Evolving Deep Recurrent Neural Networks
Using Ant Colony Optimization

Travis Desell1(B), Sophine Clachar1, James Higgins2, and Brandon Wild2

1 Department of Computer Science, University of North Dakota, Grand Forks, USA
tdesell@cs.und.edu, sophine.clachar@my.und.edu

2 Department of Aviation, University of North Dakota, Grand Forks, USA
{jhiggins,bwild}@aero.und.edu

Abstract. This paper presents a novel strategy for using ant colony
optimization (ACO) to evolve the structure of deep recurrent neural
networks. While versions of ACO for continuous parameter optimization
have been previously used to train the weights of neural networks, to the
authors’ knowledge they have not been used to actually design neural
networks. The strategy presented is used to evolve deep neural networks
with up to 5 hidden and 5 recurrent layers for the challenging task of
predicting general aviation flight data, and is shown to provide improve-
ments of 63 % for airspeed, a 97 % for altitude and 120 % for pitch over
previously best published results, while at the same time not requiring
additional input neurons for residual values. The strategy presented also
has many benefits for neuro evolution, including the fact that it is easily
parallizable and scalable, and can operate using any method for training
neural networks. Further, the networks it evolves can typically be trained
in fewer iterations than fully connected networks.

Keywords: Ant colony optimization · Time-series prediction · Neural
networks · Flight prediction · Aviation informatics

1 Introduction

Neural networks have been widely used for time series data prediction [11,43].
Unfortunately, current popular techniques for designing and training neural net-
works such as convolutional and deep learning strategies, popular within com-
puter vision, do not easily apply to time series prediction. This is in part because
the number of input parameters is relatively small (compared to pixels within
images), the fact they do not easily deal with recurrent memory neurons, and
the goal is prediction, as opposed to classification. Even more problematic, these
strategies do not help address the rather challenging problem of determining the
best performing structure for those neural networks. Automated strategies for
simultaneously evolving the structure and weights of neural networks have been
examined through strategies such as NeuroEvolution of Augmenting Topologies
(NEAT) [37] and Hyper-NEAT [38], and while these can evolve recurrent con-
nections, they require non-trivial modification to evolve the recurrent memory
nureons typically used for time series prediction.
c© Springer International Publishing Switzerland 2015
G. Ochoa and F. Chicano (Eds.): EvoCOP 2015, LNCS 9026, pp. 86–98, 2015.
DOI: 10.1007/978-3-319-16468-7 8

Evolving Deep Recurrent Neural Networks Using Ant Colony Optimization 87

Recent work in using neural networks for time series prediction has involved
utilizing residuals or lags similar to the Auto-Regressive Integrated Moving Aver-
age (ARIMA) model [42], as done by Khashei et al. [23] and Omer et al. [30].
Other work has investigated strategies for cooperative co-evolution for Elman
recurrent neural networks [9,10], however these strategies involve single parame-
ter time series data such as the Mackey-Glass, Lorenz and Sunspot data sets.

Ant colony optimization (ACO) [6,17,19] is an optimization technique orig-
inally designed for use on discrete problems, with a common example being the
Traveling Salesman Problem [18]. It has since been extended for use in continuous
optimization problems [5,20,27,34–36], including training artificial neural net-
works [3,7,24,31,40]. While ACO has been studied for training artificial neural
networks (ANNs), to the authors’ knowledge there is little work in using ACO
to actually design neural networks, with the closest being Sivagaminathan et al.
using ACO to select input features for neural networks [33].

This work presents a novel strategy based on ant colony optimization which
evolves the structure of recurrent deep neural networks with multiple input data
parameters. While ant colony optimization is used to evolve the network struc-
ture, any number of optimization techniques can be used to optimize the weights
of those neural networks. Trained neural networks with good fitness will be used
to update the pheromones, reinforcing connections between neurons that pro-
vide good solutions. The algorithm is easily parallelizable and scalable, using a
steady state population of best performing neural networks to determine when
pheromones are incremented, and any number of worker processes can asynchro-
nously train neural networks generated by the ant colony optimization strategy.

This algorithm is evaluated using the real world problem of predicting general
aviation flight data, and compared to previously best published results for a set
of testing data. For three of the four parameters evaluated (airspeed, altitude,
and pitch), this approach improves significantly on previously published results,
while at the same time not requiring additional input nodes for ARIMA residuals.
For the fourth parameter, roll, the strategy performs worse, however this may
be due to the fact that the neural networks were not trained for long enough.
The authors feel that the results provide a strong case for the use of ant colony
optimization in the design of neural networks, given its ability to find novel and
effective neural network topologies that can be easily trained (apart from the
roll parameter which requires further study).

2 Predicting General Aviation Flight Data

General aviation comprises 63 % of all civil aviation activity in the United States;
covering operation of all non-scheduled and non-military aircraft [21,32]. While
general aviation is a valuable and lucrative industry, it has the highest accident
rates within civil aviation [29]. For many years, the general aviation accident and
fatality rates have hovered around 7 and 1.3 per 100,000 flight hours, respec-
tively [1]. The general aviation community and its aircraft are very diverse,
limiting the utility of the traditional flight data monitoring (FDM) approach
used by commercial airlines.

88 T. Desell et al.

The National General Aviation Flight Information Database (NGAFID) has
been developed at the University of North Dakota as a central repository for
general aviation flight data. It consists of per-second flight data recorder (FDR)
data from three fleets of aircraft. As of November 2014, the database stores FDR
readings from over 200,000 flights, with more being added daily. It currently
stores over 750 million per-second records of flight data. The NGAFID provides
an invaluable source of information about general aviation flights, as most of
these flights are from aviation students, where there is a wider variance in flight
parameters than what may normally be expected within data from professionally
piloted flights.

Having algorithms which can accurately predict FDR parameters would be
able to not only warn pilots of problematic flight behavior, but also be used
to predict impending failures of engines and other hardware. As such, investi-
gating predictive strategies such as these has the potential to reduce costs for
maintaining general aviation fleets, and more importantly save lives.

3 Previous Results

In previous work, the authors evaluated a suite of feed forward, Jordan and
Elman recurrent neural networks to predict flight parameters [14]. This work was
novel in that to our knowledge, neural networks have not been previously applied
to predicting general aviation flight data. These results were encouraging in that
some parameters such as altitude and airspeed can be predicted with high accu-
racy, at 0.22–0.62 % for airspeed, 0.026–0.08 % for airspeed, 0.88–1.49 % for pitch
and 0.5–2 % for roll. These neural networks were trained using backpropagation
via stochastic gradient descent, gradient descent from a baseline predictor (which
mimicked how deep neural networks are currently trained by pre-training each
layer to predict its input), and with asychronous differential evolution (ADE).
ADE was shown to significantly outperform both types of backpropagation, pro-
vided solutions with up to 70 % improvement. It was also shown that while ADE
outperformed backpropagation, it still had trouble training the larger fully con-
nected Jordan and Elman recurrent neural networks (which provided the best
predictions), motivating further study.

4 Methodology

The ACO based strategy works as follows. Given a potentially fully connected
recurrent neural network – where each node has a potential connection to every
node in the subsequent layer and to a respective node in the recurrent layer –
each connection between neurons can be seen as a potential path for an ant
(see Fig. 1). Every potential connection is initialized with a base amount of
pheromone, and the master process stores the amount of pheromone on each
connection. Worker processes receive neural network designs generated by taking
a selected number of ants, and having them choose a path through the fully con-
nected neural network biased by the amount of pheromone on each connection.

Evolving Deep Recurrent Neural Networks Using Ant Colony Optimization 89

Fig. 1. Ants select a forward propa-
gating path through neurons randomly
based on the pheromone on each path,
assuming a fully connected strategy
between the input, hidden and output
layers; and a potential connection from
each hidden node to a respective node
in the recurrent layer that is fully con-
nected back to its hidden layer.

Fig. 2. The server creates neural net-
works for the workers to evaluate by
combining the paths selected by a given
number of ants. This generates vari-
ous Elmann-like neural networks which
have less training complexity than a
fully connected Elman design.

Multiple ants can choose the connections between neurons. Those ant paths
are be combined to construct a neural network design which is sent to worker
processes and trained on the input flights using backpropagation, evolutionary
algorithms or any other neural network training algorithm. The master process
maintains a population of the best neural network designs, and when a worker
reports the accuracy of a newly trained neural network, if it improves the popu-
lation, the master process will increase the pheromone on every connection that
was in that neural network. The master process periodically degrades pheromone
levels, as is done in the standard ACO algorithm. This strategy allows the evolu-
tion of recurrent neural networks with potentially many hidden layers and hidden
nodes, to determine what design can best predict flight parameters (Fig. 2).

5 Results

5.1 Optimization Software, Data and Reproducibility

Given the complexity of examining complex neural networks over per-second
flight data, a package requiring easy use of high performance computing resources
was required. While there exist some standardized evolutionary algorithms pack-
ages [2,8,25,41], as well as those found in the R programming language [4,28]
and MATLAB [26], they do not easily lend themselves towards use in high per-
formance computing environments.

This work utilizes the Toolkit for Asynchronous Optimization (TAO), which
is used by the MilkyWay@Home volunteer computing to perform massively
distributed evolutionary algorithms on tens of thousands of volunteered hosts
[12,15,16]. It is implemented in C++ and MPI, allowing easy use on clusters and

90 T. Desell et al.

supercomputers, and also provides support for systems with multiple graph-
ical processing units. Further, TAO has shown that performing evolutionary
algorithms asynchronously can provide significant improvements to performance
and scalability over iterative approaches [13,39]. TAO is open source and freely
available on GitHub, allowing easy use and extensibility1, and the presented
ACO strategy has been included in that repository. The flight data used in this
work has also been made available online for reproducibility and use by other
researchers2.

5.2 Runtime Environment

All results were gathered using a Beowulf HPC cluster with 32 dual quad-core
compute nodes (for a total of 256 processing cores). Each compute node has
64 GBs of 1600 MHz RAM, two mirrored RAID 146 GB 15 K RPM SAS drives,
two quad-core E5-2643 Intel processors which operate at 3.3 Ghz, and run the
Red Hat Enterprise Linux (RHEL) 6.2 operating system. All 32 nodes within
the cluster are linked by a private 56 gigabit (Gb) InfiniBand (IB) FDR 1-to-1
network. The code was compiled and run using MVAPICH2-x [22], to allow
highly optimized use of this network infrastructure.

5.3 Data Cleansing

The flight data required some cleaning for use, as it is stored as raw data from
the flight data recorders uploaded to the NGAFID server and entered in the
database as per second data. When a FDR turns on, some of the sensors are
still calibrating or not immediately online, so the first minute of flight data can
have missing and erroneous values. These initial recordings were removed from
the data the neural networks were trained on. Further, the parameters had wide
ranges and different units, e.g., pitch and roll were in degrees, altitude was in
meters and airspeed was in knots. These were all normalized to values between
0 and 1 for altitude and airspeed, and −0.5 and 0.5 for pitch and roll.

5.4 Experiments

As backpropagation was shown to not be sufficient to train these recurrent neural
networks, particle swarm optimization (PSO) was used to train the neural net-
works generated by ACO. Previous work has shown both particle swarm and
differential evolution as being equally effective in training these networks. PSO
used a population of 200, inertia weight of 0.75, and global and local best weights
of 1.5 for all runs. PSO was allowed to train the neural networks for 250, 500
and 1000 iterations.

The ACO strategy was used to train networks with 3, 4, and 5 hidden layers
(with a similar number of recurrent layers), using 4 and 8 nodes per layer and

1 https://github.com/travisdesell/tao.
2 http://people.cs.und.edu/∼tdesell/ngafid releases.php.

https://github.com/travisdesell/tao
http://people.cs.und.edu/~tdesell/ngafid_releases.php

Evolving Deep Recurrent Neural Networks Using Ant Colony Optimization 91

pheromone degradation rates of 10 %, 5 % and 1 %. The number of ants used
was equal to twice the number of nodes per layer (8 for 4 nodes per layer, and
16 for 8 nodes per layer). Each combination of settings was run 5 times for each
of altitude, airspeed, pitch and roll, for a total of 1080 runs.

Each run was done allocating 64 processes across 8 nodes, and was allowed
to train for 1000 evaluations of generated neural networks. Runs with 250 PSO
iterations took around 30 min, 500 PSO iterations took around 1 h, and 1000
PSO iterations took around 2 h.

All runs were done on flight ID 13588 from the NGAFID data release. The
neural networks were trained for individual output parameters, as tests have
shown that trying to train for multiple output parameters simultaneously per-
forms very poorly, with neither backpropagation or evolutionary strategies being
able to find effective weights.

5.5 ACO Parameter Setting Analysis

Figure 3 presents the results of the parameter sweep. In general, there was a
strong correlation between increased PSO iterations and the best fitnesses found.
Across all runs, 4 nodes per layer performed the best, and apart from altitude,
5 hidden layers performed the best. There did not appear to be a strong trend
for the pheromone degradation rate.

5.6 Best Found Neural Networks

Figure 4 displays the best recurrent neural networks evolved by the ACO strat-
egy. For airspeed, pitch and roll, the best networks were the deepest – with
5 hidden and recurrent layers (although all nodes were not used). They also
displayed interesting recurrent topologies, significantly different than the stan-
dard Jordan and Elman recurrent neural networks found in literature. The best
evolved neural network for altitude was also interesting in that it completely
ignored roll as an input parameter. The evolved networks also show some slight
similarity to sparse autoencoders, with some of the middle layers being con-
strained to less nodes and connections.

5.7 Comparison to Prior Results

The performance of the best evolved neural networks was compared to the pre-
viously best published results for flight ID 13588, which were an Elman network
with 2 input lags and 1 hidden layer for airspeed; a Jordan recurrent neural
network with 2 input lags and 0 hidden layers for altitude; an Elman network
with 1 set put input lags and 1 hidden layer for pitch; and an Elman network
with 2 input lags and 1 hidden layer for roll. In addition, results for a random
noise estimator (RNE), which uses the previous value as the prediction for the
next value, prediction(ti+1) = ti, were given as a baseline comparison, as it rep-
resents the best predictive power that can be achieved for random time series
data. If the neural networks did not improve on this, then the results would

92 T. Desell et al.

Fig. 3. Minimum, maximum and average fitness (mean average error) given the dif-
ferent ACO input parameters. Fitness values were averaged over each run with the
parameter specified in the x-axis. Lower fitness is better. PSO is the number of PSO
iterations, PDR is the pheromone degradation rate, NHL is the number of hidden
layers, and NPL is the number of nodes per layer.

have been meaningless and potentially indicate that the data is too noisy (given
weather and other conditions) for prediction (Fig. 5).

Additionally, the RNE provides a good baseline in that it is easy for neural
networks to represent the RNE: all weights can be set to 0, except for a single
path from the path from the corresponding input node to the output node having
weights of 1. Because of this, it also provides a good test of the correctness of
the global optimization techniques, at the very least they should be able to train
a network as effective as a RNE; however local optimization techniques (such as
backpropagation) may not reach this if the search area is non-convex and the
initial starting point does not lead to a good minimum.

Evolving Deep Recurrent Neural Networks Using Ant Colony Optimization 93

Fig. 4. The best found evolved neural networks across the 1080 runs performed. Input
neurons are in blue, recurrent neurons are in pink, hidden neurons are in green, and
the output neuron is in purple.

Figure 6 compares the best ACO results to the RNE and the previous best
trained neural network for flight ID 13588. Results are the Mean Average Error
(MAE) of the prediction to the actual value. As results were normalized over
a range of 1, the MAE is also the percentage error. These neural networks and
the RNE were also run on four other flights, IDs 15438, 17269, 175755 and
24335 from the NGAFID data release. On average compared to previous best
results, the ACO evolved neural networks provided a 63 % improvement over
airspeed, a 97 % improvement over altitude and a 120 % improvement over pitch,
without requiring additional input neurons for lag values. Given the fact that
these neural networks also performed strongly on all test flights, these results
are quite encouraging.

However, as in previous work, the roll parameter remains quite difficult to
predict, and the ACO evolved neural networks actually resulted in a 14.5 %
decrease in prediction accuracy, performing worse than the RNE. Given the
depth and complexity of the evolved neural networks, there is justifiable concern
for over training, which may be the case for this evolved network. Another rea-
son for the poor performance of the ACO evolved neural networks may be due
to the limited amount of training for each generated neural network. Previous
results had the neural networks be trained for 15,000,000 objective function eval-
uations, while the best performing ACO evolved neural networks were trained
with a maximum of 200,000 objective function evaluations (1000 iterations with
population size 200). Given the strong correlation between increased PSO iter-
ations and best fitness found for roll, it is also possible that the neural networks
were not trained long enough for the roll parameter. Lastly, it could be that even
though the input lag nodes were not required for the other parameters, they may
be required for roll, or stand to provide even further prediction improvements.
A further study of this stands for future work.

94 T. Desell et al.

Fig. 5. The best neural networks trained on Flight #13588 were used to predict the
parameters of Flight #17269. The actual values are in green and the predictions are in
red. Altitude and airspeed were predicted with very high accuracy, however pitch and
roll are more challenging. Time steps are in seconds, and parameters are normalized
over a range of 1. Predicted and actual airspeed are indistinguishable at the scale of
the figure and completely overlap.

Evolving Deep Recurrent Neural Networks Using Ant Colony Optimization 95

Fig. 6. Comparison of the best found ACO evolved neural networks to the random
noise estimator (ti+1 = ti) and the previously published best found results. The mean
average error for the neural networks trained on flight ID 13588 is given when they are
tested on four other flights.

6 Conclusions and Future Work

This paper presents and analyzes a novel strategy for using ant colony opti-
mization for evolving the structure of recurrent neural networks. The strategy
presented is used to evolve deep neural networks with up to 5 hidden and 5 recur-
rent layers for the challenging task of predicting general aviation flight data, and
is shown to provide improvements of 63 % for airspeed, a 97 % for altitude and
120 % for pitch over previously best published results, while at the same time not
requiring additional input neurons for residual values. Finding good predictions
for the roll parameter still remains challenging and an area of future study.

Further, this work opens up interesting opportunites in applying ant colony
optimization to neuro evolution. In particular, the authors feel that the app-
roach could be extended to evolve neural networks for computer vision, by allow-
ing ants to also select what type of activation function each neuron has (e.g.,
ReLU, or max pooling). It may also be possible to utilize this strategy to further
improve convolutional layers in neural networks. Additionally, this work only
tested neural networks with a recurrent depth of one, where each recurrent node
is immediately fed back into the neural network in the next iteration. It may be
possible to use this strategy to generate neural networks with deeper memory,

96 T. Desell et al.

where recurrent nodes can potentially feed back into a deeper layer of recurrent
nodes, and so on.

Finally, the National General Aviation Flight Database (NGAFID) provides
an excellent data source for researching evolutionary algorithms, machine learn-
ing and data mining. Further analysis of these flights along with more advanced
prediction methods will enable more advanced flight sensors, which could pre-
vent accidents and save lives; which is especially important in the field of general
aviation as it is has the highest accident rates within civil aviation [29]. As many
of these flights also contain per-second data of various engine parameters, using
similar predictive methods it may become possible to detect engine and other
hardware failures, aiding in the maintenance process. This work presents a fur-
ther step towards making general aviation safer through machine learning and
evolutionary algorithms.

References

1. Aircraft Owners and Pilots Association (AOPA), January 2014
2. Arenas, M., Collet, P., Eiben, A.E., Jelasity, M., Merelo, J.J., Paechter, B.,

Preuß, M., Schoenauer, M.: A framework for distributed evolutionary algorithms.
In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L.,
Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 665–675. Springer,
Heidelberg (2002)

3. Ashena, R., Moghadasi, J.: Bottom hole pressure estimation using evolved neural
networks by real coded ant colony optimization and genetic algorithm. J. Petrol.
Sci. Eng. 77(3), 375–385 (2011)

4. Bartz-Beielstein, T.: SPOT: an R package for automatic and interactive tuning
of optimization algorithms by sequential parameter optimization. arXiv preprint
arXiv:1006.4645 (2010)

5. Bilchev, G., Parmee, I.C.: The ant colony metaphor for searching continuous design
spaces. In: Fogarty, T.C. (ed.) AISB-WS 1995. LNCS, vol. 993, pp. 25–39. Springer,
Heidelberg (1995)

6. Blum, C., Li, X.: Swarm intelligence in optimization. In: Blum, C., Merkle, D.
(eds.) Swarm Intelligence, pp. 43–85. Springer, Heidelberg (2008)

7. Blum, C., Socha, K.: Training feed-forward neural networks with ant colony opti-
mization: an application to pattern classification. In: Fifth International Conference
on Hybrid Intelligent Systems, 2005, HIS 2005, p. 6. IEEE (2005)

8. Cahon, S., Melab, N., Talbi, E.-G.: Paradiseo: a framework for the reusable design
of parallel and distributed metaheuristics. J. Heuristics 10(3), 357–380 (2004)

9. Chandra, R.: Competitive two-island cooperative coevolution for training elman
recurrent networks for time series prediction. In: 2014 International Joint Confer-
ence on Neural Networks (IJCNN), pp. 565–572, July 2014

10. Chandra, R., Zhang, M.: Cooperative coevolution of elman recurrent neural net-
works for chaotic time series prediction. Neurocomputing 86, 116–123 (2012)

11. Crone, S.F., Hibon, M., Nikolopoulos, K.: Advances in forecasting with neural
networks? Empirical evidence from the NN3 competition on time series prediction.
Int. J. Forecast. 27(3), 635–660 (2011)

12. Desell, T.: Asynchronous Global Optimization for Massive Scale Computing. Ph.D.
thesis, Rensselaer Polytechnic Institute (2009)

http://arxiv.org/abs/1006.4645arXiv:1006.4645

Evolving Deep Recurrent Neural Networks Using Ant Colony Optimization 97

13. Desell, T., Anderson, D., Magdon-Ismail, M., Heidi Newberg, B.S., Varela, C.:
An analysis of massively distributed evolutionary algorithms. In: The 2010 IEEE
Congress on Evolutionary Computation (IEEE CEC 2010), Barcelona, Spain. July
2010

14. Desell, T., Clachar, S., Higgins, J., Wild, B.: Evolving neural network weights
for time-series prediction of general aviation flight data. In: Bartz-Beielstein, T.,
Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 771–781.
Springer, Heidelberg (2014)

15. Desell, T., Szymanski, B., Varela, C.: Asynchronous genetic search for scientific
modeling on large-scale heterogeneous environments. In: 17th International Het-
erogeneity in Computing Workshop, Miami, Florida, April 2008

16. Desell, T., Varela, C., Szymanski, B.: An asynchronous hybrid genetic-simplex
search for modeling the Milky Way galaxy using volunteer computing. In: Genetic
and Evolutionary Computation Conference (GECCO), Atlanta, Georgia, July 2008

17. Dorigo, M., Birattari, M.: Ant colony optimization. In: Sammut, C., Webb, G.I.
(eds.) Encyclopedia of Machine Learning, pp. 36–39. Springer, Boston (2010)

18. Dorigo, M., Gambardella, L.M.: Ant colonies for the travelling salesman problem.
BioSystems 43(2), 73–81 (1997)

19. Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances.
In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics, pp. 227–263.
Springer, Boston (2010)

20. Dréo, J., Siarry, P.: A new ant colony algorithm using the heterarchical con-
cept aimed at optimization of multiminima continuous functions. In: Dorigo, M.,
Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463,
pp. 216–221. Springer, Heidelberg (2002)

21. Elias, B.: Securing General Aviation. DIANE Publishing, Darby (2009)
22. Huang, W., Santhanaraman, G., Jin, H.-W., Gao, Q., Panda, D.K.: Design of high

performance MVAPICH2: MPI2 over InfiniBand. In: Sixth IEEE International
Symposium on Cluster Computing and the Grid, 2006, CCGRID 2006, vol. 1, pp.
43–48. IEEE (2006)

23. Khashei, M., Bijari, M.: A novel hybridization of artificial neural networks and
arima models for time series forecasting. Appl. Soft Comput. 11(2), 2664–2675
(2011)

24. Li, J.-B., Chung, Y.-K.: A novel back-propagation neural network training algo-
rithm designed by an ant colony optimization. In: Transmission and Distribu-
tion Conference and Exhibition: Asia and Pacific, 2005 IEEE/PES, pp. 1–5. IEEE
(2005)

25. Lukasiewycz, M., Glaß, M., Reimann, F., Teich, J. Opt4j: a modular framework
for meta-heuristic optimization. In: Proceedings of the 13th Annual Conference
on Genetic and Evolutionary Computation, GECCO 2011, pp. 1723–1730. ACM,
New York (2011)

26. MathWorks. Global optimization toolbox. Accessed March 2013
27. Monmarché, N., Venturini, G., Slimane, M.: On how pachycondyla apicalis ants

suggest a new search algorithm. Future Gener. Comput. Syst. 16(8), 937–946
(2000)

28. Mullen, K., Ardia, D., Gil, D., Windover, D., Cline, J.: Deoptim: an R package for
global optimization by differential evolution. J. Stat. Softw. 40(6), 1–26 (2011)

29. National Transportation Safety Board (NTSB) (2012)
30. Ömer Faruk, D.: A hybrid neural network and arima model for water quality time

series prediction. Eng. Appl. Artif. Intell. 23(4), 586–594 (2010)

98 T. Desell et al.

31. Pandian, A.: Training neural networks with ant colony optimization. Ph.D. thesis,
California State University, Sacramento (2013)

32. Shetty, K.I.: Current and historical trends in general aviation in the United States.
Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
(2012)

33. Sivagaminathan, R.K., Ramakrishnan, S.: A hybrid approach for feature subset
selection using neural networks and ant colony optimization. Expert Syst. Appl.
33(1), 49–60 (2007)

34. Socha, K.: ACO for continuous and mixed-variable optimization. In: Dorigo, M.,
Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS
2004. LNCS, vol. 3172, pp. 25–36. Springer, Heidelberg (2004)

35. Socha, K.: Ant Colony Optimisation for Continuous and Mixed-Variable Domains.
VDM Publishing, Saarbrücken (2009)

36. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Eur.
J. Oper. Res. 185(3), 1155–1173 (2008)

37. Stanley, K., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evol. Comput. 10(2), 99–127 (2002)

38. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolv-
ing large-scale neural networks. Artif. life 15(2), 185–212 (2009)

39. Szymanski, B.K., Desell, T., Varela, C.A.: The effects of heterogeneity on asynchro-
nous panmictic genetic search. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 457–468. Springer,
Heidelberg (2008)

40. Unal, M., Onat, M., Bal, A.: Cellular neural network training by ant colony opti-
mization algorithm. In: 2010 IEEE 18th Signal Processing and Communications
Applications Conference (SIU), pp. 471–474. IEEE (2010)

41. Ventura, S., Romero, C., Zafra, A., Delgado, J.A., Hervás, C.: JCLEC: a java
framework for evolutionary computation. Soft Comput. Fusion Found. Methodol.
Appl. 12(4), 381–392 (2008)

42. Wei, W.W.-S.: Time Series Analysis. Addison-Wesley, Redwood City (1994)
43. Zhang, G.P.: Neural networks for time-series forecasting. In: Armstrong, J.S. (ed.)

Handbook of Natural Computing, pp. 461–477. Springer, Boston (2012)

Hyper-heuristic Operator Selection
and Acceptance Criteria

Richard J. Marshall1(B), Mark Johnston1, and Mengjie Zhang2

1 School of Mathematics, Statistics and Operations Research,
Victoria University of Wellington, Wellington, New Zealand

richardj.marshall@xtra.co.nz, mark.johnston@msor.vuw.ac.nz
2 School of Engineering and Computer Science,

Victoria University of Wellington, Wellington, New Zealand
mengjie.zhang@ecs.vuw.ac.nz

Abstract. Earlier research has shown that an adaptive hyper-heuristic
can be a successful approach to solving combinatorial optimisation
problems. By using a pairing of an operator (low-level heuristic) selection
vector and a solution acceptance criterion, an adaptive hyper-heuristic
can manage development of a “good” solution within an unseen low-
level problem domain in a commercially realistic computational time.
However not all selection vectors and solution acceptance criteria pairings
deliver competitive results when faced with differing problem instance
features and computational time limits. We evaluate pairings of six differ-
ent operator selection vectors and eight solution acceptance criteria, and
monitor the performance of the adaptive hyper-heuristic when applying
each pairing to a set of Capacitated Vehicle Routing Problem instances
of the same size but with different features. The results show that a few
pairings of operator selection vector and acceptance criterion perform
consistently well, while others require a longer computational time to
deliver competitive results. We also investigate some of the features of
a problem instance that may influence the performance of the selection
vector and acceptance criterion pairings.

1 Introduction

Traditional methods of solving combinatorial optimisation problems use algo-
rithms and heuristics, such as a branch-and-bound algorithm [4] or meta-heuristic
search (e.g. tabu search [5]). These methods can achieve good results but often
require detailed domain information and can be complex and time consuming
to design and execute. A hyper-heuristic is useful where a more general (domain
independent) approach is required. The term hyper-heuristic was defined by
Cowling et al. [2] as “heuristics to choose heuristics”. In this respect, we use a
hyper-heuristic to select and execute operators (heuristics) from an unseen set of
low-level (domain specific) operators, which in turn incrementally build and/or
modify a solution to each problem instance. Understanding what makes a par-
ticular hyper-heuristic efficient and effective would enable the trade-off between
computational speed and quality of the result to be managed when faced with
larger problem instances and more complex problem domains.
c© Springer International Publishing Switzerland 2015
G. Ochoa and F. Chicano (Eds.): EvoCOP 2015, LNCS 9026, pp. 99–113, 2015.
DOI: 10.1007/978-3-319-16468-7 9

100 R.J. Marshall et al.

The winning entry of the First Cross-domain Heuristic Search Challenge
(CHeSC) [8] in 2011 was an adaptive hyper-heuristic designed by Misir et al. [7].
Marshall et al. [6] illustrate that even a simplified version of the adaptive hyper-
heuristic designed by Misir et al. [7] performs well when applied to unseen prob-
lems in seven different combinatorial optimisation problem domains. The key
components to the adaptive hyper-heuristic are the operator selection vector,
which determines which operator to apply next, and the solution acceptance cri-
terion which determines whether a new solution is retained or discarded. In [6],
the simplified adaptive hyper-heuristic used a single operator selection vector
and a solution was only accepted if it was better than or equally as good as
the solution it may replace. This paper investigates whether providing a wider
choice of operator selection vector and solution acceptance criteria can improve
the effectiveness of the adaptive hyper-heuristic. We increase the number of pos-
sible operator selection vectors to six, and the number of solution acceptance
criteria to eight.

The remainder of this paper is organised as follows. A brief background is
given in Sect. 2, including an overview of the adaptive hyper-heuristic. Section 3
describes the operator selection vectors and solution acceptance criteria. The
experimental design, results and discussion are in Sects. 4 and 5. Finally, Sect. 6
gives our conclusions.

2 Background

This paper uses an adaptive hyper-heuristic (AdaptiveHH) compatible with the
HyFlex (Hyper-heuristic Flexible) framework [9]. We focus on using a Capaci-
tated Vehicle Routing Problem (CVRP) [12] domain. However, since the hyper-
heuristic has no problem domain dependent processes, the hyper-heuristic can
readily be applied to other problem domains. Importantly, the hyper-heuristic
has no knowledge of the size or features of the problem instance it is working
on. This means that the specified computational time limit may be excessive or
insufficient to arrive at a “good” solution to the problem instance. The hyper-
heuristic must be able to make the best use of the available time and, ideally,
terminate processing early when the available time is excessive.

2.1 Adaptive Hyper-heuristic

The AdaptiveHH in this paper is a simplified version of the hyper-heuristic
developed by Misir et al. [7]. Conceptually, AdaptiveHH iteratively selects and
applies an unseen operator from the problem domain. The resulting solution is
then accepted or discarded based on the acceptance criterion specified by Adap-
tiveHH. AdaptiveHH requires a number of parameters which set the computa-
tional time limit, the number of intermediate decision points (phases), and the
choice of operator selection vector and acceptance criterion to use (see Fig. 1).
Parameters also set the rules about how AdaptiveHH responds if progress
towards improving the current solution is stalled.

Hyper-heuristic Operator Selection and Acceptance Criteria 101

Fig. 1. Overview of how an adaptive hyper-heuristic interacts with a low-level problem
domain across the domain barrier.

The two main components of AdaptiveHH are:

1. The Operator Selection Vector. This vector is used to select the next
operator to apply. The vector is updated at the start of each phase based
on the performance of the operator in the preceding phase(s). It gives the
probability of each operator being selected and applied to the current solution.

2. The Solution Acceptance Criteria. Once an operator modifies a solution
to create a new solution, the hyper-heuristic needs to decide whether to accept
(retain) or discard the new solution.

2.2 HyFlex Framework

The HyFlex framework [9] was originally developed in 2011 for the First Cross-
domain Heuristic Search Challenge (CHeSC) [8]. The framework includes six
in-built combinatorial optimisation problem domains. Associated with each in-
built problem domain is a set of between 8 and 15 unseen low-level operators
(heuristics). Each set contains at least one operator belonging to each of the
four defined operator types: mutation, ruin-recreate, local search and crossover.
A crossover operator swaps parts of one solution with another solution in an
attempt to create a better solution.

Each operator can use (if appropriate) the two HyFlex parameters α and β,
where (0 ≤ α, β ≤ 1). The Intensity of Mutation parameter, α, affects the
scale of any mutation or ruin operation, e.g., 0.5 would mean half the current
solution would be altered by an operator using this parameter. The Depth of
Search parameter, β, defines a range or number of repetitions an operator will
undertake to find an improved solution in a single execution of the operator.

102 R.J. Marshall et al.

Each operator is only visible to the hyper-heuristic to the extent allowed by
the HyFlex [9] specifications. Operator visibility is restricted to the following
properties:

1. Operator Type. A mandatory attribute of each operator contained within
a HyFlex problem domain. There are four defined operator types:
(a) Mutation operators add or reposition an element in a solution. Operators

of this type would generally only involve simple manipulations requiring
a short computational time which is only marginally affected by the size
of the problem instance.

(b) Ruin-Recreate operators destroy a segment of an existing solution, cho-
sen by the operator implementation, and then rebuild the segment to
form a new solution. These operators are more complex than a mutation
operator and typically require a longer computational time. The compu-
tational time may vary substantially depending on the size of the problem
instance.

(c) Local Search operators define and search a solution neighbourhood for
improvements. These operators generally apply a degree of logic to the
search so can be expected to have a higher chance of improving a solu-
tion, or verify no further local improvements are possible, than the other
operator types. However, the computational time may be much longer,
and could escalate polynomially (or worse) as the problem instance size
increases.

(d) Crossover operators combine elements of two current solutions to form
a new solution. The computational time of a crossover operator varies but
is often similar to a ruin-recreate operator.

2. Uses Intensity of Mutation. An indicator to show whether this operator
uses the global Intensity of Mutation, α, parameter.

3. Uses Depth of Search. An indicator to show whether this operator uses
the global Depth of Search, β, parameter.

4. Call Record. The number of times the operator has been executed during
a run is calculated and is visible to the hyper-heuristic on demand.

5. Call Time Record. The aggregate of the execution time of each operator
during a run is recorded and is visible to the hyper-heuristic on demand.

3 The Method

We test the effectiveness of AdaptiveHH by rating each solution generated
against the best solution objective value achieved within the computational time
limit. We use different pairings of operator selection vector and acceptance crite-
rion. There are 48 possible pairings of operator selection vector (6) and solution
acceptance criteria (8).

Hyper-heuristic Operator Selection and Acceptance Criteria 103

3.1 Operator Selection Vector Design

AdaptiveHH operates for a specified time limit which is broken down into phases.
The operator selection vector is updated at the end of each phase. The choice
of selection vector and acceptance criterion is fixed at the beginning of the run
and is not altered during the run. The selection vector consists of an array of
operators, each with a probability of selection. In the initial selection vector
(regardless of type) all operators have an equal probability of selection.

We follow the example of Misir et al. [7] and allow some of the selection
vectors described below to exclude operators for one or more phases (i.e. the
selection probability is zero). The number of phases an operator is excluded
is based on a performance penalty. The first time an operator is excluded the
performance penalty is set to one. This means the operator is readmitted to the
selection vector at the end of the next phase (i.e. one phase exclusion) with a
probability of 0.01 prior to normalisation. If the operator is immediately excluded
again during the vector update process at the end of the readmission phase, the
performance penalty, and hence the number of exclusion phases, is increased by
one. Should the operator be readmitted and survive the vector update process
into the succeeding phase, then the performance penalty is reset to one.

The AdaptiveHH reported in [6] used only the Basic Selector. The operator
selection vectors are of our own design, but use components of the single selection
vector used by Misir et al. [7].

1. [FS] Fixed Selector: The initial vector is not altered during the run, so
provides a benchmark against which other selection vectors can be measured.
All operators have an equal probability of selection regardless of performance.

2. [BS] Basic Selector: Updates probabilities by evaluating the success rate
of each operator, ri, since the start of the run:

ri =
number of improvementsi

number of callsi

This vector does not exclude operators and sets a minimum probability of
selection as 0.001 prior to normalisation.

3. [P1] Phase Selector (1): Updates probabilities by evaluating the success
rate of the each operator, ri (as per [BS]), in the most recent phase. During
the update process a threshold is set equal to 1

3 of the success rate of the
best performing operator, rbest, in that phase. If ri ≥ rbest

3 it is included in
the selection vector for the next phase with a probability of ri, minimum
0.01, prior to normalisation. Operators where ri < rbest

3 are excluded from
the vector for the number of phases determined by their performance penalty.

4. [P2] Phase Selector (2): Updates probabilities by evaluating the success
rate of each operator, ri (as per [BS]), in the most recent phase. This vector
does not exclude operators and sets a minimum probability of selection at
0.001 prior to normalisation. It differs from the Basic Selector in that this
selection vector only considers performance during the most recent phase.

104 R.J. Marshall et al.

5. [T1] Time Weighted Phase Selector (1): The time weighted selector
uses a time weight, wi, to penalise slower operators. This is calculated using
the average operator execution time, averageOpT ime, during the preceding
phase:

wi =

√
averageOpT imei

averageOpT imefastest

The time weighted success rate of each operator, ri, in the most recent phase
is evaluated:

ri =
number of improvementsi

wi × number of callsi

During the update process a threshold is set equal to 1
3 of rbest. If ri ≥ rbest

3
it is included in the selection vector for the next phase with a probability
of ri, minimum 0.01, prior to normalisation. Operators where ri < rbest

3 are
excluded from the vector for the number of phases determined by their per-
formance penalty.

6. [T2] Time Weighted Phase Selector (2): Calculation of the time weight,
wi, and success rates, ri, are identical to that described for [T1]. For this
selector all ri are ranked highest to lowest, including those excluded from the
selection vector (ri = 0). A threshold, T , is set equal to the ri of the operator
ranked NumberOfOperators

2 (T may be zero). If ri ≥ T , it is included in the
selection vector for the next phase with a probability weighting of 1

rank , prior
to normalisation.

3.2 Acceptance Criteria Design

Each application of an operator takes a current solution and modifies it to create
a new solution. The new solution is then considered for acceptance into the small
population of solutions. If the new solution is not accepted then it is discarded.
If the new solution is at least as good as the solution it will replace, then it is
automatically accepted into the population of solutions regardless of the accep-
tance criteria specified by the hyper-heuristic. The following eight acceptance
criteria are those proposed by Sabar et al. [10] with minor modifications. As far
as possible we have retained the labels and arbitrary parameter values proposed
by Sabar et al. [10] and only made changes which are necessary to satisfy the
HyFlex framework [9] constraints. In all cases, the new solution is compared to
the solution it will replace (if accepted) in the population of solutions.

1. [IO] Improving or Equal Only: Only improving (better objective value)
or equally good solutions are accepted. All other solutions are discarded.

2. [AM] Accept Move: All new solutions are accepted.
3. [SA] Simulated Annealing: Non-improving solutions are accepted with

a probability e−δ/t, where δ is the change in the objective value between
the old and new solutions. The “temperature”, t, is 0.5 × Sbest × 0.85phase−1,
where Sbest is the current best solution objective value [1,11]. The probability
of a non-improving solution being accepted decreases as (a) the change in
objective value increases and (b) as time progresses.

Hyper-heuristic Operator Selection and Acceptance Criteria 105

4. [MC] Exponential Monte Carlo: Non-improving solutions are accepted
with a probability e−δ, where δ is the change in the objective value between
the old and new solutions. The probability of a non-improving solution being
accepted decreases as the change in objective value, δ, increases.

5. [RR] Record to Record Travel: Non-improving solutions are accepted if
the new solution has an objective value less than or equal to 1.03 × Sbest,
where Sbest is the current best solution objective value [3].

6. [GD] Great Deluge: Non-improving solutions are accepted if the new solu-
tion has an objective value less than or equal to (1 + 0.85phase−1) × Sbest,
where Sbest is the current best solution objective value [3]. The probability
of a non-improving solution being accepted decreases as time progresses.

7. [NA] Näıve Acceptance: Non-improving solutions are accepted with 0.5
probability.

8. [AA] Adaptive Acceptance: Non-improving solutions are accepted with a
probability 1 − 1

C , where C > 0 is a counter which increments every 10,000
consecutive operator calls without an improvement in the objective value of
the best solution found so far. The counter is reset to 1 each time an improved
best solution objective value is found. The probability of a non-improving
solution being accepted increases when the search for better solutions reaches
a plateau and new best found solutions become harder to find.

4 Experimental Design

The experiments use our own implementation of a CVRP domain [12] compatible
with the HyFlex [9] framework. We create 50 random 80-node (79 customers +
1 depot) problem instances requiring a minimum of between 3 and 19 routes.
Each problem instance is randomly created using an 80× 80 grid. Each instance
contains three nodes at fixed locations (see Fig. 2), one of which is the depot,
and the other 77 nodes at randomly generated locations. Vehicle capacity is fixed
at 1,000 units and each customer’s demand is a randomly generated integer with
an upper bound ranging from 5 % to 45 % (randomly set for each instance) of
the vehicle capacity, with a minimum demand of 1 unit.

We modify the twelve low-level operators proposed by Walker et al. [13]
for a CVRP-with-time-windows domain by removing the time window elements
from each operator. There are 4 mutation, 2 ruin-recreate, 4 local search and 2
crossover operator types (see Sect. 2.2). The size of the population of solutions
is set at six. The hyper-heuristic is only provided with the number of operators
of each operator type and has no knowledge of the actual function each operator
performs.

We seek to determine:

1. Whether there are particular pairings of operator selection vector and accep-
tance criterion which consistently perform well or poorly compared to other
pairings in arriving at a “good” solution within a short computational time.
We examine how each pairing affects the frequency with which each operator
type is selected.

106 R.J. Marshall et al.

2. Whether the location of the depot in relation to the customers influences
the consistency and quality of the solutions. To this end we take a problem
instance (see Fig. 2) and relocate the depot by swapping the grid coordinates
of the depot with one of two customers highlighted. The problem instance is
otherwise unchanged. The alternative depot locations are chosen so that the
depot is geographically: (a) central, (b) off-centre, and (c) remote.

3. Although we use CVRP instances of the same size, the differing customer
demand values mean solutions require a minimum number of routes ranging
from 3 to 19. We examine the influence the number of routes has on the per-
formance of the operator selection vector and acceptance criterion pairings.
This, and the preceding objective, will determine whether the structure of
the problem instance affects performance of the pairings.

Fig. 2. Randomly generated 80-node problem instance on an 80×80 grid, showing the
3 alternative depot locations (highlighted).

We compare the quality of the results from 30 replications on a set of 50 ran-
domly generated 80 node CVRP instances. We rate individual solutions against
the best solution found during the batch of runs (typically 1,440 runs, being 30
replications of 48 pairings) using the following formula (lower ratings are better).

ratingi =
(

100 × (solutioni − solutionbest)
solutionbest

)2

This provides an indication of the relative performance of each pairing compared
to its peers. We use the square of the result to increase the apparent difference
between results and increase the penalties for poor solutions.

