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Preface

This volume contains the proceedings of the 5th International Provenance and Anno-
tation Workshop (IPAW), held during June 10-11, 2014 at the German Aerospace
Center (DLR) in Cologne, Germany. For the first time, [IPAW colocated with the
Workshop on the Theory and Practice of Provenance (TaPP). Together the two leading
provenance workshops anchored ProvenanceWeek 2014, a full week of provenance-
related activities that included a shared poster session, a panel on reproducibility in
science, and tutorials on the W3C PROYV standard, on provenance analytics, and the uses
of provenance in cell biology. The week was rounded out with afternoon-long birds-of-
a-feather activities around constructing a provenance record from data when provenance
was not collected in the first place, and benchmarking of provenance systems. This
collection constitutes the peer-reviewed papers of IPAW 2014. These include 14 long
papers which report in-depth the results of research around provenance and four
extended abstracts that discuss tools and services that were presented in the form of a
system demonstration. Finally, we have included 20 short abstracts of the joint [IPAW/
TaPP poster session. The final papers, demos, and poster abstracts were selected from a
total of 53 submissions. All full-length research papers and demo papers received a
minimum of three reviews.

The papers of IPAW 2014 provided a glimpse into state-of-the-art research and
practice around the capture, representation, and use of provenance. Since provenance
often results in graphs, and large ones at that, several of the papers in this collection
proposed abstract graph models and methods with well-defined properties, properties
that can hold even when sanitized for potentially sensitive information. Tools are the
focus of a number of papers in this collection; these are innovative software applica-
tions that solve a particular problem and are evaluated experimentally. They are often
converging on the W3C PROV model for provenance interchange. Some papers dis-
cussed tools that enable provenance capture from software compilers, from web pub-
lications, and from scripts, using existing audit logs, and employing both static and
dynamic instrumentation. New methodologies for provenance aggregation and use
appeared in the collection as well. We see the evaluation of a linked data approach to
provenance publishing, the generation of documentation from provenance, and appli-
cation of provenance to protect attribution in scientific discovery.

In closing, we would like to thank the members of the Program Committee for their
thoughtful reviews, Dr. Andreas Schreiber (Local Chair) and Carina Haupt for their
excellent organization of IPAW and ProvenanceWeek 2014 at DLR, and—Ilast but not
least—the authors and participants for making IPAW the stimulating and successful
event that it was.

December 2014 Bertram Ludéascher
Beth Plale
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ProvAbs: Model, Policy, and Tooling
for Abstracting PROV Graphs

Paolo Missier! ™) Jeremy Bryans!, Carl Gamble',
Vasa Curcin?, and Roxana Danger?

1 School of Computing Science, Newcastle University,
Newcastle upon Tyne, UK
pmissier@acm.org
2 Imperial College, London, UK

Abstract. Provenance metadata can be valuable in data sharing
settings, where it can be used to help data consumers form judgements
regarding the reliability of the data produced by third parties. However,
some parts of provenance may be sensitive, requiring access control, or
they may need to be simplified for the intended audience. Both these
issues can be addressed by a single mechanism for creating abstractions
over provenance, coupled with a policy model to drive the abstraction.
Such mechanism, which we refer to as abstraction by grouping, simulta-
neously achieves partial disclosure of provenance, and facilitates its con-
sumption. In this paper we introduce a formal foundation for this type of
abstraction, grounded in the W3C PROV model; describe the associated
policy model; and briefly present its implementation, the ProvAbs tool
for interactive experimentation with policies and abstractions.

1 Introduction

Provenance, a formal representation of the production process of data, may
facilitate the assessment and improvement of the quality of data products, as
well as the validation and reproducibility of scientific experimental datasets.
This expectation predicates on an assumption of interoperability between mutu-
ally independent producers and consumers of provenance. The W3C PROV
generic provenance model [1] is intended to facilitate such interoperability, by
providing a common syntax and semantics for provenance models, and thus
enable provenance-aware data sharing at Web scale.

1.1 Abstracting Provenance

For provenance to be useful, it must be represented at a level of abstraction that
is appropriate to the consumer. For example, system-level provenance which
includes individual system calls and I/O operations may be appropriate for

This work was funded in part by EPSRC UK and DSTL under grant EP/J020494/1.

© Springer International Publishing Switzerland 2015
B. Ludéascher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 3-15, 2015.
DOI: 10.1007/978-3-319-16462-5_1



4 P. Missier et al.

system auditing purposes, while a higher level description may be more appro-
priate to determine how a document evolved to its final version, e.g. through a
series of edits involving multiple authors. In some cases, the higher abstraction
can be computed from the detailed representation. One such case occurs when
provenance describes the execution of a workflow or dataflow, which can itself
be described at multiple levels of abstraction. Early work on provenance views
(Zoom) [2] is an example. Here users specify the abstraction they require on the
workflow, and that is used to compute a corresponding abstract view of the work-
flow’s trace. More generally, however, a trace may represent arbitrary process
executions and data derivations, and one cannot rely on a formal description of
the process to specify a suitable abstraction.

The problem of abstracting over provenance in such a more general set-
ting has been addressed in later work, notably the ProPub system [3]. Here
the main goal is to ensure that sensitive elements of the trace are abstracted
out, by means of a redaction process. In ProPub, users specify edit operations
on a provenance graph, such as anonymizing, abstracting, and hiding certain
parts of it. ProPub operates on a simplified provenance model (which pre-dates
PROV) which only includes use/generation relations, and adopts an “apply—
detect—repair” approach. First, user-defined abstraction rules are applied to the
graph, then consistency violations that may occur in the resulting new graph
are detected, and finally a set of edits are applied to repair such violations. In
some cases, this causes nodes that the user wanted removed to be reintroduced,
and it is not always possible to satisfy all user rules.

1.2 Contributions

Our work is motivated by the need to control the complexity of a provenance
graph by increasing its level of abstraction, as well as to protect the confidential-
ity of parts of the graph. Our specific contributions in this paper are threefold.
Firstly, we define a Provenance Abstraction Model (PAM) centred on the Group
abstraction operator. Group replaces a set of nodes V. C V in a valid PROV
graph PG with a new abstract node, resulting in the modified graph PG’. The
rewriting preserves the validity of the graph, in the sense made precise below,
and it does not introduce any new relations into PG’, which are not justified
by existing PG relations. A formal account of this operator is given in Sect. 3.
A preliminary but more extended account of this work appears in our technical
report [1].

Secondly, we present a simple policy model and language for controlling
abstraction, based on the assumption that provenance owners want to control
the disclosure of their provenance graphs to one or more receivers, with varying
levels of trust (Sect.4). The model lets the owners associate a policy, pol, to a
graph. Policy evaluation results in a sensitivity value s(v, pol) being associated
to each node v. Assuming, as in the Bell-Lapadula model [4], that a clearance
level cl can be associated to each receiver, the nodes Vi, to be abstracted in
PG according to pol are those for which s(v, pol) > cl.
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Finally, we present the ProvAbs tool, which implements both Group and the
policy language. ProvAbs has been demonstrated on our confidentiality preser-
vation use case, in the context of intelligence information exchange [5].

1.3 Related Work

In addition to the Zoom and ProPub prototypes cited above, strands of research
that are relevant to this work include (i) provenance-specific graph redaction,
(ii) graph anonymization, and (ii) Provenance Access Control (PAC). Provenance
redaction [6] employs a graph grammar technique to edit provenance that is
expressed using the Open Provenance Model [7] (a precursor to PROV), as
well as a redaction policy language. The critical issue of ensuring that specific
relationships are preserved, however, is addressed only informally in the paper,
i.e., with no reference to OPM semantics.

Extensions to the relational data anonymization framework to graph data
structures, specifically for social network data, have been developed [8—10]. The
approach, involving randomly removing and adding arcs, will not work for PROV,
however, as it would result in new, false dependencies. More relevantly, PAC is
concerned with enforcing access control on parts of a provenance graph, in the
context of secure provenance exchange. An analysis of the associated challenges
[11] notes that provenance of data can be more sensitive than the data itself.
In a similar setting, [12] accounts for the possibility of forgery of provenance by
malicious users, and of collusion amongst users to reveal sensitive provenance to
others. However, the paper stops short of providing any hints at technical solu-
tions, and indeed it is not clear how these problems are specific to provenance,
as opposed to data sharing in general. Finally, our policy language is loosely
related to an XACML-based policy language [13] the access control system for
provenance, where path queries are used to specify target elements of the graph.

2 Essential PROV

We now introduce the PROV concepts that are required for the rest of the paper.
The PROV data model [1] defines three types of sets: (i) Entities (En), i.e., data,
documents; (ii) Activities (Act), which represent the execution of some process
over a period of time, and (iii) Agents (Ag), i.e., humans, computing systems,
software. The following set of core relations is also defined amongst these sets:

usage:used C Act x En generation:genBy C En x Act
derivation:wasDerivedFrom C En x En association:waw C Act x Ag
delegation:abo C Ag x Ag attribution:wat C En x Ag

For simplicity and due to space constraints, in this paper we restrict our
scope to just En, Act, and relations used and genBy. The extension of this
work to Agents and their relations (abo, wat), is available from our extended
tech report [5]. The extension to other core relations such as wasDerivedFrom is
straightforward and will not be discussed here.
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We denote instances of these relations as genBy(e, a), used(a,e), etc., where
e € En,a € Act. Following common practice, we view a set I of such binary
relation instances as a digraph G = (V, E), where V = En U Act and E is a set
of labelled edges, and where z < y € E iff r(x,y) € 1.} Finally, we denote the
set of all such provenance graphs as PGy /cq, to indicate that they only contain
genBy and used relations amongst En and Act nodes.

TwitterFeedTimel

use use

Status:Unclassified
om: 2012-09-27T0!
t0:2012-10-27T09:.

|queryX'I‘ime3| queerTim:léule I

s \ .
N
gen \ 4 en

D
Status:protected
sensitivity: 4 YIweets2 %" XTweets1

Status:protected
sensitivity: 4

YTweets1®"  XTweets3

Fig. 1. Example provenance graph of a complex document production process. The
ProvAbs model is designed to abstract some of the elements in the graph, for instance
to avoid their disclosure. Coloured boxes denote ProvAbs sensitivity annotations,
explained in Sect. 4 (Color figure online).

Figure1 shows an example of a PG, e, graph, where ovals and rectan-
gles represent Entities, Activities, and Agents, respectively. The graph describes
a document, advice-report, which was ultimately derived from twitter feeds
captured at different times, through a series of query, consolidation, and analy-
sis activities. The agents to whom the documents and activities are ascribed are
omitted for simplicity. Note also that the nodes are decorated with user-defined
properties, such as Status.

! Conventionally, we orient these edges from right to left, to denote that the relation
“points back to the past”.
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A set of formal constraints are defined on the PROV data model. These are
described in the PROV-CONSTRAINTS document [14]. Two groups of con-
straints are relevant here. The first (Constraint 50 — typing?) formalises the
set-theoretical definitions of the relations given above. Additionally, Constraint
553 stipulates that entities and activities are disjoint: En N Act = ().

The second group concerns temporal ordering amongst events. PROV defines
a set of instantaneous events which mark the lifetime boundaries of Entities
(generation, invalidation), Activities (start, end), and Agents (start, end), as
well as some of the interactions amongst those elements, such as generation
and usage of an entity by an activity, attribution of an entity to an agent, and
more. Optionally, events may be explicitly associated to PROV elements. In the
following, we denote the start and end of an activity a by startEv(a), endEv(a),
respectively, and the generation and usage events for an entity e and activity a
with genEv(genBy(e,a)), useEv(used(a,e)), respectively (as mentioned, Agents
are beyond the scope of this paper). PROV events form a preorder, which we
denote <. The relevant temporal constraints are expressed as follows.

— C1: generation-generation-ordering (Constraint 39): If an entity is
generated by more than one activity, then the generation events must all be
simultaneous. Let e € Fn, a1, a2 € Act, and let genBy(e,a1) and genBy(e, az)
hold. Then the following must hold:

genEv(genBy(e,a1)) X genEv(genBy(e, az)) and
genFEv(genBy(e, a2)) = genEv(genBy(e, a1))

— C2: generation-precedes-usage (Constraint 37): A generation event for
an entity must precede any usage event for that entity. Let a € Act, e € En,
and let used(a,e)), genBy(e,a) hold. Then:

genEv(genBy(e,a)) < useEv(used(a,e))

— C3: usage-within-activity (Constraint 33): Any usage of e € En by some
a € Act cannot precede the start of a and must precede the end of a. Let
used(a, ) hold. Then:

startBv(a) < useEv(used(a,e)) < endEv(a)

— C4: generation-within-activity (Constraint 34): The generation of e by
a cannot precede the start of a and must precede the end of a. If genBy(e, a),
then:

startEv(a) < genEv(genBy(e,a)) X endFv(a)

A walid PROV graph is one that satisfies all the constraints defined in the
PROV-CONSTR document [14]. Within our scope, a valid PG graph is one
that satisfies the constraints defined here.

gu/ea

2 http://www.w3.org/ TR /prov-constraints/#typing.
3 http://www.w3.org/ TR /prov-constraints /#entity-activity-disjoint.
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3 Abstraction by Grouping

Simple edits that can be applied to a graph to protect confidentiality of its
content include removing individual nodes or edges. Alternatively, the node’s
identity can be changed, or the values associated to any of its properties can be
removed. These straightforward edits are legal in PROV and they will not be
discussed further.* We are instead concerned with edits that replace a group of
nodes with a new abstract node.

3.1 Core Concepts

To model this type of abstraction, we are going to define a Group operator which
takes a graph G = (V, E) € PGy, /e and a subset Vg, C V of its nodes, and
produces a modified graph G" = (V', ') € PG gy /cq, where V. is replaced with
a new single node. Group is closed under composition, thus allowing for further
abstraction by repeated grouping (abstraction of abstraction). Let vgps € V' be
an abstract node in G’. We denote the set V;, of nodes in G that it replaces by
source(Vgps)-

In order to understand the requirements for defining Group, consider the
replacements in Fig. 2. On the left, nodes Vi, = {a1, e4, e5} are replaced with a
new node ¢’. Simply using the original edges to connect the remaining nodes to
¢’ leads to type constraint violations, namely for the new edges e; « €/, eg « €/,
and thus to an invalid graph.

Now consider Fig. 2(b), where Vy, = {e1, €3, €4, e5}. In this case, the simple
strategy or replacing V,, with € and reconnecting the remaining nodes leads
to the two cycles: {genBy(e’,a1), used(a1,€’)} and {genBy(e', a3), used(as,e’)}.
Such cycles are legal, and in particular they are consistent with temporal con-
straints C1-C4 above. Indeed, it is easy to imagine a situation where an activity
a first generates an entity e, and then makes use of e. For instance, a could be a
programming artifact, i.e., an object that first instantiates a new object e, and
then makes use of e. In this case, the event ordering is

startEv(a) < genFv(e,a) = useEv(a,e) = endEv(a) (1)

Yet, we argue that introducing new cycles during abstraction is undesirable.
Intuitively, this is because cycles make stronger assumptions on the possible
temporal ordering of events than those in the original graph, and thus are only
representative of a restrictive class of graphs. To elaborate more precisely on
this point, we first introduce new definitions of generation and usage events for
an abstract node v,ps, from the corresponding events associated to source(vaps)-
For this, consider the definition of generation and usage in [1]:

4 Note that removing an arbitrary node may result in disconnected fragments of the
graph, as in general one cannot simply add edges to reconnect the remaining nodes,
unless those can be inferred from standard PROV constraints. For instance, if activ-
ity a is removed from the graph: {used(a,e1), genBy(es,a)}, this results in two
disconnected nodes e1, ez, because no relationship can be inferred between them
from the original graph.
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Generation is the completion of production of a new entity (Sect. 5.1.3).
Usage is the beginning of utilizing an entity (Sect.5.1.4).

An abstract node vg,s can be thought of as representing the collection
source(vgps) in the new graph. Thus, its “generation” is logically defined as the
completion of production of its source nodes, that is, its associated generation
event should be the latest generation event from within its source. Note that
associating a generation event to an abstract node requires the existence of a
generating activity. Although this is not always provided as a result of abstrac-
tion by grouping, Inference 7 in [1] ensures that such generating activity exists.
Thus we can formally define generation for abstract nodes, as follows.

Definition 1 (Abstract node generation event). Let V,, € V and vaps be a
new abstract node, with source(vays) = Vyr and generating activity a. Define:

genEv(genBy(vaps, a)) = max genFEv(genBy(e;, a;))

ei€source(Vaps
where a; is the generating activity of e;.

Symmetrically, we associate a usage event to v,ps, which is the earliest usage
event for the nodes in e; € source(vgps)-

Definition 2 (Abstract node usage events). Let Vy, € V, G = (V',E’) be
the new abstract graph, and let vaps € V' be a new abstract node. If there exists
an activity a € V' such that used(a,vaps) holds, then

useFv(used(a, Vaps)) = P.Ewg{ipg(v b )useEv(used(ai7 ei))

where a; s an activity that used e;.

ORONON©)

(a) Type constraint violations (b) Cycles introduction

Fig. 2. Issues with naive replacement of groups of nodes.
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With these definitions in place, temporal constraint (1), which applies to
simple usage-generation cycles in the graph, translates into the requirement that
every entity e; € source(vgps) be generated before any use of e;. This constraint
ties to each other the generation and usage time of the nodes that are abstracted.
In the original graph, however, there is no such requirement: the generation of
any entity is, in general, independent of that of others. This suggests that a
new generation-usage cycle in the abstract graph adds constraints that are not
present in the original graph, and should therefore be avoided. Note that ProPub
[3] also insists on avoiding cycles, but the formal argument in support of this
requirement does not appear to be clearly grounded in semantics.

To summarize, the requirements for Group when G is rewritten into G’ are:
(i) no type constraint violations must occur in G’, (ii) no new relationships that
are not also present in G are introduced in G’, and (iii) no new usage-generation
cycles are introduced in G’.

3.2 Convexity, Closure, Extensions, and Replacement

Intuitively, the reason for cycles such as the one in Fig. 2(b) is that set Vg, is not
“convex”, that is, there are paths in G that lead out of Vj,. and then back in again.
This observation suggests the introduction of a preliminary closure operation,
aimed at ensuring “convexity” and therefore acyclicity. This is defined as follows.

Definition 3 (Path Closure). Let G = (V,E) € PGgy/eq be a provenance
graph, and let Vg, C V. For each pair vi,v; € Vg, such that there is a directed
path v; ~ v; in G, let Vi; C V be the set of all nodes in the path. The Path
Closure of Vg, in G is

pclos(Vygr, V) = U Vij

v;i,v; €EVgr

Figure 3(b) shows closure applied to the example of Fig. 2, i.e. pclos({e1, e3, e4,
es},G) = {e1, e3,¢e4,€5,a1,a3}. The result of replacing this set with e’ is shown
in (¢). However, while this solves the cycle problem, the graph still violates type
constraints, namely on the new edges ey « ¢’ and eg + €’. In this example, we
can construct a new group of nodes, {¢’,ea, e}, on the graph that results from
the first replacement, and replace it with a new node e¢”. The resulting graph
(d) is valid.

To preserve validity in the general case, we are going to first extend the
closure in (b) to include e-nodes eq, eg, and then replace the resulting set with
e’ (the “extend and replace” arrow from (b) to (d) in the figure). Following this
approach, Group is defined as the composition of three functions: closure, defined
above, extension, and replacement, as follows.

The extension of a set Vg, C V relative to type t € {En, Act} is V,, aug-
mented with all its adjacent nodes, in either direction, of type ¢. Formally:



ProvAbs: Model, Policy, and Tooling for Abstracting PROV Graphs 11

Definition 4 (extend). Let G = (V, E) € PGgyjeq, t € {En, Act}.

extend(Vyr, G,t) = {v'|(v,0") € EAv €V, Atype(v') =t)} U
{v](v',v) € EAv € Vg Atype(v') =)} U Vg,

In our example:
extend({e1, es, eq,€5,a1,a3}, G, En) = {eq,e3, e4,e5,a1,a3, €2, €6}

Note that all sink nodes in eztend(Vy,, G, t) are of type t by construction.

Replacement. Let G = (V, E), V;,. C V be obtained using extend, and let vyeu
be a new node symbol that does not appear in V. Function replace replaces
V' with vpe in V, and connects vy, to the rest of the graph, as follows. Let
out(Vy,.); Vin(V,,), and 04,1 (V},.) denote the set of arcs of G' leading out of V.,
leading into V., Each arc (v/,v) € ¥out(V},) is replaced with a new arc (vnew, v),
and each arc (v,v’) € ¥in (V) is replaced with a new arc (v, vpew), both of the
same relation type. Arcs in ¥;,,(V;,) are removed along with the nodes in V.
Indeed, all sink nodes in Vg’r are of type ¢ as noted above, and S0 i8S VUpew by
construction. Thus, sink nodes are replaced by a node vy, of the same type.
Since the arcs have the same type as those they replace, it follows that replace
preserves type correctness. It is also easy to verify that each new edge in G’ can

be mapped to an existing edge in G (proof omitted).

Definition 5 (Replace). replace(Vyy, Vpew, G) = (V', E'), where:

V' =V \ Vg U{vnew}
E = E\ (ﬁout(Vqr) U ﬁin(Vgr) U ﬁint(V‘F)) U, (Vgr) U 1%n(vgr)

out

used wgB used
@=L = @]
@ extend replace
and repla@

Fig. 3. Grouping by closure and extension.
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3.3 T-Grouping

We can now define Group as a composition of closure, extensions, and replace-
ment. In general, nodes in Vg, can be either En or Act. It is necessary to spec-
ify the type of the replacement node, as this may lead to different results. To
make this explicit, we denote the operator by t-grouping (i.e., e-grouping
or a-grouping, respectively). In the next section, we clarify how user-defined
policies are used to control the application of t-grouping to a provenance graph.

Definition 6 (t-Grouping). Let G = (V,E) € PGgyjca, Vyr €V, t € {En,
Act}, and let vpey be a new node with type(vpew) =t. Then:

Group(G, Vgr, Unew, t) = replace(extend(pclos(Vy,, V), V, 1), Vnew, G)

Note sink nodes in the closure are homogeneous and are replaced by a node
of the same type t. This satisfies the necessary condition for replace to per-
form correctly. Figure4(a-1, a-2) illustrates Group(G, {e4, as}, new, Act), while
Fig. 4(e-1, e-2, e-3) shows Group(G, {e4, az}, Vnew, En). Note that a new pattern
arises in the case of e-grouping as shown in Fig.4(e-1, e-2). Now the extension
leads to Vi = Vg, U{es}, which in turn leads to the pattern shown in Fig. 4(e-3),
involving two generation events for the new entity ey. Although this is a valid
pattern, the two generation events must be simultaneous by C1 above. The intu-
itive interpretation for this pattern is that each of the two activities generated

a-grouping@ %e-grouping

(a-2)

""""""" ' extend
and replace

9NN UN4
at | (e3)

Fig. 4. e-grouping and a-grouping
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one entity in source(ey), and that the abstraction makes these two events indis-
tinguishable. Formally, nothing further needs to be done to the graph. However
one can restore the more natural pattern whereby one single generation event is
recorded for ey, by propagating the grouping to the set of generating activities.
In the example, this leads to the graph in Fig. 4(e-3).

4 Policy Model

Having outlined the grouping operator, we now present a simple policy language
to let users specify one or more grouping sets Vg, for abstraction. We refer to
these users as Policy Setters (PS). Our approach consists of two phases. The
first phase involves annotating each node n with a sensitivity value s(n) and/or
a utility value u(n). These annotations are independent of any intended receiver
of the abstracted graph. In the second phase, a grouping set V;, is generated for
a specific receiver 7, denoted Vi, (r) for clarity. We assume, as in Bell-Lapadula
[4], that a pre-defined clearance level c¢l(r) is associated with r. The nodes to
be abstracted are simply those with sensitivity higher than cl(r): Vg, (r) = {v €
Vl]s(n) > cl(r)}.

A policy is a sequence of rules. Each rule (i) identifies a set of nodes, and
(ii) assigns a sensitivity to each of those nodes. Node selection is achieved using
a simple form of path expressions on the graph, combined with filter conditions.
Keeping simplicity of use by non-expert PS in mind, we have chosen a simplified
fragment of regular path expressions on graphs [15]. The example rules in Fig. 5
apply to the graph in Fig. 1:

list classifications [Unclassified, Classified, Protected, Secret];
for all (act used data)
where (data.Status >= Secret in classifications (def true)) setSensitivity(act, 7);

for all (process used data)
where (data descendantOf dl4)) setSensitivity(data, 10);

Fig. 5. Example Policy rules

The rules are executed in sequence. List declares a domain-specific ordered
enumeration of constants, called Classifications. The path expression in the
first command is a simple pattern where act and data are variables, and used
is the used relation. The pattern is then matched against the graph and the
variables are bound to nodes. The filter condition predicates on the values of
properties associated to the nodes. Here the value of data.Status is expected
to be one of the constants in the classification list. This predicate selects
all nodes with value at least Secret in the ordered list. The activity nodes
that satisfy the conditions have their sensitivity set to 7. Rather than allowing
arbitrary regular path expressions in the language, we expose specific traversal
operators. One example is descendantOf, which returns all nodes reachable from

5 A default value can be specified, i.e. for the cases where a data node has no Status
property, or the property has no value.
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a given start node. An example of its use is the second rule above. Rule evaluation
binds variables process and data to activity and entity nodes a, e, respectively,
such that used(a, e) holds and e is any node that is reachable from node with id
d14 (a constant value).

Utility is the counterpart to sensitivity. It denotes the interest of the prove-
nance owner in ensuring that a node be retained as part of the graph, as it repre-
sents important evidence which is not sensitive. Recall from our earlier example
that grouping may remove non-selected nodes in order to preserve validity, a
possibly undesirable side-effect. The utility values associated to different nodes
are used to quantify such loss of utility. Let Vet = V' \ Vg, be the set of nodes
not intended for grouping, and V;!., C V,..; the nodes which were in fact retained

€

after grouping. The residual utility is simply

N ZneVr/et u(n)
RUy = 72,161/”% () (2)

which is maximized for V., = V,.:. Policy setters who experiment with different
policy rules, i.e., using a test set of provenance graphs, may use RUy as a
quantitative indicator of utility loss associated with a given policy and receiver.

4.1 ProvAbs Tool

The Provenance Abstraction Model is implemented as part of a project involv-
ing confidentiality protection for provenance. The main purpose of the ProvAbs
tool is to let a PS explore partial disclosure options, by experimenting with
various policy settings and clearance level thresholds. Users may load a graph
in PROV-N format [16] and either specify a policy interactively, or load a pre-
defined policy file. The output consists of a graphical depiction of the graph,
annotated with its sensitivity values (these are the coloured boxes in Fig. 1),
as well as the final abstract version of the graph. The residual utility value (2)
is also returned. Provenance graphs are stored in the Neo4J graph database
(neodj.org). Policy expressions are evaluated using a combination of the Neo4J
Traverse API and Cypher queries. ProvAbs and its documentation are publicly
available.®

5 Summary

In this paper we have presented a Provenance Abstraction Model (PAM) and its
implementation, ProvAbs. PAM is based on a Group operator, which replaces
a set of nodes in a PROV graph with a new abstract node while preserving
the validity of the graph. A simple notion of convexity of the set of nodes to
be replaced ensures that the rewriting does not introduce new cycles. Due to
space limitations, the scope of this paper is limited to PGy, cq graphs, which
only include generation, usage relations on Activity and Entity nodes. A more
comprehensive model, including its extension to Agents, can be found in our

5 http://bit.ly/1dxg9X1.
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report [5]. Encouraged by this initial study, we are now developing a more
comprehensive model of abstraction that accounts for larger fragments of
PROV — a complex specification in its own right.
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Abstract. This paper introduces provGen, a generator aimed at pro-
ducing large synthetic provenance graphs with predictable properties and
of arbitrary size. Synthetic provenance graphs serve two main purposes.
Firstly, they provide a variety of controlled workloads that can be used to
test storage and query capabilities of provenance management systems
at scale. Secondly, they provide challenging testbeds for experimenting
with graph algorithms for provenance analytics, an area of increasing
research interest. provGen produces PROV graphs and stores them in
a graph DBMS (Neo4J). A key feature is to let users control the rela-
tionship makeup and topological features of the graph, by providing a
seed provenance pattern along with a set of constraints, expressed using
a custom Domain Specific Language. We also propose a simple method
for evaluating the quality of the generated graphs, by measuring how
realistically they simulate the structure of real-world patterns.

