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Abstract. Provenance traces captured by scientific workflows can be
useful for designing, debugging and maintenance. However, our experi-
ence suggests that they are of limited use for reporting results, in part
because traces do not comprise domain-specific annotations needed for
explaining results, and the black-box nature of some workflow activities.
We show that by basic mark-up of the data processing within activities
and using a set of domain specific label generation functions, standard
workflow provenance can be utilised as a platform for the labelling of
data artefacts. These labels can in turn aid selection of data subsets and
proxy for data descriptors for shared datasets.
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1 Introduction

Many fields of science are experiencing a proliferation in the sharing and re-use
of scientific datasets [TA+11]. Widespread data-oriented science and data shar-
ing necessitates principled data reporting regimes [TF+08] and richer metadata.
In this context “scientific data provenance” is considered to be essential
metadata that describes (1) the experimental context, in which data is gener-
ated, such as the scope of study, assumptions, experimental settings and descrip-
tions of specialist resources or techniques adopted [TF+08], and (2) the data’s
origins in terms of primary datasets or source databases [TA+11].

Scientists go through a phase of experiment reporting prior to sharing
datasets. During reporting they select relevant data subsets among the pool
of all results obtained and annotate data to denote its scientific provenance
using domain-specific vocabularies [TF+408]. A recent survey [TA+11] has shown
that even though there is significant tool support for the collection and analysis of
data, similar support does not exist for the organisation of results. Consequently
scientists welcome any tool support for it.

Increasingly, scientific datasets are produced from entirely computational
experiments. In many domains, Scientific Workflows have become a widespread
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mechanism for specifying experiments as systematic and (re)runnable composi-
tions of datasets and analysis tools [DF08]. Experiments organised as workflows
are advantageous over adhoc analyses as they provide repeatability of compu-
tation and traceability among results. Wide adoption of scientific workflows has
fostered research on workflow provenance [DF08] with several provenance models
and query mechanisms developed [Gel2,BC+12,MD+13,MLA+08]. Given their
extensive provenance traces, at first glance one expects workflow-based exper-
iments to be advantageous during experiment reporting. However, there is
little use of workflow provenance during experiment reporting. This is due to: (1)
workflow provenance being generic, implementation-oriented metadata [SSHOS]
that cannot stand-in for domain-specific descriptions expected during scientific
data publishing; and (2) the established means of querying workflow provenance
i.e. lineage traversal, can be an imprecise selection mechanism for scoping data
subsets to be reported.

To this date, the approach to acquiring domain-specific annotations over
workflow generated data has been either entirely manual [ZW+04] or partially-
automated [MSZ+10]. Certain fixed characteristics at workflow description level
are collected and then propagated to data generated by executions. This fixed
metadata is useful for reporting but insufficient. Often experiments are reported
based-on parametric information that is supplied at runtime via inputs. When
one workflow execution is configured with multiple values of one parameter,
results need to be annotated accordingly. This category of dynamic information
offers significant utility in reporting yet it has received limited research attention.
On the other hand, while manual annotation can be feasible for capturing fixed
metadata, it is hard to scale for dynamic metadata.

Scientists invest significant time and effort into organising experiments as
workflows. While this brings benefits when running the experiment, it has limited
benefits for reporting. We propose to bridge this gap and exploit workflow
provenance to its full potential by treating it as a medium on which
an automated data annotation (labelling) framework can be weaved.
The benefit of labels are twofold: (1) they have the potential to stand-in as data
descriptors during publishing; and (2) they can be used for more precise scoping
of data subsets to be reported.

We describe LabelFlow, a semi-automated infrastructure for tracking domain
specific provenance with Data Labels. We introduce a domain-independent process
model comprised of four operators for the in-situ generation and propaga-
tion of labels, predicated on basic information given in the form of semantic
workflow annotations, called Motifs, that describe the data processing charac-
teristic of workflow steps. We provide a practical algorithm for the generation
of Labelling Pipelines out of motif-annotated scientific workflows, and provide
an implementation where labelling pipelines are realised as functional programs.
In prior work [AGB13] we proposed requirements and a preliminary approach;
here we present a fully implemented architecture and report results on the
impact of availability of labels to provenance queries. We start by introducing a
sample real-world workflow and outline the provenance categories and queries
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for experiment reporting (Sect.2). We outline the LabelFlow architecture in
Sect. 3 followed by details of the proposed solution, including Motif annotations
(Sect. 3.1), the core model for labelling pipelines (Sect. 3.2), labels (Sect. 3.3) and
labelling operators (Sect. 3.4). We review related work in Sect. 4, and conclude
in Sect. 5.