Hyper-heuristic Operator Selection and Acceptance Criteria 107

We conduct 25-phase (see Sect. 2.1) experiments using three different depot
locations on 50 CVRP instances. We measure pairing performance using com-
putational time limits of 1, 5, 15, 30, 60, 120 and 300 s. The hyper-heuristic we
use contains a reinitialisation mechanism if no improving solutions are found
for 10,000 consecutive operator calls. It also contains an early termination con-
dition should there still be no improving solutions for two consecutive phases.
The purpose of this mechanism is to allow processing to be halted when the
hyper-heuristic detects there is a very low likelihood of making further improve-
ments to the best found solution so far.

5 Results and Discussion

Table 1 and Fig. 3 show the results for all pairings from the batches using a
60 s computational time limit for each depot location. Due to space constraints,
Tables 2 and 3 only show results from the five best and five worst performing
pairings identified in Table 1. Widely differing customer demand values mean the
50 CVRP instances require a minimum of between 3 and 19 routes to service all
customers. Table 2 compares the performance of pairings on problem instances
where the minimum number of routes is small (3–5 routes), medium (6–13 routes)
and large (14–19 routes). Table 3 shows the change in performance over different
computational time limits. In Table 3 the performance is measured against the
best solution found in any batch for each CVRP instance and depot location.
Early terminations only affect the data when allowing a 300 s computational
time limit. A negligible number (<0.1 %) of early terminations occurred with a
120 s time limit, and none with the shorter time limits.

Table 1 illustrates the difference in performance when the depot is at dif-
ferent locations. While all pairings provide better results when the depot is
located centrally compared to off-centre, the better performing pairs generally

Fig. 3. Comparison of acceptance criteria and selection vector performance ratings (see
Sect. 4) during 60 s runs shown in Table 1. Lower ratings are better.

108 R.J. Marshall et al.

Table 1. Average rating (see Sect. 4) of each selection vector and acceptance criteria
pairing over 3 depot locations × 30 replications × 60 s runs on 50 randomly generated
CVRP instances (80 nodes, 3 depot locations (see Fig. 2)). Lower ratings are better.
Best five performing pairs in bold; five worst in italics.

Acceptance Selection Central Off-centre Remote Average Std.Dev.

Criteria Vector Depot Depot Depot Rating

IO FS 10.33 12.35 13.02 11.90 13.62

IO BS 10.09 12.50 13.04 11.88 13.53

IO P1 9.96 12.29 12.99 11.75 13.50

IO P2 10.09 12.29 12.96 11.78 13.38

IO T1 9.60 11.21 11.99 10.93 12.50

IO T2 9.74 11.63 12.50 11.29 12.85

AM FS 9.01 11.89 10.61 10.51 12.42

AM BS 8.09 11.09 10.02 9.73 11.37

AM P1 8.19 11.74 10.79 10.24 12.27

AM P2 7.51 11.57 10.72 9.93 11.97

AM T1 6.25 10.17 8.86 8.43 10.84

AM T2 7.35 10.78 9.48 9.20 10.95

SA FS 6.81 9.25 9.13 8.40 10.31

SA BS 5.93 8.56 8.94 7.81 10.36

SA P1 7.19 10.34 10.36 9.30 11.52

SA P2 6.74 9.65 10.02 8.80 10.74

SA T1 5.59 8.06 7.83 7.16 9.60

SA T2 6.10 8.80 8.77 7.89 10.35

MC FS 9.75 10.96 12.38 11.03 12.54

MC BS 11.02 13.03 14.70 12.92 14.28

MC P1 11.92 14.34 15.87 14.04 15.28

MC P2 13.49 16.35 17.36 15.73 17.04

MC T1 11.77 15.01 15.37 14.05 15.60

MC T2 9.99 11.05 12.49 11.18 12.96

RR FS 6.77 9.46 9.76 8.66 10.88

RR BS 6.50 9.25 9.63 8.46 10.76

RR P1 7.73 11.30 11.91 10.31 12.27

RR P2 9.21 13.85 14.29 12.45 14.21

RR T1 9.29 13.05 13.16 11.83 13.55

RR T2 6.55 9.30 10.17 8.68 11.01

GD FS 7.66 9.33 9.81 8.93 11.14

GD BS 6.47 7.98 9.22 7.89 10.29

GD P1 8.15 10.35 11.00 9.83 11.92

GD P2 7.57 9.82 10.69 9.36 11.31

GD T1 6.15 8.74 8.42 7.77 10.32

GD T2 6.72 8.49 8.88 8.03 10.33

NA FS 6.71 9.66 8.99 8.45 10.61

NA BS 5.96 8.68 8.11 7.59 10.01

NA P1 6.38 9.63 9.04 8.35 10.51

NA P2 6.33 9.35 8.86 8.18 10.20

NA T1 4.58 7.60 6.95 6.37 8.88

NA T2 5.88 8.64 8.22 7.58 9.84

AA FS 8.58 10.60 9.92 9.70 11.58

AA BS 8.08 9.48 9.51 9.03 10.85

AA P1 8.28 10.31 9.96 9.52 11.55

AA P2 8.12 10.74 10.49 9.78 11.91

AA T1 7.04 9.93 9.26 8.75 11.29

AA T2 7.62 9.55 9.39 8.85 11.04

Hyper-heuristic Operator Selection and Acceptance Criteria 109

show improving performance when the depot is moved even further away from
the centre. In contrast, the poorer performing pairings generally show neutral
to worsening results the farther the depot is located from the geographic centre.
This highlights that the size of the problem instance is not the only factor influ-
encing the performance of the hyper-heuristic. Table 1 also confirms that there
is an inter-dependency between the operator selection vector and the acceptance
criterion and it is insufficient to separately evaluate each, even though they carry
out different functions.

As shown in Table 1, some pairings, such as [SA][T1] and [NA][T1], consis-
tently perform better than other pairings. The pairings using the [MC] and [IO]
acceptance criteria generally perform poorly and require a longer computational
time to achieve results competitive with the better performing pairings.

A possible cause of this difference is the diversity in the population of solu-
tions. Pairings using the [IO] acceptance criterion, and to a lesser extent [MC],
work with a smaller diversity of interim solutions compared to other forms of
acceptance criteria. This means that time and effort are not lost on improving
low quality solutions that may never become the best solution in the current
population of interim solutions. This is a useful trait if the computational time
limit is very short, since effort is directed towards improving a better quality
solution. On the other hand, accepting only improving or equally good solutions
can cause the population of solutions to stagnate and eventually become clones
of the best found solution. Once this stage is reached the crossover operators
become ineffective and there is a tendency for the process to stall. The hyper-
heuristic has a mechanism to reinitialise the population of solutions in the event
of stalling, but this is only effective if the selection vector and acceptance crite-
rion pairing can avoid regenerating the same set of solutions.

An increase in the number of routes (see Table 2) as well as the relative second
location of the depot are influencing factors as well. However, Tables 1 and 2 also

Table 2. Comparison of the ratings (see Sect. 4) of the five best and five worst per-
forming pairings from Table 1 on CVRP instances requiring a small (15 instances),
medium (18 instances) or large (17 instances) minimum number of routes.

Acceptance Selection 3–5 routes 6–13 routes 14–19 routes

NA T1 5.84 7.43 5.54

SA T1 6.30 8.25 6.53

NA T2 5.30 8.77 7.93

NA BS 5.30 8.71 8.01

GD T1 6.41 9.01 7.35

RR P2 7.94 12.97 15.29

MC BS 8.24 14.16 15.03

MC P1 9.56 15.27 16.03

MC T1 11.84 15.99 12.45

MC P2 11.55 16.90 17.56

110 R.J. Marshall et al.

Table 3. Average rating of five best and five worst performing pairings from Table 1
on 50 CVRP instances × 3 depot locations × 30 replications, when allowing a differ-
ent computational time limit (in seconds). All ratings are measured against the best
solution to each instance (and depot location) found during any of the seven batches.

Acceptance Selection 1 5 15 30 60 120 300

NA T1 45.27 18.85 12.39 9.25 6.88 5.37 4.07

SA T1 48.08 20.47 14.14 10.52 7.72 5.88 4.28

NA T2 888.03 22.97 13.96 10.81 8.19 6.34 4.67

NA BS 57.72 19.90 13.79 10.89 8.19 6.16 4.49

GD T1 47.08 22.33 14.97 11.27 10.55 6.40 4.63

RR P2 46.62 25.11 18.92 15.88 13.29 10.72 8.16

MC BS 60.19 23.67 18.64 16.06 13.73 11.77 9.69

MC P1 52.42 29.00 21.62 18.00 14.85 12.35 9.93

MC T1 54.62 28.95 21.95 18.82 14.88 12.03 9.83

MC P2 51.74 30.51 23.19 20.01 16.62 13.53 10.96

show that the relative performance of operator selection vector and acceptance
criterion pairings compared to other pairings is not greatly altered by the number
of routes or depot location. A better performing pairing will consistently deliver
higher quality solutions than poorer performing pairings regardless of the depot
location or the minimum number of routes.

Table 3 shows the performance of each pairing improves with a longer com-
putational time limit, but not all improve at the same rate. The [NA][T2] pairing
performs poorly with the 1 s computational time limit but well with longer time
limits, indicating a minimum time limit per phase is necessary for some pairings
before the operator selection vector update process can be effective. In these
experiments the improvement in the performance of the better performing pair-
ings appears to be reaching a plateau with a 300 s time limit. However, the poorer
performing pairings show a non-trivial improvement in performance between 120
and 300 s time limits, suggesting a longer computational time may produce fur-
ther improvements.

Table 4 illustrates how different pairings of operator selection vector and
acceptance criterion affect the frequency with which particular operator types
are called. The number of calls illustrates how the more aggressive of the two
time weighted selection vectors, [T1], biases operator selection towards the faster
mutation and crossover operators and away from the slower local search opera-
tors. The second time weighted selection vector, [T2], maintains a more balanced
selection approach. The Fixed Selector [FS] reflects the 4:2:4:2 balance between
the four operator types in the CVRP domain.

The time-weighted selectors favour the faster mutation operators at the
expense of the slower search operators. This is a trade-off between speed and
quality. Table 4 shows that a large number of operator calls is not critical to the

Hyper-heuristic Operator Selection and Acceptance Criteria 111

Table 4. Average number of operator calls, success rate (ri, as defined in Sect. 3.1) and
mix of operator type selection between the six selection vectors (SV) and the Näıve
Acceptance [NA], Exponential Monte Carlo [MC] and Improving or Equal Only [IO]
acceptance criteria (AC) during experiments using a 60 seconds computational time
limit. Best performing pairs (from Table 1) in bold, worst in italics.

AC SV Num. calls Success Mutation Ruin-rec. Search Crossover

NA FS 236,900 11.82 % 33.34 % 16.66 % 33.33 % 16.67 %

NA BS 168,900 8.12% 12.65% 15.44% 47.01% 24.89%

NA P1 138,300 5.53 % 5.86 % 10.41 % 54.29 % 29.44 %

NA P2 231,000 4.71 % 4.40 % 3.57 % 29.40 % 62.63 %

NA T1 749,400 5.78% 2.34% 2.88% 3.53% 91.24%

NA T2 187,500 6.82% 17.08% 14.81% 45.22% 22.89%

MC FS 220,800 1.43 % 33.36 % 16.64 % 33.34 % 16.66 %

MC BS 253,600 2.38% 7.11% 5.71% 30.27% 56.91%

MC P1 246,100 2.54% 3.41% 2.61% 30.81% 63.17%

MC P2 269,600 2.70% 3.30% 1.64% 23.59% 71.47%

MC T1 821,400 2.73% 1.68% 0.84% 1.68% 95.80%

MC T2 323,800 1.79 % 51.81 % 11.63 % 22.07 % 14.49 %

IO FS 229,900 0.16 % 33.32 % 16.66 % 33.35 % 16.67 %

IO BS 196,100 0.14 % 18.31 % 18.28 % 39.00 % 24.41 %

IO P1 201,000 0.15 % 25.29 % 18.55 % 35.22 % 20.94 %

IO P2 191,800 0.16 % 22.32 % 18.20 % 33.23 % 26.25 %

IO T1 512,100 0.18 % 34.95 % 8.69 % 8.55 % 47.81 %

IO T2 373,200 0.16 % 56.22 % 12.51 % 18.85 % 12.41 %

quality of the solution. This table also illustrates the lower number of calls made
to crossover type operators when the [IO] acceptance criteria is used, reflecting
the reduced effectiveness of these operators in this situation. In contrast, the
time weighted selector [T1] almost exclusively uses the crossover operator with
both the Näıve Acceptance [NA] and Exponential Monte Carlo [MC] acceptance
criteria. With [NA], the resulting solutions are among the best, while with [MC]
they are among the worst. This can be explained by the difference in the diversity
of the population of solutions, as reflected in the relative operator call success
rates. However other factors such as parameter values and the number of early
terminations (42 % during 300 s time limit) due to best found solutions no longer
improving, may also influence the difference in overall solution quality.

6 Conclusions

When comparing the results in Tables 1, 2 and 3 we deduce the following about
the operator selection vector and acceptance criteria pairings.

112 R.J. Marshall et al.

1. Generally perform well:
(a) Time Weighted Phase Selectors [T1] and [T2] with the Näıve Acceptance

[NA] criterion.
(b) Time Weighted Phase Selector (1) [T1] with Simulated Annealing [SA]

acceptance criterion.
2. Generally perform poorly: Any operator selection vector with:

(a) The Exponential Monte Carlo acceptance criterion [MC].
(b) The Improving or Equal Only acceptance criterion [IO].

Correctly setting the early termination criteria means the hyper-heuristic can
determine the correct computational time even though it has no knowledge of
the problem instance size or features. We propose to undertake further work on
this feature.

In future research we shall examine whether the relative performance of the
operator selection vector and acceptance criterion pairings is consistent across
problem instances of differing sizes. We shall also evaluate the merits of enabling
the adaptive hyper-heuristic to change the pairing of operator selection vector
and acceptance criteria during an interim phase update.

References

1. Bai, R., Blazewicz, J., Burke, E., Kendall, G., McCollum, B.: A simulated annealing
hyper-heuristic methodology for flexible decision support. 4OR Q. J. Oper. Res.
10(1), 43–66 (2012)

2. Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a
sales summit. In: Burke, E., Erben, W. (eds.) Practice and Theory of Automated
Timetabling III. LNCS, vol. 2079. Springer, Heidelberg (2000)

3. Dueck, G.: New optimization heuristics: the great deluge algorithm and the record-
to-record travel. J. Comput. Phys. 104(1), 86–92 (1993)

4. Fisher, M.: Optimal solution of vehicle routing problems using minimum k-trees.
Oper. Res. 42(4), 626–642 (1994)

5. Glover, F.: Tabu search: Part I. ORSA J. Comput. 1(3), 190–206 (1989)
6. Marshall, R.J., Johnston, M., Zhang, M.: A comparison between two evolution-

ary hyper-heuristics for combinatorial optimisation. In: Dick, G., Browne, W.N.,
Whigham, P., Zhang, M., Bui, L.T., Ishibuchi, H., Jin, Y., Li, X., Shi, Y.,
Singh, P., Tan, K.C., Tang, K. (eds.) SEAL 2014. LNCS, vol. 8886, pp. 618–630.
Springer, Heidelberg (2014)

7. Misir, M., Verbeeck, K., De Causmaecker, P.: A new hyper-heuristic as a general
problem solver: an implementation in HyFlex. J. Sched. 16, 291–311 (2013)

8. Ochoa, G., Hyde, M.: Cross-domain Heuristic Search Challenge (2011). http://
www.asap.cs.nott.ac.uk/external/chesc2011/

9. Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J.A., Walker, J.,
Gendreau, M., Kendall, G., McCollum, B., Parkes, A.J., Petrovic, S., Burke, E.K.:
HyFlex: a benchmark framework for cross-domain heuristic search. In: Hao, J.-K.,
Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 136–147. Springer,
Heidelberg (2012)

10. Sabar, N., Ayob, M., Kendall, G., Qu, R.: Grammatical evolution hyper-heuristic
for combinatorial optimization problems. IEEE Trans. Evol. Comput. 17(6),
840–861 (2013)

http://www.asap.cs.nott.ac.uk/external/chesc2011/
http://www.asap.cs.nott.ac.uk/external/chesc2011/

Hyper-heuristic Operator Selection and Acceptance Criteria 113

11. Soubeiga, E.: Development and application of hyperheuristics to personnel schedul-
ing. Ph.D thesis, University of Nottingham (2003)

12. Toth, P., Vigo, D.: The Vehicle Routing Problem. SIAM. LNCS. Springer,
Philadelphia (2002)

13. Walker, J.D., Ochoa, G., Gendreau, M., Burke, E.K.: Vehicle routing and adaptive
iterated local search within the HyFlex hyper-heuristic framework. In: Hamadi,
Y., Schoenauer, M. (eds.) LION 2012. LNCS, vol. 7219, pp. 265–276. Springer,
Heidelberg (2012)

Improving the Performance of the Germinal
Center Artificial Immune System Using

ε-Dominance: A Multi-objective Knapsack
Problem Case Study

Ayush Joshi(B), Jonathan E. Rowe, and Christine Zarges

School of Computer Science, University of Birmingham,
Edgbaston, Birmingham, UK

{axj006,j.e.rowe,c.zarges}@cs.bham.ac.uk

Abstract. The Germinal center artificial immune system (GC-AIS) is
a novel immune algorithm inspired by recent research in immunology,
which requires very few parameters to be set by hand. The population
of solutions in GC-AIS is dynamic in nature and has no restrictions on
its size which can cause problems of population explosion, where the
population keeps growing very rapidly, leading to wasteful fitness evalu-
ations. In this paper we try to address this problem in the GC-AIS by
incorporating ε-dominance, which is a well known mechanism in multi-
objective optimization to regulate population size. The improved variant
of GC-AIS is compared with a well known multi-objective evolution-
ary algorithm NSGA-II on the multi-objective knapsack problem. We
show that our improved GC-AIS performs better than NSGA-II on the
instances of the knapsack problem taken from [23] inheriting the same
benefits of having to set fewer parameters manually.

Keywords: Artificial immune systems · GC-AIS · NSGA-II ·
Knapsack problem

1 Introduction

Multi-objective optimisation is the task of finding optimal solutions to a problem
which has several objectives, that often compete with each other. Hence, there
exists a set of optimal solutions to the problem called the pareto optimal set.
Real life problems often involve competing objectives and the complexity of these
problems can cause problems when applying exact methods [9]. Evolutionary
algorithms have been employed to solve multi-objective optimization problems
since the mid-1980s [15] with good success.

Artificial immune systems (AIS) are meta-heuristics which have been devel-
oped taking inspiration from different models of the immune system of ver-
tebrates. The immune system is an especially interesting biological system as
it possesses several desirable properties combined together. Due to features

c© Springer International Publishing Switzerland 2015
G. Ochoa and F. Chicano (Eds.): EvoCOP 2015, LNCS 9026, pp. 114–125, 2015.
DOI: 10.1007/978-3-319-16468-7 10

Improving the Performance of GC-AIS Using ε-Dominance 115

like diversity, robustness, and memory, AIS have been applied to a large num-
ber of applications such as machine learning, security, robotics, optimization
Castro and Timmis [2] provide a detailed survey of applications. Compared with
other optimization algorithms AIS are relatively new, and a survey of AIS that
have been applied to solve multi-objective optimization problems is provided by
Freschi et al. [5].

Natural processes perform several complicated tasks with efficiency and tend
to be robust. Current approaches used to solve real world problems are facing
problems with robustness and scalability [6,11], as real world problems become
more and more complex. Therefore it is a growing trend that understanding
and using more detailed ideas from natural processes can help us design bet-
ter performing systems. Towards this some work has been done by Greensmith
et al. [7] but this has mostly been limited to intrusion detection and classifica-
tion. Sim et al. [17] have proposed a hyper-heuristic called NELLI, which learns
from changing problem landscapes, and has been shown to perform better than
single human-designed heuristics.

GC-AIS is a novel AIS introduced by Joshi et al. [10], which is inspired by
recent research on the Germinal center reaction [19]. It has interesting properties
like dynamic population size and it requires very few parameters to be manually
specified. In each generation of the GC-AIS every solution creates a mutated
clone which can potentially cause population explosion. This characteristic can
sometimes cause problems as many fitness evaluations are wastefully expended
without observing significant improvements in solutions.

In this paper we replace the dominance comparison in the GC-AIS with
ε-dominance as a method to control population size. This modified GC-AIS
which we call ε-GC-AIS is compared with the non-dominated sorting genetic
algorithm-II (NSGA-II) [3] on instances of the multi-objective d-dimensional
knapsack problem (MOd-KP) taken from [23]. Three measures used in multi-
objective optimization, namely hypervolume [21], generational distance [18] and
generalized spread [20] are used as metrics for comparison. It is shown that with
a suitable choice of ε value, ε-GC-AIS performs better than NSGA-II and has
the inherent benefit of requiring less parameters to be set manually.

The outline of the paper is as follows: In Sect. 2 multi-objective optimiza-
tion is introduced along with a detailed description of the multi-objective knap-
sack problem. Section 3 gives the description of the GC-AIS model along with
a description of the ε-GC-AIS algorithm. In Sect. 4 the experimental setup is
explained and along with the obtained results in Sect. 5. The paper is concluded
in Sect. 6 with a discussion on the observed results and conclusions thereafter.

2 Preliminaries

2.1 Multi-objective Optimization

Multi-objective optimization can be described as finding solutions to problems
which have more than one objective, that are often in competition with each
other. If we denote the fitness of the different objectives as fi (1 ≤ i ≤ n),

116 A. Joshi et al.

then a solution x1 dominates another solution x2 if ∀i fi(x1) ≥ fi(x2) and there
exists at least one i such that fi(x1) > fi(x2), assuming maximization without
loss of generality. At any time during its run, a multi-objective optimization
algorithms may maintain a set of non-dominating solutions to the problem. If
for some solution x there exists no other solution y that dominates x, then x is a
pareto optimal solution to the problem. A pareto optimal set is a set containing
all pareto optimal solutions.

2.2 The Multi-objective D-Dimensional Knapsack Problem

The knapsack problem is a widely studied NP-hard combinatorial optimization
problem [23] with real world applications like capital budgeting and resource
allocation [16]. The single objective knapsack problem consists of a set of items
which have associated weights and profits, and a knapsack which has a fixed
capacity. The goal is to find the set of items which can be packed in the knapsack
giving the maximum profit without exceeding the capacity of the knapsack. By
introducing multiple knapsacks this single objective problem can be extended
to a multi-objective version. Each knapsack has its own capacity and the items
have different profits and weights associated with each knapsack. A practical
example of this problem is packet scheduling for wireless networks with relay
nodes [1].

The solutions to the multi-objective d-dimensional knapsack problem (MOd-
KP) can be encoded as bit strings of length m where m is the total number
of items available. A 1 indicates the presence of an item while 0 indicates the
absence of the item. It should be noted that if a bit is 1 then an item is considered
to be present in all the knapsacks and vice-versa. A more formal definition of
the multi-objective knapsack problem can be stated as:

Definition 1. Let m denote the number of items and n the number of knapsacks.
Let pi,j and wi,j the profits and weights of item i with respect to knapsack j,
respectively, and cj the capacity of knapsack j. Let a solution be represented as
x = (x1, x2, · · · , xm) with xi ∈ {0, 1}. The objective is to maximize

f(x) = (f1(x), f2(x), · · · , fn(x)) where fi(x) = Σm
j=1pi,j · xi

subject to Σn
j=1wi,j · xj < ci;∀i ∈ {1, 2, 3, . . .n}.

The MOd-KP is a constrained multi-objective problem where the constraint is
the capacity of the knapsacks. Not all possible bit string combinations represent
valid solutions and some repair mechanism must be applied in order to transform
invalid solutions to valid ones. In [23], the authors used the maximum profit by
weight ratio (greedy repair) method to repair invalid solutions. For an item i,
the maximum profit by weight ratio is given by:

qi = max(pi,j/wi,j), ∀j ∈ (1, 2, . . ., n). (1)

An item with the lowest maximum profit by weight ratio is removed first, and
they are removed iteratively in an increasing order of the ratio, until a feasible
solution is obtained.

Improving the Performance of GC-AIS Using ε-Dominance 117

Another repair heuristic was introduced in [9] where the weighted profit by
weight ratio (weighted scalar repair), is used to find the order of removal of
items. In this approach the items are sorted based on:

qi =
(n∑

j=1

λipi,j

)
/
(n∑

j=1

wi,j

)
, ∀j ∈ (1, 2, . . ., n), (2)

where the λi are the scalar coefficients of the linear utility function used for
scalarizing the multi-objective fitness vector in the Multi-objective genetic local
search (MOGLS) [9] algorithm. These coefficients are generated randomly at
each generation of MOGLS and are used for selection as well as repair. The
generation procedure for normalized weight vectors is given in Algorithm1.

Algorithm 1. Algorithm for generation of normalized weight vectors. rand
returns a random number between 0 and 1. [9]

λ1 = 1 − n−1
√

rand()
. . .
λj = (1 −∑j−1

i=1 λi) · (1 − j−1
√

rand())
. . .
λn = 1 −∑n−1

i=1 λi

3 The ε-GC-AIS Algorithm

The ε-GC-AIS is an improved variant of GC-AIS originally proposed by Joshi
et al. [10], which is a new AIS designed using knowledge from cutting edge
research in immunology, specifically the understanding of the germinal center
(GC) reaction [19]. Germinal centres are regions in the immune system where B
cells a type of immune cell that generates antibodies (Abs) to fight an infection,
are presented with the invading pathogens [14].

The key highlights of the GC reaction are as follows: At the start of the
invasion the number of GCs grows and they try to find the best Ab for the
pathogen by continuously mutating and selecting the B cells which can bind with
the pathogen. There is periodic communication between GCs by transmitting
Abs. By proliferation, mutation and selection of B cells this reaction is able to
produce Abs which can eradicate the pathogen. Towards this stage the number of
GCs starts declining. The new theory proposed in [19] deals with the selection
aspect of this reaction, where there is a direct competition between Abs and
mutating B cells, and the cells which are unable to compete die by apoptosis
(cell death). Entire GCs may disappear if the B cells within them cannot compete
with Abs from neighbouring GCs.

Based on Algorithm 2 a brief description of ε-GC-AIS is as follows. The ε-GC-
AIS starts with one GC which contains one individual that represents a B cell.

118 A. Joshi et al.

Algorithm 2. The ε-GC-AIS

Let Gt denote the population of GCs at generation t and gt
i the i-th GC in Gt.

Create GC pool G0 = {g0
1} and initialise g0

1 . Let t := 0.
loop

for each GC gt
i in pool Gt in parallel do

Generate random weight vectors λi 1.
Create offspring yi of individual gt

i by standard bit mutation.
Repair invalid offsprings using the weighted scalar repair approach.

end for
Add all yi to Gt, remove all ε-dominated solutions from Gt and let Gt+1 = Gt.
Let t = t + 1.

end loop

Offspring are created by standard bit mutation of B cells in GCs. Standard
bit mutation means that each bit can be flipped with the probability 1/n. In
every generation there is a migration of fitness values of the offspring between
GCs, which corresponds to the migration of Ab between GCs. After migration,
ε-dominated solutions are deleted which correspond to the eradication of GCs.
The surviving offspring correspond to new GCs. This leads to a model where the
number of GCs is dynamic in nature. The difference in this modified GC-AIS
from the original model is the incorporation of ε-dominance which replaces the
previous standard dominance relation. The ε-GC-AIS always maintains a set of
ε-non-dominated solutions in every generation and the population size of GCs is
dynamic in nature.

ε-dominance [12] is a generalization of the dominance relation, which can
be conceptually visualized for the two dimensional case as follows: the objective
space is divided into a grid of rectangles of dimensions ε and solutions are mapped
onto this grid. Assuming maximization, if two solutions are in different boxes
then they are compared using the standard dominance relation, but if they are
in the same box then they are compared based on their euclidean distance from
the origin, and the solution with the larger distance is kept. Figure 1 gives a
diagram of the ε dominated front, where the red circles represent the dominated
points and the green circles represent the point on the ε dominated front.

Fig. 1. Diagram of ε dominated front along with dominated points

Improving the Performance of GC-AIS Using ε-Dominance 119

4 Experimental Setup

In this section we describe the experimental setup used in this study: ε-GC-AIS
and the NSGA-II are compared by testing them on some benchmark instances
of the multi-objective knapsack problem. A total of 12 instances are provided
in [23] and are grouped into 3 classes based on the number of knapsacks. Each
class consists of 4 instances based on the number of total items. The different
knapsack numbers are 2, 3 and 4 and the number of items are 100, 250, 500
and 750. 30 independent runs each with one million fitness evaluations were
performed for each algorithm and statistical results were recorded. Any-time
data and end-of-run performance metrics are provided.

NSGA-II [3] is a widely used elitist multi-objective evolutionary algorithm
which uses non-dominated sorting to rank solutions according to levels of dom-
inated fronts, as well as crowding distance measure to maintain diversity in the
solution set. In each generation a fixed population size N is maintained which is
initialized by the user, individuals are selected by tournament selection using the
ranks and crowding distance and are then subject to crossover and mutation to
create N offspring. These offspring are combined with the parent population and
the best N solutions are carried to the next generation based on the crowding
distance measure and non-domination.

In the work by Zitzler et al. [22], authors state that NSGA-II and SPEA2 have
similar behaviour on different problems considered in their work which includes
MOd-KP, where they have used the greedy approach for repair. Ishibuchi and
Kaige [8] show that the weighted scalar repair approach improves diversity of
solutions and also increases convergence speed in many cases. It is also shown
that performance of multi-objective algorithms strongly depends on the choice
of the repair procedure used which is confirmed by work done in [16]. The imple-
mentation of NSGA-II in this paper closely resembles that of the work in [8],
and the algorithm is kept as close to its pure form as possible with the inclusion
of the weighted scalar repair. One random weight vector is generated for every
solution which needs repair. In this work the implementation of NSGA-II has
been adapted from the MOEA framework1.

The ε-GC-AIS algorithm requires only two parameters to be set by hand,
the mutation rate and a value for ε, on the other hand NSGA-II requires three
parameters to be set, namely population size, the mutation rate and probability
of crossover. For our experiments these settings are similar to the ones used by
[16] as our implementation of NSGA-II is closest to their ε-NSGA-II where all
the parameters values have been kept as close to the original work in [22,23].
The mutation rate for NSGA-II has been set to 5/n according to the guidelines
in [13]. The mutation rate is the probability with which every bit is flipped per
individual, while mutation probability refers to the probability of each individual
to be mutated. The parameter values can be seen in Table 1. Since population
size for NSGA-II is usually set according to the problem instance, the values
again have been selected from [16] and are depicted in Table 2.

1 www.moeaframework.org.

www.moeaframework.org

120 A. Joshi et al.

Table 1. Algorithm settings for GC-AIS and NSGA-II

Algorithm parameters NSGA-II ε-GC-AIS

Initial population Refer Table-2 1

Selection Tournament All reproduce

Mutation type Standard bit mutation Standard bit mutation

Mutation probability 1 1

Mutation rate 5/n 1/n

Crossover type One point crossover -

Crossover probability 0.8 -

Epsilon value - 20/50

Table 2. Population size used in NSGA-II for different instances of MOd-KP

Items Knapsacks

2 3 4

100 150 200 250

250 150 200 250

500 200 250 300

750 250 300 400

For the purpose of comparison three popular measures used in evolutionary
multi-objective optimization, the hypervolume metric [22], generational distance
[18] and the generalized spread metric [20], have been used. The spread metric
is a measure of how the solutions are distributed in the non-dominated front.
This measure was proposed for problems with two dimensions in [3] but was later
generalized for any number of dimensions in the work by [20]. The lower the value
for the metric the better the spread. The hypervolume metric is a measure of the
volume dominated by the achieved non-dominated set with respect to a nadir
point, and higher values of this metric are considered better. The generational
distance is a method to estimate how far the solutions in the non-dominated set
are from the true pareto set, and lower values for this metric are considered to
be better.

The implementations of these metrics have been adapted from the Jmetal
framework [4] where, for generational distance and spread, the non-dominated
front as well as known best reference fronts are required. The authors of [23] have
provided the pareto fronts for only 4 instances, namely the 2 knapsack instance
with items 100, 250 and 500 and 3 knapsack with items 100. Therefore, the
technique employed in [16] has been used to generate best-known non-dominated
fronts for the remaining instances. According to this method, ε-GC-AIS and
NSGA-II were run for 10 independent runs each for 1 million fitness evaluations.
The final non-dominated fronts from each run were combined and all dominated

Improving the Performance of GC-AIS Using ε-Dominance 121

solutions were removed. The resulting fronts were used as reference fronts for
the generation of performance measures.

5 Results and Discussion

The first set of experiments is performed to find a suitable value for ε. Five
different values of ε were tried namely 2, 5, 10, 15, and 20 along with standard
GC-AIS with dominance without ε and these were compared with NSGA-II.
Run-time plots of population, hypervolume, generational distance and spread
are provided in Fig. 2. 30 independent runs were performed for each setting and
plots of the mean of population, hypervolume, generational distance and spread
metric for each generation averaged over 30 runs were plotted. A representative
plot for the two dimensional problems is provided here. Including curves for all
ε values was not possible in Fig. 2, and selected values of 10, 20, along with
NSGA-II and standard GC-AIS (ε = 0) are shown.

It can be seen from Fig. 2 that early in the run the GC-AIS obtains better
hypervolume than NSGA-II using all values of ε, and NSGA-II catches up around
the middle. The plots for spread measure show that using different ε values can
cause variations in the spread. It can be seen from the plots of hypervolume and
generational distance that ε-GC-AIS achieves better values in the early phase
of the runs, while NSGA-II takes some time to catch up. Also, the plots for the

0 1000 2000 3000 4000 5000
108

109
Hypervolume

0 1000 2000 3000 4000 5000
0

50

100

150

200

250
Population

0 1000 2000 3000 4000 5000
10−3

10−2

10−1

100
Generational distance

0 1000 2000 3000 4000 5000
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Spread

ε = 0
ε = 10
ε = 20
NSGA−II

Fig. 2. Any-time plots for ε-GC-AIS and NSGA-II. X axes show the generations,
Y axes show the measure of the respective metrics. Instance size 500 items, 2 knapsacks,
Hypervolume and Generational distance are plotted on log scale.

122 A. Joshi et al.

Table 3. Hypervolume measure values for NSGA-II and ε-GC-AIS

ε-GC-AIS NSGA-II

Sacks Items average std.dev average std.dev Wilcoxon test

2 100 1.68e+7 6.26e+4 1.68e+7 5.37e+4 0.137

250 9.59e+7 3.57e+5 9.51e+7 3.85e+5 5.92e-8

500 3.94e+8 1.08e+6 3.83e+8 1.72e+6 3.01e-11

750 8.51e+8 3.12e+6 8.19e+8 3.24e+6 3.01e-11

3 100 6.11e+10 4.68e+8 6.08e+10 3.79e+8 0.079

250 8.46e+11 6.29e+9 8.29e+11 5.28e+9 1.32e-10

500 6.56e+12 3.87e+10 6.42e+12 3.89e+10 3.33e-11

750 2.19e+13 1.19e+11 2.15e+13 1.80e+11 3.01e-11

4 100 1.51e+14 2.77e+12 1.63e+14 1.17e+12 3.01e-11

250 6.33e+15 6.78e+13 6.44e+15 6.15e+13 1.15e-7

500 9.72e+16 9.81e+14 9.72e+16 1.05e+15 0.371

750 4.70e+17 3.91e+15 4.82e+17 4.80e+15 4.61e-10

population size show that ε value has a big impact on the population size. Since
we are interested in preventing population explosion, which was observed to be
especially common in the large dimensional instances, an ε value of 20 is selected
for 2 and 3 dimensions as it produces the lowest population and the best spread.
For the 4 dimensional problems an ε value of 50 is used, since the population
size becomes quite large for these instances with ε = 20.

The end-of-run performance is calculated next, where the metrics are recorded
after each run. Averages of metrics have been recorded along with standard devi-
ation. Wilcoxon rank-sum test was performed as a statistical measure to ascer-
tain the level of significant difference between the algorithms. These values for
the hypervolume metric are shown in Table 3, for the spread metric are shown
in Table 4 and for the generational distance in Table 5.

It can be seen from Table 3 that in six out of the twelve instances ε-GC-AIS
achieves greater hypervolume than NSGA-II. While on three instances NSGA-II
performs better than ε-GC-AIS. In all but three instances the Wilcoxon rank
sum test was able to confirm significant difference between the two algorithms
at a significance level of 0.05.

Values from the spread metric from Table 4 show that the non-dominated
fronts achieved by ε-GC-AIS are better distributed than the ones achieved by
NSGA-II. Except for one instance, the wilcoxon rank sum test confirmed sig-
nificant difference between the two algorithms. Similar results can be seen from
Table 5 where for each of the instances it can be seen that the generational dis-
tance measure for the NSGA-II is higher than ε-GC-AIS which means that the
non-dominated fronts achieved by ε-GC-AIS are closer to the reference fronts
than those of NSGA-II. In this case the wilcoxon rank sum test showed signifi-
cant difference between the two algorithms for all the instances.

Improving the Performance of GC-AIS Using ε-Dominance 123

Table 4. Spread measure values for NSGA-II and ε-GC-AIS

ε-GC-AIS NSGA-II

Sacks Items Average Std.dev Average Std.dev Wilcoxon test

2 100 0.507 0.037 0.568 0.056 5.09e-6

250 0.671 0.024 0.668 0.050 0.923

500 0.666 0.027 0.710 0.040 5.26e-5

750 0.493 0.044 0.645 0.031 3.01e-11

3 100 0.350 0.020 0.388 0.027 5.59e-7

250 0.335 0.011 0.439 0.026 3.01e-11

500 0.363 0.010 0.455 0.025 3.33e-11

750 0.394 0.010 0.471 0.025 3.68e-11

4 100 0.298 0.018 0.361 0.020 5.49e-11

250 0.317 0.011 0.406 0.025 3.33e-11

500 0.304 0.007 0.440 0.020 3.01e-11

750 0.323 0.006 0.454 0.021 3.02e-11

Table 5. Generational distance measure for ε-GC-AIS and NSGA-II

ε-GC-AIS NSGA-II

Sack Items Average Std.dev Average Std.dev Wilcoxon test

2 100 0.0010 3.93e-4 0.0038 6.37e-4 3.01e-11

250 0.0015 1.75e-4 0.0071 6.86e-4 3.01e-11

500 0.0029 2.56e-4 0.0137 8.62e-4 3.01e-11

750 0.0013 2.70e-4 0.0166 0.0010 3.01e-11

3 100 0.0015 1.51e-4 0.0079 5.82e-4 3.01e-11

250 9.67e-4 1.51e-4 0.0146 0.0013 3.01e-11

500 8.43e-4 1.52e-4 0.0180 0.0011 3.01e-11

750 8.41e-4 1.27e-4 0.0117 8.14e-4 3.01e-11

4 100 0.0028 2.73e-4 0.0142 8.89e-4 3.00e-11

250 0.0011 1.46e-4 0.0199 0.0012 3.01e-11

500 7.64e-4 8.35e-5 0.0182 0.0011 3.01e-11

750 7.92e-4 1.57e-4 0.0144 7.18e-4 3.01e-11

6 Conclusion

It can be seen from Fig. 2 that setting the right ε value is important for maintain-
ing the population size in the ε-GC-AIS. Along with regulating the population
size, it provides the added advantage of maintaining diversity between the solu-
tions. Parameter setting is a crucial factor when employing any meta-heuristic
to solve a problem. It can be seen from Table 1 that ε-GC-AIS requires the ε

124 A. Joshi et al.

parameter as well as mutation rate to be set while NSGA-II requires population
size, as well as mutation rate and crossover probability.

We have shown that ε-GC-AIS performs better than NSGA-II on the MOd-
KP instances provided by [23]. The value of ε has a big impact on the population
size of ε-GC-AIS, which can be seen from Fig. 2. In the higher dimensional cases
the number of non-dominated solutions increases very rapidly and possibly larger
ε values could further improve hypervolume in those instances in Table 3. ε is
a new parameter which was not present in the original description of GC-AIS.
We would like to remove the task of setting ε manually by incorporating some
form of dynamic ε resizing, where this value will dynamically adjust according
to population size and the number of fitness evaluations expended so far, and
also do this for each dimension. This is a direction for future work.

As future work we would also like to incorporate the correlated instances of
MOd-KP as suggested in [16] and test the performance on the many objective
knapsack problem. Though NSGA-II is a popular multi-objective evolutionary
algorithm and with incorporation of the weighted repair approach can be con-
sidered as one of the state of the art MOEAs, we would like to include other
heuristics and MOEAs for future studies for MOd-KP.

References

1. Cohen, R., Grebla, G.: Multi-dimensional OFDMA scheduling in a wireless network
with relay nodes. In: INFOCOM, pp. 2427–2435. IEEE (2014)

2. De Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational
Intelligence Approach. Springer, Heidelberg (2002)

3. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimisation: NSGA-II. In: PPSN
VI, pp. 849–858. Springer (2000)

4. Durillo, J., Nebro, A., Alba, E.: The jMetal framework for multi-objective opti-
mization: design and architecture. In: CEC, pp. 4138–4325. Springer, July 2010

5. Freschi, F., Coello, C.A.C., Repetto, M.: Multiobjective optimization and artifi-
cial immune systems: a review. Handb. Res. Artif. Immune Syst. Nat. Comput.
Applying Complex Adapt. Technol. 4, 1–21 (2009)

6. Greensmith, J.: The dendritic cell algorithm. Ph.D. thesis, University of Notting-
ham (2007). http://www.cs.nott.ac.uk/∼qg/thesis.pdf

7. Greensmith, J., Aickelin, U., Twycross, J.: Articulation and clarification of the
dendritic cell algorithm. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS,
vol. 4163, pp. 404–417. Springer, Heidelberg (2006)

8. Ishibuchi, H., Kaige, S.: Effects of repair procedures on the performance of EMO
algorithms for multiobjective 0/1 knapsack problems. In: CEC, vol. 4, pp. 2254–
2261. IEEE (2003)

9. Jaszkiewicz, A.: On the performance of multiple-objective genetic local search on
the 0/1 knapsack problem - a comparative experiment. IEEE Trans. Evol. Com-
putat. 6(4), 402–412 (2002)

10. Joshi, A., Rowe, J.E., Zarges, C.: An immune-inspired algorithm for the set cover
problem. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN
2014. LNCS, vol. 8672, pp. 243–251. Springer, Heidelberg (2014)

http://www.cs.nott.ac.uk/~qg/thesis.pdf

Improving the Performance of GC-AIS Using ε-Dominance 125

11. Kim, J., Bentley, P.J.: Towards an artificial immune system for network intrusion
detection: an investigation of clonal selection with a negative selection operator.
In: CEC, vol. 2, pp. 1244–1252. IEEE Press (2002)

12. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diver-
sity in evolutionary multiobjective optimization. Evol. Computat. 10(3), 263–282
(2002)

13. Laumanns, M., Zitzler, E., Thiele, L.: On the effects of archiving, elitism, and
density based selection in evolutionary multi-objective optimization. In: Zitzler,
E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS,
vol. 1993, pp. 181–196. Springer, Heidelberg (2001)

14. Murphy, K.: Janeway’s Immunobiology. Garland Science, New York (2011)
15. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algo-

rithms. In: ICGA, pp. 93–100. Lawrence Erlbaum Associates (1985)
16. Shah, R., Reed, P.: Comparative analysis of multiobjective evolutionary algorithms

for random and correlated instances of multiobjective d-dimensional knapsack
problems. Eur. J. Oper. Res. 211(3), 466–479 (2011)

17. Sim, K., Hart, E., Paechter, B.: A lifelong learning hyper-heuristic method for bin
packing. Evol. Comput. (2014, to appear)

18. Van Veldhuizen, D.A.: Multiobjective evolutionary algorithms: classifications,
analyses, and new innovations. Technical report, DTIC Document (1999)

19. Zhang, Y., Meyer-Hermann, M., George, L.A., Figge, M.T., Khan, M., Goodall,
M., Young, S.P., Reynolds, A., Falciani, F., Waisman, A., Notley, C.A., Ehrenstein,
M.R., Kosco-Vilbois, M., Toellner, K.M.: Germinal center B cells govern their own
fate via antibody feedback. J. Exp. Med. 210(3), 457–464 (2013)

20. Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., Tsang, E.P.K.: Combining model-based
and genetics-based offspring generation for multi-objective optimization using a
convergence criterion. In: CEC, pp. 892–899. IEEE (2006)

21. Zitzler, E.: Evolutionary algorithms for multiobjective optimization: methods and
applications. Ph.D. thesis, ETH Zurich, Switzerland (1999)

22. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evo-
lutionary algorithm. TIK report 103, Computer Engineering and Networks Labo-
ratory (TIK), ETH Zurich (2001)

23. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271
(1999)

Mixing Network Extremal Optimization
for Community Structure Detection

Mihai Suciu1(B), Rodica Ioana Lung2, and Noémi Gaskó1

1 Department of Computer Science, Babeş-Bolyai University,
Cluj Napoca, Romania

mihai-suciu@cs.ubbcluj.ro

http://csc.centre.ubbcluj.ro
2 Faculty of Economics and Business Administration, Babeş-Bolyai University,

Cluj Napoca, Romania

Abstract. Mixing Network Extremal Optimization is a new algorithm
designed to identify the community structure in networks by using a
game theoretic approach and a network mixing mechanism as a diversity
preserving method. Numerical experiments performed on synthetic and
real networks illustrate the potential of the approach.