1 Introduction

Every piece of data ever produced, either manually or automatically, has a prove-
nance. This is metadata that provides an account of how the data was created.
Examples include a blog’s author, the history of a piece of software along with
its contributors, the instruments used to take a measurement, and their set-
tings; or a description of an experimental process used to produce a scientific
result. The PROV data model for provenance [MMB+12], endorsed in 2013 by
the W3C, provides a formal and domain-agnostic grounding for provenance, in
the form of UML and OWL models, and RDF, XML, and relational (PROV-N
[MMCSR12]) serializations. We refer to PROV instances as digraphs, where
nodes are of three possible types: Entities (for data, documents, anything that
has provenance), Activities, which model the execution of a data consumption
and production process; and Agents, to whom Entities can be attributed, and
who hold responsibility for carrying out Activities. The edges represent instances
of relationships amongst the nodes, which are documented in the PROV-DM
specification [MMB+12].

The provenance traces associated with a homogeneous data collection (a
scientific data repository, all the blogs hosted on a particular site, all the artifacts
associated with a complex software project) also naturally form a collection. Such
collections grow in size both with the number of underlying data products, and

© Springer International Publishing Switzerland 2015
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with the complexity of their production process. Figure 1 suggests how different
collections can be placed into a space defined by volume, i.e., the number of
traces in a collection, and by the typical size of a trace within a collection.
For instance, many small traces (upper left) may be associated with a large
repository of scientific data, while complex software with a long history may be
represented by many large traces (upper right), as exemplified by the Git2Prov
[DMV+13] tool.

Arguably, the value of provenance comes not only from querying the content
of individual traces, but also from analytics, which can only be computed on
whole collections. It is therefore important for practical applications to demon-
strate the effectiveness of a data and service architecture to manage large bodies
of provenance, with special focus on the upper quadrant of our size/volume space.
Thus, we expect that the design of scalable repositories for provenance traces
should be a natural concern in provenance management. A number of recent
efforts have been documented on nascent provenance management infrastructure
[CAB+13,CLFF10,LLCF11, MMW+12], and there is evidence of the emergence
of applications that require provenance querying in a variety of settings (e.g.
[MOnH+13,ddOOn+12]). However, unlike other “big data” domains such as
Linked Data and more generally RDF triple stores, where performance bench-
marking is established practice, to the best of our knowledge no community-
made benchmarking and commonly accepted datasets that are specific to
provenance are available.! This makes it difficult to benchmark and compare
different implementations with regards to storage techniques, query models, and
analysis algorithms.

This is somewhat counter-intuitive, given the amount of provenance that is
generated, in domains such as those alluded to above. In fact, only a handful of
real datasets are currently available through a community process, i.e., the first
ProvBench initiative in 2013 (http://bit.ly/1fBOswR)?, and even fewer conform
to the recent PROV standard and are therefore interoperable. Existing bench-
marking datasets which apply to RDF triple stores® are not adequate, because
they fail to account for the specific data model and semantics of PROV, as well
as for the specific requirements of provenance query and analysis.

1.1 Contributions

Our assumption is that synthetic PROV graphs can be a valuable complement
to emerging natural provenance collections, provided that their structural prop-
erties reflect specific provenance patterns, with control over their repetition and
variability, and at varying scales. Such graphs can be used both for benchmarking

! The use of community datasets for comparing the performance of predictive models
has also long been commonplace within the data mining and KDD community, where
challenge datasets are regularly used.

2 Further contributions are expected from the second ProvBench in 2014 (http://bit.
ly/1c0qgbrS).

3 The W3C maintains a list of those http://bit.ly/1lhjvvn.
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Fig. 1. A simple space for homogeneous provenance collections
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Fig. 2. The document revision provenance pattern in Wikipedia includes multiple
derivation and editing activities by multiple user or bot agents.

emerging provenance management systems, as well as to test analytics algorithms
that operate naturally on large provenance collections.

Our main contribution (Sect.2) is the design and implementation of prov-
Gen, a PROV generator that is designed to help populate the space described
in Fig. 1. provGen “grows” collections of synthetic PROV graphs in a way that
conforms to real-life provenance patterns. These are currently user-defined and
modelled after patterns found in specific domains, and which reflect the nature
of the data generation process described by the provenance. For instance, the
prevalent provenance pattern for a Media Wiki website, which we refer to as
the “document revision” model, involves multiple revisions of articles, by mul-
tiple editors (Fig. 2). Git repositories exhibit similar patterns, which reflect the
revision history of the code. These patterns are different, for instance, from
those for the provenance of data generated using a workflow, which reflect the
consumer-producer graph structure of the dataflow specification.

Users control the “shape” of the graph being generated by provGen by pro-
viding two main elements. The first is a seed graph, which determines the specific
types of nodes and the relationships amongst them to be considered, in an oth-
erwise random generation process. The second element is a set of constraints,
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expressed using a dedicated Domain Specific Language (DSL), which limit the
possible ways in which nodes and relationships are added. These two elements
ensure a predictable general shape for the generated graph, as well as its com-
pliance to PROV.

As discussed later, provGen relies on a graph DBMS backend (Neo4J). In
particular, the generation algorithm is based on graph rewrite rules that are
implemented using a combination of Cypher queries and Create statements.

1.2 Related Work

A growing body of research is devoted to generating large bodies of synthetic
graph data, either using purely random models [KN09, ER60], or by generating
graphs that exhibit specific statistical properties [BA99,BB05,LCKF05]. One
example is the preferential attachment model. Popularised by Barabasi and
Albert [BA99], this model states that as new vertices are added to a graph,
the probability of creating a relationship with node n is inversely proportional
to the degree of n. This model generates a graph with a degree distribution which
follows a power law.

An issue common to these models, emphasised for instance in a compre-
hensive survey on graph generators [CF06], is their focus on enforcing global
properties of the generated graph, such as degree distribution, clustering coeffi-
cient, etc. A potential reason for this focus is that these generators are aimed at
simulating social networks [PBE13,BBO05], the statistical properties of which are
based on large sets of examples, and thus are fairly well understood [MMGH-07].
In contrast, our generation strategy relies on user-specified patterns, rather than
a large set of pre-existing examples (in the future, we hope to be able to use pat-
terns that have been automatically discovered from existing graphs, by means
of standard graph mining techniques [KK04]). This has the advantage that the
overall topology of the graph can be made to reflect desired semantic properties
of the data, such as the average number of usages for a certain type of entity, the
average number of association of an agent with activities, and so forth. Pham
et al. [PBE13] are amongst the few to have addressed this problem. However,
they focus on a loosely related issue, namely the correlation between node and
relationship properties, such as an increased likelihood to be called “Joachim”
if you live in Germany, and on generating realistic synthetic value dictionaries
accordingly.

2 Graph Generation Model

Graph generation in provGen is an iterative process which starts from a single
node. At each iteration, a collection of predefined atomic rewrite rules is used to
add a set of new nodes or relationships to the current graph. These rules account
for all possible relation types that are defined in the PROV-DM specification.
As an example, consider the definition of the used(a,e) relation between an
activity a and e an entity e. Three atomic graph rewrite rules are defined for
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this relation, namely (i) given an entity node e, add a new activity node a and
an edge used(a,e); (ii) given an activity node a, add a new entity node e and
an edge used(a,e); and (iii) given a pair of unrelated nodes (a,e), add edge
used(a, e). Since each single PROV relation type induces three atomic rewrites,
and we consider 13 types of relations from PROV, at each iteration provGen can
potentially fire any of 39 different rules.

Users can control the execution of these rules and the overall effect of the
generation process in three complementary ways, namely (i) by specifying a
seed graph, (ii) by adding a set of constraints, and (iii) by specifying additional
execution parameters. We now describe these in some detail.

1. Seed graphs. A seed graph specification restricts the set of rules to choose
from, to only those corresponding to the relations that appear in the graph. As
an example, the document revision pattern depicted in Fig. 2 may be expressed
as follows, using PROV-N syntax:*

entity(el, [ prov:type="Document" 1)

entity(e2, [ prov:type="Document" ])

activity(a, 2013-11-16T16:00:00, 2013-11-16T16:05:00, [prov:type="edit"])
agent(ag, [ prov:type=’prov:Person’ ])

used(a, el, 2013-11-16T16:00:00)

wasGeneratedBy(e2, a, -, [ ex:fct="save" ])

wasAssociatedWith(a, ag, -, [ prov:role="contributor" ])
wasDerivedFrom(e2, el, a)

Using this graph, provGen determines that only wasGeneratedBy, used, was
DerivedFrom and wasAssociated With rules are to be used. Furthermore, it will
associate the properties and values found in the seed graph, for instance
prov:type="edit", to the new nodes and relations.

2. Constraints. Even with this restriction, unconstrained generation would lead
to a graph with arbitrarily high node degree and branching factor, which would
bear little resemblance to the seed trace provided, except in its relationship
makeup. To further control the generation process, the second user input con-
sists of an additional set of constraints, specified using a natural and intuitive
syntax. Constraints are syntactically similar to workflow control-flow patterns
[VTKBO3], expressing the required states of data being created.

Constraints consist of three structural components, as shown in the examples
of Table 1, namely a determiner, an imperative, and a condition. The determiner
is either variable (an Agent) or invariable (the Agent, al) and determines the
elements to which a constraint applies. Requirements on these elements are
specified by means of the Imperative clause. For instance has in degree (the
requirement) at most 1 (a qualifier) allows a new incoming edge to be added
to any Entity that has none. The qualifier may optionally include a probabil-
ity distribution, as in the second example. This determines the likelihood that

4 Domain-specific properties have been added to nodes and relations to denote the
role of entities, activities, and agents in the pattern.
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Table 1. Examples of user-defined constraints for graph generation.

Determiner Imperative Condition
Requirement Req. qualifier
an Entity has in degree at most 1;
an Agent has relationship between 1, 1000 times, |unless it has
"WasAssociatedWith" with distribution relationship
gamma(..., ...), "ActedOnBehalfOf";
an Activity has relationship exactly 1 times, unless it has property
"Used" {"prov:type"="create"}
an Entity has relationship at least 1 times, unless it has
"WasDerivedFrom", relationship
"WasGeneratedBy" with
the Activity, ail,
AND al has property
{"prov:type"="create"}

an action be taken in order to satisfy the requirement, namely the generation
of a new WasAssociated With relation. Furthermore, a condition specifies the
applicability of an imperative to a determined element, i.e. when (selective con-
dition) or unless (greedy condition). Thus, the second constraint inhibits the
creation of a new WasAssociated With relation for any Agent that already has a
ActedOnBehalfOf relation associated to it. Conditions admit the use of logical
connectives, as in the third and last constraint examples, and may predicate on
properties that are mentioned in the seed graph, such as prov:type (pre-defined)
or ex:name (user-defined). Finally, the last constraint shows an example of vari-
able usage (al).

Note that these constraints are in addition to those defined in the PROV-
CONSTR document [CMM12]. For instance, provGen will not create a graph
where entities are generated by multiple activities. The sketch in Fig. 3 shows
the different patterns obtained when generating the graph with and without
enforcing the constraints.

(]

Fig. 3. Sketch of PROV graphs generated with and without enforcing user constraints

A more complete account of the constraint DSL can be found as part of the
provGen documentation®.

5 The provGen website: http://bit.ly/1w5Aj22.
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3. Fxecution Parameters. Finally, users may specify additional execution para-
meters to control the number of distinct (unconnected) graphs to be generated,
as well as the average number of nodes and edges per graph. More advanced
parameters can be used to control the average height (maximum depth) and
width (maximum breadth) for each graph generated.

The combination of seed graph, constraints, and execution parameters leads
to collections of PROV graphs that approximate real traces from different
domains, and which can be used to populate selected areas of our provenance
state (Fig.1). In Sect. 4 we briefly sketch the evaluation method we are using to
test the quality of generated graphs, with respect to a large testbed of provenance
graphs with known topological properties.

Overall, provGen’s generation process consists of a nested iteration loop. In
the inner loop, provGen iterates over the set of active atomic rewrite rules. When
a rule fires, any constraint that applies to the elements that it is operating upon
is checked, and if any of those constraints is violated, the rule has no effect. This
process is repeated in the outer loop, until a halting condition is satisfied, i.e.,
the desired size is reached, and the DSL constraints are satisfied.

3 Mapping the Model to Graph DBMS Queries

provGen is implemented using the Neo4J graph DBMS® as a back end. In partic-
ular, both atomic rewrite rules and user constraints are transparently compiled
into CREATE and MATCH statements expressed in Cypher, Neo’s declarative graph
pattern language’. Queries (in addition to CREATE statements) are required at
each iteration to test the requirements and conditions associated with user con-
straints (Table 1). This compilation step provides isolation from the data layer,
delegating graph traversal to the underlying DBMS, and also provides flexibil-
ity for retargeting the graph generator to a different back end. A native graph
DBMS also offers a more natural data model for PROV than a more traditional
RDBMS solution.

The provGen architecture is shown in Fig. 4. Components are deployed on a
server, which is reachable from a web based client application through a REST
API. In the following sections, we focus on the steps involved in generating
Cypher queries from rewrite rules and user constraints.

3.1 From Seed Traces to MATCH Query Clauses

The first step involves parsing the seed traces. Since these user-supplied samples
of PROV data may be serialized into multiple formats, parsing relies upon sev-
eral third party libraries, including the OWLAPI® and ProvToolbox.? This step

5 The Neo4j project: http://bit.ly/Pwux7U.

" Cypher documentation: http://bit.ly/1kITIMK.

8 The OWLAPIT project: http://bit.ly/N9hsPM.

® The ProvToolbox project: http://bit.ly/1fV95nN.
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Fig. 4. provGen system architecture.

results in a subset of the 39 pre-defined atomic graph rewrite rules, mentioned
in Sect. 2, to be selected for the generation step.

Rewrite rules are statically mapped to Cypher queries. As an example, below
we show the queries responsible for creating the PROV wused relationship. Note
that multiple queries are required in order to account for the directed nature of
PROV relationships and the ability to create a edge between two pre-existing
nodes.

(1) MATCH (a:Activity {}) CREATE (a)-[:USED {}]->(:Entity {})

(2) MATCH (a:Entity {}) CREATE (a)<-[:USED {}]1-(:Activity {})

(3) MATCH (a:Activity {}), (b:Entity {}) CREATE (a)-[:USED {}]->(b)

Query fragment (1) matches any node a of type Activity, it creates a new Entity
node, and it connects it to a using a used relationship. Symmetrically, (2) adds
a new Activity node to any existing Entity node. Finally, (3) takes a pair of
existing nodes a (Activity), b (Entity) and again creates a used relationship
between them.

The examples above show empty brackets, to indicate that no properties are
associated to the nodes and relationships. However, all properties associated to
the elements of the seed trace are also associated to corresponding elements of
the new graph. Thus, for example activities would have a property prov:type,
inherited from the activity node in the seed graph above.

3.2 Constraints as WHERE Clauses

The DSL parser!'? separates the component elements of each constraint, namely
determiner, imperative and condition. Requirements may be expressed on various

10 The parser is implemented using Scala parser combinators: http://bit.ly/1cURrAo.
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graph features, i.e., nodes in/out degree, relationship, property, etc. . .. Each type
of requirement is compiled into a Cypher query WHERE clause. These clauses are
then added to the MATCH statements that represent the atomic rewrite rules, to
form complete queries. Consider the following example:

an Activity has relationship ‘Used’’ exactly 1 times,
unless it has property {‘‘ex:name’’:‘‘create’’};
an Activity has degree at most 5;

These constraints are easily interpreted in the context of a document revision
pattern, where activities are edits of document versions, which produce a new
version. For these activities, we stipulate that they use only one entity (the
original document). Activities that create new documents are exceptions, noted
by the ex:name=create property, and these activities are allowed to use zero
or more input documents. Additionally, we add an upper bound to an Activity
node’s degree to illustrate a more complex constraint.

The constraint is compiled into query fragments (4) and (5) in the Cypher
query below, where they are merged with the MATCH and CREATE clauses of
atomic query (1) from the example above:

(1) MATCH (a:Activity {})

(1) MATCH (a)-[1]-(

(5) WHERE NOT a.ex_name = “create” AND NOT count(r) >=5
(1) CREATE (a)-[:USED {}]->(:Entity {})

The query specifies at the same time the node and relationship generation,
and the constraint. The MATCH clauses bind variables a and r to an Activity and
to the set of its edges, respectively (either incoming or outgoing, as no direction
is specified). The WHERE clause ensures that the CREATE statement (which creates
a new used relationship) is only executed on a if the ¢ ‘ex:name’’ property is
not “create”, and the number of edges in set r is at most 4.

3.3 Generator Loop

The generator loop (Fig.4) accepts a collection of atomic create operations,
selected and constrained as described above, and repeatedly iterates over it,
executing each associated Cypher query against the underlying graph database.

The generator loop has several halting conditions: both explicit, where exe-
cution parameters, detailed in Sect. 2, halt generation as the order |V| and size
|E| of the graph reach their specified maxima; and implicit, where constraint
rules may prevent the execution of individual operations in order to avoid vio-
lating specified range requirements. Note that limits in cardinality imposed by
execution parameters may be met before the minimum requirements of a con-
straint rule are satisfied. When this is the case, provGen gives priority to the
user constraints, to ensure that those are not violated.
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4 Evaluation Methodology

The main purpose of provGen is to fulfill the need to generate a possibly large
number of provenance graphs for data domains where provenance is not yet
routinely collected, or is not abundant. Yet, our evaluation of the system’s effec-
tiveness relies on precisely those domains where large provenance collections are
available. Specifically, we evaluate provGen by comparing selected properties of
existing “real-world” provenance graphs, which we call control set, to those of
generated graphs (the test set) intended to emulate them. Using this approach,
we aim to empirically demonstrate that provGen may be configured to generate
datasets that are “similar” to those produced by multiple different sources of
provenance.

Our evaluation is ongoing. Here we illustrate the approach using one single
control set, namely a set of Wikipedia provenance traces, representative of the
document revision pattern, taken from the ProvBench repository and compliant
with PROV.!'! The control graphs include about 4,000 nodes and 6,000 relation-
ships. Our test set consists of two synthetic datasets of roughly the same size
as the control, produced using provGen with a user-created seed trace for the
document revision pattern, along with constraints and parameters.

In this initial evaluation we have considered three simple criteria. Firstly, we
note that in the control set, which follows the linear Wikpedia pattern (Fig. 2),
each Entity is used exactly once. Thanks to our user constraints, this is easily
replicated exactly in the test set. Secondly, as example criteria we additionally
consider the number of associations per Agent, and the average number of entities
with distinct titles contributed to, per Agent. In the control, each Agent has 2.4
associations on average (std dev. 6.2), while in our test set it has 2.9. The average
number of contributions per Agent is 1.11in the control (std dev 0.8), while in the
test is 1.8. Encouraged by these preliminary results, we are now in the process
of more extensively testing provGen using a variety of criteria that can be easily
measured both on control and on test graph.

5 Conclusion

In this paper we have presented provGen, a PROV-specific graph generator
driven by user-defined seed graphs, which represent provenance patterns, and
additional user-defined constraints designed to enforce semantics properties of
the generated graph. Constraints are expressed in a dedicated “plain english”
constraints language.

One feature that sets provGen apart from existing approaches to graph gen-
eration is that it provides users with local control over topological features and
statistical characteristics of the graph. Constraints are evaluated locally for each
node created, thus avoiding the complexity of verifying them globally. provGen
is implemented using a Neo4J graph database back end. Graph rewrite rules and
user constraints are both mapped to Cypher queries. Rewrite rules are mapped

1 ProvBench’2013 CFP: http://bit.ly/1fBOswR.
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to CREATE clauses, while constraints are compiled into WHERE clauses. The two
are blended together into complete Cypher queries, so that graph generation
relies entirely on Neo4J’s native query engine.

We have also briefly discussed our approach to evaluating the effectiveness of
provGen in generating “real-world” provenance, i.e., by comparing some of its
key statistical properties with those of real graphs within the same class. We are
currently experimenting with a variety of seed graph patterns, and more exten-
sively evaluating provGen’s capability to mimick real provenance. Currently seed
patterns must be manually designed or discerned. In future, an attempt to col-
late a collection of patterns common to provenance data, as has been done with
workflow specifications [VTKBO03], could prove useful.

Graph generation performance is another concern we are currently address-
ing. Generating large scale graphs requires efficient execution of the MATCH-
CREATE-WHERE queries shown above, on graphs of increasing size. We are finding
that Neo4J may not be an optimal choice, as it is geared for OLTP workloads
with consequent transaction management overhead. However, our architecture is
flexible and allows for experimentation, as changing the back end simply requires
retargeting the mapping of rules and constraints to a different query language.
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Abstract. Adding provenance to existing systems can benefit users, but
comes at an expense that may be difficult for some to justify. This trade-
off can be overcome by increasing the value of provenance, by decreasing
the cost to add it — or by doing both. This paper offers a contribution for
each. First, we develop further the W3C PROV pingback technique so
that it may reach its potential to interconnect provenance records that
would traditionally sit in isolation, thus increasing their value. Second,
we reduce the expense to publish the provenance of existing host systems
by using minimal coupling to the Prizms Linked Data platform. Using an
Earth Sciences scenario and the OPeNDAP data transport architecture
as an example host system, we investigate how PROV pingback could
work in practice, demonstrate its potential, and identify outstanding
issues that must be addressed before it can be widely adopted.

Keywords: PROV - Provenance * Pingback + Linked Data + Discovery

1 Introduction

The provenance community reached a significant milestone in 2013 when the
World Wide Web Consortium (W3C) published its PROVenance documents.
With a core model for provenance standardized, the community is now bet-
ter prepared to turn their attention to subsequent challenges in research and
application. In application, work may now focus on the relatively easier task of
creating extensions that suit specific uses, which benefit from a common abstract
structure and a growing set of interoperable tools. PROV was designed to suit
Linked Data design principles [12], and publishing PROV as Linked Data offers
great potential for distributed and uncoordinated discovery, access, and use of
others’ information. Conversely, PROV can benefit Linked Data by offering its
consumers insight into how their distributedly-collected data came to be.

Unfortunately, the potential advantages of pairing PROV with Linked Data
have yet to be seen at a scale as grand as the Web it uses. Now that PROV
is a prominent fixture in the toolbox, a broader development community needs
compelling reasons to adopt the W3C Recommendation and they need practical
© Springer International Publishing Switzerland 2015

B. Ludischer and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 31-43, 2015.
DOT: 10.1007/978-3-319-16462-5_3



32 T. Lebo et al.

answers for how to do it. Because existing host systems are often large and
heavily invested in technologies not well suited to adopting Linked Data design
to publish provenance records, solutions are needed to bridge the gap between
existing systems and an interconnected Web of provenance with other systems.
Our work aims to provide a technical foundation for such solutions, by developing
PROV Pingback and applying designs from the Prizms platform.

PROV Pingback [9] has the potential to drastically interconnect provenance
records that would traditionally sit in isolation. In contrast to the rest of PROV,
which describes how to describe provenance so that anyone with the record may
read about an object’s history, PROV Pingback enables parties to discover what
happened to objects they created after they have left their purview. It addresses
the practical need for upstream parties to obtain provenance recorded down-
stream, and does so with a simple technique based on the HT'TP Link header.

The Prizms system emerged from the need to create high quality Linked Data
[11] and has evolved into a Linked Data platform geared towards replicability,
reproducibility, and transparency of the data that it publishes. Prizms supports
the many Extract-Transform-Load processes that may be required to integrate
a variety of others’ data about a topic of interest, and it provides for consistent
provenance capture, metadata descriptions, and hosting using best practices.

The contribution of this paper is two-fold. First, it presents an approach
to publish provenance of existing systems with very little effort; it allows them
to expose provenance records without the overhead of publishing the records
themselves and while benefiting from Linked Data principles. Second, this paper
investigates the use of the PROV Pingback technique by applying it to a realistic
scenario, demonstrating its potential, and identifying outstanding issues that
need to be addressed before it can be mature enough for mainstream adoption.
The work presented here can be used to both increase the value of provenance
while reducing the effort required to add provenance to existing systems.

2 The State of the Linked PROV Cloud

Almost a year after standardization, PROV has not yet flourished within Linked
Open Data (LOD). We present here two lightweight measures of PROV’s LOD
presence using two resources popular within the Linked Data community: Open-
Link Software’s LOD Cache and datahub.io’s dataset catalog. Attempts to
provide a “State of the Linked PROV Cloud” suggest two challenges that the
approach in this paper aims to address. First, it is possible that it is still too diffi-
cult for many to publish provenance in a manner that benefits a wider audience.
Second, it is too difficult to discover existing provenance, even with Linked Data
principles in place. Although widespread publication and discovery may not be
a problem within individual applications (since first parties receive portions of
provenance from which they can work), it remains an issue for those who wish
to repurpose others’ existing data as an independent third party.
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Table 1. Occurrences of PROV terms appearing in LOD Cache (20 Feb 2014).

Entity 33
wasDerivedFrom 24,975,410
hadPrimarySource 7,874
generatedAtTime 3,376
wasGeneratedBy 33
wasAttributedTo 33
Activity 214
used 214
started At Time 214
wasAssociated With 214
generated 214
wasInformedBy 106
endedAtTime 108
Agent 1

2.1 PROYV Occurrences in OpenLink Software’s LOD Cache

OpenLink Software’s LOD Cache is a collection of 51 billion! RDF triples assem-
bled over a period of years, and continues to grow as datasets come to the atten-
tion of its maintainers. We submitted SPARQL queries to find occurrences of the
50 classes and 68 properties in PROV. Table 1 shows the occurrences of the only
fourteen PROV terms that occurred in the dataset. Most term’s occurrences are
inconsequential, except perhaps prov:wasDerivedFrom’s 24 million (712M from
DBPedia pointing to Wikipedia pages and “12M from wikidata.org). Unfortu-
nately, these results do not portray a thriving PROV LOD ecosystem.

2.2 PROYV Occurrences in datahub.io’s Dataset Catalog

The datahub.io site should provide a more comprehensive and unbiased view of
Linked Data, since anyone may contribute dataset listings. In addition to gather-
ing entries for many other contemporary datasets, the site was used to organize
the famous “LOD cloud diagram” between 2007 and 20112, which established
conventions for describing Linked Datasets within the CKAN data portal plat-
form. According to the metadata at datahub.io®, fifteen datasets use the PROV
vocabulary. Nine were created by the authors, so we set those aside. DBPedia
is one, but we already saw it through the LOD Cache (above). That leaves five
independent PROV adoptions (imf-linked-data, bfs-linked-data, fao-linked-data,
oecd-linked-data, ecb-linked-data), but imf-linked-data can also be seen through

! http://lists.w3.org/Archives/Public/public-lod /2013May/0154.html.
2 http://lod-cloud.net.
3 http://datahub.io/dataset ?tags=format-prov.
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the LOD Cache and all five were created by the same author and thus share
similar structure. So, a community-based perspective on the use of PROV in
LOD does not portray a thriving PROV LOD ecosystem, either.

3 Approach

In this section, we describe our approach to easily create provenance leveraging
the Prizms Linked Data platform, since it appears still too difficult to publish
provenance according to Linked Data principles and it is still too difficult to dis-
cover provenance in LOD. First, we introduce the Prizms platform by creating
datasets about the structural provenance of our example host system, OPeN-
DAP. OPeNDAP is a data transport architecture and protocol widely used by
earth scientists to access remote data, such as satellite weather observations.
We chose to use the OPeNDAP system to highlight how a system that does not
use Linked Data principles can benefit from publishing its provenance records
as Linked Data. Next, we describe how a minimal coupling to Prizms can pub-
lish a host system’s behavioral provenance, and discuss the distinction between
structural and behavioral provenance. Then, we describe the addition of PROV
Pingback to accept reports of downstream derivations of our host system’s data
products. Finally, we demonstrate how the host can use its accumulation of
clients’ provenance to easily lead others to those downstream derivations.

3.1 Prizms’ “SDV” Dataset Organization: Source, Dataset, Version

We apply Prizms’ SDV organization principle throughout our approach. Prizms
is a Linked Data platform designed to sustainably gather, integrate, and pub-
lish third party data to produce an integrated corpus about topics of inter-
est. Prizms combines a few organizational principles, several existing toolsets,
and commodity version control (Git) to facilitate coordination and collaboration
among distributed team members. As a consequence, Prizms’ design facilitates
within-team replicability and, by extension, reproducibility by external parties.

The SDV organization principle [11] organizes the many individual Extract-
Transform-Load (ETL) processes that a data corpus or application may require
according to three fundamental provenance aspects:

— Source, the agent (person, organization) providing the dataset.
— Dataset, a logical, abstract portion of the agent’s data.
— Version, a concrete portion of an agent’s abstract dataset.

