
Bertram Ludäscher
Beth Plale (Eds.)

 123

LN
CS

 8
62

8

5th International Provenance
and Annotation Workshop, IPAW 2014
Cologne, Germany, June 9–13, 2014, Revised Selected Papers

Provenance
and Annotation of Data
and Processes



Lecture Notes in Computer Science 8628

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409


Bertram Ludäscher • Beth Plale (Eds.)

Provenance
and Annotation of Data
and Processes
5th International Provenance
and Annotation Workshop, IPAW 2014
Cologne, Germany, June 9–13, 2014
Revised Selected Papers

123



Editors
Bertram Ludäscher
University of Illinois
Urbana-Champaign, IL
USA

Beth Plale
Indiana University
Bloomington, IN
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-16461-8 ISBN 978-3-319-16462-5 (eBook)
DOI 10.1007/978-3-319-16462-5

Library of Congress Control Number: 2015933500

LNCS Sublibrary: SL 3 – Information Systems and Applications, incl. Internet/Web and HCI

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)



Preface

This volume contains the proceedings of the 5th International Provenance and Anno-
tation Workshop (IPAW), held during June 10–11, 2014 at the German Aerospace
Center (DLR) in Cologne, Germany. For the first time, IPAW colocated with the
Workshop on the Theory and Practice of Provenance (TaPP). Together the two leading
provenance workshops anchored ProvenanceWeek 2014, a full week of provenance-
related activities that included a shared poster session, a panel on reproducibility in
science, and tutorials on theW3C PROV standard, on provenance analytics, and the uses
of provenance in cell biology. The week was rounded out with afternoon-long birds-of-
a-feather activities around constructing a provenance record from data when provenance
was not collected in the first place, and benchmarking of provenance systems. This
collection constitutes the peer-reviewed papers of IPAW 2014. These include 14 long
papers which report in-depth the results of research around provenance and four
extended abstracts that discuss tools and services that were presented in the form of a
system demonstration. Finally, we have included 20 short abstracts of the joint IPAW/
TaPP poster session. The final papers, demos, and poster abstracts were selected from a
total of 53 submissions. All full-length research papers and demo papers received a
minimum of three reviews.

The papers of IPAW 2014 provided a glimpse into state-of-the-art research and
practice around the capture, representation, and use of provenance. Since provenance
often results in graphs, and large ones at that, several of the papers in this collection
proposed abstract graph models and methods with well-defined properties, properties
that can hold even when sanitized for potentially sensitive information. Tools are the
focus of a number of papers in this collection; these are innovative software applica-
tions that solve a particular problem and are evaluated experimentally. They are often
converging on the W3C PROV model for provenance interchange. Some papers dis-
cussed tools that enable provenance capture from software compilers, from web pub-
lications, and from scripts, using existing audit logs, and employing both static and
dynamic instrumentation. New methodologies for provenance aggregation and use
appeared in the collection as well. We see the evaluation of a linked data approach to
provenance publishing, the generation of documentation from provenance, and appli-
cation of provenance to protect attribution in scientific discovery.

In closing, we would like to thank the members of the Program Committee for their
thoughtful reviews, Dr. Andreas Schreiber (Local Chair) and Carina Haupt for their
excellent organization of IPAW and ProvenanceWeek 2014 at DLR, and—last but not
least—the authors and participants for making IPAW the stimulating and successful
event that it was.

December 2014 Bertram Ludäscher
Beth Plale



Organization

Program Committee

Ilkay Altintas University of California, San Diego, USA
Khalid Belhajjame PSL, Université Paris-Dauphine, LAMSADE,

France
Shawn Bowers Gonzaga University, USA
Adriane Chapman The MITRE Corporation, USA
James Cheney University of Edinburgh, UK
Susan Davidson University of Pennsylvania, USA
Tom De Nies Ghent University - iMinds - Multimedia Lab,

Belgium
Kai Eckert University of Mannheim, Germany
Juliana Freire NYU Polytechnic School of Engineering, USA
James Frew Bren School / UCSB, USA
Daniel Garijo Universidad Politécnica de Madrid, Spain
Yolanda Gil USC/ISI, USA
Paul Groth VU University Amsterdam, The Netherlands
Trung Dong Huynh University of Southampton, UK
H. V. Jagadish University of Michigan, USA
David Koop NYU Polytechnic School of Engineering, USA
Carl Lagoze University of Michigan School of Information,

USA
Timothy Lebo Rensselaer Polytechnic Institute, USA
Qing Liu CSIRO, Australia
Shiyong Lu Wayne State University, USA
Bertram Ludäscher University of California, Davis, USA
Tanu Malik University of Chicago, USA
Marta Mattoso COPPE- Federal Univ. Rio de Janeiro, Brazil
Deborah McGuinness Rensselaer Polytechnic Institute, USA
Simon Miles King’s College London, UK
Paolo Missier Newcastle University, UK
Luc Moreau University of Southampton, UK
Beth Plale Indiana University, USA
Yogesh Simmhan Indian Institute of Science, India
Curt Tilmes NASA GSFC, USA
Jan Van Den Bussche Hasselt University and University of Limburg



Contents

Standardization of Provenance Models, Services, Representations

ProvAbs: Model, Policy, and Tooling for Abstracting PROV Graphs . . . . . . . 3
Paolo Missier, Jeremy Bryans, Carl Gamble, Vasa Curcin,
and Roxana Danger

ProvGen: Generating Synthetic PROV Graphs with Predictable Structure . . . . 16
Hugo Firth and Paolo Missier

Applications of Provenance

Walking into the Future with PROV Pingback: An Application
to OPeNDAP Using Prizms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Timothy Lebo, Patrick West, and Deborah L. McGuinness

Provenance for Online Decision Making . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Amir Sezavar Keshavarz, Trung Dong Huynh, and Luc Moreau

Regenerating and Quantifying Quality of Benchmarking Data
Using Static and Dynamic Provenance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Devarshi Ghoshal, Arun Chauhan, and Beth Plale

Provenance Management Architectures and Techniques

noWorkflow: Capturing and Analyzing Provenance of Scripts . . . . . . . . . . . 71
Leonardo Murta, Vanessa Braganholo, Fernando Chirigati,
David Koop, and Juliana Freire

LabelFlow: Exploiting Workflow Provenance to Surface Scientific
Data Provenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Pinar Alper, Khalid Belhajjame, Carole A. Goble, and Pinar Karagoz

Auditing and Maintaining Provenance in Software Packages. . . . . . . . . . . . . 97
Quan Pham, Tanu Malik, and Ian Foster

Security and Privacy Implications of Provenance

An Analytical Survey of Provenance Sanitization . . . . . . . . . . . . . . . . . . . . 113
James Cheney and Roly Perera

A Provenance-Based Policy Control Framework for Cloud Services . . . . . . . 127
Mufajjul Ali and Luc Moreau

http://dx.doi.org/10.1007/978-3-319-16462-5_1
http://dx.doi.org/10.1007/978-3-319-16462-5_2
http://dx.doi.org/10.1007/978-3-319-16462-5_3
http://dx.doi.org/10.1007/978-3-319-16462-5_3
http://dx.doi.org/10.1007/978-3-319-16462-5_4
http://dx.doi.org/10.1007/978-3-319-16462-5_5
http://dx.doi.org/10.1007/978-3-319-16462-5_5
http://dx.doi.org/10.1007/978-3-319-16462-5_6
http://dx.doi.org/10.1007/978-3-319-16462-5_7
http://dx.doi.org/10.1007/978-3-319-16462-5_7
http://dx.doi.org/10.1007/978-3-319-16462-5_8
http://dx.doi.org/10.1007/978-3-319-16462-5_9
http://dx.doi.org/10.1007/978-3-319-16462-5_10


Applying Provenance to Protect Attribution in Distributed Computational
Scientific Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Luiz M.R. Gadelha Jr. and Marta Mattoso

Provenance Discovery and Data Reproducibility

Looking Inside the Black-Box: Capturing Data Provenance
Using Dynamic Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Manolis Stamatogiannakis, Paul Groth, and Herbert Bos

Generating Scientific Documentation for Computational Experiments
Using Provenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Adianto Wibisono, Peter Bloem, Gerben K.D. de Vries, Paul Groth,
Adam Belloum, and Marian Bubak

Computing Location-Based Lineage from Workflow Specifications
to Optimize Provenance Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Saumen Dey, Sven Köhler, Shawn Bowers, and Bertram Ludäscher

System Demonstrations

Interrogating Capabilities of IoT Devices . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Stanislav Beran, Edoardo Pignotti, and Peter Edwards

A Lightweight Provenance Pingback and Query Service
for Web Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Tom De Nies, Robert Meusel, Dominique Ritze, Kai Eckert,
Anastasia Dimou, Laurens De Vocht, Ruben Verborgh, Erik Mannens,
and Rik Van de Walle

Provenance-Based Searching and Ranking for Scientific Workflows . . . . . . . 209
Víctor Cuevas-Vicenttín, Bertram Ludäscher, and Paolo Missier

PROV-O-Viz - Understanding the Role of Activities in Provenance . . . . . . . 215
Rinke Hoekstra and Paul Groth

Joint IPAW/TaPP Poster Session

The Aspect-Oriented Architecture of the CAPS Framework for Capturing,
Analyzing and Archiving Provenance Data. . . . . . . . . . . . . . . . . . . . . . . . . 223

Peer C. Brauer, Florian Fittkau, and Wilhelm Hasselbring

Improving Workflow Design Using Abstract Provenance Graphs . . . . . . . . . 226
Tianhong Song, Saumen Dey, Shawn Bowers, and Bertram Ludäscher

VIII Contents

http://dx.doi.org/10.1007/978-3-319-16462-5_11
http://dx.doi.org/10.1007/978-3-319-16462-5_11
http://dx.doi.org/10.1007/978-3-319-16462-5_12
http://dx.doi.org/10.1007/978-3-319-16462-5_12
http://dx.doi.org/10.1007/978-3-319-16462-5_13
http://dx.doi.org/10.1007/978-3-319-16462-5_13
http://dx.doi.org/10.1007/978-3-319-16462-5_14
http://dx.doi.org/10.1007/978-3-319-16462-5_14
http://dx.doi.org/10.1007/978-3-319-16462-5_15
http://dx.doi.org/10.1007/978-3-319-16462-5_16
http://dx.doi.org/10.1007/978-3-319-16462-5_16
http://dx.doi.org/10.1007/978-3-319-16462-5_17
http://dx.doi.org/10.1007/978-3-319-16462-5_18
http://dx.doi.org/10.1007/978-3-319-16462-5_19
http://dx.doi.org/10.1007/978-3-319-16462-5_19
http://dx.doi.org/10.1007/978-3-319-16462-5_20


Early Discovery of Tomato Foliage Diseases Based on Data Provenance
and Pattern Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Diogo Nunes, Carlos Werly, Gizelle Kupac Vianna,
and Sérgio Manuel Serra da Cruz

Provenance in Open Data Entity-Centric Aggregation . . . . . . . . . . . . . . . . . 232
Fausto Giunchiglia and Moaz Reyad

Enhancing Provenance Representation with Knowledge Based
on NFR Conceptual Modeling: A Softgoal Catalog Approach. . . . . . . . . . . . 235

Sérgio Manuel Serra da Cruz and André Luiz de Castro Leal

Provenance Storage, Querying, and Visualization in PBase. . . . . . . . . . . . . . 239
Víctor Cuevas-Vicenttín, Parisa Kianmajd, Bertram Ludäscher,
Paolo Missier, Fernando Chirigati, Yaxing Wei,
David Koop, and Saumen Dey

Engineering Choices for Open World Provenance . . . . . . . . . . . . . . . . . . . . 242
M. David Allen, Adriane Chapman, and Barbara Blaustein

Towards Supporting Provenance Gathering and Querying in Different
Database Approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Flavio Costa, Vítor Silva, Daniel de Oliveira, Kary A.C.S. Ocaña,
and Marta Mattoso

Provenance for Explaining Taxonomy Alignments. . . . . . . . . . . . . . . . . . . . 258
Mingmin Chen, Shizhuo Yu, Parisa Kianmajd, Nico Franz,
Shawn Bowers, and Bertram Ludäscher

Challenges for Provenance Analytics Over Geospatial Data . . . . . . . . . . . . . 261
Daniel Garijo, Yolanda Gil, and Andreas Harth

Adaptive RDF Query Processing Based on Provenance . . . . . . . . . . . . . . . . 264
Marcin Wylot, Philippe Cudré-Mauroux, and Paul Groth

Using Well-Founded Provenance Ontologies to Query Meteorological Data . . . 267
Thiago Silva Barbosa, Ednaldo O. Santos, Gustavo B. Lyra,
and Sérgio Manuel Serra da Cruz

Applying W3C PROV to Express Geospatial Provenance at Feature
and Attribute Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Joan Masó, Guillem Closa, and Yolanda Gil

ProvStore: A Public Provenance Repository . . . . . . . . . . . . . . . . . . . . . . . . 275
Trung Dong Huynh and Luc Moreau

Contents IX

http://dx.doi.org/10.1007/978-3-319-16462-5_21
http://dx.doi.org/10.1007/978-3-319-16462-5_21
http://dx.doi.org/10.1007/978-3-319-16462-5_22
http://dx.doi.org/10.1007/978-3-319-16462-5_23
http://dx.doi.org/10.1007/978-3-319-16462-5_23
http://dx.doi.org/10.1007/978-3-319-16462-5_24
http://dx.doi.org/10.1007/978-3-319-16462-5_25
http://dx.doi.org/10.1007/978-3-319-16462-5_26
http://dx.doi.org/10.1007/978-3-319-16462-5_26
http://dx.doi.org/10.1007/978-3-319-16462-5_27
http://dx.doi.org/10.1007/978-3-319-16462-5_28
http://dx.doi.org/10.1007/978-3-319-16462-5_29
http://dx.doi.org/10.1007/978-3-319-16462-5_30
http://dx.doi.org/10.1007/978-3-319-16462-5_31
http://dx.doi.org/10.1007/978-3-319-16462-5_31
http://dx.doi.org/10.1007/978-3-319-16462-5_32


Sentence Templating for Explaining Provenance . . . . . . . . . . . . . . . . . . . . . 278
Heather S. Packer and Luc Moreau

Extending PROV Data Model for Provenance-Aware Sensor Web . . . . . . . . 281
Peng Yue, Xia Guo, Mingda Zhang, and Liangcun Jiang

SC-PROV: A Provenance Vocabulary for Social Computation . . . . . . . . . . . 285
Milan Markovic, Peter Edwards, and David Corsar

RDataTracker and DDG Explorer: Capture, Visualization
and Querying of Provenance from R Scripts . . . . . . . . . . . . . . . . . . . . . . . . 288

Barbara S. Lerner and Emery R. Boose

Provenance Support for Medical Research . . . . . . . . . . . . . . . . . . . . . . . . . 291
Richard McClatchey, Jetendr Shamdasani, Andrew Branson,
and Kamran Munir

Experiencing PROV-Wf for Provenance Interoperability in SWfMSs . . . . . . . 294
Wellington Oliveira, Daniel de Oliveira, and Vanessa Braganholo

Erratum to: Provenance in Open Data Entity-Centric Aggregation . . . . . . . . E1
Fausto Giunchiglia and Moaz Reyad

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

X Contents

http://dx.doi.org/10.1007/978-3-319-16462-5_33
http://dx.doi.org/10.1007/978-3-319-16462-5_34
http://dx.doi.org/10.1007/978-3-319-16462-5_35
http://dx.doi.org/10.1007/978-3-319-16462-5_36
http://dx.doi.org/10.1007/978-3-319-16462-5_36
http://dx.doi.org/10.1007/978-3-319-16462-5_37
http://dx.doi.org/10.1007/978-3-319-16462-5_38


Standardization of Provenance Models,
Services, Representations



ProvAbs: Model, Policy, and Tooling
for Abstracting PROV Graphs

Paolo Missier1(B), Jeremy Bryans1, Carl Gamble1,
Vasa Curcin2, and Roxana Danger2

1 School of Computing Science, Newcastle University,
Newcastle upon Tyne, UK

pmissier@acm.org
2 Imperial College, London, UK

Abstract. Provenance metadata can be valuable in data sharing
settings, where it can be used to help data consumers form judgements
regarding the reliability of the data produced by third parties. However,
some parts of provenance may be sensitive, requiring access control, or
they may need to be simplified for the intended audience. Both these
issues can be addressed by a single mechanism for creating abstractions
over provenance, coupled with a policy model to drive the abstraction.
Such mechanism, which we refer to as abstraction by grouping, simulta-
neously achieves partial disclosure of provenance, and facilitates its con-
sumption. In this paper we introduce a formal foundation for this type of
abstraction, grounded in the W3C PROV model; describe the associated
policy model; and briefly present its implementation, the ProvAbs tool
for interactive experimentation with policies and abstractions.

1 Introduction

Provenance, a formal representation of the production process of data, may
facilitate the assessment and improvement of the quality of data products, as
well as the validation and reproducibility of scientific experimental datasets.
This expectation predicates on an assumption of interoperability between mutu-
ally independent producers and consumers of provenance. The W3C PROV
generic provenance model [1] is intended to facilitate such interoperability, by
providing a common syntax and semantics for provenance models, and thus
enable provenance-aware data sharing at Web scale.

1.1 Abstracting Provenance

For provenance to be useful, it must be represented at a level of abstraction that
is appropriate to the consumer. For example, system-level provenance which
includes individual system calls and I/O operations may be appropriate for

This work was funded in part by EPSRC UK and DSTL under grant EP/J020494/1.

c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 3–15, 2015.
DOI: 10.1007/978-3-319-16462-5 1



4 P. Missier et al.

system auditing purposes, while a higher level description may be more appro-
priate to determine how a document evolved to its final version, e.g. through a
series of edits involving multiple authors. In some cases, the higher abstraction
can be computed from the detailed representation. One such case occurs when
provenance describes the execution of a workflow or dataflow, which can itself
be described at multiple levels of abstraction. Early work on provenance views
(Zoom) [2] is an example. Here users specify the abstraction they require on the
workflow, and that is used to compute a corresponding abstract view of the work-
flow’s trace. More generally, however, a trace may represent arbitrary process
executions and data derivations, and one cannot rely on a formal description of
the process to specify a suitable abstraction.

The problem of abstracting over provenance in such a more general set-
ting has been addressed in later work, notably the ProPub system [3]. Here
the main goal is to ensure that sensitive elements of the trace are abstracted
out, by means of a redaction process. In ProPub, users specify edit operations
on a provenance graph, such as anonymizing, abstracting, and hiding certain
parts of it. ProPub operates on a simplified provenance model (which pre-dates
PROV) which only includes use/generation relations, and adopts an “apply–
detect–repair” approach. First, user-defined abstraction rules are applied to the
graph, then consistency violations that may occur in the resulting new graph
are detected, and finally a set of edits are applied to repair such violations. In
some cases, this causes nodes that the user wanted removed to be reintroduced,
and it is not always possible to satisfy all user rules.

1.2 Contributions

Our work is motivated by the need to control the complexity of a provenance
graph by increasing its level of abstraction, as well as to protect the confidential-
ity of parts of the graph. Our specific contributions in this paper are threefold.
Firstly, we define a Provenance Abstraction Model (PAM) centred on the Group
abstraction operator. Group replaces a set of nodes Vgr ⊂ V in a valid PROV
graph PG with a new abstract node, resulting in the modified graph PG′. The
rewriting preserves the validity of the graph, in the sense made precise below,
and it does not introduce any new relations into PG′, which are not justified
by existing PG relations. A formal account of this operator is given in Sect. 3.
A preliminary but more extended account of this work appears in our technical
report [1].

Secondly, we present a simple policy model and language for controlling
abstraction, based on the assumption that provenance owners want to control
the disclosure of their provenance graphs to one or more receivers, with varying
levels of trust (Sect. 4). The model lets the owners associate a policy, pol , to a
graph. Policy evaluation results in a sensitivity value s(v, pol) being associated
to each node v. Assuming, as in the Bell-Lapadula model [4], that a clearance
level cl can be associated to each receiver, the nodes Vgr to be abstracted in
PG according to pol are those for which s(v, pol) > cl.



ProvAbs: Model, Policy, and Tooling for Abstracting PROV Graphs 5

Finally, we present the ProvAbs tool, which implements both Group and the
policy language. ProvAbs has been demonstrated on our confidentiality preser-
vation use case, in the context of intelligence information exchange [5].