Keywords: Network structure · Extremal optimization · Nash equilib-
rium

1 Introduction

One of the most challenging problems in network analysis is the identification
of the community structure, with applications in various fields such as politics,
economics, biology, physics, etc. [1]. The main difficulty of this problem comes
from the lack of a formal and a universal accepted definition for the concept of
community.

Intuitively, a community is described as a group of nodes that are densely
linked to each other and sparsely connected to the outside. The words “densely”
and “sparsely” are difficult to transfer in a formal definition without introducing
a threshold: how many inner links are enough to be considered “dense” and how
many outside links are “sparse”? In [2], Radicchi defines the strong community
as a group of nodes such that for each node the number of links inside the
community is strictly greater than the number of links to outside nodes. He also
defines the weak communityas a group of nodes such that the total number of
internal links is greater than the total number of external links. Other definitions
are related to concepts from graph theory such as LS − sets or k-core [3], but
none of these encompass all features arising from the intuitive description of the
community structure, especially when dealing with communities of different sizes
and structures. In spite of that, a multitude of methods aiming to identify the
community structure exist, validated mostly by means of numerical experiments.

Among these, some are based on defining the community structure as a
partition maximizing a fitness function that is supposed to reflect all desired
c© Springer International Publishing Switzerland 2015
G. Ochoa and F. Chicano (Eds.): EvoCOP 2015, LNCS 9026, pp. 126–137, 2015.
DOI: 10.1007/978-3-319-16468-7 11

Mixing Network Extremal Optimization for Community Structure Detection 127

properties of the structure. These optimization based approaches present the
advantage that they can be used in combination with various heuristic algo-
rithms. For example, heuristics attempting to maximize the modularity function
[4] can be found in [5–8]. The modularity density [9], introduced as an alternative
to modularity, was also extensively used [8,10–14].

Other widely used functions for evaluating the quality of a community are
the community score defined in [15] and the community fitness used in [16].
The two measures have been used with uni-objective genetic algorithms [15] and
within multiobjective approaches [17,18]. However, as they are all defined, none
of these functions are capturing the community structure better than others; for
example the limits of modularity have been pointed out it [19] while other fitness
functions have been explored in [20].

Any method that aims to identify the community structure of a network
by means of an optimization heuristic has to take into account the relevance
and properties of the fitness function used: does it really reflect the community
structure? - in the sense that an optimum value of the fitness function corre-
sponds to a correct structure; and are there any local optima that can hinder
the search process? This paper proposes a possible solution for this problem by
combining two novel approaches: a game theoretic one that replaces the fitness
function with a game setting and a network mixing method to avoid premature
convergence during the search.

2 The Community Detection Game

The problem of detecting the network community structure can be converted
into a mathematical game [21] in which nodes (as players) choose a community
(strategy) trying to increase a corresponding payoff function. Then, the solution
of such a game (Nash equilibrium) is a community structure such that no node
can unilaterally improve its payoff by changing community. Thus, in equilibrium,
we have a community structure in which each node belongs to the community
that ensures best payoff given the communities chosen by all other nodes.

Formally, the game Γ = (N,S,U) is described as a triplet consisting of:

– N = {1, . . . , n}, the set of players: network nodes;
– S = S1 ×S2 × . . .×Sn, the set of strategy profiles of the game; an element s ∈

S, s = (c1, . . . , cn) is a strategy of the game, with ci denoting the community
chosen by player i; for example, for a network with 4 nodes, a strategy profile
s = (1, 2, 2, 3) is a partition with three communities, with node 1 in the
community 1, nodes 2 and 3 in community 2 and node 4 in community 3.

– U = {ui}i=1,n, the payoff functions; ui : S → R represents the payoff of player
i, i = 1, n.

A Nash equilibrium (NE) of a game is a strategy profile s∗ such that the
inequality ui(si, s

∗
−i) ≤ ui(s∗) holds for all si ∈ Si and ∀i ∈ N , where (si, s

∗
−i) =

(s∗
1, . . . , s

∗
i−1, si, s

∗
i+1, . . . , s

∗
n).

128 M. Suciu et al.

A NE for game Γ is a partition s∗ = (c∗
1, c

∗
2, . . . c

∗
n), where c∗

i represents the
community of player i, such that given any other partition s = (c1, c2, . . . , cn)
and any node/player i we have ui(si, s

∗
−i) ≤ ui(s∗

i) i.e. no node can improve its
payoff by changing community while all others maintain theirs.

Payoff functions. The node payoff is computed using the fitness of the node
defined in [16], as the “contribution” of the node to the fitness of the community:

ui(s) = f(Ci) − f(Ci\{i}),

where Ci represents the community of player i, Ci\{i} is the same community
but without node i, and f is the community fitness

f(C) =
kin(C)

(kin(C) + kout(C))α
, (1)

with:

– kin(C) - double of the number of internal links in the community;
– kout(C) - number of external links of the community;
– α - a parameter controlling the size of the community.

Intuitively, the NE of this game is a network partition such that each node
belongs to the community to which it contributes the most, given that all other
nodes are fixed in their communities.

Computing Nash Equilibria. The NEs of a game can be computed by evolution-
ary computation means by using the Nash ascendancy relation as introduced
in [22] and first adapted for the community detection game in [21]. The Nash
ascendancy relation provides a method to compare two strategy profiles by using
a relative quality indicator k(s, q), s, q ∈ S; for game Γ this would denote the
number of nodes from s that improve their payoff by individually switching their
community from si to qi, with s = (s1, . . . , sn) and q = (q1, . . . , qn):

k(s, q) = card{i ∈ N |ui(qi, s−i) > ui(s), qi �= si}.

We say that s Nash ascends q, or that s is better than q in Nash sense, if the
inequality k(s, q) < k(q, s) holds. If s∗ is a NE, there does not exist any q ∈ S
such that q Nash ascends s. The converse is also true, i.e. if for strategy s there
does not exist any q ∈ S, q �= s such that q Nash ascends s then s is a NE of the
game [22].

The main application of this result is that the Nash ascendancy relation
can be embedded into an optimization heuristic to guide its search towards the
NEs of a game instead of the optimum values of a function. The efficiency of
this approach has been tested on Cournot large games [23,24], with best results
obtained when using an algorithm based on Extremal optimization [25].

Mixing Network Extremal Optimization for Community Structure Detection 129

3 Mixed Network Extremal Optimization

The Mixed Network Extremal Optimization (MNEO) proposed in this paper is
based on the Nash Extremal Optimization for the Dynamic Community Detec-
tion [21], adapted to perform in a static environment with the use of a network
mixing mechanism and a new Extremal Optimization feature to improve its
performance.

MNEO populations. MNEO evolves two equal sized populations of individuals
encoding network partitions: a current population P and an archive A that
preserves the best solutions found so far by each individual in P . Let M be the
size of the two populations. Paired individuals from the two populations follow
the rules of EO: individual Pj explores the search space; the best value found
by Pj is preserved in Aj , j = 1,M .

Encoding. Individuals are encoded as vectors of integers of size n equal to the
number of nodes in the network Pj = (pj1 , . . . , pjn), j = 1,M ; for node i, pji

represents the community of node i for individual j. This representation matches
the form of the strategy profiles of game Γ , as MNEO evolves strategy profiles
of Γ in order to compute game equilibria.

Number of communities. Each individual searches for a fixed number of commu-
nities, which is set within a minimum possible value, cmin, and a maximum one,
cmax. cmin and cmax are algorithm parameters. There are approximatively equal
numbers of individuals searching for a given number of communities (depending
on the size of the population).

Extremal optimization. Individuals in the current population P explore the
search space by the rules of an EO-based iteration with the following modifi-
cation: for each individual Pj , the k nodes having the worst fitnesses are ran-
domly assigned to different communities. If the newly obtained partition P ′

j

Nash ascends the corresponding archive member Aj , it will replace it. If not,
the search continues next iteration from P ′

j . There is no communication among
individuals in P (or in A), the only information exchange takes place between Pj

and Aj , j = 1,M . The outline of the EO iteration is presented in Algorithm 1.
Within this variant of EO, two mechanisms ensure the diversity of the search:

the fact that P ′
j replaces Pj unconditionally (Pj replaces Aj only if it Nash

ascends it); and simultaneously changing k nodes randomly. The first one is
specific to standard EO, while the latter has to be discussed: large values of k
lead to a better exploration of the space, while smaller values lead to a better
exploitation. Obviously, very high values of k may hinder the search by making
it totally random, while very small values may induce premature convergence.

To avoid either situations the value of k is adapted during the search by
decreasing it starting from approximatively 10% of the number of nodes in the
first iteration in order to better explore the space at the beginning of the search,
to 1 towards the last ones to enhance the exploitation capabilities at the end

130 M. Suciu et al.

Algorithm 1. Extremal Optimization iteration.
Input: Current population P , archive A;
Parameters: number of nodes to be changed k;
Archive member Aj , j = 1,M , preserves the best solution found so far by Pj .
1: for each individual Pj in P do
2: Select the k worst nodes from Pj ;
3: Randomly assign another community to each selected node - create offspring P ′

j ;
4: if (P ′

j Nash ascends Aj) then
5: set Aj := Pj ;
6: end if
7: set Pj = P ′

j

8: end for

of the search. At current generation NrGen, k is computed using the following
formula:

kngen = max
{

1,

[
1
10

· N · (N − 2)− NrGen
MaxGen

]}
, (2)

where [·] represents the integer part, N the number of network nodes, and
MaxGen the maximum number of generations/iterations allowed.

Mixing the network. The main diversity preservation mechanism within MNEO
consists on periodically rewiring the network, for small periods of time, in order
to escape local optima and advance the search. For a number λ of iterations
MNEO actually performs the search on a modified network; after that the orig-
inal structure is restored and the search continues for Λ generations. Thus, the
search alternates for Λ iterations on the original network and for λ iterations on
the modified network.

The search performed on the modified network triggers a shift in the popula-
tion. We can assume that small shifts in the network will cause small shifts in the
population that will alter individuals just enough to ensure a better exploitation
of the search space.

At the moment the network is modified (either altered or restored) both pop-
ulations are evaluated and individuals from archive A are randomly re-initialized
in order to allow the exploration; i.e. to be easily replaced by new solutions ensur-
ing search diversity. Without this reinitialization local optimal from A cannot
be replaced and the mixing mechanism looses its purpose.

The mixing mechanism used by MNEO, proposed in [26] and designed to
preserve the node degrees in the network, randomly chooses a pair of links,
erases them and re-connects the same nodes in a different manner. Links are
selected randomly with a probability ρ controlling the magnitude of change in
the network.

Outline of MNEO. MNEO runs a maximum number MaxGen of EO iterations,
alternating the search on the original network for Λ iterations with the search
on the modified network for λ iterations. Algorithm 2 presents the outline of
MNEO.

Mixing Network Extremal Optimization for Community Structure Detection 131

Algorithm 2. Outline of Mixed Network Extremal Optimization.
1: Randomly initialize all individuals in P and A;
2: Evaluate all individuals in P and A;
3: for NrGen from 0 to MaxGen do
4: Set kngen according to eq. (2) - number of nodes with lowest fitness to be changed

within an EO iteration;
5: Run an EO iteration (alg. 1);
6: if Λ iterations were performed on the original network then
7: Mix network with probability ρ;
8: Randomly re-initialize population A;
9: Evaluate all individuals in P and A;

10: end if
11: if Network is mixed and λ iterations were performed then
12: Restore network to original structure;
13: Randomly re-initialize population A;
14: Evaluate all individuals in P and A;
15: end if
16: end for
17: Output: individual from A having the best community score [15];

Output. The individual with best fitness: any function measuring the quality of
the cover may be used. However, this value is not actually used during the search
process, only to select the output of the algorithm from the final population.

Parameters. MNEO uses the following parameters:

– Population size;
– Maximum number of iterations MaxGen;
– ρ - network mixing probability;
– Λ and λ - number of iterations MNEO performs the search on the original

network and the modified one, respectively;
– cmin and cmax - minimum and maximum number of communities searched

for.

4 Numerical Results and Discussions

4.1 Experimental Setting

The performance of MNEO is tested on the GN [4] and LFR [27] benchmarks1.
The GN networks have 128 nodes with degree 16 and 4 communities (each com-
munity has 32 nodes). We used 8 sets of 30 GN networks each, with zout ∈
{1, 2, . . . , 8}, where zout represents the number of edges linking nodes to other
communities and 16 = zt = zin + zout. We used 6 sets of 30 LFR networks with
1 Generated with the code available at http://sites.google.com/site/

andrealancichinetti/files, downloaded on March 2014.

http://sites.google.com/site/andrealancichinetti/files
http://sites.google.com/site/andrealancichinetti/files

132 M. Suciu et al.

μ ∈ {0.1, 0.2, . . . , 0.6}, where μ represents the mixing parameter and is the ratio
between zout and zt. The parameters used to generate the LFR networks are:
average vertex degree 20, maximum vertex degree 50, number of nodes 128, and
community size [10, 50] for the small set and [20, 100] for the big set.

Four real-world networks having known community structures are also con-
sidered: Zachary’s karate club, bottle-nose dolphins, Krebs political books, and
the American college football.

The Normalized Mutual Information (NMI) indicator is used [16] to eval-
uate the quality of the solutions and to compare results with other methods.
A NMI value of 1 (maximum possible) indicates that the correct cover has been
identified.

4.2 Setting Parameters

In order to study the effects different parameter settings have on MNEO, several
settings have been tested using the GN and LFR benchmarks, with the following
values:

– population size M ∈ {20, 50, 100};
– number of iterations the network is mixed λ ∈ {10, 15, 20, 50, 100};
– number of iterations the network is in original state Λ ∈ {10, 20, 30, 50, 100};
– mixing probability ρ ∈ {0.001, 0.01, 0.05, 0.1}.

The 18 settings tested in order to asses if any of the parameters may have a
special impact on the results (by keeping the others unchanged) can be grouped
in four: settings I-III report for different population sizes;IV-VII report for differ-
ent values of λ; VIII-XI report for different values of Λ; and XII-XV for different
values of ρ.

The effect of the network mixing mechanism has been studied by disabling
the mixing feature of MNEO (equivalent to ρ = 0).

Other parameters: minimum and maximum number of communities cmin and
cmax were set 2 and 8, respectively. The α parameter in equation (1) is set to 1
as its effect is not in the scope of this study.

All comparisons are performed by using a Wilcoxon sum-rank test.

Results. For the GN and LFR networks with well defined community structures
(GN zout = 1, . . . , 6 and LFR small and big with μ = 0.1, 0.2, 0.3), MNEO
computed the correct cover for all networks and all parameter settings, with
average NMI=1, indicating the efficiency of the game theoretic approach by
itself.

For GN zout = 7, MNEO found the correct cover with NMI=1 in all runs, sig-
nificantly different and better than the no-mix variant (according to a Wilcoxon
sum-rank test with 5 % confidence level). Up to this point, it can be inferred
from the results that when the community structure is well defined, the different
parameter settings considered do not influence results significantly.

Mixing Network Extremal Optimization for Community Structure Detection 133

Other results are depicted in Fig. 1. The following conclusions can be drawn
regarding to the effects of the parameter settings on MNEO:

– I-III: the size of the population influences the results of the MNEO search and
of the no-mix variant; mean NMI color bars indicate that best results may be
obtained for M = 100;

– IV-VII: number λ of iterations the search takes place almost never leads to
statistically significant different results;

– VIII-XI: number Λ of iterations MNEO searches on the original network: if it is
too high the results are significantly different in some cases, but worse than for
lower values; it is interesting to notice that for the smallest value (setting VIII,
Λ = 10) sometimes results are significantly better than for other values of Λ;

– XII-XV: mixing probability ρ influences the search with best results obtained
for ρ = 0.05 and worst for ρ = 0.1 and 0.001.

– in most cases the results obtained by MNEO are significantly better than the
no-mix variant; moreover, there is only one instance in which MNEO results
are worst (XV) for ρ = 0.1 suggesting that the magnitude induced by this
value is too high, disrupting the search.

4.3 Comparisons with Other Methods

The results of MNEO for the tested benchmarks are compared with four algo-
rithms: OSLOM [28], Infomap [29], Modularity optimization (ModOpt) [30], and
the Louvain method [31]2. For the synthetic networks all algorithms are run once
on each of the 30 network realizations; for the real networks 30 runs are per-
formed; a Wilcoxon sum-rank test is used to determine if there are statistical
differences between results obtained with MNEO and those of the other methods.
Figure 2 presents mean NMI values with error bars for all five methods.

Results show that for the synthetic networks, when the community structure
is well defined (zout = 1, 2, 3, 4, 5 for GN and μ = 0.1, 0.2, 0.3 for LFR small
set), all algorithms find the true community structure of the network. When the
structure weakens (zout = 6, 7, 8 for GN and μ = 0.4, 0.5, 0.6 for LFR small and
big sets), MNEO results are significantly better than all the others.

For the four real-world networks, MNEO provides significantly better results
than those of the other algorithms (Wilcoxon p < 0.05), except for the Karate
network where the difference between results obtained by MNEO and OSLOM
is not significant (p = 0.1961). Boxplots of the results are presented in Fig. 3.
While further analysis is required to assess the efficiency of MNEO, the results
presented in this paper places it among promising methods for computing net-
work community structure.
2 For the algorithms we use the code and parameter setting available at https://sites.

google.com/site/andrealancichinetti/software, downloaded on March 2014.

https://sites.google.com/site/andrealancichinetti/software
https://sites.google.com/site/andrealancichinetti/software

134 M. Suciu et al.

LF
R

, s
m

al
l,

µ=
0.

4,
M

ax
G

en
=5

00
0

 G

N
,

z ou
t=8

,M
ax

G
en

=5
00

 L
FR

, b
ig

,
µ=

0.
4,

M
ax

G
en

=5
00

0

 G

N
,

z ou
t=8

,M
ax

G
en

=5
00

0

I II III IV V VI VII VIII IX X XI XII XIIIXIV XVXVI
XVII

XVIII

Wilcoxon h values
I

II
III
IV
V
VI

VII
VIII

IX
X
XI

XII
XIII
XIV
XV
XVI

XVII
XVIII

 h

0

0.2

0.4

0.6

0.8

1

I II III IV V VI VII VIII IX X XI XII XIIIXIV XVXVI
XVII

XVIII

Wilcoxon h values
I

II
III
IV
V
VI

VII
VIII

IX
X
XI

XII
XIII
XIV
XV
XVI

XVII
XVIII

 h

0

0.2

0.4

0.6

0.8

1

I II III IV V VI VII VIII IX X XI XII XIIIXIV XVXVI
XVII

XVIII

Wilcoxon h values
I

II
III
IV
V
VI

VII
VIII

IX
X
XI

XII
XIII
XIV
XV
XVI

XVII
XVIII

 h

0

0.2

0.4

0.6

0.8

1

I II III IV V VI VII VIII IX X XI XII XIIIXIV XVXVI
XVII

XVIII

Wilcoxon h values
I

II
III
IV
V
VI

VII
VIII

IX
X
XI

XII
XIII
XIV
XV
XVI

XVII
XVIII

 h

0

0.2

0.4

0.6

0.8

1

 L
FR

, s
m

al
l,

µ =
0.

6,
M

ax
G

en
=5

00
0

 L
FR

, s
m

al
l,

µ=
0.

5,
M

ax
G

en
=5

00
0

 L

FR
, b

ig
,
µ=

0.
5,

M
ax

G
en

=5
00

0Wilcoxon h values

I II III IV V VI VII VIII IX X XI XII XIIIXIV XVXVI
XVII

XVIII

I
II

III
IV
V
VI

VII
VIII

IX
X
XI

XII
XIII
XIV
XV
XVI

XVII
XVIII

 h

0

0.2

0.4

0.6

0.8

1 Wilcoxon h values

I II III IV V VI VII VIII IX X XI XII XIIIXIV XVXVI
XVII

XVIII

I
II

III
IV
V
VI

VII
VIII

IX
X
XI

XII
XIII
XIV
XV
XVI

XVII
XVIII

 h

0

0.2

0.4

0.6

0.8

1

I II III IV V VI VII VIII IX X XI XII XIIIXIV XVXVI
XVII

XVIII

Wilcoxon h values
I

II
III
IV
V
VI

VII
VIII

IX
X
XI

XII
XIII
XIV
XV
XVI

XVII
XVIII

 h

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

generation

N
M

I

best NMI in population
NMI for ind. with best comm. score

Fig. 1. For each network (left/right labels): a matrix containing Wilcoxon logical h
values indicating weather there is a statistical significant difference between different
parameter settings; two color bars for the Average NMI obtained by MNEO and the
corresponding no-mix variant, and a color bar with the Wilcoxon h values for the
differences between the two, for each setting. Black boxes indicate significant differences
(Wilcoxon h values are 1, and the null hypothesis is rejected) and white boxes indicate
that the null hypothesis of equalities between medians cannot be rejected and h = 0.
The last figure illustrates the evolution of NMI on a GN network with zout = 8 averaged
over 10 runs. The best NMI in the population and the NMI of the individual with the
best community score are plotted.

Mixing Network Extremal Optimization for Community Structure Detection 135

books dolphins football karate
0

0.2

0.4

0.6

0.8

1

N
M

I

Real networks

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

zout

N
M

I

GN

0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

mixing parameter

N
M

I

LFR small

0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

mixing parameter

N
M

I

LFR big

Infomap
Louvain
modOpt
OSLOM
MNEO

Fig. 2. Comparisons with other methods - mean NMI (with error bars) values obtained
in 30 runs (30 instances for each GN and LFR networks and 30 independent runs for
the real-world networks).

be
st

 N
M

I

0

0.5

1

I L M O MNEO

karate

0.6

0.8

1

I L M O MNEO

football

0

0.5

1

I L M O MNEO

dolphins

0

0.5

1

I L M O MNEO

book

Fig. 3. Boxplots of results obtained on the real networks with: I (Infomap), L (Louvain),
M (ModOpt), O (Oslom), and MNEO.

5 Conclusions

MNEO is a heuristic designed to identify network community structures. MNEO
converts the problem into a mathematical game in which nodes act as play-
ers choosing communities that maximize their payoff. The search for the Nash
equilibrium of the game is performed using an adapted extremal optimization
algorithm. To avoid premature convergence, the network is periodically shuffled
(mixed) by adding and removing links with a given probability. Shifts in the net-
work trigger corresponding shifts in the population, allowing it to escape local
optima.

Numerical experiments illustrate the behavior of MNEO on small (128 nodes)
synthetic networks (GN and LFR) and on four real-world networks. MNEO
provides results significantly better or at least as good as the other methods
considered for the tested benchmarks.

136 M. Suciu et al.

Although results are promising, MNEO is a computationally expensive me-
thod, as the Nash ascendancy relation requires at least 2kngen payoff function
evaluation on each call. However, MNEO may be useful in refining results pro-
vided by other, faster methods.

Further work consists on studying the behavior of MNEO on larger net-
works and different network mixing mechanisms. The game theoretic design can
be improved also by considering different payoff functions. The study of other
equilibria concepts, either refinements of the Nash equilibrium or totally differ-
ent ones, such as the Berge-Zhukovskii equilibrium, may also lead to interesting
results.

Acknowledgment. This work was supported by the project “OPEN-RES (PN-II-
PC-CA-2011-3.1-0682 212/2.07.2012).”

References

1. Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)
2. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and iden-

tifying communities in networks. Proc. Natl. Acad. Sci. U.S.A 101(9), 2658–2663
(2004)

3. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications,
vol. 8. Cambridge University Press, Cambridge (1994)

4. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

5. Nascimento, M.C., Pitsoulis, L.: Community detection by modularity maximiza-
tion using GRASP with path relinking. Comput. Oper. Res. 40(12), 3121–3131
(2013)

6. Shang, R., Bai, J., Jiao, L., Jin, C.: Community detection based on modularity
and an improved genetic algorithm. Phys. A: Stat. Mech. Appl. 392(5), 1215–1231
(2013)

7. Honghao, C., Zuren, F., Zhigang, R.: Community detection using ant colony opti-
mization. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 3072–
3078 (2013)

8. Shi, C., Yan, Z., Cai, Y., Wu, B.: Multi-objective community detection in complex
networks. Appl. Soft Comput. 12(2), 850–859 (2012)

9. Li, Z., Zhang, S., Wang, R.S., Zhang, X.S., Chen, L.: Quantitative function for
community detection. Phys. Rev. E 77, 036109 (2008)

10. Gong, M., Fu, B., Jiao, L., Du, H.: Memetic algorithm for community detection in
networks. Phys. Rev. E 84, 056101 (2011)

11. Jiang, J.Q., McQuay, L.J.: Modularity functions maximization with nonnegative
relaxation facilitates community detection in networks. Phys. A: Stat. Mech. Appl.
391(3), 854–865 (2012)

12. Gong, M., Ma, L., Zhang, Q., Jiao, L.: Community detection in networks by using
multiobjective evolutionary algorithm with decomposition. Phys. A: Stat. Mech.
Appl. 391(15), 4050–4060 (2012)

13. Gong, M., Cai, Q., Chen, X., Ma, L.: Complex network clustering by multiobjective
discrete particle swarm optimization based on decomposition. IEEE Trans. Evol.
Comput. 18(99), 82–97 (2013)

Mixing Network Extremal Optimization for Community Structure Detection 137

14. Angelini, L., Boccaletti, S., Marinazzo, D., Pellicoro, M., Stramaglia, S.: Identifica-
tion of network modules by optimization of ratio association. Chaos: An Interdisc.
J. Nonlinear Sci. 17(2), 023114 (2007)

15. Pizzuti, C.: GA-Net: a genetic algorithm for community detection in social net-
works. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN
2008. LNCS, vol. 5199, pp. 1081–1090. Springer, Heidelberg (2008)

16. Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hier-
archical community structure in complex networks. New J. Phys. 11(3), 033015
(2009)

17. Amiri, B., Hossain, L., Crawford, J.W., Wigand, R.T.: Community detection in
complex networks: multi-objective enhanced firefly algorithm. Knowl.-Based Syst.
46, 1–11 (2013)

18. Pizzuti, C.: A multiobjective genetic algorithm to find communities in complex
networks. IEEE Trans. Evol. Comput. 16(3), 418–430 (2012)

19. Lancichinetti, A., Fortunato, S.: Limits of modularity maximization in community
detection. Phys. Rev. E 84, 066122 (2011)

20. Chira, C., Gog, A., Iclanzan, D.: Evolutionary detection of community structures
in complex networks: A new fitness function. In: IEEE Congress on Evolutionary
Computation (CEC), 2012, pp. 1–8. IEEE (2012)

21. Lung, R.I., Chira, C., Andreica, A.: Game theory and extremal optimization for
community detection in complex dynamic networks. PLOS ONE 9(2), e86891
(2014)

22. Lung, R.I., Dumitrescu, D.: Computing nash equilibria by means of evolutionary
computation. Int. J. Comput. Commun. Control III(suppl.issue), 364–368 (2008)

23. Lung, R.I., Mihoc, T.D., Dumitrescu, D.: Nash equilibria detection for multi-player
games. In: IEEE Congress on Evolutionary Computation, 1–5 (2010)

24. Lung, R.I., Mihoc, T.D., Dumitrescu, D.: Nash extremal optimization and large
cournot games. In: Pelta, D.A., Krasnogor, N., Dumitrescu, D., Chira, C., Lung,
R. (eds.) NICSO 2011. SCI, vol. 387, pp. 195–203. Springer, Heidelberg (2011)

25. Boettcher, S., Percus, A.G.: Optimization with extremal dynamics. Phys. Rev.
Lett. 86, 5211–5214 (2001)

26. Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks.
Sci. 296, 910–913 (2002)

27. Lancichinetti, A., Fortunato, S.: Benchmarks for testing community detection algo-
rithms on directed and weighted graphs with overlapping communities. Phys. Rev.
E 80, 016118 (2009)

28. Lancichinetti, A., Radicchi, F., Ramasco, J.J., Fortunato, S.: Finding statistically
significant communities in networks. PloS one 6(4), e18961 (2011)

29. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal
community structure. Proc. Natl. Acad. Sci. 105(4), 1118–1123 (2008)

30. Sales-Pardo, M., Guimer, R., Moreira, A., Nunes Amaral, L.: Extracting the hier-
archical organization of complex systems. Proc. Natl. Acad. Sci. U.S.A. 104(39),
15224–15229 (2007)

31. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech.: Theory Exp. 2008(10), P10008
(2008)

Multi-start Iterated Local Search for the Mixed
Fleet Vehicle Routing Problem

with Heterogenous Electric Vehicles

Ons Sassi1(B), W. Ramdane Cherif-Khettaf1, and Ammar Oulamara2

1 University of Lorraine - LORIA, Nancy, France
{ons.sassi,wahiba.ramdane}@loria.fr

2 University of Lorraine, Ile de Saulcy, Metz, France
ammar.oulamara@loria.fr

Abstract. This paper deals with a real world application that con-
sists in the vehicle routing problem with mixed fleet of conventional and
heterogenous electric vehicles including new constraints, denoted VRP-
HFCC. This problem is defined by a set of customers that have to be
served by a mixed fleet of vehicles composed of heterogenous fleet of
Electric Vehicles (EVs) with distinct battery capacities and operating
costs, and a set of identical Conventional Vehicles (CVs). The EVs could
be charged during their trips in the available charging stations, which
offer charging with a given technology of chargers and time dependent
charging costs. Charging stations are also subject to operating time win-
dows constraints. EVs are subject to the compatibility constraints with
the available charging technologies and they could be partially charged.
Intermittent charging at the depot is also allowed provided that con-
straints related to the electricity grid are satisfied. The objective is to
minimize the number of employed vehicles and to minimize the total
travel and charging costs. The developed multi-start algorithm is based
on the Iterated Local Search metaheuristic which uses a Large Neighbor-
hood Search with two different insertion strategies in the Local Search
procedure. Different implementation schemes of the proposed method
are tested on a set of real data instances with up to 550 customers as
well as on generalized benchmark instances.

Keywords: Vehicle routing problem · Electric vehicle charging · Meta-
heuristics · Iterated Local Search · Large Neighborhood Search · Opt-
imization

1 Introduction

To tackle environmental challenges, investing in more environmentally friendly
modes of transportation such as the ridesharing service [1] and Electric Vehicles
(EVs) is becoming a necessity. In fact, EVs may provide a clean alternative to the
conventional vehicles (CVs). However, electric vehicle industry is still facing many
weaknesses related to the battery management and the charging infrastructure.
c© Springer International Publishing Switzerland 2015
G. Ochoa and F. Chicano (Eds.): EvoCOP 2015, LNCS 9026, pp. 138–149, 2015.
DOI: 10.1007/978-3-319-16468-7 12

Multi-start Iterated Local Search for the Mixed Fleet Vehicle Routing 139

In this paper, we address the new vehicle routing problem with mixed fleet
of conventional and heterogenous electric vehicles, in which a set of customers
have to be served by a fleet of CVs and EVs operating with plug-in batteries.
EVs need to be charged in charging stations during the trips in order to serve
all customers. This real-world problem was addressed in the framework of the
French national R&D project Infini Drive, led by La Poste Group, ERDF (French
Public Electricity Distribution Network Manager) and seven other companies
and research laboratories. Furthermore, this study follows on from the work
presented in [13] where exact and heuristic methods were presented to solve the
joint EV scheduling and charging problem. Within this study, we extend this
problem to the case where the routes have to be constructed and assigned to
the available vehicles with the objective of minimizing the overall routing and
charging costs. In the case where EVs routes are not already constructed, we
refer to the Electric Vehicle Routing Problem which is an extension of the more
general Vehicle Routing Problem (see for example [16]).

The problem of energy-optimal routing is addressed in [2]. In [4], the authors
formulate the Green Vehicle Routing Problem (GVRP) as a Mixed Integer Linear
Program (MIP). Two constructive heuristics are developed to solve this prob-
lem. An overview of the GVRP is given in [9]. Schneider et al. [14] combine a
Vehicle Routing Problem with the possibility of refueling a vehicle at a station
along the route. They introduce the Electric Vehicle Routing Problem with Time
Windows and Recharging Stations (E-VRPTW). E-VRPTW aims at minimizing
the number of employed vehicles and total traveled distance. We are also aware
of more recent studies that were conducted simultaneously with our work. In [6],
the Electric Vehicle Routing Problem with Time Windows and Mixed Fleet to
optimize the routing of a mixed fleet of EVs and CVs is addressed. On each visit
to a recharging station, EVs are recharged to their maximum battery capac-
ity with a constant recharging rate. To solve this problem, an Adaptive Large
Neighborhood Search algorithm that is enhanced by a local search for inten-
sification is proposed. Almost the same problem is addressed in [8]. The only
difference here is the fact of considering a heterogenous fleet of vehicles that
differ in their transport capacity, battery size and acquisition cost. An Adaptive
Large Neighbourhood Search with an embedded local search and labelling pro-
cedure for intensification is developed. In [5], the authors present a variation of
the electric vehicle routing problem in which different charging technologies are
considered and partial EV charging is allowed. This problem is the closest to our
problem in the sense that we consider different charging technologies and partial
EV charging. However, several major differences have to be outlined. Firstly,
we consider a mixed fleet composed of CVs and heterogenous EVs. Secondly,
the costs of charging at the depot and at the charging stations are assumed
to be time dependent. Moreover, the charging stations are subject to operating
time windows constraints and charging at the depot is subject to the grid’s max-
imum capacity constraints. Besides, EVs are not necessarily compatible with all
charging technologies.

140 O. Sassi et al.

In short, we differ from all the above-mentioned studies in that we consider,
within the same study, a mixed fleet composed of CVs and heterogenous EVs,
different types of charging stations and different time-dependent charging costs.
Moreover, EV charging at the depot could be intermittent and is subject to real-
life constraints such as the maximum grid capacity constraint. We also consider
that not all EV are compatible with fast charging technologies and that partial
charging is allowed. Our objective function is also different. In fact, we aim at
minimizing total operating and charging costs involved with the use of a mixed
fleet. Our overall objective is to provide enhanced optimization methods for EV
charging and routing that are relevant to the described constraints.

To solve the VRP-HFCC, we develop a multi-start Iterated Local Search
metaheuristic that uses a Local search based on a Large Neighborhood Search
(LNS) with two different insertion strategies. The LNS was first proposed by
Shaw [15], and later adapted by Pisinger and Ropke [12]. The developed algo-
rithm is tested on a set of real data instances as well as on generalized bench-
mark instances following different implementation schemes. The remainder of
the paper is organized as follows. In Sect. 2, we introduce the notation in detail.
In Sect. 3, our solving approach is presented. Section 4 summarizes the compu-
tational results. Concluding remarks are given in Sect. 5.

2 Problem Description and Notation

We define the VRP-HFCC on a complete, directed graph G = (V ′, A). V ′ denotes
the set of vertices composed of the set V of n customers, the set F of charging
stations F = {1, . . . , f} and the set D = {1, . . . , |D|} of chargers at the depot.
The set of arcs is denoted by A = {(i, j) | i, j ∈ V ′, i �= j}. The depot is denoted
by either 0 or n + 1 depending if it is the initial or terminal node of a route.

Our optimization time horizon [0, T], which represents typically a day, is
divided into T equidistant time periods, t = 1, . . . , T , each of length δ, where t
represents the time interval [t − 1, t]. We define the night interval [0, T0] ⊂ [0, T]
during which charging at the depot with Level 1 chargers could be performed.
Moreover, no customer has to be served during the night period. We define the
service interval [T0, T] ⊂ [0, T] during which all customers have to be served
and the EVs could be charged in the different charging stations as well as in
the depot using the available chargers. A nonnegative demand qi is associated
with each customer i ∈ V , this represents the quantity of goods that will
be delivered to this customer. With each customer we also associate a service
time si. Each arc (i, j) ∈ A is defined by a distance di,j and a nonnegative travel
time ti,j required to travel di,j . When an arc (i, j) is traveled by an EV, it con-
sumes an amount of energy ei,j equal to r × dij , where r denotes a constant
energy consumption rate.

Each charging station f ∈ F can deliver a maximum charging power pf
(kW) and proposes a time dependent charging cost cf,t,∀t = T0, . . . , T ; which
represents the charging cost during the time period t, expressed in (euros/kWh).
The chargers in charging station f are available during the time window [af , bf].

Multi-start Iterated Local Search for the Mixed Fleet Vehicle Routing 141

Accordingly, the EV must wait if it arrives at charging station f before time af .
Note that, within this study, we consider that the charging stations could propose
three different charging technologies: (i) Level 1 charger which is the slowest
charging level that provides charging with a power of 3.7 kW; (ii) Level 2 charger
offers charging with a power of 22 kW and (iii) Level 3 charger which is the fastest
charging level that delivers a power of 53 kW.

We consider a set MEV = {1, . . . , mEV} of EVs and a set MCV = {mEV +
1, . . . , mEV + mCV} of Combustion Engine Vehicles (CVs), needed to serve all
customers. Each EV k operates with a battery characterized by its nominal
capacity of embedded energy CEk(kWh) and its State of Charge (SoC0

k) at time
t = 0 expressed as a ratio of the available amount of energy and CEk (0 = empty;
1 = full). At low and high SoC’s values, the battery tends to degrade faster [3,11].
In order to improve its lifetime after repeated use and to respect the security
issues, at each time t, SoCt

k should be in the interval [SoCMin
k , SoCMax

k], where
SoCMin

k and SoCMax
k are the minimal and maximal allowable values of SoC,

respectively. Each EV (CV) is characterized by a maximum capacity QEV (QCV)
which represents the maximum quantity of goods that could be transported by
the vehicle. Denote by FCEV (FCCV) (euros/day) the fixed costs related to EVs
(CVs). Denote by OCEV

k (OCCV) the operating costs (euros/km) related to the
maintenance of EV k (CV), accidents, etc. Thus, if an arc (i, j) is traveled by
an EV k (CV), this has an operating cost denoted by costEV

i,j,k (costCV
i,j) and is

computed as: costEV
i,j,k = di,j × OCEV

k (costCV
i,j = di,j × OCCV).

At the depot, a given number of Level 1 chargers are available to charge the
EVs during the optimization horizon [0, T] and a predefined number of Level 2
chargers are available to charge the vehicles only during the service time [T0, T].
At each time period t, each charger at the depot can apply on EV k a charging
power pkt ∈ [pMin, pMax] where pMin and pMax are the minimal and maximal
powers that can be delivered by the charger, respectively. Thus, an EV charged
with a power pkt during the time period t retrieves a total amount of energy equal
to δ × pkt(kWh). We denote by GPt the electricity grid capacity available for
EV charging at time t; i.e., at each time period t, the total grid power available
to charge all EVs is limited to GPt. Let c′

t be the energy cost during t.
Each customer i ∈ V should be visited, by either an electric or conventional

vehicle, exactly once during [T0, T]. Each charging station could be visited as
many times as required or not at all. When charging is undertaken in a charging
station f , it is assumed that only the required quantity of energy is injected into
the EV battery. Thus, EVs could be partially charged.

Since we consider many charging technologies (slow and fast charging), we
should also consider the fact that not all EVs technologies are compatible with
fast charging. Thus, when we plan the charging of an EV, only the charg-
ing stations proposing compatible charging technologies should be considered.
A feasible solution to our problem is composed of a set of feasible routes assigned
to adequate vehicles and a feasible EVs charging planning. A feasible route is a
sequence of nodes that satisfies the following set of constraints:

142 O. Sassi et al.

– Each route must start and end at the depot;
– the overall amount of goods delivered along the route, given by the sum of the

demands qi for each visited customer, must not exceed the vehicle capacity
(QEV or QCV);

– the total duration of each route, calculated as the sum of all travel durations
required to visit a set of customers, the time required to charge the vehicle
during the interval [T0, T], the service time of each customer and, eventually,
the waiting time of the EV if it arrives at a charging station before its opening
time, could not exceed T − T0;

– no more than mEV EVs and mCV CVs are used;
– each customer should be visited between T0 and T ;
– the following charging constraints are satisfied:

• the charging level of the battery of each EV k must always be in the interval
[SoCMin

k , SoCMax
k];

• when charging is undertaken, each EV should be charged with a compatible
charging technology;

• when EVs are charged at the depot, the total power used to charge them
does not exceed the grid’s maximum capacity and the minimum and the
maximum powers of chargers should be respected;

• during the time interval [0, T0], EV charging at the depot could only be
performed using the available Level 1 chargers;

• at each charging station f , charging could only be undertaken during its
operating time window [af , bf];

We seek to construct a minimum number of routes such that all customers are
served, all EVs are optimally charged and the total cost of routing and charg-
ing is minimized. The objective function, measured in monetary units, consists
in minimizing five costs: (i) the routing cost that depends on the number of
kilometers traveled by each vehicle and the vehicle operating cost, (ii) the charg-
ing cost engendered by charging EVs in the charging stations during [T0, T],
(iii) the cost of charging EVs at the depot during [0, T0], (iv) the vehicles total
fixed cost and (v) the total cost engendered by the waiting time of the EVs if
they arrive at a charging station before its opening time.

3 Iterated Local Search Meta-Heuristic

Since the considered problem is NP-hard and in order to solve large instances
of the VRP-HFCC, we develop an Iterated Local Search (ILS) metaheuristic.
The main steps of ILS were first proposed by H.R. Lourenço et al. in [10].
The developed multi-start ILS algorithm uses five procedures: (i) generation
of an initial solution; (ii) a Local Search which improves the solution initially
obtained; (iii) a Perturbation Mechanism that generates a new starting point
through a perturbation of the solution returned by the Local Search; (iv) an
Acceptance Criterion that specifies if the solution should be accepted or not and
(v) a Stopping Criterion that specifies when the ILS procedure should stops.
The multi-start heuristic executes a given number of iterations, where at each

Multi-start Iterated Local Search for the Mixed Fleet Vehicle Routing 143

iteration a new starting solution is generated by a constructive heuristic. The
generated initial solution is then improved using a LNS with two different inser-
tions strategies in the Local Search phase combined with a perturbation phase.
The next subsections describe the different ILS procedures.

3.1 Initial Solution Generation

An initial feasible solution is generated with a Charging Routing Heuristic
(CRH). The CRH consists of two steps. In the first step, the heuristic gener-
ates a feasible charging scheme for EVs at the depot during [0, T0]. It starts by
sorting the time periods according to the ascending order of electricity costs.
Let Tsorted be the sorted table of all time periods in [0, T0]. With each electric
vehicle k, we associate a priority priorityk

t that translates the fact that EV k
has higher priority to charging than the other available EVs during the time
period t. The heuristic selects the first available time period in Tsorted as well as
the EV with the highest priority and charges it with the minimal possible charg-
ing power between: (i) the maximal power of chargers, (ii) the grid’s capacity
that is still available, and (iii) the maximum power that will completely full the
vehicle’s battery. The CRH selects then a new different EV. This procedure is
repeated until no possible charging could be undertaken. In the second step, the
CRH generates a routing and charging schedule for all EVs during the service
interval. Algorithm 1 gives more details about the CRH heuristic.

3.2 Local Search Procedure

The Local Search procedure is based on a LNS (LNS-LS). To the best of our
knowledge, no previous study has been conducted to solve routing problems
using an ILS with a LNS-based local search.