Each of these three provenance aspects is identified using a concise identifier
that follows a few conventions* (e.g. usda-gov, national-nutrient-database,
and release-26) with the objective that a consumer could identify the original
source agent, and the source agent could identify the dataset and version in their
original holdings. The three aspects form a hierarchy for the datasets and serve
as a naming scope for the entities mentioned within the datasets.

4 https://github.com/timrdf/csv2rdf4lod-automation /wiki/SDV-organization.
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In the following example that we use to illustrate our approach, we establish
six abstract datasets from three different sources. Because the datasets overlap in
content but are created by drastically different means, it is important to organize
them so that they can be properly managed. By following the SDV principle to
organize provenance datasets, we are able to achieve provenance of provenance
using the same mechanisms that are in place to express provenance of datasets.

3.2 A Concrete Basis: Modeling the Structure of the Host System

When a client requests a data product, its provenance often describes behavioral
influences, such as the kinds of operations applied (e.g. filtering and aggregation),
the mechanisms performing the operations, and their input data sources. It can
be helpful, both from a designer’s perspective and from a user’s perspective, to
supplement behavioral provenance with structural provenance. Structural prove-
nance includes descriptions of the mechanisms performing the operations and
how those mechanisms came to be. For example, software modules’ code repos-
itory changes are a rich source of their structural provenance. Provenance of an
unfamiliar host system’s structure can help when designing the provenance of its
behavior, since its components can be described a priori (e.g. modules’ versions,
lifespans, and contributing developers) and can be directly referenced.

We described the structural provenance of OPeNDAP with three datasets.
The first is a PROV-O representation of its Subversion (SVN) history®. The sec-
ond is a curated list of software components along with their home in the code
repository. The third connects the first two datasets by elaborating the SVN
file path hierarchy. The following table shows the SDV aspects assigned to the
structural provenance datasets, referred to in this paper as S1, S2, and S3.

Source Dataset Version Size
S1 | opendap-org | opendap svn 1.9MT
S2 | us opendap-components 2014-Jan-07 | 1.4KT
S3 | us opendap-svn-file-hierarchy | 2014-Jan-20 | 1.0MT

S1’s source agent is the OPeNDAP community; the dataset is the software itself,
and its version is the latest SVN state. The repository’s XML log was trans-
formed with XSLT to produce PROV-0°. S2 and S3 originated from the authors.
S2 started as a spreadsheet and was transformed into Description of a Project”
RDF using Prizms’ tabular converter. S3 was constructed by SPARQL querying
for SVN file paths within S1/S2 and elaborating their hierarchy. These three
datasets together describe the host system’s structural provenance and provided
a basis for its behavioral provenance when handling data requests.

® The OPeNDAP source code is maintained at https://scm.opendap.org/svn/.
5 Details at https://github.com /timrdf/prizms/wiki/Publication:-TPAW-2014.
" https://github.com/edumbill /doap /wiki.
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3.3 Minimal Modifications to the Host System (e.g. OPeNDAP)

While it remains the host system’s responsibility to record its own behavioral
provenance (including references to its structural provenance), Prizms is used
to reduce the effort required to publish those records as Linked Data. Figure 1
illustrates the coupling between Prizms and the host system, in relation to the
downstream client that reports its derivations via PROV Pingback. In the upper
left of the sequence diagram, a USGS LiDAR file CA_OrangeCo_2011_000402.nc
is used by the host system to respond to the client’s HT'TP request for chunk-7.
While the host system processes the request as normal, it does only two addi-
tional things (Sect.3.3, Fig.1). First, it logs the provenance of its handling
to a new file s/d/v/record.ttl. Second, it adds HTTP Link response head-
ers pointing to A and P for the response’s provenance and pingback, respec-
tively. The host system required only five new parameters to coordinate with
Prizms: Prizms’ base URI (http://opendap.tw.rpi.edu), data directory root, and
Pingback service URI (/prov-pingback), along with the SDV source and dataset
identifiers for the dataset of provenance records (us and opendap-prov,
respectively).

OPeNDAP+PROV [pingback] PROV pingback
(832) Server Client

opendap.tw.rpi.edu provenanceweb.org
1 1
1 1
GET

1 1
1 1
i CA_OrangeCo_2011_000402.nc.ascii? '
I_CA_OrangeCo_2011-000402.nc '} northing[730241], !
1
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1 altitude[730241] i
| - o m =
prov_module writes s/d/v/record.ttl (§3.3) Link: <AI\I> , |chunk-7.txt 1
Prizms publishes record.ttl to <A> rel="prov:has_provenance 1 chunk-7.txt.prov.ttl |
T Link:<P>  _to===---o-o-o-
(§34) <A>1 rel="prov:pingback" |Categorize as "Water" l
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I
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The minimal coupling between the host system (upper left) and Prizms (lower left), in relation to a
pingback client (right). Section numbers indicate where each interaction is described in this paper.

Fig. 1. Sequence diagram among host system, Prizms, and pingback client.
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3.4 Prizms Publishes Host System’s prov:has_provenance Target

Prizms’ automation monitors for unpublished datasets to publish. The log file
that the host system writes (e.g. s/d/v/record.ttl, above) triggers Prizms to
publish it as Linked Data. The dataset URI A that results from writing the
record in directory s/d/v/ is the same URI that the host system returns in its
prov:has_provenance Link header — this coordination is the extent of the coupling
required for our approach. Although a custom publishing trigger was required
to determine which records to publish in the dataset us/opendap-prov, it is
available to be reused for other applications of our approach and employs the
Vocabulary of Interlinked Data (VoID)® and PROV-O metadata that Prizms
provides by default. A VoID Dataset A is named using its SDV aspects, its data
dump is described and made available on the Web, and the provenance of loading
its dump file into a new SPARQL endpoint named graph is described. These best
practices for publishing Linked Data facilitate its discovery and access.

3.5 Prizms Accepts Pingback Pointers

As shown to the right of Fig. 1, the client captures its own account of its request
for a portion of the LiDAR file (e.g. in chunk-7.txt.prov.ttl). When making
the HTTP request to the host system, the client must remember the pingback
URI provided in the response header (P, Fig. 1) so that it knows where the host
will accept reports of its derivations (see [9]). Once the client derives a product
chunk-7.cdl from the host’s response, records provenance of its derivation in
chunk-7.cdl.prov.ttl, and hosts it on the Web, the client can then report its
results back to the host by accessing the pingback URI P. If the client manually
loads the pingback URI using a Web browser, the service provides a description
about the original request and accepts the client’s URL for provenance about
chunk-7.txt. The service also describes to the user how the pingback may be
performed automatically via HTTP POST using the curl command.

Prizms’ automation, which is centered around the SDV principle, allowed
for a minimal pingback service implementation; it required less than 200 lines
of code and can serve as a basis for other applications. When any Data Cata-
log Vocabulary (DCAT)? access metadata is situated within Prizms’ data root,
Prizms acts on it to retrieve, integrate, and publish it. So, the pingback ser-
vice’s only responsibility is to accept the pingback pointer and write it as access
metadata into the same data root that the host system used for dataset A, using
different SDV aspects similar to those shown in the table below. Doing so creates
a new dataset B which is a local copy of the provenance hosted by the client.

Unfortunately, because pingback pointers could be provided and hosted by
anyone on the Web, we cannot blindly trust that their contents are not malicious
(e.g. executable code). To ameliorate this problem, we use Prizms’ trigger and
secondary dataset frameworks to delete any pingbacks whose contents are not

8 http://www.w3.org/TR/void/.
9 http://www.w3.org/ TR /vocab-dcat/.
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RDF containing PROV assertions. A dataset C' is created for each batch of
filtering. The following table shows the SDV organization for the three datasets
created by the server after a single “request, pingback” cycle. Dataset A (Fig.1)
contains the provenance recorded by the host system during the client’s original
request. Dataset B (Fig.1) contains the host’s copy of the provenance reported
by the client via pingback. Dataset C'is the host’s aggregate of all its copies of
provenance reported by clients within a recent duration (e.g. daily).

Source Dataset Version
A |us opendap-prov 20140206-1391
B | provenanceweb-org | prov-pingback 20140206-1391-1e2
C|us pr-aggregate-pingbacks | 2014-Mar-03
Supersets

« local__source_us_dataset:opendap-prov

Pingbacks
+ Local resource: CA_OrangeCo_2011_000402.ixt.cdl.nc
e Client's copy: CA_OrangeCo_2011_000402.txt.cdl.nc '/,
« Client's derivation: CA_OrangeCo_2011_000402.png (Portable Network Graphics)

(a) A portion of the HTML view of the prov:has_provenance dataset A, after a client
has posted a PROV Pingback and Prizms has rehosted it as dataset B. The inset image
shows a portion of the LIDAR rendering that the client derived.

select distinct ?host_input ?client_copy ?client derivation ?format °?F
where {
?host_response
foaf:isPrimaryTopicOf <A>;
prov:wasDerivedFrom [ prov:specializationOf ?host_input ].

?host_input
* (prov:wasDerivedFrom | prov:wasQuotedFrom) ?2client copy.
?client_copy
* (prov:wasDerivedFrom | prov:wasQuotedFrom)+ ?client_ derivation.
optional { ?format “dcterms:format ?client derivation
optional {?format dcterms:title ?F} }

}
(b) SPARQL query used by host to find downstream derivations of its data responses.

Fig. 2. Query and view of downstream derivations.
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3.6 Walking into the Future

Figure 2a shows part of the HTML view when navigating to dataset A, the host’s
original record of the client’s request for chunk-7. Even though the client’s cat-
egorization and rendering (chunk-7.cdl, CA_OrangeCo_2011_000402.png) were
created after this request, the host is still able to find and link to these derivations
when describing the original request. Because Prizms accumulates the prove-
nance pointed to by clients’ pingbacks, it is able to use the single SPARQL
query in Fig.2b against only its own endpoint to find and offer links to client’s
subsequent derivations. The top portion of the query matches within the host
system’s account (dataset A, Fig. 1), and the bottom portion matches within the
clients’ (dataset B). The URL that the client requests (and that the host han-
dles) is the natural link between accounts. With all of the relevant provenance in
a single store and partitioned according to its source, the host is able to provide
a variety of other Linked Data views to its clients. For example, the host can
list all served requests with the files that they used, or the host can show the
popularity of the files it serves based on the number of requests that used them
or the number of downstream derivations that they contributed to.

4 Discussion

Related Work. Many methodologies exist for making systems provenance-
aware. Of the dozen desiderata that Chapman and Jagadish [3] outline, our
approach contributes to four: (1) building toward interoperability of prove-
nance systems, (2) providing support for querying data and provenance together,
(3) making provenance available to the user, and (4) capturing provenance of
non-automated processes. PrIMe [13] provides a step-by-step guide that we used
in part to address the question “What derivations have others made of this given
data entity?” . Because our approach does not address what a host system should
record of its behavior, a methodology such as PrIMe can be used to address
such challenges. Groth et al. [4] present a technology-independent architecture
of provenance systems, and discuss many valuable design considerations. Our
low coupling approach follows their SeparateStore and ContextPassing patterns,
yet after aggregating pingbacks it behaves similar to their SharedStore pattern.

Previous work has investigated Linked Data and provenance. Carroll et al.
[2] established the central concept of a named graph. The concept has since
been used by others [14], if only to capture provenance implicitly. The prove-
nance recorded by our Prizms system employs the VoID and SPARQL Service
Description vocabularies to describe named graphs as first class PROV enti-
ties. Hartig [6] distinguishes between recordable vs. reliant provenance on the
Web. While the former is recorded by systems that can directly monitor their
executions, the latter is accessed from third parties and requires evaluation to
be trusted. PROV Pingback depends on (and benefits from) the combination
of these two kinds of provenance and adds another means by which to obtain
provenance from the Web (Hartig suggests DNS WHOIS, semantic sitemaps,
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POWDER, and Web service descriptions). Similar to our findings, he also con-
cludes that “there is only very little provenance-related, RDF-based metadata
available on the Web” and points to lack of vocabularies, tools, and community
sensitization/motivation as possible reasons. In follow on work, Hartig and Zhao
[7] attempt to overcome the problem of missing provenance about Linked Data
by offering a provenance vocabulary and extending several Linked Data pub-
lishing tools to automatically provide provenance. Instead of focusing on Linked
Data provenance of Linked Data, we broadened the applicability of our Prizms
provenance-aware Linked Data production platform by repurposing it to publish
and interconnect provenance about non-Linked Data systems.

Advantages and Limitations of Our Approach. A key characteristic of our
approach is the ability to frame PROV Pingback as a more fundamental dataset
accumulation problem, thus reusing existing toolset’s automation, metadata,
and provenance to achieve a qualitatively different kind of interconnectivity.
SDV organization is a centerpiece of Prizms’ dataset accumulation, and stands
as a design principle for systems that depend on many data sources. It can be
seen as an answer to the request from Harth et al. [5] for a “social dimension”
of Web provenance, so that data consumers can discuss sources at a higher level
of abstraction. They call for a formalism that could describe data placement
policies for URI spaces. While SDV organization satisfied the need to identify
socially-contextual sources and embeds source attribution within the design of
entities’ URIs (e.g., 300k, 1.1M, and 50 resources within /source/opendap-org,
/source/us, and /source/provenanceweb-org, respectively), it similarly suf-
fers from the DNS ambiguity that Harth et al. describe and would thus also
benefit from a formalism for URI space ownership. Such a formalism could serve
as a foundation for trusting those URI spaces and would have impact both when
surveying Linked Data and when deciding if a pingback pointer is acceptable.
The VoID vocabulary, with its uriSpace property'®, might be a starting point
for such a solution.

Our approach requires Linked Data design. While it may be considered a
limitation by the host system, it allowed easy interconnection of distributed
provenance systems with a simple RDF union. The dependency on HTTP Link
also requires the host system to serve its data over HT'TP. On the other hand,
our approach allowed us to reuse existing vocabularies such as Friend of a Friend
(FOAF) and existing instances such as DCTerms’ file formats*!. SPARQL 1.1
property paths also made it easy to traverse the many steps in a provenance
graph to find all derivations. In our effort to gauge PROV’s adoption in LOD, we
considered several other sources that did not prove to be fruitful. Our objective
was to find occurrences in the wild, after standardization, and discoverable using
[semi-]automated means. Crawling all of Linked Data is the most comprehensive
approach, but doing so is nontrivial [8]. A middle ground is for some to index
Linked Data so that many others may perform centralized searches. The LOD

19 http://www.w3.org/ TR /void /#pattern.
' http://provenanceweb.org/instances/dcterms:FileFormat.
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Cache that we used is one example, but its manual, single-owner growth makes
it a biased sample. Swoogle is a well-known index, but did not return any PROV
terms. Sindice is a newer index that continues to accept pointers via a differ-
ent pingback mechanism [10], but its accessibility has recently faded. Ping the
Semantic Web, used in previous surveys [6], simply no longer exists. An alterna-
tive is to use a Linked Dataset catalog that anyone can contribute to. This has
existed at http://datahub.io/tag/lod for seven years and is what we used as our
second measure. In our view, this seems to be the best approach to discovering
Linked Data sources. The Prizms system automatically provides the appropri-
ate VoID descriptions and submits them to datahub.io on a weekly basis. Such a
lightweight collection of pointers can facilitate more automated means to moni-
tor and cache Linked Data sources. For example, Buil-Aranda et al. [1] currently
monitor all SPARQL endpoints listed.

Future Work. Despite its powerful ability to interconnect provenance records,
PROV Pingback has a high potential for abuse (this is why our example ser-
vice is not regularly available). Similar to many internet technologies, potential
abuses need to be managed and can be mitigated through supporting infrastruc-
ture and tooling. Different applications should be able to control policies to
adjust the tradeoff between discoverability and abuses. Hosts can reduce their
risk by being selective about which clients it offers pingback services to, based on
information about the client or its request. A cautious pingback service should
verify that every pingback submission is worthwhile, either by its URL (liter-
ally), URL contents, or by authenticating the client as a member of a trusted
group. URL blocklists and whitelists can be helpful, but can become tedious to
manage. URL contents should be handled with caution, perhaps to the point of
performing it within a protected space and aborting it if it does not appear to
be in an expected format. Any retrieved provenance should describe at least one
derivation of a data product that the host served, otherwise it is not relevant.
Authenticating the submitting client as a member of a trusted group could be
achieved in a variety of ways, but one that does not require a priori coordina-
tion would allow for increased contributions and discoverability. Manual curation
steps could also be used to validate any aspect used to determine worthwhile
submissions.

A more complete and up-to-date State of the Linked PROV Cloud would serve
as a design guide for provenance practitioners interested in adopting Linked Data
principles, since it could verify that their published provenance is discoverable
using traditional Linked Data means. Searches for terminology occurrences could
be broadened by looking for non-PROV provenance terms or PROV extensions,
accounting for reasoning, and by monitoring any dataset listed at datahub.io.
Developers could use such a corpus to choose terms most appropriate for their
application, based on quantitative measures of any term’s adoption.

We anticipate compounded advantages of a “Prizms network” when both
clients and servers use the Prizms platform to propagate pingbacks. Techniques
to combine PROV pingback with existing mechanisms such as Twitter’s “retweet”
feature could accelerate community discovery of downstream derivations.
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Scalability of PROV Pingback should also be investigated, and simplifications
of PROV Pingback could allow more direct usage by accepting the URI of
the derivation itself and reusing the prov:has_provenance mechanism to find its
provenance. Finally, the approach we presented should next be applied to real
applications, not just realistic. In the case of LiDAR, we expect to apply it to a
project with bathymetric and territorial data of New York State’s Lake George.

5 Conclusion

The symbiotic combination of PROV and Linked Data — both PROV as Linked
Data and PROV of Linked Data — offers significant potential for distributed and
uncoordinated discovery, access, and use of information. Unfortunately, these
advantages have yet to be seen at a scale as grand as the Web it uses. Based
on two lightweight measures that we present, it appears still too difficult or too
uncompelling to publish provenance in a manner that benefits a wider audience.

We presented an approach to publish the structural and behavioral provenance
of existing host systems by using minimal coupling to the Prizms platform, so
that the host system’s provenance records may benefit as Linked Data even if
its data cannot. We further described an implementation of the PROV Pingback
technique, demonstrated its potential to interconnect provenance records that
would traditionally sit in isolation, and explored outstanding issues that need
to be addressed before pingback can be widely adopted. By decreasing the cost
to add provenance, and by increasing the value of provenance by forming an
interconnected Web of provenance with other systems, the approach we describe
can facilitate the adoption of provenance within a wider variety of applications.
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Abstract. It is commonly believed that provenance can be utilised to
form assessments about the quality, reliability or trustworthiness of data.
Once presented with contradictory or questionable information, users can
seek further validation by referring to its provenance. While there has
been some effort to design principled methods to analyse provenance, the
focus has mostly been on offline use of provenance. How to use prove-
nance at runtime, i.e., as the application runs, to help users make deci-
sions, has been barely investigated. In this paper, we propose a generic
and application-independent approach to interpret provenance of data to
make online decisions. We evaluate the system in CollabMap, an online
crowd-sourcing mapping application, to make decisions about the qual-
ity of its data and to determine when the crowd’s contributions to a task
are deemed to be complete.

Keywords: Provenance + Online decision making - Validity measure -
Reliability measure

1 Introduction

It is commonly believed that provenance can be utilised to form assessments
about the quality, reliability or trustworthiness of data [6]. Provenance is defined
as a “record that describes the people, institutions, entities, and activities invol-
ved in producing, influencing, or delivering a piece of data or a thing” [7]. It is
a crucial piece of information that can help a consumer make a judgement as to
whether something can be trusted [8].

A provenance-aware system can generate the provenance of its data and make
it accessible to other systems that may use it for other purposes. However, the
provenance that is recorded can be application-specific. In order to use it, other
systems may require it to be recorded differently and the original application
to rerun as a result. This may not be possible nor efficient. As such, we need a
principled mechanism for application-specific interpretation of provenance. For
example, consider a provenance-aware system that requires users to interact with
the system and generate some data. Another application might need to make
decisions based on the ratings of the data and users that can be computed from
the provenance recorded by the first application. Such a system will need to be
able to: (1) Interpret application-specific provenance, (2) Compute ratings for
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the entities generated, and (3) Use provenance-based ratings to make decisions
in a timely manner.

In order to address these requirements, we introduce an online provenance
analysis system that is composed of the following. First, we propose a generic
Annotation Computation Framework (ACF) that enables applications to attach
application-specific annotations to elements of a provenance graph and to com-
pute new annotations from these.

Second, we put forth a statistical Quality Model (QM) that computes three
ratings for data entities and users from their provenance: (1) a validity measure
for data entities with different validity labels (“valid”, “invalid”, or “uncertain”),
(2) a reliability measure for each user reflecting how consistently good their
performance is, and (3) a finish measure with different finish labels (“finished”,
“unfinished”) that expresses if further user contributions are required.

Finally, we devise an Online Annotation Computation System (OACS) that
enables a provenance-aware system to make decisions in a timely manner from
its provenance. OACS defines a contract according to which a provenance-aware
system should model its provenance, submit it to the OACS, and retrieve ratings
(in the form of an annotated provenance graph).

We evaluate the ACF, OACS, and QM in a crowd-sourcing application. To
support online quality-based decision making, QM rates each task in the crowd-
sourcing application as either finished or unfinished by using validity and reli-
ability measures. The OACS, alongside with QM, helps increase the confidence
on validity measure by analysing the performance of users (reliability measure)
during the execution of the crowd-sourcing application.

To the best of our knowledge, online use of provenance for quality-based
decision making has not been previously investigated. Our framework with the
online mechanism provides a foundation that enables a provenance-aware system
to make online decisions based on provenance of data.

Our contributions are fourfold:

1. A generic Annotation Computation Framework to allow application-specific
interpretation of provenance;

2. An Online Annotation Computation System to assist a provenance-aware
system to make online decisions during execution time;

3. A statistical quality model that uses provenance to compute (1) validity mea-
sure for data entities, (2) reliability measure for users, and (3) finish measure
for data entities. It also increases the confidence on validity measure by using
reliability measure in an online environment;

4. An evaluation of ACF, OACS, and QM in a crowd-sourcing application called
CollabMap.

The remainder of this paper is structured as follows. In Sect.2, a crowd-
sourcing application in which provenance is recorded is introduced. Section 3
and 4 present ACF and OACS, respectively. We specialize online decision mak-
ing to online quality-based decision making by implementing a statistical Qual-
ity Model and show how CollabMap utilises computed ratings to make online
quality-based decisions (Sects.5 and 6). Section7 presents and discusses the
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evaluation of ACF, OACS, and the QM. Section 8 provides the related work and
Sect. 9 outlines the future work.

2 Scenario: A Crowd-Sourcing Application

CollabMap is a crowd-sourcing application that recruits people to augment exist-
ing maps by identifying buildings outline and drawing their evacuation routes
from buildings to nearby roads. Participants are required to verify tasks by oth-
ers by providing positive or negative votes on buildings and evacuation routes,
helping CollabMap to determine their validity. The quality of data generated by
a crowd with different backgrounds and expertise is inevitably varied. Therefore,
two mechanisms to ensure data quality were suggested for CollabMap.

1. Online Majority Voting: The first version of CollabMap (CollabMap-V1) [9]
employed a customized adaptation of majority vote. If total sum of positive
and negative votes is above 43, then the building is marked as valid. If the
score reaches —2, the building is marked as invalid. Provenance was recorded
in CollabMap-V1 but was not used to assess the validity of data.

2. Offline Provenance Network Analysis: In the second version of CollabMap
(CollabMap-V2), Huynh et al. [5] extracted a set of provenance network met-
rics from provenance of data to learn about patterns that correlate with
quality of data. This approach was not used online either.

User’s reliability was not considered for decision making in either of the above
versions. Therefore, to improve the quality assessment done by CollabMap in an
online environment, we set the following requirements for our system.

Requirement 1. To compute a validity label (“valid”, “invalid”, or “uncer-
tain”) for each data entity (buildings and evacuation routes). “valid” data enti-
ties are to be included in the final result, while “invalid” data entities are to be
discarded. In cases where the validity label is “uncertain”, further users would be
employed to verify the “uncertain” data.

Requirement 2. To compute a reliability measure for each user, so that we can
use these measures to increase confidence on validity label by analysing users’
reliability.

Requirement 3. To compute a finish measure for each data entity to decide to
continue or terminate a task.

Provenance would be used to capture all these measures while CollabMap
is executing. In this context, use of provenance offers the following benefits:
(1) a generic foundation that provenance recorded in CollabMap can be used in
a provenance-aware rating application to compute such measures and (2) a data
model that captures all the changes and decisions that are made in CollabMap
by using above measures in an online environment.
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3 Annotation Computation Framework (ACF)

Provenance-based rating can be decomposed in a generic part involving a prove-
nance graph traversal and annotation manipulation, and an application-specific
part computing actual ratings for a given purpose in an application. ACF imple-
ments the generic part and allows for instantiations to add the application-
specific part.

Annotations are utilized as a generic mechanism to enable any information
to be attached to elements of a provenance graph. Following provenance record
presents the use of an application-specific annotation for a building. The anno-
tation, validity, represents validity label of the building.

entity(ex:buildingl, [ex:validity="valid"])

New annotations can be computed for a node from existing annotations for
the same graph. In order to compute new annotations, both forward and back-
ward computations are supported. Forward computation is the computation of
annotations by following relations between nodes along the direction of time;
and vice-versa for backward computation.

Three fixed rules are considered to support computation of annotations. For-
ward computation rule is defined by (1). In this rule, given there is a directed
relation from an influencee (n2) to an influencer (nl), and influencer (nl) has
an annotation (annl), a new annotation for the influencee is computed based
on annl and defined by Fyorwara- To allow application-specific interpretation, a
function F' is required to compute the new annotation. Backward computation
rule has a similar definition except an influencee node has an annotation and a
new annotation for the influencer is computed.

The third computation rule, aggregation rule (See 2), is applied when a node
(n1) has more than one annotation (e.g. annl, ann2, ann3, ...). In this case,
a new annotation, (aggAnn), is computed based on all its existing annotations
(defined by Fagg).

I';/--»_nl -.‘\"r—{ annlﬁw I¥ G -
N node(nl,annl)
A node(n2)
Ed‘ge edge(e;n2,nl) (1)
TN THEN there exists ann2 such that
' " //' ann2 = Ftorward(G,e,nl,n2,annl)

update(G,n2, ann2)

IF G+
@ node(nl, annl)
—/ node(nl, ann?2)

4 ~
( m & ann2 ] node(nl, ann3) )
. S
— \ . .
ann3 Then there exists aggAnn such that

aggAnn = Fagze(G,nl, [annl, ann2, ann3, ...])
update(G,nl,aggAnn)
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To ensure termination, we introduce a global counter that acts as a bound
for termination. After each computation step, the counter is deduced by one. By
limiting the number of computations, we guarantee that computation rules will
eventually terminate.

4 Online Annotation Computation System (OACS)

OACS introduces a contract according to which a provenance-aware system
should model its provenance. This contract makes two assumptions on the prove-
nance with respect to: (1) the structure of provenance data, and (2) the anno-
tations to be incrementally computable.

An important capability of provenance is to express revisions of the same
resource. “Plan for revisions” recipe [8, Section4.1.4] is used for this purpose.
Each version of a resource is connected to a single general resource using the
prov:specializationOf relation. Each version is related to its previous one using
prov:wasRevisionOf relation. Assumptions1 and 2 are as follow.

Assumption 1. Provenance is expected to be structured according to the “Plan
for revisions” recipe, so data entities are continuously rated by OACS.

Assumption 2. OACS expects annotations of any version of a resource to be
computable by using the annotations of its previous version without the need for
the full provenance of its previous versions.

The following describes the steps through which a provenance-aware system
should submit its provenance data and retrieve newly computed annotations.

Step 1 Whenever there is new provenance data that needs to be annotated,
the provenance-aware system is required to bundle up all new assertions
(A bundle is a named set of provenance descriptions [7]);

Step 2 In this bundle, the system is required to identify each element of prove-
nance graph to be “annotated” as a distinct element according to the
two contractual Assumptions1 and 2;

Step 3 Submit this bundle to the OACS;

Step 4 When a response from OACS is ready, the system can retrieve a prove-
nance bundle that contains the new annotations from OACS;

Step 5 New annotations can then be used to update the system’s local state and
to make application-specific decisions;

Step 6 Return to Step 1.