1.3 Related Work

In addition to the Zoom and ProPub prototypes cited above, strands of research
that are relevant to this work include (i) provenance-specific graph redaction,
(ii) graph anonymization, and (ii) Provenance Access Control (PAC). Provenance
redaction [6] employs a graph grammar technique to edit provenance that is
expressed using the Open Provenance Model [7] (a precursor to PROV), as
well as a redaction policy language. The critical issue of ensuring that specific
relationships are preserved, however, is addressed only informally in the paper,
i.e., with no reference to OPM semantics.

Extensions to the relational data anonymization framework to graph data
structures, specifically for social network data, have been developed [8–10]. The
approach, involving randomly removing and adding arcs, will not work for PROV,
however, as it would result in new, false dependencies. More relevantly, PAC is
concerned with enforcing access control on parts of a provenance graph, in the
context of secure provenance exchange. An analysis of the associated challenges
[11] notes that provenance of data can be more sensitive than the data itself.
In a similar setting, [12] accounts for the possibility of forgery of provenance by
malicious users, and of collusion amongst users to reveal sensitive provenance to
others. However, the paper stops short of providing any hints at technical solu-
tions, and indeed it is not clear how these problems are specific to provenance,
as opposed to data sharing in general. Finally, our policy language is loosely
related to an XACML-based policy language [13] the access control system for
provenance, where path queries are used to specify target elements of the graph.

2 Essential PROV

We now introduce the PROV concepts that are required for the rest of the paper.
The PROV data model [1] defines three types of sets: (i) Entities (En), i.e., data,
documents; (ii) Activities (Act), which represent the execution of some process
over a period of time, and (iii) Agents (Ag), i.e., humans, computing systems,
software. The following set of core relations is also defined amongst these sets:

usage:used ⊆ Act × En generation:genBy ⊆ En × Act

derivation:wasDerivedFrom ⊆ En × En association:waw ⊆ Act × Ag

delegation:abo ⊆ Ag × Ag attribution:wat ⊆ En × Ag

For simplicity and due to space constraints, in this paper we restrict our
scope to just En, Act , and relations used and genBy . The extension of this
work to Agents and their relations (abo, wat), is available from our extended
tech report [5]. The extension to other core relations such as wasDerivedFrom is
straightforward and will not be discussed here.



6 P. Missier et al.

We denote instances of these relations as genBy(e, a), used(a, e), etc., where
e ∈ En, a ∈ Act . Following common practice, we view a set I of such binary
relation instances as a digraph G = (V,E), where V = En ∪ Act and E is a set
of labelled edges, and where x

r←− y ∈ E iff r(x, y) ∈ I.1 Finally, we denote the
set of all such provenance graphs as PGgu/ea, to indicate that they only contain
genBy and used relations amongst En and Act nodes.

Fig. 1. Example provenance graph of a complex document production process. The
ProvAbs model is designed to abstract some of the elements in the graph, for instance
to avoid their disclosure. Coloured boxes denote ProvAbs sensitivity annotations,
explained in Sect. 4 (Color figure online).

Figure 1 shows an example of a PGgu/ea graph, where ovals and rectan-
gles represent Entities, Activities, and Agents, respectively. The graph describes
a document, advice-report, which was ultimately derived from twitter feeds
captured at different times, through a series of query, consolidation, and analy-
sis activities. The agents to whom the documents and activities are ascribed are
omitted for simplicity. Note also that the nodes are decorated with user-defined
properties, such as Status.
1 Conventionally, we orient these edges from right to left, to denote that the relation

“points back to the past”.



ProvAbs: Model, Policy, and Tooling for Abstracting PROV Graphs 7

A set of formal constraints are defined on the PROV data model. These are
described in the PROV-CONSTRAINTS document [14]. Two groups of con-
straints are relevant here. The first (Constraint 50 — typing2) formalises the
set-theoretical definitions of the relations given above. Additionally, Constraint
553 stipulates that entities and activities are disjoint: En ∩ Act = ∅.

The second group concerns temporal ordering amongst events. PROV defines
a set of instantaneous events which mark the lifetime boundaries of Entities
(generation, invalidation), Activities (start, end), and Agents (start, end), as
well as some of the interactions amongst those elements, such as generation
and usage of an entity by an activity, attribution of an entity to an agent, and
more. Optionally, events may be explicitly associated to PROV elements. In the
following, we denote the start and end of an activity a by startEv(a), endEv(a),
respectively, and the generation and usage events for an entity e and activity a
with genEv(genBy(e, a)), useEv(used(a, e)), respectively (as mentioned, Agents
are beyond the scope of this paper). PROV events form a preorder, which we
denote �. The relevant temporal constraints are expressed as follows.

– C1: generation-generation-ordering (Constraint 39): If an entity is
generated by more than one activity, then the generation events must all be
simultaneous. Let e ∈ En, a1, a2 ∈ Act , and let genBy(e, a1) and genBy(e, a2)
hold. Then the following must hold:

genEv(genBy(e, a1)) � genEv(genBy(e, a2)) and
genEv(genBy(e, a2)) � genEv(genBy(e, a1))

– C2: generation-precedes-usage (Constraint 37): A generation event for
an entity must precede any usage event for that entity. Let a ∈ Act , e ∈ En,
and let used(a, e)), genBy(e, a) hold. Then:

genEv(genBy(e, a)) � useEv(used(a, e))

– C3: usage-within-activity (Constraint 33): Any usage of e ∈ En by some
a ∈ Act cannot precede the start of a and must precede the end of a. Let
used(a, e) hold. Then:

startEv(a) � useEv(used(a, e)) � endEv(a)

– C4: generation-within-activity (Constraint 34): The generation of e by
a cannot precede the start of a and must precede the end of a. If genBy(e, a),
then:

startEv(a) � genEv(genBy(e, a)) � endEv(a)

A valid PROV graph is one that satisfies all the constraints defined in the
PROV-CONSTR document [14]. Within our scope, a valid PGgu/ea graph is one
that satisfies the constraints defined here.
2 http://www.w3.org/TR/prov-constraints/#typing.
3 http://www.w3.org/TR/prov-constraints/#entity-activity-disjoint.

http://www.w3.org/TR/prov-constraints/#typing
http://www.w3.org/TR/prov-constraints/#entity-activity-disjoint


8 P. Missier et al.

3 Abstraction by Grouping

Simple edits that can be applied to a graph to protect confidentiality of its
content include removing individual nodes or edges. Alternatively, the node’s
identity can be changed, or the values associated to any of its properties can be
removed. These straightforward edits are legal in PROV and they will not be
discussed further.4 We are instead concerned with edits that replace a group of
nodes with a new abstract node.

3.1 Core Concepts

To model this type of abstraction, we are going to define a Group operator which
takes a graph G = (V,E) ∈ PGgu/ea and a subset Vgr ⊂ V of its nodes, and
produces a modified graph G′ = (V ′, E′) ∈ PGgu/ea, where Vgr is replaced with
a new single node. Group is closed under composition, thus allowing for further
abstraction by repeated grouping (abstraction of abstraction). Let vabs ∈ V ′ be
an abstract node in G′. We denote the set Vgr of nodes in G that it replaces by
source(vabs).

In order to understand the requirements for defining Group, consider the
replacements in Fig. 2. On the left, nodes Vgr = {a1, e4, e5} are replaced with a
new node e′. Simply using the original edges to connect the remaining nodes to
e′ leads to type constraint violations, namely for the new edges e1 ← e′, e2 ← e′,
and thus to an invalid graph.

Now consider Fig. 2(b), where Vgr = {e1, e3, e4, e5}. In this case, the simple
strategy or replacing Vgr with e′ and reconnecting the remaining nodes leads
to the two cycles: {genBy(e′, a1), used(a1, e

′)} and {genBy(e′, a3), used(a3, e
′)}.

Such cycles are legal, and in particular they are consistent with temporal con-
straints C1-C4 above. Indeed, it is easy to imagine a situation where an activity
a first generates an entity e, and then makes use of e. For instance, a could be a
programming artifact, i.e., an object that first instantiates a new object e, and
then makes use of e. In this case, the event ordering is

startEv(a) � genEv(e, a) � useEv(a, e) � endEv(a) (1)

Yet, we argue that introducing new cycles during abstraction is undesirable.
Intuitively, this is because cycles make stronger assumptions on the possible
temporal ordering of events than those in the original graph, and thus are only
representative of a restrictive class of graphs. To elaborate more precisely on
this point, we first introduce new definitions of generation and usage events for
an abstract node vabs, from the corresponding events associated to source(vabs).
For this, consider the definition of generation and usage in [1]:
4 Note that removing an arbitrary node may result in disconnected fragments of the

graph, as in general one cannot simply add edges to reconnect the remaining nodes,
unless those can be inferred from standard PROV constraints. For instance, if activ-
ity a is removed from the graph: {used(a, e1), genBy(e2, a)}, this results in two
disconnected nodes e1, e2, because no relationship can be inferred between them
from the original graph.



ProvAbs: Model, Policy, and Tooling for Abstracting PROV Graphs 9

Generation is the completion of production of a new entity (Sect. 5.1.3).
Usage is the beginning of utilizing an entity (Sect. 5.1.4).

An abstract node vabs can be thought of as representing the collection
source(vabs) in the new graph. Thus, its “generation” is logically defined as the
completion of production of its source nodes, that is, its associated generation
event should be the latest generation event from within its source. Note that
associating a generation event to an abstract node requires the existence of a
generating activity. Although this is not always provided as a result of abstrac-
tion by grouping, Inference 7 in [1] ensures that such generating activity exists.
Thus we can formally define generation for abstract nodes, as follows.

Definition 1 (Abstract node generation event). Let Vgr ∈ V and vabs be a
new abstract node, with source(vabs) = Vgr and generating activity a. Define:

genEv(genBy(vabs, a)) = max
ei∈source(vabs)

genEv(genBy(ei, ai))

where ai is the generating activity of ei.

Symmetrically, we associate a usage event to vabs, which is the earliest usage
event for the nodes in ei ∈ source(vabs).

Definition 2 (Abstract node usage events). Let Vgr ∈ V , G′ = (V ′, E′) be
the new abstract graph, and let vabs ∈ V ′ be a new abstract node. If there exists
an activity a ∈ V ′ such that used(a, vabs) holds, then

useEv(used(a, vabs)) = min
ei∈source(vabs)

useEv(used(ai, ei))

where ai is an activity that used ei.

e1

e2

e3

e4

e5

a1

a3

a2

a4

used

used used

used

used

wgBy

wgBy

e2
a1

a3

a2

a4

used

used

used

e'

wgBy

wgBy

e6

e6

used

used

(b) Cycles introduction(a) Type constraint violations

e1

e2

e4

e5

a1

a3

a2

a4

used

used

used

used

wgBy

wgBy

e1

e2

e'

a3

a2

a4

used

used
wgBy

??

Fig. 2. Issues with naive replacement of groups of nodes.



10 P. Missier et al.

With these definitions in place, temporal constraint (1), which applies to
simple usage-generation cycles in the graph, translates into the requirement that
every entity ei ∈ source(vabs) be generated before any use of ei. This constraint
ties to each other the generation and usage time of the nodes that are abstracted.
In the original graph, however, there is no such requirement: the generation of
any entity is, in general, independent of that of others. This suggests that a
new generation-usage cycle in the abstract graph adds constraints that are not
present in the original graph, and should therefore be avoided. Note that ProPub
[3] also insists on avoiding cycles, but the formal argument in support of this
requirement does not appear to be clearly grounded in semantics.

To summarize, the requirements for Group when G is rewritten into G′ are:
(i) no type constraint violations must occur in G′, (ii) no new relationships that
are not also present in G are introduced in G′, and (iii) no new usage-generation
cycles are introduced in G′.

3.2 Convexity, Closure, Extensions, and Replacement

Intuitively, the reason for cycles such as the one in Fig. 2(b) is that set Vgr is not
“convex”, that is, there are paths in G that lead out of Vgr and then back in again.
This observation suggests the introduction of a preliminary closure operation,
aimed at ensuring “convexity” and therefore acyclicity. This is defined as follows.

Definition 3 (Path Closure). Let G = (V,E) ∈ PGgu/ea be a provenance
graph, and let Vgr ⊂ V . For each pair vi, vj ∈ Vgr such that there is a directed
path vi � vj in G, let Vij ⊂ V be the set of all nodes in the path. The Path
Closure of Vgr in G is

pclos(Vgr, V ) =
⋃

vi,vj∈Vgr

Vij

Figure 3(b) shows closure applied to the example of Fig. 2, i.e. pclos({e1, e3, e4,
e5}, G) = {e1, e3, e4, e5, a1, a3}. The result of replacing this set with e′ is shown
in (c). However, while this solves the cycle problem, the graph still violates type
constraints, namely on the new edges e2 ← e′ and e6 ← e′. In this example, we
can construct a new group of nodes, {e′, e2, e6}, on the graph that results from
the first replacement, and replace it with a new node e′′. The resulting graph
(d) is valid.

To preserve validity in the general case, we are going to first extend the
closure in (b) to include e-nodes e2, e6, and then replace the resulting set with
e′′ (the “extend and replace” arrow from (b) to (d) in the figure). Following this
approach, Group is defined as the composition of three functions: closure, defined
above, extension, and replacement, as follows.

The extension of a set Vgr ⊂ V relative to type t ∈ {En,Act} is Vgr aug-
mented with all its adjacent nodes, in either direction, of type t. Formally:



ProvAbs: Model, Policy, and Tooling for Abstracting PROV Graphs 11

Definition 4 (extend). Let G = (V,E) ∈ PGgu/ea, t ∈ {En,Act}.
extend(Vgr, G, t) = {v′|(v, v′) ∈ E ∧ v ∈ Vgr ∧ type(v′) = t)} ∪

{v|(v′, v) ∈ E ∧ v ∈ Vgr ∧ type(v′) = t)} ∪ Vgr

In our example:

extend({e1, e3, e4, e5, a1, a3}, G,En) = {e1, e3, e4, e5, a1, a3, e2, e6}
Note that all sink nodes in extend(Vgr, G, t) are of type t by construction.

Replacement. Let G = (V,E), V ′
gr ⊂ V be obtained using extend , and let vnew

be a new node symbol that does not appear in V . Function replace replaces
V ′ with vnew in V , and connects vnew to the rest of the graph, as follows. Let
ϑout(V ′

gr), ϑin(V ′
gr), and ϑint(V ′

gr) denote the set of arcs of G leading out of V ′
gr,

leading into V ′
gr, Each arc (v′, v) ∈ ϑout(V ′

gr) is replaced with a new arc (vnew, v),
and each arc (v, v′) ∈ ϑin(V ′

gr) is replaced with a new arc (v, vnew), both of the
same relation type. Arcs in ϑint(V ′

gr) are removed along with the nodes in V ′
gr.

Indeed, all sink nodes in V ′
gr are of type t as noted above, and so is vnew by

construction. Thus, sink nodes are replaced by a node vnew of the same type.
Since the arcs have the same type as those they replace, it follows that replace
preserves type correctness. It is also easy to verify that each new edge in G′ can
be mapped to an existing edge in G (proof omitted).

Definition 5 (Replace). replace(Vgr, vnew, G) = (V ′, E′), where:

V ′ = V \ Vgr ∪ {vnew}
E′ = E \ (ϑout(Vgr) ∪ ϑin(Vgr) ∪ ϑint(Vgr)) ∪ ϑ′

out(Vgr) ∪ ϑ′
in(Vgr)

e1

e2

e3

e4

e5

a1

a3

a2

a4

used

used used

used

used

wgBy

wgBy
e1

e2

e3

e4

e5

a1

a3

a2

a4

used

used used

used

used

wgBy

wgBy

e2

e6

a2

a4

used

used

e'

(a) (b)

e6 e6

a2

a4

used

used

e''

replace

close

extend 
and replace

a5 a5

a5a5

Fig. 3. Grouping by closure and extension.



12 P. Missier et al.

3.3 T-Grouping

We can now define Group as a composition of closure, extensions, and replace-
ment. In general, nodes in Vgr can be either En or Act . It is necessary to spec-
ify the type of the replacement node, as this may lead to different results. To
make this explicit, we denote the operator by t-grouping (i.e., e-grouping
or a-grouping, respectively). In the next section, we clarify how user-defined
policies are used to control the application of t-grouping to a provenance graph.

Definition 6 (t-Grouping). Let G = (V,E) ∈ PGgu/ea, Vgr ∈ V , t ∈ {En,
Act}, and let vnew be a new node with type(vnew) = t. Then:

Group(G,Vgr, vnew, t) = replace(extend(pclos(Vgr, V ), V, t), vnew, G)

Note sink nodes in the closure are homogeneous and are replaced by a node
of the same type t. This satisfies the necessary condition for replace to per-
form correctly. Figure 4(a-1, a-2) illustrates Group(G, {e4, a2}, vnew,Act), while
Fig. 4(e-1, e-2, e-3) shows Group(G, {e4, a2}, vnew,En). Note that a new pattern
arises in the case of e-grouping as shown in Fig. 4(e-1, e-2). Now the extension
leads to Vcl = Vgr ∪{e5}, which in turn leads to the pattern shown in Fig. 4(e-3),
involving two generation events for the new entity eN . Although this is a valid
pattern, the two generation events must be simultaneous by C1 above. The intu-
itive interpretation for this pattern is that each of the two activities generated

e4

e5

a1

a3

a2

a4

u42

u52
g53

g41

a-grouping

 replace

e5a3 a4
u54g53

aN

e-grouping

replace

a1

a3

a4
un4

gN1

eN (e-2)

(a-1)

(a-2)

aN a4
uN4gNN

eN (e-3)

extend 
and replace

e4

e5

a1

a3

a2

a4

u42

u52
g53

g41
e4

e5

a1

a3

a2

a4

u42

u52
g53

g41
(e-1)

u54

u54u54

u5N

gN3

Fig. 4. e-grouping and a-grouping



ProvAbs: Model, Policy, and Tooling for Abstracting PROV Graphs 13

one entity in source(eN ), and that the abstraction makes these two events indis-
tinguishable. Formally, nothing further needs to be done to the graph. However
one can restore the more natural pattern whereby one single generation event is
recorded for eN , by propagating the grouping to the set of generating activities.
In the example, this leads to the graph in Fig. 4(e-3).

4 Policy Model

Having outlined the grouping operator, we now present a simple policy language
to let users specify one or more grouping sets Vgr for abstraction. We refer to
these users as Policy Setters (PS). Our approach consists of two phases. The
first phase involves annotating each node n with a sensitivity value s(n) and/or
a utility value u(n). These annotations are independent of any intended receiver
of the abstracted graph. In the second phase, a grouping set Vgr is generated for
a specific receiver r, denoted Vgr(r) for clarity. We assume, as in Bell-Lapadula
[4], that a pre-defined clearance level cl(r) is associated with r. The nodes to
be abstracted are simply those with sensitivity higher than cl(r): Vgr(r) = {v ∈
V |s(n) ≥ cl(r)}.

A policy is a sequence of rules. Each rule (i) identifies a set of nodes, and
(ii) assigns a sensitivity to each of those nodes. Node selection is achieved using
a simple form of path expressions on the graph, combined with filter conditions.
Keeping simplicity of use by non-expert PS in mind, we have chosen a simplified
fragment of regular path expressions on graphs [15]. The example rules in Fig. 5
apply to the graph in Fig. 1:

Fig. 5. Example Policy rules

The rules are executed in sequence. List declares a domain-specific ordered
enumeration of constants, called Classifications. The path expression in the
first command is a simple pattern where act and data are variables, and used
is the used relation. The pattern is then matched against the graph and the
variables are bound to nodes. The filter condition predicates on the values of
properties associated to the nodes. Here the value of data.Status is expected
to be one of the constants in the classification list. This predicate selects
all nodes with value at least Secret in the ordered list. The activity nodes
that satisfy the conditions have their sensitivity set to 7.5 Rather than allowing
arbitrary regular path expressions in the language, we expose specific traversal
operators. One example is descendantOf, which returns all nodes reachable from
5 A default value can be specified, i.e. for the cases where a data node has no Status

property, or the property has no value.



14 P. Missier et al.

a given start node. An example of its use is the second rule above. Rule evaluation
binds variables process and data to activity and entity nodes a, e, respectively,
such that used(a, e) holds and e is any node that is reachable from node with id
d14 (a constant value).