2 Motivation

Figure 1 illustrates a workflow from astronomy! that takes as input a set of
galaxy names (“list_cig-name”), and outputs extinction/reddening calculations
per galaxy (“data-internal_extinction”), and galaxy details such as coordinates
and morphology (“ra” “dec” “sesame” “logr25”, and “leda_output”). The work-
flow starts by retrieving data, including coordinates, for each galaxy through a
service based lookup from the Sesame astro-repository (Step-1- “SesameXML”).
Coordinates are used to query the Visier Database to retrieve further data
regarding galaxies (Step-2- “VII_237”). Galaxy morphology information is extr-
acted from the Visier results, which is input together with coordinates into a
local tool that computes galaxy extinction values (Step-3-‘“calculate_internal
_extinction”). The scientifically significant activities in this workflow are the data
retrievals and the local extinction calculation. The remaining activities are
data adapters [GAB-+14], a.k.a. shims, which are dedicated to the extraction of
data, format transformation or moving data between the workflow environment
and the file system. An important adapter in our example is the “Flatten_List”
step, which bundles all input coordinates for all galaxies from Step-1 into a single
output list for Step-2.

Workflow execution results in a set of intermediary and final data artefacts.
For a single galaxy (e.g. M31, the Andromeda Galaxy) a total of 17 final results
are generated at 6 output ports. The number of outputs increases linearly with
the number of inputs. For a list of 6 galaxy names supplied as input, we get 20+
values for extinction and 100+ values for all results. This illustrates how work-
flows as automation tools proliferate data generation and makes apparent that
manual annotation of data artefacts would quickly become a challenge for users.

The provenance landscape for workflow-generated data contains two cate-
gories of information

(i) Generic: Standard (Workflow) Provenance vocabularies make-up this cat-
egory. They capture activities, input/output ports, activity instantiations,
and data artefacts appearing at ports. Data influence and activity causality
relations are also represented at this layer [Gel2, BC+12].

(ii) Domain Specific: Field-specific vocabularies for describing the scientific
context and characteristics of data and experiments make up this category.
The importance of domain-specific metadata has been acknowledged early-
on in provenance research; 5 out of 9 of the Provenance Challenge queries
[MLA+08] are based on restrictions on either data values or “annotations”,

! http://www.myexperiment.org/workflows/2920.html.
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Fig. 1. Sample workflow from Astronomy developed by the Wf4Ever project.

which are “assumed” to exist. Domain specific annotations can further the
categorised as containing Static or Dynamic metadata. The former identifies
fixed/general domain types for activities or their inputs and outputs. E.g.
Specifying that an activity is a SesameDB lookup, a parameter is a galaxy
name. Dynamic metadata corresponds to attributes of data that can change
from run to run. This information is often to be found innately but implicitly

within data values, e.g. the galaxy name input parameter such as M31 or
Ma33.

Let’s now look at the state of the art in reporting with the Lineage-Based
Approach, and compare with our proposed Label-Based Approach. In the former
we only have generic workflow provenance to query, in the latter we employ
LabelFlow to obtain domain-specific annotations, which we later query.

Lineage-Based Data Selection: One can use workflow provenance to select
data subsets by using lineage as a scoping mechanism. For instance, querying
for results that are on the derivation path of a particular input artefact, or those
whose derivation includes a particular activity. Table 1 presents three traditional
lineage queries; Qla, Q2a are adapted from [ZS+11], and Q3a is an adaptation
of Provenance Challenge Query #6 [MLA408]. Queries are font-highlighted to
denote the different layers of provenance metadata needed to support them.
We analyse queries with respect to their Contextual-Precision, which we

define as #ofContextually-Accurateresults yy, (efine Contextual Accuracy as
Total#ofresults

the results actually belonging to the scope implied by the query (e.g. for Qla the
results that actually contain data that is retrieved from the Sesame database, or
for Q2a the results that actually contain data belonging to galaxy M31).
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Table 1. Provenance queries to select results of interest from the execution traces of
workflow in Fig. 1. In Q(2a) we locate the specific data artefact with value M31 prior
to formulating the query.