In a decision making situation, as an application is executing and more knowl-
edge is generating, the application is presented with updated information which
decisions are based on. In order to validate the updated information and new
decisions, the decision makers can consider their provenance. As such we decided
to use bundle to allow provenance of provenance to be expressed.
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5 Quality Model (QM)

5.1 Validity Measure (VM)

Requirement 1 requires data entities to be annotated with a validity label (“valid”,
“invalid”, or “uncertain”). Table 1 summarises the annotations processed by VM.

Table 1. Annotation Assertion (AA) and Annotation Computation (AC) in Validity
Measure for a data entity D (building or evacuation route)

Annotation Description Value Level
Vote Value of user (U) vote for D Vote(D,U) | AA
Coordinates | Coordinates of a building Coord(D) |AA
Edges Total number of edges Edge(D) AA
Positive votes | Number of positive votes for D | P(D) AC
Negative votes | Number of negative votes for D | N(D) AC
Validity label | Validity label of D V(D) AC

The beta family of probability density functions model the distribution of a
random variable representing the unknown probability of a binary event where
T(D) is an example of such a variable to model [11]. In (3), Beta(«, 3) returns
the probability of D being valid provided o and (3, where o and [ are hyper-

parameters to define the shape of the density function.
Beta(a, 3) = a (3)
9 - a4 ﬁ

Hence, validity measure (T(D)) is given by:

T(D) = Beta((P(D) +1), (N(D) + 1)) (4)
Now, validity label (V(D)) can be defined by two thresholds ¢1 and #2:

valid if T(D) > t2
inwvalid if T(D) < t1 or Edge(D) < 4 for building

or Coord(D) has self-intersecting lines for building
uncertain if t1 <T(D) < t2

V(D) =

()

By analysing CollabMap-V1, 0.7 and 0.3 are the threshold we chose for ¢1
and t2 respectively, to select valid and invalid data entities.
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5.2 Reliability Measure (RM)

Requirement 2 requires each user to be annotated with a reliability measure.
A user can have two roles in CollabMap: identifiers (those who generate data)
and verifiers (those who verify generated data). For identifiers, we are interested
in computing their total number of “valid” and “invalid” identifications. For
verifiers, we are interested in computing the total number of “aligned” (positive
vote on a valid data or negative vote on an invalid data) and “non-aligned”
(positive vote on an invalid data and negative vote on valid data) verifications.
Table 2 summarises the annotations processed by RM.

Table 2. Annotation Assertion (AA) and Annotation Computation (AC) in Reliability
Measure for a user U - D can be a building or an evacuation route

Annotation Description Value Level
Good identification Total number of good D identification for U | M(I,G,D,U) | AC
Bad identification Total number of bad D identification for U | M(I,B,D,U) | AC
Aligned Total number of aligned votes for U M(V,A,D,U) | AC
Non-aligned Total number of non-aligned votes for U M(V,N,D,U) | AC
Identification reliability | Reliability of U in D identification R(I,D,U) AC
Verification reliability Reliability of U in D verification R(V,D,U) AC

User reliability, R(I, D,U) and R(V, D,U), is computed by applying (3):

R(I,D,U) = Beta((M(L G,D,U)+1),(M(I,B,D,U) + 1)>

(6)
R(V,D,U) = Beta((M(V, A,D,U)+1),(M(V,N,D,U) + 1))

5.3 Finish Measure (FM)

Requirement 3 requires each data entity to be annotated with a finish measure,
which is computed from reliability measure. Table 3 summarises the annotations
processed by FM.

Table 3. Annotation Assertion (AA) and Annotation Computation (AC) in Finish
Measure for data entity D (building or evacuation route)

Annotation Description Value | Level

Cumulative users’ reliability | Total cumulative users’ reliability C(D) | AC
Finish label Label showing if a task is terminated | F'(D) | AC
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Finish measure, C(D), is computed by applying (7):
C(D) = Z R(V,D,U) where VD is the set of all verifiers of D  (7)
UevD
Now, the finish label (F (D)) can be assigned based on the finish measure:
Yes if C(D)> t2
or C(D) < tl
F(D)= or Edge(D) < 4 for building (8)
or Coord(D) has self-intersecting lines for building
No if t1 <C(D) < t2

By analysing CollabMap-V1, +1.5 and —1.5 are the threshold we chose for
t1l and t2 respectively, to annotate a data entity as finish assuring the crowd’s
contributions to the data entity is deemed to be complete with high confidence.

6 Decision Making in CollabMap

CollabMap-V3 uses the measures computed in Sect. 5 to make a decision on next
course of action:

Continue it F(D) = No
Not-Accept if (F(D) =Yes and V(D) = Invalid)

or (F(D) =Yes and
V(D) = Uncertain and
C(D) < —1.5)

Decision — .
ceisiont Terminate { Accept

if (F(D) =Yes and V(D) = Valid>
or | F(D)=Yes and
V(D) = Uncertain and
C(D) > 1.5)

7 Experiments and Results

For a preliminary evaluation, we develop several hypotheses that we validate by
applying online quality-based decision making to CollabMap-V3 and examining
the results. We designed an experiment where 22 users were recruited to work
with CollabMap-V3 which ran over 60 h.
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Hypothesis 1. The validity label reflects the actual validity of data as verified
by an expert.

Method 1. We asked an expert to verify all the identified data entities. Then
we compared the expert’s opinion with the dataset of data entities that were
accepted or not-accepted by CollabMap-V3.

Analysis 1. In total, 237 buildings were identified (235 annotated as finished
and 2 as unfinished; CollabMap accepted 75% of all finished buildings and
discarded the rest as they were annotated as invalid). 183 evacuation routes
were identified (around 80 % annotated as finished and 20 % as unfinished; Col-
labMap accepted above 98 % of all finished ones). The dataset of data entities in
CollabMap-V3 matched the verified data by expert; thus verifying Hypothesis 1.

Hypothesis 2. User’s reliability measure reflects the actual performance and
reliability of a user.

Method 2. We formed a control group where we asked two users to consistently
draw valid buildings, two users to consistently draw invalid buildings, and two
users to consistently provide verification votes opposed to what they reckon to
be true (to provide negative verification votes for valid data entities and vice
versa for invalid data entities).

Analysis 2. Figure la represents the reliability measures for two users. The
reliability measure for all users are similar at the beginning. As they continue
engaging with the system, RM updates users’ reliability measure based on their
performance. The reliability measure for User 433, who consistently draw invalid
buildings, decreased from 50 % to less than 2% (blue dashed line). Whereas the
reliability measure for User 427, who consistently draw valid buildings, increased
from 50 % to 98 % (red line). At this point, we can validate Hypothesis 2 as users’
reliability measure truly reflects their performance.

Hypothesis 3. If reliable users verify a data entity, the task can be terminated
faster than when unreliable users verify a data entity.

Method 3. We evaluate if (1) QM can incrementally learn the reliability of
users and (2) the reliability measure of users was used to terminate the task.

Analysis 3. Figure 1b represents the proportion of finished and unfinished data
entities over time. As expected, at the beginning, the growth ratio of unfinished
data entities (white boxes on top) is higher than finished data entities (red
pattern filled boxes). However, as RM is gaining knowledge about users, the
growth ratio of finished data entities are higher.

Figure 1c represents the total number of data entities that are being anno-
tated by their validity and finish labels over the time. At the beginning, as RM
does not have enough knowledge about the users, most data entities are anno-
tated as Unfinished-Uncertain (blue triangle-dotted line). As time progresses,
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RM gains enough knowledge over users to annotate data entities as Finished-
Valid/Invalid (the rapid jump in green diamond-dashed line). We can observe
another growing trend and it is those data entities that are annotated as Finished-
Uncertain (red square-solid line). This shows that QM reduces the number of
votes required when it has gained enough knowledge about the participants. We
expect more growth in this line had we let our trial continued. The reason is at
the beginning, all users have the similar reliability measure and it takes time to
annotate a data entity as finished. As time progresses, reliable users are identi-
fied and they will have a higher reliability measure (reliability of some users were
measured as above 90 %) which means the data entity is annotated as finished
earlier.

Figure 1d represents an average number of votes required to annotate a data
entity as finished. The total number of requested votes depends on the finish mea-
sures. After one day of execution, there is a decreasing trend that QM requires
less votes to annotate a data entity as finished. CollabMap-V1 requires at least
3 votes to terminate a task. As can be seen from Fig. 1d, the average total num-
ber of votes requested for a finished building over times, was reduced to 2.5. At
this point, it is possible to verify Hypothesis 3. Although at the beginning, QM
may require more verification votes, there is a decreasing trend in requesting
verification votes toward the end.

8 Related Work

Provenance can be used to estimate quality of data and data reliability based
on the source data [10]. Golbeck reviews trust issues on the World Wide Web
[3] and identifies provenance as a key element necessary to derive trust. One
trustworthiness [2]. Dai et al. [2] propose a method to compute trust scores for
data, depending on the trust of the information used to generate it. In order to
assess quality of data and reliability of users, Allen et al. [1] describe a prove-
nance system, PLUS, that uses provenance of data to detect potential malicious
behaviour and help users assess trust in information. On the same venue of work,
Hartig et al. [4] propose a model for Web data provenance and an assessment
method that can be adapted for specific quality criteria. None of these works
used provenance to infer trustworthiness of data nor performance of users in an
online environment. Our approach motivates the use of provenance in an online
environment where quality-based decisions can be made in a timely manner.
The issue of data quality and user reliability can be observed in crowd-
sourcing applications. In a crowd-sourcing application, tasks are broken down
into smaller activities and are allocated to the crowd; upon completion, some
rewards are issued. There are mainly two issues associated with some crowd-
sourcing applications: (1) quality of generated data, and (2) evaluation of user
performance. To assure quality, the crowd-sourcing application assigns the same
labelling task to multiple users. When multiple labels are provided for the same
task, the crowd-sourcing application fuses all labels to estimate the actual label.
Whitehill et al. [12] present a probabilistic model to compute the expertise of
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Fig. 1. Analysis of CollabMap-V3 deployment (Color figure online)

each user, difficulty of each task, and the label of each task. Our proposed QM is
similar to this approach in computing a validity and reliability measures, how-
ever in contrast, we use reliability measures to decide to continue or terminate
a task while the application is executing.

9 Conclusion

In this paper, we have presented a principled approach for online application-
specific interpretation of provenance that consists of: (1) a generic part involving
a provenance graph traversal and annotation manipulation, (2) an application-
specific part computing the annotations for data quality assessment and task
termination.

We carried out a preliminary analysis of the approach on CollabMap, a crowd-
sourcing application for designing evacuation maps. We showed that it is able to
classify data with high accuracy by analysing the reliability of contributors while
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the application is executing. We also demonstrated that with our framework,
CollabMap was able to make online decisions whether to terminate or continue
a task.

Going forward, we plan to deploy CollabMap and ACF in a wider community,
employing more users for a complete empirical evaluation of our framework. It
would allow us to evaluate how accurately ACF can help CollabMap to terminate
tasks. Furthermore, we plan to use user’s reliability measure to decide whether
to accept or reject a user’s contribution and to explore dynamic task allocation
to users based on their reliability.

Acknowledgements. This work is funded by the EPSRC ORCHID Project (EP/-
1011587/1).
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Abstract. Application benchmarks are critical to establishing the per-
formance of a new system or library. But benchmarking a system can
be tricky and reproducing a benchmark result even trickier. Provenance
can help. Referencing benchmarks and their results on similar platforms
for collective comparison and evaluation requires capturing provenance
related to the process of benchmark execution, programs involved and
results generated. In this paper we define a formal model of benchmark
applications and required provenance, describe an implementation of the
model that employs compile time (static) and runtime provenance cap-
ture, and quantify data quality in the context of benchmarks. Our results
show that through a mix of compile time and runtime provenance cap-
ture, we can enable higher quality benchmark regeneration.

1 Introduction

Application benchmarks are an important way to establish the speed of a new
system or library. But benchmarking a system can be tricky and reproducing a
benchmark even trickier; a single compile time parameter can give vastly different
results depending on whether it is set or not. Analyzing and recording bench-
mark results is a manual task that depends on the knowledge of the evaluator.
The manual nature increases the possibility of missing information, incorrectly
logged results and skipped parameters and configurations that affect the pro-
gram behavior. All these factors affect the quality of the results generated by
the benchmark process.

The metadata required to assess the quality of benchmark results to repro-
duce program behavior and quality of the evaluation process can be complex and
expensive. Provenance is a type of metadata used to capture the lineage of data.
Provenance from benchmark executions can be used to describe the lineage of
benchmark results and the evaluation process involved. It helps in understanding
the quality and enables regeneration and referencing of benchmarks. Essentially
provenance traces for benchmark results account for the following — (a) ensuring
benchmarks were executed correctly, (b) understanding the set of parameters
and configurations used for generating the results and (c) keeping track of the
benchmarks and their results for evaluation.

© Springer International Publishing Switzerland 2015
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For standard application benchmarks, guaranteeing the correct execution of
benchmarks and keeping track of the results require intelligent provenance cap-
turing techniques. Log based provenance capture mechanisms [GP13] can be
used for collecting provenance from benchmarking. But it is important to guar-
antee that neither the results are tampered with nor important factors affect-
ing the results ignored. Existing provenance management frameworks [CCPR13,
GT12] manage provenance at the application granularity. For benchmarking
data, provenance needs to be managed for both the application (benchmark) and
the target system (hardware or software or both) for the benchmark.
Additionally, existing provenance capturing techniques often require modifica-
tions to the filesystem [GT12, MRHBSO06], application specific program instru-
mentations [CCPR13, ABGK13] and/or trapping system calls [GT12] which are
not viable due to varied nature of benchmarks and high-degree of system
perturbations.

In this paper we identify essential characteristics of provenance in bench-
marking and propose a formal model of provenance from application bench-
marks. We describe a framework based on the provenance model that captures
provenance from application benchmarks both statically at compile time and at
runtime in order to validate, regenerate and reference results for future research.
This paper makes the following contributions:

— a formal model of benchmark applications and required provenance

— an implementation of the model that employs compile time (static) and run-
time (dynamic) provenance capture

— quantification of data quality in the context of benchmarks

— a PROV representation of the data model for provenance of benchmarking
applications.

The remainder of the paper is organized as follows. In Sect.2 we discuss
related work. Section3 proposes a formal model of provenance capture from
application benchmarks. Section4 describes our methodology and the imple-
mentation for identifying and capturing provenance using the provenance cap-
ture model. We evaluate our model and framework in Sect. 5. Finally, we present
our conclusions in Sect. 6.

2 Related Work

Use-cases of provenance. Provenance capture, representation and use has
been studied for e-science workflows [Mea05], file systems [MRHBS06], semantic
web [CBHS05] and databases [CCTO09]. The use of provenance in determining the
quality of scientific data and data provenance has also been shown [SP11]. Prove-
nance from scientific executable document systems [Yeal2] are also implemeted.
But using provenance for quantitative and qualitative analysis of benchmarking
results has not been studied earlier.

Models of provenance capture. Several models have been proposed to identify
and capture provenance [CAAQ07]. Bower et al. [BMLI12] proposes a dependency
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rule language for capturing fine-grained provenance from workflow traces but
requires user-defined rules and runtime traces. We mostly rely on static analysis
of source code for fine-grained provenance.

Provenance identification and capturing mechanisms. Provenance-aware
solutions [MRHBS06], and language extensions [CAA07] for provenance identi-
fication have been proposed. Provenance capture by analyzing audit logs and
semi-automated code instrumentation [GT12,CCPR13] have also been devel-
oped. We developed output-monitoring and compiler-driven provenance identi-
fication mechanisms for collecting provenance from application benchmarks.

Quality assessment. Quality of provenance data and using provenance for
understanding the quality of data [CP12,HZ09] are important aspects of quality
measurement in provenance. But very little or no work has been done to quantify
data and provenance quality at the system level. In our work we quantify the
quality of benchmark result, which is a provenance artifact, based on the level
of intrusion through external factors.

3 Formalization of Benchmark Provenance

In this section we provide a formal representation of a benchmarking application
and use that to define provenance capture.

3.1 Model of Benchmarking

A benchmark application has specific properties where a property is a pair (n : v)
where n is the name of the property and v is the corresponding value. A property
can either be a static characteristic of the program (or set of programs that build
the application) or a dynamic value only known at runtime. If we consider M
execution instances of an application with N distinct properties, we can define
two categories of properties as follows:

Variants: A set of properties that changes or may change for an execution
instance, i € M, of the application. Hence for a particular variant property, its
value varies with 7. The variant set is then defined as,

Vi e M,Variant(i) ={(n:v;) | In €N, s.t. v; = f(i,n)} (1)

Since benchmarks are executed multiple times, results are concluded by aggre-
gating individual output from each instance of the benchmark execution. Hence,
it is important to unify the variants from all benchmark execution instances in
order to preserve the provenance of the final output. Unifying variants over all
execution instances ¢ = (1,..., M) gives the total set of variants as,

M
V= U Variant (i)

~

I
=1
©

{(n:v;) | IneN, st.v; = f(i,n)}

=1
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Practically, variants for application benchmarks consist of resource usage like
CPU load at the time of benchmark execution and available memory, configu-
ration parameters etc.

Invariants: A set of properties that remains constant over multiple execution
instances of an application. The value of an invariant is only dependent on the
name of the property. Invariants are, therefore, defined as,

Vi € M, Invariant(i) = {(n:v)] In €N, st.v=g(n)} (3)

Since invariants are independent of the execution instance 4, unification results
in distinct (n:v) pairs of an application benchmark as,

M
I= U Invariant (i)

~
=

(4)

Il
=

{(n:v)]3IneN, st.v=g(n)}

i=1

Examples include names of the programs, associated libraries, create-date of the
benchmark binary, hostname(s) etc.

Since a benchmark is used for evaluating a system, where we define a system
S as a software or hardware entity that has certain properties, we can define
benchmark as a partial function,

B:(Zs,V,I,8) — R ()

where Zg is the set of input-data, V is the set of variants, I is the set of invariants,
S is the evaluated system and Rg is the set of output results.

To summarize, a benchmark with a set of properties V and I, evaluates a
system S generating the result-set Rz for an input-set Zg. It is a partial function
because invariants do not map to the result-set but are properties that are unique
to the benchmark.

3.2 Model of Provenance Capture

We base our model for provenance on the model of benchmarking defined above.
We make no assumptions about the equivalence of inputs and outputs of a
benchmark and that collected by our model of provenance capture. So, we denote
the output result-set collected by our model of provenance as Rp. Similarly, we
also consider the input data-set collected by the model of provenance as Zp.

Static Provenance. We define static provenance capture as a function that
maps a benchmark to its invariants.

581 (6)

Any property that does not vary with different execution instances of a bench-
mark program but identifies it uniquely is considered during static provenance
capture. Hence, artifacts for static provenance capture can be determined stati-
cally without executing the benchmark.
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Runtime Provenance. Runtime provenance capture, on the other hand, cap-
tures provenance information for every execution instance of a benchmark. It
depends on the runtime characteristics and parameters of benchmark execution.
We define runtime provenance capture as a function that maps a set of results
to a set of inputs, corresponding benchmark and variants.

v:Rp = (B8,Ip,V) (7)

All data-items that affect the benchmark results but can only be determined
during benchmark execution are captured during runtime provenance capture.

3.3 Quantification of Data Quality

Since no assumptions are made about the equivalence of inputs and outputs of
a benchmark and the captured provenance, there may be discrepancies between
the published inputs and outputs of a benchmark and that collected through
provenance capture. In the ideal situation, Rp = Rz and Zp = Z3.

Trust. We define || Rp —Rg || to denote the quantitative difference between the
results, i.e., the number of results that differ in the two sets. Similarly, | Zp—Z3 ||
denotes the quantitative difference between the inputs. For a set of invariants,
I and variants, V of a benchmark, 8 the trust, T of the result data-set is then
measured by the following equation:

| Rp —Rg |l | Zr — Zs ||
T=1[1- 1-— (8)
( maz(| Rp || R |) maz(| Ip |,| Zp |)
where,

|| X — Y || returns the count of mutually exclusive elements of X and Y,
| X | is the cardinality of a set X.
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Source-code
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Fig. 1. Framework for capturing provenance for benchmarking data.
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In other words, if the input and result generated by a benchmark differs from
what its provenance says, then the data is not trustworthy. For simplicity, we
consider each input and result to be of equal importance. We also assume that
the values of invariants and variants are always within the range of the values
captured through provenance. A direct result that follows through the above
quantification is the measure of reproducibility which is a property of the bench-
mark result and is a boolean value that determines if a benchmark result is
reproducible or not. It is defined in terms of ‘trust’.

Definition: Given a set of invariants I and variants V, a result-set Rg is repro-
ducible for a benchmark G iff T = 1.

4 Provenance-Aware Benchmarking Framework

The formal model is the foundation upon which is built the framework for cap-
turing provenance from application benchmarks as shown in Fig. 1. The frame-
work has two pieces: a static capture component that is built into compile time
activity. Run-time is also made provenance-aware through runtime capture.

4.1 Static Provenance Capture

We propose a provenance-aware compiler for static capture of provenance. The
compiler is implemented as a wrapper over standard gcc or icc compilers. To
enable provenance-aware compilation, a user replaces all calls to the correspond-
ing compiler by call to the wrapper compiler provcc which captures ‘invariants’
as provenance elements during program compilation. Essentially,

provcc: 3 +— 1

where, 3 is a benchmark and I is a set of invariants.

4.2 Runtime Provenance Capture

The runtime provenance capture is divided into two modules — (a) provenance-
aware runtime and (b) provenance adaptor.

Provenance-Aware Runtime. The second piece of the solution, a provenance-
aware runtime, executes and captures provenance information including the vari-
ants, inputs and results for a benchmark. All benchmarks are executed via the
runtime application launcher provrun which can capture the results from both
stdout and files. From our provenance model, provrun is the mapping function 4.

provrun : 3+ (Zp,V,Rp)

where, 3 is a benchmark, Zp is the set of inputs captured by provrun, V is a set
of variants, Rp is the set of output results captured by provrun.
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Fig. 2. PROV model for capturing provenance from application benchmarks.

Provenance Adaptor. The second phase of the runtime provenance capture
collects, combines and translates provenance information captured in log files
into a single provenance graph. It shows the lineage of benchmark results for
all execution instances of a benchmark on a system. The complete provenance
graph is generated by combining the provenance information collected statically
during compilation and dynamically by the runtime system.

4.3 Fine-Grained Provenance Capture

The compiler wrapper is augmented with an additional source-to-source trans-
lator module that allows for source-code instrumentation for fine-grained prove-
nance capture. This module allows users to automatically identify and mark
regions in the code to generate provenance information. We developed the mod-
ule using the ROSE compiler framework. It builds a system dependency graph
for the benchmark programs and marks regions of the code based on the granu-
larity of provenance information. This module is responsible for generating two
slices of the benchmark program: a static slice created during compilation and
a dynamic slice generated during benchmark execution. Static slice is used for
deriving the mapping between inputs and outputs and preserving the interpro-
cedural dependencies. Whereas the dynamic slice is used to capture the actual
parameters passed across the functions for generating the output.
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4.4 PROV Model for Benchmark Provenance

Figure2 shows the PROV data model for application benchmarks. Based on
the formal model of provenance capture, the PROV model shows compile-time
and run-time provenance capture from application benchmarks. The owner is a
PROV agent who is responsible for creating a benchmarking suite. The executor,
on the other hand, is a PROV agent who executes a benchmark or evaluates a
system using a benchmark. Each benchmark execution has an associated time
attribute that captures the start and end time of execution. Invariants and vari-
ants are captured as part of the provenance by the provenance-aware compiler
and the runtime respectively. Fine-grained provenance is captured by generating
the static and dynamic slices of a benchmark program. Finally, the output result
is derivation from the benchmark binary and the input data-set which are used
to evaluate a system.

5 Evaluation

We experimentally evaluate our methodology using six benchmarks from the
NU-MineBench [NOZ+06] benchmarking suite and analyze both overheads and
significance of provenance capture from benchmarks. NU-MineBench contains a
mix of several representative data mining applications from different application
domains. It is used for computer architecture research, systems research, per-
formance evaluation, and high-performance computing. The applications used
are: HOP — a density-based data clustering. Apriori — association rule min-
ing. ScalParC — decision-tree based data classification. K-means — (and Fuzzy
K-means) for data clustering. ECLAT — association rule mining. Semphy —
structure learning algorithm that is based on phylogenetic trees.

Tests were run on a quad-socket, 8-core (32 total cores) AMD Opteron system
with 512 GB of memory running 64-bit Red Hat Enterprise Linux. For evaluating
the runtime overhead, benchmarks are executed 10 times. As a micro-benchmark,
we measure runtime overhead and for higher quality benchmark regeneration,
we evaluate the model and the framework along three dimensions — (a) com-
puting if the result is reproducible (quality quantification), b) what is required
to regenerate the result (reproducibility data) and (¢) how can the result be
regenerated (reproducibility steps).

Runtime Overhead. Executing the benchmarks through the provenance-aware
framework shows no or very little overheads as shown in Fig. 3a. This is because
the benchmark execution is completely uninterrupted and provenance information
is logged only in two stages — (a) prior to the execution and (b) when the exe-
cution completes. However, we also capture fine-grained provenance by running
an instrumented version of the benchmark. In order to enrich provenance infor-
mation, benchmark programs are marked at specific regions during compilation
by the provenance-aware compiler. For this evaluation we only mark function
calls which tracks inter-procedural data flow in order to derive the exact map-
ping between inputs and outputs. This instrumentation results in relatively high
overheads as shown in Fig. 3b.
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Fig. 3. Performance overhead in benchmark execution through provenance-aware
framework. There are very little or no overheads for provenance capture without instru-
menting the benchmark. However, fine-grained provenance capture through source-code
instrumentation starts incurring higher overheads.

Table 1. Quality assessment derived from provenance

HOP | Apriori | ScalParC | K-Means | ECLAT
Num results |1 3 5 45 12
| Rp—Rg |0 1 2 0 1
Trust value | 1.00 |0.67 0.60 1.00 0.92

Table 2. Elements of compile time (static) provenance as captured by provcc

Benchmark | Srcs | Objs | Compilation-flags Opt-flags | Linker-library

HOP 6 6 -fopenmp -Wno-write-strings -0 libm

Apriori 5 5 -fopenmp -DBALT -02 libm

ScalParC |4 4 -fopenmp -02 libm

K-Means 4 4 -fopenmp -02 libm

ECLAT 14 |11 -Wno-non-template-friend -03 libm, libc

SEMPHY |23 |15 |-Wall -Wno-sign-compare -DLOG |-O3 ../../lib
-ftemplate-depth-32 libSEMPHY .a

libEvolTree.a

Quality Quantification. We calculate trust values for different benchmarks by
introducing discrepancies in the result data-set by introducing errors as shown
in Table 1. These errors are either system or human errors of reporting results,
missing information, inconsistent values of variants etc. For example, for the
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Fig. 4. Provenance graphs for ECLAT - (a) shows the aggregated view of the original
provenance graph as shown in (b) for 2 runs of the ECLAT benchmark.

ECLAT benchmark run, if we change the value of the support parameter from
0.0075 that is captured through provenance to 0.0080, we are unable to reproduce
the output result as predicted through our reproducibility metric. This is because
the trust value, T is less than 1. For benchmark results, trust value = 1 iff ||
Rp—Rs ||= 0. In other words, a result can only be trusted and hence reproduced,
when the benchmark and its provenance points to the same result-set.

Regeneration Using Provenance. Provenance for regenerating benchmark-
ing data can be categorized into two phases based on our capture model —
(a) information useful for regenerating the application benchmark and
(b) information for regenerating the benchmark results. For regenerating the
benchmark application, we capture its provenance that includes the compila-
tion flags, platforms, source programs (invariants) etc. Table2 shows a list of
provenance elements that are captured using the provenance-aware compiler.
For regenerating the benchmark results, associated runtime characteristics (vari-
ants) and the input data along with the provenance of the application benchmark
are captured. In case of fine-grained provenance, the detailed mapping between
inputs and outputs and interprocedural dataflow are also captured.

Since benchmark results are most often an aggregation of individual runs of
a benchmark, the correlation between individual results and configurations are
important to record as part of the provenance. A connected provenance graph
shows the importance of recording, correlating and linking individual provenance
traces of a benchmark. As shown in Fig.4 the aggregated results for ECLAT
are written to a single output file through different runs of the benchmark.



66 D. Ghoshal et al.

So, the summary output file is a result of all the inputs, compiled binaries and
configurations of the benchmark over a set of multiple runs. Generating and
representing a complete provenance graph describing the steps and data for
multiple instances of the benchmark, is useful for understanding and regenerating
the result.