Utility is the counterpart to sensitivity. It denotes the interest of the prove-
nance owner in ensuring that a node be retained as part of the graph, as it repre-
sents important evidence which is not sensitive. Recall from our earlier example
that grouping may remove non-selected nodes in order to preserve validity, a
possibly undesirable side-effect. The utility values associated to different nodes
are used to quantify such loss of utility. Let Vret = V \ Vgr be the set of nodes
not intended for grouping, and V ′

ret ⊂ Vret the nodes which were in fact retained
after grouping. The residual utility is simply

RU V =

∑
n∈V ′

ret
u(n)

∑
n∈Vret

u(n)
(2)

which is maximized for V ′
ret = Vret. Policy setters who experiment with different

policy rules, i.e., using a test set of provenance graphs, may use RU V as a
quantitative indicator of utility loss associated with a given policy and receiver.

4.1 ProvAbs Tool

The Provenance Abstraction Model is implemented as part of a project involv-
ing confidentiality protection for provenance. The main purpose of the ProvAbs
tool is to let a PS explore partial disclosure options, by experimenting with
various policy settings and clearance level thresholds. Users may load a graph
in PROV-N format [16] and either specify a policy interactively, or load a pre-
defined policy file. The output consists of a graphical depiction of the graph,
annotated with its sensitivity values (these are the coloured boxes in Fig. 1),
as well as the final abstract version of the graph. The residual utility value (2)
is also returned. Provenance graphs are stored in the Neo4J graph database
(neo4j.org). Policy expressions are evaluated using a combination of the Neo4J
Traverse API and Cypher queries. ProvAbs and its documentation are publicly
available.6

5 Summary

In this paper we have presented a Provenance Abstraction Model (PAM) and its
implementation, ProvAbs. PAM is based on a Group operator, which replaces
a set of nodes in a PROV graph with a new abstract node while preserving
the validity of the graph. A simple notion of convexity of the set of nodes to
be replaced ensures that the rewriting does not introduce new cycles. Due to
space limitations, the scope of this paper is limited to PGgu/ea graphs, which
only include generation, usage relations on Activity and Entity nodes. A more
comprehensive model, including its extension to Agents, can be found in our
6 http://bit.ly/1dxg9X1.

http://neo4j.org
http://bit.ly/1dxg9X1


ProvAbs: Model, Policy, and Tooling for Abstracting PROV Graphs 15

report [5]. Encouraged by this initial study, we are now developing a more
comprehensive model of abstraction that accounts for larger fragments of
PROV — a complex specification in its own right.

References

1. Moreau, L., Missier, P., Belhajjame, K., B’Far, R., Cheney, J., Coppens, S.,
Cresswell, S., Gil, Y., Groth, P., Klyne, G., Lebo, T., McCusker, J., Miles, S.,
Myers, J., Sahoo, S., Tilmes, C.: PROV-DM: The PROV Data Model. Technical
report, World Wide Web Consortium (2012)

2. Biton, O., Boulakia, S.C., Davidson, S.B., Hara, C.S.: Querying and managing
provenance through user views in scientific workflows. In: ICDE, pp. 1072–1081
(2008)

3. Dey, S.C., Zinn, D., Ludäscher, B.: ProPub: towards a declarative approach for
publishing customized, policy-aware provenance. In: Bayard Cushing, J., French,
J., Bowers, S. (eds.) SSDBM 2011. LNCS, vol. 6809, pp. 225–243. Springer,
Heidelberg (2011)

4. Bell, D.: The Bell-LaPadula model. J. Comput. Secur. 4(2), 3 (1996)
5. Missier, P., Gamble, C., Bryans, J.: Provenance graph abstraction by node group-

ing. Technical report, Newcastle University (2013)
6. Cadenhead, T., Khadilkar, V., Kantarcioglu, M., Thuraisingham, B.: Transform-

ing provenance using redaction. In: Proceedings of the 16th ACM Symposium
on Access Control Models and Technologies, SACMAT 2011, pp. 93–102. ACM,
New York (2011)

7. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., et al.: The Open
Provenance Model — core specification (v1.1). Future Gener. Comput. Syst. 7(21),
743–756 (2011)

8. Zheleva, E., Getoor, L.: Preserving the privacy of sensitive relationships in graph
data. In: Bonchi, F., Malin, B., Saygın, Y. (eds.) PInKDD 2007. LNCS, vol. 4890,
pp. 153–171. Springer, Heidelberg (2008)

9. Bhagat, S., Cormode, G., Krishnamurthy, B., Srivastava, D.: Class-based graph
anonymization for social network data. Proc. VLDB Endow. 2(1), 766–777 (2009)

10. Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: Proceedings of
SIGMOD, pp. 93–106. ACM, New York (2008)

11. Braun, U., Shinnar, A., Seltzer, M.: Securing provenance. In: Proceedings of the 3rd
Conference on Hot Topics in Security, pp. 4:1–4:5. USENIX Association, Berkeley
(2008)

12. Hasan, R., Sion, R., Winslett, M.: Introducing secure provenance: problems and
challenges. In: Proceedings of the 2007 ACM Workshop on Storage Security and
Survivability, StorageSS 2007, pp. 13–18. ACM, New York (2007)

13. Cadenhead, T., Khadilkar, V., Kantarcioglu, M., Thuraisingham, B.: A language
for provenance access control. In: Proceedings of ACM Conference on Data and
Application Security and Privacy, CODASPY 2011, pp. 133–144, ACM, New York
(2011)

14. Cheney, J., Missier, P., Moreau, L.: Constraints of the provenance data model.
Technical report (2012)

15. Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph databases.
SIAM J. Comput. 24(6), 1235–1258 (1995)

16. Moreau, L., Missier, P., Cheney, J., Soiland-Reyes, S.: PROV-N: the provenance
notation. Technical report (2012)



ProvGen: Generating Synthetic PROV Graphs
with Predictable Structure

Hugo Firth(B) and Paolo Missier

School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
{h.firth,paolo.missier}@ncl.ac.uk

Abstract. This paper introduces provGen, a generator aimed at pro-
ducing large synthetic provenance graphs with predictable properties and
of arbitrary size. Synthetic provenance graphs serve two main purposes.
Firstly, they provide a variety of controlled workloads that can be used to
test storage and query capabilities of provenance management systems
at scale. Secondly, they provide challenging testbeds for experimenting
with graph algorithms for provenance analytics, an area of increasing
research interest. provGen produces PROV graphs and stores them in
a graph DBMS (Neo4J). A key feature is to let users control the rela-
tionship makeup and topological features of the graph, by providing a
seed provenance pattern along with a set of constraints, expressed using
a custom Domain Specific Language. We also propose a simple method
for evaluating the quality of the generated graphs, by measuring how
realistically they simulate the structure of real-world patterns.

1 Introduction

Every piece of data ever produced, either manually or automatically, has a prove-
nance. This is metadata that provides an account of how the data was created.
Examples include a blog’s author, the history of a piece of software along with
its contributors, the instruments used to take a measurement, and their set-
tings; or a description of an experimental process used to produce a scientific
result. The PROV data model for provenance [MMB+12], endorsed in 2013 by
the W3C, provides a formal and domain-agnostic grounding for provenance, in
the form of UML and OWL models, and RDF, XML, and relational (PROV-N
[MMCSR12]) serializations. We refer to PROV instances as digraphs, where
nodes are of three possible types: Entities (for data, documents, anything that
has provenance), Activities, which model the execution of a data consumption
and production process; and Agents, to whom Entities can be attributed, and
who hold responsibility for carrying out Activities. The edges represent instances
of relationships amongst the nodes, which are documented in the PROV-DM
specification [MMB+12].

The provenance traces associated with a homogeneous data collection (a
scientific data repository, all the blogs hosted on a particular site, all the artifacts
associated with a complex software project) also naturally form a collection. Such
collections grow in size both with the number of underlying data products, and
c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 16–27, 2015.
DOI: 10.1007/978-3-319-16462-5 2



ProvGen: Generating Synthetic PROV Graphs with Predictable Structure 17

with the complexity of their production process. Figure 1 suggests how different
collections can be placed into a space defined by volume, i.e., the number of
traces in a collection, and by the typical size of a trace within a collection.
For instance, many small traces (upper left) may be associated with a large
repository of scientific data, while complex software with a long history may be
represented by many large traces (upper right), as exemplified by the Git2Prov
[DMV+13] tool.

Arguably, the value of provenance comes not only from querying the content
of individual traces, but also from analytics, which can only be computed on
whole collections. It is therefore important for practical applications to demon-
strate the effectiveness of a data and service architecture to manage large bodies
of provenance, with special focus on the upper quadrant of our size/volume space.
Thus, we expect that the design of scalable repositories for provenance traces
should be a natural concern in provenance management. A number of recent
efforts have been documented on nascent provenance management infrastructure
[CAB+13,CLFF10,LLCF11,MMW+12], and there is evidence of the emergence
of applications that require provenance querying in a variety of settings (e.g.
[MOnH+13,ddOOn+12]). However, unlike other “big data” domains such as
Linked Data and more generally RDF triple stores, where performance bench-
marking is established practice, to the best of our knowledge no community-
made benchmarking and commonly accepted datasets that are specific to
provenance are available.1 This makes it difficult to benchmark and compare
different implementations with regards to storage techniques, query models, and
analysis algorithms.

This is somewhat counter-intuitive, given the amount of provenance that is
generated, in domains such as those alluded to above. In fact, only a handful of
real datasets are currently available through a community process, i.e., the first
ProvBench initiative in 2013 (http://bit.ly/1fBOswR)2, and even fewer conform
to the recent PROV standard and are therefore interoperable. Existing bench-
marking datasets which apply to RDF triple stores3 are not adequate, because
they fail to account for the specific data model and semantics of PROV, as well
as for the specific requirements of provenance query and analysis.

1.1 Contributions

Our assumption is that synthetic PROV graphs can be a valuable complement
to emerging natural provenance collections, provided that their structural prop-
erties reflect specific provenance patterns, with control over their repetition and
variability, and at varying scales. Such graphs can be used both for benchmarking
1 The use of community datasets for comparing the performance of predictive models

has also long been commonplace within the data mining and KDD community, where
challenge datasets are regularly used.

2 Further contributions are expected from the second ProvBench in 2014 (http://bit.
ly/1c0q5rS).

3 The W3C maintains a list of those http://bit.ly/1lhjvvn.

http://bit.ly/1fBOswR
http://bit.ly/1c0q5rS
http://bit.ly/1c0q5rS
http://bit.ly/1lhjvvn


18 H. Firth and P. Missier

trace size

nu
m

be
r o

f t
ra

ce
s

science
datasets

git2PROV

mediaWiki
History

retweet
history

Fig. 1. A simple space for homogeneous provenance collections

Fig. 2. The document revision provenance pattern in Wikipedia includes multiple
derivation and editing activities by multiple user or bot agents.

emerging provenance management systems, as well as to test analytics algorithms
that operate naturally on large provenance collections.

Our main contribution (Sect. 2) is the design and implementation of prov-
Gen, a PROV generator that is designed to help populate the space described
in Fig. 1. provGen “grows” collections of synthetic PROV graphs in a way that
conforms to real-life provenance patterns. These are currently user-defined and
modelled after patterns found in specific domains, and which reflect the nature
of the data generation process described by the provenance. For instance, the
prevalent provenance pattern for a Media Wiki website, which we refer to as
the “document revision” model, involves multiple revisions of articles, by mul-
tiple editors (Fig. 2). Git repositories exhibit similar patterns, which reflect the
revision history of the code. These patterns are different, for instance, from
those for the provenance of data generated using a workflow, which reflect the
consumer-producer graph structure of the dataflow specification.

Users control the “shape” of the graph being generated by provGen by pro-
viding two main elements. The first is a seed graph, which determines the specific
types of nodes and the relationships amongst them to be considered, in an oth-
erwise random generation process. The second element is a set of constraints,



ProvGen: Generating Synthetic PROV Graphs with Predictable Structure 19

expressed using a dedicated Domain Specific Language (DSL), which limit the
possible ways in which nodes and relationships are added. These two elements
ensure a predictable general shape for the generated graph, as well as its com-
pliance to PROV.

As discussed later, provGen relies on a graph DBMS backend (Neo4J). In
particular, the generation algorithm is based on graph rewrite rules that are
implemented using a combination of Cypher queries and Create statements.

1.2 Related Work

A growing body of research is devoted to generating large bodies of synthetic
graph data, either using purely random models [KN09,ER60], or by generating
graphs that exhibit specific statistical properties [BA99,BB05,LCKF05]. One
example is the preferential attachment model. Popularised by Barabasi and
Albert [BA99], this model states that as new vertices are added to a graph,
the probability of creating a relationship with node n is inversely proportional
to the degree of n. This model generates a graph with a degree distribution which
follows a power law.

An issue common to these models, emphasised for instance in a compre-
hensive survey on graph generators [CF06], is their focus on enforcing global
properties of the generated graph, such as degree distribution, clustering coeffi-
cient, etc. A potential reason for this focus is that these generators are aimed at
simulating social networks [PBE13,BB05], the statistical properties of which are
based on large sets of examples, and thus are fairly well understood [MMG+07].
In contrast, our generation strategy relies on user-specified patterns, rather than
a large set of pre-existing examples (in the future, we hope to be able to use pat-
terns that have been automatically discovered from existing graphs, by means
of standard graph mining techniques [KK04]). This has the advantage that the
overall topology of the graph can be made to reflect desired semantic properties
of the data, such as the average number of usages for a certain type of entity, the
average number of association of an agent with activities, and so forth. Pham
et al. [PBE13] are amongst the few to have addressed this problem. However,
they focus on a loosely related issue, namely the correlation between node and
relationship properties, such as an increased likelihood to be called “Joachim”
if you live in Germany, and on generating realistic synthetic value dictionaries
accordingly.

2 Graph Generation Model

Graph generation in provGen is an iterative process which starts from a single
node. At each iteration, a collection of predefined atomic rewrite rules is used to
add a set of new nodes or relationships to the current graph. These rules account
for all possible relation types that are defined in the PROV-DM specification.
As an example, consider the definition of the used(a, e) relation between an
activity a and e an entity e. Three atomic graph rewrite rules are defined for



20 H. Firth and P. Missier

this relation, namely (i) given an entity node e, add a new activity node a and
an edge used(a, e); (ii) given an activity node a, add a new entity node e and
an edge used(a, e); and (iii) given a pair of unrelated nodes (a, e), add edge
used(a, e). Since each single PROV relation type induces three atomic rewrites,
and we consider 13 types of relations from PROV, at each iteration provGen can
potentially fire any of 39 different rules.

Users can control the execution of these rules and the overall effect of the
generation process in three complementary ways, namely (i) by specifying a
seed graph, (ii) by adding a set of constraints, and (iii) by specifying additional
execution parameters. We now describe these in some detail.

1. Seed graphs. A seed graph specification restricts the set of rules to choose
from, to only those corresponding to the relations that appear in the graph. As
an example, the document revision pattern depicted in Fig. 2 may be expressed
as follows, using PROV-N syntax:4

Using this graph, provGen determines that only wasGeneratedBy , used , was
DerivedFrom and wasAssociatedWith rules are to be used. Furthermore, it will
associate the properties and values found in the seed graph, for instance
prov:type="edit", to the new nodes and relations.

2. Constraints. Even with this restriction, unconstrained generation would lead
to a graph with arbitrarily high node degree and branching factor, which would
bear little resemblance to the seed trace provided, except in its relationship
makeup. To further control the generation process, the second user input con-
sists of an additional set of constraints, specified using a natural and intuitive
syntax. Constraints are syntactically similar to workflow control-flow patterns
[VTKB03], expressing the required states of data being created.

Constraints consist of three structural components, as shown in the examples
of Table 1, namely a determiner, an imperative, and a condition. The determiner
is either variable (an Agent) or invariable (the Agent, a1) and determines the
elements to which a constraint applies. Requirements on these elements are
specified by means of the Imperative clause. For instance has in degree (the
requirement) at most 1 (a qualifier) allows a new incoming edge to be added
to any Entity that has none. The qualifier may optionally include a probabil-
ity distribution, as in the second example. This determines the likelihood that
4 Domain-specific properties have been added to nodes and relations to denote the

role of entities, activities, and agents in the pattern.



ProvGen: Generating Synthetic PROV Graphs with Predictable Structure 21

Table 1. Examples of user-defined constraints for graph generation.

Determiner Imperative Condition
Requirement Req. qualifier

an Entity has in degree at most 1;

an Agent has relationship
"WasAssociatedWith"

between 1, 1000 times,
with distribution
gamma(..., ...),

unless it has
relationship
"ActedOnBehalfOf";

an Activity has relationship
"Used"

exactly 1 times, unless it has property
{"prov:type"="create"};

an Entity has relationship
"WasDerivedFrom",

at least 1 times, unless it has
relationship
"WasGeneratedBy" with
the Activity, a1,
AND a1 has property
{"prov:type"="create"};

an action be taken in order to satisfy the requirement, namely the generation
of a new WasAssociatedWith relation. Furthermore, a condition specifies the
applicability of an imperative to a determined element, i.e. when (selective con-
dition) or unless (greedy condition). Thus, the second constraint inhibits the
creation of a new WasAssociatedWith relation for any Agent that already has a
ActedOnBehalfOf relation associated to it. Conditions admit the use of logical
connectives, as in the third and last constraint examples, and may predicate on
properties that are mentioned in the seed graph, such as prov:type (pre-defined)
or ex:name (user-defined). Finally, the last constraint shows an example of vari-
able usage (a1).

Note that these constraints are in addition to those defined in the PROV-
CONSTR document [CMM12]. For instance, provGen will not create a graph
where entities are generated by multiple activities. The sketch in Fig. 3 shows
the different patterns obtained when generating the graph with and without
enforcing the constraints.

Fig. 3. Sketch of PROV graphs generated with and without enforcing user constraints

A more complete account of the constraint DSL can be found as part of the
provGen documentation5.
5 The provGen website: http://bit.ly/1w5Aj22.

http://bit.ly/1w5Aj22


22 H. Firth and P. Missier

3. Execution Parameters. Finally, users may specify additional execution para-
meters to control the number of distinct (unconnected) graphs to be generated,
as well as the average number of nodes and edges per graph. More advanced
parameters can be used to control the average height (maximum depth) and
width (maximum breadth) for each graph generated.

The combination of seed graph, constraints, and execution parameters leads
to collections of PROV graphs that approximate real traces from different
domains, and which can be used to populate selected areas of our provenance
state (Fig. 1). In Sect. 4 we briefly sketch the evaluation method we are using to
test the quality of generated graphs, with respect to a large testbed of provenance
graphs with known topological properties.

Overall, provGen’s generation process consists of a nested iteration loop. In
the inner loop, provGen iterates over the set of active atomic rewrite rules. When
a rule fires, any constraint that applies to the elements that it is operating upon
is checked, and if any of those constraints is violated, the rule has no effect. This
process is repeated in the outer loop, until a halting condition is satisfied, i.e.,
the desired size is reached, and the DSL constraints are satisfied.

3 Mapping the Model to Graph DBMS Queries

provGen is implemented using the Neo4J graph DBMS6 as a back end. In partic-
ular, both atomic rewrite rules and user constraints are transparently compiled
into CREATE and MATCH statements expressed in Cypher, Neo’s declarative graph
pattern language7. Queries (in addition to CREATE statements) are required at
each iteration to test the requirements and conditions associated with user con-
straints (Table 1). This compilation step provides isolation from the data layer,
delegating graph traversal to the underlying DBMS, and also provides flexibil-
ity for retargeting the graph generator to a different back end. A native graph
DBMS also offers a more natural data model for PROV than a more traditional
RDBMS solution.

The provGen architecture is shown in Fig. 4. Components are deployed on a
server, which is reachable from a web based client application through a REST
API. In the following sections, we focus on the steps involved in generating
Cypher queries from rewrite rules and user constraints.

3.1 From Seed Traces to MATCH Query Clauses

The first step involves parsing the seed traces. Since these user-supplied samples
of PROV data may be serialized into multiple formats, parsing relies upon sev-
eral third party libraries, including the OWLAPI8 and ProvToolbox.9 This step
6 The Neo4j project: http://bit.ly/Pwux7U.
7 Cypher documentation: http://bit.ly/1klIlMK.
8 The OWLAPI project: http://bit.ly/N9hsPM.
9 The ProvToolbox project: http://bit.ly/1fV95nN.

http://bit.ly/Pwux7U
http://bit.ly/1klIlMK
http://bit.ly/N9hsPM
http://bit.ly/1fV95nN


ProvGen: Generating Synthetic PROV Graphs with Predictable Structure 23

Fig. 4. provGen system architecture.

results in a subset of the 39 pre-defined atomic graph rewrite rules, mentioned
in Sect. 2, to be selected for the generation step.