Q(1a) Find all outputs whose derivation path includes a SesameDB lookup.
%|Q(2a) Find all outputs whose derivation path includes input with value M31.5°° “@Pton
§ Q(3a) Find all extinction values that is output from extinction calculation
5 |where the galaxy coordinates taken as input have been directly/indirectly outputted
from a SesameDB lookup with a galaxy name input with value M31.
Q(1b) Find all outputs who has referenceURI http://cds.u-strasbg.fr.
= Q(2b) Find all outputs who has subject M31.
2 1Q(3b) Find all extinction values that is output from extinction calculation
—~ |where the galaxy coordinates taken as input has referenceURI
http://cds.u-strasbg.fr and has subject M31.

Q1la queries for the origin of data by expressing it as a path-based linkage to
the “Sesame XML” activity in the workflow description. This way of designating
the origin proves to be a weakly precise yet robust filter (see Fig.2 (left)). Only
one third of the results whose derivation path includes a Sesame DB lookup
actually contain data that is retrieved from the Sesame DB. Increasing the num-
ber of galaxies in a workflow run does not diminish the precision of Qla. Q2a
defines a filter for results belonging to the Andromeda Galaxy by expressing it
as a path-based linkage to the data artefact at the galaxy name input port with
value “M31”. While Qla puts constraints on workflow description level enti-
ties, Q2a puts restrictions on run-time provenance-level entities. As depicted in
Fig. 2 (right) the precision for Q2a quickly deteriorates. Q3a is a more elaborate
query that combines the metadata requirements of Qla and Q2a. Q3a is not
robust against input data increase either. The fragility of queries that make use
of dynamic elements (Q2a, Q3a) is due to the well-known Black-Box nature of
workflow activities. For our case specifically, the “Flatten_List” step, which bun-
dles all input coordinates for all galaxies into a single output list. At this point
we lose fine-grained traceability between a specific galaxy name and the relevant
data generated downstream in the workflow. As our example demonstrates, in
the face of loss of fine-grained traceability, path-based querying of provenance
becomes an ineffective index for reporting.
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Fig. 2. Precision values for Q1 (left) and for Q2&Q3 (right) with respect to input size.
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Annotation with LabelFlow and Label-Based Selection: In order to
employ LabelFlow, as a pre-requisite we developed two simple functions that
extract attributes (labels) for astronomical datasets from their XML based repre-
sentation. We associated these functions with the “SesameXML” and “VII_237”
activities, so that whenever these two data retrieval activities are used in a work-
flow they would have an associated labelling capability denoting the data’s origin
using an endpoint and its context i.e. the astronomical object it belongs to. We
also semantically annotated data adaptation steps in our astro-workflow to give
them basic transparency to denote whether inputs are carried-forward to (copied-
to) outputs. Using this information LabelFlow creates a labelling pipeline, which
we use to decorate the runs of our workflow with labels. Labels have two poten-
tial uses, as descriptors during publishing and as data selection aides. In this
work we explore the latter use of labels.

Table 1 also presents label-based data selections queries Q1b, Q2b and Q3b.
In these we directly refer to the asserted origin (has referenceURI) and the
asserted context (has Subject). Label-based queries Q1b and Q2b have higher
precision then their lineage based counterparts (see Fig. 2), which can be explain-
ed as follows. First, lineage-based association is by-definition only a pseudo mech-
anism for denoting origin/context. By replacing lineage-based association with
explicitly asserted attributes we gain in precision, as now only the data items
that originate from the Sesame DB, and their local copies are returned to Q1b.
Secondly, loss of fine-grained traceability also affects label-based query preci-
sion, see Q2b in Fig.2 (right). While each item output from “SesameXML”
bears the correct label denoting the associated galaxy, all items in the out-
put of “Flatten _List” would bear a set of labels (for all galaxies), even though
each contains the data of one. This time, however, LabelFlow offers the possibil-
ity of asserting/recovering context in other data minting steps (“VII_237”); the
labelling function associated with this step would exploit the raw data returned
from the Visier DB and associate each result item with its context using a com-
mon attribute (has subject). In precision Q3b and Q3a are of equal capability
in filtering (Fig.2 (right)). This shows us that even though Q3b makes use of
labels, it queries workflow results with reference to a particular blindspot (i.e.
output of “Flatten_List”) and therefore has precision performance equivalent
to lineage-based queries. Thus, lineage-based queries represent the bottom-line
(worst-case) precision for data scoping, where availability of labels offers the
possibility of increased precision (at varying levels depending on existence and
frequency of activities where fine-grain traceability is lost). In the remainder of
the paper we describe the LabelFlow infrastructure.