6 Conclusion and Future Work

There are several open questions remaining. The model and framework captures
provenance from benchmarks running in non-distributed environments. Distrib-
uted environments pose challenges in correlating benchmark results, tracing fail-
ures, and input-output mapping. Too, the equation we pose for calculating trust
is binary. It captures perfect reproducibility but does not allow epsilons of change
in the execution trace or static analysis that do not compromise trust. In the case
where benchmarks are run in distributed environments, acceptable differences
like out of order messages or slightly mismatched clocks may occur. Additionally,
the work assumes the provenance captured has not been intentionally altered.
Our approach assumes availability of benchmark source-code. In the absence of
source-code or provenance-aware compilers, special techniques should be devel-
oped for identifying and correlating provenance from benchmarking applications
transparently without user intervention. The amount and granularity of fine-
grained provenance sufficient for validating benchmark execution also needs fur-
ther research. Finally, post-processing can be done by mining the result-set and
associated provenance in order to automatically derive conclusions about the
evaluation process and system’s performance.
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Abstract. We propose noWorkflow, a tool that transparently captures
provenance of scripts and enables reproducibility. Unlike existing ap-
proaches, noWorkflow is non-intrusive and does not require users to
change the way they work — users need not wrap their experiments in
scientific workflow systems, install version control systems, or instrument
their scripts. The tool leverages Software Engineering techniques, such as
abstract syntax tree analysis, reflection, and profiling, to collect different
types of provenance, including detailed information about the underly-
ing libraries. We describe how noWorkflow captures multiple kinds of
provenance and the different classes of analyses it supports: graph-based
visualization; differencing over provenance trails; and inference queries.

1 Introduction

While scripts are widely used for data analysis and exploration in the scien-
tific community, there has been little effort to provide systematic and trans-
parent provenance management support for them. Scientists often fall back on
Workflow Management Systems (WfMSs), which provide infrastructure to auto-
matically capture the input, intermediate, and output data involved in computa-
tions, allowing experiments to be managed, assessed, and reproduced [12,16,18].
Although WfMSs play an important role in bridging the gap between experimen-
tation and provenance management, they have limitations that have hampered
a broader adoption, notably: moving to a new environment can be difficult and
requires a steep learning curve, and wrapping external scripts and libraries for
use in a WIMS is time-consuming. In addition, data analysis tasks that use
multiple tools require each to be integrated with the WfMS. When this is not
possible (or desirable), scientists often run scripts to orchestrate analyses and
connect results obtained from multiple tools.

Collecting provenance of scripts when not using a WEMS is challenging. First,
unlike most pipelines supported by dataflow-based systems, scripts can encode
a control flow and include cycles, which makes it more difficult to identify which
functions contributed to the generation of a given data product. Second, deter-
mining the correct level of granularity to capture is hard: very fine-grained prove-
nance may overwhelm scientists with a large volume of data to analyze, while a
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coarser granularity may omit important information. In contrast, workflows in a
WIMS have well-defined boundaries for such capture, which are determined by
how the underlying computational modules are wrapped. Finally, since scripts
run outside of a controlled environment such as a WfMS, one cannot make many
assumptions (e.g., the presence of a version control system) beyond the involve-
ment of source code and an interpreter/compiler, which makes it difficult to
track library dependencies and changes in files.

Some of the existing approaches that do not require a WIMS rely on scientists
to modify the experiment scripts to include annotations or calls to provenance
capture functions [1,3,7]. Such approaches are intrusive, time-consuming, and
error-prone. Others require scientists to use a version control system to track
changes to the source code, or are not entirely automatic, requiring input from
scientists [3,10]. There are also approaches that capture provenance at the oper-
ating system level [6,8,17], which monitor system calls and track processes and
data dependencies between these processes. These systems, however, do not have
visibility into what happens inside the scripts underlying the processes.

In this paper, we propose a new approach to capture provenance of scripts
that addresses the aforementioned challenges. We review the existing types of
provenance representation and argue that, in the absence of a controlled envi-
ronment, a new kind of provenance — deployment provenance — is necessary
to capture detailed data about the underlying libraries. We then present no-
Workflow (not only Workflow), a tool that implements the proposed approach,
and describe how it transparently captures provenance of scripts, including con-
trol flow information and library dependencies. noWorkflow is non-intrusive and
relies on techniques from Software Engineering, including abstract syntax tree
analysis, reflection, and profiling, to collect different types of provenance with-
out requiring a version control system or an instrumented environment. The
tool supports three different types of analyses, including visualization and query
mechanisms, to help scientists explore the captured provenance and debug the
execution, as well as to enable reproducibility. Although noWorkflow was devel-
oped for Python, a language with significant adoption by the scientific commu-
nity, the ideas presented here are language-independent and can be applied to
other scripting languages.

2 Provenance of Scripts

WI{MSs provide a controlled environment in which workflows are executed—the
workflow engine orchestrates the invocation of the computational modules of
a workflow. Since provenance is captured for these invocations, the provenance
granularity is determined by how computations are modeled inside the workflow
system, i.e., how libraries are wrapped. Scripts, in contrast, lack this well-defined
structure and the isolation provided by the workflow engine. Thus, to capture
the provenance of scripts, we have to address two important challenges: how to
represent information about the environment and how to determine the level of
provenance granularity.
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2.1 Provenance Representation

There are two types of provenance for scientific workflows: prospective and
retrospective [5]. Prospective provenance describes the structure of the experi-
ment and corresponds to the workflow definition, the graph of the activities, and
their associated parameters. Retrospective provenance captures the steps taken
during the workflow execution, and while it has similar (graph) structure, it is
constructed using information collected at runtime, including activities invoked
and parameter values used, intermediate data produced, the execution start and
end times, etc. The wrapping required by a WfMS to orchestrate the execution
of modules from a tool or library naturally creates a level of abstraction for the
execution: the module is a black box and its details are hidden. Because the
wrapped libraries are integrated with the WfMS, it is possible for the system to
track and control them, e.g., to detect that a wrapped library has changed and
to upgrade the workflows accordingly [13].

For scripts, this abstraction is absent. Therefore, it is important to capture
detailed information about the computational environment (e.g., library depen-
dencies and environment variables) where the script runs. Consider, for example,
the Python script in Fig. 1, which runs a simulation to predict weather using his-
torical data about temperature and precipitation. For simplicity of exposition,
the real (and expensive) simulation performed by simulate is defined in a separate
module (simulator) not shown in the example. This script depends on 703 dis-
tinct modules, although only four are explicitly declared (lines 1-4). Suppose we
run the experiment script once and obtain a result. If later, software is installed
(or upgraded) that silently updates one of the modules on which the experiment
script depends, the next execution may produce a different result, even though
its source code remains unchanged. If these dependencies are not systematically
captured, it may be difficult to understand why results are different between
executions that are apparently identical.

The provenance needed here is neither prospective nor retrospective, and it
needs to be captured right before execution. Borrowing terms from software engi-
neering, where software goes through three phases, i.e., definition, deployment,
and execution [9], we define three types of provenance needed for scripts:

— Definition Provenance captures the structure of the script, including function
definitions, their arguments, and function calls; it corresponds to prospective
provenance.

— Deployment Provenance captures the execution environment, including infor-
mation about the operating system, environment variables, and libraries on
which the script depends. As discussed before, this may change from one exe-
cution to another, even if the source code remains the same. In addition, it
extends beyond dependencies a programmer explicitly defines, and the con-
crete library versions that are loaded depend on the deployment environment.

— Ezxecution Provenance captures the execution log for the script (e.g., function
activations, argument values, and return values); it corresponds to retrospec-
tive provenance.
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01. import csv

02. import sys

03. import matplotlib.pyplot as plt

04. from simulator import simulate

05

06. def run_simulation(data_a, data_b):
07. a = csv_read(data_a)

08. b = csv_read(data_b)

09. data = simulate(a, b)

10. return data

11.

12. def csv_read(f):

13. reader = csv.reader(open(f, ’rU’), delimiter=’:’)
14. data = []

15. for row in reader:

16. data.append (row)

17. return data

18.

19. def extract_column(data, column):
20. col_data = []

21. for row in data:

22. col_data.append(float (row[column]))
23. return col_data

24.

25. def plot(data):

26. # getting temperature

27. t = extract_column(data, 0)

28. # getting precipitation

29. p = extract_column(data, 1)

30. plt.scatter(t, p, marker=’o’)
31. plt.xlabel (’Temperature’)

32. plt.ylabel(’Precipitation’)

33. plt.savefig(’output.png’)

34.

35. # main program

36. data_a = sys.argv[1]

37. data_b = sys.argv[2]

38. data = run_simulation(data_a, data_b)
39. plot(data)

Fig. 1. Example of a Python script (simulation.py) that predicts temperature and
precipitation in the near future.

2.2 Provenance Granularity

As discussed above, in WIMSs, provenance is captured at the level of an activity,
and what happens inside an activity is not taken into account by the provenance
infrastructure. In contrast, such boundaries are not well-defined in the context
of scripts. Thus, an important question is how to determine the level of granu-
larity at which to capture provenance for scripts. One alternative would be to
use approaches that capture provenance at the operating system level [6,17].
Since these systems intercept system calls (e.g., file reads and writes, execution
of binaries), they produce a high volume of very fine-grained information that
represent data dependencies between processes. It can be difficult to explore
this information and connect it to the underlying experiment specification. Con-
sequently, identifying which experiment activity influenced the generation of a
given data product can be challenging. On the other hand, if we consider the
entire script as a black-box, and capture provenance at a coarse granularity, it
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would be impossible to know which functions contributed to the generation of a
given data product.

We posit that functions in a script are a suitable choice for provenance
capture—this is most likely to be meaningful to users since it is closer to the
experiment specification. We note, however, that even this level may be over-
whelming. For instance, profiling the (very small and simple) script of Fig. 1, we
observed 156,086 function activations. This includes functions called by func-
tions that are used in the main experiment script, such as plt.scatter (line 30).
Clearly, analyzing this volume of information is hard and time-consuming; an
alternative is to capture only the activations related to functions that are defined
by the programmer (i.e., that have user-defined functions as source or target). In
the example, this entails all activations related to the main program along with
functions run_simulation, csv_read, extract_column, and plot. This app-
roach significantly reduces the amount of captured information, and makes it
easier for users to keep track of what is happening throughout the execution.

3 noWorkflow

As a proof of concept, we built noWorkflow, a command line tool written in
Python that transparently captures provenance of Python scripts. Running no-
Workflow is as simple as running a Python script: now run <script>. In no-
Workflow, the execution of a given experiment script is called a t¢rial. Each trial
is assigned a sequential identification number that is automatically generated.
Provenance for each trial is captured and stored for future analysis. The system
distinguishes a function call from a function activation: the former is related
to definition provenance and can be captured by statically analyzing the source
code while the latter is related to execution provenance. For example, in Fig. 1,
data.append is a single function call (line 16), but it may have many activations
at runtime, with different arguments and return values, because it is inside a for
loop. In what follows, we describe how noWorkflow, in the absence of a controlled
execution environment, captures and stores the different types of provenance
(see Fig.2). We also discuss useful analyses that can be performed over script
provenance.

3.1 Provenance Capture

Definition Provenance. To capture definition provenance, noWorkflow uses
the abstract syntazx tree (AST) of the script to identify all user function defini-
tions, function calls, arguments, and global variables referenced in the script. We
chose user-defined functions as the granularity for provenance capture (Sect. 2.2),
and the AST is used to capture the source code of each function definition.
In the example (Fig.1), the source code of run simulation (lines 6-10) is
entirely stored, which allows the tool to monitor the evolution of each function
definition independently. In addition, noWorkflow stores the source code of the
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Provenance Capture
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Fig. 2. Architecture of noWorkflow.

entire script. All this information is associated with an experiment trial, thus
making it possible to know which function definitions belong to a specific trial.

Each function is then analyzed to capture the objects referenced inside it,
including arguments, function calls, and global variables. These objects are asso-
ciated with the corresponding function definition. Consider for example the func-
tion run_simulation in Fig.1: noWorkflow captures two arguments (data-a
and data_b, on line 6), and two function calls (csv_read on lines 7 and 8,
and simulate on line 9). Despite the fact that csv_read is called twice in
run_simulation, we register this information only once as a dependency from
run_simulation to csv_read. At runtime, noWorkflow is able to distinguish
between different function activations of the same function call as well as differ-
ent activations of different calls from the same function definition.

Deployment Provenance. noWorkflow captures two different types of deploy-
ment provenance: environment and module (i.e., library) dependencies. This
provenance is captured right before the execution of the experiment script begins,
and is associated with an experiment trial. noWorkflow uses libraries provided
by Python to capture environment information, including os to capture oper-
ating system information, socket to capture the host name, and platform to
capture information about the machine architecture and Python environment.
noWorkflow also uses Python’s modulefinder library to find the transitive clo-
sure of all module dependencies. For each module that this library finds, our tool
stores the library name, version, file name (including its full path), and source
code (if available).

It is possible that environment and module dependencies change during the
script execution. In this case, to precisely capture this information, deployment
provenance would need to be gathered dynamically, right before each function
activation. However, since this situation is very rare (and advised against), and
to avoid introducing a large overhead, we have opted for capturing deployment
provenance right before executing the script.
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Execution Provenance. Execution provenance includes function activations,
argument values, return values, global values, start and finish times for each func-
tion activation, as well as their context, and the content of all files manipulated
by the experiment script during execution. noWorkflow captures this information
through profiling and reflection.

noWorkflow implements specific methods of the Python profiling API and
registers itself as a listener. During an execution, the profiler notifies the tool
of all function activations in the source code. Notice that this goes very deep
into the execution flow—recall that our simple simulation script has 156,086
function activations. As discussed before, to avoid overloading users with large
volumes of information, thus overcoming the granularity challenge, noWorkflow
only registers function activations related to user-defined functions. For the
script in Fig. 1, noWorkflow registers that csv_read calls data.append (line 16),
but it does not register functions that data.append calls. At this moment, we
also capture the start time of the function activation, together with the values
of every argument, return, and globals that may be involved in the function
activation.

While monitoring only user-defined functions reduces the volume of infor-
mation to be captured, it may miss an important aspect of the experiment: file
access. Explicit open system calls in the script will be captured, but if open
is called from a function not defined by the scientist (e.g., plt.savefig on
line 33 of Fig. 1), this information would be missed by noWorkflow. noWorkflow
addresses this issue by using reflection to alter the behavior of a system call.
We implement a new function that overwrites the system’s open function and
alters its behavior so that every time open is called, we capture the content
of the file, store it, call the original open system call, and then capture and
store the file’s content again. Thus, noWorkflow preserves the content before
and after a file is accessed, allowing us to detect, for instance, if a file has been
modified.

Notice that reflection is not enough to identify which function called open.
To make this association, noWorkflow uses an activation stack: every time there
is an activation of a user-defined function, it is pushed onto the stack, and when
the activation finishes, it is popped from the stack. When open is called, the
function on top of the stack is tagged as being responsible for opening the file.
Figure3 shows an example: when plt.savefig is called from the user-defined
function plot (line 33), its activation is pushed to the stack; when open is called
to save output.png, plt.savefig will be on top of the stack, thus allowing no-
Workflow to link it to the modified file. Right before popping an activation
from the stack, its end time and return value are registered. If a function is
activated several times, noWorkflow registers all activations and links them with
the activation on top of the stack that triggered them. This allows noWorkflow
to keep track of function activation dependencies, together with the source code
line that corresponds to this call and all information previously discussed in this
section.
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3.2 Provenance Storage

Because transparency is one of our goals, noWorkflow includes an embedded
storage mechanism that does not require any installation or configuration. All
provenance is automatically stored to disk in a directory named .noworkflow in
the script directory. This directory holds both a relational database for struc-
tured data and a database for file contents. These databases are linked together
by means of SHA1 hash codes.

Function Calls

o calls 2] calls

— e Reflection - capture and store output.png
plot(data) plt.savefig(output.png) open(output.png) —> (if existent)
"~ "~ - call original open function
@ retuns Q returns

\> capture and store output.png

Activation Stack

t t t t
plt.savefig P plt.savefig P plt.savefig P plt.savefig P
| plot | top plot plot plot plot | plot | top
| simulalion4py| simulation.py simulation.py simulation.py simulation.py | simulationApy|

Fig. 3. Example of how reflection and activation stack work on noWorkflow. When
open is called (2), the file is captured before executing the original system call function
(3), and since plt.savefig is on top of the stack, noWorkflow knows that this func-
tion is the one responsible for opening the file.

noWorkflow uses SQLite to store structured data which includes definition
provenance (e.g., function definitions and objects they reference, including func-
tion calls), deployment provenance (e.g., environment variables and module
dependencies), and execution provenance (e.g., runtime information about trials,
file accesses, function activations, and object values). Hash codes are also stored
whenever possible, e.g., SHA1 hashes of the source code of a function and of files
before and after access. In contrast, file contents are stored directly to disk in
what we call the content database. To avoid OS limitations regarding the number
of files that can be stored in a directory, we use the same strategy Git uses to
store files: file content is stored in a directory that corresponds to the first two
characters of its SHA1 hash in a file named by the remaining characters of the
SHA1 hash. noWorkflow maintains all files involved with the experiment, and
all SHA1 hashes stored in the relational database have a counterpart file stored
in the content database. Data in the SQLite database is always associated with
a given execution of the experiment script (i.e., a trial). This allows noWorkflow
to save disk space: whenever the hash code of a given file is the same, the hash
is stored in the database, but not the file itself again. In addition, the prove-
nance storage in noWorkflow eases reproducibility: scientists can simply share
the .noworkflow directory with their collaborators to exchange provenance data.
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3.3 Provenance Analysis

While captured provenance aids reproducibility, another important goal is facili-
tating the analysis of provenance to locate, understand, and compare techniques.
The current version of noWorkflow supports three different analysis techniques:
graph-based, diff-based, and query-based.

Graph-Based Analysis. Graph-based analysis is facilitated by visualizing the
provenance of a trial in a graph which provides an overview of the script
execution and supports comprehension of both functional and non-functional
attributes. However, the provenance of even simple scripts may consist of a large
number of function activations, particularly in the presence of loop structures,
which may lead to visualization overload problems. For this reason, noWorkflow
first summarizes the provenance before producing its activation graph. Our over-
all approach is based on a three-step strategy: summarization, construction, and
drawing.

1 1 1
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Fig. 4. Graph-based visualization generated from the example in Fig. 1.

The summarization step aggregates different activations of a function call if
they belong to the same context (i.e., same loop). The idea is to aggregate the
provenance by activation stack, function call line number, and function name.
Therefore, each function call may have multiple activations together with their
activation arguments, return values, and timestamps. The second step consists
of building a graph from the vertices generated by the summarization step and
edges extracted from the function activation sequence. There are three types of
edges: call, when a function calls another function; sequence, when two functions
are called in sequence within the same activation stack; and return, when a
function finishes its execution and the control flow returns to the function in the
top of the stack. Finally, the third step is rendering the graph. Each vertex is
labeled with the function name and is colored according to the traffic light scale
(shades from green to yellow to red) [4]: function calls with faster activations are
colored in shades of green, while the ones with slower activations are colored in
shades of red. Each edge displays the number of times the control flow passed
through it, and each edge type has a different shape to ease the visual distinction:
call edges are thicker and darker, sequence edges are thinner and lighter, and
return edges are dashed, thicker, and darker. There is also a tooltip window that
provides detailed information about each node (activation).
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Figure4 shows the graph-based visualization generated from the example of
Fig. 1. From the graph, we can observe that the script called both run_simula-
tion and plot in sequence. It is also possible to see that run_simulation is
much slower than plot, and that there are four loop structures in the script,
summarized by noWorkflow: two loops occurring inside csv_read and two loops
occurring inside extract_column.

Diff-Based Analysis. In some provenance analysis scenarios, it is crucial to
contrast two trials to understand why results differ. There are many aspects
that influence the generation of an output, including script modifications, envi-
ronment variable changes, and module updates. noWorkflow provides a mecha-
nism to contrast two trials and identify changes that may influence the results.
This mechanism allows comparison of the basic attributes of trials (e.g., date,
script, and arguments), environment variables, and module dependencies, show-
ing which attributes have changed, and which variables and modules have been
added, removed, or replaced. This is especially useful for reproducibility, since
it becomes easy to compare two executions of the same experiment in different
environments. Additionally, our diff-based strategy can be easily extended to
support object-specific diffs.

Query-Based Analysis. Since provenance data is stored in a relational data-
base, SQL would be a natural choice for the query language. However, SQL
is known to be very inefficient for recursive queries, and queries that employ
transitive closures would be hard to write and take a long time to process.
To overcome this limitation, we provide an inference-based query mechanism
based on Prolog. noWorkflow is able to export Prolog facts and rules of a given
trial which can then be used to query the collected provenance data. The facts
follow the same structure of the relational tables that we use to store prove-
nance data. To make queries easier, noWorkflow also provides a set of Prolog
inference rules. As an example, the rule access_influence can be used to find
out which files may have influenced the generation of a given file. Running the
query access_influence(File, ‘output.png’) returns a list of files that may
influenced the generation of output.png, which, in the case of our example, are
datal.dat and data2.dat. Note that, since we export the Prolog facts, any Prolog
system can be used. New rules can also be added by users.

4 Related Work

Different mechanisms for provenance capture have been proposed, and some can
be applied to scripts. Tools that capture provenance at the operating system
level [6,8,17] monitor system calls and track processes and data dependencies
between these processes. Because the dependencies are recorded at the process
level, it can be difficult to reconcile the provenance with the script definition
as these systems cannot see what happens inside the processes. The provenance
captured by noWorkflow is of a different nature—it represents dependencies
within processes at the function level. In this sense, our approach is closer to the
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work by Cheney et al. [2]. They proposed a formalism that uses techniques based
on program analysis slicing to represent the provenance of database queries so
that it is possible to show how (part of) the output of a query depends on (parts
of) its input. In contrast, we focus on provenance of (general) scripts, not just
database queries. Another important distinction is that noWorkflow captures
additional dependencies: it captures deployment provenance and, in addition to
function and variable dependencies, it also captures general data dependencies
from file reads and writes.

Several tools capture provenance from scripts and connect it to the experi-
ment data. Bochner et al. [1] proposed an API and a client library to capture
provenance for Python scripts. Gavish and Donoho [7] introduce the notion of a
Verifiable Computational Result (VCR), where every result is assigned a unique
identifier and results produced under the exact same conditions have the same
identifier to support reproducibility. Unlike noWorkflow, these tools are intru-
sive and require users to change their scripts and include specific API method
calls. Sumatra [3] collects provenance information from Python scripts. It is able
to capture input and output data produced by each run (as long as they are
explicitly specified by the user), parameters, module dependencies, and plat-
form information. It is also able to detect when a module the script depends
on has changed. The source code, however, needs to live in a version control
system so that changes from one version to another can be detected. Prove-
nanceCurious [10] is another tool that can infer data provenance from Python
scripts. It also uses AST analysis to capture every node of the syntax tree, and
it uses a graph to provide query capabilities. However, for every operation, it
requires input from the users regarding whether or not the operation reads or
writes persistent data—this information is transparently captured by noWorkflow.

The approach taken by Tariq et al. [19] makes use of the LLVM compiler
framework to automatically insert provenance capture at each function entry
and exit. Thus, similar to noWorkflow, their approach is transparent—users do
not need to manually annotate their code. However, there are important differ-
ences between the two approaches. Since Tariq et al. rely on a compiler, they
are restricted to capturing static information. noWorkflow, on the other hand,
captures both static and dynamic information. The latter is crucial for inter-
preted languages such as Python, since the underlying program (and objects)
can change during runtime. In addition, noWorkflow captures dependencies that
involve global variables within a function; these are ignored by Tariq et al.,
since they do not capture what happens inside functions. While our current
implementation selects user-defined functions to track, we would like to explore
mechanisms such as the one used by Tariq et al. to allow users to have more
control over the captured provenance.

5 Conclusions and Future Work

We have presented noWorkflow, an approach to capture provenance of experi-
ment scripts. Compared to previous approaches, the main benefits of noWorkflow
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are: (1) it is completely transparent—users do not need to instrument their code;
(ii) it systematically captures three types of provenance—definition, deployment,
and execution provenance—using non-intrusive mechanisms; (iii) it does not
require users to change their modus operandi: scripts can be outside of a con-
trolled environment and neither changes to the source code nor a version control
system are required; (iv) it provides support for different kinds of analyses over
the captured provenance data (graph-based, diff-based, and query-based); and
(v) it simplifies reproducibility, allowing scientists to exchange provenance by
sharing the .noworkflow directory with their peers. noWorkflow is available as
open source software at https://github.com/gems-uff/noworkflow. Preliminary
experiments show that its overhead is not burdensome.

One direction we plan to explore in future work is how to integrate provenance
at different levels (e.g., operating system level with function level). We also plan
to further investigate techniques for summarizing and visualizing provenance
graphs [11,14], including all three types of provenance, as well as for contrasting
different trials [15]. Last, but not least, we note that graph-based provenance
analysis opens a vast range of opportunities for automated analysis, such as:
reverse engineering workflows from scripts; optimizing scripts by either refac-
toring slow functions or running data mining algorithms to extract recurring
execution patterns; identifying flaws in script execution; and showing the script
evolution over time.
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Abstract. Provenance traces captured by scientific workflows can be
useful for designing, debugging and maintenance. However, our experi-
ence suggests that they are of limited use for reporting results, in part
because traces do not comprise domain-specific annotations needed for
explaining results, and the black-box nature of some workflow activities.
We show that by basic mark-up of the data processing within activities
and using a set of domain specific label generation functions, standard
workflow provenance can be utilised as a platform for the labelling of
data artefacts. These labels can in turn aid selection of data subsets and
proxy for data descriptors for shared datasets.

Keywords: Provenance - Annotation - Scientific workflows

1 Introduction

Many fields of science are experiencing a proliferation in the sharing and re-use
of scientific datasets [TA+11]. Widespread data-oriented science and data shar-
ing necessitates principled data reporting regimes [TF+08] and richer metadata.
In this context “scientific data provenance” is considered to be essential
metadata that describes (1) the experimental context, in which data is gener-
ated, such as the scope of study, assumptions, experimental settings and descrip-
tions of specialist resources or techniques adopted [TF+08], and (2) the data’s
origins in terms of primary datasets or source databases [TA+11].

Scientists go through a phase of experiment reporting prior to sharing
datasets. During reporting they select relevant data subsets among the pool
of all results obtained and annotate data to denote its scientific provenance
using domain-specific vocabularies [TF+408]. A recent survey [TA+11] has shown
that even though there is significant tool support for the collection and analysis of
data, similar support does not exist for the organisation of results. Consequently
scientists welcome any tool support for it.

Increasingly, scientific datasets are produced from entirely computational
experiments. In many domains, Scientific Workflows have become a widespread
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mechanism for specifying experiments as systematic and (re)runnable composi-
tions of datasets and analysis tools [DF08]. Experiments organised as workflows
are advantageous over adhoc analyses as they provide repeatability of compu-
tation and traceability among results. Wide adoption of scientific workflows has
fostered research on workflow provenance [DF08] with several provenance models
and query mechanisms developed [Gel2,BC+12,MD+13,MLA+08]. Given their
extensive provenance traces, at first glance one expects workflow-based exper-
iments to be advantageous during experiment reporting. However, there is
little use of workflow provenance during experiment reporting. This is due to: (1)
workflow provenance being generic, implementation-oriented metadata [SSHOS]
that cannot stand-in for domain-specific descriptions expected during scientific
data publishing; and (2) the established means of querying workflow provenance
i.e. lineage traversal, can be an imprecise selection mechanism for scoping data
subsets to be reported.

To this date, the approach to acquiring domain-specific annotations over
workflow generated data has been either entirely manual [ZW+04] or partially-
automated [MSZ+10]. Certain fixed characteristics at workflow description level
are collected and then propagated to data generated by executions. This fixed
metadata is useful for reporting but insufficient. Often experiments are reported
based-on parametric information that is supplied at runtime via inputs. When
one workflow execution is configured with multiple values of one parameter,
results need to be annotated accordingly. This category of dynamic information
offers significant utility in reporting yet it has received limited research attention.
On the other hand, while manual annotation can be feasible for capturing fixed
metadata, it is hard to scale for dynamic metadata.

Scientists invest significant time and effort into organising experiments as
workflows. While this brings benefits when running the experiment, it has limited
benefits for reporting. We propose to bridge this gap and exploit workflow
provenance to its full potential by treating it as a medium on which
an automated data annotation (labelling) framework can be weaved.
The benefit of labels are twofold: (1) they have the potential to stand-in as data
descriptors during publishing; and (2) they can be used for more precise scoping
of data subsets to be reported.