Rewrite rules are statically mapped to Cypher queries. As an example, below
we show the queries responsible for creating the PROV used relationship. Note
that multiple queries are required in order to account for the directed nature of
PROV relationships and the ability to create a edge between two pre-existing
nodes.

Query fragment (1) matches any node a of type Activity, it creates a new Entity
node, and it connects it to a using a used relationship. Symmetrically, (2) adds
a new Activity node to any existing Entity node. Finally, (3) takes a pair of
existing nodes a (Activity), b (Entity) and again creates a used relationship
between them.

The examples above show empty brackets, to indicate that no properties are
associated to the nodes and relationships. However, all properties associated to
the elements of the seed trace are also associated to corresponding elements of
the new graph. Thus, for example activities would have a property prov:type,
inherited from the activity node in the seed graph above.

3.2 Constraints as WHERE Clauses

The DSL parser10 separates the component elements of each constraint, namely
determiner, imperative and condition. Requirements may be expressed on various
10 The parser is implemented using Scala parser combinators: http://bit.ly/1cURrAo.

http://bit.ly/1cURrAo


24 H. Firth and P. Missier

graph features, i.e., nodes in/out degree, relationship, property, etc. . . . Each type
of requirement is compiled into a Cypher query WHERE clause. These clauses are
then added to the MATCH statements that represent the atomic rewrite rules, to
form complete queries. Consider the following example:

These constraints are easily interpreted in the context of a document revision
pattern, where activities are edits of document versions, which produce a new
version. For these activities, we stipulate that they use only one entity (the
original document). Activities that create new documents are exceptions, noted
by the ex:name=create property, and these activities are allowed to use zero
or more input documents. Additionally, we add an upper bound to an Activity
node’s degree to illustrate a more complex constraint.

The constraint is compiled into query fragments (4) and (5) in the Cypher
query below, where they are merged with the MATCH and CREATE clauses of
atomic query (1) from the example above:

The query specifies at the same time the node and relationship generation,
and the constraint. The MATCH clauses bind variables a and r to an Activity and
to the set of its edges, respectively (either incoming or outgoing, as no direction
is specified). The WHERE clause ensures that the CREATE statement (which creates
a new used relationship) is only executed on a if the ‘‘ex:name’’ property is
not “create”, and the number of edges in set r is at most 4.

3.3 Generator Loop

The generator loop (Fig. 4) accepts a collection of atomic create operations,
selected and constrained as described above, and repeatedly iterates over it,
executing each associated Cypher query against the underlying graph database.

The generator loop has several halting conditions: both explicit, where exe-
cution parameters, detailed in Sect. 2, halt generation as the order |V | and size
|E| of the graph reach their specified maxima; and implicit, where constraint
rules may prevent the execution of individual operations in order to avoid vio-
lating specified range requirements. Note that limits in cardinality imposed by
execution parameters may be met before the minimum requirements of a con-
straint rule are satisfied. When this is the case, provGen gives priority to the
user constraints, to ensure that those are not violated.



ProvGen: Generating Synthetic PROV Graphs with Predictable Structure 25

4 Evaluation Methodology

The main purpose of provGen is to fulfill the need to generate a possibly large
number of provenance graphs for data domains where provenance is not yet
routinely collected, or is not abundant. Yet, our evaluation of the system’s effec-
tiveness relies on precisely those domains where large provenance collections are
available. Specifically, we evaluate provGen by comparing selected properties of
existing “real-world” provenance graphs, which we call control set, to those of
generated graphs (the test set) intended to emulate them. Using this approach,
we aim to empirically demonstrate that provGen may be configured to generate
datasets that are “similar” to those produced by multiple different sources of
provenance.

Our evaluation is ongoing. Here we illustrate the approach using one single
control set, namely a set of Wikipedia provenance traces, representative of the
document revision pattern, taken from the ProvBench repository and compliant
with PROV.11 The control graphs include about 4,000 nodes and 6,000 relation-
ships. Our test set consists of two synthetic datasets of roughly the same size
as the control, produced using provGen with a user-created seed trace for the
document revision pattern, along with constraints and parameters.

In this initial evaluation we have considered three simple criteria. Firstly, we
note that in the control set, which follows the linear Wikpedia pattern (Fig. 2),
each Entity is used exactly once. Thanks to our user constraints, this is easily
replicated exactly in the test set. Secondly, as example criteria we additionally
consider the number of associations per Agent, and the average number of entities
with distinct titles contributed to, per Agent. In the control, each Agent has 2.4
associations on average (std dev. 6.2), while in our test set it has 2.9. The average
number of contributions per Agent is 1.1 in the control (std dev 0.8), while in the
test is 1.8. Encouraged by these preliminary results, we are now in the process
of more extensively testing provGen using a variety of criteria that can be easily
measured both on control and on test graph.

5 Conclusion

In this paper we have presented provGen, a PROV-specific graph generator
driven by user-defined seed graphs, which represent provenance patterns, and
additional user-defined constraints designed to enforce semantics properties of
the generated graph. Constraints are expressed in a dedicated “plain english”
constraints language.

One feature that sets provGen apart from existing approaches to graph gen-
eration is that it provides users with local control over topological features and
statistical characteristics of the graph. Constraints are evaluated locally for each
node created, thus avoiding the complexity of verifying them globally. provGen
is implemented using a Neo4J graph database back end. Graph rewrite rules and
user constraints are both mapped to Cypher queries. Rewrite rules are mapped
11 ProvBench’2013 CFP: http://bit.ly/1fBOswR.

http://bit.ly/1fBOswR


26 H. Firth and P. Missier

to CREATE clauses, while constraints are compiled into WHERE clauses. The two
are blended together into complete Cypher queries, so that graph generation
relies entirely on Neo4J’s native query engine.

We have also briefly discussed our approach to evaluating the effectiveness of
provGen in generating “real-world” provenance, i.e., by comparing some of its
key statistical properties with those of real graphs within the same class. We are
currently experimenting with a variety of seed graph patterns, and more exten-
sively evaluating provGen’s capability to mimick real provenance. Currently seed
patterns must be manually designed or discerned. In future, an attempt to col-
late a collection of patterns common to provenance data, as has been done with
workflow specifications [VTKB03], could prove useful.

Graph generation performance is another concern we are currently address-
ing. Generating large scale graphs requires efficient execution of the MATCH–
CREATE-WHERE queries shown above, on graphs of increasing size. We are finding
that Neo4J may not be an optimal choice, as it is geared for OLTP workloads
with consequent transaction management overhead. However, our architecture is
flexible and allows for experimentation, as changing the back end simply requires
retargeting the mapping of rules and constraints to a different query language.

References

[BA99] Barabási, A.L., Albert, R.: Emergence of scaling in random networks.
Science 1–11 (1999)

[BB05] Batagelj, V., Brandes, U.: Efficient generation of large random networks.
Phys. Rev. E Stat. Nonl. Soft Matter Phys. 71(3 Pt 2A), 036113 (2005)

[CAB+13] Chebotko, A., Abraham, J., Brazier, P., Piazza, A., Kashlev, A., Lu, S.:
Storing, indexing and querying large provenance data sets as RDF graphs
in apache HBase. In: 2013 IEEE Ninth World Congress on Services, pp.
1–8. IEEE, June 2013

[CF06] Chakrabarti, D., Faloutsos, C.: Graph mining. ACM Comput. Surv.
38(1), 2–es (2006)

[CLFF10] Chebotko, A., Shiyong, L., Fei, X., Fotouhi, F.: RDFProv: a relational
RDF store for querying and managing scientific workflow provenance.
Data Knowl. Eng. 69(8), 836–865 (2010)

[CMM12] Cheney, J., Missier, P., Moreau, L.: Constraints of the Provenance Data
Model. Technical report (2012)

[ddOOn+12] de A.R. Gonçalves, J.C., de Oliveira, D., Ocaña, K.A.C.S., Ogasawara,
E., Mattoso, M.: Using domain-specific data to enhance scientific work-
flow steering queries. In: Groth, P., Frew, J. (eds.) IPAW 2012. LNCS,
vol. 7525, pp. 152–167. Springer, Heidelberg (2012)

[DMV+13] De Nies, T., Magliacane, S., Verborgh, R., Coppens, S., Groth, P.T.,
Mannens, E., Van de Walle, R.: Git2PROV: exposing version control
system content as W3C PROV. In: Poster and Demo Proceedings of the
12th International Semantic Web Conference, pp. 125–128 (2013)

[ER60] Erdös, P., Rényi, A.: On the evolution of random graphs. In: Publication
of the Mathematical Institute of the Hungarian Academy of Sciences, pp.
17–61 (1960)



ProvGen: Generating Synthetic PROV Graphs with Predictable Structure 27

[KK04] Kuramochi, M., Karypis, G.: An efficient algorithm for discovering fre-
quent subgraphs. IEEE Trans. Knowl. Data Eng. 16(9), 1038–1051
(2004)

[KN09] Karrer, B., Newman, M.E.J.: Random graph models for directed acyclic
networks. Phys. Rev. E 80(4), 046110 (2009)

[LCKF05] Leskovec, J., Chakrabarti, D., Kleinberg, J.M., Faloutsos, C.: Realis-
tic, mathematically tractable graph generation and evolution, using kro-
necker multiplication. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho,
R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 133–145.
Springer, Heidelberg (2005)

[LLCF11] Lim, C., Lu, S., Chebotko, A., Fotouhi, F.: OPQL: a first OPM-level
query language for scientific workflow provenance. In: 2011 IEEE Inter-
national Conference on Services Computing, pp. 136–143. IEEE, July
2011

[MMB+12] Moreau, L., Missier, P., Belhajjame, K., B’Far, R., Cheney, J., Coppens,
S., Cresswell, S., Gil, Y., Groth, P., Klyne, G., Lebo, T., McCusker, J.,
Miles, S., Myers, J., Sahoo, S., Tilmes, C.: PROV-DM: The PROV Data
Model. Technical report, World Wide Web Consortium (2012)

[MMCSR12] Moreau, L., Missier, P., Cheney, J., Soiland-Reyes, S.: PROV-N: The
Provenance Notation. Technical report (2012)

[MMG+07] Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee,
B.: Measurement and analysis of online social networks. In: Proceedings
of the 7th ACM SIGCOMM Conference on Internet Measurement - IMC
2007, p. 29. ACM Press, New York (2007)

[MMW+12] Marinho, A., Murta, L., Werner, C., Braganholo, V., da Cruz, S.M.S.,
Ogasawara, E., Mattoso, M.: ProvManager: a provenance management
system for scientific workflows. Concurrency Comput. Pract. Experience
24(13), 1513–1530 (2012)

[MOnH+13] Mattoso, M., Ocaña, K., Horta, F., Dias, J., Ogasawara, E., Silva, V.,
de Oliveira, D., Costa, F., Araújo, I.: User-steering of HPC workflows:
state-of-the-art and future directions. In: Proceedings of the 2nd ACM
SIGMOD Workshop on Scalable Workflow Execution Engines and Tech-
nologies, SWEET 2013, pp. 4:1–4:6. ACM, New York (2013)

[PBE13] Pham, M.-D., Boncz, P., Erling, O.: S3G2: a scalable structure-correlated
social graph generator. In: Nambiar, R., Poess, M. (eds.) TPCTC 2012.
LNCS, vol. 7755, pp. 156–172. Springer, Heidelberg (2013)

[VTKB03] Van der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros,
A.P.: Workflow patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)



Applications of Provenance



Walking into the Future with PROV Pingback:
An Application to OPeNDAP Using Prizms

Timothy Lebo(B), Patrick West, and Deborah L. McGuinness

Tetherless World Constellation,
Rensselaer Polytechnic Institute, Troy, NY, USA

lebot@rpi.edu

http://tw.rpi.edu

Abstract. Adding provenance to existing systems can benefit users, but
comes at an expense that may be difficult for some to justify. This trade-
off can be overcome by increasing the value of provenance, by decreasing
the cost to add it – or by doing both. This paper offers a contribution for
each. First, we develop further the W3C PROV pingback technique so
that it may reach its potential to interconnect provenance records that
would traditionally sit in isolation, thus increasing their value. Second,
we reduce the expense to publish the provenance of existing host systems
by using minimal coupling to the Prizms Linked Data platform. Using an
Earth Sciences scenario and the OPeNDAP data transport architecture
as an example host system, we investigate how PROV pingback could
work in practice, demonstrate its potential, and identify outstanding
issues that must be addressed before it can be widely adopted.

Keywords: PROV · Provenance · Pingback · Linked Data · Discovery

1 Introduction

The provenance community reached a significant milestone in 2013 when the
World Wide Web Consortium (W3C) published its PROVenance documents.
With a core model for provenance standardized, the community is now bet-
ter prepared to turn their attention to subsequent challenges in research and
application. In application, work may now focus on the relatively easier task of
creating extensions that suit specific uses, which benefit from a common abstract
structure and a growing set of interoperable tools. PROV was designed to suit
Linked Data design principles [12], and publishing PROV as Linked Data offers
great potential for distributed and uncoordinated discovery, access, and use of
others’ information. Conversely, PROV can benefit Linked Data by offering its
consumers insight into how their distributedly-collected data came to be.

Unfortunately, the potential advantages of pairing PROV with Linked Data
have yet to be seen at a scale as grand as the Web it uses. Now that PROV
is a prominent fixture in the toolbox, a broader development community needs
compelling reasons to adopt the W3C Recommendation and they need practical

c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 31–43, 2015.
DOI: 10.1007/978-3-319-16462-5 3



32 T. Lebo et al.

answers for how to do it. Because existing host systems are often large and
heavily invested in technologies not well suited to adopting Linked Data design
to publish provenance records, solutions are needed to bridge the gap between
existing systems and an interconnected Web of provenance with other systems.
Our work aims to provide a technical foundation for such solutions, by developing
PROV Pingback and applying designs from the Prizms platform.

PROV Pingback [9] has the potential to drastically interconnect provenance
records that would traditionally sit in isolation. In contrast to the rest of PROV,
which describes how to describe provenance so that anyone with the record may
read about an object’s history, PROV Pingback enables parties to discover what
happened to objects they created after they have left their purview. It addresses
the practical need for upstream parties to obtain provenance recorded down-
stream, and does so with a simple technique based on the HTTP Link header.

The Prizms system emerged from the need to create high quality Linked Data
[11] and has evolved into a Linked Data platform geared towards replicability,
reproducibility, and transparency of the data that it publishes. Prizms supports
the many Extract-Transform-Load processes that may be required to integrate
a variety of others’ data about a topic of interest, and it provides for consistent
provenance capture, metadata descriptions, and hosting using best practices.

The contribution of this paper is two-fold. First, it presents an approach
to publish provenance of existing systems with very little effort; it allows them
to expose provenance records without the overhead of publishing the records
themselves and while benefiting from Linked Data principles. Second, this paper
investigates the use of the PROV Pingback technique by applying it to a realistic
scenario, demonstrating its potential, and identifying outstanding issues that
need to be addressed before it can be mature enough for mainstream adoption.
The work presented here can be used to both increase the value of provenance
while reducing the effort required to add provenance to existing systems.

2 The State of the Linked PROV Cloud

Almost a year after standardization, PROV has not yet flourished within Linked
Open Data (LOD). We present here two lightweight measures of PROV’s LOD
presence using two resources popular within the Linked Data community: Open-
Link Software’s LOD Cache and datahub.io’s dataset catalog. Attempts to
provide a “State of the Linked PROV Cloud” suggest two challenges that the
approach in this paper aims to address. First, it is possible that it is still too diffi-
cult for many to publish provenance in a manner that benefits a wider audience.
Second, it is too difficult to discover existing provenance, even with Linked Data
principles in place. Although widespread publication and discovery may not be
a problem within individual applications (since first parties receive portions of
provenance from which they can work), it remains an issue for those who wish
to repurpose others’ existing data as an independent third party.



Walking into the Future with PROV Pingback 33

Table 1. Occurrences of PROV terms appearing in LOD Cache (20 Feb 2014).

Entity 33

wasDerivedFrom 24,975,410

hadPrimarySource 7,874

generatedAtTime 3,376

wasGeneratedBy 33

wasAttributedTo 33

Activity 214

used 214

startedAtTime 214

wasAssociatedWith 214

generated 214

wasInformedBy 106

endedAtTime 108

Agent 1

2.1 PROV Occurrences in OpenLink Software’s LOD Cache

OpenLink Software’s LOD Cache is a collection of 51 billion1 RDF triples assem-
bled over a period of years, and continues to grow as datasets come to the atten-
tion of its maintainers. We submitted SPARQL queries to find occurrences of the
50 classes and 68 properties in PROV. Table 1 shows the occurrences of the only
fourteen PROV terms that occurred in the dataset. Most term’s occurrences are
inconsequential, except perhaps prov:wasDerivedFrom’s 24 million (˜12M from
DBPedia pointing to Wikipedia pages and ˜12M from wikidata.org). Unfortu-
nately, these results do not portray a thriving PROV LOD ecosystem.

2.2 PROV Occurrences in datahub.io’s Dataset Catalog

The datahub.io site should provide a more comprehensive and unbiased view of
Linked Data, since anyone may contribute dataset listings. In addition to gather-
ing entries for many other contemporary datasets, the site was used to organize
the famous “LOD cloud diagram” between 2007 and 20112, which established
conventions for describing Linked Datasets within the CKAN data portal plat-
form. According to the metadata at datahub.io3, fifteen datasets use the PROV
vocabulary. Nine were created by the authors, so we set those aside. DBPedia
is one, but we already saw it through the LOD Cache (above). That leaves five
independent PROV adoptions (imf-linked-data, bfs-linked-data, fao-linked-data,
oecd-linked-data, ecb-linked-data), but imf-linked-data can also be seen through
1 http://lists.w3.org/Archives/Public/public-lod/2013May/0154.html.
2 http://lod-cloud.net.
3 http://datahub.io/dataset?tags=format-prov.

http://lists.w3.org/Archives/Public/public-lod/2013May/0154.html
http://lod-cloud.net
http://datahub.io/dataset?tags=format-prov


34 T. Lebo et al.

the LOD Cache and all five were created by the same author and thus share
similar structure. So, a community-based perspective on the use of PROV in
LOD does not portray a thriving PROV LOD ecosystem, either.

3 Approach

In this section, we describe our approach to easily create provenance leveraging
the Prizms Linked Data platform, since it appears still too difficult to publish
provenance according to Linked Data principles and it is still too difficult to dis-
cover provenance in LOD. First, we introduce the Prizms platform by creating
datasets about the structural provenance of our example host system, OPeN-
DAP. OPeNDAP is a data transport architecture and protocol widely used by
earth scientists to access remote data, such as satellite weather observations.
We chose to use the OPeNDAP system to highlight how a system that does not
use Linked Data principles can benefit from publishing its provenance records
as Linked Data. Next, we describe how a minimal coupling to Prizms can pub-
lish a host system’s behavioral provenance, and discuss the distinction between
structural and behavioral provenance. Then, we describe the addition of PROV
Pingback to accept reports of downstream derivations of our host system’s data
products. Finally, we demonstrate how the host can use its accumulation of
clients’ provenance to easily lead others to those downstream derivations.

3.1 Prizms’ “SDV” Dataset Organization: Source, Dataset, Version

We apply Prizms’ SDV organization principle throughout our approach. Prizms
is a Linked Data platform designed to sustainably gather, integrate, and pub-
lish third party data to produce an integrated corpus about topics of inter-
est. Prizms combines a few organizational principles, several existing toolsets,
and commodity version control (Git) to facilitate coordination and collaboration
among distributed team members. As a consequence, Prizms’ design facilitates
within-team replicability and, by extension, reproducibility by external parties.

The SDV organization principle [11] organizes the many individual Extract-
Transform-Load (ETL) processes that a data corpus or application may require
according to three fundamental provenance aspects:

– Source, the agent (person, organization) providing the dataset.
– Dataset, a logical, abstract portion of the agent’s data.
– Version, a concrete portion of an agent’s abstract dataset.