3 The LabelFlow System

Figure 3 provides the overall architecture of our approach. We undertake labelling
as an offline process, where we do not interfere with the established process of
scientific workflow design (Step Al) and execution (Step A2). Workflow runs
result in the generation of data artefacts and generic workflow provenance. These
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two make up our primary sources of information for obtaining and propagat-
ing domain-specific Data Labels. We perform labelling through latent processes
informed by scientific workflow descriptions themselves enriched with semantic
Motif annotations and associated Labelling Functions.
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Fig. 3. Labelling System Architecture.

We operationalize the process model with Labelling Pipelines. Labels
are opaque to the process model, as it out-sources their creation to external
Labelling Functions. Using motif annotations (Step B1 in Fig. 3) and a repos-
itory of labelling functions we compile (Step B2) a labelling pipeline for a given
scientific workflow. This pipeline is in-turn used to annotate the desired execu-
tion traces of that workflow with labels (Step B3). Once labels are generated
they can be used in conjunction with generic workflow provenance metadata for
the reporting of experimental results (Step C1).

3.1 Annotation of Workflow Activities with Motifs

In a previous empirical study [GAB+14] we inspected a corpus of 240 work-
flows from 4 systems and 10 domains in order to understand the nature of
data processing in them. This resulted in a catalog of Motifs, a set of high-level
abstractions for describing activity functionality. The analysis showed that a
certain minority (30 %) group of activities perform the scientific heavy lifting
in a workflow by minting data through analysis or retrievals. The remainder
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majority (70 %) are dedicated to data adaptation. A common characteristic of
adapters, is that their computation is based on walue-copying from inputs to
the outputs. It follows then that we should seek labels for data artefacts that
are generated by Data Minting activities, and grab hold of labels as data passes
through (i.e. copied through) Data Preparation activities. These two categories
of behaviour form the backbone of our labelling system. In Table2 we list a
subset of motifs with examples (including those from our astro-workflow as
applicable) and corresponding labelling behaviour. Motifs are captured in an
ontology, which we use to manually annotate activities. This basic annotation
is in turn used to infer the data handling behaviour of each step. Annotation is
finalised by collecting the particulars from the user; for value-copying, the source
and sink ports, and for data minting the associated Labelling Function (if any)
and the sink port to receive labels. Note that we scope our approach to scien-
tific dataflows, i.e. those without any explicit control construct such as looping
or branching. The pure dataflow model underpins several systems such as Tav-
erna [MSRO+10], Galaxy? or Wings [GRK+11]. In others like Kepler [LAB~+06]
and Vistrails [MSFS11] pure dataflow model is widely adopted, while control-
constructs are add-on modules or supplied in alternative design modes. We also
assume that data is structured as Collections-Items, which is a ubiquitous struc-
ture for scientific workflow systems.