The following parameters are useful in the LNS-LS:

– Iter: parameter that controls the size of the main loop of the algorithm.
– IterLNS: parameter that specifies the number of times the LNS should be

repeated.
– trial: parameter that specifies the number of times the insertion procedure

should be repeated in order to find the best improvement insertion
– Num: parameter that controls the size of the neighborhood list that will be

used in the LNS.

The Local Search procedure restarts Iter times and for each new best solution,
it performs IterLNS iterations of the following neighborhood ejection and injec-
tion strategy. A node j and a set of Num−1 additional nodes located the nearest
possible to j (in terms of costs), are randomly selected (the selected neighbors
may be in different routes). This neighborhood of Num nodes is then ejected
from the solution. The ejected nodes are then re-inserted back into the partial
solution using one of the two different insertion methods: (i) random insertion
and (ii) insertion method with regret search. For each list of ejected nodes, the

144 O. Sassi et al.

Algorithm 1. Charging Routing Algorithm

1: Input: A graph G = (V
′
, A) and a set of mEV + mCV empty routes

2: Output: A set of routes assigned to at most mEV + mCV vehicles
3: Step 1 : Generate a charging schedule for all EVs at the depot during [0, T0]
4: Step 2
5: while the maximum number of routes is not yet reached AND there exists at least

one customer that is not yet served do
6: Select the EV k with the lowest priority at t = T0 among all available EVs not

yet assigned
7: while the total route duration is less than T −T0 and the total amount of goods

delivered along the route is less than QEV do
8: Sort the list of nodes randomly and let V (i) be the set of all neighbors of node

i not yet visited and that could be visited using the remaining battery energy
of the current vehicle

9: if V (i) contains at least one customer and either the depot or a charging
station f ∈ V (j) ∩ F (j) then

10: select a node j from V (i) such that costEV
i,j,k is minimal

11: else if (V (j) is empty or it contains only customers or incompatible charging
stations) AND (charging is possible) then

12: the vehicle should get charged before visiting j, in that case insert the
compatible charging station with the lowest cost while ensuring that this
charging station will be available when the EV arrives at this station

13: else
14: Assign i to the CV having a sufficient capacity and engendering a minimum

insertion cost
15: end if
16: end while
17: end while

insertion procedure is repeated trial times and, at the end, the ejected nodes
are re-inserted in the route positions engendering the best improvement in the
solution cost. If the solution becomes infeasible, we insert a new charger, hav-
ing the lowest cost, in the route while ensuring that the constraints related to
the compatibility of the charging stations with the EV as well as the station’s
operating time windows constraints are satisfied. If it is not possible to insert
the ejected node in an already constructed route, a new route that contains this
node and the depot may be created. In that case, the vehicle ownership cost is
added to the total route cost.

When all customers have been re-inserted back into the solution using one
of the two insertion methods, the new solution is compared with the original
solution. If the resulting solution is better than the original solution, then the
next iteration continues with the new solution. Otherwise, the next iteration
continues with the original solution. After Iter runs, the best solution found
during the search is reported.

In the following, we detail the insertion methods.

Multi-start Iterated Local Search for the Mixed Fleet Vehicle Routing 145

Algorithm 2. Local Search procedure
1: for i = 0 to Iter do
2: Let s′ be the best generated solution
3: for j = 0 to IterIE do
4: Eject a list of Num nodes
5: for k = 0 to trial do
6: Insert the ejected nodes in the cheapest route positions following a given

insertion strategy and let s” be the obtained solution
7: if total route cost < best cost then
8: s”∗ ← s”
9: end if

10: Eject again the list of Num nodes
11: end for
12: if costs”∗ < costs′ then
13: s′ ← s”∗

14: end if
15: end for
16: end for

Random Insertion Method. This method selects randomly a node among
the list of ejected nodes and inserts it in the position that generates the mini-
mal cost increase in the total solution cost. If the insertion of a customer in a
given route position leads to a violation of the vehicle capacity or total time con-
straints, this route position will not be accepted. However, if the insertion of a
customer in a given route position still satisfies the vehicle capacity and total
time constraints but leads to a violation of the energy constraints (in the case
where the EV needs more energy to serve this customer or the time planned for
charging decreases since it depends on the opening time windows of the charg-
ing stations), this method tries to repair the solution by inserting chargers in the
route while ensuring the compatibility between the EV and the chargers and sat-
isfying the charging stations’ operating time windows constraints. At each update
of the routing and charging solution, the total solution cost is updated.

Insertion Method with Regret Search. The insertion method with regret
search uses the same cheapest insertion method as the random insertion method,
but allows previous insertions to be undone if this removal allows for a cheaper
insertion of the current customer under consideration. This is similar to the
notion of regret described in [7]. At each step, the cheapest next insertion and
the maximum cost reduction caused by deleting a node (which is not one of the
partial solution vertices participating in the insertion) from the current partial
solution are compared. The LNS moves remain temporary and become final only
when all ejected nodes are re-injected.

146 O. Sassi et al.

3.3 Perturbation Mechanism

The solution generated by the local search procedure is perturbed to avoid stop-
ping at a local optimum. The Perturbation mechanism uses the LNS but it
explores a larger neighborhood space than the one explored by the Local Search.
The perturbation mechanism consists in the following steps:

– Eject a random list of Numperturb nodes such that Numperturb > Num.
– Inject randomly the ejected nodes.

3.4 Acceptance Criterion

To escape from a current locally optimal solution, non improving-solutions could
be accepted. Our acceptance criterion is based on the mechanism of accepting
non-improving solutions used by the Record-to-Record algorithm. During the
run of the ILS procedure, any solution is accepted if its objective value is lower
than (1+Dev)×Record, where the Record is the value of best solution obtained
and Dev is a parameter. Initially, Record is equal to the initial objective function.
During the search process, Record is updated with the objective value of the best
solution so far.

Now, we have all sub-routines to describe the ILS method. In the following,
Algorithm 3 describes the ILS algorithm in detail. The parameter Max Restart
specifies the maximum number of iterations to be executed starting from a
new initial solution generated by the CRH heuristic. The parameter maximpr

represents the maximum number of consecutive perturbations allowed without
improvement of the current best solution.

4 Computational Experiments and Discussion

Our methods were implemented using C++. All experiments were carried out on
an Intel Xeon E5620 2.4 GHz processor, with 8 GB RAM memory. We conducted
numerical experiments on real data instances provided by a French company.
Experiments were conducted on 9 real data instances. The number of nodes for
the considered instances ranges between 300 and 550 and the number of charging
stations ranges between 15 and 35.

The characteristics of the real instances are:

– mEV = 18; mCV = 8; QEV = 3; QCV = 5; CEk = 22 ∀k ∈ 1, . . . , 9; CEk = 16
∀k ∈ 10, . . . , 18

– T0 = 8am; T = 8pm

Concerning charging at the depot, prices for electricity are based on those pro-
vided by EDF (French Electricity Distribution company). Moreover, we gener-
alized the E-VRPTW Benchmark Instances proposed in [14] and we tested our
methods on those instances that include 100 customers and 21 charging sta-
tions. For all experiments, the parameter maxIter was fixed at 10000 iterations,
maximpr at 100 and trial at 50. The LNS procedure uses first-improvement

Multi-start Iterated Local Search for the Mixed Fleet Vehicle Routing 147

Algorithm 3. ILS Algorithm
1: Input: A graph G = (V ′, A) and a set of mEV + mCV vehicles
2: Output: A set of routes assigned to at most mEV + mCV vehicles
3: Let Record be the value of the best solution obtained
4: Initially, Record = +∞, impr = 0, restart = 0, nIter = 0
5: while restart < Max Restart do
6: Generate an initial solution and let s0 be this solution
7: s1 ← IELS(s0)
8: record = costs1
9: while nIter < maxIter AND impr < maximpr do

10: s′ ← Perturbation(s1)
11: s′

1 ← IELS(s1)
12: if costs′

1
< (1 + Dev) × record then

13: s1 ← s′
1

14: end if
15: if costs′

1
< Record then

16: Record = obj(s′
1), impr = 0

17: else
18: impr + +
19: end if
20: nIter + +
21: end while
22: restart + +
23: end while

algorithm. For each instance, we tested our methods following different imple-
mentation schemes obtained by varying the parameters of the ILS algorithm.
The different implementation schemes are represented by the quintuplet (Num,
Numperturb, Max Restart, Dev, m) where m = 0 if the random insertion strat-
egy is chosen and m = 1 if the regret insertion strategy is chosen. The com-
putational results are summarized in Table 1. For each implementation scheme,
the entries show the average gap (Gap(%)) and the average computational time
(CPU (s)) for each instance category. The Gap of a generated solution (S) is
calculated in relation to the initial solution (Gap = SCRH−S

S). The computa-
tional results show that better solutions are obtained when the value diff =
NumPerturb − Num is small (diff = 1, diff = 2) compared to the cases
where diff ≥ 3. Among the six first implementation schemes, the configura-
tion (4,5,1,0,1) seems to be the best since it improve the initial solution by
around 10 %. Moreover, we notice that the ILS with regret insertion strategy
generates often better solutions than those generated by the ILS with random
insertion strategy. Furthermore, the value of the deviation impacts the quality
of the generated solutions. In fact, when the deviation is set to 0.1, the ILS
algorithm improves by around 2 % the solution obtained in the case where the
deviation is set to 0. However, in the case where Dev = 0.2, we notice a slight
degradation of the obtained solutions. Finally, the ILS with restart improves
the generated solutions by more than 80 % compared to the ILS without restart

148 O. Sassi et al.

and the computational time remains acceptable. Thus, we can say that a good
configuration to our algorithm is (4,5,2,0.1,1).

Table 1. Computational results of the Multi-Start ILS with Random and Regret Inser-
tion Strategies.

Instance (2,5,1,0,0) (3,5,1,0,0) (4,5,1,0,0) (2,6,1,0,0) (3,6,1,0,0) (4,6,1,0,0)

Gap CPU(s) Gap CPU(s) Gap CPU(s) Gap CPU(s) Gap CPU(s) Gap CPU(s)

Real 24.36 129.23 25.14 122.73 30.67 120.31 20.51 126.20 26.51 118.67 38.32 102.76

C1 23.18 12.85 24.66 16.97 32.30 13.50 21.35 14.08 25.33 11.80 32.45 11.69

C2 25.53 10.73 29.30 12.37 36.35 13.55 25.42 9.58 28.92 14.54 36.40 12.42

R1 35.43 13.98 40.29 12.14 45.23 12.77 32.41 14.34 40.29 13 44.53 13.22

Instance (2,5,1,0,1) (3,5,1,0,1) (4,5,1,0,1) (2,5,1,0.1,0) (3,5,1,0.1,0) (4,5,1,0.1,0)

Gap CPU(s) Gap CPU(s) Gap CPU(s) Gap CPU(s) Gap CPU(s) Gap CPU(s)

Real 20.36 112.33 26.13 152.13 35.74 121.15 22.32 118.20 28.34 123.78 36.89 111.34

C1 20.90 12.39 25.50 10.45 34.52 13.99 22.08 14.59 27.37 9.59 35.05 11.59

C2 24.85 8.81 31.49 10.80 35.59 12.69 25.26 11.57 29.87 12.39 36.24 13.24

R1 32.89 16.12 41.16 11.02 45.04 13.74 34.82 14.01 42.81 11.02 47.99 13.24

Instance (2,5,1,0.2,0) (3,5,1,0.2,0) (4,5,1,0.2,0) (2,5,2,0,0)

Real 22.36 112.43 25.08 131.42 31.74 123.35 82.92 195.20

C1 21.04 10.30 24.02 14.09 31.22 8.64 91.90 26.20

C2 25.91 11.31 29.82 14.32 35.78 12.36 102.35 21.02

R1 32.83 13.21 40.16 13.61 44.69 14.12 125.37 23.49

5 Conclusion

In this paper, we considered a new vehicle routing problem with mixed fleet
of conventional and heterogenous electric vehicles and new real-life constraints.
This problem consists in optimizing the routing of a set of vehicles with the
objective of minimizing the overall routing and charging costs. To solve this
problem, we developed a Multi-Start Iterated Local Search which uses a LNS
with two insertion strategies in its Local Search procedure. All heuristic meth-
ods were tested on real data instances and generalized benchmark instances.
As further work, we will test our methods on newly designed data instances and
on other benchmark instances of some related problems. Next, we will relax our
problem and compare our results with those of the literature. Moreover, we will
consider other Local Search procedures and different perturbation mechanisms
to improve our method.

References

1. Aissat, K., Oulamara, A.: A posteriori approach of real-time ridesharing problem
with intermediate locations. In: proceedings of ICORES 2015 (2015)

2. Artmeier, A., Haselmayr, J., Leucker, M., Sachenbacher, M.: The optimal routing
problem in the context of battery-powered electric vehicles. In: Workshop CROCS
at CPAIOR-10, 2nd International Workshop on Constraint Reasoning and Opti-
mization for Computational Sustainability (2010)

Multi-start Iterated Local Search for the Mixed Fleet Vehicle Routing 149

3. Bashash, S., Moura, S.J., Forman, J.C., Fathy, H.K.: Plug-in hybrid electric vehicle
charge pattern optimization for energy cost and battery longevity. J. Power Sources
196, 541–549 (2010)

4. Erdogan, S., Miller-Hooks, E.: A green vehicle routing problem. Transp. Res. Part
E 48, 100–114 (2012)

5. Felipe, Á., Ortuño, M.T., Righini, G., Tirado, G.: A heuristic approach for the
green vehicle routing problem with multiple technologies and partial recharges.
Transp. Res. Part E Logistics. Transp. Rev. 71, 111–128 (2014)

6. Goeke, D., Schneider, M., Professorship, D.S.E.A.: Routing a mixed fleet of elec-
tric and conventional vehicles. Technical report, Darmstadt Technical University,
Department of Business Administration, Economics and Law, Institute for Busi-
ness Studies (BWL) (2014)

7. Hassin, R., Keinan, A.: Greedy heuristics with regret, with application to the
cheapest insertion algorithm for the tsp. Oper. Res. Lett. 36(2), 243–246 (2008)

8. Hiermann, G., Puchinger, J., Hartl, R.F.: The electric fleet size and mix
vehicle routing problem with time windows and recharging stations. Technical
report, Working Paper (2014). http://prolog.univie.ac.at/research/publications/
downloads/Hie 2014 638.pdf. Accessed 17 July 2014

9. Lin, C., Choy, K., Ho, G., Chung, S., Lam, H.: Survey of green vehicle routing
problem: Past and future trends. Expert. Syst. Appl. 41, 1118–1138 (2014)

10. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated Local Search. Springer,
New York (2003)

11. Millner, A.: Modeling lithium ion battery degradation in electric vehicles. In:
2010 IEEE Conference on Innovative Technologies for an Efficient and Reliable
Electricity Supply (CITRES), pp. 349–356. IEEE (2010)

12. Pisinger, D., Ropke, S.: Large neighborhood search. Handbook of Metaheuristics,
pp. 399–419. Springer, New York (2010)

13. Sassi, O., Oulamara, A.: Joint scheduling and optimal charging of electric vehicles
problem. In: Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Rocha, J.G.,
Falcão, M.I., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2014, Part II.
LNCS, vol. 8580, pp. 76–91. Springer, Heidelberg (2014)

14. Schneider, M., Stenger, A., Goeke, D.: The electric vehicle routing problem
with time windows and recharging stations. Technical report, University of
Kaiserslautern, Germany (2012)

15. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520,
pp. 417–431. Springer, Heidelberg (1998)

16. Ramdane cherif, W., Haj Rachid, M., Bloch, C., Chatonnay, P.: New notation
and classification scheme for vehicle routing problems. RAIRO (2014, to appear).
doi:10.1051/ro/2014030

http://prolog.univie.ac.at/research/publications/downloads/Hie_2014_638.pdf
http://prolog.univie.ac.at/research/publications/downloads/Hie_2014_638.pdf
http://dx.doi.org/10.1051/ro/2014030

On the Complexity of Searching the Linear
Ordering Problem Neighborhoods

Benjamin Correal(B) and Philippe Galinier

École Polytechnique de Montréal, Montréal, Canada
benjamin.correal@gmail.com

Abstract. The linear ordering problem is an important and much stud-
ied NP-hard problem. The most efficient neighborhood for this problem
is the so-called insert neighborhood. According to the literature, the best
insert move can be found in O(n2). In this paper, we present a tree data
structure that we name the maximum partial sum data structure. We
show that using this data structure makes it possible to find, iteration
after iteration, a best insert move in O(n logn) – after an initialization
in O(n2). We also consider an alternative neighborhood named the inter-
change neighborhood. We show that this neighborhood can be searched
in O(n2) – versus O(n3) in the best existing implementation.

1 Introduction

The linear ordering problem (LOP) can be defined as follows. Consider a set of n
objects denoted by 1 . . . n and assume that we must rank these objects. For any
couple (i, j) of objects, such that 1 ≤ i, j ≤ n and i �= j, there is a gain Cij that
is granted if object i comes before object j. The goal of the problem is to find
a ranking (permutation) such that the sum of the gains is maximized – see a
formal definition in Sect. 3.1. The LOP is an important NP-hard optimization
problem that has applications in various fields, such as graph theory, economy,
marketing, scheduling, and archeology [5].

Various exact algorithms have been proposed to solve the LOP, notably
branch-and-bound [7], branch-and-cut [5] and a combined interior point/cutting
plane algorithm [10]. Many different heuristics have also been proposed to tackle
it, including pure neighborhood search techniques such as local search (hillclimb-
ing) [2] and tabu search [8]; local search combined with perturbation mecha-
nisms, such as iterated local search (ILS) [11,12] and variable neighborhood
search (VNS) [4]; population-based heuristics hybridized with local search, such
as path relinking [8], scatter search [1] and memetic algorithms (MA) [6,11,13].
According to a recent extensive experimental study [9], the most efficient heuris-
tic is the memetic algorithm by Schiavinotto and Stützle, and the iterated local
search proposed by the same authors comes a close second.

We can notice that the most efficient heuristics proposed to the LOP use
neighborhood search as a major ingredient. It is the case of tabu search, but
also of the heuristics that run repeatedly a hillclimbing operator, such as ILS,
VNS or MA. Several neighborhoods have been proposed for the LOP, notably

c© Springer International Publishing Switzerland 2015
G. Ochoa and F. Chicano (Eds.): EvoCOP 2015, LNCS 9026, pp. 150–159, 2015.
DOI: 10.1007/978-3-319-16468-7 13

On the Complexity of Searching the Linear Ordering Problem 151

the insert neighborhood and the interchange neighborhood. The insert neig-
hborhood plays a central role because it is the one that is exploited by most
efficient heuristics, if not all. Applying an insert move to a permutation con-
sists in removing an element and inserting it at a different position. The size
of this neighborhood is (n − 1)2. An alternative neighborhood is the so-called
interchange neigborhood. An interchange move consists simply in swapping the
position of two elements. The size of this neighborhood is (n × (n − 1))/2.

In this paper, we are interested by the complexity of searching the neigh-
borhoods proposed to the LOP. This question is of course of great theoretical
importance. In addition, it is critical in practice, as it may have a big impact
on the speed of a neighborhood search heuristic. While early implementations
searched the insert neighborhood in O(n3), Congram noticed that this task can
be performed in O(n2) [3]. Directions about this implementation are given in [11].
In this paper, we present a technique that achieves this goal in only O(n log n).
This result is obtained by using a tree structure that we name the maximum
partial sum (MPS) data structure. Besides, it is indicated in the literature that
the interchange neighborhood can be searched in O(n3) [11]. We show in the
paper that this neighborhood can be searched in O(n2).

In the remaining of the paper, we first present our new MPS data structure
(in Sect. 2). Then, we show how it can be used in order to implement the LOP
insertion neighborhood (in Sect. 3). Additional results about the insert and the
interchange neighborhoods follow (in Sect. 4). Finally, a conclusion and directions
for future work are presented (in Sect. 5).

2 The Maximum Partial Sum Data Structure

In this section, we introduce an abstract data type that we name the maximum
partial sum (MPS). Then, we describe an efficient implementation of the MPS.

2.1 Formal Definition

Let S be an ordered sequence of numbers: (S0, S1, . . . , S|S|−1). We will denote
by PS : {0 . . . |S| − 1} → R the function defined by

PS(p) =
p∑

i=0

Si (1)

This function will be named the partial sum function associated to S. We will
use the following notations:

– S.size = |S| denotes the cardinality of S.

– S.sum =
|S|−1∑
i=0

Si is the sum of the elements of S.

– S.pmax = max PS() = max{PS(p) : 0 ≤ p < |S|}.
– S.argpmax = argmax PS() is an index value p (0 ≤ p < |S|) such that

PS(p) = max PS().

152 B. Correal and P. Galinier

We assume that S is first initialized, and that it thereafter undergoes a
series of insertion and removal operations. Our goal is to determine the values
of max PS() and argmax PS() after each new update operation. Therefore, the
MPS must support the following operations.

– Init(L), for a list L: This operation initializes or reinitializes the value of S
with the elements of L.

– Insert(val, j), for a number val and an index j (0 ≤ j < |S|): This operation
inserts a new element val in position j.

– Remove(j), for an index j (0 ≤ j < |S|): This operation removes and returns
the j-th element of S.

– GetMax(): This operation returns S.pmax and S.argpmax.

In addition, we impose that the size of S will remain inferior to some integer
n. In particular, the Init(.) operation creates an empty sequence if |L| > n and
the Insert(.) operation does not modify S if |S| = n.

It is clear that the following recurrence equations hold: PS(0) = S0 and
PS(j) = PS(j−1)+Sj for j = 1 . . . |S|−1. Thanks to these equations, it is possible
to compute the values of S.pmax and S.argpmax in O(n) simply by computing
step by step PS(j) for j = 0 . . . |S|−1 and by updating the values of S.pmax and
S.argpmax accordingly. In the next section, we will present an implementation
that performs the initialization in O(n) and each update operation in O(log n).

2.2 Implementation

Let us first present an important property that will be used in the following.
Considering three sequences S, L and R such that S = L ◦ R (i.e., S is the
concatenation of L and R) and |L|, |R| ≥ 1, we claim that the following equa-
tions hold:

S.size = L.size + R.size (2)
S.sum = L.sum + R.sum (3)

S.pmax = max(L.pmax, L.sum + R.pmax) (4)

S.argpmax =

{
L.argpmax, if S.pmax = L.pmax

L.size + R.argpmax, otherwise
(5)

For example, let us consider the following sequences: S = (5,−2, 1, 3,−4),
L = (5,−2) and R = (1, 3,−4). We notice that L.size = 2, L.sum = 3,
L.pmax = 5, L.argpmax = 0, and R.size = 3, R.sum = 0, R.pmax = 4 and
R.argpmax = 1. As S = L ◦ R, we can compute from the above equations that
S.size = 5, S.sum = 3, S.pmax = 7 and S.argpmax = 3, which is actually correct.

The data structure we use is organized as a binary tree (a directed arbores-
cence in which each internal node has exactly two sons) which corresponds
to a recursive subdivision of S into sub-sequences. By abuse of language, we
use the same notation for a node and for the sequence it represents. The root

On the Complexity of Searching the Linear Ordering Problem 153

corresponds to S. A leaf corresponds to a subsequence of size 1, i.e. to a single
element. Each internal node T has two sons (a left one denoted by T.L and a
right one denoted by T.R) such that T = T.L ◦ T.R and |T.L|, |T.R| ≥ 1.

In each node T , we memorize the following information: T.size, T.sum,
T.pmax, and T.argpmax. A node also has three links towards its father and
its two sons. Note that the values contained in the sequence are not memorized
in the nodes. An example of the tree is presented in Fig. 1.

Fig. 1. Example of the data structure for a sequence S = (5,−2, 1, 3,−4). The figure
presents the values stored in each node.

The number of leaves in the tree equals |S| and, as every internal node has
two sons, the number of internal nodes equals |S| − 1. The size of the data
structure is therefore O(n).

The Init(.) operation builds a balanced tree that corresponds to the trans-
mitted sequence. This can be done easily in O(n) by recursively creating the
nodes and initializing their fields according to Eqs. (2)–(5).

Let us now consider the Insert(.) procedure whose pseudocode is given below.

Procedure Insert(val, pos)

1. currNode := root

2. while currNode.size > 1 do

3. if pos < currNode.left.size then

4. currNode := currNode.left

5. else

6. pos := pos − currNode.left.size

154 B. Correal and P. Galinier

7. currNode := currNode.right

8. newNode := new node

9. newNode.size := 1

10. newNode.sum := val

11. newNode.pmax := val

12. newNode.argpmax := 0

13. attach(newNode, currNode)

14. while currNode �= root do

15. currNode := currNode.father

16. currNode.size := currNode.left.size + currNode.right.size

17. currNode.sum := currNode.left.sum + currNode.right.sum

18. if currNode.left.pmax ≥ currNode.left.sum + currNode.right.pmax then

19. currNode.pmax := currNode.left.pmax

20. currNode.argpmax := currNode.left.argpmax

21. else

22. currNode.pmax := currNode.left.sum + currNode.right.pmax

23. currNode.argpmax := currNode.left.size + currNode.right.argpmax

The procedure has three consecutive phases. During phase 1, the position of
the new node to be inserted is localized (lines 1–7). Then, during phase 2, the new
node is created, initialized and attached in the tree (lines 8–13). The attach(.)
procedure insures that every internal node has exactly two sons by creating a
new node to join the new leaf and the one already in the tree. Finally, during
phase 3, the ancestors of the inserted node are updated (lines 14–23) according
to the Eqs. (2)–(5).

The complexity of the insertion procedure depends on the height of the tree.
Unfortunately, with the described implementation, although the tree is initially
balanced, its height can increase progressively following updating operations.
Using more advanced well-known techniques makes it possible to maintain a bal-
anced tree. In this case, the time complexity of the procedure will be O(log n).
Finally, the removal of an element can be implemented similarly, with the same
complexity. It is important to notice that, when the tree structure is updated,
S.pmax and S.argpmax are accessible in constant time as these values are con-
tained in the root node.

3 Implementing the Insertion Neighborhood

3.1 Definitions and Notation

A LOP problem instance is defined by an integer n and a n-by-n matrix C.
A potential solution is any permutation π of {0, . . . , n − 1}. The score of a
permutation is defined according to Eq. (6). The goal of the problem is to find a
permutation of maximum score.

On the Complexity of Searching the Linear Ordering Problem 155

f(π) =
n−2∑

i=0

n−1∑

j=i+1

Cπiπj
(6)

We consider two types of moves: insert moves and interchange moves. Con-
sidering a reference configuration π and a move m (whether it is an insert move
or an interchange move), we will denote by π ⊕m the configuration obtained by
applying move m to π.

An insert move will be denoted by (i → j), where 0 ≤ i, j < n, and i �= j.
Applying move (i → j) to configuration π consists in moving element πi from
its current position to a new position j, as expressed by Eq. (7).

π ⊕ (i → j) =

{
(π0, . . . , πi−1, πi+1, . . . , πj , πi, πj+1, . . . , πn), i < j

(π0, . . . , πj−1, πi, πj , . . . , πi−1, πi+1, . . . , πn), i > j
(7)

An interchange move will be denoted by (i ↔ j), where 0 ≤ i, j < n, and
i �= j. Applying move (i ↔ j) to configuration π consists in exchanging the
positions of elements πi and πj , as expressed by Eq. (8) – assuming, without loss
of generality, that i < j.

π ⊕ (i ↔ j) = (π0, . . . , πi−1, πj , πi+1, . . . , πj−1, πi, πj+1, . . . , πn) (8)

Given a move m, we denote by δ(m) the performance of the move, i.e. its
impact on the score function, as expressed by Eq. (9).

δπ(m) = f(π ⊕ m) − f(π) (9)

In order to simplify the notation used in the next procedures and definitions,
we use the following notation – see Eq. (10). Notice that Δ(π, i, i+1) is the score
of the move (i → i + 1).

Δ(π, i, j) = Cπjπi
− Cπiπj

(10)

3.2 The Regular O(n2) Implementation

We name findBestMove(.) the procedure that returns the best insert move. The
pseudocode of this procedure is given below. This implementation is consistent
with the description given in [11]. The findBestMove(.) procedure simply calls
repeatedly the findBestNewPosition(.) procedure; the role of this latter proce-
dure is to return the best new position j for the element whose index i is trans-
mitted in parameter, along with the score of the corresponding move (i → j).

Procedure findBestMove()
1. deltaMax := −∞
2. for i := 0 . . . n − 1 do
3. (delta, j) := findBestNewPosition(i)
4. if delta > deltaMax then
5. deltaMax := delta

156 B. Correal and P. Galinier

6. ibest := i
7. jbest := j
8. return (delta, ibest, jbest)

A discussion and hints about how to implement the second procedure are
given in [11]. We believe it may be helpful for the reader to give explicitly the
pseudocode of the implementation.

Procedure findBestNewPosition(i)
1. deltaMax := −∞
2. delta := 0
3. for j := i − 1 . . . 0 do
4. delta := delta + Δ(π, j, i)
5. if delta > deltaMax then
6. deltaMax := delta
7. jbest := j
8. delta := 0
9. for j := i + 1 . . . n − 1 do
10. delta := delta + Δ(π, i, j)
11. if delta > deltaMax then
12. deltaMax := delta
13. jbest := j
14. return (delta, jbest)

The procedure consists mainly in two successive phases, each phase corre-
sponding to a loop. During the first phase (lines 1–7), the score of each move
(i → j) is computed for decreasing values of j, from j = i − 1 to j = 0. Then,
during the second phases (lines 8–13), it is computed for increasing values of j,
from j = i + 1 to j = n − 1. It is clear that the findBestNewPosition(.) is O(n).
As a result, computing the best move can be performed in O(n2) by using the
findBestMove(.) procedure – as already stated in [11].

3.3 Finding the Best Insert Move in O(n logn)

From the above pseudocode, let us observe what happens when findBestNew
Position(i) is called. We can notice that each loop computes in fact the pmax
and the argpmax values of a particular sequence of numbers in each of the two
phases; we denote these sequences by Negi and Posi:

Negi =
(
Δ(π, i − 1, i),Δ(π, i − 2, i), . . . ,Δ(π, 0, i)

)

Posi =
(
Δ(π, i, i + 1),Δ(π, i, i + 2), . . . , Δ(π, i, n − 1)

)

In our implementation, we will use the MPS tree data structure presented
above. For each i = 0 . . . n − 1, we use two MPS data structures denoted by
DNi and DPi associated to Negi and Posi. These data structures are initialized
according to the initial configuration π and then updated throughout the search.

On the Complexity of Searching the Linear Ordering Problem 157

After a move (im → jm) has been performed, the data structures are updated
according to the updateAfterMove(im, jm) procedure whose pseudocode is given
below. The procedure findBestNewPosition(i) can then be replaced with a O(1)
choice between the best move of both sequences (DNi.GetMax() and DPi.
GetMax()), reducing the complexity of findBestMove(.) to O(n).

Procedure updateAfterMove(im, jm)
1. for i := 0 . . . n − 1, if i �= im do
2. if im < i then
3. v = DNi.Remove(im)
4. else
5. v = DPi.Remove(im − i − 1)
6. if jm < i then
7. DNi.Insert(v, jm)
8. else
9. DPi.Insert(v, jm − i − 1)
10. DNim .Init(Negim)
11. DPim .Init(Posim)

First, the procedure updates DNi and DPi, for every value of i different
from im. Then, DNim and DPim are rebuilt from scratch using the updated
values of Negim and Posim . As each updating procedure is performed in O(log n)
and the initialization procedure in O(n), the overall complexity of the procedure
is O(n log n). This is also the complexity of a whole local search iteration when
using the proposed implementation.

In summary, the size complexity of the new implementation is O(n2), which
is the same as the size complexity of the input matrix. Using the new implemen-
tation, the complexity of the initialization is O(n2); then finding and applying
the best move on each local search iteration costs O(n log n), versus O(n2) when
using the implementation presented in the literature.

4 Additional Results About the Two Neighborhoods

It is easy to remark that the score of an interchange move can be computed by
summing the scores of two insert moves according to the following equation:

∀i, j s.t. i < j, δπ(i ↔ j) = δπ(i → j) + δπ(j → i + 1) (11)

First note that, in Eq. (11), i and j do not play the same role, since we
assume that i < j. The property expressed by this equation has two important
consequences. The first consequence is related to the complexity of a procedure
for searching the interchange neighborhood. The second consequence is related
to the set of local optima of the two neighborhoods (insert and interchange).

158 B. Correal and P. Galinier

4.1 Finding the Best Interchange Move in O(n2)

It is possible to explore efficiently the interchange neighborhood by using the fol-
lowing technique. For this implementation, it is required to use a n-by-n matrix.
First store in the matrix the score of each insert move. Then compute in constant
time the score of each interchange move according to Eq. (11). It is clear that
this technique is O(n2), versus O(n3) as it is reported in the literature [11].

4.2 About the Local Optima of the Two Neigborhoods

Let us denote by LO→ and LO↔ the sets of local optima with respect to the
insert and the interchange neighborhoods, respectively. The property expressed
by Eq. (12) holds.

LO→ ⊆ LO↔ (12)

The proof of this property is as follows. Let us assume that π ∈ LO→.
Therefore, we have that δπ(i → j) is non-positive, for every couple (i, j). As a
result, for every i and j, we must have that δπ(i ↔ j) is non-positive, as it is
the sum of two non-positive numbers, according to Eq. (11). Thus, π ∈ LO↔.

5 Discussion and Conclusion

In this paper, we have presented results related to the two main neighborhoods
proposed to the Linear Ordering Problem, namely the insert and the swap neigh-
borhoods. The three main contributions of our paper are the following:

1. Finding the best insert move on each iteration can be done in O(n log n).
2. Finding the best swap move can be done in O(n2).
3. The set of local optima w.r.t. the insert neighborhood is included in the set

of local optimal w.r.t. the swap neighborhood.

Our most interesting contribution may be the improvement of the complex-
ity of searching the insert neighborhood. The new (worst-case) complexity we
obtain (O(n log n)) represents a significant improvement over the best complexity
known so far (O(n2)). The technique we propose relies on a tree data structure
that we name the maximum partial sum structure. This result is of course impor-
tant for theoretical reasons. It may also be very useful in practice. It could be
used as is, in order to develop a hill-climbing heuristic that performs the best
improvement policy. More interestingly, it could also be easily adapted in order
to implement a tabu algorithm. Developing a tabu algorithm dotted with the
maximum partial sum structure will be the focus of our future work.

Our third contribution is related to the sets of local optima of the two neig-
bborhoods. Empirically, the insert neighborhood has been observed to be more
efficient than the swap neighborhood. In fact, the insert neighborhood is the one
used in the best-performing LOP heuristics of the literature. This superiority is
also confirmed by systematic experiments performed in [9]. Our result provides
for the first time a clear theoretical basis that explains this superiority.

On the Complexity of Searching the Linear Ordering Problem 159

References

1. Campos, V., Laguna, M., Mart́ı, R.: An experimental evaluation of a scatter search
for the linear ordering problem. J. Global Optim. 21, 397–414 (2001)

2. Chanas, S., Kobylànski, P.: A new heuristic algorithm solving the linear ordering
problem. Comput. Optim. Appl. 6, 191–205 (1996)

3. Congram, R.K.: Polynomially searchable exponential neighbourhoods for sequenc-
ing problems in combinatorial optimisation. Ph.D. thesis, University of Southamp-
ton, Faculty of Mathematical Studies, UK (2000)

4. Garćıa, C.G., Pérez-Brito, D., Campos, V., Mart́ı, R.: Variable neighborhood
search for the linear ordering problem. Comput. Oper. Res. 33, 3549–3565 (2006)

5. Grötschel, M., Jünger, M., Reinelt, G.: A cutting plane algorithm for the linear
ordering problem. Oper. Res. 32(6), 1195–1220 (1984)

6. Huang, G., Lim, A.: Designing a hybrid genetic algorithm for the linear ordering
problem. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1053–
1064. Springer, Heidelberg (2003)

7. Kaas, R.: A branch and bound algorithm for the acyclic subgraph problem. Eur.
J. Oper. Res. 8, 355–362 (1981)

8. Laguna, M., Mart́ı, R., Campos, V.: Intensification and diversification with elite
tabu search solutions for the linear ordering problem. Comput. OR 26(12), 1217–
1230 (1999)

9. Mart́ı, R., Reinelt, G., Duarte, A.: A benchmark library and a comparison of
heuristic methods for the linear ordering problem. Comput. Optim. Appl. 51(3),
1297–1317 (2012)

10. Mitchell, J.E., Borchers, B.: Solving Linear Ordering Problems with a Combined
Interior Point/Simplex Cutting Plane Algorithm. Kluwer Academic Publishers,
Dordrecht (2000)

11. Schiavinotto, T., Stützle, T.: The linear ordering problem: instances, search space
analysis and algorithms. J. Math. Model. Algorithms 3(4), 367–402 (2004)

12. Valdez, G.C., Bastiani-Medina, S.S.: Iterated local search for the linear ordering
problem. Int. J. Comb. Optim. Probl. Inf. 3(1), 12–20 (2012)

13. Ye, T., Wang, T., Lü, Z., Hao, J.K.: A Multi-parent Memetic Algorithm for the
Linear Ordering Problem. CoRR abs/1405.4507 (2014)

Runtime Analysis of (1 + 1) Evolutionary
Algorithm Controlled with Q-learning
Using Greedy Exploration Strategy
on ONEMAX+ZEROMAX Problem

Denis Antipov1, Maxim Buzdalov1(B), and Benjamin Doerr2

1 ITMO University, 49 Kronverkskiy av., Saint-Petersburg, Russia, 197101
antipovden@yandex.ru, mbuzdalov@gmail.com

2 LIX, École Polytechnique, 91128 Palaiseau Cedex, France
doerr@lix.polytechnique.fr

Abstract. There exist optimization problems with the target objective,
which is to be optimized, and several extra objectives. The extra objec-
tives may or may not be helpful in optimization process in terms of the
number of objective evaluations necessary to reach an optimum of the
target objective.

OneMax+ZeroMax is a previously proposed benchmark optimiza-
tion problem where the target objective is OneMax and a single extra
objective is ZeroMax, which is equal to the number of zero bits in the
bit vector. This is an example of a problem where extra objectives are not
good, and objective selection methods should ignore the extra objectives.
The EA+RL method is a method which selects objectives to be optimized
by evolutionary algorithms (EA) using reinforcement learning (RL). Pre-
viously it was shown that it runs in Θ(N log N) on OneMax+ZeroMax
when configured to use the randomized local search algorithm and the
Q-learning algorithm with the greedy exploration strategy.

We present the runtime analysis for the case when the (1 + 1)-EA
algorithm is used. It is shown that the expected running time is at most
3.12eN log N .

1 Introduction

Single-objective optimization can often benefit from multiple objectives [6,7,9].
Different approaches are known from the literature. Some researchers introduce
additional objectives to escape from the plateaus [1]. Decomposition of the pri-
mary objective into several objectives also helps in many problems [5,7]. Addi-
tional objectives may also arise from the problem structure [8].

1.1 Approaches for Extra Objectives

Different approaches may be applied to a problem with the “original” objec-
tive, which can be called the target objective, and some extra objectives.
c© Springer International Publishing Switzerland 2015
G. Ochoa and F. Chicano (Eds.): EvoCOP 2015, LNCS 9026, pp. 160–172, 2015.
DOI: 10.1007/978-3-319-16468-7 14

Runtime Analysis of (1 + 1) Evolutionary Algorithm Controlled 161

Themulti-objectivization approach is to optimize all extra objectives at once using
a multi-objective optimization algorithm [5,7]. The helper-objective approach is to
optimize simultaneously the target objective and some (not necessarily all, in some
cases, only one is preferrable) extra objectives, switching between them from time
to time [6].

The approaches above are designed in the assumption that the extra objec-
tives are crafted to help optimizing the target objective. However, this is not
always true, especially when their properties are unknown. In fact, the extra
objectives may support or obstruct the process of optimizing the target objec-
tive. The EA+RL method [3] was developed to cope with such situations. The
idea of this method is to use a single-objective optimization algorithm and switch
between the objectives (which include the target one and the extra ones). To
find the most suitable objective for the optimization, reinforcement learning
algorithms are used [10].

1.2 Reinforcement Learning and EA+RL

Reinforcement learning [10] uses the concepts of state, action and reward.
A reinforcement learning algorithm is often thought to control an agent which
interacts with a certain environment. The agent receives the current state from
the environment as input. It should return an action to apply on the environ-
ment. For that action, it receives a reward. The aim of the reinforcement learning
algorithm is to maximize the total reward by choosing appropriate actions in dif-
ferent states. The total reward can be treated as a sum of all rewards received
by the algorithm, or as a discounted reward, when a reward for i-th step from
the end is taken with a weight of γi, where 0 < γ < 1.

In the EA+RL method, actions are objectives to choose, while states and
rewards are defined depending on the problem. A good choice of the reward can
be the value of the target objective after the selection of an objective minus the
value of the target objective before it. The sum of all rewards during the opti-
mization is equal to the difference between the final value of the target objective
and its initial value, so optimization of the reward leads to optimization of the
target objective.

2 Analyzed Problem and Algorithm

OneMax is a well-known optimization problem widely used in theoretical
research on evolutionary computation. It can be defined as “maximize the num-
ber of one-bits in a bit vector of length N”. It is known that simple evolutionary
algorithms, such as randomized local search (RLS) or (1 + 1) evolutionary algo-
rithm ((1 + 1)-EA), solve this problem in Θ(N log N) function evaluations [11].

We define ZeroMax, a counterpart of OneMax, as follows: the number of
zero-bits in a bit vector needs to be maximized. Clearly, the maximum point of
ZeroMax is the same as the minimum point of OneMax, and vice versa. More-
over, any change that increases the OneMax fitness decreased the ZeroMax
fitness at the same time.

162 D. Antipov et al.

In paper [2], OneMax+ZeroMax was defined as an optimization problem
with extra objectives where OneMax is the target objective and ZeroMax
is the extra objective. Clearly, for this problem every objective selection algo-
rithm should eventually manage to ignore the offensive extra objective. It was
shown that the EA+RL method [3], the objective selection method based on
reinforcement learning, indeed learns to ignore the ZeroMax objective when
randomized local search (RLS) is used as an optimizer and finds the OneMax
optimum in Θ(N log N), more precisely, at most twice slower than RLS itself
does when optimizing OneMax. The proof in [2] was done by analysing the
Markov chain which modeled the optimization process. Since this Markov chain
possessed a simple linear structure, the proof was relatively easy. However, when
the optimizer is changed to (1 + 1)-evolutionary algorithm, which is able to flip
more than one bit at a time, using Markov chains becomes insanely complicated.

In this paper, we consider the (1 + 1) evolutionary algorithm with the fixed
probability of flipping a bit p = 1/N as a single-objective optimization algorithm.
To select which objective to optimize at each iteration, we use the EA+RL
method [3], which internally uses a reinforcement learning (RL) algorithm [10]
to do this. The actions of the RL algorithm are the possible objectives, so the set
of possible actions for the considered problem is {OneMax,ZeroMax}. The
choices for the EA+RL method are fixed in this paper to the following values:

– RL algorithm: the Q-learning algorithm with greedy exploration strategy [10];
• the learning rate: an arbitraty α ∈ (0; 1);
• the discount factor: an arbitrary γ ∈ [0; 1];

– RL state: the value of the OneMax fitness;
– RL reward for the action: the difference of the OneMax fitness values after

the action and before the action.

The pseudocode for the (1 + 1)-EA controlled by the EA+RL method with
the parameters listed above is shown in Fig. 1.

3 Learning Lemma

The Q-learning algorithm stores estimations of action rewards as a Q(s, a)
matrix, where Q(s, a) is the expected reward for applying an action a in a RL
state s. When randomized local search is used, it was shown in [2] that EA+RL
learns to ignore the offensive ZeroMax objective in the following way: once it
leaves each RL state for the first time, it maintains Q(s, 1) > Q(s, 0), which
makes it select OneMax each time it enters the same state the next time. The
same idea is true in the current situation, but in a more complicated manner.