We describe LabelFlow, a semi-automated infrastructure for tracking domain
specific provenance with Data Labels. We introduce a domain-independent process
model comprised of four operators for the in-situ generation and propaga-
tion of labels, predicated on basic information given in the form of semantic
workflow annotations, called Motifs, that describe the data processing charac-
teristic of workflow steps. We provide a practical algorithm for the generation
of Labelling Pipelines out of motif-annotated scientific workflows, and provide
an implementation where labelling pipelines are realised as functional programs.
In prior work [AGB13] we proposed requirements and a preliminary approach;
here we present a fully implemented architecture and report results on the
impact of availability of labels to provenance queries. We start by introducing a
sample real-world workflow and outline the provenance categories and queries
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for experiment reporting (Sect.2). We outline the LabelFlow architecture in
Sect. 3 followed by details of the proposed solution, including Motif annotations
(Sect. 3.1), the core model for labelling pipelines (Sect. 3.2), labels (Sect. 3.3) and
labelling operators (Sect. 3.4). We review related work in Sect. 4, and conclude
in Sect. 5.

2 Motivation

Figure 1 illustrates a workflow from astronomy! that takes as input a set of
galaxy names (“list_cig-name”), and outputs extinction/reddening calculations
per galaxy (“data-internal_extinction”), and galaxy details such as coordinates
and morphology (“ra” “dec” “sesame” “logr25”, and “leda_output”). The work-
flow starts by retrieving data, including coordinates, for each galaxy through a
service based lookup from the Sesame astro-repository (Step-1- “SesameXML”).
Coordinates are used to query the Visier Database to retrieve further data
regarding galaxies (Step-2- “VII_237”). Galaxy morphology information is extr-
acted from the Visier results, which is input together with coordinates into a
local tool that computes galaxy extinction values (Step-3-‘“calculate_internal
_extinction”). The scientifically significant activities in this workflow are the data
retrievals and the local extinction calculation. The remaining activities are
data adapters [GAB-+14], a.k.a. shims, which are dedicated to the extraction of
data, format transformation or moving data between the workflow environment
and the file system. An important adapter in our example is the “Flatten_List”
step, which bundles all input coordinates for all galaxies from Step-1 into a single
output list for Step-2.

Workflow execution results in a set of intermediary and final data artefacts.
For a single galaxy (e.g. M31, the Andromeda Galaxy) a total of 17 final results
are generated at 6 output ports. The number of outputs increases linearly with
the number of inputs. For a list of 6 galaxy names supplied as input, we get 20+
values for extinction and 100+ values for all results. This illustrates how work-
flows as automation tools proliferate data generation and makes apparent that
manual annotation of data artefacts would quickly become a challenge for users.

The provenance landscape for workflow-generated data contains two cate-
gories of information

(i) Generic: Standard (Workflow) Provenance vocabularies make-up this cat-
egory. They capture activities, input/output ports, activity instantiations,
and data artefacts appearing at ports. Data influence and activity causality
relations are also represented at this layer [Gel2, BC+12].

(ii) Domain Specific: Field-specific vocabularies for describing the scientific
context and characteristics of data and experiments make up this category.
The importance of domain-specific metadata has been acknowledged early-
on in provenance research; 5 out of 9 of the Provenance Challenge queries
[MLA+08] are based on restrictions on either data values or “annotations”,

! http://www.myexperiment.org/workflows/2920.html.
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Fig. 1. Sample workflow from Astronomy developed by the Wf4Ever project.

which are “assumed” to exist. Domain specific annotations can further the
categorised as containing Static or Dynamic metadata. The former identifies
fixed/general domain types for activities or their inputs and outputs. E.g.
Specifying that an activity is a SesameDB lookup, a parameter is a galaxy
name. Dynamic metadata corresponds to attributes of data that can change
from run to run. This information is often to be found innately but implicitly

within data values, e.g. the galaxy name input parameter such as M31 or
Ma33.

Let’s now look at the state of the art in reporting with the Lineage-Based
Approach, and compare with our proposed Label-Based Approach. In the former
we only have generic workflow provenance to query, in the latter we employ
LabelFlow to obtain domain-specific annotations, which we later query.

Lineage-Based Data Selection: One can use workflow provenance to select
data subsets by using lineage as a scoping mechanism. For instance, querying
for results that are on the derivation path of a particular input artefact, or those
whose derivation includes a particular activity. Table 1 presents three traditional
lineage queries; Qla, Q2a are adapted from [ZS+11], and Q3a is an adaptation
of Provenance Challenge Query #6 [MLA408]. Queries are font-highlighted to
denote the different layers of provenance metadata needed to support them.
We analyse queries with respect to their Contextual-Precision, which we

define as #ofContextually-Accurateresults yy, (efine Contextual Accuracy as
Total#ofresults

the results actually belonging to the scope implied by the query (e.g. for Qla the
results that actually contain data that is retrieved from the Sesame database, or
for Q2a the results that actually contain data belonging to galaxy M31).
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Table 1. Provenance queries to select results of interest from the execution traces of
workflow in Fig. 1. In Q(2a) we locate the specific data artefact with value M31 prior
to formulating the query.

Q(1a) Find all outputs whose derivation path includes a SesameDB lookup.
%|Q(2a) Find all outputs whose derivation path includes input with value M31.5°° “@Pton
§ Q(3a) Find all extinction values that is output from extinction calculation
5 |where the galaxy coordinates taken as input have been directly/indirectly outputted
from a SesameDB lookup with a galaxy name input with value M31.
Q(1b) Find all outputs who has referenceURI http://cds.u-strasbg.fr.
= Q(2b) Find all outputs who has subject M31.
2 1Q(3b) Find all extinction values that is output from extinction calculation
—~ |where the galaxy coordinates taken as input has referenceURI
http://cds.u-strasbg.fr and has subject M31.

Q1la queries for the origin of data by expressing it as a path-based linkage to
the “Sesame XML” activity in the workflow description. This way of designating
the origin proves to be a weakly precise yet robust filter (see Fig.2 (left)). Only
one third of the results whose derivation path includes a Sesame DB lookup
actually contain data that is retrieved from the Sesame DB. Increasing the num-
ber of galaxies in a workflow run does not diminish the precision of Qla. Q2a
defines a filter for results belonging to the Andromeda Galaxy by expressing it
as a path-based linkage to the data artefact at the galaxy name input port with
value “M31”. While Qla puts constraints on workflow description level enti-
ties, Q2a puts restrictions on run-time provenance-level entities. As depicted in
Fig. 2 (right) the precision for Q2a quickly deteriorates. Q3a is a more elaborate
query that combines the metadata requirements of Qla and Q2a. Q3a is not
robust against input data increase either. The fragility of queries that make use
of dynamic elements (Q2a, Q3a) is due to the well-known Black-Box nature of
workflow activities. For our case specifically, the “Flatten_List” step, which bun-
dles all input coordinates for all galaxies into a single output list. At this point
we lose fine-grained traceability between a specific galaxy name and the relevant
data generated downstream in the workflow. As our example demonstrates, in
the face of loss of fine-grained traceability, path-based querying of provenance
becomes an ineffective index for reporting.
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Fig. 2. Precision values for Q1 (left) and for Q2&Q3 (right) with respect to input size.
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Annotation with LabelFlow and Label-Based Selection: In order to
employ LabelFlow, as a pre-requisite we developed two simple functions that
extract attributes (labels) for astronomical datasets from their XML based repre-
sentation. We associated these functions with the “SesameXML” and “VII_237”
activities, so that whenever these two data retrieval activities are used in a work-
flow they would have an associated labelling capability denoting the data’s origin
using an endpoint and its context i.e. the astronomical object it belongs to. We
also semantically annotated data adaptation steps in our astro-workflow to give
them basic transparency to denote whether inputs are carried-forward to (copied-
to) outputs. Using this information LabelFlow creates a labelling pipeline, which
we use to decorate the runs of our workflow with labels. Labels have two poten-
tial uses, as descriptors during publishing and as data selection aides. In this
work we explore the latter use of labels.

Table 1 also presents label-based data selections queries Q1b, Q2b and Q3b.
In these we directly refer to the asserted origin (has referenceURI) and the
asserted context (has Subject). Label-based queries Q1b and Q2b have higher
precision then their lineage based counterparts (see Fig. 2), which can be explain-
ed as follows. First, lineage-based association is by-definition only a pseudo mech-
anism for denoting origin/context. By replacing lineage-based association with
explicitly asserted attributes we gain in precision, as now only the data items
that originate from the Sesame DB, and their local copies are returned to Q1b.
Secondly, loss of fine-grained traceability also affects label-based query preci-
sion, see Q2b in Fig.2 (right). While each item output from “SesameXML”
bears the correct label denoting the associated galaxy, all items in the out-
put of “Flatten _List” would bear a set of labels (for all galaxies), even though
each contains the data of one. This time, however, LabelFlow offers the possibil-
ity of asserting/recovering context in other data minting steps (“VII_237”); the
labelling function associated with this step would exploit the raw data returned
from the Visier DB and associate each result item with its context using a com-
mon attribute (has subject). In precision Q3b and Q3a are of equal capability
in filtering (Fig.2 (right)). This shows us that even though Q3b makes use of
labels, it queries workflow results with reference to a particular blindspot (i.e.
output of “Flatten_List”) and therefore has precision performance equivalent
to lineage-based queries. Thus, lineage-based queries represent the bottom-line
(worst-case) precision for data scoping, where availability of labels offers the
possibility of increased precision (at varying levels depending on existence and
frequency of activities where fine-grain traceability is lost). In the remainder of
the paper we describe the LabelFlow infrastructure.

3 The LabelFlow System

Figure 3 provides the overall architecture of our approach. We undertake labelling
as an offline process, where we do not interfere with the established process of
scientific workflow design (Step Al) and execution (Step A2). Workflow runs
result in the generation of data artefacts and generic workflow provenance. These
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two make up our primary sources of information for obtaining and propagat-
ing domain-specific Data Labels. We perform labelling through latent processes
informed by scientific workflow descriptions themselves enriched with semantic
Motif annotations and associated Labelling Functions.

Experiment Reporte@
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Fig. 3. Labelling System Architecture.

We operationalize the process model with Labelling Pipelines. Labels
are opaque to the process model, as it out-sources their creation to external
Labelling Functions. Using motif annotations (Step B1 in Fig. 3) and a repos-
itory of labelling functions we compile (Step B2) a labelling pipeline for a given
scientific workflow. This pipeline is in-turn used to annotate the desired execu-
tion traces of that workflow with labels (Step B3). Once labels are generated
they can be used in conjunction with generic workflow provenance metadata for
the reporting of experimental results (Step C1).

3.1 Annotation of Workflow Activities with Motifs

In a previous empirical study [GAB+14] we inspected a corpus of 240 work-
flows from 4 systems and 10 domains in order to understand the nature of
data processing in them. This resulted in a catalog of Motifs, a set of high-level
abstractions for describing activity functionality. The analysis showed that a
certain minority (30 %) group of activities perform the scientific heavy lifting
in a workflow by minting data through analysis or retrievals. The remainder
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majority (70 %) are dedicated to data adaptation. A common characteristic of
adapters, is that their computation is based on walue-copying from inputs to
the outputs. It follows then that we should seek labels for data artefacts that
are generated by Data Minting activities, and grab hold of labels as data passes
through (i.e. copied through) Data Preparation activities. These two categories
of behaviour form the backbone of our labelling system. In Table2 we list a
subset of motifs with examples (including those from our astro-workflow as
applicable) and corresponding labelling behaviour. Motifs are captured in an
ontology, which we use to manually annotate activities. This basic annotation
is in turn used to infer the data handling behaviour of each step. Annotation is
finalised by collecting the particulars from the user; for value-copying, the source
and sink ports, and for data minting the associated Labelling Function (if any)
and the sink port to receive labels. Note that we scope our approach to scien-
tific dataflows, i.e. those without any explicit control construct such as looping
or branching. The pure dataflow model underpins several systems such as Tav-
erna [MSRO+10], Galaxy? or Wings [GRK+11]. In others like Kepler [LAB~+06]
and Vistrails [MSFS11] pure dataflow model is widely adopted, while control-
constructs are add-on modules or supplied in alternative design modes. We also
assume that data is structured as Collections-Items, which is a ubiquitous struc-
ture for scientific workflow systems.

Table 2. Workflow motifs, Value copying and corresponding labelling behavior

Motif src—snk | Example Labelling
Data Minting 1710 “SesameXML”, “VII_237” “calculate_int_extinction” | Mint
Augmentation ™10 Adding a header to a CSV dataset Propagate
Extraction =™ 0 “Select_logr25_Mtype”, “’Extract_DEC&RA” Propagate
Splitting 1=Lo Splitting a dataset by newline char Propagate
Flattening 12750 | “Flatten_List” Propagate
Filter =Lo Filtering empty rows from a CSV Propagate
Join 1710 | Row by row dot product of two CSV tables Propagate
Union 1™~L.0 Concatenating two CSV tables Propagate

3.2 Labelling Pipelines

We provide a tool which takes as input a motif annotated workflow description
w and produces a labelling pipeline IT,, for this workflow. IT,, could in turn
be used to annotate data artefacts generated from all runs of w. A pipeline
generator implements an algorithm based on the traversal of all dataflow paths
in w. For each workflow element (i.e. activity or dataflow link) the tool checks the
availability of motif annotations and label-flow continuity and accordingly places

2 http://galaxyproject.org.
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an operator into I, as a labelling proxy for that element. We note that this
algorithm can operate with partial/missing annotations; in the case of missing
motif annotations, the generator simply registers the current stack of connected
labelling operators as a labelling sub-pipeline and resets. The algorithm initiates
a new thread in the labelling pipeline whenever it encounters an activity that
mints new data. To coordinate inter-operator communication among labelling
operators we use simple runs-after type control tokens. The output of the genera-
tor tool is an intermediate representation for a labelling pipeline which is further
expanded into a runnable form using the syntactic/macro expansion capabilities
of a functional programming language.

The inputs to a particular execution of the labelling pipeline I7,, is the 6-
tuple (d,p,l,v, Fr, Fp), where p, denotes the provenance trace of one run of
workflow w, and d denotes the set of data artefacts generated during that run.
The domain specific provenance represented with labels is accumulated in the
label space [. v is the labelling vector that the system will take into account
for label propagation. The system relies on sets of predefined functions, Fy, for
provisioning labels and for management of the label space (read-write) and Fp
for querying generic workflow provenance.

3.3 Labels

A label is in effect a Label Instance that is defined with the triple L;,s =
(def,target,value). def refers to the label’s type, target is the id of the data
artefact, which the label describes, and value is the actual annotation con-
tent carried by the label. Label definitions are triples of the form Lg.; =
(name, datatype, fogqe). They have a unique name and a datatype designator.
Labels can contain primitively typed information such as Integer or String.
fagg is the identifier for a function to be used when the system needs to aggre-
gate multiple labels of this type. For the majority of labels, this element is nil,
in which case the default aggregation function, i.e. Union, is used. A non-default
case is, for example, the spatialaggregation function which computes the convex
hull representing the overall spatial coverage of multiple datasets. Label defini-
tions are grouped together in Label Vectors, v = (name, { Lgcs}). When used to
configure the run of a pipeline II,,, the vector sensitizes IT,, to the label types
that it contains. Label and label vector definitions are to be made at the scientific
investigation level, which spans multiple workflow descriptions.

3.4 Labelling Operators

Labelling pipelines are compositions of four labelling operators, namely Mint,
Propagate, Distribute and Generalize (Fig. 4). In addition to input parameters,
each operator accesses the provenance space, and depending on the labelling
behaviour, accesses either the data artefacts (in case of mint) or the label space
(others). Each operator has the side-effect of populating the label space. Opera-
tors return a boolean control token that is used for composing multiple operators
into a labelling pipeline:
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— Mint is a labelling proxy for those scientifically significant steps in the work-
flow. Mint obtains labels by invoking the designated external labelling func-
tion; the labels are then associated with the data artefacts that fulfil the sink
port and submitted to the label space. Minting is iterated for all invocations
of the designated activity found in the provenance trace.

— Propagate is a labelling proxy for the value-copying Data Preparation steps in
the workflow. Similar to mint, it is iterated for all invocations of the designated
activity. Propagate clones labels describing the inputs at the source port and
associates these clones with the outputs at the sink port.

— Distribute and Generalize are variants of propagation. While the former two
are labelling proxies for activities, these are labelling proxies for dataflow links
in the workflow, specifically those links with data structure depth mismatches
between the two ends. In cases where the activity at one end of a dataflow
link produces a collection, and the other end consumes an item, Distribute is
responsible for propagating labels from the top-level collection to each item
at specified depth. And vice-versa for Generalize.

Activity  Sink Port Labeling Function Activity ~ Source Port  Sink Port Source Port Sink Port  Depth
Id Id Id ol ] $ Id /d
d I i 1 Distribute/ '
» Mint ! Propagate » Generalize
P

control token l control token control token

Fig. 4. Labelling Operator Signatures.

3.5 Implementation

The provenance and the label spaces are underpinned by RDF based meta-
data. LabelFlow can operate over standard PROV [Gel2] + Wiprov [BC+12]
compliant provenance traces. Our provenance inquiry functions in the p space
are implemented as Java methods. We implemented labelling operators as Java
methods and labelling pipelines as Clojure programs that adhere to the dataflow
paradigm?®, though in our case we flow control tokens among operators and
the inter-operator communication regarding labels is done over the shared label
space. The Label Flow system is agnostic to the inner workings of labelling func-
tions. For our example from astronomy we had a simple local registry of labelling
functions, which are Java classes adhering to a label generation interface.

4 Related Work

As mentioned previously, provenance annotation has so far been either entirely
manual, or semi-automated with particular focus on static metadata [MSZ+10].
In [SSHO8] authors describe the SPADE system where they highlight dynamic
metadata, and they too address data artefacts as the source of this information.

3 http://clojuredocs.org/clojure_core/clojure.core/future.
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The authors propose “semantic provenance modules” to supply this metadata
and claim modules can be integrated into workflows on-demand, though details of
the integration are omitted. When compared to our work, this work is focused on
devising an elaborate provenance ontology for one particular scientific domain,
whereas ours is a domain-independent mechanism. Moreover the SPADE system
requires altering the original scientific workflow to denote integration points,
while ours is non-intrusive to the workflow design and execution process Finally
SPADE does not address metadata propagation.

There is a large body of work on the provenance of database queries, which
is recently revisited for its applicability to workflow provenance [AD+11,1C+,
BLO06]. These approaches propose white-box workflow activities that correspond
to relational query operators. The benefit of white-box steps is that they allow
full-transparency and enable fine-grained lineage, also making way for the track-
ing of cell-level value-copying and annotation propagation [BC+04]. Similarly,
work on dependency analysis in programming languages has recently found
applicability as a formal foundation for the tracking of Nested Relational Cal-
culus query provenance [CAAQ7]. Such white-box transparency could be instru-
mental in developing workflow debugging or change tracking aids. On the other
hand, these approaches expect data to be specified in relations and tuples,
and reduce data-processing to data-querying; both of which can be restrictive
assumptions for developing scientific workflows. In contrast, we focus on the
unexplored area of grey-box steps, and denote value-copying through a rough-
cut semantic annotation.

5 Conclusion

We described a semi-automated approach and an implemented architecture for
the generation of Labels over data artefacts generated from runs of workflow
based experiments. Labelling is performed through labelling pipelines, which use
data artefacts as the main source of information for extracting domain-specific
metadata and workflow provenance as a roadmap for association and propaga-
tion of labels with data. Pipelines are built up using four domain-independent
labelling operators, which are agnostic to the contents of the domain-specific
labels they carry around.

We argue that experiments organised as workflows make-up an ideal medium
to capture and carry domain-specific provenance. Labels, i.e. carriers of this
information, stand as a light-weight but controlled representation mechanism for
metadata, which is a middle-ground between having no explicit metadata and
having fully-fledged models that can represent complex/structured metadata.
The benefit of labelling is two-fold: not only does it make implicit informa-
tion explicit, but it also enables provenance queries that directly refer to scien-
tific provenance/context rather than expressing context indirectly it in terms of
derivation paths.

The cost involved in adapting our system is the manual annotation of work-
flow activities with motifs and developing labelling functions for the focal data
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generation points in workflows. These are one-time costs. Both motif annota-
tions and labelling functions are highly reusable as most workflows are built by
re-using building blocks pooled in module libraries or service registries. Conse-
quently an annotation or a labelling proxy for a building block propagates to all
workflows that the block is involved. When compared to workflow design, the
cost of annotation is modest(as it amounts to single attribute setup per activity).
Moreover motif annotation can be (semi)automated through the application of
mining techniques to workflows and activity scripts [GCP13]. The re-usability of
labelling functions can be maximised by developing metadata extraction utilities
that operate over standardised scientific data formats.
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Abstract. Science projects are increasingly investing in computational
reproducibility. Constructing software pipelines to demonstrate repro-
ducibility is also becoming increasingly common. To aid the process of
constructing pipelines, science project members often adopt reproducible
methods and tools. One such tool is CDE, which is a software packaging
tool that encapsulates source code, datasets and environments. How-
ever, CDE does not include information about origins of dependencies.
Consequently when multiple CDE packages are combined and merged
to create a software pipeline, several issues arise requiring an author
to manually verify compatibility of distributions, environment variables,
software dependencies and compiler options. In this work, we propose
software provenance to be included as part of CDE so that resulting
provenance-included CDE packages can be easily used for creating soft-
ware pipelines. We describe provenance attributes that must be included
and how they can be efficiently stored in a light-weight CDE package.
Furthermore, we show how a provenance in a package can be used for cre-
ating software pipelines and maintained as new packages are created. We
experimentally evaluate the overhead of auditing and maintaining prove-
nance and compare with heavy weight approaches for reproducibility
such as virtualization. Our experiments indicate minimal overheads.

Keywords: Reproducibility - Software packaging tools -+ Software
provenance * Tools and methods

1 Introduction

Computational reproducibility is a challenge, yet crucial for science. To meet the
challenge, large-scale science projects are increasingly adhering to reproducibility
guidelines. For instance, software associated with a publication is made avail-
able for download (see Figshare [20], RunMyCode [21], and Research Compen-
dia [19]); but increasingly many science projects are making end-to-end software
pipelines available. These pipelines are often for the larger scientific community,
as in the case of Bio-Linux 5.0 [15], which is a bioinformatics virtual machine
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that provides access to several pipelines for conducting next-generation sequence
analysis, or sometimes to demonstrate project impacts as in the case of Swift
Appliance [3], a virtual machine, which demonstrates crop simulation models
using workflow systems.

To help projects adhere to these reproducibility guidelines, project members
often adopt best practices and tools for developing and maintaining software so
that their contributed software quickly becomes part of a pipeline. In this paper,
we focus on software packaging tools. We describe how auditing and maintaining
software provenance as part of a packaging tool can significantly help in building
and deploying software pipelines. In particular, provenance can be helpful in
cutting down manual effort involved in ensuring software compatibility, thus
leading to improved administration of software pipelines.

A software pipeline consists of many individual software modules. Given the
collaborative nature of science, it is not uncommon for modules to develop inde-
pendently. Furthermore, a module itself may depend upon externally-developed
libraries, which evolve independently. To ensure library compatibility, and avoid
what is often called “dependency hell”, a software module is often packaged
together with specific versions of libraries that are known to work with it. In
this way, contributing project members can ensure that their module will run
on any target system regardless of the particular versions of library components
that the target system might already have installed.

However, packaging software modules with associated dependencies, but with-
out clearly identifying the origin of the dependencies, gives rise to a number of
provenance-related questions, especially when constructing software pipelines.
For instance, determining the environment under which a dependency was built
or other dependencies which must be present for using a module, are questions
that must be answered when combining packages for creating software pipelines.
Similarly, if a new software package is released, then through dependency analy-
sis it will be useful to know which packages of a pipeline can use it. If a new
version of a library is released that contains security fixes, then it will be useful
to know which pipelines or packages are vulnerable.

To answer such questions, we must be able to capture and determine the
provenance of a software entity, i.e., capture and determine where it came from.
Current package management systems do not provide a means to audit or main-
tain software provenance within it. We use CDE, a software packaging tool that
creates a source code and data package while identifying all static and dynamic
software dependencies. CDE has also been successfully shown to create software
packages out of many development environments. Though CDE packages sta-
tic and dynamic dependencies for an application, it does not store associated
provenance.

The first contribution of this paper is to enhance CDE to include software
provenance, i.e., provenance of shared libraries and binaries on which a program
depends. We call this enhanced CDE as CDE-SP. We describe tools and meth-
ods to audit, store, and query this provenance in CDE-SP. We then describe
a science project use case in which software reproducibility is a concern. Our
second contribution is to show how provenance, audited and stored as part of
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monitor
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Fig. 1. CDE audit and execution modes

a CDE-SP package, can help in creating software pipelines for this use case.
Finally, we show how provenance can be maintained as new packages are built
during construction of software pipelines.

The remainder of the paper is structured as follows: We describe CDE, a
software packaging tool that can identify and package program dependencies, in
Sect. 2. Currently, CDE does not audit provenance of the program dependencies
that it determines. In Sect. 3, we describe provenance that can be audited, stored,
and queried in CDE-SP, resulting in a provenance-included package. In Sect. 4
we describe a science use case where provenance, included as part of software
packages, can help in creating pipelines. In Sect. 5 we further enhance CDE-SP to
enable it to maintain correct provenance as new packages are created. In Sect. 6,
we conduct a thorough experimental evaluation to measure the overheads associ-
ated with auditing and maintaining provenance. Section 7 provides an overview
of the related work in this area. We conclude in Sect. 8.

2 CDE: A Software Packaging Tool

The CDE tool [12,13] aims to easily create a package on a source resource and
execute a program in that package on a target resource without any installation,
configuration, or privilege permissions. It runs in two main modes: audit mode
to create a CDE package, and execution mode to execute a program in a CDE
package.

In audit mode (Fig.1a), CDE uses the UNIX ptrace system call interposi-
tion to identify the code used by a running application (e.g., program binaries,
libraries, scripts, data files, and environment variables), which it then records
and combines to create a package. For example, when a process accesses a file
or a library using the system call fopen(), CDE intercepts that syscall, extracts
the file path parameter from the call, and makes a copy of the accessed file into
a package directory, rooted at cde-root and consisting of all sub-directories and
symbolic links of the original file’s location.

The resulting package can be redistributed and run on another target
machine, provided that the other machine has the same architecture (e.g. x86).
The original CDE as available through [12,13] was limited to major Linux ker-
nel versions (e.g. 2.6.x), but we have removed that restriction by adapting it
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for the newly released Linux kernel 3.0 as well as for Mac OS X by using the
specification described here [2].

In execution mode (Fig. 1b), while executing a process from a package, CDE
also monitors that process via ptrace. Each file system call is interrupted and its
path argument is redirected to refer to the corresponding path of that file within
the root directory of the CDE package on the target resource. In essence, CDE
provides a lightweight virtualization environment to its running processes by
providing the cde-root directory as a sandbox in a chroot operation. Redirecting
all library dependency requests into this sandbox, CDE fools the target program
into believing that it is executing on the original source machine [12]. It is to
be noted that CDE binary only captures a single execution path, which is the
execution path taken during run-time. If different execution paths need different
types of dependencies, some dependencies may be left out. However, CDE does
provide external scripts in its source code to find additional dependencies from
strings inside binaries and libraries of captured packages.

3 CDE-SP: Software Provenance in CDE

The objective of auditing provenance is to capture additional details of the cre-
ation and origins of a library or a binary, such as the version of the compiler,
the compilation options used, the exact set of libraries used for linking. This
information must be gathered on a per environment basis so that it becomes
easy to compile and create software pipelines.

Audit. CDE’s audit feature identifies static and dynamic program dependen-
cies. We instrument this feature to first determine a dependency tree, and then
use UNIX utilities to store additional provenance information about each depen-
dency. To create a dependency tree, process system calls are monitored that audit
process name, owner, group, parent, host, creation time, command line, environ-
ment variables and the process binary’s path. Whenever a process executes a file
system call, a dependency of that process is recorded. In general, this depen-
dency can be a data file or a shared library. We identify shared libraries using
standard extensions, such as .so for system libraries and .jar for Java libraries,
and create a dependency tree based on these libraries. Information about bina-
ries and required shared libraries, such as version number, released version of
shared libraries, and associated kernel distribution, is audited using UNIX com-
mands file, ldd, strings, and objdump. By including these commands, we can
obtain other static and dynamic dependencies, some of which are not audited
by CDE during run-time. This set of commands is a more comprehensive way of
obtaining dependencies comparing to CDE’s external scripts. Current operating
system distribution and user information is recorded from command uname -a
and function getpwuid(getuid()).