Each of these three provenance aspects is identified using a concise identifier
that follows a few conventions4 (e.g. usda-gov, national-nutrient-database,
and release-26) with the objective that a consumer could identify the original
source agent, and the source agent could identify the dataset and version in their
original holdings. The three aspects form a hierarchy for the datasets and serve
as a naming scope for the entities mentioned within the datasets.
4 https://github.com/timrdf/csv2rdf4lod-automation/wiki/SDV-organization.

https://github.com/timrdf/csv2rdf4lod-automation/wiki/SDV-organization


Walking into the Future with PROV Pingback 35

In the following example that we use to illustrate our approach, we establish
six abstract datasets from three different sources. Because the datasets overlap in
content but are created by drastically different means, it is important to organize
them so that they can be properly managed. By following the SDV principle to
organize provenance datasets, we are able to achieve provenance of provenance
using the same mechanisms that are in place to express provenance of datasets.

3.2 A Concrete Basis: Modeling the Structure of the Host System

When a client requests a data product, its provenance often describes behavioral
influences, such as the kinds of operations applied (e.g. filtering and aggregation),
the mechanisms performing the operations, and their input data sources. It can
be helpful, both from a designer’s perspective and from a user’s perspective, to
supplement behavioral provenance with structural provenance. Structural prove-
nance includes descriptions of the mechanisms performing the operations and
how those mechanisms came to be. For example, software modules’ code repos-
itory changes are a rich source of their structural provenance. Provenance of an
unfamiliar host system’s structure can help when designing the provenance of its
behavior, since its components can be described a priori (e.g. modules’ versions,
lifespans, and contributing developers) and can be directly referenced.

We described the structural provenance of OPeNDAP with three datasets.
The first is a PROV-O representation of its Subversion (SVN) history5. The sec-
ond is a curated list of software components along with their home in the code
repository. The third connects the first two datasets by elaborating the SVN
file path hierarchy. The following table shows the SDV aspects assigned to the
structural provenance datasets, referred to in this paper as S1, S2, and S3.

Source Dataset Version Size

S1 opendap-org opendap svn 1.9MT

S2 us opendap-components 2014-Jan-07 1.4KT

S3 us opendap-svn-file-hierarchy 2014-Jan-20 1.0MT

S1’s source agent is the OPeNDAP community; the dataset is the software itself,
and its version is the latest SVN state. The repository’s XML log was trans-
formed with XSLT to produce PROV-O6. S2 and S3 originated from the authors.
S2 started as a spreadsheet and was transformed into Description of a Project7

RDF using Prizms’ tabular converter. S3 was constructed by SPARQL querying
for SVN file paths within S1/S2 and elaborating their hierarchy. These three
datasets together describe the host system’s structural provenance and provided
a basis for its behavioral provenance when handling data requests.
5 The OPeNDAP source code is maintained at https://scm.opendap.org/svn/.
6 Details at https://github.com/timrdf/prizms/wiki/Publication:-IPAW-2014.
7 https://github.com/edumbill/doap/wiki.

https://scm.opendap.org/svn/
https://github.com/timrdf/prizms/wiki/Publication:-IPAW-2014
https://github.com/edumbill/doap/wiki


36 T. Lebo et al.

3.3 Minimal Modifications to the Host System (e.g. OPeNDAP)

While it remains the host system’s responsibility to record its own behavioral
provenance (including references to its structural provenance), Prizms is used
to reduce the effort required to publish those records as Linked Data. Figure 1
illustrates the coupling between Prizms and the host system, in relation to the
downstream client that reports its derivations via PROV Pingback. In the upper
left of the sequence diagram, a USGS LiDAR file CA OrangeCo 2011 000402.nc
is used by the host system to respond to the client’s HTTP request for chunk-7.
While the host system processes the request as normal, it does only two addi-
tional things (Sect. 3.3, Fig. 1). First, it logs the provenance of its handling
to a new file s/d/v/record.ttl. Second, it adds HTTP Link response head-
ers pointing to A and P for the response’s provenance and pingback, respec-
tively. The host system required only five new parameters to coordinate with
Prizms: Prizms’ base URI (http://opendap.tw.rpi.edu), data directory root, and
Pingback service URI (/prov-pingback), along with the SDV source and dataset
identifiers for the dataset of provenance records (us and opendap-prov,
respectively).

GET http://...chunk-7.cdl.prov.ttl

opendap.tw.rpi.edu provenanceweb.org

GET
CA_OrangeCo_2011_000402.nc.ascii?

northing[730241],
easting[730241],
altitude[730241]

Categorize as "Water"

chunk-7.txt
chunk-7.txt.prov.ttl

chunk-7.cdl
chunk-7.cdl.prov.ttl

OPeNDAP+PROV [pingback]
Server

PROV pingback
Client

Link: <A>
      rel="prov:has_provenance"
Link: <P>
      rel="prov:pingback"

POST P
provenance=http://...chunk-7.cdl.prov.ttl

prov_module writes s/d/v/record.ttl
Prizms publishes record.ttl to <A>

<A>

GET A

CA_OrangeCo_2011_000402.nc

Prizms creates access.ttl
Prizms retrieves chunk-7.cdl.prov.ttl
Prizms publishes <B>

GET A

a_1.ttl

a_2.ttl

<B>

Host 
System

Prizms
Pingback 

Client

The minimal coupling between the host system (upper left) and Prizms (lower left), in relation to a 
pingback client (right). Section numbers indicate where each interaction is described in this paper.

Fig. 1. Sequence diagram among host system, Prizms, and pingback client.

http://opendap.tw.rpi.edu


Walking into the Future with PROV Pingback 37

3.4 Prizms Publishes Host System’s prov:has provenance Target

Prizms’ automation monitors for unpublished datasets to publish. The log file
that the host system writes (e.g. s/d/v/record.ttl, above) triggers Prizms to
publish it as Linked Data. The dataset URI A that results from writing the
record in directory s/d/v/ is the same URI that the host system returns in its
prov:has provenance Link header – this coordination is the extent of the coupling
required for our approach. Although a custom publishing trigger was required
to determine which records to publish in the dataset us/opendap-prov, it is
available to be reused for other applications of our approach and employs the
Vocabulary of Interlinked Data (VoID)8 and PROV-O metadata that Prizms
provides by default. A VoID Dataset A is named using its SDV aspects, its data
dump is described and made available on the Web, and the provenance of loading
its dump file into a new SPARQL endpoint named graph is described. These best
practices for publishing Linked Data facilitate its discovery and access.

3.5 Prizms Accepts Pingback Pointers

As shown to the right of Fig. 1, the client captures its own account of its request
for a portion of the LiDAR file (e.g. in chunk-7.txt.prov.ttl). When making
the HTTP request to the host system, the client must remember the pingback
URI provided in the response header (P, Fig. 1) so that it knows where the host
will accept reports of its derivations (see [9]). Once the client derives a product
chunk-7.cdl from the host’s response, records provenance of its derivation in
chunk-7.cdl.prov.ttl, and hosts it on the Web, the client can then report its
results back to the host by accessing the pingback URI P. If the client manually
loads the pingback URI using a Web browser, the service provides a description
about the original request and accepts the client’s URL for provenance about
chunk-7.txt. The service also describes to the user how the pingback may be
performed automatically via HTTP POST using the curl command.

Prizms’ automation, which is centered around the SDV principle, allowed
for a minimal pingback service implementation; it required less than 200 lines
of code and can serve as a basis for other applications. When any Data Cata-
log Vocabulary (DCAT)9 access metadata is situated within Prizms’ data root,
Prizms acts on it to retrieve, integrate, and publish it. So, the pingback ser-
vice’s only responsibility is to accept the pingback pointer and write it as access
metadata into the same data root that the host system used for dataset A, using
different SDV aspects similar to those shown in the table below. Doing so creates
a new dataset B which is a local copy of the provenance hosted by the client.

Unfortunately, because pingback pointers could be provided and hosted by
anyone on the Web, we cannot blindly trust that their contents are not malicious
(e.g. executable code). To ameliorate this problem, we use Prizms’ trigger and
secondary dataset frameworks to delete any pingbacks whose contents are not
8 http://www.w3.org/TR/void/.
9 http://www.w3.org/TR/vocab-dcat/.

http://www.w3.org/TR/void/
http://www.w3.org/TR/vocab-dcat/


38 T. Lebo et al.

RDF containing PROV assertions. A dataset C is created for each batch of
filtering. The following table shows the SDV organization for the three datasets
created by the server after a single “request, pingback” cycle. Dataset A (Fig. 1)
contains the provenance recorded by the host system during the client’s original
request. Dataset B (Fig. 1) contains the host’s copy of the provenance reported
by the client via pingback. Dataset C is the host’s aggregate of all its copies of
provenance reported by clients within a recent duration (e.g. daily).

Source Dataset Version

A us opendap-prov 20140206-1391

B provenanceweb-org prov-pingback 20140206-1391-1e2

C us pr-aggregate-pingbacks 2014-Mar-03

Fig. 2. Query and view of downstream derivations.



Walking into the Future with PROV Pingback 39

3.6 Walking into the Future

Figure 2a shows part of the HTML view when navigating to dataset A, the host’s
original record of the client’s request for chunk-7. Even though the client’s cat-
egorization and rendering (chunk-7.cdl, CA OrangeCo 2011 000402.png) were
created after this request, the host is still able to find and link to these derivations
when describing the original request. Because Prizms accumulates the prove-
nance pointed to by clients’ pingbacks, it is able to use the single SPARQL
query in Fig. 2b against only its own endpoint to find and offer links to client’s
subsequent derivations. The top portion of the query matches within the host
system’s account (dataset A, Fig. 1), and the bottom portion matches within the
clients’ (dataset B). The URL that the client requests (and that the host han-
dles) is the natural link between accounts. With all of the relevant provenance in
a single store and partitioned according to its source, the host is able to provide
a variety of other Linked Data views to its clients. For example, the host can
list all served requests with the files that they used, or the host can show the
popularity of the files it serves based on the number of requests that used them
or the number of downstream derivations that they contributed to.

4 Discussion

Related Work. Many methodologies exist for making systems provenance-
aware. Of the dozen desiderata that Chapman and Jagadish [3] outline, our
approach contributes to four: (1) building toward interoperability of prove-
nance systems, (2) providing support for querying data and provenance together,
(3) making provenance available to the user, and (4) capturing provenance of
non-automated processes. PrIMe [13] provides a step-by-step guide that we used
in part to address the question “What derivations have others made of this given
data entity? ”. Because our approach does not address what a host system should
record of its behavior, a methodology such as PrIMe can be used to address
such challenges. Groth et al. [4] present a technology-independent architecture
of provenance systems, and discuss many valuable design considerations. Our
low coupling approach follows their SeparateStore and ContextPassing patterns,
yet after aggregating pingbacks it behaves similar to their SharedStore pattern.

Previous work has investigated Linked Data and provenance. Carroll et al.
[2] established the central concept of a named graph. The concept has since
been used by others [14], if only to capture provenance implicitly. The prove-
nance recorded by our Prizms system employs the VoID and SPARQL Service
Description vocabularies to describe named graphs as first class PROV enti-
ties. Hartig [6] distinguishes between recordable vs. reliant provenance on the
Web. While the former is recorded by systems that can directly monitor their
executions, the latter is accessed from third parties and requires evaluation to
be trusted. PROV Pingback depends on (and benefits from) the combination
of these two kinds of provenance and adds another means by which to obtain
provenance from the Web (Hartig suggests DNS WHOIS, semantic sitemaps,



40 T. Lebo et al.

POWDER, and Web service descriptions). Similar to our findings, he also con-
cludes that “there is only very little provenance-related, RDF-based metadata
available on the Web ” and points to lack of vocabularies, tools, and community
sensitization/motivation as possible reasons. In follow on work, Hartig and Zhao
[7] attempt to overcome the problem of missing provenance about Linked Data
by offering a provenance vocabulary and extending several Linked Data pub-
lishing tools to automatically provide provenance. Instead of focusing on Linked
Data provenance of Linked Data, we broadened the applicability of our Prizms
provenance-aware Linked Data production platform by repurposing it to publish
and interconnect provenance about non-Linked Data systems.

Advantages and Limitations of Our Approach. A key characteristic of our
approach is the ability to frame PROV Pingback as a more fundamental dataset
accumulation problem, thus reusing existing toolset’s automation, metadata,
and provenance to achieve a qualitatively different kind of interconnectivity.
SDV organization is a centerpiece of Prizms’ dataset accumulation, and stands
as a design principle for systems that depend on many data sources. It can be
seen as an answer to the request from Harth et al. [5] for a “social dimension”
of Web provenance, so that data consumers can discuss sources at a higher level
of abstraction. They call for a formalism that could describe data placement
policies for URI spaces. While SDV organization satisfied the need to identify
socially-contextual sources and embeds source attribution within the design of
entities’ URIs (e.g., 300k, 1.1M, and 50 resources within /source/opendap-org,
/source/us, and /source/provenanceweb-org, respectively), it similarly suf-
fers from the DNS ambiguity that Harth et al. describe and would thus also
benefit from a formalism for URI space ownership. Such a formalism could serve
as a foundation for trusting those URI spaces and would have impact both when
surveying Linked Data and when deciding if a pingback pointer is acceptable.
The VoID vocabulary, with its uriSpace property10, might be a starting point
for such a solution.

Our approach requires Linked Data design. While it may be considered a
limitation by the host system, it allowed easy interconnection of distributed
provenance systems with a simple RDF union. The dependency on HTTP Link
also requires the host system to serve its data over HTTP. On the other hand,
our approach allowed us to reuse existing vocabularies such as Friend of a Friend
(FOAF) and existing instances such as DCTerms’ file formats11. SPARQL 1.1
property paths also made it easy to traverse the many steps in a provenance
graph to find all derivations. In our effort to gauge PROV’s adoption in LOD, we
considered several other sources that did not prove to be fruitful. Our objective
was to find occurrences in the wild, after standardization, and discoverable using
[semi-]automated means. Crawling all of Linked Data is the most comprehensive
approach, but doing so is nontrivial [8]. A middle ground is for some to index
Linked Data so that many others may perform centralized searches. The LOD
10 http://www.w3.org/TR/void/#pattern.
11 http://provenanceweb.org/instances/dcterms:FileFormat.

http://www.w3.org/TR/void/#pattern
http://provenanceweb.org/instances/dcterms:FileFormat


Walking into the Future with PROV Pingback 41

Cache that we used is one example, but its manual, single-owner growth makes
it a biased sample. Swoogle is a well-known index, but did not return any PROV
terms. Sindice is a newer index that continues to accept pointers via a differ-
ent pingback mechanism [10], but its accessibility has recently faded. Ping the
Semantic Web, used in previous surveys [6], simply no longer exists. An alterna-
tive is to use a Linked Dataset catalog that anyone can contribute to. This has
existed at http://datahub.io/tag/lod for seven years and is what we used as our
second measure. In our view, this seems to be the best approach to discovering
Linked Data sources. The Prizms system automatically provides the appropri-
ate VoID descriptions and submits them to datahub.io on a weekly basis. Such a
lightweight collection of pointers can facilitate more automated means to moni-
tor and cache Linked Data sources. For example, Buil-Aranda et al. [1] currently
monitor all SPARQL endpoints listed.

Future Work. Despite its powerful ability to interconnect provenance records,
PROV Pingback has a high potential for abuse (this is why our example ser-
vice is not regularly available). Similar to many internet technologies, potential
abuses need to be managed and can be mitigated through supporting infrastruc-
ture and tooling. Different applications should be able to control policies to
adjust the tradeoff between discoverability and abuses. Hosts can reduce their
risk by being selective about which clients it offers pingback services to, based on
information about the client or its request. A cautious pingback service should
verify that every pingback submission is worthwhile, either by its URL (liter-
ally), URL contents, or by authenticating the client as a member of a trusted
group. URL blocklists and whitelists can be helpful, but can become tedious to
manage. URL contents should be handled with caution, perhaps to the point of
performing it within a protected space and aborting it if it does not appear to
be in an expected format. Any retrieved provenance should describe at least one
derivation of a data product that the host served, otherwise it is not relevant.
Authenticating the submitting client as a member of a trusted group could be
achieved in a variety of ways, but one that does not require a priori coordina-
tion would allow for increased contributions and discoverability. Manual curation
steps could also be used to validate any aspect used to determine worthwhile
submissions.

A more complete and up-to-date State of the Linked PROV Cloud would serve
as a design guide for provenance practitioners interested in adopting Linked Data
principles, since it could verify that their published provenance is discoverable
using traditional Linked Data means. Searches for terminology occurrences could
be broadened by looking for non-PROV provenance terms or PROV extensions,
accounting for reasoning, and by monitoring any dataset listed at datahub.io.
Developers could use such a corpus to choose terms most appropriate for their
application, based on quantitative measures of any term’s adoption.

We anticipate compounded advantages of a “Prizms network” when both
clients and servers use the Prizms platform to propagate pingbacks. Techniques
to combine PROV pingback with existing mechanisms such as Twitter’s “retweet”
feature could accelerate community discovery of downstream derivations.

http://datahub.io/tag/lod


42 T. Lebo et al.

Scalability of PROV Pingback should also be investigated, and simplifications
of PROV Pingback could allow more direct usage by accepting the URI of
the derivation itself and reusing the prov:has provenance mechanism to find its
provenance. Finally, the approach we presented should next be applied to real
applications, not just realistic. In the case of LiDAR, we expect to apply it to a
project with bathymetric and territorial data of New York State’s Lake George.

5 Conclusion

The symbiotic combination of PROV and Linked Data – both PROV as Linked
Data and PROV of Linked Data – offers significant potential for distributed and
uncoordinated discovery, access, and use of information. Unfortunately, these
advantages have yet to be seen at a scale as grand as the Web it uses. Based
on two lightweight measures that we present, it appears still too difficult or too
uncompelling to publish provenance in a manner that benefits a wider audience.

We presented an approach to publish the structural and behavioral provenance
of existing host systems by using minimal coupling to the Prizms platform, so
that the host system’s provenance records may benefit as Linked Data even if
its data cannot. We further described an implementation of the PROV Pingback
technique, demonstrated its potential to interconnect provenance records that
would traditionally sit in isolation, and explored outstanding issues that need
to be addressed before pingback can be widely adopted. By decreasing the cost
to add provenance, and by increasing the value of provenance by forming an
interconnected Web of provenance with other systems, the approach we describe
can facilitate the adoption of provenance within a wider variety of applications.

References

1. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.-Y.: SPARQL Web-
querying infrastructure: ready for action? In: Alani, H., et al. (eds.) ISWC 2013,
Part II. LNCS, vol. 8219, pp. 277–293. Springer, Heidelberg (2013)

2. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance and trust.
In: Proceedings of the 14th International Conference on World Wide Web, WWW
2005, pp. 613–622. ACM, New York (2005)

3. Chapman, A., Jagadish, H.V.: Issues in building practical provenance systems.
IEEE Data. Eng. Bull. 30(4), 38–43 (2007)

4. Groth, P., Jiang, S., Miles, S., Munroe, S., Tan, V., Tsasakou, S., Moreau, L.: An
architecture for provenance systems. Technical report, University of Southampton
(2006)

5. Harth, A., Polleres, A., Decker, S.: Towards a social provenance model for the web
(2007)

6. Hartig, O.: Provenance information in the web of data. In: LDOW (2009)
7. Hartig, O., Zhao, J.: Publishing and consuming provenance metadata on the Web

of Linked Data. In: McGuinness, D.L., Michaelis, J.R., Moreau, L. (eds.) IPAW
2010. LNCS, vol. 6378, pp. 78–90. Springer, Heidelberg (2010)



Walking into the Future with PROV Pingback 43

8. Hogan, A., Umbrich, J., Harth, A., Cyganiak, R., Polleres, A., Decker, S.: An
empirical survey of linked data conformance. Web Semant. Sci. Serv. Agents World
Wide Web 14, 14–44 (2012). Special Issue on Dealing with the Messiness of the
Web of Data

9. Klyne, G., Groth, P. (eds.), Moreau, L., Hartig, O., Simmhan, Y., Myers, J.,
Lebo, T., Belhajjame, K., Miles, S.: PROV-AQ: provenance access and query.
W3C Working Group Note NOTE-prov-aq-20130430, World Wide Web Consor-
tium, April 2013

10. Stuart Langridge and Ian Hickson. Pingback 1.0. Technical report (2002)
11. Lebo, T., Erickson, J.S., Ding, L., Graves, A., Williams, G.T., DiFranzo, D., Li, X.,

Michaelis, J., Zheng, J.G., Flores, J., Shangguan, Z., McGuinness, D.L., Hendler,
J.: Producing and Using Linked Open Government Data in the TWC LOGD
Portal. In: Wood, D. (ed.) Linking Government Data, pp. 51–72. Springer, New
York (2011)

12. Lebo, T., Sahoo, S., McGuinness, D. (eds.), Behajjame, K., Cheney, J., Corsar,
D., Garijo, D., Soiland-Reyes, S., Zednik, S., Zhao, J.: PROV-O: the PROV ontol-
ogy. W3C Recommendation REC-prov-o-20130430, World Wide Web Consortium,
October 2013

13. Miles, S., Groth, P., Munroe, S., Moreau, L.: Prime: a methodology for developing
provenance-aware applications. ACM Trans. Softw. Eng. Methodol. 20(3), 8:1–8:42
(2011)

14. Sheridan, J., Tennison, J.: Linking UK government data. In: LDOW (2010)



Provenance for Online Decision Making

Amir Sezavar Keshavarz(B), Trung Dong Huynh, and Luc Moreau

Electronics and Computer Science (ECS),
University of Southampton, Southampton, UK
{ask2g10,tdh,l.moreau}@ecs.soton.ac.uk

Abstract. It is commonly believed that provenance can be utilised to
form assessments about the quality, reliability or trustworthiness of data.
Once presented with contradictory or questionable information, users can
seek further validation by referring to its provenance. While there has
been some effort to design principled methods to analyse provenance, the
focus has mostly been on offline use of provenance. How to use prove-
nance at runtime, i.e., as the application runs, to help users make deci-
sions, has been barely investigated. In this paper, we propose a generic
and application-independent approach to interpret provenance of data to
make online decisions. We evaluate the system in CollabMap, an online
crowd-sourcing mapping application, to make decisions about the qual-
ity of its data and to determine when the crowd’s contributions to a task
are deemed to be complete.