Table 2. Workflow motifs, Value copying and corresponding labelling behavior

Motif src—snk | Example Labelling
Data Minting 1710 “SesameXML”, “VII_237” “calculate_int_extinction” | Mint
Augmentation ™10 Adding a header to a CSV dataset Propagate
Extraction =™ 0 “Select_logr25_Mtype”, “’Extract_DEC&RA” Propagate
Splitting 1=Lo Splitting a dataset by newline char Propagate
Flattening 12750 | “Flatten_List” Propagate
Filter =Lo Filtering empty rows from a CSV Propagate
Join 1710 | Row by row dot product of two CSV tables Propagate
Union 1™~L.0 Concatenating two CSV tables Propagate

3.2 Labelling Pipelines

We provide a tool which takes as input a motif annotated workflow description
w and produces a labelling pipeline IT,, for this workflow. IT,, could in turn
be used to annotate data artefacts generated from all runs of w. A pipeline
generator implements an algorithm based on the traversal of all dataflow paths
in w. For each workflow element (i.e. activity or dataflow link) the tool checks the
availability of motif annotations and label-flow continuity and accordingly places

2 http://galaxyproject.org.
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an operator into I, as a labelling proxy for that element. We note that this
algorithm can operate with partial/missing annotations; in the case of missing
motif annotations, the generator simply registers the current stack of connected
labelling operators as a labelling sub-pipeline and resets. The algorithm initiates
a new thread in the labelling pipeline whenever it encounters an activity that
mints new data. To coordinate inter-operator communication among labelling
operators we use simple runs-after type control tokens. The output of the genera-
tor tool is an intermediate representation for a labelling pipeline which is further
expanded into a runnable form using the syntactic/macro expansion capabilities
of a functional programming language.

The inputs to a particular execution of the labelling pipeline I7,, is the 6-
tuple (d,p,l,v, Fr, Fp), where p, denotes the provenance trace of one run of
workflow w, and d denotes the set of data artefacts generated during that run.
The domain specific provenance represented with labels is accumulated in the
label space [. v is the labelling vector that the system will take into account
for label propagation. The system relies on sets of predefined functions, Fy, for
provisioning labels and for management of the label space (read-write) and Fp
for querying generic workflow provenance.

3.3 Labels

A label is in effect a Label Instance that is defined with the triple L;,s =
(def,target,value). def refers to the label’s type, target is the id of the data
artefact, which the label describes, and value is the actual annotation con-
tent carried by the label. Label definitions are triples of the form Lg.; =
(name, datatype, fogqe). They have a unique name and a datatype designator.
Labels can contain primitively typed information such as Integer or String.
fagg is the identifier for a function to be used when the system needs to aggre-
gate multiple labels of this type. For the majority of labels, this element is nil,
in which case the default aggregation function, i.e. Union, is used. A non-default
case is, for example, the spatialaggregation function which computes the convex
hull representing the overall spatial coverage of multiple datasets. Label defini-
tions are grouped together in Label Vectors, v = (name, { Lgcs}). When used to
configure the run of a pipeline II,,, the vector sensitizes IT,, to the label types
that it contains. Label and label vector definitions are to be made at the scientific
investigation level, which spans multiple workflow descriptions.

3.4 Labelling Operators

Labelling pipelines are compositions of four labelling operators, namely Mint,
Propagate, Distribute and Generalize (Fig. 4). In addition to input parameters,
each operator accesses the provenance space, and depending on the labelling
behaviour, accesses either the data artefacts (in case of mint) or the label space
(others). Each operator has the side-effect of populating the label space. Opera-
tors return a boolean control token that is used for composing multiple operators
into a labelling pipeline:
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— Mint is a labelling proxy for those scientifically significant steps in the work-
flow. Mint obtains labels by invoking the designated external labelling func-
tion; the labels are then associated with the data artefacts that fulfil the sink
port and submitted to the label space. Minting is iterated for all invocations
of the designated activity found in the provenance trace.

— Propagate is a labelling proxy for the value-copying Data Preparation steps in
the workflow. Similar to mint, it is iterated for all invocations of the designated
activity. Propagate clones labels describing the inputs at the source port and
associates these clones with the outputs at the sink port.

— Distribute and Generalize are variants of propagation. While the former two
are labelling proxies for activities, these are labelling proxies for dataflow links
in the workflow, specifically those links with data structure depth mismatches
between the two ends. In cases where the activity at one end of a dataflow
link produces a collection, and the other end consumes an item, Distribute is
responsible for propagating labels from the top-level collection to each item
at specified depth. And vice-versa for Generalize.