Lemma 1 (Learning lemma). If the algorithm has not reached the terminal
state (where s = N) and γ < 1

N−1 then for every non-terminal state s it is true
that:

Q(s, 0) ≤ 0 ≤ Q(s, 1) < N − 1 − s.

Additionally, if the algorithm has never left a state s, it is true that Q(s, 0) =
Q(s, 1) = 0. Otherwise, Q(s, 0) < Q(s, 1).

Runtime Analysis of (1 + 1) Evolutionary Algorithm Controlled 163

Fig. 1. (1 + 1)-EA controlled by EA+RL using the greedy Q-learning algorithm

Proof. We use mathematical induction. The base is obvious: in the very begin-
ning, all Q(i, j) are zeros and the algorithm has never left any state, so the lemma
statement is true. Assume that the lemma statement was true for all previous
algorithm iterations. The current iteration can have the following forms:

1. The algorithm has never left the current state and remains there.
2. The algorithm has left the current state for the first time.
3. The algorithm has left the current state before.

Below we denote the state before the current iteration as s, the state after
the current iteration as s′, the Q-values before the current iteration as Q(i, j)
and the Q-values after the current iteration as Q′(i, j).

Case 1. By induction hypothesis, Q(s, 0) = Q(s, 1) = 0. If the algorithm remains
at the state s, the reward is zero, so all the components of the expression at
line 23 are zeros. Whatever objective i was selected, Q′(s, i) is set to zero, and
Q′(s, 1 − i) remains zero as well, so the induction hypothesis is proven for the
current iteration.

Case 2. By induction hypothesis, Q(s, 0) = Q(s, 1) = 0. This means that
the objective is OneMax with the probability of 0.5 and ZeroMax with the

164 D. Antipov et al.

probability of 0.5. As s′ �= s, the change was accepted by the selected objective,
so for OneMax (i = 1) s′ ≥ s + 1, while for ZeroMax (i = 0) s′ ≤ s − 1.

By induction hypothesis, Q(s′, 0) ≤ 0 ≤ Q(s′, 1) < N − s′ − 1. This means
that for the chosen objective i the following will be true:

Q′(s, i) = (1 − α)Q(s, i) + α

(
s′ − s + γ max

j
Q(s′, j)

)
= α(s′ − s + γQ(s′, 1)).

The upper bound on s′ − s + γQ(s′, 1), provided that s′ < N , is:

s′ − s + γQ(s′, 1) < s′ − s +
N − s′ − 1

N − 1
= s′

(
1 − 1

N − 1

)
+ 1 − s

= s′ N − 2
N − 1

+ 1 − s ≤ (N − 1)(N − 2)
N − 1

+ 1 − s = N − s − 1.

It follows that Q′(s, i) < N −s−1 as well. The lower bound is Q′(s, i) ≥ α(s′−s).
For i = 1 these two bounds immediately yield that 0 < Q′(s, 1) < N − s−1. For
i = 0 we should additionally use the fact that s′ ≤ s − 1, which brings:

Q′(s, 0) < s′ N − 2
N − 1

+ 1 − s ≤ s′ + 1 − s ≤ 0.

To sum up, after an iteration which leaves a state s for the first time it will
be that either 0 < Q′(s, 1) < N − s − 1 and Q′(s, 0) = 0 or Q′(s, 0) < 0 and
Q′(s, 1) = 0. This proves the induction hypothesis for the current iteration in
the considered case.

Case 3. By induction hypothesis, Q(s, 0) < Q(s, 1), so the OneMax objective is
selected. As a result, s′ ≥ s. Using the upper bound on s′−s+γQ(s′, 1) proven in
the previous case (which still holds under assumptions of the current case), the
fact that it is non-negative and the induction assumption that Q(s′, 0) ≤ Q(s′, 1),
we get the bounds on Q′(s, 1):

Q′(s, 1) = (1 − α)Q(s, 1) + α (s′ − s + γQ(s′, 1))
< (1 − α)(N − s − 1) + α(N − s − 1) = N − s − 1.

Q′(s, 1) ≥ (1 − α)Q(s, 1).

In any case, Q′(s, 1) < N −s−1. If Q(s, 1) > 0, then Q′(s, 1) > 0. If Q(s, 1) = 0,
then Q′(s, 1) ≥ 0. This proves the induction hypothesis for the current iteration
in the considered case.

In all three possible cases the induction hypothesis is proven, which completes
the proof. ��
This lemma lets us describe each RL state in any moment of time either as
learned or unlearned. In the learned state the algorithm always selects the cor-
rect objective, OneMax. In the unlearned state, it selects either OneMax or
ZeroMax with equal probabilities. Each unlearned state becomes learned when
the algorithm leaves this state and enters another one. All these considerations
are true when γ < 1/(N − 1), so we consider it to be so in the rest of the paper
until explicitly noted.

Runtime Analysis of (1 + 1) Evolutionary Algorithm Controlled 165

4 Transition Probabilities

What is the exact probability that the independent bit-flip mutation (with a
probability of flipping each bit equal to 1/N) constructs a bit string with j one-
bits from a bit string with i one-bits? Consider the situation where i < j: this
means that j − i+k zeros and k ones are flipped. The exact expressions for these
probabilities are given below.

P i,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min(N−j,i)∑
k=0

(
N−i

j−i+k

)(
i
k

) (
1
N

)j−i+2k (
1 − 1

N

)N−(j−i+2k) if i < j,

min(N−i,j)∑
k=0

(
i

i−j+k

)(
N−i
k

) (
1
N

)i−j+2k (
1 − 1

N

)N−(i−j+2k) if i > j,

min(N−i,i)∑
k=0

(
N−i
k

)(
i
k

) (
1
N

)2k (
1 − 1

N

)N−2k if i = j.

(1)

In an unlearned state, OneMax or ZeroMax is chosen with the probability
of 0.5. Together with the probabilities given above, transition probability P i,j

U

from an unlearned state i to a state j is 1
2P i,j if i �= j and 1 − 1

2

∑
k �=i P

i,k =
1
2

(
1 + P i,i

)
if i = j.

In a learned state, OneMax is always chosen, so the transition probability
P i,j
L from a learned state i to a state j is P i,j if i < j, 1 − ∑j

k=i+1 P i,j if i = j
and zero otherwise.

4.1 Lower and Upper Bound on P i,J

The expressions for P i,j are rather complex. The following theorem gives a lower
and an upper bound on P i,j .

Theorem 1. Assume that i �= j. Let Si,j be the following:

Si,j =

{(
N−i
j−i

) (
1
N

)j−i (1 − 1
N

)N−(j−i) if i < j,
(

i
i−j

) (
1
N

)i−j (
1 − 1

N

)N−(i−j) if i > j.
(2)

Then Si,j ≤ P i,j ≤ 8
7Si,j.

Proof. The lower bounds are proven easily, since Si,j are the addends for k = 0
in (1), and all these addends are positive.

We denote as Si,j
k the k-th addend of the sum in (1) corresponding to P i,j .

Specifically, Si,j = Si,j
0 . Consider the case of i < j. The ratio of the k-th addend

to the (k + 1)-th addend is:

Si,j
k

Si,j
k+1

=

(
N−i

j−i+k

)(
i
k

) (
1
N

)j−i+2k (
1 − 1

N

)N−(j−i+2k)

(
N−i

j−i+k+1

)(
i

k+1

) (
1
N

)j−i+2k+2 (
1 − 1

N

)N−(j−i+2k)−2

=
(j − i + k + 1)(k + 1)
(N − j − k)(i − k)

N2

(
1 − 1

N

)2

=
(j − i + k + 1)(k + 1)
(N − j − k)(i − k)

(N − 1)2.

166 D. Antipov et al.

When i and j are fixed, this ratio grows as k grows, so

Si,j
k

Si,j
k+1

≥ Si,j
0

Si,j
1

=
j − i + 1
(N − j)i

(N − 1)2.

When i is fixed, this ratio grows as j grows, so we replace j with its minimum
possible value i + 1 and then minimize the result with i = N−1

2 :

Si,j
k

Si,j
k+1

≥ 2(N − 1)2

(N − i − 1)i
≥ 2(N − 1)2

N−1
2

N−1
2

=
8(N − 1)2

(N − 1)2
= 8.

This means that P i,j can be bounded by a sum of geometric progression:

P i,j =
min(N−j,i)∑

k=0

Si,j
k ≤

min(N−j,i)∑

k=0

(
1
8

)k

Si,j
0 ≤

∞∑

k=0

(
1
8

)k

Si,j
0 =

8
7
Si,j
0 =

8
7
Si,j .

The case of i > j is proven in the similar way. ��
In the rest of the paper, we denote the 8

7 constant from this theorem by R.

4.2 Lower and Upper Bounds on Partial Sums of P i,j

Theorem 2. If Vi =
(
N−1
N

)N−i − (
N−1
N

)N
, then Vi ≤ ∑i−1

j=0 P i,j ≤ RVi.

Proof. Considering the definition of Si,j from Theorem 1, we get that:

i−1∑

j=0

Si,j =
i−1∑

j=0

(
i

i − j

)(
1
N

)i−j (
1 − 1

N

)N−(i−j)

=
(

1 − 1
N

)N i−1∑

j=0

(
i

i − j

)(
1

N − 1

)i−j

=
(

1 − 1
N

)N
((

N

N − 1

)i

− 1

)
= Vi.

As P i,j ≥ Si,j , it follows that
∑i−1

j=0 P i,j ≥ ∑i−1
j=0 Si,j = Vi. Similarly, as

P i,j ≤ RSi,j , it follows that
∑i−1

j=0 P i,j ≤ R
∑i−1

j=0 Si,j = RVi. ��

Theorem 3. If Wi =
(
N−1
N

)i − (
N−1
N

)N
, then Wi ≤ ∑N

j=i+1 P i,j ≤ RWi.

4.3 Lower and Upper Bounds on Other Expressions

Theorem 4. If Yi = i
N−1

(
N−1
N

)N−i+1
, then Yi ≤ ∑i−1

j=0 P i,j(i − j) ≤ RYi.

Runtime Analysis of (1 + 1) Evolutionary Algorithm Controlled 167

Proof. Consider
∑i−1

j=0 Si,j(i − j):

i−1∑

j=0

Si,j(i − j) =

i−1∑

j=0

(
i

i − j

)(
1

N

)i−j (
1 − 1

N

)N−(i−j)

(i − j)

=

(
1 − 1

N

)N i−1∑

j=0

(
i

j

)
i − j

(N − 1)i−j

=

(
1 − 1

N

)N

(1 − N)

i−1∑

j=0

(
i

j

)(
1

(N − 1)i−j

)′

N

=

(
1 − 1

N

)N

(1 − N)

(
i−1∑

j=0

(
i

j

)
1

(N − 1)i−j

)′

N

=

(
1 − 1

N

)N

(1 − N)

((
N

N − 1

)i

− 1)

)′

N

=

(
1 − 1

N

)N
i

N − 1

(
N

N − 1

)i−1

=
i

N − 1

(
N − 1

N

)N−i+1

= Yi.

Similarly to Theorem 2, we prove the bounds on the required sum. ��

Theorem 5. If Zi = N−i
N−1

(
N−1
N

)i+1
, then Zi ≤ ∑N

j=i+1 P i,j(j − i) ≤ RZi.

5 Drift Analysis

We analyse the running time of the algorithm using the additive drift theorem [4].
To do that, we construct the following potential function:

Φ(i, l) =
N−1∑

t=i

N

N − t
+ CN

N−1∑

t=0

1 − l(t)
N − t

,

where i is the current state (equal to the number of one-bits), l(t), the learn
indicator, is equal to one if the state t is a learned state and to zero otherwise,
and C is a constant.

Such function rewards the algorithm not only for getting closer to the opti-
mum, but for learning a state as well. Note that each time Φ(i, l) = 0, the
algorithm is at the optimum, however, the opposite is not true: the optimum
can be reached, but not all states become learned. This does not hurt anything:
the additive drift theorem gives an upper bound on the number of iterations
until the condition that the optimum is reached and all the states are learned,
which, in turn, is an upper bound on the actual running time of the algorithm.

We can treat Φ(i, l) as a sum of two functions, Φ1(i) =
∑N−1

t=i
N

N−t and

Φ2(l) = CN
∑N−1

t=0
1−l(t)
N−t . As Φ1 is upwards convex, from Jensen’s inequality it

follows that Φ1(i)−E(Φ1(i′)) ≥ Φ1(i)−Φ1(E(i′)), if Φ1 is extended to non-integer
arguments by linear interpolation.

168 D. Antipov et al.

5.1 Drift from a Learned State

In a learned state the situation resembles how (1+1)-EA works on OneMax [11].
In this case, the learn indicator l does not change, so drift of Φ2 is zero. The
lower bound on E(i′) is (using Theorem 5):

E(i′) = i +
N∑

j=0

(j − i)P i,j
L = i +

N∑

j=i+1

(j − i)P i,j ≥ i +
N − i

N − 1

(
N − 1

N

)i+1

.

The lower bound on E(i′)− i is at most one. The drift of Φ1 (and thus Φ) is:

Φ1(i) − E(Φ1(i′)) ≥ Φ1(i) − Φ1(E(i′)) ≥ N

N − i

N − i

N − 1

(
N − 1

N

)i+1

≥ e−1.

5.2 Drift from an Unlearned State

In an unlearned state, the expected drift of Φ2(l) can be estimated as the reward
for learning the current state i multiplied by the probability the algorithm leaves
the state i (using Theorems 2 and 3). Φ2(l) − E(Φ2(l)) is at least:

C
N

N − i

∑

j �=i

P i,j

2
≥ C

2
N

N − i

((
N − 1

N

)N−i

+
(

N − 1
N

)i

− 2
(

N − 1
N

)N
)

.

The lower bound on E(i′) is (using Theorems 4 and 5):

E(i′) = i +
N∑

j=0

P i,j
U (j − i) = i +

1
2

∑

j �=i

P i,j(j − i)

= i +
1
2

⎛

⎝
N∑

j=i+1

P i,j(j − i) −
i−1∑

j=0

P i,j(i − j)

⎞

⎠

≥ i +
1
2

(
N − i

N − 1

(
N − 1

N

)i+1

− R
i

N − 1

(
N − 1

N

)N−i+1
)

.

As R ≤ 8
7 , the lower bound on E(i′) − i is at most − 4

7 , so the drift of Φ1 is:

Φ1(i) − E(Φ1(i
′)) ≥ Φ1(i) − Φ1(E(i′))

≥ 1

2

N

N − i + 1

(
N − i

N − 1

(
N − 1

N

)i+1

− Ri

N − 1

(
N − 1

N

)N−i+1
)

=
1

2

N − i

N − i + 1

(
N − 1

N

)i

− R

2

i

N − i + 1

(
N − 1

N

)N−i

.

The total value of Φ, namely, D = Φ(i, l)−E(Φ(i′, l′)), is bounded from below
by sum of drifts for Φ1 and Φ2:

Runtime Analysis of (1 + 1) Evolutionary Algorithm Controlled 169

D ≥ C

2
N

N − i

((
N − 1

N

)N−i

+
(

N − 1
N

)i

− 2
(

N − 1
N

)N
)

+
1
2

N

N − i + 1

(
N − i

N

(
N − 1

N

)i

− Ri

N

(
N − 1

N

)N−i
)

≥ C

2
N

N − i + 1

((
N − 1

N

)N−i

+
(

N − 1
N

)i

− 2
(

N − 1
N

)N
)

+
1
2

N

N − i + 1

(
N − i

N

(
N − 1

N

)i

− Ri

N

(
N − 1

N

)N−i
)

=

(
N−1
N

)N−i
(CN − Ri) +

(
N−1
N

)i
(CN + N − i) − (

N−1
N

)N
(2CN)

2(N − i + 1)
.

If C ≥ R, then CN − Ri is positive. As
(
N−1
N

)x
is convex downwards, we can

use Jensen’s inequality to simplify a part of the latter expression, which we call G:

G =
(

N − 1
N

)N−i

(CN − Ri) +
(

N − 1
N

)i

(CN + N − i)

=

(
N−1
N

)N−i CN−Ri
(2C+1)N−(R+1)i +

(
N−1
N

)i CN+N−i
(2C+1)N−(R+1)i

((2C + 1)N − (R + 1)i)−1

≥ ((2C + 1)N − (R + 1)i)
(

N − 1
N

) (N−i)(CN−Ri)+i(CN+N−i)
(2C+1)N−(R+1)i

.

To find a lower bound on G one needs to find an upper bound on the expo-
nent in the expression above, assuming that 0 ≤ i ≤ N . Recall that R = 8

7 ,
which makes the exponent be equal to i2−iN+7CN2

14CN+7N−15i . The derivative by i of this
exponent have no roots in [0;N] at least when C ≥ 1. The value for i = 0 is
N C

2C+1 , and for i = N it is N 7C
14C−8 , the second one is the biggest of two. We

continue with the lower bound on D:

D ≥ ((2C + 1)N − (R + 1)i)
(
N−1
N

)N 7C
14C−8 − (

N−1
N

)N
(2CN)

2(N − i + 1)

=

((
1 + 2C

(
1 − (

N−1
N

)N 7C−8
14C−8

))
N − (R + 1)i

)

2(N − i + 1)

(
N − 1

N

)N 7C
14C−8

.

If we choose C such that 1 + 2C

(
1 − (

N−1
N

)N 7C−8
14C−8

)
> R + 1, then starting

from some N the fraction will be greater than one. For these needs we approx-
imate

(
N−1
N

)N
by e−1. This problem can be reduced to finding a minimum C

such that 1 − 4
7C > e

7C−8
8−14C . This can be done by a binary search which yields

C = 2.115188060 . . . ≈ 2.12. Consequently, when C is at least this large, the

170 D. Antipov et al.

Table 1. Experiment results. C ≈ 2.12 is a constant which was proven.

N Average FF calls Average false 2eN log N (1 + C)eN log N Ratio to

γ = 1/N γ = 1 queries, γ = 1 γ = 1/N

1 · 101 9.892 · 101 9.648 · 101 3.000 · 10−2 1.252 · 102 1.950 · 102 1.97

3 · 101 4.673 · 102 4.855 · 102 1.900 · 10−1 5.547 · 102 8.640 · 102 1.85

1 · 102 2.382 · 103 2.389 · 103 7.800 · 10−1 2.504 · 103 3.900 · 103 1.64

3 · 102 9.340 · 103 9.335 · 103 1.690 · 100 9.303 · 103 1.449 · 104 1.55

1 · 103 3.910 · 104 3.925 · 104 8.280 · 100 3.755 · 104 5.849 · 104 1.50

3 · 103 1.389 · 105 1.441 · 105 2.414 · 101 1.306 · 105 2.034 · 105 1.46

1 · 104 5.585 · 105 5.461 · 105 7.443 · 101 5.007 · 105 7.799 · 105 1.40

3 · 104 1.882 · 106 1.901 · 106 2.330 · 102 1.681 · 106 2.619 · 106 1.39

1 · 105 7.225 · 106 7.108 · 106 7.780 · 102 6.259 · 106 9.749 · 106 1.35

3 · 105 2.376 · 107 2.376 · 107 2.325 · 103 2.057 · 107 3.204 · 107 1.35

1 · 106 8.726 · 107 8.648 · 107 7.632 · 103 7.511 · 107 1.170 · 108 1.34

drift from an unlearned state is at least
(
N−1
N

)N 7C
14C−8 ≈ (

N−1
N

)0.6845N ≥ e−1.
Together with all previous analysis, this proves the following theorem:

Theorem 6. The expected running time of the (1 + 1) evolutionary algorithm
controlled by greedy Q-learning on the OneMax+ZeroMax problem with a
value of the discount factor γ < 1/(N − 1) is at most:

(1 + C)eN log N ≈ 3.12eN log N.

6 Experimental Evaluation

We conducted experimental evaluation on big problem sizes to see how precise
our estimations are. Table 1 presents the results. For each N , there were 100
runs, and the numbers of fitness function calls were averaged. We tested two
values of the discount factor γ, namely 1/N and 1. For the latter value, we
additionally track the number of situations when Q values were tuned wrong
and ZeroMax was chosen intentionally (the “Average false queries” column).
Additionally, we track the value of 2eN log N , which was the common belief for
the “right” expression on the algorithm’s runtime.

First, it turned out that for large N the algorithm needs more than 2eN log N
iterations to find an optimum, which was surprising. Second, the runtimes for
different values of γ seem to be the same. The false queries column provides
an insight for this phenomenon: for γ = 1, the number of mismatches with
the learning lemma seems to be Θ(N) with a constant approximately equal to
7.6 · 10−3. We have no proof for this yet, but it seems that the probability of
“learning the wrong way” is very small and in most cases the algorithm can later
“self-heal” from wrong decisions. Finally, our estimation appears to be quite a
good one, as our estimations are only 35% pessimistic for large N .

Runtime Analysis of (1 + 1) Evolutionary Algorithm Controlled 171

7 Conclusion

We presented a proof that the (1+1) evolutionary algorithm, when controlled by
the EA+RL method which uses Q-learning with a greedy exploration strategy,
small values of the discount factor γ < 1/(N − 1), difference in target fitness
function as a reward and reinforcement learning states determined by the target
fitness function, solves the OneMax+ZeroMax problem in O(N log N)—more
precisely, in at most 3.12eN log N fitness function calls in expectation.

Experiments show that early thoughts on the actual expected running time,
2eN log N , are wrong for N ≥ 105. The current upper bound seems to be only
35% worse than the “real life”. What is more, the influence of big values of γ is
shown to be negligible. We hope that these results will show the way for proving
bounds on the running time for the EA+RL method on more complex problems.

This work was partially financially supported by the Government of Russian
Federation, Grant 074-U01.

References

1. Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., Zitzler, E.:
On the effects of adding objectives to plateau functions. Trans. Evol. Comput.
13(3), 591–603 (2009)

2. Buzdalov, M., Buzdalova, A., Shalyto, A.: A first step towards the runtime analysis
of evolutionary algorithm adjusted with reinforcement learning. In: Proceedings
of the International Conference on Machine Learning and Applications, vol. 1,
pp. 203–208. IEEE Computer Society (2013)

3. Buzdalova, A., Buzdalov, M.: Increasing efficiency of evolutionary algorithms by
choosing between auxiliary fitness functions with reinforcement learning. In: Pro-
ceedings of the International Conference on Machine Learning and Applications,
vol. 1, pp. 150–155 (2012)

4. Hajek, B.: Hitting-time and occupation-time bounds implied by drift analysis with
applications. Adv. Appl. Probab. 14(3), 502–525 (1982)

5. Handl, J., Lovell, S.C., Knowles, J.D.: Multiobjectivization by decomposition of
scalar cost functions. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N.
(eds.) PPSN 2008. LNCS, vol. 5199, pp. 31–40. Springer, Heidelberg (2008)

6. Jensen, M.T.: Helper-objectives: using multi-objective evolutionary algorithms for
single-objective optimisation: evolutionary computation combinatorial optimiza-
tion. J. Math. Model. Algorithms 3(4), 323–347 (2004)

7. Knowles, J.D., Watson, R.A., Corne, D.W.: Reducing local optima in single-
objective problems by multi-objectivization. In: Zitzler, E., Deb, K., Thiele, L.,
Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 269–283.
Springer, Heidelberg (2001)

8. Lochtefeld, D.F., Ciarallo, F.W.: Helper-objective optimization strategies for the
job-shop scheduling problem. Appl. Soft Comput. 11(6), 4161–4174 (2011)

9. Neumann, F., Wegener, I.: Can single-objective optimization profit from mul-
tiobjective optimization? In: Knowles, J., Corne, D., Deb, K., Chair, D.R.
(eds.) Multiobjective Problem Solving from Nature. Natural Computing Series,
pp. 115–130. Springer, Heidelberg (2008)

172 D. Antipov et al.

10. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

11. Witt, C.: Optimizing linear functions with randomized search heuristics - the
robustness of mutation. In: Proceedings of the 29th Annual Symposium on Theo-
retical Aspects of Computer Science, pp. 420–431 (2012)

The New Memetic Algorithm HEAD for Graph
Coloring: An Easy Way for Managing Diversity

Laurent Moalic1(B) and Alexandre Gondran2

1 UTBM, OPERA, University of Technology of Belfort-Montbéliard,
90010 Belfort Cedex, France
laurent.moalic@utbm.fr

2 MAIAA, ÉNAC, French Civil Aviation University, 31055 Toulouse Cedex 4, France
alexandre.gondran@enac.fr

Abstract. This paper presents an effective memetic approach HEAD
designed for coloring difficult graphs. In this algorithm a powerful tabu
search is used inside a very specific population of individuals. Indeed,
the main characteristic of HEAD is to work with a population of only
two individuals. This provides a very simple algorithm with neither selec-
tion operator nor replacement strategy. Because of its simplicity, HEAD
allows an easy way for managing the diversity. We focus this work on
the impact of this diversity management on well-studied graphs of the
DIMACS challenge benchmarks, known to be very difficult to solve.
A detailed analysis is provided for three graphs on which HEAD finds a
legal coloring with less colors than reference algorithms: DSJC500.5 with
47 colors, DSJC1000.5 with 82 colors and flat1000 76 0 with 81 colors.
The analysis performed in this work will allow to improve HEAD effi-
ciency in terms of computation time and maybe to decrease the number
of needed colors for other graphs.

1 Introduction

Graph coloring consists of assigning a color to each vertex of a given graph G =
(V,E), such that all pairs of adjacent vertices (linked by an edge) are assigned
different colors. Such coloring is said legal. V is known as the vertices set and
E edges set. The Graph Coloring Problem (GCP) is to find, for a given graph,
the minimum number of colors that provides a legal coloring. This minimum
number is the chromatic number χ(G). GCP is a very famous and important
because lots of applied problems can be modeled as a GCP: frequency assignment
problem [1], timetabling problem [2], scheduling problem [3], fly level allocation
problem [4], and many others. Since GCP is NP-hard [5], exact algorithms can
be used only with easy or small graphs, heuristic approaches are required with
more complex graphs.

The decision problem linked to GCP is the k-coloring problem. It consists
on determining if it is possible to to find a legal coloring with k colors. This is
a NP-complete problem [5] for k > 2.
c© Springer International Publishing Switzerland 2015
G. Ochoa and F. Chicano (Eds.): EvoCOP 2015, LNCS 9026, pp. 173–183, 2015.
DOI: 10.1007/978-3-319-16468-7 15

174 L. Moalic and A. Gondran

Most of computational optimization techniques have been applied to solve
GCP. We will present a short overview of these techniques grouped into five
categories.

The first approaches are constructive methods. One can find in this category
greedy methods whose DSATUR [6] and RLF [7] are the most well-known, and
can be used to quickly provide an upper bound.

Many exact methods have been developed to solve GCP for small graphs:
branch and bound [8], backtracking [9], constraint programming [10,11], linear
programming [12], column generation [10,13].

Local searches such as hill-climbing method [14], simulated annealing [15], tabu
search [16] try to improve an initial solution by local moves. These approaches were
the first ones able to find good coloring for large graphs. Some improvements have
been brought successfully by using in the same algorithm different local strategies,
such as in variable neighborhood search [17] or in variable space search [18] or [19].

And finally, some population-based approaches have been developed with
interesting results. Evolutionary Algorithms [20,21], ant colony optimization [22],
particle swarm algorithm, are some of them. They work with several colorings
that can interact together with a crossover operator, a shared memory, or a
repulsion/attraction operator.

All these methods provide interesting results with more or less efficiency. But
the best known algorithms which are able to solve the most difficult GCP are
hybridizations of previous algorithms. In many cases they use a powerful local
search inside a population-based algorithm. The memetic Algorithms [23–25] and
quantum annealing [26–28] provide up to now the most interesting approaches.

In this paper we present HEAD (Hybrid Evolutionary Algorithm in Duet),
a new and very simple hybrid algorithm providing the best results on most of
the DIMACS graphs [29]. These good results are allowed thanks to a simple
way for managing the diversity. Indeed, the control of diversity is one of the key
aspect for metaheuristics. We focus our analysis in this article on this manage-
ment for three difficult graphs. For these graphs HEAD allows to decrease the
needed number of colors: DSJC500.5 (solved with 47 colors), DSJC1000.5 (with
82 colors) and flat1000 76 0 (with 81 colors).

This article is organized as follows. The hybrid algorithm HEAD is described
in Sect. 2. The experimental results are presented in Sect. 3 and the analysis of
the diversification impact are detailed in Sect. 4. Finally we draw the conclusions
of this study and the future works to do in Sect. 5.

2 Algorithm: HEAD

Many powerful algorithms are based on the hybridization of other more simple
components. When an hybrid algorithm uses a local search inside a population
based approach, it is called Memetic Algorithm (MA) or Genetic Local Search
(GLS). In a MA the classical mutation is replaced by a local search for providing a
better intensification. HEAD belong to this family. It can be seen as an extension
of the Hybrid Evolutionary Algorithm (HEA) of Galinier and Hao [23] known

The New Memetic Algorithm HEAD for Graph Coloring 175

to be one of the best algorithms for solving GCP. Indeed HEA produces most of
best results since 1999 on DIMACS benchmark [30], especially for very difficult
graphs such as those detailed in this article (see Table 1).

HEA and HEAD share the same two main elements: the local search strat-
egy and the crossover. The local search used in both is an improvement of the
TabuCol of [16]. This is a powerful tabu local search able to provide good results,
even if used alone (not combined with a population based approach). The com-
mon crossover is called Greedy Partition Crossover (GPX). Its main characteris-
tic is to build a child with the biggest color classes of each parent. Both TabuCol
and GPX work with a k-fixed penalty strategy that accept no proper solutions
with conflicts. The aim of HEA and HEAD is to find a coloring which minimize
the number of conflicting edges.

The population involved in memetic algorithms brings the diversity while
local search is used for intensifying the solutions. The greater the population
size, the greater the diversification. That is why in HEA a population size of
10 is usually selected. In HEAD we propose a new easy way to manage diver-
sification. To achieve that objective the population size is reduced to only 2
individuals. By this method HEAD can be seen as two parallel TabuCol. One
of the main drawbacks of such a simple population is that sometimes it doesn’t
provide enough diversification. Indeed after a given number of generation, the
two parents are quite similar. That is why diversification must be reintroduce,
which is performed by applying an elite strategy. For a cycle (a cycle is defined as
a given number of generations equals to cycleSize) the best individual (known
as elite) is recorded. After each cycle the elite from the previous cycle is reintro-
duced to replace one of the two population members. This elite mechanism can
be considered as selection and replacement strategies very easy to manage.

We present the pseudo-code of HEAD in Algorithm 1. It uses few parameters:
IterTC , the number of iterations performed by the TabuCol algorithm, cycleSize,
the number of generations inside one cycle and ε for the stop condition.

3 Results

The aim of this paper is not to present results of best coloring for numerous
graphs, but it is to provide an analysis of how the results were found. There-
fore, the results presented come from [29] and are obtained on graphs from the
second DIMACS challenge of 1992-1993 [30]. It is to date the most widely used
benchmark for solving the graph coloring problem.

Two main types of graphs of DIMACS benchmark are taken into account:
DSJC and FLAT, which are randomly or quasi-randomly generated. DSJCn.d
graphs are graphs with n vertices which each vertex is connected to an average
of n × d vertices; d is the graph density. The chromatic number of these graphs
is unknown. FLAT graphs have another structure. They are built for a known
chromatic number. The flatn χ graph has n vertices and χ is the chromatic
number.

HEAD was programmed in standard C++. The results presented in this sec-
tion were obtained on a computer with an Intel Xeon 3.10GHz processor - 4 cores

176 L. Moalic and A. Gondran

Algorithm 1. HEAD : HEA in Duet for k-coloring problem
1: Input: a graph: G(V, E) with n = |V |, a number of colors: k , an crossover: GPX,

a local search: TabuCol, some parameters: IterTC , cycleSize = 10, ε = 0.01.
2: Output: the best configuration found
3: p1, p2, elite1, elite2 ← init() {initialize with random colorings}
4: generation ← 0
5: repeat
6: c1 ← GPX(p1, p2)
7: c2 ← GPX(p2, p1)
8: p1 ← TabuCol(c1, IterTC)
9: p2 ← TabuCol(c2, IterTC)

10: elite1 ← saveBest(p1, p2, elite1)
11: best ← saveBest(elite1, best)
12: if generation%cycleSize = 0 or dH(p1, p2) ≤ nε then
13: p1 ← elite2
14: elite2 ← elite1
15: elite1 ← init()
16: end if
17: generation + +
18: until stop condition : dH(p1, p2) ≤ nε
19: return best

and 8GB of RAM. Almost all of the computation time is spent performing the
tabu search (lines 8 and 9 of Algorithm 1). It is possible and easy to parallelize
both tabu searches by using a multi-core processor architecture. This is what
we have done using the OpenMP API (Open Multi-Processing). The execution
times in the following table are CPU time. Thus, when we give an execution
time of 30 min, the needed time is actually close to 15 min using two processing
cores.

Table 1 presents results of the principal methods known to date. For each
graph, it indicates the lowest number of colors found by each algorithm. The
most recent algorithm, QA-col (Quantum Annealing for graph coloring [28]),
provides the best results but is based on a cluster of PCs using 10 processing
cores simultaneously. For detail on those approaches refer to [29].

Table 2 presents results obtained with HEAD. The first important thing
is that HEAD find solutions with fewer colors than all the best known methods.
The column IterTC gives the number of iterations of TabuCol algorithm (it is
the stop criteria of TabuCol). The column Success evaluates the robustness
of the method, it gives the success rate: success runs/total runs. A success run
is one which finds a legal k-coloring. The average number of generations or
crossovers done during one success run is given by Gene value. Then the total
average number of iterations of TabuCol preformed during HEAD is Iter=
LS × Gene × 2. The column Time gives the average CPU time in minutes of
success runs. For all these results a cycle size of 10 is chosen. We will see in
Sect. 4.2 that it is possible to tune this parameter for improving the results.

The New Memetic Algorithm HEAD for Graph Coloring 177

Table 1. Comparison between HEAD and references algorithms

2014 2008 1999 2008 2010 2011 2012
Graphs HEAD TabuCol HEA AmaCol MACOL EXTRACOL QA-col

DSJC250.5 28 28 28 28 28 - 28

DSJC500.1 12 13 - 12 12 - 12

DSJC500.5 47 50 48 48 48 - 47

DSJC500.9 126 127 - 126 126 - 126

DSJC1000.1 20 20 20 20 20 20 20

DSJC1000.5 82 89 83 84 83 83 82

DSJC1000.9 222 227 224 224 223 222 222

r250.5 65 - - - 65 - 65

r1000.1c 98 - - - 98 101 98

r1000.5 245 - - - 245 250 -

DSJR500.1c 85 85 - 86 85 - 85

le450 25c 25 26 26 26 25 - 25

le450 25d 25 26 - 26 25 - 25

flat300 28 0 31 31 31 31 29 - 31

flat1000 50 0 50 50 - 50 50 50 -

flat1000 60 0 60 60 - 60 60 60 -

flat1000 76 0 81 88 83 84 82 82 81

4 Analysis of the Diversity

As we have presented previously, diversification plays a key role in metaheuris-
tics. In memetic algorithms, one of the major diversification operator is the
crossover. The distance between the parents provides the level of diversity. That
is why it is so important to control precisely this distance between the individu-
als: controlling the distance between individuals mean controlling the impact of
diversification. With only two individuals, HEAD allows a very simple control
of this diversification. One can consider that such an algorithm is a two parallel
local searches in which we introduce a diversification operator with the crossover.

4.1 Relationship Between Distance and Fitness Values

The fitness analysis is the first classical way to provide information on how an
algorithm works. Here we define the fitness value as the number of edges in
conflict. Two main phases of the algorithm HEAD can be identified. The first
one is the local search in which a solution is improved by small moves. The
second one is the global search performed by the crossover. We are interested
here by the global search progress for the specific graph DSJC500.5 with 47
colors.

A fitness value is determined at the end of each generation for both indi-
viduals. Figure 1 shows the results with the green and red lines for the fitness
values of each individual. In the same view is displayed the corresponding Ham-
ming proximity pH between both individuals (blue line). It is computed as the

178 L. Moalic and A. Gondran

Table 2. Results of HEAD algorithm with the indication of CPU time in minutes

Instances k IterTC Success Iter Gene Time

Dsjc250.5 28 6000 20/20 0.9 × 106 77 0.03

dsjc500.1 12 4000 20/20 3.8 × 106 483 0.1

dsjc500.5 47 8000 2/10000 24 × 106 1517 1.7
48 8000 20/20 7.6 × 106 479 0.5

dsjc500.9 126 15000 13/20 29 × 106 970 2

dsjc1000.1 20 3000 20/20 3.4 × 106 567 0.2

dsjc1000.5 82 40000 1/20 548 × 106 6854 48
83 40000 20/20 96 × 106 1200 8

dsjc1000.9 222 50000 1/20 1.4 × 109 14208 174
223 30000 19/20 126 × 106 2107 16

r250.5 65 2000 20/20 1.0 × 109 255287 79

r1000.1c 98 25000 20/20 4.7 × 106 95 0.3

r1000.5 245 360000 20/20 3.3 × 109 4628 176

DSJR500.1c 85 400 20/20 0.4 × 106 534 0.02

le450 25c 25 27000000 20/20 2.2 × 109 42 67
26 70000 20/20 0.17 × 106 1.4 0.01

le450 25d 25 300000 20/20 549 × 106 916 14

flat300 28 0 31 4000 20/20 0.9 × 106 120 0.04

flat1000 50 0 50 130000 20/20 1.1 × 106 5 0.3

flat1000 60 0 60 130000 20/20 2.2 × 106 9 0.5

flat1000 76 0 81 40000 1/20 716 × 106 8961 96
82 40000 20/20 84 × 106 1052 8

complement of the Hamming distance dH : pH = n− dH where n is the number
of vertices of the graph. We reuse the definition given by [24] of the distance
between two k-colorings. The distance (called Hamming distance) between two
k-colorings c1 and c2 is defined as the least number of 1-move steps (i.e. a color
change of one vertex) for transforming c1 to c2. Of course this distance has to
be independent of the permutation of the color classes, then before counting the
number of 1-moves, we have to match each color class of c1 with the nearest
color class of c2. This problem is a maximum weighted bipartite matching if we
consider each color class of c1 and c2 as the vertices of a bipartite graph; an edge
links a color class of c1 with a color class of c2 with an associated value corre-
sponding to the number of vertices shared by those classes. Then the distance is
dH(c1, c2) = n−pH where n is the number of vertices of the initial graph and pH
the result of the matching (called Hamming proximity); i.e. the maximal total
number of sharing vertices in the same class for c1 and c2.

Three main stages can be identified in Fig. 1. The first one for generations 0 to
200 provides a global improvement of the individuals (intensification part). From
generations 200 to 700 the algorithm provides an exploration of the search space
with a number of conflicts between 5 to 20. The last stage, at the very end of
the algorithm, provides a new intensification of the individuals until finding the

The New Memetic Algorithm HEAD for Graph Coloring 179

Fig. 1. Fitness values recorded after each local search (generation) for one run finding
a legal 47-coloring in DSJC500.5 (500 vertices, 62624 edges)(Color figure online)

legal solution. The fitness shape shows that until the very end of the algorithm,
it is not possible to predict whether a valid coloring will be found.

The red and green lines of Fig. 1 show that the individuals are still very sim-
ilar in terms of fitness value: the two individuals are good at the same time. The
Hamming proximity shows an important aspect of the algorithm. It reveals that
the number of conflicts is directly linked to the proximity between the individu-
als. The closer the individuals are, the better they are. When the algorithm find
the legal coloration, both individuals are very close. Figure 1 allows to under-
stand this link existing between fitness value and proximity of individuals. Now
the point is to control this proximity between individuals in order to find a legal
coloring before having two individuals too close together.

4.2 Control of the Diversity with the Swapping Frequency

As presented before, HEAD can be seen as a two individuals local search algo-
rithm with a specific diversification operator: the crossover. More precisely, one
can identify three levels of diversification in the HEAD algorithm:

– the first level is brought by the Tabu tenure (small impact)
– the second level is brought by the crossover (medium impact)
– the third level is brought by the elite mechanism (great impact)

The first two levels have been much studied in the literature and have shown
their efficiency for solving the k-coloring problem. For the first level we consider
the standard parameters for TabuCol as defined in [23]. The Tabu tenure is
defined by the values L = 10 and α = 0.6 which are known to give good results.
It could be tuned thanks to the considered graph to provide even better results.
For the second level the crossover is the standard GXP Algorithm (see [23]).
Some modifications of GPX is done in [24,29,31].

180 L. Moalic and A. Gondran

Fig. 2. Number of successes depending on the swapping frequency for three graphs:
DSJC500.5 (2-a), DSJC1000.5 (2-b) and FLAT1000.5 (2-c)

Of course it is possible to adapt the diversification rate by changing the
Tabu parameters or the algorithms themselves. But because they have been yet
very studied we will focus our analysis on the third level of diversification. This

The New Memetic Algorithm HEAD for Graph Coloring 181

is the only parameter specific to HEAD and the one responsible to the good
performances reached by HEAD.

The swapping operation consists of reintroducing the elite solution (the best
solution from the previous cycle) to the population. In HEAD, two types of
elements can make a swapping operation. The first one is the number of gener-
ation. At the end of each cycle (i.e. cycleSize generations) the previous elite is
reintroduced. The second one is the proximity between the two individuals. As
soon as it is higher than a given rate (99 %), the crossover has almost no effect
and cannot bring diversity: a swapping operation is performed.

Figure. 2 show the impact of the cycle size on the ability of finding valid
colorings. Each figure corresponds to a test on a specific graph (DSJC500.5
for Fig. 2-a, DSJC1000.5 for Fig. 2-b and FLAT1000.5 for Fig. 2-c). In Fig. 2-a
(respectively Figs. 2-b-c) we run HEAD 1000 times (respectively 100 times for
Figs. 2-b-c) to solve the k-coloring problem with k = 48 for DSJC500.5 (respec-
tively with k = 82 for DSJC1000.5 and k = 81 for FLAT1000 76). In x-axis, we
increase the cycle size. In left y-axis we count the number of successful runs, in
right y-axis we count the average number of generations needed for get a legal
coloring. The second aspect corresponds to the time efficiency of the algorithm.
Several interesting results can be noticed. First we will focus on the cycle size
equal to 0 (no swapping). It is the case of HEA with a population of two indi-
viduals, that we call HEAD’ (HEA in Duet without elite). Neither DSJC1000.5
nor FLAT1000.5 can be legally colored with respectively 82 and 81 colors. Only
DSJC500.5 can be solved (478 legal k-coloring for 1000 runs) with 48 colors.
That clearly means that without an elite mechanism the algorithm converge too
fast and the amount of diversification is not enough. The algorithm doesn’t allow
to escape from local optima.

On the other hand, when a success occurs, the number of generations for
finding the solution is quite low. Only 317 generations in mean are necessary to
find the solution for the graph DSJC500.5.

When the cycle size increases, generally the number of successes increase
too. But It seems interesting to notice that for DSJC500.5, the success number
increase more quickly than the generations needed. Moreover, for the two other
graphs, a swapping rate of 8 is required for finding legal solutions. A value of 28
is more appropriate.

This figures show clearly the role of the cycle size to control the diversity (the
balance between the time efficiency of the algorithm and its quality efficiency)
and how much it allows to improve significantly HEAD’ for solving the k-coloring
problem.

5 Conclusion

We have presented an effective memetic algorithm for the graph coloring prob-
lem, called HEAD. It is a variation of the Galinier and Hao [23]’s algorithm
with only two candidate solutions. HEAD produces very good results on a set
of challenging DIMACS graphs. We have focused our analysis on the control of

182 L. Moalic and A. Gondran

diversification in our memetic algorithm which has been detailed for three spe-
cific graphs of the DIMACS benchmarks, where HEAD improve significantly
the results achieved by reference algorithms. We have shown that the Hamming
distance between the two individuals of the population is strongly correlated to
the fitness value of the individuals.

The analyses performed in this work have demonstrated the interest of work-
ing with only two individuals. Moreover, they provide us a better understanding
of HEAD and define some important tools to improve even more this algorithm.

Acknowledgements. The second author gratefully acknowledge financial support
under grant ANR 12-JS02-009-01 “ATOMIC”.