Storage. Each package can store captured provenance to a relational database.
Since this provenance will be useful for whatever target resource package is
being used, we believe it is best to store this provenance within the package
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itself. We use LevelDB, a very fast and light-weight key-value storage library
for storing provenance. To store provenance graphs that contain process-file and
process-process edges, in a key-value store, we encode in the key the UNIX
process identifier along with spawn time. The value is the file path or the process
time. Table 1 describes the Level DB schema for storing provenance graphs:

Table 1. LevelDB key-value pairs that store file and process provenance. Capital letter
words are arguments.

Key Value Explanation

pid.PID1.exec. TIME PID2 PID1 wasTriggeredBy PID2

pid.PID.[path, pwd, args] | VALUES Other properties of PID

io.PID.action.IO.TIME | FILE(PATH) | PID wasGeneratedBy/wasUsedBy
FILE(PATH)

meta.agent USERNAME | User information

meta.machine OSNAME Operating system distribution

Query. LevelDB has a minimal API for querying. Instead of providing a rich
provenance query interface, currently we implement a simple, light-weight query
interface. The interface takes as input the program whose dependencies need to
be retrieved. Using depth first search algorithm, a dependency tree in which the
input program is the root is determined. The result is saved as a GraphViz file.
Since the result may include multiple appearances of common files like those
in /lib/, usr/lib/, /usr/share/, and /etc/ directories, the query interface also
provides an exclusion option to remove uninteresting dependencies.

4 Using CDE-SP Packages to Create Software Pipelines

We describe a software pipeline through a use case. We then describe how CDE-
SP packages can help to create the described software pipeline. The use case will
also be used for experimental evaluation in Sect. 6.

4.1 Software Pipelines

Scientists with varying expertise at the Center for Robust Decision Making on
Climate and Energy Policy (RDCEP) engage in open-source software develop-
ment at their individual institutions, and rely primarily on Linux/Mac OS X
environments. The Center often needs to merge its individual software modules
to create software pipelines. We describe software modules being developed by
three scientists, henceforth denoted as Alice, Bob, and Charlie, and the associ-
ated software pipeline that needs to be constructed.

— A measures and characterizes land usage and changes within it. She develops
data integration methods to produce higher-resolution datasets depicting
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inferred land use over time. To develop the needed methods, her software envi-
ronment consists of R, geo-based R libraries (raster, ggplot2, xtable, etc.), and
specific versions of Linux packages (r-base v2.15, libgdal v1.10, libproj v4.8).

— B develops computational models for climate change impact analysis. He
conducts model-based comparative analysis, and his software environment
consists of A’s software modules to produce high-resolution datasets, and
other Linux packages, including C++, Java, AMPL [11] modeling toolkits
and libraries.

— C uses A and B’s software modules within data-intensive computing
methods to run them in parallel. C’s scientific focus is the efficiency of dis-
tributed computing methods and his software environment is primarily Java
and Python and its libraries on Linux.

— For the Center, the goal of their combined collaboration is to predict future
yields of staple agricultural commodities given changes in the climate; changes
that are expected to drive, and be influenced by, changes in land usage [9].
The Center curator’s environment is Mac OS X and a basic Unix shell.

B's Package (from A's)

A's Package

[Retrive datal—>/Aggregation|—>{Generate imagesH—>Model-based analysis|
A A A

C's Package (Merge from B's)
v :

Fig. 2. Software packages of A, B, and C

Given the linear workflow of the science problem, it is often the case that
B needs to rerun A’s software in his own environment. Instead of installing,
this can simply be achieved if A shares a CDE package with B. However, if B
attempts to create a software pipeline that includes A’s package and her software
modules, then he needs to verify the provenance of each dependency included in
A and her software. This is because a dependency with the same file path, but
built on different Linux distributions (therefore different content), will conflict.
In fact, if B creates a CDE package corresponding to this pipeline, one of the
dependencies will be overwritten in the newly created package. By using the
provenance-enabled CDE packages, which store md5 checksums of dependen-
cies, such origins can be immediately verified, without manually tracking kernel
distributions on which the dependency was built or communicating with the
author of the software. Similarly, by checking versions of all dependencies within
the package, B can document the compatibility of the newly created software
pipeline.

As the use case demonstrates, C needs to use A’s and B’s packages, and
the problem of dependency tracking, i.e., determining distributions and versions,
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given several dependencies and software environments, can increase significantly.
In the Appendix we describe the magnitude of the dependency tracking problem
if software development is undertaken in cloud-based environments.

5 Merging Provenance in CDE-SP

While provenance-included packages can eliminate much of the manual and
tedious efforts of ensuring software compatibility, the downside is that prove-
nance stores within a package need to be effectively maintained as software
pipelines are themselves cast into new packages. Consider the Center’s need for
creating a software pipeline that satisfies reproducibility guidelines. To help the
Center build this software pipeline, assume A, B, and C share their individual
provenance-included packages. By exploring A, B and C’s package provenance,
the Center can examine all data and control dependencies among the contribut-
ing packages. The Center can then define a new experiment with steps using
data and control dependencies from the three contributed packages, and cre-
ate a new software package of this experiment. In particular, correct pathnames,
attribution, etc., will need to be verified. We next describe how CDE-SP, with
a —m option, can be used to merge provenance from contributing packages.

In the typical CDE audit phase, file system binaries and libraries found in
the path of program execution are copied to the cde-root directory. However,
provenance may indicate two dependencies with the same path but emerging
from different distributions or versions. In CDE-SP, these two files are stored
in separate directories identified by a UUID, which is unique to the machine
on which CDE-SP is executed. The UUID is the hash of the Mac address and
the operating system. By creating this separate directory based on a UUID, files
with the same paths but different origins can be maintained separately. Note that
only files with differing content but the same path are maintained in separate
UUID directories. Files with different paths can all still be in the same generic
cde-root folder. We also include versioning of UUID directories so that they are
copied and maintained correctly in new packages.

Because provenance informs that separate UUID based directories be created
within a CDE-SP package, correspondingly, the modifications are needed in the
LevelDB provenance store and the CDE-SP redirection mechanism. The Lev-
elDB path in the value field needs to reflect the UUID directory where the
dependency exists. The CDE redirection, which redirects all system calls to the
cde-root directory, in CDE-SP needs to redirect to the appropriate UUID direc-
tory. This redirection can be tricky since it needs to know where the process
is running. To enable correct redirection, CDE-SP with merge maintains a cur-
rent_root_id pointer for each tracing process. This bookkeeping pointer helps in
redirecting to the package root directory of the pointer in case the process forks
other processes. Alternatively, if the process performs an ezecve() system call,
or accesses a file, or changes directories, absolute paths are read and checked to
determine if redirection is necessary.

Another issue when merging two packages is maintaining licensing infor-
mation. While general licensing issues are outside the scope of this paper, the
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current CDE-SP maintains authorship of software modules during the merge
process. When two packages are merged in their entirety, the authorship of a
new package is the combined authorship of the contributing packages. However,
when part of a contributing package is used to create a new package, then author-
ship must be validated from the provenance stored in the original package. To
validate, CDE-SP generates the subgraph associated with the part of the pack-
age, and, using subgraph isomorphism, validates that it is indeed part of the
original provenance graph.

The subgraph isomorphism (or matching) problem is NP-complete [22] lead-
ing to an exponential time algorithm. In our case, we compare file paths and
names to determine if two provenance graphs are subgraph-isomorphic. In our
implementation of VF2 subgraph-isomorphism algorithm [6], we reduce compu-
tation time by only matching provenance nodes of processes with the same path
to their binary and working directory, and only matching provenance nodes of
files with the same path. We believe that this implementation is sufficient for
validating provenance subgraph isomorphism among lightweight packaging tools.

6 Experiment and Evaluation

The benefits of reproducibility can be hard to measure. In this Section, we
describe the three experiments we conducted to determine the overall perfor-
mance of CDE-SP.

1. We determined the performance of CDE-SP in: auditing performance over-
head, disk storage increase, and provenance query runtime;

2. We determined the redirection overhead if multiple UUID-based directories
are created in CDE-SP; and

3. We compared the lightweight virtualization approach of CDE-SP with
Kameleon [10], a heavyweight virtualization approach used for reproduci-
bility.

All experiments in this section are tested on an Ubuntu 12.04.3 LTS workstation
with an 8 GBs RAM and 8-core Intel(R) processor clocking at 1600 MHz.

6.1 Audit Performance and Size Overhead in CDE-SP

In Table 2, we record execution times and disk usage of CDE and CDE-SP in
auditing a software pipeline mentioned in Sect. 4.1. Both CDE-SP and CDE are
set up for a pipeline with two applications: Aggregation and Generate Image.
Each is repeated 10 times. The result shows approximately a 2.1 % slowdown
of CDE-SP in comparison with CDE due to provenance capture. The result fits
with our observation that the overhead is from ptrace which both CDE and CDE-
SP rely on heavily to implement their capture capabilities. Additional functions
that store provenance record to LevelDB database introduce negligible prove-
nance capture overhead compared to 0-30% CDE virtualization overhead [12].
In this setup, CDE package uses 732 MB; while CDE-SP, in addition to the
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Table 2. Increase in CDE-SP performance is negligible in comparison with CDE

Create package | Execution Disk usage Provenance query
CDE 852.6+2.4 (s) |568.8+24 (s)| 732MB
CDE-SP |870.5+2.5 (s) |569.54+1.8 (s) |732MB +236kB | 0.4+0.03 (s)
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Fig. 3. Overhead when using CDE with Kameleon VM appliance

software package, creates a Level DB database of size 236 kB (0.03 % increase)
that contains approximately 12,000 key-value pairs.

To measure provenance query performance, we created a Python script to
query the audited LevelDB provenance database and create a provenance graph
of the experiment with common shared libraries filtered out. The Python script
reads through approximately the 12,000 key-value pairs in 0.39s to create a
GraphViz script that can be converted to image or visualized later.

6.2 Redirection Overhead in CDE-SP

We also compared an execution of CDE package and CDE-SP package to measure
the redirection overhead of CDE-SP. Using the packages created by the above
experiment with two applications, Aggregation and Generate Image, we pipelined
output of Aggregation to input of Generate Image, which requires CDE-SP to
apply redirection among multiple CDE roots. The experiment showed 3 data
files, as outputs of Aggregation package, were moved to Generate Image package.
After the data was moved to the next package, the experiment was executed the
same as in CDE. The result shows less than a 1% slowdown of CDE-SP, which
maybe due to initial loading of library dependencies in Generate Image package.

6.3 CDE-SP Vs Kameleon

In this experiment, we used the Kameleon engine to make a bare bone VM
appliance that contains the content of a CDE-SP package corresponding to the
software pipeline described in the use case (Sect.4.1). The package content was



106 Q. Pham et al.

copied directly to the root file system of the VM appliance. In terms of user
software, the new VM appliance is close to a replica of the package, without any
redundant installed software. We compared the two approaches qualitatively and
quantitatively.

Qualitatively, the overhead of instantiating a VM is significant as compared to
creating a CDE-SP package. In particular, for CDE-SP the user needs to specify
input packages, and using one command, the author can create a new software
package. Kameleon is user friendly and can create virtual machine appliances in
different formats for different Linux distributions. But, users must provide self-
written YAML-formatted recipes or self-written macrosteps and microsteps to
generate customized virtual images. Based on the recipe input, it generates bash
scripts to create an initial virtual image of a Linux distribution, and populates
the initial image with more Linux packages to produce needed appliances.

Quantitatively, we compared the time for executing the software pipeline
within a CDE-SP package with time for execution within a VM. Note that
we do not compare time for initializing, since time for writing YAML scripts
cannot be measured in the case of Kameleon. During the execution, CDE-SP
redirected 2717 file-read system calls, 10 file-write system calls, 17 file-read-write
system calls. Figure 3 shows that the Kameleon VM appliance slowed down the
experiment significantly: approximately 200 % or more. This heavyweight VM
overhead is substantial in comparison with the CDE-SP lightweight approach.

7 Related Work

Details about software have been included in provenance collected within work-
flow systems. For instance, Research Objects [4], packages scientific workflows
with auxiliary information about workflows, including provenance information
and metadata, such as the authors, the version. Our focus here is not limited to
any specific workflow system.

Software packaging tools such as CDE [12,13] and Sumatra [8] can capture an
execution environment in a lightweight fashion. Sumatra captures the environ-
ment at the programming level (Python), while CDE operates at the operating
system level, and is thus more generic. Even at the system level, different trac-
ing mechanisms can be used. At the user-space level, ptrace [1] is a common
mechanism, whereas at the kernel-level, use of SystemTap [18] is more common.
SystemTap, being kernel-based, has better performance compared to ptrace since
it avoids context switching between the tracee (which is in the kernel) and the
tracer (which is user space) [14]. However, from a reproducibility standpoint,
SystemTap needs to run at a higher privilege level, i.e., it requires root access,
creating a more restricted environment.

Virtual machine images (VMIs) provide a means of capturing the environ-
ment in a form that permits later replay of a computation. Kameleon [10] uses a
bash script generator to create virtual images from scratch for any Linux distri-
butions. Using recipes, users can generate customized virtual images with pre-
defined software packages to run on different cloud computing service providers.
We have compared our approach with creating VMIs for reproducibility.
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Tools such as Provenance-to-Use (PTU) [17] and ReproZip [5] have demon-
strated the advantages of including provenance in self-contained software
packages. Currently, these tools include execution provenance and not soft-
ware provenance. Finally, software provenance is an emerging area that uses
Bertillonage metrics for finding software entities in large code repositories [7].
In this paper, we have described how software provenance can help in building
packages that can satisfy reproducibility guidelines.

8 Conclusion

CDE is a software packaging tool that helps to encapsulate static and dynamic
dependencies and environments associated with an application. However, CDE
does not encapsulate provenance of the associated dependencies such as their
build, version, compiler, and distribution. The lack of information about the ori-
gins of dependencies in a software package creates issues when constructing soft-
ware pipelines from packages. In this paper, we have introduced CDE-SP, which
can include software provenance as part of a software package. We have demon-
strated how this provenance information can be used to build software pipelines.
Finally, we have described how the CDE-SP can maintain provenance when used
to construct software pipelines.
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Appendix

In our use case, A, B, and C develop open-source code and use publicly-available
datasets. Their specified software environments, which may appear different,
can be still overlapping. To demonstrate the magnitude of overlap, we assume
that each developer uses the cloud for their research, which is not uncommon
in today’s projects, and chooses a different Linux distribution. Differences in
the choice of linux distributions is also not surprising as the Linux Counter
Distributions Report [16] indicates that there is no clean winner in terms of
usage of Linux distributions, with no one distribution accounting for more than
30 %. Further, we limit software environments to refer to application binaries
and libraries that are often overlapping and create conflicts.

If the two assumptions are sound, then the overlap in the environment, i.e.,
files which have the same path, but differing content, can be as high as 18 %. We
calculate this by taking five Linux distributions with similar setup available on
Amazon EC2. For each pair of machines, we calculate the number of files with
the same path on two machines, and the number of files with the same path on
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two machines but having different md5 checksum. Table 3 shows that between
any two machines, on average, 6.8 % of files have the same path but differ in
content. In other words, these files are not interchangeable but depend on the
underlying operating system.

Table 3. Ratio of different files having the same path in 5 popular AMIs. The denom-
inator is number of files having the same path in two distributions, and the numerator
is the number of files with the same path but different md5 checksum. Ommited are
manual pages in /usr/share/ directory.

RH SUSE  U12 U13
Amz |5498/23k 3184/11k 1203/5.4k|1819/5.5k
RH 3861/12k 1654/6.6k 2223/6.3k
SUSE 1245/3.9k 2085/6.4k
U12 8226,/24k
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Abstract. Security is likely to be a critical factor in the future adoption
of provenance technology, because of the risk of inadvertent disclosure of
sensitive information. In this survey paper we review the state of the art
in secure provenance, considering mechanisms for controlling access, and
the extent to which these mechanisms preserve provenance integrity. We
examine seven systems or approaches, comparing features and identifying
areas for future work.

1 Introduction

Automatically associating data with metadata describing its provenance has
emerged as an important requirement in databases, scientific computing, and other
domains that place a premium on reproducibility, accountability or trust [27].
Providing such metadata typically involves instrumenting a system with moni-
toring or logging that tracks how results depend on inputs and on other, perhaps
untrustworthy, sources.

Publishing the entire provenance record associated with a computation is
not always feasible or desirable. Disclosing certain information may violate secu-
rity, privacy, or need-to-know policies, or expose sensitive intellectual property.
Sometimes the complete provenance record may be too detailed for the intended
audience, or may leak irrelevant implementation detail. But simply omitting
some of the provenance information may leave it unable to certify the origins of
the data product.

We refer to the general problem of ensuring that provenance solutions satisfy
not only disclosure requirements but also security or privacy requirements as
the problem of provenance sanitization or provenance abstraction. A number
of approaches to provenance sanitization have been proposed recently [3,8,15,
16,18], sometimes under other names such as provenance views or provenance
redaction. These techniques have been developed mainly for scientific workflow
systems, where provenance is viewed as a directed acyclic graph, as in the Open
Provenance Model [28].

Existing approaches have several elements in common. Typically, an obfus-
cation policy specifies the aspects of the provenance which are to be hidden.
A disclosure policy may additionally specify that certain other aspects of the
provenance are to remain visible. Sanitization then involves transforming the
provenance graph to obtain a view which satisfies both the obfuscation and
the disclosure policies.
© Springer International Publishing Switzerland 2015

B. Ludischer and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 113-126, 2015.
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Few of the existing systems have been formally studied, and the security
guarantees they actually provide are unclear. Some do provide formal guaran-
tees, but are narrow in applicability or have other shortcomings. Moreover, many
systems provide some form of security or confidentiality without considering the
impact on the causal or explanatory role of provenance. In this paper we review
the state of the art in provenance sanitization by reviewing seven systems or
approaches: ZOOM [2,13], security views [8], surrogates [3], ProPub [18], prove-
nance views [15,16], provenance abstraction [26], and provenance redaction [7].

2 Related Work

The relationship between security and provenance has been considered in several
survey or vision papers [4,20,23,25]. This paper focuses narrowly on provenance
sanitization via graph transformations; here we briefly mention some related
topics.

Formal foundations. Chong [11] gave an early definition of provenance-related
security policies. Cheney [9] subsequently generalized this approach to notions
of disclosure and obfuscation with respect to a query ) on the underlying
provenance, and a view P of the provenance. Obfuscation is similar to (non-
quantitative) opacity in computer security [1], and means that P does not allow
the user to determine whether the underlying provenance satisfies ). Disclosure
means that P preserves (Q-equivalence.

Secure provenance for evolving data. Provenance tracking is an especially critical
issue for data that changes over time [6], for which provenance can be hard
to recover after the fact. Work in this area to date includes tamper-resistant
provenance for databases [30], use of cryptographic techniques to ensure integrity
of document version history [21], and database audit log sanitization [22].

3 Background Concepts and Terminology

The solutions surveyed in Sect. 4 mainly target scientific workflow systems, with
similar notions of provenance; we review some common concepts here. Some
acquaintance with basic graph theory will be useful. For more background on
scientific workflow provenance, we refer the reader to Davidson and Freire [14].

Workflow systems and provenance graphs. A workflow system, or simply work-
flow, is a directed graph capturing the high-level structure of a software-based
business process or scientific process. Nodes represent software components called
modules, or tasks. Edges represent links, or data channels, connecting modules.
Sometimes modules are considered to have input and output ports to which
data channels are connected. Figure la shows a simple workflow with modules
mi to mg.
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Fig. 1. Cyclic workflow, plus bipartite provenance graph for a possible run

Node labels are typically used to identify modules. Iterative processes can
be modelled by cycles, if permitted, or via a built-in construct for iteration.
Workflow systems often support other coordination patterns such as conditional
branching and synchronisation which are beyond scope of the systems considered
here. Some permit composite modules, i.e. modules that contain other modules.

A provenance graph is a directed, acyclic graph (DAG) recording the causal
history of a data product. Often such a graph represents the (coarse-grained)
execution of a software system, such as a workflow; more generally, provenance
graphs can describe ad hoc processes or collaborations involving both human and
software components. The nodes of the graph represent participants, actions and
intermediate artifacts.

Figure 1b shows a provenance graph that captures one possible execution of
the workflow in Fig. la. The rectangular nodes, or activities, represent invoca-
tions of modules; the circular nodes d; to dg, sometimes called entities, record
data values passed between modules. Moreover activities yield entities, and enti-
ties feed into activities; a graph that is partitioned in this way is called bipartite.
Bipartiteness is just one of many possible design choices for graph-structured
provenance; for example, one could add d, ..., dg as labels to the edges instead
of using special nodes.

When a provenance graph represents a run of an iterative process, each mod-
ule invocation must give rise to a distinct node, to maintain acyclicity. If neces-
sary additional tags on the node label can be used to distinguish invocations of
the same module.

Sanitizing provenance graphs. The goal of provenance sanitization is to derive a
sanitized view which hides or abstracts sensitive details of a provenance graph,
whilst preserving some of its disclosure properties. Typically one wants the view
itself to be a well-formed provenance graph. Figure 2 below illustrates a simple
provenance graph with two examples of views. On the right, tasks ¢; and c
have been abstracted into a single task c3; on the left, entities do and d4 and
intermediate task cy have been abstracted into a single entity ds.

@ Cc3 €3, 7\
(@—{ef—(4) (@ {e—a) (@ (@)
view #2 \ Y view #1

g / ~-7 N
{ (@l ()] (&) (d)
B - ,_\»\7#7/'

- N

Fig. 2. Two possible views of a provenance graph
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Both views are examples of quotients, arguably the simplest notion of graph view.
One specifies a quotient of a graph G = (V, E) by giving a partitioning V' =
{V1,...,V,} of its nodes. The partitioning induces another graph G' = (V'  E’)
where there is an edge (V;, V}) € E’ iff there is an edge in G between a node of V;
and a node of V}, for any i # j. In Fig. 2 the dotted border labeled c3 determines
a partitioning if we consider each of the remaining nodes to inhabit a singleton
partition; the dotted border labeled d5 determines a different partitioning, under
a similar assumption.

Quotients are natural forms of provenance view as they preserve paths, which
represent relationships of direct or indirect dependency between nodes. If paths
are preserved then related nodes are mapped to related nodes in the view;
in other words, every dependency in the original graph gives rise to a depen-
dency between the corresponding view nodes. Quotients preserve paths but not
edges; for example the edges (dy, c2) and (cz, d2) have no counterpart in view #2
because all three nodes are mapped to ds. Indeed edge-preservation, or homomor-
phism, is a stronger property than we usually require for provenance sanitization,
where dependency is assumed to be reflexive and transitive.

It can also be important to consider whether paths are reflected: whether
nodes are related in the view only if there exist related nodes in the original
graph which map to those nodes in the view. This too can be understood in
terms of dependency, since it means that every reported dependency arises from
a dependency between corresponding nodes in the original graph. Quotients do
not in general reflect paths, because they coarsen the dependency relation: in
view #1, for example, d; now appears to depend on d4, and ds on ds. This can
be problematic if it violates cardinality constraints, such as a requirement that
every artifact be generated by at most one activity [29)].

4 Survey of Techniques for Provenance Sanitization

In the ZOOM system of Biton, Cohen-Boulakia and Davidson [2,13], the
user obtains a provenance view by first defining an abstract workflow view.
A ZOOM workflow is a directed graph of atomic modules; a provenance graph is
a DAG of invocations with edges labeled with runtime values. A workflow view
is a quotienting which partitions the system into composite modules; for a given
run of the workflow, the corresponding “quotient run” can then be obtained
automatically by deriving invocations of each composite module from the invo-
cations of its constituent modules.

Figure 3 illustrates the ZOOM approach. In Fig. 3a we see the original work-
flow with the partitioning identified by dashed borders labeled ¢y and c3. The
modules mq, ms and ms are assumed to be in singleton partitions. The induced
workflow view is shown in Fig. 3b. Then, Fig. 3c shows an execution of the work-
flow with data labels omitted; here the dashed borders represent a partitioning
of the invocations corresponding to invocations of the composite modules co and
c3. Figure 3d shows the corresponding quotient run where each node is mapped
to its equivalence class.
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Fig. 3. ZOOM: deriving a provenance view from a workflow view

ZOOM is not overtly motivated by security, but its views can be seen as
abstracting away uninteresting parts of the graph while ensuring user-identified
“relevant” parts remain visible. ZOOM is unique in respecting the semantic
relationship between program and provenance, as alluded to by the dotted run
arrow relating Fig.3b and d. Moreover being able to derive provenance views
from ex post facto modularisations of a workflow is extremely powerful. However,
it seems unlikely that their method for doing so (sketched only briefly in the
papers) will generalise to workflows with non-trivial control flow or settings
where submodules are shared by composite modules. In [13], most of the focus
is on workflow views instead, in particular a method for deriving workflow views
that preserve and reflect certain structural properties of the workflow, given a
user-specified set of modules that are of interest.

The security views of Chebotko, Chang, Lu, Fotouhi and Yang [§]
provide both access control and abstraction for scientific workflow provenance.
Their workflows are DAGs with additional structure to model hierarchical tasks;
the data channels of a composite task are those of its constituent tasks that
cross the boundary of the composite task, relating composite tasks to the par-
titions of a quotient view. However, composite tasks are fixed features of the
workflow rather than on-the-fly abstractions as in ZOOM, above. Being acyclic,
workflows are unable to represent iteration.

To obtain a security view, one first specifies the accessibility of the various
tasks and data channels, marking each element as accessible or inaccessible.
Inheritance rules define the accessibility of an element if it is not given explicitly.
Access control can be specified down to the level of individual ports; consistency
constraints ensure that (for example) a data value inaccessible on one port is
not accessible via another port. The access specification is then used to derive
a provenance view from which inaccessible data values, tasks and channels have
been removed.

Figure 4a shows a run of a hierarchical workflow with two levels of composite
task; both data nodes and ports have been elided for brevity. A node written as
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Fig. 4. Security views: combining abstraction with access control

e indicates an input or output. In Fig.4b, the data channel between t3 and ts
has been deleted to conform to the access specification. Although dummy nodes,
similar to the surrogates of Blaustein et al. below [3], may be added to the view
to preserve well-formedness constraints, more general integrity requirements are
not considered. For example once the edge between t3 and t5 has been deleted,
the view no longer preserves dependencies, and so its ability to provide a full
account of the output is compromised. Access control can however be combined
with quotienting. In Fig. 4c the composite module ¢4 has been abstracted to a
single node with two inputs, preserving the dependency structure of Fig. 4b, even
though the latter view is unsound.

Blaustein, Chapman, Seligman, Allen and Rosenthal [3] present an
approach based on surrogates. They define a protected account of a graph G to
be any graph G’, along with a path-preserving function from the nodes of G’
to the nodes of G. Since by definition every path in the view has an image in
the original graph, a protected account necessarily reflects dependencies, but
in general does not preserve them. Surrogates are a mechanism for publishing
dependency information in a way that still protects sensitive nodes and edges.

Figure 5a, adapted from [3], shows a typical graph with sensitive nodes and
edges in red. Figure5b shows a protected account where e has been deleted
and f replaced by a surrogate f’, shown with a dotted border, that hides its
sensitive data (perhaps its identity). The view in Fig.5c¢ hides two more edges,
breaking the indirect dependency between ¢ and g. This is repaired in Fig. 5d by
a surrogate edge (dotted arrow).

(a) @ (b) o (©) o (d) e
g © O
F@ @ ® ® o

Fig.5. Surrogates: provenance graph, plus three protected accounts (Color figure
online)
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Blaustein et al.’s approach has three components: user privileges, which allow
the graph provider to control graph access down to the level of individual ports;
an algorithm for protecting graphs by deleting nodes and edges and adding
surrogates; and metrics for analyzing disclosure and obfuscation properties of the
resulting graph. For a given set of user privileges, their algorithm purportedly
obtains a protected account which is “maximally informative”, according to a
utility metric derived from the proportion of G-paths retained in G’ plus the
similarity of each node in G’ to its counterpart in GG. However definitions given
are rather informal, and the theorems lack proofs, making this claim hard to
evaluate.

Even when a protected account satisfies a particular obfuscation policy, an
attacker may still be able to infer the original graph G from G’. To study this,
Blaustein et al. introduce the notion of opacity, a measure of the difficulty of
inferring an edge in G that is not present in G’, given a user-supplied model of
the attacker. (The notion of opacity in the security literature [1] is somewhat
different.)