Activity  Sink Port Labeling Function Activity ~ Source Port  Sink Port Source Port Sink Port  Depth
Id Id Id ol ] $ Id /d
d I i 1 Distribute/ '
» Mint ! Propagate » Generalize
P

control token l control token control token

Fig. 4. Labelling Operator Signatures.

3.5 Implementation

The provenance and the label spaces are underpinned by RDF based meta-
data. LabelFlow can operate over standard PROV [Gel2] + Wiprov [BC+12]
compliant provenance traces. Our provenance inquiry functions in the p space
are implemented as Java methods. We implemented labelling operators as Java
methods and labelling pipelines as Clojure programs that adhere to the dataflow
paradigm?®, though in our case we flow control tokens among operators and
the inter-operator communication regarding labels is done over the shared label
space. The Label Flow system is agnostic to the inner workings of labelling func-
tions. For our example from astronomy we had a simple local registry of labelling
functions, which are Java classes adhering to a label generation interface.

4 Related Work

As mentioned previously, provenance annotation has so far been either entirely
manual, or semi-automated with particular focus on static metadata [MSZ+10].
In [SSHO8] authors describe the SPADE system where they highlight dynamic
metadata, and they too address data artefacts as the source of this information.

3 http://clojuredocs.org/clojure_core/clojure.core/future.
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The authors propose “semantic provenance modules” to supply this metadata
and claim modules can be integrated into workflows on-demand, though details of
the integration are omitted. When compared to our work, this work is focused on
devising an elaborate provenance ontology for one particular scientific domain,
whereas ours is a domain-independent mechanism. Moreover the SPADE system
requires altering the original scientific workflow to denote integration points,
while ours is non-intrusive to the workflow design and execution process Finally
SPADE does not address metadata propagation.

There is a large body of work on the provenance of database queries, which
is recently revisited for its applicability to workflow provenance [AD+11,1C+,
BLO06]. These approaches propose white-box workflow activities that correspond
to relational query operators. The benefit of white-box steps is that they allow
full-transparency and enable fine-grained lineage, also making way for the track-
ing of cell-level value-copying and annotation propagation [BC+04]. Similarly,
work on dependency analysis in programming languages has recently found
applicability as a formal foundation for the tracking of Nested Relational Cal-
culus query provenance [CAAQ7]. Such white-box transparency could be instru-
mental in developing workflow debugging or change tracking aids. On the other
hand, these approaches expect data to be specified in relations and tuples,
and reduce data-processing to data-querying; both of which can be restrictive
assumptions for developing scientific workflows. In contrast, we focus on the
unexplored area of grey-box steps, and denote value-copying through a rough-
cut semantic annotation.

5 Conclusion

We described a semi-automated approach and an implemented architecture for
the generation of Labels over data artefacts generated from runs of workflow
based experiments. Labelling is performed through labelling pipelines, which use
data artefacts as the main source of information for extracting domain-specific
metadata and workflow provenance as a roadmap for association and propaga-
tion of labels with data. Pipelines are built up using four domain-independent
labelling operators, which are agnostic to the contents of the domain-specific
labels they carry around.

We argue that experiments organised as workflows make-up an ideal medium
to capture and carry domain-specific provenance. Labels, i.e. carriers of this
information, stand as a light-weight but controlled representation mechanism for
metadata, which is a middle-ground between having no explicit metadata and
having fully-fledged models that can represent complex/structured metadata.
The benefit of labelling is two-fold: not only does it make implicit informa-
tion explicit, but it also enables provenance queries that directly refer to scien-
tific provenance/context rather than expressing context indirectly it in terms of
derivation paths.

The cost involved in adapting our system is the manual annotation of work-
flow activities with motifs and developing labelling functions for the focal data
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generation points in workflows. These are one-time costs. Both motif annota-
tions and labelling functions are highly reusable as most workflows are built by
re-using building blocks pooled in module libraries or service registries. Conse-
quently an annotation or a labelling proxy for a building block propagates to all
workflows that the block is involved. When compared to workflow design, the
cost of annotation is modest(as it amounts to single attribute setup per activity).
Moreover motif annotation can be (semi)automated through the application of
mining techniques to workflows and activity scripts [GCP13]. The re-usability of
labelling functions can be maximised by developing metadata extraction utilities
that operate over standardised scientific data formats.
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