References

1. Aardal, K., Hoesel, S., Koster, A., Mannino, C., Sassano, A.: Models and solution
techniques for frequency assignment problems. Q. J. Belg. Fr. Ital. Oper. Res. Soc.
1(4), 261–317 (2003). doi:10.1007/s10288-003-0022-6

2. Wood, D.C.: A technique for coloring a graph applicable to large-scale timetabling
problems. Comput. J. 12, 317–322 (1969)

3. Zufferey, N., Amstutz, P., Giaccari, P.: Graph colouring approaches for a satellite
range scheduling problem. J. Sched. 11(4), 263–277 (2008)

4. Barnier, N., Brisset, P.: Graph coloring for air traffic flow management. Ann. Oper.
Res. 130(1–4), 163–178 (2004). doi:10.1023/B:ANOR.0000032574.01332.98

5. Karp, R.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher,
J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press,
New York (1972)

6. Brélaz, D.: New methods to color the vertices of a graph. Commun. ACM 22(4),
251–256 (1979)

7. Leighton, F.T.: A graph coloring algorithm for large scheduling problems. J. Res.
Natl. Bur. Stan. 84(6), 489–506 (1979)

8. Glover, F., Parker, M., Ryan, J.: Coloring by tabu branch and bound. DIMACS
Ser. Discrete Math. Theor. Comput. Sci. 26, 285–307 (1996)

9. Zykov, A.A.: On some properties of linear complexes. Mat. Sb. (N.S.) 24(66:2),
163–188 (1949)

10. Gualandi, S., Malucelli, F.: Exact solution of graph coloring problems via constraint
programming and column generation. INFORMS J. Comput. 24(1), 81–100 (2012).
doi:10.1287/ijoc.1100.0436

11. Caramia, M., Dell’Olmo, P.: Constraint propagation in graph coloring. J. Heuristics
8(1), 83–107 (2002)

12. Schindl, D.: Graph coloring and linear programming, presentation at First Joint
Operations Research Days, Ecole Polytechnique Fédérale de Lausanne (EPFL),
available on line (last visited June 2005) (July 2003). http://roso.epfl.ch/ibm/
jord03.html

13. Mehrotra, A., Trick, M.A.: A column generation approach for graph coloring.
INFORMS J. Comput. 8(4), 344–354 (1996)

14. Lewis, R.: A general-purpose hill-climbing method for order independent min-
imum gr ouping problems: a case study in graph colouring and bin packing.
Comput. Oper. Res. 36(7), 2295–2310 (2009). doi:10.1016/j.cor.2008.09.004.
http://www.sciencedirect.com/science/article/B6VC5-4TGHNJ4-1/2/1040b5ca8
ef6fc2ddf012f32f3de9cb5

http://dx.doi.org/10.1007/s10288-003-0022-6
http://dx.doi.org/10.1023/B:ANOR.0000032574.01332.98
http://dx.doi.org/10.1287/ijoc.1100.0436
http://roso.epfl.ch/ibm/jord03.html
http://roso.epfl.ch/ibm/jord03.html
http://dx.doi.org/10.1016/j.cor.2008.09.004
http://www.sciencedirect.com/science/article/B6VC5-4TGHNJ4-1/2/1040b5ca8ef6fc2ddf012f32f3de9cb5
http://www.sciencedirect.com/science/article/B6VC5-4TGHNJ4-1/2/1040b5ca8ef6fc2ddf012f32f3de9cb5

The New Memetic Algorithm HEAD for Graph Coloring 183

15. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by sim-
ulated annealing: An experimental evaluation; part II, graph coloring and number
partitioning. Oper. Res. 39(3), 378–406 (1991)

16. Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Com-
puting 39(4), 345–351 (1987)

17. Avanthay, C., Hertz, A., Zufferey, N.: A variable neighborhood search for graph
coloring. Eur. J. Oper. Res 151(2), 379–388 (2003). Elsevier

18. Hertz, A., Plumettaz, M., Zufferey, N.: Variable space search for graph coloring.
Discret. Appl. Math. 156(13), 2551–2560 (2008). doi:10.1016/j.dam.2008.11.008

19. Caramia, M., Dell’Olmo, P., Italiano, G.F.: Checkcol: improved local search for
graph coloringstar. J. Discret. Algorithms 4(2), 277–298 (2006). doi:10.1016/j.jda.
2005.03.006

20. Mylopoulos, J., Reiter, R.: Order-based genetic algorithms and the graph coloring
problem. In: Mylopoulos, J., Reiter, R. (eds.) Handbook of Genetic Algorithms,
pp. 72–90. Van Nostrand Reinhold, New York (1991)

21. Fleurent, C., Ferland, J.: Genetic and hybrid algorithms for graph coloring. Ann.
Oper. Res. 63, 437–464 (1996)

22. Plumettaz, M., Schindl, D., Zufferey, N.: Ant local search and its efficient adap-
tation to graph colouring. J. Oper. Res. Soc. 61(5), 819–826 (2010). doi:10.1057/
jors.2009.27

23. Galinier, P., Hao, J.-K.: Hybrid evolutionary algorithms for graph coloring. J.
Comb. Optim. 3(4), 379–397 (1999). doi:10.1023/A:1009823419804

24. Lü, Z., Hao, J.-K.: A memetic algorithm for graph coloring. Eur. J. Oper. Res.
203(1), 241–250 (2010). doi:10.1016/j.ejor.2009.07.016

25. Wu, Q., Hao, J.-K.: Coloring large graphs based on independent set extraction.
Comput. Oper. Res. 39(2), 283–290 (2012). doi:10.1016/j.cor.2011.04.002

26. Titiloye, Olawale, Crispin, Alan: Graph coloring with a distributed hybrid quantum
annealing algorithm. In: O’Shea, James, Nguyen, Ngoc Thanh, Crockett, Keeley,
Howlett, Robert J., Jain, Lakhmi C. (eds.) KES-AMSTA 2011. LNCS, vol. 6682,
pp. 553–562. Springer, Heidelberg (2011)

27. Titiloye, O., Crispin, A.: Quantum annealing of the graph coloring problem. Dis-
cret. Optim. 8(2), 376–384 (2011). doi:10.1016/j.disopt.2010.12.001

28. Titiloye, O., Crispin, A.: Parameter tuning patterns for random graph coloring
with quantum annealing. PLoS ONE 7(11), e50060 (2012). doi:10.1371/journal.
pone.0050060

29. Moalic, L., Gondran, A.: Variations on Memetic Algorithms for Graph Coloring
Problems. http://arxiv.org/abs/arXiv1401.2184

30. Johnson, D.S., Trick, M. (eds.): Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge, 1993. DIMACS Series in Discrete Mathemat-
ics and Theoretical Computer Science, vol. 26. American Mathematical Society,
Providence (1996)

31. Galinier, P., Hertz, A., Zufferey, N.: An adaptive memory algorithm for the k-
coloring problem. Discret. Appl. Math. 156(2), 267–279 (2008). doi:10.1016/j.dam.
2006.07.017

http://dx.doi.org/10.1016/j.dam.2008.11.008
http://dx.doi.org/10.1016/j.jda.2005.03.006
http://dx.doi.org/10.1016/j.jda.2005.03.006
http://dx.doi.org/10.1057/jors.2009.27
http://dx.doi.org/10.1057/jors.2009.27
http://dx.doi.org/10.1023/A:1009823419804
http://dx.doi.org/10.1016/j.ejor.2009.07.016
http://dx.doi.org/10.1016/j.cor.2011.04.002
http://dx.doi.org/10.1016/j.disopt.2010.12.001
http://dx.doi.org/10.1371/journal.pone.0050060
http://dx.doi.org/10.1371/journal.pone.0050060
http://arxiv.org/abs/arXiv1401.2184
http://dx.doi.org/10.1016/j.dam.2006.07.017
http://dx.doi.org/10.1016/j.dam.2006.07.017

The Sim-EA Algorithm with Operator
Autoadaptation for the Multiobjective

Firefighter Problem

Krzysztof Michalak(B)

Department of Information Technologies, Institute of Business Informatics,
Wroclaw University of Economics, Wroclaw, Poland

krzysztof.michalak@ue.wroc.pl

Abstract. The firefighter problem is a graph-based optimization prob-
lem that can be used for modelling the spread of fires, and also for study-
ing the dynamics of epidemics. Recently, this problem gained interest
from the softcomputing research community and papers were published
on applications of ant colony optimization and evolutionary algorithms
to this problem. Also, the multiobjective version of the problem was
formulated.

In this paper a multipopulation algorithm Sim-EA is applied to the
multiobjective version of the firefighter problem. The algorithm opti-
mizes firefighter assignment for a predefined set of weight vectors which
determine the importance of individual objectives. A migration mecha-
nism is used for improving the effectiveness of the algorithm.

Obtained results confirm that the multipopulation approach works
better than the decomposition approach in which a single specimen is
assigned to each direction. Given less computational resources than the
decomposition approach, the Sim-EA algorithm produces better results
than a decomposition-based algorithm.

Keywords: Multipopulation algorithms · Multi-objective evolutionary
optimization · Graph-based optimization · Firefighter problem

1 Introduction

The firefighter problem is a graph-based optimization problem formalized in 1995
by Hartnell [13]. This problem can be used for modelling the spread of fires,
and also for studying the dynamics of epidemics. The original version of the
firefighter problem was single objective. Recently [15], a multiobjective version
of the firefighter problem has been proposed.

Developments concerning the firefighter problem can be divided into several
areas. Some papers deal with theoretical properties and discuss specific types of
graphs and specific problem cases. For example the paper [10] gives lower and
upper bounds on the amount of firefighters needed to control a fire in the case
of specific planar grids.
c© Springer International Publishing Switzerland 2015
G. Ochoa and F. Chicano (Eds.): EvoCOP 2015, LNCS 9026, pp. 184–196, 2015.
DOI: 10.1007/978-3-319-16468-7 16

The Sim-EA Algorithm with Operator Autoadaptation 185

Some attempts on this problem were also made by the optimization research
community. For example, the paper [8] uses a linear integer programming model
to solve the single-objective version of the problem. The applications of meta-
heuristic methods to the firefighter problem are relatively recent. The paper [3]
published in 2014 applies the Ant Colony Optimization (ACO) approach to the
single-objective version of the firefighter problem. The authors of this paper have
stated, that before its publication not a single metaheuristic approach has been
applied to this problem. In the paper [15], published later in 2014 a multiobjective
version of the firefighter problem is tackled using the NSGA-II algorithm [6] with
an autoadaptation mechanism selecting the best performing genetic operators.

In this paper the multiobjective version of the problem is approached, how-
ever, it is treated a little differently than in [15]. Instead of finding the Pareto
front we are interested in finding optimal firefighter assignments for a predefined
set of Nsub weight vectors W0 =

{
λ(1), . . . , λ(Nsub)

}
which determine the direc-

tions of the search as follows. Denote the number of objectives as m. A vector
λ(j) =

[
λ
(j)
1 , . . . , λ

(j)
m

]
determines a search direction in which the first objective

has weight λ
(j)
1 , the second λ

(j)
2 and so on. For example, a search along direc-

tion determined by the vector λ = [1/3, 2/3] generates strategies which are best
suited if we are interested twice as much in maximizing objective f2 as in max-
imizing f1. This is the approach that is employed in decomposition-based algo-
rithms such as the MOEA/D [14,23]. The approach presented in this paper is
intended to be used in research concerning dynamic optimization in the case of
the non-deterministic version of the firefighter problem which is currently under-
way. In the case of dynamic optimization the algorithm may modify the firefighter
assignment in response to changes in the environment. This in turn affects the
state of the environment. When a decomposition-based approach is used one can
simulate the interaction between the algorithm and the environment for each opti-
mization direction separately. Therefore, it is possible to assess in advance, what
will happen if certain weights are assigned to the objectives and it is possible
to compare various scenarios. To use a Pareto-based algorithm one would have
to employ a decision-making module which would choose which strategy should
interact with the simulation. Therefore, in this paper a decomposition-based app-
roach is adopted and, instead of the NSGA-II algorithm as in [15], a multipop-
ulation algorithm is used in which subpopulations optimize the solutions along
predefined weight vectors from the set W0. For the same reason the quality of
the results is measured by median values of the aggregated objectives rather than
using measures typically used for evaluating Pareto fronts such as the hypervol-
ume indicator. The algorithm used in this paper is based on the previous work
[16] which introduced the Sim-EA algorithm. This multipopulation algorithm is
combined with the operator autoadaptation mechanism used in [15].

To sum up, while this paper uses some of the techniques presented in previous
works it introduces the following new elements. Compared to the previous work
on the multiobjective firefighter problem [15] the approach was changed from a
Pareto-based to a decomposition-based optimization. Following that a different
algorithm was employed. With respect to [16] the obvious difference is that this

186 K. Michalak

paper tackles a different problem. From this follows that a different measure
for choosing subpopulations for migration has to be used. Also, an operator
autoadaptation mechanism is used in this paper and an additional migration
strategy is proposed.

The rest of the paper is structured as follows. In Sect. 2 the single and multi-
objective versions of the firefighter problem are defined. Section 3 presents the
algorithm proposed for solving the multiobjective firefighter problem. Section 4
describes the experimental setup and presents the results. Section 5 concludes
the paper.

2 Problem Definition

The single objective version of the firefighter problem can be formalized as fol-
lows. An undirected graph G = 〈V,E〉 with Nv vertices is given. Each vertex of
the graph G can be labeled using labels from the set L = ‘B’, ‘D’, ’U’ with the
interpretation ‘B’ = burning, ‘D’ = defended and ‘U’ = untouched. Further, we
will use a function l : V → L to denote the labelling of the vertices of the graph
G. The spread of fire is simulated in discrete time steps. Initially, vertices from
a non-empty set ∅ �= S ⊂ V are labelled ‘B’ and the remaining ones are labelled
’U’. In each of the following steps of the simulation two events occur. First, a
predefined number Nf of still untouched nodes of the graph G (labelled ‘U’)
become defended by firefighters (i.e. become labelled ‘D’). Then the fire spreads
from the nodes labelled ‘B’ to all the neighbouring nodes labelled ‘U’. The nodes
marked ‘D’ remain defended until the end of the simulation and the fire cannot
spread to them. The simulation is stopped when either the fire is contained (i.e.
there are no nodes labelled ‘U’ to which the fire could spread via the edges of
the graph G without having to go through a defended node) or when all the
undefended nodes are burning. The order in which firefighters are assigned can
be represented as a permutation P of the numbers 1, . . . , Nv. When firefighters
are assigned the first Nf yet untouched nodes are taken from the permutation P .
Thus, in every time step exactly Nf firefighters are assigned (with the exception
of the final time step in which the number of the untouched nodes may be less
than Nf).

In the single objective version of the problem the goal is to find such per-
mutation P that maximizes the number of non-burning nodes at the end of the
simulation. In the multiobjective version there are m values vi(v), i = 1, . . . , m
assigned to each node v in the graph. Each of the vi values for a given node v
represents the value of this node with respect to a certain criterion. In the con-
text of fire containment these criteria could represent, for example, the financial
value v1(v) and the cultural importance v2(v) of the items stored at the node v.

To calculate the values of the objectives fi, i = 1, . . . , m attained by a given
permutation P one has to perform the simulation of the fire spread. After the
simulation is finished, the values of the objectives are calculated as:

The Sim-EA Algorithm with Operator Autoadaptation 187

fi =
∑

v∈V :l(v) �=′B′
vi(v) (1)

where:
vi(v) is the value of a given node according to the i-th criterion.

As mentioned in the introduction, the approach adopted in this paper is a
decomposition-based optimization. Therefore, we actually search for a set of Nsub

solutions each of which is the best possible one for a subproblem in which the
objective function is an aggregation of the original objectives fi parameterized
by a certain weight vector λ(j) =

[
λ
(j)
1 , . . . , λ

(j)
m

]
, where j = 1, . . . , Nsub.

3 The Sim-EA Algorithm

The Sim-EA algorithm presented in this paper is a multipopulation approach.
Instead of forming one big population the specimens are divided into Nsub sub-
populations, each consisting of Npop specimens and a migration mechanism is
used to facilitate information transfer between subpopulations as presented in
Fig. 1. Thus, the Sim-EA algorithm is based on an island model [21].

Fig. 1. An overview of elements of the Sim-EA algorithm.

The general outline of the algorithm is based on the previous work [16] in
which the Sim-EA algorithm was used for optimizing several similar instances of
the TSP problem at once. The overview of the Sim-EA algorithm is presented
in Algorithm 1.

3.1 Migration

The key element of the Sim-EA algorithm is the migration mechanism which is
based on a function used to determine how likely the specimens are to migrate

188 K. Michalak

Algorithm 1. The overview of the Sim-EA algorithm [16].
IN: Ngen - the number of generations

Npop - the size of each subpopulation
Nsub - the number of subpopulations
Nimig - the number of migrated specimens

Calculate the matrix S[Nsub×Nsub] using equation (2)

Initialize subpopulations P1, P2, . . . , PNsub .
Evaluate specimens in P1, P2, . . . , PNsub .
for g = 1, . . . , Ngen do

Apply genetic operators
Evaluate newly created specimens
for d = 1, . . . , Nsub do // Source populations

s = SelectSourcePopulation(S, d)
P ′
d = the Nimig best specimens from Ps

end for
for d = 1, . . . , Nsub do // Migration

for x ∈ P ′
d do

Evaluate x using λ(d)

P ′
d = P ′

d − {x}
w = the weakest specimen in Pd

Pd = Pd − {w}
b = BinaryTournament(w, x)
Pd = Pd ∪ {b}

end for
end for
for d = 1, . . . , Nsub do // Elitist selection

e = the best specimen in Pd

Pd = Select(Pd\{e}, Npop − 1)
Pd = Pd ∪ {e}

end for
end for

between two given subpopulations. In the previous work squared differences
between cost matrices used in TSP instances were used. In this paper all subpop-
ulations solve the same instance of the firefighter problem (i.e. they work on the
same graph G), but have objective functions aggregated using different weight
vectors λ(j). Consequently, the function Si,j used for determining how likely the
specimens are to migrate between subproblems parameterized by weight vectors
λ(i) and λ(j) is calculated as the dot product:

Si,j = λ(i) · λ(j). (2)

In preliminary tests two approaches were considered, one in which the dot
product (2) is calculated using normalized vectors and a second one using non-
normalized vectors. Since the latter approach yielded better results it was used
in the experiments presented in this paper. Note, that the values of the dot

The Sim-EA Algorithm with Operator Autoadaptation 189

product (2) may be affected by the scaling of the objectives. In this paper both
objectives were of the same magnitude, but in general it might be necessary to
normalize the objectives before calculating the dot product (2).

The migration is performed in two phases. First, for each subpopulation Pd,
d = 1, . . . , Nsub a source population Ps is determined according to the migration
strategy. A set of immigrants P ′

d is built by selecting the Nimig best specimens
from the population Ps. In the second phase the immigrants from the sets P ′

d are
merged into the populations Pd for d = 1, . . . , Nsub. During the merge phase each
immigrant participates in a binary tournament [17] against the currently weakest
specimen in the existing population Pd. If the immigrant has higher value of the
objective function aggregated using λ(d) it replaces the weakest specimen in the
population Pd.

The selection of the source subpopulations Ps depends on the adopted migra-
tion strategy. In the “rank” strategy all subpopulations Ps′ except Pd are
ranked according to the increasing values of the dot product (2). From them
one subpopulation Ps is selected using roulette wheel selection with probabili-
ties proportional to the ranks of the subpopulations. In the “highest” strategy
the source population Ps is the one with the highest value of the dot product
(2), “uniform” is a strategy in which the source population Ps is selected ran-
domly with uniform probability distribution among all populations except Pd

and “none” means that no migration is performed.

3.2 Operator Autoadaptation

In the previous paper [15] in which the multiobjective firefighter problem was
tackled using the NSGA-II algorithm an operator autoadaptation mechanism
was used. From the results presented in the aforementioned paper it follows
that various operators (e.g. different crossover procedures) perform well on vari-
ous stages of the search. Therefore, in this paper an autoadaptation mechanism
was also used. The autoadaptation mechanism used in this paper is based on
success rates of the genetic operators. It counts the number of times each opera-
tor was used ni and the number of improvements obtained bi. Since in this paper
a decomposition-based approach is used the improvements are determined with
respect to the aggregated objective function not with respect to the individual
objectives. However, after one application of the crossover operator the value of
bi can increase by more than 1, because each offspring improving on each parent
is counted separately. Thus, a maximum increase of 4 can be obtained (both
offspring improving on both parents). From the ni and bi values the success rate
si = bi/ni is calculated (if ni = 0 then si = 0).

The si values are used to calculate probabilities with which individual opera-
tors are used. A minimum probability Pmin is given to each of the Nop operators
and the remaining 1 − NopPmin is divided proportionally to success rates si
of the operators. When an operator is to be applied a roulette wheel selection
is performed. The selection of crossover and mutation operators is performed
separately.

190 K. Michalak

In this paper a set of 10 crossover operators and 5 mutation operators
was used for genetic operations. The crossover operators were: Cycle Crossover
(CX) [19], Linear Order Crossover (LOX) [9], Merging Crossover (MOX) [18],
Non-Wrapping Order Crossover (NWOX) [5], Order Based Crossover (OBX)
[20], Order Crossover (OX) [11], Position Based Crossover (PBX) [20], Partially
Mapped Crossover (PMX) [12], Precedence Preservative Crossover (PPX) [1,2]
and Uniform Partially Mapped Crossover (UPMX) [4]. The mutation operators
were: displacement mutation, insertion mutation, inversion mutation, scramble
mutation and transpose mutation.

Due to limited space in this paper it is not possible to present details con-
cerning the performance of the operators, but in general it can be stated that the
CX and PPX crossover operators performed best, while the OX crossover opera-
tor performed worst. Among the mutation operators the displacement mutation
performed best with scramble and inversion mutation only a little worse. The
transpose mutation performed worst.

4 Experiments and Results

In the experiments the Sim-EA algorithm with various migration strategies was
tested. Also, a single population approach known from the MOEA/D algorithm
was used for comparison. The MOEA/D algorithm used the same operators and
the autoadaptation mechanism as the Sim-EA.

Test data sets were prepared as follows for graph size Nv = 50, 75, 100, 125,
150, 175, 200, 225 and 250. The graph G was generated by randomly determining,
for each pair of vertices vi, vj , if there exists an edge 〈vi, vj〉. The probability of
generating an edge was set to Pedge = 2.5/Nv in order to ensure that the average
number of edges adjacent to a vertex was similar for all the instances. Costs were
assigned to all vertices of the graph G by drawing pairs of random values with
uniform probability on a triangle formed by points [0, 0], [0, 100], [100, 0]. Such
an assignment ensures that it is not possible to maximize both objectives at the
same time, because the sum of costs associated with a vertex cannot exceed 100.

In the experiments the performance of the Sim-EA algorithm with four migra-
tion strategies (highest, rank, uniform and none) and the MOEA/D algorithm
with three different parameter settings was tested. The number of subproblems
was set to Nsub = 20.

The Sim-EA algorithm was parameterized by setting the size of each of the
subpopulations to the instance size Nv. Therefore, the total number of specimens
used by the Sim-EA algorithm was Nspec = 20 · Nv. The number of generations
was set to Ngen = 250 generations for all problem instances.

The MOEA/D algorithm does not use subpopulations, therefore the para-
meter setting had to be different. The size of the population is determined by
a parameter H - the size of a step used for generating weight vectors. Because
there is exactly one weight vector assigned to each specimen the population size
is equal to the number of weight vectors. For an m-objective problem, weight

The Sim-EA Algorithm with Operator Autoadaptation 191

vectors λ(j) are generated by selecting all the possible m-element combinations
of numbers from the set:

{
0
H

,
1
H

, . . . ,
H

H

}
(3)

such that:

m∑

i=1

λ
(j)
i = 1. (4)

The number of weight vectors and at the same time the number of specimens
is Nspec = Cm−1

H+m−1. For a biobjective optimization problem (m = 2) the set of
weight vectors is W =

{
λ(j)

}
, j ∈ {0, . . . , H}, where:

λ(j) =
[

j

H
,
H − j

H

]
. (5)

Because in this paper we are interested in finding optimal solutions along
Nsub = 20 predefined directions the number of specimens in the experiments had
to be chosen in such a way, that each of the Nsub weight vectors is present in the
set W (i.e. W0 ⊂ W). In cases when the population size Nspec was larger than
Nsub additional Ni weight vectors were added between the main Nsub predefined
weight vectors as presented in Fig. 2.

Three different sets of parameters were used with the MOEA/D algorithm
(cf. Table 1). In the first parametrization MOEA/D20 the number of specimens
was 20 for all data sets (i.e. Nspec = Nsub). In the two remaining parameter
sets a larger population was used. From this larger population Nsub = 20 spec-
imens were associated with weight vectors from the set W0 which represented
the main search directions (i.e. the aggregations for which the best solutions had

Fig. 2. The configuration of weight vectors in the MOEA/D algorithm used for opti-
mization along Nsub = 5 main directions with the total population size Nspec = 17.

192 K. Michalak

Table 1. Parameter sets used in the experiments with MOEA/D algorithm.

Nv
MOEA/D20 MOEA/D210 MOEA/DNspec

Nspec Ngen Ni Nspec Ngen Ni Nspec Ngen Ni

50

20

400

0 210

200

10

1008 50 52

75 1000 500 1502 70 78

100 2000 750 2015 80 105

125 3000 1000 2509 90 131

150 5000 1400 3003 100 157

175 7000 1800 3516 110 184

200 10000 2700 4010 150 210

225 12000 2800 4504 160 236

250 15000 3600 5017 200 263

to be found). The remaining specimens were associated with search directions
between the main Nsub vectors. In the MOEA/D210 parametrization Ni = 10
specimens were added between each two main search directions, thus the total
population size was 210. In the MOEA/DNspec

parameter set the total number
of specimens in the MOEA/D algorithm was set to a number a little larger than
the total number of specimens Nspec used in the Sim-EA algorithm. To achieve
this a varying number Ni of additional specimens were used. To make a fair
comparison, the number of generations for each MOEA/D parameter set was
adjusted in such a way that the minimum runtime of the MOEA/D in each rep-
etition of the test was slightly larger than the maximum runtime of the Sim-EA
algorithm.

For each problem instance 30 repetitions of the test were performed for each of
the four migration strategies and for each parameter set used with the MOEA/D
algorithm. After completing Ngen generations the best result obtained along each
of the Nsub directions was recorded. From the gathered results median values
obtained in the 30 iterations were calculated. The results for all test instances
are summarized in Table 2. For each data set the best result is underlined. The
results are also presented in Fig. 3.

Table 2. Median values of the aggregated objective functions obtained in the
experiments.

Nv Sim-EA MOEA/D

None Highest Rank Uniform MOEA/D20 MOEA/D210 MOEA/DNspec

50 541.6037 566.8921 621.2476 620.8365 486.5366 532.4463 536.6768

75 642.7674 653.4373 714.5162 720.6106 545.0088 587.8820 590.2881

100 673.7599 687.6201 742.6952 738.5506 557.9805 582.8894 587.8565

125 736.4336 753.2498 792.7041 790.5849 739.4365 763.5474 780.1217

150 772.5983 787.7714 857.3251 851.2659 612.6652 640.4161 638.2581

175 783.4265 803.4243 838.2117 835.0432 636.6017 653.1362 657.8071

200 773.0628 788.0596 854.1746 848.2873 614.7756 637.8039 642.2385

225 876.5625 892.6258 948.5553 934.2622 651.9642 663.5777 693.1615

250 905.2262 925.0562 962.4042 971.3175 775.4714 794.873 840.8401

The Sim-EA Algorithm with Operator Autoadaptation 193

50 100 150 200 250400

500

600

700

800

900

1000

Instance size Nv

M
ed

ia
n

va
lu

e
of

 th
e

ag
gr

eg
at

ed
 o

bj
ec

tiv
e

fu
nc

tio
ns

Sim−EA (none)
Sim−EA (nearest)
Sim−EA (rank)
Sim−EA (uniform)
MOEA/D20
MOEA/D210
MOEA/DN

spec

Fig. 3. Median values of the aggregated objective functions obtained in the
experiments.

From the results presented in Table 2 it is clear that the Sim-EA algo-
rithm produces the best results mainly with the “rank” migration strategy.
The “uniform” migration strategy usually gives a little worse results, but for
two datasets it outperformed the “rank” strategy. Graphs presented in Fig. 3
show that the median value of the objectives obtained by the Sim-EA algorithm
increases approximately linearly with the instance size Nv. In the case of the
MOEA/D algorithm there is a sharp increase in the obtained median values for
Nv = 125 and a decrease for the range Nv ∈ [150, 200].

In order to verify the statistical significance of the results the Wilcoxon rank
test [22] was performed. This particular test was used because it does not assume
the normality of the distributions which may be hard to ensure in practical
applications. Also, this test was recommended in a recent survey [7] as one of the
methods suitable for statistical comparison of results produced by metaheuristic
optimization algorithms. Table 3 presents, for each instance size Nv, the best and

Table 3. Best performing algorithms and the results of the statistical verification.

Nv Best (1st) Second-best (2nd) p-value 1st : 2nd p-value rank : none

50 Sim-EA (rank) Sim-EA (uniform) 4.0938 · 10−1 2.5220 · 10−89

75 Sim-EA (uniform) Sim-EA (rank) 3.5698 · 10−1 6.1642 · 10−93

100 Sim-EA (rank) Sim-EA (uniform) 2.5766 · 10−6 1.8897 · 10−90

125 Sim-EA (rank) Sim-EA (uniform) 2.3406 · 10−7 3.6572 · 10−93

150 Sim-EA (rank) Sim-EA (uniform) 8.1925 · 10−14 1.5537 · 10−94

175 Sim-EA (rank) Sim-EA (uniform) 3.9639 · 10−1 2.2641 · 10−88

200 Sim-EA (rank) Sim-EA (uniform) 1.4020 · 10−2 1.4035 · 10−94

225 Sim-EA (rank) Sim-EA (uniform) 1.9732 · 10−5 1.1567 · 10−89

250 Sim-EA (uniform) Sim-EA (rank) 1.4062 · 10−2 1.7508 · 10−88

194 K. Michalak

the second-best algorithm. The “p-value 1st : 2nd” is the result of a statistical test
with the null hypothesis that the median values are the same for both algorithms.
The “p-value rank : none” is the result of a statistical test comparing the Sim-
EA algorithm with rank-based migration and the Sim-EA algorithm without
migration. The p-values that correspond to the significance of 95% or better
(i.e. p-value ≤ 0.05) are underlined.

Comparison of the best and the second-best algorithm for Nv = 100, 125,
150, 200 and 225 confirmed that the difference in favour of the “rank” strategy
is significant at the significance level 0.05. In the case of Nv = 50 and 175 the
significance was not confirmed. Obviously, for Nv = 75 and 250 the differences
are in favour of the “uniform” strategy. These differences were shown to be
insignificant in the case of Nv = 75 and significant in the case of Nv = 250.

5 Conclusion

In this paper the multipopulation algorithm Sim-EA was applied to the multi-
objective firefighter problem. In the experiments it was observed that the multi-
population approach can utilize computational resources more effectively than a
traditional decomposition-based method. The best performing migration scheme
is the “rank” scheme in which the source population for migration is randomly
chosen with probability proportional to the rank based on the dot product of
weight vectors associated with the source and destination subpopulations. A lit-
tle worse performing migration scheme is the “uniform” scheme in which the
source population is randomly chosen with uniformly distributed probability.
For two datasets, however, it outperformed the “rank” scheme. Migration sig-
nificantly improves the results obtained by the Sim-EA algorithm. Statistical
comparison of the Sim-EA with the rank-based migration with Sim-EA without
migration confirmed with a very high statistical significance that the rank-based
Sim-EA performs better.

Further work on the presented topic is currently underway and it is focused
on applying the approach described in this paper to dynamic optimization of a
non-deterministic version of the firefighter problem.

References

1. Bierwirth, C., Mattfeld, D.C., Kopfer, H.: On permutation representations for
scheduling problems. In: Proceedings of the 4th International Conference on Par-
allel Problem Solving from Nature, pp. 310–318. Springer (1996)

2. Blanton, J.L., Jr., Wainwright, R.L.: Multiple vehicle routing with time and capac-
ity constraints using genetic algorithms. In: Proceedings of the 5th International
Conference on Genetic Algorithms, pp. 452–459. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA (1993)

3. Blum, C., Blesa, M.J., Garćıa-Mart́ınez, C., Rodŕıguez, F.J., Lozano, M.: The
firefighter problem: application of hybrid ant colony optimization algorithms. In:
Blum, C., Ochoa, G. (eds.) EvoCOP 2014. LNCS, vol. 8600, pp. 218–229. Springer,
Heidelberg (2014)

The Sim-EA Algorithm with Operator Autoadaptation 195

4. Cicirello, V.A., Smith, S.F.: Modeling GA performance for control parameter opti-
mization. In: Whitley, L. (ed.) GECCO-2000: Proceedings of the Genetic and Evo-
lutionary Computation Conference: A Joint Meeting of the Ninth International
Conference on Genetic Algorithms (ICGA-2000) and the Fifth Annual Genetic Pro-
gramming Conference (GP-2000). Morgan Kaufmann Publishers, Massachusetts
(2000)

5. Cicirello, V.A.: Non-wrapping order crossover: an order preserving crossover oper-
ator that respects absolute position. In: Proceedings of the 8th Annual Conference
on Genetic and Evolutionary Computation, pp. 1125–1132. ACM, New York, NY,
USA (2006)

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 6, 182–197 (2002)

7. Derrac, J., Garca, S., Molina, D., Herrera, F.: A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

8. Develin, M., Hartke, S.G.: Fire containment in grids of dimension three and higher.
Discrete Appl. Math. 155(17), 2257–2268 (2007)

9. Falkenauer, E., Bouffouix, S.: A genetic algorithm for job shop. In: Proceedings of
the 1991 IEEE International Conference on Robotics and Automation, pp. 824–829
(1991)

10. Feldheim, O.N., Hod, R.: 3/2 firefighters are not enough. Discre. Appl. Math.
161(12), 301–306 (2013)

11. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison Wesley, Reading (1989)

12. Goldberg, D.E., Lingle Jr, R.: Alleles, loci, and the traveling salesman problem.
In: Grefenstette, J.J. (ed.) Proceedings of the First International Conference on
Genetic Algorithms and Their Applications, pp. 154–159. Lawrence Erlbaum Asso-
ciates Publishers, Hillsdale (1985)

13. Hartnell, B.: Firefighter! an application of domination. In: 20th Conference on
Numerical Mathematics and Computing (1995)

14. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto
sets, MOEA/D and NSGA-II. IEEE Trans. Evolut. Comput. 13(2), 284–302 (2009)

15. Michalak, K.: Auto-adaptation of genetic operators for multi-objective optimiza-
tion in the firefighter problem. In: Corchado, E., Lozano, J.A., Quintián, H., Yin,
H. (eds.) IDEAL 2014. LNCS, vol. 8669, pp. 484–491. Springer, Heidelberg (2014)

16. Michalak, K.: Sim-EA: an evolutionary algorithm based on problem similarity. In:
Corchado, E., Lozano, J.A., Quintián, H., Yin, H. (eds.) IDEAL 2014. LNCS, vol.
8669, pp. 191–198. Springer, Heidelberg (2014)

17. Miller, B.L., Goldberg, D.E.: Genetic algorithms, tournament selection, and the
effects of noise. Complex Syst. 9, 193–212 (1995)

18. Mumford, C.L.: New order-based crossovers for the graph coloring problem. In:
Runarsson, T.P., Beyer, H.G., Burke, E., Merelo-Guervós, J.J., Darrell Whitley,
L., Yao, X. (eds.) PPSN IX. LNCS, vol. 4193, pp. 880–889. Springer, Heidelberg
(2006)

19. Oliver, I.M., Smith, D.J., Holland, J.R.C.: A study of permutation crossover opera-
tors on the traveling salesman problem. In: Proceedings of the Second International
Conference on Genetic Algorithms on Genetic Algorithms and Their Applications,
pp. 224–230. Lawrence Erlbaum Associates Inc., Hillsdale, NJ, USA (1987)

20. Syswerda, G.: Schedule optimization using genetic algorithms. In: Davis, L. (ed.)
Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)

196 K. Michalak

21. Whitley, D., Rana, S., Heckendorn, R.B.: The island model genetic algorithm: on
separability, population size and convergence. J. Comput. Inf. Technol. 7, 33–47
(1998)

22. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bull. 1(6),
80–83 (1945)

23. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evolut. Comput. 11(6), 712–731 (2007)

True Pareto Fronts for Multi-objective AI
Planning Instances

Alexandre Quemy(B) and Marc Schoenauer

TAO Project, INRIA Saclay and LRI - University of Paris-Sud and CNRS,
Orsay, France

{alexandre.quemy,marc.schoenauer}@inria.fr

Abstract. Multi-objective AI planning suffers from a lack of bench-
marks with known Pareto Fronts. A tunable benchmark generator is pro-
posed, together with a specific solver that provably computes the true
Pareto Front of the resulting instances. A wide range of Pareto Front
shapes of various difficulty can be obtained by varying the parameters
of the generator. The experimental performances of an actual implemen-
tation of the exact solver are demonstrated, and some large instances
with remarkable Pareto Front shapes are proposed, that will hopefully
become standard benchmarks of the AI planning domain.

1 Introduction

Contrary to single objective problems, Multi-Objective Problems (MOP) involve
several contradictory criteria to be optimized. This distinction entails a modifi-
cation of the concept of optimality itself: the optimal solution of a MOP is not
a single solution but a set of solutions that represents trade-offs known as the
Pareto Set. This set is made of the non-dominated points of the search space, i.e.
the solutions that cannot be improved w.r.t. one objective without deteriorate
at least another one. Formally, x dominates y if ∀i ∈ {1, . . . , n}, fi(x) � fi(y)
and ∃j ∈ {1, . . . , n}, fj(x) � fj(y). The projection of the Pareto Set over the
objective space is called the Pareto Front.

Many benchmark suites exist for continuous multi-objective optimization
(the famous ZDT [9], IHR [1], . . .), for which the exact Pareto Front can be
analytically computed, and with known difficulties (e.g. dimensionality, shape
of the Pareto Fronts, existence of local Pareto-optima, . . .). For combinatorial
optimization, however, the situation is not yet so clear, and whereas there exist
famous benchmark problems of all sizes, their true Pareto Fronts are only exactly
known for the simplest problems (see e.g., MOCOLIB1, offering several instances
of several well-known combinatorial benchmark problems).

The benchmark suite introduced in the present work is concerned with AI
planning: A planning domain D is defined by a set of predicates that define

1 http://www.mcdmsociety.org/MCDMlib.html.

c© Springer International Publishing Switzerland 2015
G. Ochoa and F. Chicano (Eds.): EvoCOP 2015, LNCS 9026, pp. 197–208, 2015.
DOI: 10.1007/978-3-319-16468-7 17

http://www.mcdmsociety.org/MCDMlib.html

198 A. Quemy and M. Schoenauer

the state of the system when instantiated and a set of possible actions that
can be triggered in states where their pre-conditions are satisfied, resulting in a
new state. A planning problem instance PD(I,G) is defined on a given planning
domain D by a list of objects, used to instantiate the predicates to define the
states, an initial state I and a goal state G. The aim is to come up with an
optimal feasible plan, i.e., a set of actions that, when applied in turn to the initial
state, lead the system to the goal state, and is optimal w.r.t. a given measure:
the number of actions, or the total cost of the plan when actions have non-
uniform costs, or the total makespan (total duration of the plan) when actions
have durations, and can be run in parallel.

MiniZenoTravel is a simple temporal planning domain related to logis-
tics, inspired by the well-known ZenoTravel problem introduced in the 3rd
edition of the IPC series2. It involves cities, passengers, and planes (see e.g.,
Fig. 1); Planes can fly from one city to another when a link exists (on Fig. 1, the
flight duration is attached to the link); Planes fly either empty, or carrying a
unique passenger – and these are the only possible actions. A MiniZenoTravel
instance is defined by the number of cities and the graph of the possible flights
between them, a number of passengers and a number of planes. In the initial
state I, all passengers and planes are in city cI , and in the goal state G, all
passengers must be in city cG. Previous work proposed a multi-objective version
of these benchmarks called MultiZenoTravel, by adding a cost for landing in
some cities: the second objective is to minimize the total cost of the plan [2,8].
The latter work demonstrated that such problems could provide Pareto Fronts
of various shapes and difficulties. However, the authors were only able to pro-
vide the exact Pareto Front for very small instances, due to the combinatorial
explosion of the solution space.

The present work formally analyzes the MultiZenoTravel benchmarks
and provides an algorithm to compute their true Pareto fronts in reasonable time,
even for very large instances. Beyond providing a generic way to generate Pareto
Fronts of tunable complexities for AI Planning, the proposed MultiZeno-
Travel benchmarks will allow testing different multi-objective optimization
algorithms, from generic decomposition methods (weighted sum aggregation,
Tchebycheff decomposition, Boundary Intersection approach – see e.g., [6]) to
Pareto-based Evolutionary Algorithms, on complex benchmarks for which the
Pareto Front is exactly known.

The paper is organized as follows: Sect. 2 formally presents the MultiZeno-
Travel benchmark, proving some properties of their Pareto optimal plans.
Building on these properties, Sect. 3 proposes the ZenoSolver algorithm to
actually derive the true Pareto Front for these instances. Sample experimental
results demonstrate the diversity of Pareto Fronts that can be obtained, and
gives performance measurements of its complexity on large instances.

2 http://ipc.icaps-conference.org/.

http://ipc.icaps-conference.org/

True Pareto Fronts for Multi-objective AI Planning Instances 199

cI

c1

ci

cn

cG
di di

d1i

din

d1 d1

dn dn

d1n

Fig. 1. A schematic view of a general MultiZenoTravel problem.

2 MultiZenoTravel Problem

2.1 Instances

Let us introduce some notations related to the planning problem briefly pre-
sented in the introduction: a MultiZenoTravel instance (Fig. 1) is defined by
the following elements:

– n central cities, organized as a clique in which every node is connected to CI

and CG, respectively the initial city and the goal city.
– c ∈ (R+)n, where ci is the cost for landing in Ci.
– D ∈ (R+)n×n, where Dij is the flying time between Ci and Cj .
– dI ∈ (R+)n, where dI

i is the flying time between CI and Ci.
– dG ∈ (R+)n, where dG

i is the flying time between Ci and CG.
– p planes, initially in CI , that have a capacity of an unique person.
– t persons, initially in CI .

As said, the goal is to carry all t persons, initially in cI , to cG using p planes,
minimizing both the makespan and the cost of the plan. In order to ease the
identification of the true Pareto Front, a symmetry constraint is added: ∀i ∈
[1, n], dI

i = dG
i and from thereon we will refer to a unique vector d.

Without loss of generality, all pairs (di, ci) are assumed to be pairwise dis-
tinct. Otherwise, the 2 cities can be “merged” and the resulting n − 1 cities
problem is equivalent to the original n cities problem, as there exist no city
capacity constraints. Finally, we only consider cases where t ≥ p, as the problem
is otherwise trivial.

2.2 Pareto Optimal Plans

Let us make another simplifying assumption:
Assumption A1: ∀(i, j) ∈ [1, n]2, di + dj < dij

3. Then the following holds.

3 This might look unrealistic in real-world logistic domain. However, we hypothesize
that the proposition still holds with the weaker condition that for any cities Ci, Cj , Ck

(if we state the cost of CI and CG are respectively C0 and Cn+1), dik ≤ dij + djk
(triangle inequality).

200 A. Quemy and M. Schoenauer

Proposition: Pareto-optimal plans are plans where exactly 2t − p (possibly
identical) central cities are used by a flight.

Proof: Consider a plan where a person flies from Ci to Cj . Using the same
plane, the same person could fly instead from Ci to CG, and the plane would
return empty to Cj . The plan could continue unchanged from thereon: because
of the hypothesis on makespans, the needed resource would be in Cj on time.
Moreover, the total cost is unchanged, and the total makespan is lower or equal
to the original one: the new plan thus Pareto-dominates the original one.