Keywords: Provenance · Online decision making · Validity measure ·
Reliability measure

1 Introduction

It is commonly believed that provenance can be utilised to form assessments
about the quality, reliability or trustworthiness of data [6]. Provenance is defined
as a “record that describes the people, institutions, entities, and activities invol-
ved in producing, influencing, or delivering a piece of data or a thing” [7]. It is
a crucial piece of information that can help a consumer make a judgement as to
whether something can be trusted [8].

A provenance-aware system can generate the provenance of its data and make
it accessible to other systems that may use it for other purposes. However, the
provenance that is recorded can be application-specific. In order to use it, other
systems may require it to be recorded differently and the original application
to rerun as a result. This may not be possible nor efficient. As such, we need a
principled mechanism for application-specific interpretation of provenance. For
example, consider a provenance-aware system that requires users to interact with
the system and generate some data. Another application might need to make
decisions based on the ratings of the data and users that can be computed from
the provenance recorded by the first application. Such a system will need to be
able to: (1) Interpret application-specific provenance, (2) Compute ratings for
c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 44–55, 2015.
DOI: 10.1007/978-3-319-16462-5 4



Provenance for Online Decision Making 45

the entities generated, and (3) Use provenance-based ratings to make decisions
in a timely manner.

In order to address these requirements, we introduce an online provenance
analysis system that is composed of the following. First, we propose a generic
Annotation Computation Framework (ACF) that enables applications to attach
application-specific annotations to elements of a provenance graph and to com-
pute new annotations from these.

Second, we put forth a statistical Quality Model (QM) that computes three
ratings for data entities and users from their provenance: (1) a validity measure
for data entities with different validity labels (“valid”, “invalid”, or “uncertain”),
(2) a reliability measure for each user reflecting how consistently good their
performance is, and (3) a finish measure with different finish labels (“finished”,
“unfinished”) that expresses if further user contributions are required.

Finally, we devise an Online Annotation Computation System (OACS) that
enables a provenance-aware system to make decisions in a timely manner from
its provenance. OACS defines a contract according to which a provenance-aware
system should model its provenance, submit it to the OACS, and retrieve ratings
(in the form of an annotated provenance graph).

We evaluate the ACF, OACS, and QM in a crowd-sourcing application. To
support online quality-based decision making, QM rates each task in the crowd-
sourcing application as either finished or unfinished by using validity and reli-
ability measures. The OACS, alongside with QM, helps increase the confidence
on validity measure by analysing the performance of users (reliability measure)
during the execution of the crowd-sourcing application.

To the best of our knowledge, online use of provenance for quality-based
decision making has not been previously investigated. Our framework with the
online mechanism provides a foundation that enables a provenance-aware system
to make online decisions based on provenance of data.

Our contributions are fourfold:

1. A generic Annotation Computation Framework to allow application-specific
interpretation of provenance;

2. An Online Annotation Computation System to assist a provenance-aware
system to make online decisions during execution time;

3. A statistical quality model that uses provenance to compute (1) validity mea-
sure for data entities, (2) reliability measure for users, and (3) finish measure
for data entities. It also increases the confidence on validity measure by using
reliability measure in an online environment;

4. An evaluation of ACF, OACS, and QM in a crowd-sourcing application called
CollabMap.

The remainder of this paper is structured as follows. In Sect. 2, a crowd-
sourcing application in which provenance is recorded is introduced. Section 3
and 4 present ACF and OACS, respectively. We specialize online decision mak-
ing to online quality-based decision making by implementing a statistical Qual-
ity Model and show how CollabMap utilises computed ratings to make online
quality-based decisions (Sects. 5 and 6). Section 7 presents and discusses the



46 A. Sezavar Keshavarz et al.

evaluation of ACF, OACS, and the QM. Section 8 provides the related work and
Sect. 9 outlines the future work.

2 Scenario: A Crowd-Sourcing Application

CollabMap is a crowd-sourcing application that recruits people to augment exist-
ing maps by identifying buildings outline and drawing their evacuation routes
from buildings to nearby roads. Participants are required to verify tasks by oth-
ers by providing positive or negative votes on buildings and evacuation routes,
helping CollabMap to determine their validity. The quality of data generated by
a crowd with different backgrounds and expertise is inevitably varied. Therefore,
two mechanisms to ensure data quality were suggested for CollabMap.

1. Online Majority Voting: The first version of CollabMap (CollabMap-V1) [9]
employed a customized adaptation of majority vote. If total sum of positive
and negative votes is above +3, then the building is marked as valid. If the
score reaches −2, the building is marked as invalid. Provenance was recorded
in CollabMap-V1 but was not used to assess the validity of data.

2. Offline Provenance Network Analysis: In the second version of CollabMap
(CollabMap-V2), Huynh et al. [5] extracted a set of provenance network met-
rics from provenance of data to learn about patterns that correlate with
quality of data. This approach was not used online either.

User’s reliability was not considered for decision making in either of the above
versions. Therefore, to improve the quality assessment done by CollabMap in an
online environment, we set the following requirements for our system.

Requirement 1. To compute a validity label (“valid”, “invalid”, or “uncer-
tain”) for each data entity (buildings and evacuation routes). “valid” data enti-
ties are to be included in the final result, while “invalid” data entities are to be
discarded. In cases where the validity label is “uncertain”, further users would be
employed to verify the “uncertain” data.

Requirement 2. To compute a reliability measure for each user, so that we can
use these measures to increase confidence on validity label by analysing users’
reliability.

Requirement 3. To compute a finish measure for each data entity to decide to
continue or terminate a task.

Provenance would be used to capture all these measures while CollabMap
is executing. In this context, use of provenance offers the following benefits:
(1) a generic foundation that provenance recorded in CollabMap can be used in
a provenance-aware rating application to compute such measures and (2) a data
model that captures all the changes and decisions that are made in CollabMap
by using above measures in an online environment.



Provenance for Online Decision Making 47

3 Annotation Computation Framework (ACF)

Provenance-based rating can be decomposed in a generic part involving a prove-
nance graph traversal and annotation manipulation, and an application-specific
part computing actual ratings for a given purpose in an application. ACF imple-
ments the generic part and allows for instantiations to add the application-
specific part.

Annotations are utilized as a generic mechanism to enable any information
to be attached to elements of a provenance graph. Following provenance record
presents the use of an application-specific annotation for a building. The anno-
tation, validity, represents validity label of the building.

entity(ex:building1,[ex:validity="valid"])

New annotations can be computed for a node from existing annotations for
the same graph. In order to compute new annotations, both forward and back-
ward computations are supported. Forward computation is the computation of
annotations by following relations between nodes along the direction of time;
and vice-versa for backward computation.

Three fixed rules are considered to support computation of annotations. For-
ward computation rule is defined by (1). In this rule, given there is a directed
relation from an influencee (n2) to an influencer (n1), and influencer (n1) has
an annotation (ann1), a new annotation for the influencee is computed based
on ann1 and defined by Fforward. To allow application-specific interpretation, a
function F is required to compute the new annotation. Backward computation
rule has a similar definition except an influencee node has an annotation and a
new annotation for the influencer is computed.

The third computation rule, aggregation rule (See 2), is applied when a node
(n1) has more than one annotation (e.g. ann1, ann2, ann3, ...). In this case,
a new annotation, (aggAnn), is computed based on all its existing annotations
(defined by FAgg).

IF G �
node(n1, ann1)
node(n2)
edge(e;n2, n1)

THEN there exists ann2 such that
ann2 = Fforward(G, e, n1, n2, ann1)
update(G,n2, ann2)

(1)

IF G �
node(n1, ann1)
node(n1, ann2)
node(n1, ann3)
. . .

Then there exists aggAnn such that
aggAnn = FAgg(G,n1, [ann1, ann2, ann3, ...])
update(G,n1, aggAnn)

(2)



48 A. Sezavar Keshavarz et al.

To ensure termination, we introduce a global counter that acts as a bound
for termination. After each computation step, the counter is deduced by one. By
limiting the number of computations, we guarantee that computation rules will
eventually terminate.

4 Online Annotation Computation System (OACS)

OACS introduces a contract according to which a provenance-aware system
should model its provenance. This contract makes two assumptions on the prove-
nance with respect to: (1) the structure of provenance data, and (2) the anno-
tations to be incrementally computable.

An important capability of provenance is to express revisions of the same
resource. “Plan for revisions” recipe [8, Section 4.1.4] is used for this purpose.
Each version of a resource is connected to a single general resource using the
prov:specializationOf relation. Each version is related to its previous one using
prov:wasRevisionOf relation. Assumptions 1 and 2 are as follow.

Assumption 1. Provenance is expected to be structured according to the “Plan
for revisions” recipe, so data entities are continuously rated by OACS.

Assumption 2. OACS expects annotations of any version of a resource to be
computable by using the annotations of its previous version without the need for
the full provenance of its previous versions.

The following describes the steps through which a provenance-aware system
should submit its provenance data and retrieve newly computed annotations.

Step 1 Whenever there is new provenance data that needs to be annotated,
the provenance-aware system is required to bundle up all new assertions
(A bundle is a named set of provenance descriptions [7]);

Step 2 In this bundle, the system is required to identify each element of prove-
nance graph to be “annotated” as a distinct element according to the
two contractual Assumptions 1 and 2;

Step 3 Submit this bundle to the OACS;
Step 4 When a response from OACS is ready, the system can retrieve a prove-

nance bundle that contains the new annotations from OACS;
Step 5 New annotations can then be used to update the system’s local state and

to make application-specific decisions;
Step 6 Return to Step 1.

In a decision making situation, as an application is executing and more knowl-
edge is generating, the application is presented with updated information which
decisions are based on. In order to validate the updated information and new
decisions, the decision makers can consider their provenance. As such we decided
to use bundle to allow provenance of provenance to be expressed.



Provenance for Online Decision Making 49

5 Quality Model (QM)

5.1 Validity Measure (VM)

Requirement 1 requires data entities to be annotated with a validity label (“valid”,
“invalid”, or “uncertain”). Table 1 summarises the annotations processed by VM.

Table 1. Annotation Assertion (AA) and Annotation Computation (AC) in Validity
Measure for a data entity D (building or evacuation route)

Annotation Description Value Level

Vote Value of user (U) vote for D V ote(D,U) AA

Coordinates Coordinates of a building Coord(D) AA

Edges Total number of edges Edge(D) AA

Positive votes Number of positive votes for D P (D) AC

Negative votes Number of negative votes for D N(D) AC

Validity label Validity label of D V (D) AC

The beta family of probability density functions model the distribution of a
random variable representing the unknown probability of a binary event where
T (D) is an example of such a variable to model [11]. In (3), Beta(α, β) returns
the probability of D being valid provided α and β, where α and β are hyper-
parameters to define the shape of the density function.

Beta(α, β) =
α

α + β
(3)

Hence, validity measure (T (D)) is given by:

T (D) = Beta

((
P (D) + 1

)
,
(
N(D) + 1

))
(4)

Now, validity label (V (D)) can be defined by two thresholds t1 and t2:

V (D) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

valid if T (D) ≥ t2
invalid if T (D) ≤ t1 or Edge(D) < 4 for building

or Coord(D) has self-intersecting lines for building
uncertain if t1 < T (D) < t2

(5)

By analysing CollabMap-V1, 0.7 and 0.3 are the threshold we chose for t1
and t2 respectively, to select valid and invalid data entities.



50 A. Sezavar Keshavarz et al.

5.2 Reliability Measure (RM)

Requirement 2 requires each user to be annotated with a reliability measure.
A user can have two roles in CollabMap: identifiers (those who generate data)
and verifiers (those who verify generated data). For identifiers, we are interested
in computing their total number of “valid” and “invalid” identifications. For
verifiers, we are interested in computing the total number of “aligned” (positive
vote on a valid data or negative vote on an invalid data) and “non-aligned”
(positive vote on an invalid data and negative vote on valid data) verifications.
Table 2 summarises the annotations processed by RM.

Table 2. Annotation Assertion (AA) and Annotation Computation (AC) in Reliability
Measure for a user U - D can be a building or an evacuation route

Annotation Description Value Level

Good identification Total number of good D identification for U M(I,G,D,U) AC

Bad identification Total number of bad D identification for U M(I, B,D,U) AC

Aligned Total number of aligned votes for U M(V,A,D,U) AC

Non-aligned Total number of non-aligned votes for U M(V,N,D,U) AC

Identification reliability Reliability of U in D identification R(I,D, U) AC

Verification reliability Reliability of U in D verification R(V,D,U) AC

User reliability, R(I,D,U) and R(V,D,U), is computed by applying (3):

R(I,D,U) = Beta

((
M(I,G,D,U) + 1

)
,
(
M(I,B,D,U) + 1

))

R(V,D,U) = Beta

((
M(V,A,D,U) + 1

)
,
(
M(V,N,D,U) + 1

)) (6)

5.3 Finish Measure (FM)

Requirement 3 requires each data entity to be annotated with a finish measure,
which is computed from reliability measure. Table 3 summarises the annotations
processed by FM.

Table 3. Annotation Assertion (AA) and Annotation Computation (AC) in Finish
Measure for data entity D (building or evacuation route)

Annotation Description Value Level

Cumulative users’ reliability Total cumulative users’ reliability C(D) AC

Finish label Label showing if a task is terminated F (D) AC



Provenance for Online Decision Making 51

Finish measure, C(D), is computed by applying (7):

C(D) =
∑

U∈V D

R(V,D,U) where VD is the set of all verifiers of D (7)

Now, the finish label (F (D)) can be assigned based on the finish measure:

F (D) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Y es if C(D) ≥ t2
or C(D) ≤ t1
or Edge(D) ≤ 4 for building
or Coord(D) has self-intersecting lines for building

No if t1 < C(D) < t2

(8)

By analysing CollabMap-V1, +1.5 and −1.5 are the threshold we chose for
t1 and t2 respectively, to annotate a data entity as finish assuring the crowd’s
contributions to the data entity is deemed to be complete with high confidence.

6 Decision Making in CollabMap

CollabMap-V3 uses the measures computed in Sect. 5 to make a decision on next
course of action:

Decision =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Continue if F (D) = No

Terminate

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Not-Accept

Accept

if
(

F (D) = Y es and V (D) = Invalid

)

or
(

F (D) = Y es and

V (D) = Uncertain and

C(D) ≤ −1.5
)

if
(

F (D) = Y es and V (D) = V alid

)

or
(

F (D) = Y es and

V (D) = Uncertain and

C(D) ≥ 1.5
)

(9)

7 Experiments and Results

For a preliminary evaluation, we develop several hypotheses that we validate by
applying online quality-based decision making to CollabMap-V3 and examining
the results. We designed an experiment where 22 users were recruited to work
with CollabMap-V3 which ran over 60 h.



52 A. Sezavar Keshavarz et al.

Hypothesis 1. The validity label reflects the actual validity of data as verified
by an expert.

Method 1. We asked an expert to verify all the identified data entities. Then
we compared the expert’s opinion with the dataset of data entities that were
accepted or not-accepted by CollabMap-V3.

Analysis 1. In total, 237 buildings were identified (235 annotated as finished
and 2 as unfinished; CollabMap accepted 75 % of all finished buildings and
discarded the rest as they were annotated as invalid). 183 evacuation routes
were identified (around 80 % annotated as finished and 20 % as unfinished; Col-
labMap accepted above 98 % of all finished ones). The dataset of data entities in
CollabMap-V3 matched the verified data by expert; thus verifying Hypothesis 1.

Hypothesis 2. User’s reliability measure reflects the actual performance and
reliability of a user.

Method 2. We formed a control group where we asked two users to consistently
draw valid buildings, two users to consistently draw invalid buildings, and two
users to consistently provide verification votes opposed to what they reckon to
be true (to provide negative verification votes for valid data entities and vice
versa for invalid data entities).

Analysis 2. Figure 1a represents the reliability measures for two users. The
reliability measure for all users are similar at the beginning. As they continue
engaging with the system, RM updates users’ reliability measure based on their
performance. The reliability measure for User 433, who consistently draw invalid
buildings, decreased from 50 % to less than 2 % (blue dashed line). Whereas the
reliability measure for User 427, who consistently draw valid buildings, increased
from 50 % to 98 % (red line). At this point, we can validate Hypothesis 2 as users’
reliability measure truly reflects their performance.

Hypothesis 3. If reliable users verify a data entity, the task can be terminated
faster than when unreliable users verify a data entity.

Method 3. We evaluate if (1) QM can incrementally learn the reliability of
users and (2) the reliability measure of users was used to terminate the task.

Analysis 3. Figure 1b represents the proportion of finished and unfinished data
entities over time. As expected, at the beginning, the growth ratio of unfinished
data entities (white boxes on top) is higher than finished data entities (red
pattern filled boxes). However, as RM is gaining knowledge about users, the
growth ratio of finished data entities are higher.

Figure 1c represents the total number of data entities that are being anno-
tated by their validity and finish labels over the time. At the beginning, as RM
does not have enough knowledge about the users, most data entities are anno-
tated as Unfinished-Uncertain (blue triangle-dotted line). As time progresses,



Provenance for Online Decision Making 53

RM gains enough knowledge over users to annotate data entities as Finished-
Valid/Invalid (the rapid jump in green diamond-dashed line). We can observe
another growing trend and it is those data entities that are annotated as Finished-
Uncertain (red square-solid line). This shows that QM reduces the number of
votes required when it has gained enough knowledge about the participants. We
expect more growth in this line had we let our trial continued. The reason is at
the beginning, all users have the similar reliability measure and it takes time to
annotate a data entity as finished. As time progresses, reliable users are identi-
fied and they will have a higher reliability measure (reliability of some users were
measured as above 90 %) which means the data entity is annotated as finished
earlier.

Figure 1d represents an average number of votes required to annotate a data
entity as finished. The total number of requested votes depends on the finish mea-
sures. After one day of execution, there is a decreasing trend that QM requires
less votes to annotate a data entity as finished. CollabMap-V1 requires at least
3 votes to terminate a task. As can be seen from Fig. 1d, the average total num-
ber of votes requested for a finished building over times, was reduced to 2.5. At
this point, it is possible to verify Hypothesis 3. Although at the beginning, QM
may require more verification votes, there is a decreasing trend in requesting
verification votes toward the end.