The ProPub framework of Dey, Zinn and Lud&scher [18], based on Dat-
alog, provides what the authors refer to as “policy-aware” provenance saniti-
zation. A provenance query is expressed as a set of Datalog facts, asserting
that the provenance for certain data items is to be disclosed, plus additional
requirements relating to sanitization and disclosure. ProPub works directly with
a provenance graph, which may not have been derived from an underlying work-
flow. A sanitization requirement might assert that certain data associated with
a particular node is to be erased, that several nodes are to be abstracted into a
single node, or that some nodes are to be deleted; a disclosure constraint might
insist that a specific node is always retained in the view. In addition there will
usually be global policies which hold across all queries (for example to outlaw
“false dependencies” of the kind illustrated earlier in Fig. 2), as well as the usual
well-formedness conditions such as acyclicity or bipartiteness.

A unique feature of ProPub is its ability to detect conflicts in the sanitization
and disclosure requirements and to assist with their resolution. When conflicts
arise, ProPub uses a ranking scheme and various auto-correction strategies to
resolve them, with the user also able to intervene to withdraw or modify a
constraint in the light of the conflicts. For example in Fig. 6, adapted from [18§],
a naive abstraction of three nodes into a single node ¢4 violates both acyclicity
and bipartiteness:

Fig. 6. ProPub: conflict detection
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In this case a possible resolution would be to include d3 into the abstraction as
well, removing the cycle and restoring bipartiteness. Should applying a correction
induce other conflicts, the process of conflict resolution continues. Only when a
conflict-free variant of the query is obtained can a final sanitized view be derived.
Any constraints rescinded during conflict resolution are reported alongside the
sanitized view, providing a certain level of “meta-provenance”, also a unique
feature amongst the systems considered here. For example, it might record that
a spurious dependency was tolerated in order to accommodate an abstraction.
ProPub’s logical foundation also means that the final view is guaranteed to have
the chosen disclosure and security properties.

Davidson et al. [15,16] tackle a rather different problem with provenance
views. Workflows are modelled as directed acyclic multigraphs (graphs with
potentially more than one edge between any two nodes). Edges are labeled with
identifiers called attributes which identify the port that the edge starts from;
because workflows are acyclic, the semantics of a workflow can be given as a
relation R over the set of all attributes, where each tuple consists of the data
values that arise during a possible execution. (Equivalently, one can consider
each tuple to be a labeling function assigning data values to ports.) In Fig.7
below, adapted from [15], the workflow consists of three modules computing
Boolean functions. Port a4 of m is consumed by both ms and ms. The relation
R for this particular workflow in shown in the middle of Fig. 7. Effectively R is
the natural join Ry <t Ro > R3 of the relations Ry, Re and R3 capturing the
extension (input-output mapping) of the modules individually.

R v (R)
all ay as as a4 as ag ar ay as as ae a7
possible 60 o 1 1 1 0 o0 0 1 1 o0
runs 0o 1 1 1 0 o0 1 abstract 0o 1 0 0 1
- =
1 0 1 1 0 0 1 1 1 0 0 1
1 1 1 0 1 1 1 1 1 1 1 1

Fig. 7. Provenance views: hiding functional behaviour

Rather than hiding or abstracting parts of a particular run, Davidson et al.
are interested in hiding the extension of a sensitive module m;, namely the
relation R;, regardless of how many different executions the user observes. They
classify modules as either public, whose behaviour is known a priori, or private,
whose behaviour must be inferred by observing R. Their approach, which is
quantitative, is based on an extension of ¢-diversity [24] which they call I'-
privacy. A view is specified by giving a set V of visible attributes. The relation
ITy (R), the projection of R to V (Fig.7, right), defines the information that
is publicly visible through V. For any positive natural number I', a private
module is I'-private with respect to V if for each input, the number of possible
outputs from that module consistent with Iy (R) is greater than I". With only
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this information, an attacker is unable to predict the output of the module for
a given input with probability greater than 1/I.

The first paper [15] studies some specific cases, including standalone private
modules, multiple private modules, and heterogeneous workflows with a mix-
ture of private and public modules where public modules can be “privatized” by
renaming, so that their functional behaviour is no longer known. They show that
standalone I'-privacy is composable in a workflow consisting only of private mod-
ules. The authors also study the problem of finding minimum-cost views, given
a cost function stating the penalty of being denied access to hidden attributes.
The second paper [16] studies a more general solution for heterogeneous work-
flows, which involves propagating hiding, i.e. hiding attributes of public modules
if they might disclose information about hidden attributes of private modules.
They present a composability result generalizing the one for the all-private set-
ting, to single-predecessor (that is, tree-like) workflows.

The privacy problem studied by Davidson et al. is interesting, but their work
so far has a number of drawbacks. In particular, the PTIME bounds for the algo-
rithms for mixed workflows [16] assume a fixed domain size, which in turn means
that the size of relation R is treated as a constant. If we take the domain size d
and number of attributes a into account, then the size of R is O(d®), so treating
it as a constant may not be realistic. Moreover, it is also not always clear how
to choose sensible values of I'. For example, with a domain of 10241024, 8-bit
grayscale images, I may need to be much higher than 10° to provide meaningful
privacy, because changing a single grayscale pixel does not hide much informa-
tion. (This criticism also pertains to other possibilistic definitions of security
properties, such opacity [1] and obfuscation [9].) Techniques from quantitative
information flow security [12], quantitative opacity [5] or differential privacy [19]
may be relevant here.

The provenance abstraction approach of Missier, Bryans, Gamble,
Curcin and Danger [26], implemented as ProvAbs, is based on graph quotient-
ing and finding partionings that satisfy both security needs and well-formedness
constraints. Their provenance graphs follow the PROV model [29] and its asso-
ciated constraints specification [10]. First, Missier et al. consider simple bipar-
tite provenance graphs with node types representing activities and entities, and
define three basic graph operations pclose, extend and replace. Intuitively, pclose
takes a subgraph which is a candidate for replacement, and grows it until it is
convex (there are no paths that lead out of the subgraph and back in again);
extend further grows the subgraph until both its “input” nodes and its “output”
nodes are homogeneous with respect to node type; and replace contracts such
subgraphs to single nodes and adjusts edges to preserve paths.

Figure 8, adapted from [26], illustrates extend and replace. In Fig. 8a, the user
selects activity as and entity es for abstraction. Replacing these two nodes by
either an activity or an entity whilst preserving paths would violate bipartiteness.
In Fig.8b, extend is used to grow the target subgraph to include e4, so that
the output nodes of the target subgraph are uniformly entities. Replacing the
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Fig. 8. ProvAbs: growing a partition so that abstraction preserves bipartiteness

subgraph by a single abstract entity es in Fig. 8c is now valid, although it coarsens
the (transitive) dependencies by introducing a path between a4 and a;.

Having shown how these transformations can be used to preserve basic valid-
ity constraints, Missier et al. go on to consider graphs which incorporate the
PROV agent node type and associated relations such as attribution and delega-
tion. They consider three cases of increasing sophistication. Grouping a homo-
geneous set of agents into a single abstract agent is relatively straightforward.
Grouping agents and entities together is trickier; the type of the target abstract
node (entity or agent) must be specified, and in order to maintain the type-
correctness of certain relations between actions and agents (waw, “was associ-
ated with”) and between entities and agents (wat, “was attributed to”), the
subgraph to be abstracted must made larger. Finally, grouping arbitrary node
types together presents the additional difficulty of agent-to-agent delegation
edges (abo, “acted on behalf of”), which require similar treatment.

Like ProPub, a key feature of ProvAbs is that transformations operate directly
on the provenance graph, and are thus more suited to situations where there is
no underlying workflow. Missier et al. claim that their system avoids introduc-
ing spurious dependencies between nodes. However, their views are quotients,
which in general over-approximate dependencies, so technically this claim is
only correct for provenance applications where dependency is not required to be
transitive.

The work of Cadenhead, Khadilkar, Kantarcioglu and Thuraisingham
[7] on provenance redaction is also based on graph rewriting. Their prove-
nance graphs are tripartite and conform to the Open Provenance Model’s labeled
DAG format [28]. “Redacting”, or sanitizing, such a graph has two phases. First,
the sensitive region G¢ (typically a single node or a path between two nodes)
of the original graph G is isolated using a graph query @. Then, this region of
the graph is transformed according to an obfuscation policy expressed as rewrite
rules. A rewrite rule has two components: a production rule r : L — R, where
L is matched against subgraphs of G, plus an embedding specification, which
determines how edges are to be connected to R once it has replaced L. The
rewrites involve graph operations such as vertex contraction, edge contraction,
path contraction and node relabeling.

In Fig.9, adapted from [7], hexagons represent agents, rectangles represent
processes, and circles represent artifacts. In the left graph, the gray triangle
indicates an area of the graph that was previously redacted. On the right, a
further subgraph is redacted by contracting the the web (“was controlled by”)
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Fig. 9. Provenance redaction: abstraction by edge contraction

edge relating a heart operation o to the surgeon s who carried out the operation,
and replacing the two nodes by another gray triangle.

Cadenhead et al.’s work is implementation-focused. Several formal definitions
are given but not always made use of, and neither are their provenance or disclo-
sure properties analyzed. One issue they do not appear to address, in contrast
for example to Missier et al. (above), is preservation of basic well-formedness
properties of the provenance graph. While edge contraction (as a particular kind
of quotient) preserves dependencies, the interaction with tripartiness is poten-
tially problematic. For example in the view in Fig.9, the new triangle has both
an incoming and an outgoing wcb edge, because it subsumes both an agent and
a process. Moreover, as the authors themselves point out, the obfuscation policy
is only applied to a subgraph Gg of the original graph G. Sensitive informa-
tion available elsewhere in G will not be subject to the policy. Information flow
techniques [17] may be relevant here.

5 Conclusions and Future Directions

We conclude our survey with a brief feature comparison, summarised in Table 1.
The column headings refer to broad feature areas (discussed in more detail
below); @ indicates reasonably comprehensive support for that feature, O lit-
tle or no support, and © somewhere in between. Necessarily this is a somewhat
simplistic assessment.

Integrity. We divide integrity features into basic integrity maintenance (Int)

and integrity of causal or dependency structure (Dep). Even systems that make
some effort to preserve the latter, such as provenance redaction, may in so doing

Table 1. Feature comparison for the approaches surveyed

System Int|Dep|Acc|Qry|Sem|Form|Conf|Meta
ZOOM [2,13] 0@ 0O/O|O0]| O| O] O
Security views [8] OO0 @/ O0O|O0O| O|]O]| O
Surrogates [3] Ol0o|®@|O0|O| O |0O]| O
ProPub [18] (DAR RN BN NGHEN NN BN )
Provenance views [15,16]|O| © |©O | © | © | @ | O | O
ProvAbs [26] e ® 6 O O| O |0 ]| O
Provenance redaction[7]|[©| ® | @ | @ | O | O | O | O
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violate low-level integrity constraints. In the future it seems likely that users will
take low-level integrity for granted.

Preservation or reflection of dependency structure is more challenging because
of the inherent tensions with obfuscation requirements. When arbitrary nodes or
edges can be deleted, then the user may be responsible for repairing the damage,
as with security views or surrogates. ProPub offers greater automation through
conflict detection; ProvAbs and provenance redaction make safer (if simplistic)
assumptions, by working mainly with quotient views.

Sanitization. Sanitization features range from explicit fine-grained access con-
trol (Acc), which all systems provide in some form or another, to query-based
abstraction (Qry), as offered by ProPub and provenance redaction. Query-based
systems typically subsume fine-grained access control, via fine-grained queries.

Formal and semantic properties. Few of the surveyed systems consider the prob-
lem of relating provenance views to the semantics of the underlying system
(Sem). Instead, they operate directly on provenance graphs, without regard to
how the graph was created. This is flexible, but means one cannot easily treat the
provenance view as an (abstracted) account of how something was computed.
ZOOM stands out in this respect, in relating provenance views to workflow views
for simple kinds of workflow. On the other hand, this is a hard problem to solve
in a general way.

Few existing systems provide formal guarantees of obfuscation or disclosure
properties (Form). ProPub has the advantage of a solid logical foundation. The
I'-privacy of provenance views is a formal notion of (quantitative) opacity, but
the goal is somewhat different from the other systems considered.

Conflict detection and resolution. As mentioned, ProPub stands out in being able
to automatically detect conflicts between obfuscation and disclosure require-
ments (Conf), thanks to its logic-based approach. It is also the only system
which makes conflict resolution an explicit and persistent part of the process, pro-
viding a certain level of “meta-provenance” for the sanitization process (Meta).
If provenance security techniques are widely adopted, it seems likely that how
provenance is manipulated to hide or reveal information will itself often be the
point of interest (cf. “provenance of provenance” [29]).

Undoubtedly, controlling access to sensitive provenance metadata is of grow-
ing importance, and moreover we sometimes simply want to deliver provenance
information at a particular level of detail. However, as the summary above high-
lights, current methods for provenance sanitization are immature. Future effort
should focus on semantics, formal guarantees, and techniques for detecting and
resolving conflicting policies.
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Abstract. In the context of software, provenance holds the key to
retaining a mirror instance of the lifespan of a service, which can be
replayed /reproduced from the beginning. This entails the nature of invo-
cations that took place, how/where the data were created, modified,
updated and the user’s engagement with the service. With such an ency-
clopedia of information, it opens up a diversity of value-added features
(compliance control, accountability) that can improve the usability of a
service.

In this paper, we extend our previous work on the provenance-based
policy language (cProvl) and model (cProv) by proposing a preliminary
policy control framework. The framework provides the necessary build-
ing blocks for integrating and developing services that are able to gen-
erate and use provenance data for provenance-based compliance control,
which runs on a XACML engine. We demonstrate the capability of the
framework by applying it to a service case, and conduct benchmarks to
determine its scalability and performance.

Keywords: Provenance - XACML - cProv - Prov + cProvl - Share -
Cloud

1 Introduction

Cloud computing is built on top of many existing technologies, to support fea-
tures such as the dynamic scaling, resource pooling, pay-per usage and on-
demand self-services. While cloud computing adoption is gaining momentum
in the industry, the compliance and accountability remain its main Achilles heel
[1]. One approach to addressing this problem is through the use of provenance [2].
Provenance is a well understood area in art and digital-libraries, where lineage,
pedigree and source plays a major role in understanding how things have been
derived, and in determining the collection’s authenticity and value [3]. Prove-
nance helps in answering questions such as: What processes were involved in
transforming the data? Did the processes conform to all necessary regulations?
Where in the actual physical location within the cloud has the execution of data
taken place? Answering these questions are pivotal to achieving compliance in
the cloud environment.

© Springer International Publishing Switzerland 2015
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In additional to provenance, a policy control mechanism is required to define
the compliance requirements, and to be acted upon if a violation occurs. XACML
[4], an industry wide standard is deployed by many organizations as standard
policy-based control for their services. Organizations are looking to migrate their
existing services to the cloud. Having the ability to use the existing policy control
would minimize the cost of migration, reduce deployment effort, and mitigating
the risk of using unproven technology. Its architecture is modular and provides
scope for extensibility. However, it does not cater for provenance data.

In our previous work [5], we have defined a provenance ontology that extends
the Prov model [6] for cloud-based services, and a provenance-based policy lan-
guage that can be mapped to the XACML policy language. This allows us to
express questions and conditions in the form of policies, and execute them using
the ontology via the extended XACML engine.

The contributions of this paper are as follows: First, we propose a policy
control framework that leverages on the XACML architecture and the Prov
standard for industrial cloud-based applications. Secondly, the framework is inte-
grated with a cloud-based service (a Telco’s file sharing service) to support its
compliance requirements. Finally, we perform benchmarks on the framework’s
integration with the service to evaluate its scalability and performance.

2 A Telco Service

ConfidenShare is a cloud service developed by a Telco Operator for the sharing
of sensitive and non-sensitive information such as a file, meeting data and other
data with users within the cloud environment. It uses Proxy re-encryption [7], a
cryptographic technique that allows the sharing of all or part of user’s data with
one or more parties. ConfidenShare is interoperable with many existing cloud
providers, and can meet varying country-specific cloud strategies. While the file
sharing mechanism is secure, it does not have the necessary means of declaring
constraints, capturing requirements and compliance control for them.

2.1 Service Requirements

Files are typically categorized as ‘confidential’, ‘restricted’ or ‘general’.

A ‘confidential’ file is the most restricted and only the originator (creator of
the document) is allowed to initiate the share.

A ‘restricted’ file, is where an originator can share with one or more recipi-
ents. Any changes or modifications can only be shared with the originator and
recipients of the original document only.

A ‘general’ file can be shared with any users, and there are no explicit restric-
tions on the re-sharing. A further restriction can be added to the ‘general’ cat-
egory to indicate if the file shared is modifiable, if it isn’t it can only be shared
unmodified.

Any user no longer registered with the service, all traceable files associated
with that user cannot be shared, and should be removed. This is in accordance
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to the “EU:Right to erasure” legislation [8]. Unless explicit permission has been
given by the user to allow the retention of data they have already shared with
other users.

In all cases the provenance of the documents are intact. From the service
requirements, we can derive policies such as:

Policy 1 - If a file (fileA) is marked as ‘confidential’, only the originator is
allowed to share it with another user (userB), re-sharing by userB is not allowed.

The provenance data contains information related to when the file was cre-
ated, by whom, where, and other information that can be used to determine if
it is in compliance with this policy or not.

Policy 2 - If a user (userA) is ‘removed’ from the service, any shared files (file
X) by this user cannot be shared further (userB).

When a user is deleted, by law, all the data associated with the user must be
deleted, this includes all the shared files. Provenance data can be used to check
for the origin of a file. If the originator of the file is no longer with the system,
then any derived or shared copy of the file can be identified from the provenance
data and prevent further shares.

In order to fulfill these requirements, the following is necessary:

— Integration of the provenance capabilities to the ‘ConfidenShare’ service. The
generated provenance data can be used to check for compliance breaches,
which are fundamental to service level agreements.

— Declaration of requirements as policies, which are to run in a compliance
control engine to determine and act upon the compliance status (this will
require the generated provenance data).

2.2 Background

A number of provenance-based frameworks have been proposed [9,10]. Kepler
is a provenance framework designed to work with workflow management for
collecting, and processing of provenance data. It provides three APIs: recording,
query and management for handling such task, as well as algorithms for tracking
and finding files. While their solution works well for workflows, it is not generic
enough [9]. Karma is also a workflow-based framework [11] similar to Kepler,
but does not have the additional processing algorithms and neither incorporates
any support for provenance-based policy control.

Tsai, W.-T. et al. [12] discusses issues related to the data provenance in
SOA; focusing on the security, reliability and integrity of the data. They also
propose a SOA data-provenance framework [13], which is a more advanced ver-
sion proposed earlier by Rajbhandari, S et al. [14]. This framework is based on
the non-standard provenance model, and entails functionalities such as multiple
data provenance classification (minimal provenance, time-based, event-based,
etc.), data collection (actor-based and time-based), dynamic analysis (security
policy checking service (SPEC), integration estimation service) and others. The
checking source SPEC appears to have some degree of correlation with our work.
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However, no information is supplied in relation to the language used, supported
features, limitations, and how it operates on the provenance data.

Aldeco-Perez, R et al. [3] proposes a provenance-based compliance frame-
work, based on the Open Provenance Model. The framework provides a process-
ing view (represented as a provenance graph for a specific execution time) and
usage policy definition (UPD). It uses the UPD to validate against the processing
view for compliance. The framework lacks the integration with the commercial
applications and policy standard such as XACML.

K.K. Muniswamy-Reddy et al. [15,16] aims to address automation of prove-
nance collection, by proposing three protocols for storing provenance for their
existing cloud service. The provenance data is collected using their existing sys-
tem called PASS (Provenance aware storage system) [17]. Any objects stored in
the system automatically extracts the provenance data related to it, for example
a system call read, write, etc. However their solution is proprietary.

In regards to policy, Cheney, J. [18] gives a formal model for security con-
trol for provenance, and Martin, A et al. [19] provides pertinent details of the
applicability of provenance as a security control. PAPEL [20] is a provenance-
based policy language which attempts to integrate with XACML with limited
expressibility on the provenance data.

C. Dai et al. [18], proposes a confidence policy compliance query evaluation,
that restricts or grant based on a certain confidence level. However the policy
language is fairly restricted.

Much of these works are complementary to our previous work [5], on the
provenance-based policy language, but they lack any real mapping and inte-
gration with the commercial standard such the Prov and XACML. Our focus
is on using standardised policy language and model to be used in commercial
applications.

3 Policy Control Framework

It is imperative for the framework to provide ease of integration of the provenance
model cProv and policy language (cProvl). In order to support the provenance-
based compliance control, with the existing and new commercial cloud-based ser-
vices. For this purpose, we have leveraged two industrial standards: Prov and
XACML architecture, that forms the backbone of the framework’s stacks (Fig. 1).

3.1 Client Side Stack

The client stack handles operations such as the integration and generation of
provenance data, as well as the request for provenance-based compliance control.
More concretely, it is structured as a six layered stack (left image of Fig. 1).

Layer 1 - Defines the actual integration with a service. This is where one or more
services are modified to provide provenance capability (this has been applied to
the ConfidenShare service (Sect. 2)).
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Layer 2 - Provides two APIs (provenance and policy) that assist the generation
of the provenance data, and declaration of a request for compliance control.

Layer 3 - Defines a list of converters (native to XML provenance and c¢Provl
XML policy request).

Layer 4 - Provides the underlying schemas for cProv provenance model and
cProvl policy request for their XML representations.

Layer 5 - Handles the generated provenance statements via the event handler,
statements are placed in a temporary queue for permanent storage.

Layer 6 - Transfers the provenance statements to permanent storage and sends
the policy request to the policy controller.

3.2 Server Side Stack

The server side stack defines operations for storing, querying and updating the

provenance store. For compliance control, it provides the mechanism for handling

policy requests, translation and execution in the extended XACML policy engine.
It contains five layers (right image of Fig. 1).

Layer 1 - Builds modules for extending functionalities, such as a classifier (not
discussed in this paper).

Layer 2 - Provides the server side integration. It has two core APIs (cProv
REST API and cProvl REST API). One for handling the provenance data and
the other for compliance control. This layer also supplies converters (cProvl to
XACML, and XACML to cProvl) for interacting with the XACML engine.

Layer 3 - Provides the mechanism for interfacing with the provenance and
policy store.
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Layer 4 - Defines the hierarchical storage structure. It contains the provenance
and policy store, which consists of one or more services.

Layer 5 - The actual underlying storage (currently the framework uses the
exist DB).

By adopting these standards (prov, XACML), the framework is likely to be
more compatible with the existing software development processes, tools and
infrastructure.

XACML does not have any support for provenance, we have addressed this
deficiency by extending its core architecture to provide provenance support using
our cProvl policy language.

3.3 Extended XACML Architecture

Figure 2 shows how the five core XACML components: PEP (Policy Enforcement
Point), PDP (Policy Decision Point), context handler, PAP (Policy Administra-
tion Point) and PIP (Policy Information Point) [4] were extended to support the
provenance-based compliance control.

PAP (writes XACML policies and makes then available to PDP) module has
been extended to allow the creation of cProvl policies, and provides a mapping
from cProvl policies to XACML policies, as well as providing storage for these
policies.

The PEP (handles the initial incoming service specific request typically from
an application) module has been extended to cater for a service request to be
translated into cProvl request and stored in the policy store with its provenance.
The service response is treated in the same manner.

The context handler is responsible for converting a service request into an
XACML request. We provide the support for a cProvl request to be translated
into an XACML request. The request is then transferred to the PDP module.

The PDP module determines the outcome of a request. We have introduced
new functions to accommodate the handling of provenance data (used by the
translated XACML polices). Before making a decision, it may request the context
handler for additional attributes via the PIP module (in our case, attribute
references to provenance statements).

The PIP module has been extended to interface with the provenance store.
It returns the necessary statements requested by the PDP module for decision
making.

The context handler receives an XACML response from the PDP module.
We have also added the support for an XACML response translated to a cProvl
response (stored in the policy store), which is then sent to the PEP module.
The PEP translates it to service specific response and enforces the control, i.e.
Permit/Deny (detailed mapping is discussed in our previous paper [5]).

To our knowledge, this is the only framework that enables ease of integra-
tion of the extended Prov provenance model with the XACML architecture for
cloud-based services. The benefit we can see in using this framework is that only
the high level APIs can be utilised without the developers requiring knowledge
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Fig. 2. XACML Extended Architecture to Support Provenance

of the underlying complexity of extended XACML architecture or the prove-
nance model. This can save integration and development time, is less prone to
errors, and minimizes the integration complexities, which ultimately will allow
developers to focus their efforts on the business logic.

4 Framework Service Integration

We have successfully integrated the framework with the ConfidenShare service
(Sect. 2). The service is able to generate provenance data, and apply provenance-
based control.

The sequence diagram (Fig.3) demonstrates the interactions between the
framework’s components with the service. It shows a user, Bob, invoking a
resource share request on the ConfidenShare web client (line 1-3). The client
(using cProv client API) generates provenance data for this invocation and inter-
acts with the ‘ProvenanceHandler’ for translating it to XML Prov elements, then
storing it using the cProv server API (line 4-8).
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ConfidenShare — Share Operation
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Fig. 3. Framework Integration with the ConfidenShare Service

The next sequence (line 9) on the diagram is the ConfidenShare service gener-
ating and initiating a request (using the cProvl Client API) to validate against
the service requirements for compliance (as defined in Sect.2.1). The policy
controller executes the request using the defined cProvl policy (Sect.2.1) in the
XACML engine (cProvl to XACML translation/mapping is discussed in the pre-
vious paper [5]) (line 14-16). If the response is granted, then the resource share
is permitted, and the provenance record is updated (line 17-22).

An example of a dynamic request using the Client Stack (cProvl Client APT)
for a share request is as follows:

// service provenance-based control request integration
dpr.constructRequest (session.get (SESSION_USER_NAME), false, filename.getName(), false,
null, ‘a-share’, true, null); //generates a cProvl request (see below)

This example can be read as a ‘ConfidenShare’ session user (‘Bob’) is request-
ing for authorization to share a file (document1). This request gets automatically
translated into an cProvl request, as follows.

<cprovl:PolicyRequest ....> <cprovl:Agent isRef="false"prov:id="confidenshare:ag-Bob"/>
<cprovl:Entity prov:id="confidenshare:e-document1">
<cprovl:reqField>cprovd:Resource</cprovl:reqField>
<cprovl:fieldValue isRef="false">confidenshare:e-documentl </cprovl:fieldValue>
</cprovl:Entity> ...
</cprovl:PolicyRequest>
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An XACML equivalent of this request is as follows.

<Request xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17 ... CombinedDecision="false">
<Attributes Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject">
<Attribute ... AttributeId="urn:oasis:names:tc:xacml:3.0:subject-id">
<AttributeValue DataType="urn:oasis:names:tc:xacml:3.0:data-type:xpathExpression"
XPathCategory="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject">ex:ag-Bob
</AttributeValue> </Attribute> ...
</Attributes>...
</Request>

This request is used by the extended XACML engine to determine if it is
compliant with the defined policies (Sect. 2.1) using the ‘ConfidenShare’ service’s
provenance data.

By making use of the APIs, major alterations to the service and business logic
were avoided when integrating the framework with the ConfidenShare service.
This will ultimately increase the level of trust using provenance-based compliance
control in order to empower the user to verify the compliance of SLAs of cloud-
based services.

5 Evaluation of Performance

Following is an evaluation of our integration of the framework with the Con-
fidensShare service in terms of performance and scalability. Our interest is in
the provenance model, compliance control engine and policy statements. The
machine used is an Intel (R) Core (TM) i7-2820QM CPU @2.30 GHZ, with 6Gb
of RAM and 600Gb of disk space.

Hypothesis 1 (Service Statements). The integration of the cProv provenance
model with the ‘ConfidenShare’ service generates and stores provenance data at
a relatively constant time in relation to the running of the service.

Method. We generate and store the provenance statements using the cProv
client API, and cProv REST API. Policy one requires a minimum of 10 state-
ments to execute, while 20 statements for policy two. This process is repeated
1000 times and added to the existing provenance graph. This produces two
graphs of 10,000 and 20,000 statements. The time it takes between the creation
and storage of statements are recorded as a unit of 10 statements in the first
graph and 20in the second (resulting in 2000 measurements).

Analysis. Figure4 shows a good correlation between the provenance entries
(generation & insertion) and the time. For every statement, on average, it
required 34.371 ms. On average per unit it took 314 ms in graph one and 746 ms
in graph two. This indicates the