Iterating the same reasoning for each person, and each empty plane, we
conclude that there are no flights between central cities in Pareto-optimal plans.
Thus bringing the t persons from CI to CG will amount to carry each person
through one central city: t flights will be needed from CI to one Ci, then t flights
from Ci to CG. Finally, because planes do not need to come back from CG in
the end, only t − p flights back empty will be needed, possibly through some
different central cities – hence the result. �	
PPPs and Admissible PPPs: According to the above proposition, a Possibly
Pareto-optimal Plan (PPP) is defined by 2 tuples, namely e ∈ [0, n]t for cities
involved in eastbound flights, and w ∈ [0, n]t−p for westbound flights. Never-
theless, e and w do not hold any information about which plane will land in a
particular city. This is the reason why there exists many feasible schedules, i.e.,
schedules that actually are feasible plans for p planes4 using the corresponding
4t−2p edges. There are at most n(2t−p) possible PPP but it is clear that the set
of PPPs contains many redundancies, that can easily be removed by ordering
the indices:

Definition: An admissible PPP is a pair of E ×W , where E = {e ∈ [1, n]t;∀i ∈
[1, t − 1], dei

≥ dei+1} and W = {w ∈ [1, n]t−p;∀i ∈ [1, t − p − 1], dwi
≥ dwi+1}.

Number of admissible PPPs: Let Km
k be the set of k-multicombinations (or

multi-subset of size k) with elements in a set of size m. The cardinality of Km
k

is Γm
k =

(
m+k−1

k

)
. As E is in bijection with Kn

t , and W with Kn
t−p, the number

of PPP is Γn
t Γn

t−p, i.e.,
(
n+t−1

t

)(
n+(t−p)−1

t−p

)
.

Cost of a PPP: Given the PPP C = (e, w) ∈ E×W , the cost of any plan using
only the cities in e and w is uniquely defined by Cost(C) =

∑
ei∈e

cei
+

∑
wi∈w

cwi
.

Makespan of a PPP: The makespan of a PPP is thus that of the shortest
schedule that uses its 4t − 2p edges in a feasible way. Trivial upper and lower
bounds for the shortest makespan of a PPP C are respectively MS(C), the
makespan of the sequential plan (i.e., that of the plan for a single plane that
would carry all persons one by one), and ML(C), the makespan of the perfect
plan where none of the p planes would ever stay idle. As discussed in Sect. 3,
these bounds are useful to prune the set of PPPs.

4 Most of them are probably not Pareto-optimal, but w.r.t the previous proposition,
any schedule resulting from a larger tuple e or w would be Pareto-dominated.

True Pareto Fronts for Multi-objective AI Planning Instances 201

MS(C) = 2(
∑

ei∈e

dei
+

∑

wi∈w

dwi
) ML(C) =

MS(C)
p

Greedy domination: Given two PPP C and C ′, C greedily dominates C ′ if
MS(C) ≤ ML(C ′) and Cost(C) ≤ Cost(C ′).

2.3 Computing the Shortest Makespan

Flight Patterns. Clearly, within a PPP, all possible plane moves can be cate-
gorized into only 3 patterns:

P1: plane leaves CI (non empty), flies eastward to city Ci, and goes on to CG.
P2: plane leaves CG (empty), flies westward to city Ci, and goes on to CG.
P3: two planes are involved here; first plane leaves CI (with a passenger), flies
to city Ci, and goes back empty to CI ; second plane leaves CG empty, flies to
Ci, and flies back with the passenger to CG. Note that there can be some delay
between the drop-off of the person at the central city, and the arrival of the
second plane.

Given a feasible plan using only the three above patterns, let αE , αW , and β be
the numbers of effective P1, P2, and P3 patterns respectively. It is clear that β
entirely determines αE and αW , as αW = t−p−β and αE = t−β. Considering a
PPP C, it is possible for a given β to have multiple choices for the cities involved
in P3. Each choice is denoted βset and the set of βset the β-PowerSet.

The optimal makespan for a given admissible PPP C is the lowest makespan
obtained for all βset ∈ β-PowerSet. Once the optimal makespan for a couple
(C, βset) determined, iterating over the β-PowerSet held by C returns the optimal
makespan for C. Finally, iterating the process over the set of PPP returns the
Pareto Front for the considered instance.

The method to compute the optimal makespan for a particular couple
(C, βset) is broken down into two steps. In a first step, each βset defines a sub-
problem without any P3 that is easy to solve. The second step is to take into
account the P3 patterns in C. After detailing these two steps, we will give a
constructive proof that the obtained makespan is optimal.

Step 1: Handling P3-Free PPPs. For a given ((e, w), βset) denote e′ = e\βset,
i.e. the tuple e from which all elements of βset have been removed, and w′ =
w\βset defined similarly. As a result, ((e′, w′), ∅) is the subproblem of ((e, w), βset)
that does not contain any P3 (β′ = 0).

For a PPP with β = 0, greedy Algorithm 1 dispatches the longest flight
durations first, assigning them to the available planes with shortest ‘private’
makespan (who have yet flown the less), ending with the one-way last flights
from CI to CG (planes end in CG). The algorithm returns the flight durations
(D1

k) for all planes k (to be used in the second step), and the optimal makespan
for the subproblem is obviously max

k
(D1

k).

202 A. Quemy and M. Schoenauer

Algorithm 1. Computing the optimal makespan of PPP (e, w) when β = 0
i ← 1 ; j ← 1 {Indices of cities in e and w resp., longest durations first}
Dk ← 0, k = 1, . . . , p {‘Private’ makespan for plane k}
Sk ← EAST, k = 1, . . . , p {All planes are in CI , going eastward}
while j ≤ t − p do

k ← ArgMini(Di) {Plane with shortest private makespan, in CI or CG}
if Sk = EAST then

Dk ← Dk + 2dei {From CI to CG through city Cei}
Sk ← WEST ; i ← i + 1

else
Dk ← Dk + 2dwj {From CG to CI through city Cwj}
Sk ← EAST ; j ← j + 1

end if
end while {Are there persons and planes left in CI?}
while i ≤ t do

k ← ArgMin
i;Si=EAST

(Di) {Plane in CI with shortest private makespan}
Dk ← Dk + 2dei {From CI to CG through city Cei}
Sk ← WEST ; i ← i + 1

end while
return (Dk)k=1,...,p {All private makespans are needed for the second step}
Makespan (e, w) = max

k=1,...,p
{Dk}

Step 2: Tackling Patterns P3. The second step consists in dispatching the
durations of P3 patterns among the planes according to their previous flight
durations (D1

k)k=1,...,p, by sequentially assigning the longest P3 flight to the two
planes with the smallest current flight durations. This can be performed greedily
again, with a slightly modified version of the Algorithm 1, if we only consider
the flight durations.

However, within a P3 pattern, if the plane coming from CG lands in the cen-
tral city before the person has yet arrived from CI , it has to wait. Consequently,
it is possible that the makespan of the plan is not simply the sum of the pat-
tern durations. Indeed, the described algorithm is not taking into account the
possibility of a waiting point and this is the reason why we first have to dis-
cuss the construction of a feasible plan according to the final vector of durations
(D2

k)k=1,...,p before discussing the optimality of max
k=1,...,p

{D2
k} as the makespan of

the associated PPP.

Proposition: It is always possible to construct a feasible plan with the makespan
returned by the two-steps method described above.

Proof by construction: Considering a P3 pattern performed by planes p1 in
CG and p2 in CI through city Ci. Their schedules will look something like:

p1 : CI → . . . → CG →
�
Ci → CG → . . . → CG

p2 : CI → . . . → CI →
♦
Ci → CI → . . . → CG

True Pareto Fronts for Multi-objective AI Planning Instances 203

Let � denote the time t1 when plane p1 arrives in Ci and ♦ the time t2 when
plane p2 (with the person) arrives in Ci. If t2 > t1 then plane p1 will have to wait
t2 − t1 in Ci before flying back to CG with the person. But the duration vector
(D2

k) returned by the two steps algorithm is computed assuming no waiting
point. Consequently, the proposition is equivalent to assert that we can always
build a plan without any waiting point.

In order to do so, for each P3, the idea is to perform the westward part as
early as possible, and on the opposite, to perform the eastward part as late as
possible, thus ensuring that there is no waiting time.

In order to construct such an optimal plan, we will remember the cities of
every plane and every pattern during both previous steps of the algorithm. From
there on, let us consider now only planes that have to perform at least one P3
pattern.

1. For each plane, select the one with the maximum number of P3 patterns to
be performed. In case of tie, select the plane with longest P3 duration, or the
plane with the largest current ‘private’ makespan.

2. Construct a partial schedule with only P1 and P2 patterns (Step 1 above).
3. For every ‘not already started’ P3 pattern, add its eastward part at the end

of the schedule by descending order of durations.
4. For every ‘already started’ P3 pattern, add its westward part at the beginning

of the schedule by ascending order of durations. �	

Example: Considering t = 7, p = 3, d = (2, 4, 6), C = (3, 3, 2, 2, 2, 1, 1)(3, 3, 2, 1)
and βset = {3, 2, 1} leads to the sub-problem C ′ = (3, 2, 2, 1)(3) with t′ = 4.
Step 1 above gives the ‘private’ makespans D1

k in the table below. Adding the
P3 patterns (Step 2) gives the ‘private’ makespans D2

k. The complete schedule
can then be built according to the method described above.

pi D1
i D2

i P3
p1 12 32 2
p2 24 28 1
p3 8 32 3

p1 : cI → c2 → cG → �3
c3 → cG → �2

c2 → cG → �1
c1 → cG

p2 : cI → ♦1
c1 → cI → c2 → cG → c3 → cI → c2 → cG

p3 : cI → ♦3
c3 → cI → ♦2

c2 → cI → c3 → cG

Hence, there is no waiting time within P3s, and the optimal makespan is 32.

Proposition: For a given PPP C and βset, the algorithm returns the optimal
makespan.

Proof: The incompressible time to transport all passengers, according to a given
βset is T = 4

∑
i∈βset

di + 2
∑

i∈{e′,w′}
di. A theoretical optimal plan with this pattern

repartition is a plan without any waiting point for any plane. The above algo-
rithm gives the optimal distribution of the set of times into p. Then, if a plan
can be constructed with such a makespan, it is optimal for the PPP and the
repartition of patterns. As it exists a method to construct such a plan, we can
conclude that the algorithm is optimal for the PPP C and βset. �

204 A. Quemy and M. Schoenauer

Complexity: Given a PPP, the worst case occurs when w ⊂ e and wi �= wj if
i �= j. Hence, for each value of β there are

(
t−p
β

)
possible βset. As 0 ≤ β ≤ t − p,

we will perform 2t−p iterations of the two step algorithm. A large upper-bound
for the whole PPP set is hence 2t−p

(
n+t−1

t

)(
n+(t−p)−1

t−p

)
.

However, if an upper bound on β is given by t − p, a tighter upper-bound
can be found as explained by the following example and due to the fact that
the worst case situation for a PPP rarely occurs in the whole PPP set, the real
number of iterations for a given instance is far from the above bound.

Example: Considering C = (3, 1, 1)(2, 1), the trivial upper bound is equal to
two but actually, it is impossible to operate a P3 using the city C2 since it is not
in the tuple e.

3 ZenoSolver

ZenoSolver is a C++11 software dedicated to generate and exactly solve Mul-
tiZenoTravel instances. Firstly, it allows to tune every parameter in order to
adjust the difficulty or to obtain different shapes of Pareto Fronts. In particular,
vectors c and d are generated using two user-defined functions, f and g, such
that ci = xcf(i) + yc and di = xdg(n − i) + yd, insuring that both objectives
are conflicting. Second, ZenoSolver outputs the corresponding PDDL file5, that
can be directly used by any standard AI planner.

Finally, ZenoSolver computes the true Pareto Front using the algorithm
described in Sect. 2, iterating over E ×W , storing for each value of the total cost
the PPP with best makespan to date, without explicitly constructing the set
of admissible PPPs. Using the Greedy domination, ZenoSolver implements a
pruning method that checks if the current PPP is dominated by any other PPP
already stored. As noted, the optimal makespan is lower or equal than the upper
bound MS , leading to an efficient pruning. Indeed, as PPPs are generated in an
approximated increasing order [4], this avoids to iterate over the whole set to
check the domination criterion.

Determining if the current PPP is dominated has complexity O(h) where h
is the number of different total costs. An obvious upper-bound for h is given
by (2t − p)(maxi(ci) − mini(ci)). However, in practice, S seems to have the
same order of magnitude than the exact Pareto Front. In addition, S is the only
structure kept in memory, thus, from this point of view, ZenoSolver turns out
to be near-optimal regarding the memory usage (see Table 1).

3.1 Empirical Performances

Empirical complexity. The number of iterations is influenced by the number
of PPPs but also by their structure. Indeed, increasing n does not significantly
impact the average number of iterations per PPP since the upper-bound is 2t−p.
5 Planning Domain Definition Language, universally used now in AI Planning to

describe domains and instances.

True Pareto Fronts for Multi-objective AI Planning Instances 205

 0

 100

 200

 300

 400

 500

 600

 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

)

Passengers

 With pruning
 Without pruning

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20 40 60 80 100 120 140 160 180 200

T
im

e
(s

)

Cities

 With pruning
 Without pruning

Fig. 2. Time function of t (left) or n (right) for f(i) = g(i) = i.

 0

 5

 10

 15

 20

 25

 30

 2 4 6 8 10 12 14 16 18 20

R
at

io
 It

er
at

io
ns

 /
P

P
P

Passengers

 With pruning
 Without pruning

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 20 40 60 80 100 120 140 160 180 200
R

at
io

 It
er

at
io

ns
 /

P
P

P

Cities

 With pruning
 Without pruning

Fig. 3. Ratio of iterations over the number of PPPs, function of t (left) or n (right)
for f(i) = g(i) = i.

On the opposite, increasing t leads to a dramatic growth of both the upper-
bound and the average number of iterations per PPP. Figure 2, which displays
the time vs t or n plots, confirms this remark: it requires the same CPU time
for t = 18 than for n = 165.

Pruning or not pruning? The benefits of the pruning method strongly rely
on the average number of iterations per PPP: Pruning becomes more efficient
as t increases, as shown by Fig. 2. Furthermore, increasing n while pruning can
degrade performances, even if there are less iterations than PPPs (Fig. 3 com-
pared to Fig. 2). Note that the number of iterations follows the number of PPPs
while increasing n, but explodes with t, which is in line with the previous remark.

Also, the efficiency pruning seems to be instance-dependent. Fixing n, t and
p, different generating functions result in different numbers of iterations and
CPU times, as demonstrated by Fig. 4. There are however some clear cases in
favor of pruning, e.g. with n = t = 9: ZenoSolver requires 1.26×109 iterations
and 2222 seconds without pruning. Using pruning, for f(i) =

√
i and g(i) = i, it

requires only 119000 iterations performed in 26 seconds, but 36000 iterations in
53 seconds with f(i) = log(i) and g(i) =

√
i. In general, using concave generating

functions leads to more optimistic conclusions regarding the benefits of pruning
PPPs.

206 A. Quemy and M. Schoenauer

 0

 100

 200

 300

 400

 500

 600

 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

)

Passengers

 With pruning
 Without pruning

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 4 6 8 10 12 14 16 18 20

R
at

io
 It

er
at

io
ns

 /
P

P
P

Passengers

 With pruning
 Without pruning

Fig. 4. Time and ratio for generating functions f(i) = g(i) = log(i).

Table 1. Increasing simultaneously n and t with f(i) = g(i) = i.

n t p PPP Size Iterations S Size Front Size Time (ms)

3 3 2 30 33 9 5 0

4 4 2 350 408 19 10 1

5 5 2 4410 6387 33 17 6

6 6 2 58212 109831 51 26 117

7 7 2 792792 1930385 73 37 2278

8 8 2 11042460 34648348 99 50 43572

9 9 2 156434850 630225670 129 65 1036772

10 10 2 2245709180 11600589455 163 82 20785211

3.2 Reference Large Instances

As mentioned in the introduction, the combinatorial multi-objective optimiza-
tion domain suffers from a lack of benchmarks with a known Pareto Front but
also with a concave or non-regular shapes6.

Even if anyone can generate different instances by tuning ZenoSolver para-
meters to obtain the desired front shape with accuracy, we identified some large
instances with totally different front shapes and complexities as displayed in
Fig. 5: They could be a basic set of representative instances for MultiZeno-
Travel, allowing fair comparisons between various solvers and approaches. Note
that more large instances with different complexities can be found on the website
of the Descarwin Project https://descarwin.lri.fr.

Table 2 gives the parameters used by ZenoSolver to build them, as well as
some statistics about their complexity. The choice of the generating functions is
purely empirical, guided by the fact that we would like to obtain mainly piecewise
concave fronts with uneven point distributions. This is why none of these fronts
is linear, though some seem to be at large scale (see detailed insets in some plots).
Also note the non-uniform distribution of the points on the Instances 3, and the
6 In the context of discrete optimization, the word “concave” seems rather abusive.

However, we will call here concave parts of a Pareto front where all points are above
the segment made of the two extreme points, w.r.t. the direction of optimization.

https://descarwin.lri.fr

True Pareto Fronts for Multi-objective AI Planning Instances 207

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0
 20000 40000 60000 80000 100000 120000 140000 160000

C
os

t

Makespan

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 20000 30000 40000 50000 60000 70000 80000

C
os

t

Makespan

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0
 1000 2000 3000 4000 5000 6000

C
os

t

Makespan

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 0 500 1000 1500 2000 2500 3000 3500

C
os

t

Makespan

Fig. 5. True Pareto Fronts for the instances described by Table 2. Remember that these
Pareto fronts are made of discrete points: the lines are visual helps to make the general
shape clear.

Table 2. Large instances: parameters and generation statistics.

Inst. n t p Generating functions Pareto# h PPP(k) Iter.(k) Time

1 20 6 2 5
2 i +

(i mod 2)
10

5
2 i +

(i mod 2)
10 409 4015 1568220 3317140 16h46

2 3 21 2 61 861 53 233 2006s

3 200 3 2
√

i
√

i 538 4963 270680 3906 1845s

4 8 26 25
√

i i 15 190 34176 60457 4240s

few Pareto points of the Instance 4 in spite of the complexity of this instance (26
persons), due to the small ratio p

t . The generating time strongly varies from some
minutes up to hours and thus confirm dependency on the generating functions
of the ZenoSolver complexity.

4 Conclusion and Perspectives

This paper has extended the MultiZenoTravel test suite in multi-objective
AI planning. Furthermore, not only did we provide here a general approach to
generate more complex Pareto fronts than in our previous work [2], but we also
proposed here ZenoSolver, an exact solver that is provably able to exactly solve
the multi-objective optimization problem (i.e., to identify the true Pareto front)
for even very large instances. The complete code is publicly available at https://
descarwin.lri.fr, making it easy for everyone to generate his/her own benchmark

https://descarwin.lri.fr
https://descarwin.lri.fr

208 A. Quemy and M. Schoenauer

instances. However, we also provided in this paper a few typical instances that
exhibit very different shapes of Pareto Fronts, for different levels of complexity.

The proposed benchmark suite opens the floor to sound comparative exper-
iments in a combinatorial domain where, as far as we know, no ground truth
(i.e., true Pareto front) existed for large instances. On-going work is concerned
with using these benchmarks to compare different multi-objective optimization
algorithms. Preliminary results [7] have already confirmed that Pareto-based
Evolutionary Algorithms outperform the basic weighted sum aggregation in the
case of complex non-convex Pareto fronts. However, deeper experiments should
be made with state-of-the-art decomposition algorithms in which the different
components of the decomposition cooperate (e.g., from the MOEA/D family [6]).
In particular, in the AI planning domain, using these benchmarks will hopefully
lead to more sound comparisons between Pareto and non-Pareto planners (see
e.g., [3,5]).

References

1. Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective
optimization. Evol. Comput. 15(1), 1–28 (2007)

2. Khouadjia, M.R., Schoenauer, M., Vidal, V., Dréo, J., Savéant, P.: Multi-objective
AI planning: evaluating DaEYAHSP on a tunable benchmark. In: Purshouse, R.C.,
Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol.
7811, pp. 36–50. Springer, Heidelberg (2013)

3. Khouadjia, M.R., Schoenauer, M., Vidal, V., Dréo, J., Savéant, P.: Pareto-based
multiobjective AI planning. In: Rossi, F. (ed.) IJCAI, pp. 2321–2328. AAAI Press,
Menlo Park (2013)

4. Knuth, D.E.: The Art of Computer Programming, Generating All Tuples and Per-
mutations. Addison-Wesley, Reading (2005)

5. Sroka, M., Long, D.: Exploring metric sensitivity of planners for generation of pareto
frontiers. In: Kersting, K., Toussaint, M. (eds.) 6 STAIRS, pp. 306–317. IOS Press,
Amsterdam (2012)

6. Zhang, Q., Li, H.: A multi-objective evolutionary algorithm based on decomposition.
IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

7. Quemy, A., Schoenauer, M., Vidal., V., Dréo, J., Savéant, P.: Solving large mul-
tizenotravel benchmarks with divide-and-evolve. In: Daenens, C., et al. (ed.) Pro-
ceedings of LION’9. Springer (2015, To appear)

8. Schoenauer, M., Savéant, P., Vidal, V.: Divide-and-evolve: a new memetic scheme for
domain-independent temporal planning. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP
2006. LNCS, vol. 3906, pp. 247–260. Springer, Heidelberg (2006)

9. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

Upper and Lower Bounds on Unrestricted
Black-Box Complexity of JUMPn,�

Maxim Buzdalov1(B), Mikhail Kever1, and Benjamin Doerr2

1 ITMO University, 49 Kronverkskiy av., Saint-Petersburg, Russia, 197101
{mbuzdalov,mikhail.kever}@gmail.com

2 LIX, École Polytechnique, 91128 Palaiseau Cedex, France
doerr@lix.polytechnique.fr

Abstract. We analyse the unrestricted black-box complexity of Jumpn,�

functions. For upper bounds, we present three algorithms for small,
medium and extreme values of �. We present a matrix lower bound
theorem which is capable of giving better lower bounds than a general
information theory approach if one is able to assign different types to
queries and define relationships between them. Using this theorem, we
prove lower bounds for Jump separately for odd and even values of n.
For several cases, notably for extreme Jump, the first terms of lower and
upper bounds coincide.

1 Introduction

To understand how evolutionary algorithms (and other black-box optimizers
as well) behave when optimizing certain functions, it is possible to construct
upper bounds (by constructing and studying various algorithms), as well as
lower bounds (by studying how fast an algorithm can be in principle), which
complement each other. Comparing these bounds allows to evaluate how good
today’s heuristics are and sometimes to construct better algorithms by learning
from black-box [1].

Black-box complexity studies how many function evaluations are needed in
expectation by an optimal black-box algorithm until it queries an optimum for
the first time. As randomized search heuristics are black-box optimizers, black-
box complexity of a problem gives a lower bound on the number of fitness eval-
uations of any search heuristic to solve this problem.

In this paper we consider optimization of functions mapping bit strings of
fixed length to integers — the pseudo-Boolean functions. A famous class of such
functions is OneMax — having a certain hidden bit string z of length n, for
a bit string x of length n the function OneMaxn,z(x) returns the number of
bits coinciding both in x and z. Jump, another popular class of functions, takes
another parameter � and zeroes out the values of OneMax for every string
except z that are at the distance of at most � from both z and its inverse.

c© Springer International Publishing Switzerland 2015
G. Ochoa and F. Chicano (Eds.): EvoCOP 2015, LNCS 9026, pp. 209–221, 2015.
DOI: 10.1007/978-3-319-16468-7 18

210 M. Buzdalov et al.

A more formal definition of Jump is as follows:

Jumpn,�,z =

⎧
⎪⎨

⎪⎩

n if OneMaxn,z = n

OneMaxn,z if � < OneMaxn,z < n − �

0 otherwise.

Most of times, when z does not matter, we write just OneMaxn and Jumpn,�.
The special case of � =

⌊
n
2

⌋ − 1, which is the maximum possible � that doesn’t
zero out the middle fitness values, is called extreme Jump.

In this paper, we consider unrestricted black-box complexity (which was
introduced in Droste et al. [4]) of the Jumpn,� problem. Another kind of black-
box complexity, the unbiased black-box complexity, was considered for Jump in
Doerr et al. [2].

The rest of the paper is structured as follows. Section 2 is dedicated to the
upper bounds on Jump which are proven by giving the corresponding algorithms
and discussing their complexity. In Sect. 3, the matrix lower bound theorem,
which is somewhat similar to Theorem 2 from [4] but is able to produce better
lower bounds, is described and proven. Section 4 describes lower bounds on Jump
which are constructed from the matrix theorem. Section 5 concludes.

2 Upper Bounds for Jumpn,�

Here, the upper bounds for Jump are considered. In Sect. 2.1 several useful helper
theorems are referenced or proven. Section 2.2 is dedicated to smaller �, Sect. 2.3
is for larger �, and Sect. 2.4 considers the case of extreme Jump.

2.1 Helper Theorems

Theorem 1. For sufficiently large n, for t ≥
(
1 + 4 log2 log2 n

log2 n

)
2n

log2 n and for an

even d ∈ [2;n] it holds that
(
n
d

) ((
d

d/2

)
2−d

)t

≤ 2−3t/4.

Proof. This is proven in Doerr et al. [3] as Statement 8. ��
Theorem 2. For sufficiently large n, for � < n/2−√

n log2 n and for x ∈ {0, 1}n

taken uniformly at random the probability for Jumpn,�(x) to be zero is at most
2e−2(log2 n)2 .

Proof. The value of OneMax(x) for a random x has a binomial distribution
with parameters n and p = 1/2. From Hoeffding’s inequality [5], for k ≤ np,
the distribution function for binomial distribution Fn,p(k) is bound from above

by e−2
(np−k)2

n . As a consequence, the probability for Jumpn,�(x) to be zero is at

most 2Fn,1/2(l) ≤ 2e−2
(n/2−l)2

n ≤ 2e−2
(
√

n log2 n)2

n = 2e−2(log2 n)2 . ��

Upper and Lower Bounds on Unrestricted Black-Box Complexity of Jumpn,� 211

Theorem 3. Assume that n is sufficiently large and � < n/2 − √
n log2 n. Let

z ∈ {0, 1}n, and X be a set of t ≥
(
1 + 4 log2 log2 n

log2 n

)
2n

log2 n elements from {0, 1}n

chosen randomly using uniform distribution and mutually independently. The
probability that there exists an y ∈ {0, 1}n such that y �= z and Jumpn,�,z(x) =
Jumpn,�,y(x) for all x ∈ X, is at most 2−t/4.

Proof. Let’s define Ad as a set of points which differ from z in exactly d positions
where 0 ≤ d ≤ n.

We say that a point y ∈ {0, 1}n agrees with x ∈ X if Jumpn,�,z(x) =
Jumpn,�,y(x). This means that either Jumpn,�,z(x) = 0 or OneMaxn,y(x) =
OneMaxn,z(x). The probability of the former does not exceed 2e−2(log2 n)2 by
Theorem 2. The latter holds iff x and y (as well as x and z) differ in exactly
half of the d bits in which y and z differ. To sum up, if y ∈ Ad, the probability
for y to agree with a random x is at most 2e−2(log2 n)2 for an even d and at
most 2e−2(log2 n)2 +

(
d

d/2

)
2−d for an odd d. As for large enough n it holds that

2e−2(log2 n)2 ≤ (
21/4 − 1

) (
d

d/2

)
2−d, the latter is at most 21/4

(
d

d/2

)
2−d.

Let p be the probability that there exists an y ∈ {0, 1}n \ {z} such that y
agrees with all x ∈ X. Then the following holds:

p = Pr

⎛

⎝
⋃

y∈{0,1}n\{z}

⋂

x∈X

y agrees with x

⎞

⎠

≤
∑

y∈{0,1}n\{z}
Pr

(
⋂

x∈X

y agrees with x

)

=
n∑

d=1

∑

y∈Ad

∏

x∈X

Pr(y agrees with x)

≤
∑

d even

(
n

d

)(
21/4

(
d

d/2

)
2−d

)t

+
∑

d odd

(
n

d

) (
2e−2(log2 n)2

)t

=
∑

d even

(
n

d

)(
21/4

(
d

d/2

)
2−d

)t

+ 2n−1
(
2e−2(log2 n)2

)
.

After applying Theorem 1, we get that:

p ≤ n + 1
2

2t/42−3t/4 + 2n−1+te−2t(log2 n)2 ,

which is less than 2−t/4 for sufficiently large n. ��

2.2 Upper Bound for Smaller �

Theorem 4. If � < n/2 − √
n log2 n, the unrestricted black-box complexity of

Jumpn,� is at most (1 + o(1)) 2n
log2 n , where o(1) is measured relative to n.

212 M. Buzdalov et al.

Proof. We use the same algorithm which is used in [3] for proving the lower
bound for OneMax. We select randomly and independently t queries such that
t ≥

(
1 + 4 log2 log2 n

log2 n

)
2n

log2 n and check if there exists a single optimum z which
agrees with all these queries (a query q with an answer a agrees with an opti-
mum z if Jumpn,�,z(q) = a). The complexity of one iteration equals to t and the
probability of not finding an optimum is at most 2−t/4 by Theorem 3. Thus the
complexity of the algorithm is at most t

1−2−t/4 = (1 + o(1)) 2n
log2 n . ��

2.3 Upper Bound for Larger �

For bigger l, the Jumpn,� problem can be solved by reduction to smaller Jump
problems for which the algorithm for the previous section suffices.

Theorem 5. For n
2 − √

n log2 n ≤ � <
⌊

n
2

⌋ − 1 the unrestricted black-box com-
plexity of Jumpn,� is at most (1 + o(1)) n

log2(n−2�) where o(1) is measured when
(n − 2�) → ∞.

Proof. Assume that k =
⌊

n
2

⌋−�−1 �= 0. We reduce our problem to Jumps, s
2−k−1

where
√

s log2 s < k. The algorithm is outlined at Fig. 1.
First the algorithm finds a maximum even s such that

√
s log2 s < k, which

would allow applying Theorem 4 for solving Jumps, s
2−k−1. After that, the algo-

rithm finds a string x ∈ {0, 1}n with exactly
⌊

n
2

⌋
correct bits using random

queries. The probability that Jumpn,� is equal to
⌊

n
2

⌋
for a random query is

2−n
(

n
�n/2�

)
which is Θ

(
1√
n

)
by Stirling’s formula. This means that the string x

can be found in Θ(
√

n) queries.
After finding the x, the algorithm splits all bit indices into sets of size s

(except for probably one) in such a way that in each set exactly half of bits
coincide with those in the answer. This is done in lines 8–15 at Fig. 1, where bi

is the i-th such set. B, the set of yet undistributed bits, always contains indices
of which exactly |B|/2 indices correspond to correctly guessed bits.

To do that, the algorithm generates random subsets of size s and checks each
of them if it contains exactly s

2 correct bits, which is done by flipping the bits
from the chosen subset and checking whether the fitness function returns

⌊
n
2

⌋
.

If |B| = m, the probability of correct selection is:

p =
(�m/2�

s/2

)(m/2�
s/2

)(
m

s

)−1

=
�m/2�! m/2�!s!(m − s)!

�(m − s)/2�! (m − s)/2�!(s/2)!

=
(

s

s/2

)(
m − s

�(m − s)/2�
)(

m

�m/2�
)−1

= Θ

⎛

⎝
2s√

s
2m−s√
m−s

2m√
m

⎞

⎠

= Θ

(√
m√

s
√

m − s

)
= Ω

(
1√
s

)
.

This gives an O(
√

s) bound for one subset selection and an O(n/
√

s) bound on
entire process of finding subsets.

Upper and Lower Bounds on Unrestricted Black-Box Complexity of Jumpn,� 213

Fig. 1. Algorithm for Jumpn,� with n
2

− √
n log2 n ≤ � <

⌊
n
2

⌋− 1

Next, the algorithm optimizes separately bits from each of the subsets bi

using the algorithm for small Jump from Theorem 4 (lines 17–20 at Fig. 1). If
every query for a subproblem on bits from bi is forwarded to the main function f
with all bits not from bi taken from x, the resulting subproblem becomes exactly
a Jump|bi|, |bi|

2 −k−1
problem with the following corrections:

– from all nonzero answers, a value of
⌊

n−|bi|
2

⌋
needs to be subtracted;

– at the optimum of the subproblem, zero will be returned.

The latter correction, however, does not change the algorithm very much, because
the algorithm from Theorem 4 doesn’t actually query the optimum point. The
line 19 from Fig. 1 collects the partial answers one by one: it sets the bits of ai

at the corresponding positions from bi to the previous partial answer ωi−1 and
returns the updated value.

The complexity of the algorithm can be expressed as (here n = qs + r,
(0 < r ≤ s)):

O(
√

n) + O

(
n√
s

)
+ q(2 + os(1))

s

log2 s
+ (2 + or(1))

r

log2 r
=

(2 + os(1))n
log2 s

.

However, due to choice of s, it holds that log2 s = (2+ok(1)) log2 k, which finally
results in (1+on−2�(1))n

log2(n−2�) . ��

214 M. Buzdalov et al.

2.4 Upper Bound for Extreme Jump

The algorithm from Theorem 5 cannot be applied to the case of extreme Jump,
because

⌊
n
2

⌋ − 1 − k = 0. In this case we have to use another algorithm, which
will be given in the proof of the following theorem.

Theorem 6. The unrestricted black-box complexity of the extreme Jump is at
most n + Θ(

√
n).

Proof. As described in previous theorems, one can find a point x, such that
f(x) =

⌊
n
2

⌋
, in Θ(

√
n) queries. After that, if one flips two bits, the value of f

remains the same iff one of these bits was correct and the other was not.
Once x is found, the algorithm tests f(x ⊕ 10i−110n−i−1) for all i ∈ [2;n],

and if it equals
⌊

n
2

⌋
, the value of bi is set to zero, otherwise to one. This results

in n−1 queries. After that, if the first bit is correct, then 0b2 . . . bn is the answer,
otherwise its inverse is the answer. One has to make a single query to f(0b2 . . . bn)
to find which one is true. The complexity of this algorithm is n + Θ(

√
n). ��

3 The Matrix Lower Bound Theorem

In this section we present a new theorem which is similar to Theorem 2 from [4]
except that the nodes corresponding to queries are required to be split in several
types.

Theorem 7. Let S be the search space of an optimization problem, and for each
s ∈ S there exists an instance such that s is a unique optimum. Let each query
has one of T types, such that for any query q of the i-th type the following holds:

– there is exactly one answer to the query q which means that q is an optimum;
– there are at most Ai,j answers such that the next query after such answer

belongs to the j-th type.

Define Bi,j, 1 ≤ i, j ≤ T + 2, to be a matrix such that:

– Bi,j = Aj,i for 1 ≤ i, j ≤ T (note the transposition);
– BT+1,j = 1 for 1 ≤ j ≤ T + 1;
– BT+2,j = 1 for 1 ≤ j ≤ T + 2;
– Bi,j = 0 otherwise.

Let the first ever query in the optimization process be of type 1. Define V (d) =
Bd · (1, 0, . . . , 0)T be a vector, C(d) = V (d)T+1, S(d) = V (d)T+2. Then the
following statements are true:

1. C(d) is the maximum total number of possible queries with depth in [1; d],
where depth of a root is equal to one.

2. The lower bound on average depth of N nodes is d + 1 − S(d)
N where d is an

integer such that C(d) ≤ N ≤ C(d + 1).
3. The unrestricted black-box complexity of the considered optimization problem

is not less than the lower bound on average depth of |S| nodes.

Upper and Lower Bounds on Unrestricted Black-Box Complexity of Jumpn,� 215

Proof. According to Yao’s minimax principle [6], the expected runtime of a ran-
domized algorithm on any input is not less than the average runtime of the
best deterministic algorithm over all possible inputs. Thus we construct a lower
bound on complexity of a randomized algorithm by constructing a lower bound
on the average performance of any deterministic algorithm over all possible
inputs. A deterministic algorithm can be represented as a (rooted) decision tree
with nodes corresponding to queries and arcs going downwards corresponding
to answers to these queries. A total lower bound on the average performance of
deterministic algorithms, just as in [4], is done by assigning |S| different queries
to different nodes of a tree such that their average depth is minimized, and then
by considering all such trees and taking a minimum over them.

It should be noted that, if a (fixed) set of queries is to be assigned to nodes of
a (fixed) rooted tree such that the average depth of these queries is minimized,
an optimal assignment can be constructed in a greedy way: each query should
be assigned to a free node with the minimum possible depth. Assume that an
optimal assignment does not use at least one node a with depth d while using at
least one node b with depth d′ > d. Then one can move a query from the node b
to the node a, which makes the average depth decrease, so the initial assignment
is, in fact, not optimal.

Next we show that, in order to minimize the average depth, one needs to
consider only the complete tree, that is, a tree where for any query of the i-th
type, for any j there are exactly Ai,j answers, each leading to a query of the j-th
type. Indeed, if an optimal assignment can be done for an incomplete tree, it can
be done for the complete tree as well, because all the nodes of any incomplete
tree are preserved in the complete tree.

For a complete tree with the constraints determined by the matrix A (as
specified in the theorem’s statement) and with the root vertex of type 1, the
number of vertices of type i and depth d (the root has the depth equal to 1)
is exactly

((
AT

)d−1 · (1, 0, . . . , 0)T
)

i
. In the matrix B, the next-to-last row is

designed to collect the sum of all numbers of vertices at all previous depths
(which is exactly how C(d) is defined), and the last row, in a similar manner,
collects S(d) — the sum of C(i)’s for all 1 ≤ i ≤ d. In a more explicit way, S(d)
can be expressed as:

S(d) =
d∑

i=1

C(i) · (d + 1 − i),

so the expression C(d) · (d+1)−S(d) is actually the sum of depths of all vertices
up to the depth d:

C(d)(d + 1) − S(d) =
d∑

i=1

C(i) · i,

and the expression d + 1 − S(d)
C(d) is thus exactly the average depth of all such

vertices.
If we consider arbitrary integer N , we can find an integer d such that C(d) ≤

N ≤ C(d + 1). In this case, the total sum of depths of the first C(d) vertices is

216 M. Buzdalov et al.

C(d) · (d + 1) − S(d), and the next N − C(d) vertices have the depth of d + 1.
The average depth is thus:

davg(N) =
C(d) · (d + 1) − S(d) + (d + 1) · (N − C(d))

N
= d + 1 − S(d)

N
. ��

It is difficult to use this theorem straightaway, because the lower bound on
the average depth of N vertices is not defined only in terms of N and the matrix
A, but additionally requires to find which depth d fulfils C(d) ≤ N ≤ C(d + 1).
However, for several common usages it is possible to make it more convenient.

Theorem 8. If there is only one type of queries in Theorem 7, and A1,1 = k
such that k ≥ 2, then for the search space S the lower bound on the average
depth is at least �logk(1 + |S|(k − 1))� − 1

k−1 .

Proof. The value of Bd · (1, 0, 0)T yields the following result (intermediate com-
putations omitted):

⎛

⎝
k 0 0
1 1 0
1 1 1

⎞

⎠
d

·
⎛

⎝
1
0
0

⎞

⎠ =

⎛

⎜⎝
kd

kd−1
k−1

kd+1−k−d(k−1)
(k−1)2

⎞

⎟⎠ .

One can see that C(d) = kd−1
k−1 and S(d) = kd+1−k−d(k−1)

(k−1)2 .

Consider an equality N = C(d) = kd−1
k−1 . It follows that:

d(N) = logk(1 + N(k − 1)).

As for a given N we need to find an integer d such that C(d) ≤ N < C(d + 1),
we need to round it down: d = �d(N)�.

Note that, if d ≥ 1 and k ≥ 1, S(d) grows when d grows, as S(d)′ > 0.
The expression for a lower bound on the average depth of N queries is at

most:

davg(N) = �d(N)� + 1 − S(�d(N)�)
N

≥ �d(N)� + 1 − S(d(N))
N

≥ �logk(1 + N(k − 1))� − 1
k − 1

. ��

Note that the classical result from [4], the
⌊
logk+1 N

⌋ − 1 lower bound, is
actually not greater than the given bound. Indeed, for k ≥ 2:

logk(1 + N(k − 1)) − logk+1 N > logk(N(k − 1)) − logk+1 N

= logk N − logk+1 N + logk(k − 1) > logk N − logk+1 N > 0.

For the case of k = 1, the lower bound is even stronger.

Theorem 9. If there is only one type of queries in Theorem 7, and A1,1 = 1,
then for the search space S the lower bound on the average depth is at least
(|S| + 1)/2.

Proof. In this case one can show that C(d) = d and S(d) = d2+d
2 . The average

depth for N is N + 1 − N2+N
2N = N + 1 − (N + 1)/2 = (N + 1)/2. ��

Upper and Lower Bounds on Unrestricted Black-Box Complexity of Jumpn,� 217

4 Lower Bounds for Jumpn,�

First, let’s apply Theorem 8 immediately to the Jump problem.

Theorem 10. For any n and � < n/2, the unrestricted black-box complexity of
Jumpn,� is at least

⌊
logn−2�(1 + 2n(n − 2� − 1))

⌋ − 1
n−2�−1 .

Proof. In Jumpn,�, the search space has a size of 2n. There are n−2�+1 possible
answers to a query, but one of them terminates the search process immediately,
so k = n − 2�. The result follows straightaway from Theorem 8.

Theorem 11. The unrestricted black-box complexity of extreme Jump for even
n is at least n − 1.

Proof. Follows from Theorem 10 by assuming n − 2� = 2.

The presented bounds are already an improvement over the currently known
bounds (say, n

log2 3 for extreme Jump and even n, as follows from [4]). However,
for odd n Theorem 10 reports

⌊
log3(1 + 2n+1)

⌋−1/2, which is still quite far away
from the best known algorithms. Fortunately, the Jump problem possesses a par-
ticular property, which can be used to refine the lower bounds using Theorem 7
with two types of queries.

Theorem 12. For Jumpn,�, define an answer to the query to be non-trivial
if it is neither 0 nor n. After receiving the first non-trivial answer for every
subsequent query it is possible to determine a priori the parity of any non-trivial
answer.

Proof. Consider the optimum and a query. We introduce the following values:

– q00: number of positions with zeros in both the optimum and the query;
– q01: number of positions with zeros in the optimum and ones in the query;
– q10: number of positions with ones in the optimum and zeros in the query;
– q11: number of positions with ones in both the optimum and the query.

The number of zeros in the optimum modulo 2, which is q00 ⊕ q01, is fixed. The
number of ones in the query modulo 2 is q01 ⊕ q11, and the answer to the query
modulo 2 is q00 ⊕ q11. The following equality holds:

(q01 ⊕ q11) ⊕ (q00 ⊕ q11) = q00 ⊕ q01,

which means that the parity of the non-trivial answer is uniquely determined by
the parity of the number of ones in the query.

As a result, if an algorithm receives the first non-trivial answer, all subsequent
queries will provably have fewer possible answers. ��

Using Theorem 12, we can define two types of queries to use with Theorem 7,
namely, the queries happened before and after a non-trivial answer.

218 M. Buzdalov et al.

Theorem 13. The unrestricted black-box complexity of Jumpn,� for odd n is at
least: ⌊

log n−2�+1
2

(
2n−2(n − 2� − 1) + 1

)⌋ − 2
n − 2� − 1

.

Proof. For odd n there are n − 2� + 1 = 2k + 2 possible answers: one answer
equal to 0, one answer equal to n and k pairs of non-trivial answers. For the
Theorem 7, the first type of queries has 2k + 1 non-terminating answers, and
the second type of queries, which occurs after one of 2k non-trivial answers is
received from a query of the first type, has only k + 1 non-terminating answers.
The value of Bd · (1, 0, 0, 0)T is thus:

Bd ·

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1 0 0 0
2k k + 1 0 0
1 1 1 0
1 1 1 1

⎞

⎟⎟⎠

d

·

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠ =

⎛

⎜⎜⎜⎝

1
2

(
(k + 1)d − 1

)

2(k+1)d−dk−2
k

2(k+1)d+1− (dk+2)2+dk2+4k
2

k2

⎞

⎟⎟⎟⎠ .

A problem of defining d in terms of N is more difficult this time: as C(d) =
2(k+1)d−dk−2

k , the equality N = C(d) cannot be easily solved in terms of d.
Instead, we introduce a function d(N) such that the following equality holds:

N =
2(k + 1)d(N) − d(N)k − 2

k
.