8 Related Work

Provenance can be used to estimate quality of data and data reliability based
on the source data [10]. Golbeck reviews trust issues on the World Wide Web
[3] and identifies provenance as a key element necessary to derive trust. One
trustworthiness [2]. Dai et al. [2] propose a method to compute trust scores for
data, depending on the trust of the information used to generate it. In order to
assess quality of data and reliability of users, Allen et al. [1] describe a prove-
nance system, PLUS, that uses provenance of data to detect potential malicious
behaviour and help users assess trust in information. On the same venue of work,
Hartig et al. [4] propose a model for Web data provenance and an assessment
method that can be adapted for specific quality criteria. None of these works
used provenance to infer trustworthiness of data nor performance of users in an
online environment. Our approach motivates the use of provenance in an online
environment where quality-based decisions can be made in a timely manner.

The issue of data quality and user reliability can be observed in crowd-
sourcing applications. In a crowd-sourcing application, tasks are broken down
into smaller activities and are allocated to the crowd; upon completion, some
rewards are issued. There are mainly two issues associated with some crowd-
sourcing applications: (1) quality of generated data, and (2) evaluation of user
performance. To assure quality, the crowd-sourcing application assigns the same
labelling task to multiple users. When multiple labels are provided for the same
task, the crowd-sourcing application fuses all labels to estimate the actual label.
Whitehill et al. [12] present a probabilistic model to compute the expertise of



54 A. Sezavar Keshavarz et al.

(a) The reliability measures of 2 users in
control group

(b) Proportion of finished and unfinished
data entities

(c) Finish and Validity measures for data
entities

(d) Average number of votes for finished
data entities

Fig. 1. Analysis of CollabMap-V3 deployment (Color figure online)

each user, difficulty of each task, and the label of each task. Our proposed QM is
similar to this approach in computing a validity and reliability measures, how-
ever in contrast, we use reliability measures to decide to continue or terminate
a task while the application is executing.

9 Conclusion

In this paper, we have presented a principled approach for online application-
specific interpretation of provenance that consists of: (1) a generic part involving
a provenance graph traversal and annotation manipulation, (2) an application-
specific part computing the annotations for data quality assessment and task
termination.

We carried out a preliminary analysis of the approach on CollabMap, a crowd-
sourcing application for designing evacuation maps. We showed that it is able to
classify data with high accuracy by analysing the reliability of contributors while



Provenance for Online Decision Making 55

the application is executing. We also demonstrated that with our framework,
CollabMap was able to make online decisions whether to terminate or continue
a task.

Going forward, we plan to deploy CollabMap and ACF in a wider community,
employing more users for a complete empirical evaluation of our framework. It
would allow us to evaluate how accurately ACF can help CollabMap to terminate
tasks. Furthermore, we plan to use user’s reliability measure to decide whether
to accept or reject a user’s contribution and to explore dynamic task allocation
to users based on their reliability.

Acknowledgements. This work is funded by the EPSRC ORCHID Project (EP/-
I011587/1).

References

1. Allen, M.D., et al.: Provenance for collaboration: detecting suspicious behaviors
and assessing trust in information. In: 2011 7th International Conference on Col-
laborative Computing, pp. 342–351. IEEE (2011)

2. Dai, C., Lin, D., Bertino, E., Kantarcioglu, M.: An approach to evaluate data
trustworthiness based on data provenance. In: Jonker, W., Petković, M. (eds.)
SDM 2008. LNCS, vol. 5159, pp. 82–98. Springer, Heidelberg (2008)

3. Golbeck, J.: Trust on the world wide web: a survey. Found. Trends Web Sci. 1(2),
131–197 (2006)

4. Hartig, O., Zhao, J.: Using web data provenance for quality assessment. In: SWPM,
vol. 526 (2009)

5. Huynh, T.D., Ebden, M., Venanzi, M., Ramchurn, S.D., Roberts, S., Moreau, L.:
Interpretation of crowdsourced activities using provenance network analysis. In:
First AAAI Conference on Human Computation and Crowdsourcing (2013)

6. Moreau, L.: The foundations for provenance on the web. Found. Trends Web Sci.
2(2–3), 99–241 (2010)

7. Moreau, L., Groth, P.: Prov-dm: The prov data model. Technical report (2013).
http://www.w3.org/TR/prov-dm/

8. Moreau, L., Groth, P.: Provenance: an introduction to prov. Synth. Lect. Semant.
Web: Theory Technol. 3(4), 1–129 (2013)

9. Ramchurn, S.D., Huynh, T.D., Venanzi, M., Shi, B.: Collabmap: crowdsourcing
maps for emergency planning. In: Proceedings of the 5th Annual ACM Web Science
Conference, pp. 326–335. ACM (2013)

10. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science.
ACM SIGMOD Rec. 34(3), 31–36 (2005)

11. Teacy, W.L., Patel, J., Jennings, N.R., Luck, M.: Travos: trust and reputation in
the context of inaccurate information sources. Auton. Agent. Multi-Agent Syst.
12(2), 183–198 (2006)

12. Whitehill, J., Ruvolo, P., Wu, T., Bergsma, J., Movellan, J.R.: Whose vote should
count more: optimal integration of labels from labelers of unknown expertise. In:
NIPS, vol. 22, pp. 2035–2043 (2009)

http://www.w3.org/TR/prov-dm/


Regenerating and Quantifying Quality
of Benchmarking Data Using Static

and Dynamic Provenance

Devarshi Ghoshal1(B), Arun Chauhan1,2, and Beth Plale1

1 School of Informatics and Computing, Indiana University, Bloomington, IN, USA
{dghoshal,achauhan,plale}@cs.indiana.edu

2 Google Inc., Mountain View, CA, USA

Abstract. Application benchmarks are critical to establishing the per-
formance of a new system or library. But benchmarking a system can
be tricky and reproducing a benchmark result even trickier. Provenance
can help. Referencing benchmarks and their results on similar platforms
for collective comparison and evaluation requires capturing provenance
related to the process of benchmark execution, programs involved and
results generated. In this paper we define a formal model of benchmark
applications and required provenance, describe an implementation of the
model that employs compile time (static) and runtime provenance cap-
ture, and quantify data quality in the context of benchmarks. Our results
show that through a mix of compile time and runtime provenance cap-
ture, we can enable higher quality benchmark regeneration.

1 Introduction

Application benchmarks are an important way to establish the speed of a new
system or library. But benchmarking a system can be tricky and reproducing a
benchmark even trickier; a single compile time parameter can give vastly different
results depending on whether it is set or not. Analyzing and recording bench-
mark results is a manual task that depends on the knowledge of the evaluator.
The manual nature increases the possibility of missing information, incorrectly
logged results and skipped parameters and configurations that affect the pro-
gram behavior. All these factors affect the quality of the results generated by
the benchmark process.

The metadata required to assess the quality of benchmark results to repro-
duce program behavior and quality of the evaluation process can be complex and
expensive. Provenance is a type of metadata used to capture the lineage of data.
Provenance from benchmark executions can be used to describe the lineage of
benchmark results and the evaluation process involved. It helps in understanding
the quality and enables regeneration and referencing of benchmarks. Essentially
provenance traces for benchmark results account for the following – (a) ensuring
benchmarks were executed correctly, (b) understanding the set of parameters
and configurations used for generating the results and (c) keeping track of the
benchmarks and their results for evaluation.
c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 56–67, 2015.
DOI: 10.1007/978-3-319-16462-5 5



Regenerating and Quantifying Quality of Benchmarking Data 57

For standard application benchmarks, guaranteeing the correct execution of
benchmarks and keeping track of the results require intelligent provenance cap-
turing techniques. Log based provenance capture mechanisms [GP13] can be
used for collecting provenance from benchmarking. But it is important to guar-
antee that neither the results are tampered with nor important factors affect-
ing the results ignored. Existing provenance management frameworks [CCPR13,
GT12] manage provenance at the application granularity. For benchmarking
data, provenance needs to be managed for both the application (benchmark) and
the target system (hardware or software or both) for the benchmark.
Additionally, existing provenance capturing techniques often require modifica-
tions to the filesystem [GT12,MRHBS06], application specific program instru-
mentations [CCPR13,ABGK13] and/or trapping system calls [GT12] which are
not viable due to varied nature of benchmarks and high-degree of system
perturbations.

In this paper we identify essential characteristics of provenance in bench-
marking and propose a formal model of provenance from application bench-
marks. We describe a framework based on the provenance model that captures
provenance from application benchmarks both statically at compile time and at
runtime in order to validate, regenerate and reference results for future research.
This paper makes the following contributions:

– a formal model of benchmark applications and required provenance
– an implementation of the model that employs compile time (static) and run-

time (dynamic) provenance capture
– quantification of data quality in the context of benchmarks
– a PROV representation of the data model for provenance of benchmarking

applications.

The remainder of the paper is organized as follows. In Sect. 2 we discuss
related work. Section 3 proposes a formal model of provenance capture from
application benchmarks. Section 4 describes our methodology and the imple-
mentation for identifying and capturing provenance using the provenance cap-
ture model. We evaluate our model and framework in Sect. 5. Finally, we present
our conclusions in Sect. 6.

2 Related Work

Use-cases of provenance. Provenance capture, representation and use has
been studied for e-science workflows [Mea05], file systems [MRHBS06], semantic
web [CBHS05] and databases [CCT09]. The use of provenance in determining the
quality of scientific data and data provenance has also been shown [SP11]. Prove-
nance from scientific executable document systems [Yea12] are also implemeted.
But using provenance for quantitative and qualitative analysis of benchmarking
results has not been studied earlier.

Models of provenance capture. Several models have been proposed to identify
and capture provenance [CAA07]. Bower et al. [BML12] proposes a dependency



58 D. Ghoshal et al.

rule language for capturing fine-grained provenance from workflow traces but
requires user-defined rules and runtime traces. We mostly rely on static analysis
of source code for fine-grained provenance.

Provenance identification and capturing mechanisms. Provenance-aware
solutions [MRHBS06], and language extensions [CAA07] for provenance identi-
fication have been proposed. Provenance capture by analyzing audit logs and
semi-automated code instrumentation [GT12,CCPR13] have also been devel-
oped. We developed output-monitoring and compiler-driven provenance identi-
fication mechanisms for collecting provenance from application benchmarks.

Quality assessment. Quality of provenance data and using provenance for
understanding the quality of data [CP12,HZ09] are important aspects of quality
measurement in provenance. But very little or no work has been done to quantify
data and provenance quality at the system level. In our work we quantify the
quality of benchmark result, which is a provenance artifact, based on the level
of intrusion through external factors.

3 Formalization of Benchmark Provenance

In this section we provide a formal representation of a benchmarking application
and use that to define provenance capture.

3.1 Model of Benchmarking

A benchmark application has specific properties where a property is a pair (n : v)
where n is the name of the property and v is the corresponding value. A property
can either be a static characteristic of the program (or set of programs that build
the application) or a dynamic value only known at runtime. If we consider M
execution instances of an application with N distinct properties, we can define
two categories of properties as follows:

Variants: A set of properties that changes or may change for an execution
instance, i ∈ M , of the application. Hence for a particular variant property, its
value varies with i. The variant set is then defined as,

∀i ∈ M,V ariant(i) = {(n : vi) | ∃ n ∈ N, s.t. vi = f(i, n)} (1)

Since benchmarks are executed multiple times, results are concluded by aggre-
gating individual output from each instance of the benchmark execution. Hence,
it is important to unify the variants from all benchmark execution instances in
order to preserve the provenance of the final output. Unifying variants over all
execution instances i = (1, . . . , M) gives the total set of variants as,

V =
M⋃

i=1

V ariant(i)

=
M⋃

i=1

{(n : vi) | ∃ n ∈ N, s.t. vi = f(i, n)}
(2)



Regenerating and Quantifying Quality of Benchmarking Data 59

Practically, variants for application benchmarks consist of resource usage like
CPU load at the time of benchmark execution and available memory, configu-
ration parameters etc.

Invariants: A set of properties that remains constant over multiple execution
instances of an application. The value of an invariant is only dependent on the
name of the property. Invariants are, therefore, defined as,

∀i ∈ M, Invariant(i) = {(n : v)| ∃ n ∈ N, s.t. v = g(n)} (3)

Since invariants are independent of the execution instance i, unification results
in distinct (n:v) pairs of an application benchmark as,

I =
M⋃

i=1

Invariant(i)

=
M⋃

i=1

{(n : v)| ∃ n ∈ N, s.t. v = g(n)}
(4)

Examples include names of the programs, associated libraries, create-date of the
benchmark binary, hostname(s) etc.

Since a benchmark is used for evaluating a system, where we define a system
S as a software or hardware entity that has certain properties, we can define
benchmark as a partial function,

β : (Iβ ,V, I, S) �→ Rβ (5)

where Iβ is the set of input-data, V is the set of variants, I is the set of invariants,
S is the evaluated system and Rβ is the set of output results.

To summarize, a benchmark with a set of properties V and I, evaluates a
system S generating the result-set Rβ for an input-set Iβ . It is a partial function
because invariants do not map to the result-set but are properties that are unique
to the benchmark.

3.2 Model of Provenance Capture

We base our model for provenance on the model of benchmarking defined above.
We make no assumptions about the equivalence of inputs and outputs of a
benchmark and that collected by our model of provenance capture. So, we denote
the output result-set collected by our model of provenance as RP . Similarly, we
also consider the input data-set collected by the model of provenance as IP .

Static Provenance. We define static provenance capture as a function that
maps a benchmark to its invariants.

δ : β �→ I (6)

Any property that does not vary with different execution instances of a bench-
mark program but identifies it uniquely is considered during static provenance
capture. Hence, artifacts for static provenance capture can be determined stati-
cally without executing the benchmark.



60 D. Ghoshal et al.

Runtime Provenance. Runtime provenance capture, on the other hand, cap-
tures provenance information for every execution instance of a benchmark. It
depends on the runtime characteristics and parameters of benchmark execution.
We define runtime provenance capture as a function that maps a set of results
to a set of inputs, corresponding benchmark and variants.

γ : RP �→ (β, IP ,V) (7)

All data-items that affect the benchmark results but can only be determined
during benchmark execution are captured during runtime provenance capture.

3.3 Quantification of Data Quality

Since no assumptions are made about the equivalence of inputs and outputs of
a benchmark and the captured provenance, there may be discrepancies between
the published inputs and outputs of a benchmark and that collected through
provenance capture. In the ideal situation, RP ≡ Rβ and IP ≡ Iβ .

Trust. We define ‖ RP −Rβ ‖ to denote the quantitative difference between the
results, i.e., the number of results that differ in the two sets. Similarly, ‖ IP−Iβ ‖
denotes the quantitative difference between the inputs. For a set of invariants,
I and variants, V of a benchmark, β the trust, T of the result data-set is then
measured by the following equation:

T =

(
1 − ‖ RP − Rβ ‖

max(| RP |, | Rβ |)

)(
1 − ‖ IP − Iβ ‖

max(| IP |, | Iβ |)

)
(8)

where,
‖ X − Y ‖ returns the count of mutually exclusive elements of X and Y,
| X | is the cardinality of a set X.

Fig. 1. Framework for capturing provenance for benchmarking data.



Regenerating and Quantifying Quality of Benchmarking Data 61

In other words, if the input and result generated by a benchmark differs from
what its provenance says, then the data is not trustworthy. For simplicity, we
consider each input and result to be of equal importance. We also assume that
the values of invariants and variants are always within the range of the values
captured through provenance. A direct result that follows through the above
quantification is the measure of reproducibility which is a property of the bench-
mark result and is a boolean value that determines if a benchmark result is
reproducible or not. It is defined in terms of ‘trust’.

Definition: Given a set of invariants I and variants V, a result-set Rβ is repro-
ducible for a benchmark β iff T = 1.

4 Provenance-Aware Benchmarking Framework

The formal model is the foundation upon which is built the framework for cap-
turing provenance from application benchmarks as shown in Fig. 1. The frame-
work has two pieces: a static capture component that is built into compile time
activity. Run-time is also made provenance-aware through runtime capture.

4.1 Static Provenance Capture

We propose a provenance-aware compiler for static capture of provenance. The
compiler is implemented as a wrapper over standard gcc or icc compilers. To
enable provenance-aware compilation, a user replaces all calls to the correspond-
ing compiler by call to the wrapper compiler provcc which captures ‘invariants’
as provenance elements during program compilation. Essentially,

provcc : β �→ I

where, β is a benchmark and I is a set of invariants.

4.2 Runtime Provenance Capture

The runtime provenance capture is divided into two modules – (a) provenance-
aware runtime and (b) provenance adaptor.

Provenance-Aware Runtime. The second piece of the solution, a provenance-
aware runtime, executes and captures provenance information including the vari-
ants, inputs and results for a benchmark. All benchmarks are executed via the
runtime application launcher provrun which can capture the results from both
stdout and files. From our provenance model, provrun is the mapping function δ.

provrun : β �→ (IP ,V,RP)

where, β is a benchmark, IP is the set of inputs captured by provrun, V is a set
of variants, RP is the set of output results captured by provrun.



62 D. Ghoshal et al.

Fig. 2. PROV model for capturing provenance from application benchmarks.

Provenance Adaptor. The second phase of the runtime provenance capture
collects, combines and translates provenance information captured in log files
into a single provenance graph. It shows the lineage of benchmark results for
all execution instances of a benchmark on a system. The complete provenance
graph is generated by combining the provenance information collected statically
during compilation and dynamically by the runtime system.

4.3 Fine-Grained Provenance Capture

The compiler wrapper is augmented with an additional source-to-source trans-
lator module that allows for source-code instrumentation for fine-grained prove-
nance capture. This module allows users to automatically identify and mark
regions in the code to generate provenance information. We developed the mod-
ule using the ROSE compiler framework. It builds a system dependency graph
for the benchmark programs and marks regions of the code based on the granu-
larity of provenance information. This module is responsible for generating two
slices of the benchmark program: a static slice created during compilation and
a dynamic slice generated during benchmark execution. Static slice is used for
deriving the mapping between inputs and outputs and preserving the interpro-
cedural dependencies. Whereas the dynamic slice is used to capture the actual
parameters passed across the functions for generating the output.



Regenerating and Quantifying Quality of Benchmarking Data 63

4.4 PROV Model for Benchmark Provenance

Figure 2 shows the PROV data model for application benchmarks. Based on
the formal model of provenance capture, the PROV model shows compile-time
and run-time provenance capture from application benchmarks. The owner is a
PROV agent who is responsible for creating a benchmarking suite. The executor,
on the other hand, is a PROV agent who executes a benchmark or evaluates a
system using a benchmark. Each benchmark execution has an associated time
attribute that captures the start and end time of execution. Invariants and vari-
ants are captured as part of the provenance by the provenance-aware compiler
and the runtime respectively. Fine-grained provenance is captured by generating
the static and dynamic slices of a benchmark program. Finally, the output result
is derivation from the benchmark binary and the input data-set which are used
to evaluate a system.

5 Evaluation

We experimentally evaluate our methodology using six benchmarks from the
NU-MineBench [NOZ+06] benchmarking suite and analyze both overheads and
significance of provenance capture from benchmarks. NU-MineBench contains a
mix of several representative data mining applications from different application
domains. It is used for computer architecture research, systems research, per-
formance evaluation, and high-performance computing. The applications used
are: HOP – a density-based data clustering. Apriori – association rule min-
ing. ScalParC – decision-tree based data classification. K-means – (and Fuzzy
K-means) for data clustering. ECLAT – association rule mining. Semphy –
structure learning algorithm that is based on phylogenetic trees.

Tests were run on a quad-socket, 8-core (32 total cores) AMD Opteron system
with 512 GB of memory running 64-bit Red Hat Enterprise Linux. For evaluating
the runtime overhead, benchmarks are executed 10 times. As a micro-benchmark,
we measure runtime overhead and for higher quality benchmark regeneration,
we evaluate the model and the framework along three dimensions – (a) com-
puting if the result is reproducible (quality quantification), b) what is required
to regenerate the result (reproducibility data) and (c) how can the result be
regenerated (reproducibility steps).

Runtime Overhead. Executing the benchmarks through the provenance-aware
framework shows no or very little overheads as shown in Fig. 3a. This is because
the benchmark execution is completely uninterrupted and provenance information
is logged only in two stages – (a) prior to the execution and (b) when the exe-
cution completes. However, we also capture fine-grained provenance by running
an instrumented version of the benchmark. In order to enrich provenance infor-
mation, benchmark programs are marked at specific regions during compilation
by the provenance-aware compiler. For this evaluation we only mark function
calls which tracks inter-procedural data flow in order to derive the exact map-
ping between inputs and outputs. This instrumentation results in relatively high
overheads as shown in Fig. 3b.