We find the lower bound on the average depth davg(N), keeping in mind that
S(d) grows as d grows and that d(N) ≥ 1 for N ≥ 1:

davg(N) = �d(N)� + 1 − S(�d(N)�)
N

≥ �d(N)� + 1 − S(d(N))
N

= �d(N)� + 1 −
2(k+1)1+d(N)− (d(N)k+2)2+d(N)k2+4k

2
k2

2(k+1)d(N)−d(N)k−2
k

= �d(N)� + 1 −
2(k+1)1+d(N)−d(N)k2−d(N)k−2k−2− d(N)k2(d(N)−1)

2
k

2(k+1)1+d(N)−d(N)k2−d(N)k−2k−2
k+1

≥ �d(N)� + 1 − k + 1
k

= �d(N)� − 1
k

.

We can also obtain a good lower bound on d(N) by throwing out the d(N)k
part in the definition of d(N) above, which leads to d(N) > logk+1

(
Nk
2 + 1

)
.

Together, davg(N) ≥ ⌊
logk+1

(
Nk
2 + 1

)⌋ − 1
k . For Jumpn,�, it holds that N = 2n

and 2k + 2 = n − 2� + 1, which constitutes:
⌊
log n−2�+1

2

(
2n−2(n − 2� − 1) + 1

)⌋ − 2
n − 2� − 1

. ��

Upper and Lower Bounds on Unrestricted Black-Box Complexity of Jumpn,� 219

Theorem 14. The unrestricted black-box complexity of extreme Jump for odd
n is at least n − 2.

Proof. For extreme Jump and odd n, n − 2� + 1 = 4. Then from Theorem 13 it
follows that the lower bound is at least:

⌊
log2

(
2n−2 · 2 + 1

)⌋ − 2
2

=
⌊
log2

(
2n−1 + 1

)⌋ − 1 ≥ n − 2.

Theorem 15. The unrestricted black-box complexity of Jumpn,� for even n is
at least: ⌊

log n−2�+2
2

(
1 + 2n−1 (n − 2�)2

n − 2� − 1

)⌋
− 2

n − 2�
.

Proof. For even n there are n − 2� + 1 = 2k + 3 possible answers (k ≥ 0): one
answer equal to 0, one answer equal to n, one answer equal to n/2 and k more
pairs of non-trivial answers. For Theorem 7, the first type of queries has 2k + 2
non-terminating answers, and the second type of queries can have either k+1 or
k non-terminating answers, depending on the parity of the number of ones in a
query. As we cannot predict the parity for all possible algorithms, the maximum
number of queries is limited to k + 1. The matrix B has the following form:

B =

⎛

⎜⎜⎝

1 0 0 0
2k + 1 k + 2 0 0

1 1 1 0
1 1 1 1

⎞

⎟⎟⎠ .

We omit the intermediate computations and just state that:

C(d) =
(2k + 1)(k + 2)d − dk2 − dk − 2k − 1

(k + 1)2

S(d) =
(k + 2)d(2k2 + 5k + 2) − d2k3+dk3+2d2k2+6dk2+4k2+2d+d2k+7dk+10k+4

2

(k + 1)3
.

Following the same approach as in the proof of Theorem 13, we define d(N) such
that C(d(N)) = N and produce the following lower bound:

davg(N) ≥ �d(N)� − 1
k + 1

.

The lower bound on d(N) can be achieved from the value of C(d) by throwing
out the dk2 + dk part, which yields:

d(N) ≥ logk+2

(
1 +

(k + 1)2N
2k + 1

)

and, together:

davg(N) ≥
⌊
logk+2

(
1 +

(k + 1)2N
2k + 1

)⌋
− 1

k + 1
.

Substitution of N with 2n and 2k + 2 with n − 2� proves the theorem. ��

220 M. Buzdalov et al.

Note that Theorem 15 does not improve the bound for extreme Jump and
even n — it remains equal to n − 1 when one sets k = 0 — because in this
case the number of possible answers does not change after receiving the first
non-trivial answer.

5 Conclusion

New black-box algorithms for solving Jumpn,� problem are presented, giving the
following upper bounds:

– for � < n/2 − √
n log2 n: 2n(1+o(1))

log2 n , where o(1) is measured when n → ∞;

– for n/2 − √
n log2 n ≤ � <

⌊
n
2

⌋ − 1: n(1+o(1))
log2(n−2�) , where o(1) is measured when

n − 2� → ∞;
– for � =

⌊
n
2

⌋ − 1: n + Θ(
√

n).

A new theorem for constructing lower bounds on unrestricted black-box com-
plexity of problems is proposed. The underlying idea is that influence of partic-
ular answers to queries to all subsequent queries can be formalized by assigning
a type to each query and writing the relations in a form of a matrix. Several
following steps for constructing the lower bounds are automated and can be per-
formed using tools like Wolfram Alpha. We hope that this theorem can be used
to obtain better lower bounds in other problems.

Using the proposed theorem, the lower bounds for Jumpn,� are updated:

– for even n:
⌊
log n−2�+2

2

(
1 + 2n−1 (n−2�)2

n−2�−1

)⌋
− 2

n−2� ≥ n
log2

n−2�+2
2

− 1;

– for odd n:
⌊
log n−2�+1

2

(
1 + 2n−2(n − 2� − 1)

)⌋ − 2
n−2�−1 ≥ n−1

log2
n−2�+1

2
− 1.

In particular, for extreme Jump the lower bounds become equal to n − 1 for
even n and n − 2 for odd n. This means that the quotients at the first term of
lower and upper bounds coincide. In the case of large, but not extreme �, these
quotients seem to coincide as well, however, the (1 + o(1)) multiple can hide as
much as

(
log2(n − 2�)/ log2

n−2�+1
2

)
, which makes it hard to see exactly.

This work was partially financially supported by the Government of Russian
Federation, Grant 074-U01.

References

1. Doerr, B., Doerr, C., Ebel, F.: Lessons from the black-box: fast crossover-based
genetic algorithms. In: Proceedings of Genetic and Evolutionary Computation Con-
ference, pp. 781–788 (2014)

2. Doerr, B., Doerr, C., Kötzing, T.: Unbiased black-box complexities of jump func-
tions. http://arxiv.org/abs/1403.7806v2

3. Doerr, B., Johannsen, D., Kötzing, T., Lehre, P.K., Wagner, M., Winzen, C.: Faster
black-box algorithms through higher arity operators. In: Proceedings of Foundations
of Genetic Algorithms, pp. 163–172 (2011)

http://arxiv.org/abs/1403.7806v2

Upper and Lower Bounds on Unrestricted Black-Box Complexity of Jumpn,� 221

4. Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search
heuristics in black-box optimization. Theory Comput. Syst. 39(4), 525–544 (2006)

5. Hoeffding, W.: Probability inequalities for sums of bounded random variables.
J. Am. Stat. Assoc. 58(301), 13–30 (1963)

6. Yao, A.C.C.: Probabilistic computations: toward a unified measure of complexity. In:
18th Annual Symposium on Foundations of Computer Science, pp. 222–227 (1977)

Using Local Search to Evaluate Dispatching
Rules in Dynamic Job Shop Scheduling

Rachel Hunt1(B), Mark Johnston1, and Mengjie Zhang2

1 School of Mathematics, Statistics and Operations Research, Victoria University
of Wellington, PO Box 600, Wellington, New Zealand

2 School of Engineering and Computer Science, Victoria University of Wellington,
PO Box 600, Wellington, New Zealand

huntrach1@myvuw.ac.nz, {mark.johnston,mengjie.zhang}@vuw.ac.nz

Abstract. Improving scheduling methods in manufacturing environ-
ments such as job shops offers the potential to increase throughput,
decrease costs, and therefore increase profit. This makes scheduling an
important aspect in the manufacturing industry. Job shop scheduling
has been widely studied in the academic literature because of its real-
world applicability and difficult nature. Dispatching rules are the most
common means of scheduling in dynamic environments. We use genetic
programming to search the space of potential dispatching rules. Dis-
patching rules are often short-sighted as they make one instantaneous
decision at each decision point. We incorporate local search into the
evaluation of dispatching rules to assess the quality of decisions made
by dispatching rules and encourage the dispatching rules to make good
local decisions for effective overall performance. Results show that the
inclusion of local search in evaluation led to the evolution of dispatching
rules which make better decisions over the local time horizon, and attain
lower total weighted tardiness. The advantages of using local search as
a tie-breaking mechanism are not so pronounced.

1 Introduction

Scheduling is a difficult yet important decision making process in manufacturing
and service industries [19], involving allocating resources to complete a set of
tasks to optimise some objective subject to constraints [7]. Job shop scheduling
(JSS) problems have been extensively studied in the academic literature over the
past 60 years [7,20], due mainly to the real-world applicability (there are many
thousands of job shops world-wide [13]) and the computational complexity of
scheduling in such environments (JSS is known to be NP -hard [3]).

In JSS problems, a set of jobs must be processed through a set of machines.
Each job consists of a sequence of operations which must be processed in order,
where each operation has a specified machine and processing time. The aim is
to schedule jobs at each machine to optimise a measure of delivery speed or cus-
tomer satisfaction. In dynamic JSS, jobs arrive according to a stochastic process;
no information is available about a job until it is present in the shop system.

c© Springer International Publishing Switzerland 2015
G. Ochoa and F. Chicano (Eds.): EvoCOP 2015, LNCS 9026, pp. 222–233, 2015.
DOI: 10.1007/978-3-319-16468-7 19

Using Local Search to Evaluate Dispatching Rules 223

This makes the scheduling task very difficult, and optimisation methods which
construct complete schedules in advance are not able to be used. Dispatching
rules (DRs) are mathematical functions of attributes of the jobs, machines and
the entire job shop. They have been applied consistently to complex schedul-
ing problems as they provide good solutions in real-time [13]. DRs are popular
because of their low time complexity and easy interpretability as well as their
ability to cope with dynamic environments. DRs cope well with dynamic envi-
ronments as decisions are made as and when a machine becomes available to
process a job’s operation. When a machine finishes processing a job, each job
currently waiting in the machine’s queue is evaluated and assigned a priority
value by the DR. The job with the highest priority is selected to begin process-
ing next. One disadvantage of DRs is that they take into account the local and
current conditions of the shop, without considering the future implications of
decisions made. Another disadvantage of DRs is it is a time consuming (and
very hard) process to construct them manually.

Genetic Programming (GP) [14] is an evolutionary computation technique
which has been shown to be sufficient in representation and search capability
to automatically discover DRs successfully [9,11,16]. The mathematical repre-
sentation of dispatching rules maps naturally to tree-based GP [14]. Each GP
individual represents a DR, and through evolution the fitness of the individual
is assessed through discrete-event simulations of job shops in which the individ-
ual is used to dispatch jobs. There has been work to encourage the evolution of
“less-myopic” DRs through the inclusion of properties from the wider shop [10],
which showed that the inclusion of additional “less-myopic” terminals improved
the performance of DRs on scenarios with high utilisation, and reduced the
expected queue length at machines. This paper investigates “less-myopic” in a
different way, by including an assessment of how well a DR makes local decisions
over a longer decision horizon in its fitness evaluation.

Local search algorithms try to improve on an initial solution by searching over
a defined neighbourhood of the initial solution [1]. In static JSS environments, a
DR can be used to create a schedule for processing the jobs, and local search can
be applied to improve the schedule. This is not how we are using local search
in this paper. The main goal of this work is to modify a GP based system for
automatic generation of dispatching rules to incorporate a local search element
into the fitness evaluation stage of the GP system to provide more feedback to
DRs on their scheduling performance, to encourage a more global perspective in
the evolved rules. In this paper we use local search only to evaluate the fitness
of DRs, not to change the order in which jobs are dispatched.

When a machine becomes available, a DR builds an initial schedule of jobs
at the current machine. This is evaluated over an extended decision horizon of
the current machine and the next machine of each job. Local search is used to
attempt to improve that sequence, and information on the possible improvement
contributes to the fitness of the DR.

We want to find DRs that make good decisions, which we can do by looking at
the wider local effect when dispatch decisions are made, and investigate whether
this can encourage the evolution of DRs which are less-myopic, and better at

224 R. Hunt et al.

scheduling jobs in an order which is better beyond just the first job in the queue,
with better generalisation performance on unseen problem instances.

The remainder of this paper is organised as follows. Section 2 describes back-
ground relating to JSS and GP. Section 3 describes how local search is incorpo-
rated into our GP method for automatic discovery of DRs. Section 4 describes
the experimental design and Sect. 5 discusses the results. Section 6 concludes the
paper and provides directions for future work.

2 Background

Dynamic Job Shop Scheduling Problem. In this paper we are interested
in the dynamic job shop. Jobs arrive according to a stochastic process, and we
have no knowledge about the job until it has entered the shop system. Each job
j arrives at time rj with a sequence of Nj operations, Oj = (σj,1, . . . , σj,Nj

), in
a predefined route, and where 1 ≤ Nj ≤ n. The ith operation of job j, σj,i, has
processing time p(σj,i) on machine m(σj,i). Each job joins the queue at the first
machine on its route, m(σj,1), upon its arrival into the shop. Each job has a due
date dj and an importance weighting wj . The eventual completion time of a job
is denoted Cj and job tardiness is then Tj = max{0, Cj − dj}.

A DR is used to select which of the jobs currently waiting in the queue at
a particular machine will be processed next using various properties of the job,
machine and shop. Once an operation σ has completed its processing time on a
machine it is moved to the next machine on its route, or if the entire job is com-
pleted then it is delivered to the customer. There are many different objectives
that can be optimised in JSS; we are interested in minimising the total weighted
tardiness:

TWT =
∑

j

wjTj =
∑

j

wj max{0, Cj − dj}. (1)

Existing DRs. There are many DRs in the literature. No DR is known to out-
perform others across all objective functions and shop environments. Some of the
simplest rules are shortest processing time (SPT) which schedules the job with
the shortest processing time next, and its weighted counterpart, weighted short-
est processing time (WSPT), which schedules the job with largest w/p(σ). These
are components of the Apparent Tardiness Cost (ATC) [21] and the weighted
version of COVERT (Cost over Time) [21] dispatching rules, which have good
performance for dynamic job shops with the TWT objective. ATC assigns job j
the priority

wj

p(σji)
exp

⎛

⎝−
[

dj − t − p(σji) − ∑Nj

q=i+1((b × p(σjq)) + p(σjq))
kpavg

]+
⎞

⎠

where t is the current time and pavg is the average processing time of the wait-
ing jobs at the machine. Leadtime estimation parameter b is fixed at 2.0 and

Using Local Search to Evaluate Dispatching Rules 225

lookahead parameter k is set to 3.0 as in [21]. The wCOVERT rule assigns pri-
ority values as the expected tardiness cost per unit of imminent processing time:

wj

p(σji)

[
1 − (dj − t − ∑Nj

q=i p(σjq))+

k
∑Nj

q=1(b × p(σjq))

]+

where the lookahead parameter k = 2. The [A]+ notation takes the maximum
of A and 0, this means wCOVERT assigns priority 0 if the slack “exceeds some
generous ‘worst case’ estimate of the waiting time” [21].

GP for Automatic Generation of Heuristic Dispatching Rules. Heuris-
tics are methods that seek to find good quality solutions in reasonable compu-
tational time; optimality cannot be guaranteed [4]. Dispatching rules can very
naturally be represented as trees, as in tree-based GP. Recent research has focu-
sed on developing new DRs using approaches such as genetic programming [4].
GP searches the space of heuristics rather than searching the solution space
directly [4], as the GP trees do not represent schedules, but heuristic DRs.

GP has been used to develop DRs in a range of scheduling environments,
from the simpler static two-machine flow shop [6] and job shop [9], to complex
dynamic environments, e.g., in semi-conductor manufacturing [18], and varying
objectives such as makespan [11,12], mean flow time [8], and total weighted
tardiness [12]. Rules evolved by GP are frequently reported to compete with
rules from the literature [11,16].

Local Search. Local search is one heuristic approach often used on static
scheduling problems. Local search provides a “robust approach to obtain high-
quality solutions to problems of a realistic size in a reasonable time” [1]. Local
search methods start with an initial solution and try to find better solutions by
searching neighbourhoods. Some basic neighbourhood definitions for local search
that can be applied to schedules are transposition, insertion and swap [1]. Let n
be the number of jobs in the queue of the machine. Transpose swaps two adja-
cent jobs in the queue (neighbourhood has size O(n)). Insert moves a job from
one position to another and Swap swaps two jobs that can be anywhere in the
queue (both have neighbourhood size O(n2)). With dynamic scheduling prob-
lems, the jobs available to be scheduled are frequently changing with the arrival
of jobs from outside the shop system and from other machines. This makes the
application of local search difficult, as we do not know when another job will
arrive, or any of its properties, therefore an optimised queue order is unlikely to
still be optimal when more jobs arrive, or when we consider the final objective
value function.

Instead of applying local search to find better DRs with a different order of
jobs, this paper will use local search in the fitness evaluation process to improve
the performance of the DRs. Details will be discussed in the next section.

226 R. Hunt et al.

Table 1. Terminal set used in GP system.

Feature Symbol Feature Symbol

Job Properties Machine Properties

Processing time of operation PR Ready time of machine RM

Remaining processing time of job RT Number of jobs in queue NQ

Remaining number of operations RO Average wait time of last QW

Ready time of job RJ Five jobs processed

Due date of job DD Number of jobs in queue NNQ

Weight of job W At the next machine job visits

Next operation’s processing time NPR Average wait time of last five NQW
jobs processed at next machine
the job visits

Shop Properties

Current time CT Average wait time of last five jobs AQW
processed across all machines

3 The New Method

Here we describe our new method, which uses local search as an additional
evaluation of the fitness of a given DR, across an extended decision horizon. We
use local search to evaluate potential queue orders, and compare these to the
priority sorted queue. We are interested to see if the increase in computational
time is a reasonable trade off for better evolved DRs.

3.1 GP System

GP individuals are DRs. The function set is {+, −, ×, %, if>0, max, min}. All
arithmetic operators take two arguments. +, − and ×, have their usual meanings
and the % operator is protected division, returning one if dividing by zero. The
if>0 function takes three arguments; if the first argument is greater than 0 then
it returns the second, else the third is returned. The max and min functions
take two arguments and return the maximum and minimum of their arguments
respectively. The properties of jobs, machines and the job shop that are used as
terminals of the GP system are given in Table 1. The properties, NPR, NNQ and
NQW all return zero if the job’s current operation is its last. If fewer than five jobs
have visited a machine, then WQ, NQW and AQW return the average wait time of
the jobs which have visited, and if the machine has not yet processed any jobs
then 0 is returned [10].

Fitness. The fitness of a DR (individual) in the current GP population is eval-
uated using discrete-event simulations of problem instances of a job shop. In
each method the fitness value is calculated on four training problem instances,
and the mean of the fitness values across these problem instances used is the
fitness of the DR. In the benchmark GP method, the objective of interest to be
minimised, TWT, is normalised by the expected utilisation and this is used as
the fitness value. Each of our new methods use a different fitness value.

Using Local Search to Evaluate Dispatching Rules 227

3.2 Local Search for Evaluating Dispatching Rules

We consider four different ways of using local search as a contributor to the
fitness of an individual. We take the priority sorted queue of jobs waiting at the
time the machine needs to make the scheduling decision as the initial solution.
The neighbourhood search operator used is SwapFront, which swaps the job at
the front job with each other job. This is used as it is a simple operator with
small neighbourhood size, (n − 1) for n jobs in the queue of the machine, and
therefore low computational cost. The evaluation process is shown in Fig. 1.

We compare neighbourhoods by calculating the expected contribution to
total weighted tardiness (TWT) of the queued jobs, which is the sum of weighted
expected tardiness of each of the jobs in the queue. We calculate this by taking
the expected completion time of each job given its current position in the queue
at the current machine, and where it would fit in the queue of jobs at the next
machine the job visits (assuming the current state of the job shop as static, with
no new arrivals except those moving from the current queue). For each job j in
the queue, this is calculated as

E(Cj) = CT + QCj + PRj + QNj + NPRj + QRj + (RTj − PRj − NPRj) (2)

For a given job dj , CT, PR, NPR, RT are constants as in Table 1. QCj is the time
remaining waiting (queuing) at the current machine (MC), i.e., the sum of the
processing times of jobs ahead of job j in the queue under the current ordering
of jobs. QNj is the time spent waiting (queuing) at the next machine on the
job’s route, (MN). This is determined by treating the next machine’s queue as
a one machine problem with arrivals only from the current machine and using
the DR to dispatch jobs until all jobs that join this machine from the current
machine have been dispatched. This gives us a lower bound on the length of time
each job from machine MC that next visits MN is expected to be in the queue
at MN , as in the full simulation jobs may arrive into the shop and from the
other machines. QRj is the sum of the average expected waiting times at each
remaining machine on the job’s route after machines C and N. If a job does not
have operations remaining after the current or next machine then QNj and QRj

will have value 0. Further we are only interested in changing the order of jobs at
the first machine, and calculating the predicted time in the next queue, therefore
for each job QRj is also a constant. As our objective is to minimize the total
weighted tardiness, we are seeking to minimize Eq. (3) across the neighbourhood
being searched.

Total =
J∑

j=1

wj × max{0, E(Cj) − dj}. (3)

Each time the DR is applied to select the next job, the expected contribution
of the original queue order, Total0, is calculated. If Total0 = 0 then we cannot
improve on the current queue ordering, so we do not apply local search. For each
neighbouring solution, Total is calculated, so we can find the minimum of all
neighbourhoods searched, Totalmin, which is used in the next stage.

228 R. Hunt et al.

Fig. 1. Diagram of evaluation process when a machine becomes available to process
a job.

Local Search to investigate Local Decision Making. When we apply local search
and the new job queue order has an improved (smaller) expected contribution to
TWT than the original, we calculate the difference penalty = Total0−Totalmin.
We sum all the penalties incurred during the discrete event simulation, and aver-
age over the number of times the local search was applied; this gives penaltymean.

– Local Search Single Objective (LS-SO). We use local search to evaluate the
job queue every twentieth time the DR is called to select a job for dispatch.
The overall fitness of a DR for a problem instance is the sum of TWT and
the penalty, TWT + penaltymean.

– Local Search Multi Objective(LS-MO). Local search evaluates the job queue
every twentieth time the DR is called to select a job for dispatch. This is a
multi-objective method based on LS-SO, using the NSGA-II algorithm [5].
The penalty is used as a distinct second objective. The first objective is TWT
and the second objective is penaltymean.

Local Search to investigate Tie Breaking (TB). These methods investigate how
often a DR assigns the same priority value to different jobs, and whether the
default tie break, of using the SPT rule, is selecting the best job in those sit-
uations. Local search is used among the sub-schedule of jobs which have been
assigned the same highest priority value in the queue. Sub-schedules are com-
pared based on their expected contribution to the objective function. We run
two discrete-event simulations for each problem instance. In the first we do not
use local search, and ties are broken using SPT, this gives TWT0. In the second

Using Local Search to Evaluate Dispatching Rules 229

we use local search to alter which of the jobs that are tied for top priority is dis-
patched, dispatching the job which leads to the lowest expected contribution to
TWT, and the resulting final value of the objective function is TWTLS . Due to
computational restraints we use local search only every second time a tie occurs.

– Tie Breaking Single Objective (TB-SO). This variant uses single objective GP,
combining the TWT fitness with an added penalty if the performance of the
DR was better with local search, i.e., if TWTLS < TWT0. The fitness of an
individual for a problem instance is TWT0 + max{TWT0 − TWTLS , 0}.

– Tie Breaking Multi Objective (TB-MO). This variant uses a multi-objective
approach. The first fitness objective is TWT0, the second fitness objective
is the penalty for possible improvement on the schedule the DR produced,
max{TWT0 − TWTLS , 0}. We use the NSGA-II algorithm [5].

We want to find out if TB-SO and TB-MO can reduce the number of ties in test
cases, and if the TWT performance is improved.

4 Experiment Design

We implement a GP system using ECJ20 [15] for evolving DRs, which are rep-
resented by the GP trees.

Problem Instances. We randomly create problem instances of job shops with
ten machines. We present results on one test and one extreme test scenario. The
extreme testing to see how well the rules generalise to a job shop with different
distribution and priority assignment. We are dealing with dynamic JSS, so jobs
arrive stochastically according to a Poisson process with rate λ for all problem
instances. The settings for these are shown in Table 2. The desired expected
utilisation of machines (ρ) is achieved by setting λ =

ρ

(μ × pM)
, where pM is

the expected number of machines a job will visit (i.e. the expected number of
operations in each job). Job due dates are set by [2], dj = rj + h × ∑Nj

l=1 p(σj,l),
where h is a due date tightness parameter, randomly chosen with equal probabil-
ity from the choices available for each job. Jobs are given weight 1, 2 or 4, with
probability (0.2, 0.6, 0.2) [16]. Four training scenarios are used. The processing
times at each machine follow a discrete uniform distribution with mean μ, i.e.,
U(1, 2μ − 1). A warm up period of 100 jobs is used, and we collect data from
the next 200 jobs to arrive (N = 200), however new jobs keep arriving in the
system until the 300th job is completed. This is a very low number of jobs due
to the increase in computational time required by local search. In testing, we
increase the number of jobs we collect data to N = 1000. In testing scenario T1,
all jobs have due date tightness of 4, and utilisation is 0.95. In extreme testing,
XT1, the processing times follow a geometric distribution with mean μ = 25
(parameter p = 0.04), and utilisation is 0.95. We also change the weights given
to jobs, including an additional weight for very important jobs; jobs are now
given weight 1, 2, 4 or 8, with probability (0.2, 0.5, 0.2, 0.1). Due date tightness
is equally likely from {2, 2.5, 3}; these are the same or tighter than in training.

230 R. Hunt et al.

Table 2. Simulation properties for training and testing.

μ ρ h Operations μ ρ h Operations

Training TR1 25 0.90 {2, 3, 4} Full Training TR3 25 0.90 {2,3,4} Missing

TR2 25 0.95 {2, 3, 4} Full TR4 25 0.95 {2, 3, 4} Missing

Testing T1 25 0.95 4 Full Extreme XT1 25 0.95 {2, 2.5, 3} Full
testing

GP System. The initial population is generated using the ramped-half-and-half
method [14]. The population size is 50, to restrain the computational time due to
the incorporation of local search, and evolution is for 50 generations, a standard
setting. GP trees have a maximum depth of six. Genetic operators crossover,
mutation and elitism, use rates of 85 %, 10 % and 5 % respectively. Tournament
selection with a tournament size of seven is used to select individuals for genetic
operators. This is a common setting that has been previously used [17].

5 Experimental Results

We performed 50 independent GP runs for each method, with the same seed.
From these the best-of-run individual (LS-SO or TB-SO), or final non-dominated
front (LS-MO or TB-MO) are tested on test and extreme test instances.

5.1 LS-SO and LS-MO

Figures 2 and 3 present the test results of the evolved DRs on T1 and XT1. These
methods are compared to a benchmark method which only used the local search
penalty calculation during testing. In particular the zoom-in on the overall best
front of DRs in Fig. 2 shows that the LS-MO method was able to find a large
number of DRs which attain lower TWT on both test instances. Four DRs form
the front on this scenario. The lowest TWT attained by LS-MO and LS-SO
methods are lower than the lowest attained by the benchmark.

Including local search in the evaluation process has found DRs which attain
good performance. There are a large number of DRs from LS-MO and LS-SO
that achieve lower penalty than the benchmark for similar TWT values, par-
ticularly for the lower TWT values. This shows that including local search has
improved the local performance of DRs.

5.2 TB-SO and TB-MO

Figures 4 and 5 present the performance of TB-SO and TB-MO on two test
scenarios. These methods are compared to a benchmark method which only
used the tie breaking penalty calculation during testing. The TB-SO method
produced the DRs which attained the lowest TWT value on both scenarios.
Most of the best evolved DRs have a penalty of 0, this supports our hypothesis
that classifiers which are better at separating jobs by assigning distinct priorities

Using Local Search to Evaluate Dispatching Rules 231

1000000 2000000 3000000

0
50

00
0

10
00

00
15

00
00

TWT

Pe
na

lty

LSSO
LSMO
Benchmark

7e+05 8e+05 9e+05 1e+06

0
20

40
60

80
10

0

TWT

Pe
na

lty

LSSO
LSMO
Benchmark

Fig. 2. Graph of the combined non-dominated front from non-dominated fronts from
LS-MO and best-of-run individuals from LS-SO on scenario T1 with close up of lowest
TWT attained on right.

2e+06 4e+06 6e+06 8e+06 1e+07

0
50

00
0

15
00

00

TWT

Pe
na

lty

LSSO
LSMO
Benchmark

1000000 1200000 1400000 1600000 1800000 2000000

0
50

15
0

25
0

35
0

TWT

Pe
na

lty

LSSO
LSMO
Benchmark

LSSO
LSMO
Benchmark

Fig. 3. Graph of the combined non-dominated front from non-dominated fronts from
LS-MO and best-of-run individuals from LS-SO on scenario XT1 with close up of lowest
TWT attained on right.

1000000 1500000 2000000

0
50

00
0

15
00

00
25

00
00

TWT

Pe
na

lty

TBSO
TBMO
Benchmark

600000 1000000 1400000 1800000

0
10

00
0

30
00

0
50

00
0

TWT

Pe
na

lty

TBSO
TBMO
Benchmark

Fig. 4. Graph of the combined non-dominated front from non-dominated fronts from
TB-MO and best-of-run individuals from TB-SO on scenario T1 with close up of lowest
TWT attained on right.

232 R. Hunt et al.

2e+06 4e+06 6e+06 8e+06

0e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

TWT

Pe
na

lty

TBSO
TBMO
Benchmark

1000000 1200000 1400000 1600000 1800000 2000000

0
20

00
0

40
00

0
60

00
0

80
00

0

TWT

Pe
na

lty

TBSO
TBMO
Benchmark

Fig. 5. Graph of the combined non-dominated front from non-dominated fronts from
TB-MO and best-of-run individuals from TB-SO on scenario XT1 with close up of
lowest TWT attained on right.

are more effective. The spread of TWT and penalty results on both scenarios is
similar, which suggests that performing tie-breaking with local search does not
offer enough improvement to justify the additional computational cost incurred.

6 Conclusions

The goal of this paper was to investigate the possible improvements to training of
DRs for the dynamic ten-machine job shop in GP through the use of local search.
We implemented a local search based penalty, which punished DRs which were
not scheduling jobs in the best order based on the current projected contribution
to the TWT objective function. Results show that the inclusion of the local
search penalty in evaluation has led to the evolution of DRs which have better
local performance, and achieve some better TWT values. This is worth further
investigation. The inclusion of local search for tie-breaking did not offer enough
improvement in TWT in its current implementation to warrant its use.

Due to the computational cost we have investigated small examples, with a
small GP population and short problem instances. This has significantly reduced
the number of scheduling decisions made in training, and with the shorter warm
up period the system may not have reached steady state. In future we would like
to increase the warm up period and reduce the frequency in which local search
is applied. We will also consider other simple neighbourhood search operators,
such as Transpose (swaps two adjacent jobs in the queue) and MoveFront (inserts
each job at the front of the queue).

References

1. Aarts, E., Lenstra, J. (eds.): Local Search in Combinatorial Optimization. Wiley,
Chichester (1997)

2. Baker, K.R.: Sequencing rules and due-date assignments in a job shop. Manage.
Sci. 30(9), 1093–1104 (1984)

Using Local Search to Evaluate Dispatching Rules 233

3. Blazewicz, J., Domschke, W., Pesch, E.: The job shop scheduling problem: conven-
tional and new solution techniques. Eur. J. Oper. Res. 93(1), 133 (1996)

4. Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.R.:
Exploring hyper-heuristic methodologies with genetic programming. In:
Mumford, C., Jain, L. (eds.) Computational Intelligence, Intelligent Systems
Reference Library, vol. 1, pp. 177–201. Springer, Heidelberg (2009)

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

6. Geiger, C., Uzsoy, R., Aytug, H.: Rapid modeling and discovery of priority dis-
patching rules: an autonomous learning approach. J. Sched. 9(1), 734 (2006)

7. Hart, E., Ross, P., Corne, D.: Evolutionary scheduling: a review. Genet. Program.
Evolvable Mach. 6, 191–220 (2005)

8. Hildebrandt, T., Heger, J., Scholz-Reiter, B.: Towards improved dispatching rules
for complex shop floor scenarios: a genetic programming approach. In: Proceedings
of the 12th Annual Conference on Genetic and Evolutionary Computation, pp.
257–264 (2010)

9. Hunt, R., Johnston, M., Zhang, M.: Evolving machine-specific dispatching rules for
a two-machine job shop using genetic programming. In: Proceedings of the IEEE
Congress on Evolutionary Computation, pp. 618–625 (2014)

10. Hunt, R., Johnston, M., Zhang, M.: Evolving less-myopic scheduling rules for
dynamic job shop scheduling with genetic programming. In: Proceedings of the
Genetic and Evolutionary Computation Conference, pp. 927–934 (2014)

11. Jakobović, D., Jelenković, L., Budin, L.: Genetic programming heuristics for
multiple machine scheduling. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi,
L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 321–330.
Springer, Heidelberg (2007)

12. Jakobovi, D., Marasovi, K.: Evolving priority scheduling heuristics with genetic
programming. Appl. Soft Comput. 12(9), 2781–2789 (2012)

13. Jones, A., Rabelo, L.C.: Survey of Job Shop Scheduling Techniques. Technical
report, National Institute of Standards and Technology, Gaithersberg (1998)

14. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

15. Luke, S.: Essentials of Metaheuristics, 2nd edn. Lulu (2013). http://cs.gmu.edu/
∼sean/book/metaheuristics/

16. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: A coevolution genetic program-
ming method to evolve scheduling policies for dynamic multi-objective job shop
scheduling problems. In: Proceedings of the IEEE Congress on Evolutionary Com-
putation, pp. 3261–3268 (2012)

17. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: A computational study of rep-
resentations in genetic programming to evolve dispatching rules for the job shop
scheduling problem. IEEE Trans. Evol. Comput. 17(5), 621–639 (2013)

18. Pickardt, C.W., Hildebrandt, T., Branke, J., Heger, J., Scholz-Reiter, B.: Evolu-
tionary generation of dispatching rule sets for complex dynamic scheduling prob-
lems. Int. J. Prod. Econ. 145(1), 67–77 (2013)

19. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems, 3rd edn. Springer,
Heidelberg (2008)

20. Potts, C., Strusevich, V.: Fifty years of scheduling: a survey of milestones. J. Oper.
Res. Soc. 60(S1), 41–68 (2009)

21. Vepsalainen, A., Morton, T.: Priority rules for job shops with weighted tardiness
costs. Manage. Sci. 33, 1035–1047 (1987)

http://cs.gmu.edu/~sean/book/metaheuristics/
http://cs.gmu.edu/~sean/book/metaheuristics/

Author Index

Antipov, Denis 160

Biesinger, Benjamin 48
Buzdalov, Maxim 160, 209

Cherif-Khettaf, W. Ramdane 138
Clachar, Sophine 86
Correal, Benjamin 150

Desell, Travis 86
Doerr, Benjamin 160, 209

Euler, Reinhardt 13

Galinier, Philippe 150
Gaskó, Noémi 126
Gondran, Alexandre 173
Gunawan, Aldy 61

He, Jun 74
Heilig, Leonard 1
Higgins, James 86
Hu, Bin 25, 48
Hunt, Rachel 222

Johnston, Mark 99, 222
Joshi, Ayush 114

Kever, Mikhail 209

Lalla-Ruiz, Eduardo 1
Lau, Hoong Chuin 61
Lemarchand, Laurent 13

Lu, Kun 61
Lung, Rodica Ioana 126

Marshall, Richard J. 99
Michalak, Krzysztof 184
Moalic, Laurent 173

Oulamara, Ammar 138

Prandtstetter, Matthias 36

Quemy, Alexandre 197

Raidl, Günther R. 25
Raidl, Günther 48
Rebreyend, Pascal 13
Ritzinger, Ulrike 36
Rowe, Jonathan E. 114
Ruthmair, Mario 36

Sassi, Ons 138
Schmidt, Peter 36
Schoenauer, Marc 197
Suciu, Mihai 126

Voß, Stefan 1

Wang, Yong 74
Wild, Brandon 86
Windbichler, Andreas 25

Zarges, Christine 114
Zhang, Mengjie 99, 222
Zhou, Yuren 74

	Preface
	Organization
	Contents
	A Biased Random-Key Genetic Algorithm for the Cloud Resource Management Problem
	1 Introduction
	2 Cloud Resource Management Problem
	2.1 Mathematical Formulation

	3 Biased Random-Key Genetic Algorithm
	3.1 BRKGA Application for the CRMP

	4 Computational Results
	5 Conclusions
	References

	A Computational Comparison of Different Algorithms for Very Large p-median Problems
	1 Introduction
	2 The p-median Problem
	3 Related Work
	4 Tested Algorithms
	4.1 CPlex
	4.2 Volume
	4.3 Simulated Annealing
	4.4 Genetic Algorithm

	5 Improved Genetic Algorithm
	6 Data
	7 Results
	8 Conclusion and Future Work
	References

	A New Solution Representation for the Firefighter Problem
	1 Introduction
	2 Previous Work
	3 Proposed Algorithm
	3.1 Solution Representation
	3.2 Initial Solution
	3.3 Variable Neighborhood Descent
	3.4 Variable Neighborhood Search

	4 Computational Results
	5 Conclusions and Future Work
	References

	A Variable Neighborhood Search Approach for the Interdependent Lock Scheduling Problem
	1 Introduction
	2 Related Work
	3 Problem Description
	4 Solution Representation and Decoding
	5 First Fit Construction Heuristic
	6 Variable Neighborhood Search Framework
	6.1 Neighborhood Structures for VND
	6.2 Neighborhood Structures for VNS

	7 Experiments and Computational Results
	8 Conclusions and Future Research
	References

	A Variable Neighborhood Search for the Generalized Vehicle Routing Problem with Stochastic Demands
	1 Introduction
	2 Related Work
	3 Solution Representation and Evaluation
	3.1 Multi-level Evaluation Scheme

	4 Variable Neighborhood Search
	4.1 Initial Solution
	4.2 Neighborhood Structures

	5 Computational Results
	6 Conclusions and Future Work
	References

	An Iterated Local Search Algorithm for Solving the Orienteering Problem with Time Windows
	1 Introduction
	2 Problem Description and Literature Review
	3 Proposed Algorithm
	3.1 Greedy Construction Heuristic
	3.2 Iterated Local Search

	4 Computational Experiments
	4.1 Benchmarks and Experimental Setup
	4.2 Experimental Results

	5 Conclusion
	References

	Analysis of Solution Quality of a Multiobjective Optimization-Based Evolutionary Algorithm for Knapsack Problem
	1 Introduction
	2 0-1 Knapsack Problem and Approximation Ratio of Solutions
	3 Analysis of MOEA with Local Search Initialisation
	4 Analysis of MOEA with Greedy Search Initialisation
	5 Conclusions
	References

	Evolving Deep Recurrent Neural Networks Using Ant Colony Optimization
	1 Introduction
	2 Predicting General Aviation Flight Data
	3 Previous Results
	4 Methodology
	5 Results
	5.1 Optimization Software, Data and Reproducibility
	5.2 Runtime Environment
	5.3 Data Cleansing
	5.4 Experiments
	5.5 ACO Parameter Setting Analysis
	5.6 Best Found Neural Networks
	5.7 Comparison to Prior Results

	6 Conclusions and Future Work
	References

	Hyper-heuristic Operator Selection and Acceptance Criteria
	1 Introduction
	2 Background
	2.1 Adaptive Hyper-heuristic
	2.2 HyFlex Framework

	3 The Method
	3.1 Operator Selection Vector Design
	3.2 Acceptance Criteria Design

	4 Experimental Design
	5 Results and Discussion
	6 Conclusions
	References

	Improving the Performance of the Germinal Center Artificial Immune System Using -Dominance: A Multi-objective Knapsack Problem Case Study
	1 Introduction
	2 Preliminaries
	2.1 Multi-objective Optimization
	2.2 The Multi-objective D-Dimensional Knapsack Problem

	3 The -GC-AIS Algorithm
	4 Experimental Setup
	5 Results and Discussion
	6 Conclusion
	References

	Mixing Network Extremal Optimization for Community Structure Detection
	1 Introduction
	2 The Community Detection Game
	3 Mixed Network Extremal Optimization
	4 Numerical Results and Discussions
	4.1 Experimental Setting
	4.2 Setting Parameters
	4.3 Comparisons with Other Methods

	5 Conclusions
	References

	Multi-start Iterated Local Search for the Mixed Fleet Vehicle Routing Problem with Heterogenous Electric Vehicles
	1 Introduction
	2 Problem Description and Notation
	3 Iterated Local Search Meta-Heuristic
	3.1 Initial Solution Generation
	3.2 Local Search Procedure
	3.3 Perturbation Mechanism
	3.4 Acceptance Criterion

	4 Computational Experiments and Discussion
	5 Conclusion
	References

	On the Complexity of Searching the Linear Ordering Problem Neighborhoods
	1 Introduction
	2 The Maximum Partial Sum Data Structure
	2.1 Formal Definition
	2.2 Implementation

	3 Implementing the Insertion Neighborhood
	3.1 Definitions and Notation
	3.2 The Regular O(n2) Implementation
	3.3 Finding the Best Insert Move in O(n logn)

	4 Additional Results About the Two Neighborhoods
	4.1 Finding the Best Interchange Move in O(n2)
	4.2 About the Local Optima of the Two Neigborhoods

	5 Discussion and Conclusion
	References

	Runtime Analysis of (1+1) Evolutionary Algorithm Controlled with Q-learning Using Greedy Exploration Strategy on ONEMAX+ZEROMAX Problem
	1 Introduction
	1.1 Approaches for Extra Objectives
	1.2 Reinforcement Learning and EA+RL

	2 Analyzed Problem and Algorithm
	3 Learning Lemma
	4 Transition Probabilities
	4.1 Lower and Upper Bound on Pi, J
	4.2 Lower and Upper Bounds on Partial Sums of Pi,j
	4.3 Lower and Upper Bounds on Other Expressions

	5 Drift Analysis
	5.1 Drift from a Learned State
	5.2 Drift from an Unlearned State

	6 Experimental Evaluation
	7 Conclusion
	References

	The New Memetic Algorithm HEAD for Graph Coloring: An Easy Way for Managing Diversity
	1 Introduction
	2 Algorithm: HEAD
	3 Results
	4 Analysis of the Diversity
	4.1 Relationship Between Distance and Fitness Values
	4.2 Control of the Diversity with the Swapping Frequency

	5 Conclusion
	References

	The Sim-EA Algorithm with Operator Autoadaptation for the Multiobjective Firefighter Problem
	1 Introduction
	2 Problem Definition
	3 The Sim-EA Algorithm
	3.1 Migration
	3.2 Operator Autoadaptation

	4 Experiments and Results
	5 Conclusion
	References

	True Pareto Fronts for Multi-objective AI Planning Instances
	1 Introduction
	2 MultiZenoTravel problem
	2.1 Instances
	2.2 Pareto Optimal Plans
	2.3 Computing the Shortest Makespan

	3 ZenoSolver
	3.1 Empirical Performances
	3.2 Reference Large Instances

	4 Conclusion and Perspectives
	References

	Upper and Lower Bounds on Unrestricted Black-Box Complexity of JUMPn,l
	1 Introduction
	2 Upper Bounds for Jumpn,
	2.1 Helper Theorems
	2.2 Upper Bound for Smaller
	2.3 Upper Bound for Larger
	2.4 Upper Bound for Extreme Jump

	3 The Matrix Lower Bound Theorem
	4 Lower Bounds for Jumpn,
	5 Conclusion
	References

	Using Local Search to Evaluate Dispatching Rules in Dynamic Job Shop Scheduling
	1 Introduction
	2 Background
	3 The New Method
	3.1 GP System
	3.2 Local Search for Evaluating Dispatching Rules

	4 Experiment Design
	5 Experimental Results
	5.1 LS-SO and LS-MO
	5.2 TB-SO and TB-MO

	6 Conclusions
	References

	Author Index