64 D. Ghoshal et al.

HOP Apriori ScalParC KMeans ECLAT

Benchmarks

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

0
5

10
15

20

2.08 2.08

0.95 0.93

3.17 3.23

16.49 16.5

7.05 7.05

(a) Benchmark execution through
provenance-aware runtime

None Uninstrumented Instrumented
Provenance Configuration

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

0
1

2
3

4

(b) Benchmark execution with dif-
ferent granularity of provenance
capture for ScalParC

Fig. 3. Performance overhead in benchmark execution through provenance-aware
framework. There are very little or no overheads for provenance capture without instru-
menting the benchmark. However, fine-grained provenance capture through source-code
instrumentation starts incurring higher overheads.

Table 1. Quality assessment derived from provenance

HOP Apriori ScalParC K-Means ECLAT

Num results 1 3 5 45 12

‖ RP − Rβ ‖ 0 1 2 0 1

Trust value 1.00 0.67 0.60 1.00 0.92

Table 2. Elements of compile time (static) provenance as captured by provcc

Benchmark Srcs Objs Compilation-flags Opt-flags Linker-library

HOP 6 6 -fopenmp -Wno-write-strings -O libm

Apriori 5 5 -fopenmp -DBALT -O2 libm

ScalParC 4 4 -fopenmp -O2 libm

K-Means 4 4 -fopenmp -O2 libm

ECLAT 14 11 -Wno-non-template-friend -O3 libm, libc

SEMPHY 23 15 -Wall -Wno-sign-compare -DLOG -O3 ../../lib

-ftemplate-depth-32 libSEMPHY.a

libEvolTree.a

Quality Quantification. We calculate trust values for different benchmarks by
introducing discrepancies in the result data-set by introducing errors as shown
in Table 1. These errors are either system or human errors of reporting results,
missing information, inconsistent values of variants etc. For example, for the



Regenerating and Quantifying Quality of Benchmarking Data 65

Fig. 4. Provenance graphs for ECLAT - (a) shows the aggregated view of the original
provenance graph as shown in (b) for 2 runs of the ECLAT benchmark.

ECLAT benchmark run, if we change the value of the support parameter from
0.0075 that is captured through provenance to 0.0080, we are unable to reproduce
the output result as predicted through our reproducibility metric. This is because
the trust value, T is less than 1. For benchmark results, trust value = 1 iff ‖
RP−Rβ ‖= 0. In other words, a result can only be trusted and hence reproduced,
when the benchmark and its provenance points to the same result-set.

Regeneration Using Provenance. Provenance for regenerating benchmark-
ing data can be categorized into two phases based on our capture model –
(a) information useful for regenerating the application benchmark and
(b) information for regenerating the benchmark results. For regenerating the
benchmark application, we capture its provenance that includes the compila-
tion flags, platforms, source programs (invariants) etc. Table 2 shows a list of
provenance elements that are captured using the provenance-aware compiler.
For regenerating the benchmark results, associated runtime characteristics (vari-
ants) and the input data along with the provenance of the application benchmark
are captured. In case of fine-grained provenance, the detailed mapping between
inputs and outputs and interprocedural dataflow are also captured.

Since benchmark results are most often an aggregation of individual runs of
a benchmark, the correlation between individual results and configurations are
important to record as part of the provenance. A connected provenance graph
shows the importance of recording, correlating and linking individual provenance
traces of a benchmark. As shown in Fig. 4 the aggregated results for ECLAT
are written to a single output file through different runs of the benchmark.



66 D. Ghoshal et al.

So, the summary output file is a result of all the inputs, compiled binaries and
configurations of the benchmark over a set of multiple runs. Generating and
representing a complete provenance graph describing the steps and data for
multiple instances of the benchmark, is useful for understanding and regenerating
the result.

6 Conclusion and Future Work

There are several open questions remaining. The model and framework captures
provenance from benchmarks running in non-distributed environments. Distrib-
uted environments pose challenges in correlating benchmark results, tracing fail-
ures, and input-output mapping. Too, the equation we pose for calculating trust
is binary. It captures perfect reproducibility but does not allow epsilons of change
in the execution trace or static analysis that do not compromise trust. In the case
where benchmarks are run in distributed environments, acceptable differences
like out of order messages or slightly mismatched clocks may occur. Additionally,
the work assumes the provenance captured has not been intentionally altered.
Our approach assumes availability of benchmark source-code. In the absence of
source-code or provenance-aware compilers, special techniques should be devel-
oped for identifying and correlating provenance from benchmarking applications
transparently without user intervention. The amount and granularity of fine-
grained provenance sufficient for validating benchmark execution also needs fur-
ther research. Finally, post-processing can be done by mining the result-set and
associated provenance in order to automatically derive conclusions about the
evaluation process and system’s performance.

Acknowledgements. This work is funded in part by the National Science Foundation
OCI 1148359.

References

[ABGK13] Alper, P., Belhajjame, K., Goble, C.A., Karagoz, P.: Enhancing and
abstracting scientific workflow provenance for data publishing. In: The
Joint EDBT/ICDT 2013 Workshops, New York, NY, USA, pp. 313–318
(2013)

[BML12] Bowers, S., McPhillips, T., Ludäscher, B.: Declarative rules for Inferring
fine-grained data provenance from scientific workflow execution traces.
In: Groth, P., Frew, J. (eds.) IPAW 2012. LNCS, vol. 7525, pp. 82–96.
Springer, Heidelberg (2012)

[CAA07] Cheney, J., Ahmed, A., Acar, U.A.: Provenance as dependency analysis.
In: Arenas, M. (ed.) DBPL 2007. LNCS, vol. 4797, pp. 138–152. Springer,
Heidelberg (2007)

[CBHS05] Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance
and trust. In: The 14th International Conference on World Wide Web,
New York, NY, USA, pp. 613–622 (2005)



Regenerating and Quantifying Quality of Benchmarking Data 67

[CCPR13] Cheah, Y.-W., Canon, R., Plale, B., Ramakrishnan, L.: Milieu: lightweight
and configurable big data provenance for science. In: 2013 IEEE Interna-
tional Congress on Big Data (BigData Congress), pp. 46–53, June 2013

[CCT09] Cheney, J., Chiticariu, L., Tan, W.-C.: Provenance in databases: why,
how, and where. Found. Trends Databases 1, 379–474 (2009)

[CP12] Cheah, Y.W., Plale, B.: Provenance analysis: towards quality provenance.
In: 8th IEEE International Conference on eScience, October 2012

[GP13] Ghoshal, D., Plale, B.: Provenance from log files: a bigdata problem. In:
Proceedings of the Joint EDBT/ICDT 2013 Workshops, New York, NY,
USA, pp. 290–297 (2013)

[GT12] Gehani, A., Tariq, D.: SPADE: support for provenance auditing in distrib-
uted environments. In: Narasimhan, P., Triantafillou, P. (eds.) Middleware
2012. LNCS, vol. 7662, pp. 101–120. Springer, Heidelberg (2012)

[HZ09] Hartig, O., Zhao, J.: Using web data provenance for quality assessment.
In: The Workshop on Semantic Web and Provenance Management at
ISWC (2009)

[Mea05] Wong, S.C., Miles, S., Fang, W., Groth, P.T., Moreau, L.: Provenance-
based validation of e-science experiments. In: Gil, Y., Motta, E.,
Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,
pp. 801–815. Springer, Heidelberg (2005)

[MRHBS06] Muniswamy-Reddy, K.-K., Holland, D.A., Braun, U., Seltzer, M.:
Provenance-aware storage systems. In: The Annual Conference on
USENIX 2006 Annual Technical Conference, Berkeley, CA, USA (2006)

[NOZ+06] Narayanan, R., Ozisikyilmaz, B., Zambreno, J., Memik, G., Choudhary,
A.: Minebench: a benchmark suite for data mining workloads. In: 2006
IEEE International Symposium on Workload Characterization, pp. 182–
188, October 2006

[SP11] Simmhan, Y., Plale, B.: Using provenance for personalized quality ranking
of scientific datasets. Int. J. Comput. Appl. (IJCA) 18(3), 180–195 (2011)

[Yea12] Yang, H., Michaelides, D.T., Charlton, C., Browne, W.J., Moreau, L.:
DEEP: a provenance-aware executable document system. In: Groth, P.,
Frew, J. (eds.) IPAW 2012. LNCS, vol. 7525, pp. 24–38. Springer,
Heidelberg (2012)



Provenance Management
Architectures and Techniques



noWorkflow: Capturing and Analyzing
Provenance of Scripts

Leonardo Murta1, Vanessa Braganholo1(B),
Fernando Chirigati2, David Koop2, and Juliana Freire2

1 Universidade Federal Fluminense, Niterói, Brazil
{leomurta,vanessa}@ic.uff.br

2 New York University, New York, USA
{fchirigati,dakoop,juliana.freire}@nyu.edu

Abstract. We propose noWorkflow, a tool that transparently captures
provenance of scripts and enables reproducibility. Unlike existing ap-
proaches, noWorkflow is non-intrusive and does not require users to
change the way they work – users need not wrap their experiments in
scientific workflow systems, install version control systems, or instrument
their scripts. The tool leverages Software Engineering techniques, such as
abstract syntax tree analysis, reflection, and profiling, to collect different
types of provenance, including detailed information about the underly-
ing libraries. We describe how noWorkflow captures multiple kinds of
provenance and the different classes of analyses it supports: graph-based
visualization; differencing over provenance trails; and inference queries.

1 Introduction

While scripts are widely used for data analysis and exploration in the scien-
tific community, there has been little effort to provide systematic and trans-
parent provenance management support for them. Scientists often fall back on
Workflow Management Systems (WfMSs), which provide infrastructure to auto-
matically capture the input, intermediate, and output data involved in computa-
tions, allowing experiments to be managed, assessed, and reproduced [12,16,18].
Although WfMSs play an important role in bridging the gap between experimen-
tation and provenance management, they have limitations that have hampered
a broader adoption, notably: moving to a new environment can be difficult and
requires a steep learning curve, and wrapping external scripts and libraries for
use in a WfMS is time-consuming. In addition, data analysis tasks that use
multiple tools require each to be integrated with the WfMS. When this is not
possible (or desirable), scientists often run scripts to orchestrate analyses and
connect results obtained from multiple tools.

Collecting provenance of scripts when not using a WfMS is challenging. First,
unlike most pipelines supported by dataflow-based systems, scripts can encode
a control flow and include cycles, which makes it more difficult to identify which
functions contributed to the generation of a given data product. Second, deter-
mining the correct level of granularity to capture is hard : very fine-grained prove-
nance may overwhelm scientists with a large volume of data to analyze, while a
c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 71–83, 2015.
DOI: 10.1007/978-3-319-16462-5 6



72 L. Murta et al.

coarser granularity may omit important information. In contrast, workflows in a
WfMS have well-defined boundaries for such capture, which are determined by
how the underlying computational modules are wrapped. Finally, since scripts
run outside of a controlled environment such as a WfMS, one cannot make many
assumptions (e.g., the presence of a version control system) beyond the involve-
ment of source code and an interpreter/compiler, which makes it difficult to
track library dependencies and changes in files.

Some of the existing approaches that do not require a WfMS rely on scientists
to modify the experiment scripts to include annotations or calls to provenance
capture functions [1,3,7]. Such approaches are intrusive, time-consuming, and
error-prone. Others require scientists to use a version control system to track
changes to the source code, or are not entirely automatic, requiring input from
scientists [3,10]. There are also approaches that capture provenance at the oper-
ating system level [6,8,17], which monitor system calls and track processes and
data dependencies between these processes. These systems, however, do not have
visibility into what happens inside the scripts underlying the processes.

In this paper, we propose a new approach to capture provenance of scripts
that addresses the aforementioned challenges. We review the existing types of
provenance representation and argue that, in the absence of a controlled envi-
ronment, a new kind of provenance – deployment provenance – is necessary
to capture detailed data about the underlying libraries. We then present no-
Workflow (not only Workflow), a tool that implements the proposed approach,
and describe how it transparently captures provenance of scripts, including con-
trol flow information and library dependencies. noWorkflow is non-intrusive and
relies on techniques from Software Engineering, including abstract syntax tree
analysis, reflection, and profiling, to collect different types of provenance with-
out requiring a version control system or an instrumented environment. The
tool supports three different types of analyses, including visualization and query
mechanisms, to help scientists explore the captured provenance and debug the
execution, as well as to enable reproducibility. Although noWorkflow was devel-
oped for Python, a language with significant adoption by the scientific commu-
nity, the ideas presented here are language-independent and can be applied to
other scripting languages.

2 Provenance of Scripts

WfMSs provide a controlled environment in which workflows are executed—the
workflow engine orchestrates the invocation of the computational modules of
a workflow. Since provenance is captured for these invocations, the provenance
granularity is determined by how computations are modeled inside the workflow
system, i.e., how libraries are wrapped. Scripts, in contrast, lack this well-defined
structure and the isolation provided by the workflow engine. Thus, to capture
the provenance of scripts, we have to address two important challenges: how to
represent information about the environment and how to determine the level of
provenance granularity.



noWorkflow: Capturing and Analyzing Provenance of Scripts 73

2.1 Provenance Representation

There are two types of provenance for scientific workflows: prospective and
retrospective [5]. Prospective provenance describes the structure of the experi-
ment and corresponds to the workflow definition, the graph of the activities, and
their associated parameters. Retrospective provenance captures the steps taken
during the workflow execution, and while it has similar (graph) structure, it is
constructed using information collected at runtime, including activities invoked
and parameter values used, intermediate data produced, the execution start and
end times, etc. The wrapping required by a WfMS to orchestrate the execution
of modules from a tool or library naturally creates a level of abstraction for the
execution: the module is a black box and its details are hidden. Because the
wrapped libraries are integrated with the WfMS, it is possible for the system to
track and control them, e.g., to detect that a wrapped library has changed and
to upgrade the workflows accordingly [13].

For scripts, this abstraction is absent. Therefore, it is important to capture
detailed information about the computational environment (e.g., library depen-
dencies and environment variables) where the script runs. Consider, for example,
the Python script in Fig. 1, which runs a simulation to predict weather using his-
torical data about temperature and precipitation. For simplicity of exposition,
the real (and expensive) simulation performed by simulate is defined in a separate
module (simulator) not shown in the example. This script depends on 703 dis-
tinct modules, although only four are explicitly declared (lines 1–4). Suppose we
run the experiment script once and obtain a result. If later, software is installed
(or upgraded) that silently updates one of the modules on which the experiment
script depends, the next execution may produce a different result, even though
its source code remains unchanged. If these dependencies are not systematically
captured, it may be difficult to understand why results are different between
executions that are apparently identical.

The provenance needed here is neither prospective nor retrospective, and it
needs to be captured right before execution. Borrowing terms from software engi-
neering, where software goes through three phases, i.e., definition, deployment,
and execution [9], we define three types of provenance needed for scripts:

– Definition Provenance captures the structure of the script, including function
definitions, their arguments, and function calls; it corresponds to prospective
provenance.

– Deployment Provenance captures the execution environment, including infor-
mation about the operating system, environment variables, and libraries on
which the script depends. As discussed before, this may change from one exe-
cution to another, even if the source code remains the same. In addition, it
extends beyond dependencies a programmer explicitly defines, and the con-
crete library versions that are loaded depend on the deployment environment.

– Execution Provenance captures the execution log for the script (e.g., function
activations, argument values, and return values); it corresponds to retrospec-
tive provenance.



74 L. Murta et al.

Fig. 1. Example of a Python script (simulation.py) that predicts temperature and
precipitation in the near future.

2.2 Provenance Granularity

As discussed above, in WfMSs, provenance is captured at the level of an activity,
and what happens inside an activity is not taken into account by the provenance
infrastructure. In contrast, such boundaries are not well-defined in the context
of scripts. Thus, an important question is how to determine the level of granu-
larity at which to capture provenance for scripts. One alternative would be to
use approaches that capture provenance at the operating system level [6,17].
Since these systems intercept system calls (e.g., file reads and writes, execution
of binaries), they produce a high volume of very fine-grained information that
represent data dependencies between processes. It can be difficult to explore
this information and connect it to the underlying experiment specification. Con-
sequently, identifying which experiment activity influenced the generation of a
given data product can be challenging. On the other hand, if we consider the
entire script as a black-box, and capture provenance at a coarse granularity, it



noWorkflow: Capturing and Analyzing Provenance of Scripts 75

would be impossible to know which functions contributed to the generation of a
given data product.

We posit that functions in a script are a suitable choice for provenance
capture—this is most likely to be meaningful to users since it is closer to the
experiment specification. We note, however, that even this level may be over-
whelming. For instance, profiling the (very small and simple) script of Fig. 1, we
observed 156,086 function activations. This includes functions called by func-
tions that are used in the main experiment script, such as plt.scatter (line 30).
Clearly, analyzing this volume of information is hard and time-consuming; an
alternative is to capture only the activations related to functions that are defined
by the programmer (i.e., that have user-defined functions as source or target). In
the example, this entails all activations related to the main program along with
functions run simulation, csv read, extract column, and plot. This app-
roach significantly reduces the amount of captured information, and makes it
easier for users to keep track of what is happening throughout the execution.

3 noWorkflow

As a proof of concept, we built noWorkflow, a command line tool written in
Python that transparently captures provenance of Python scripts. Running no-
Workflow is as simple as running a Python script: now run <script>. In no-
Workflow, the execution of a given experiment script is called a trial. Each trial
is assigned a sequential identification number that is automatically generated.
Provenance for each trial is captured and stored for future analysis. The system
distinguishes a function call from a function activation: the former is related
to definition provenance and can be captured by statically analyzing the source
code while the latter is related to execution provenance. For example, in Fig. 1,
data.append is a single function call (line 16), but it may have many activations
at runtime, with different arguments and return values, because it is inside a for
loop. In what follows, we describe how noWorkflow, in the absence of a controlled
execution environment, captures and stores the different types of provenance
(see Fig. 2). We also discuss useful analyses that can be performed over script
provenance.

3.1 Provenance Capture

Definition Provenance. To capture definition provenance, noWorkflow uses
the abstract syntax tree (AST) of the script to identify all user function defini-
tions, function calls, arguments, and global variables referenced in the script. We
chose user-defined functions as the granularity for provenance capture (Sect. 2.2),
and the AST is used to capture the source code of each function definition.
In the example (Fig. 1), the source code of run simulation (lines 6–10) is
entirely stored, which allows the tool to monitor the evolution of each function
definition independently. In addition, noWorkflow stores the source code of the



76 L. Murta et al.

Fig. 2. Architecture of noWorkflow.

entire script. All this information is associated with an experiment trial, thus
making it possible to know which function definitions belong to a specific trial.

Each function is then analyzed to capture the objects referenced inside it,
including arguments, function calls, and global variables. These objects are asso-
ciated with the corresponding function definition. Consider for example the func-
tion run simulation in Fig. 1: noWorkflow captures two arguments (data a
and data b, on line 6), and two function calls (csv read on lines 7 and 8,
and simulate on line 9). Despite the fact that csv read is called twice in
run simulation, we register this information only once as a dependency from
run simulation to csv read. At runtime, noWorkflow is able to distinguish
between different function activations of the same function call as well as differ-
ent activations of different calls from the same function definition.

Deployment Provenance. noWorkflow captures two different types of deploy-
ment provenance: environment and module (i.e., library) dependencies. This
provenance is captured right before the execution of the experiment script begins,
and is associated with an experiment trial. noWorkflow uses libraries provided
by Python to capture environment information, including os to capture oper-
ating system information, socket to capture the host name, and platform to
capture information about the machine architecture and Python environment.
noWorkflow also uses Python’s modulefinder library to find the transitive clo-
sure of all module dependencies. For each module that this library finds, our tool
stores the library name, version, file name (including its full path), and source
code (if available).

It is possible that environment and module dependencies change during the
script execution. In this case, to precisely capture this information, deployment
provenance would need to be gathered dynamically, right before each function
activation. However, since this situation is very rare (and advised against), and
to avoid introducing a large overhead, we have opted for capturing deployment
provenance right before executing the script.



noWorkflow: Capturing and Analyzing Provenance of Scripts 77

Execution Provenance. Execution provenance includes function activations,
argument values, return values, global values, start and finish times for each func-
tion activation, as well as their context, and the content of all files manipulated
by the experiment script during execution. noWorkflow captures this information
through profiling and reflection.

noWorkflow implements specific methods of the Python profiling API and
registers itself as a listener. During an execution, the profiler notifies the tool
of all function activations in the source code. Notice that this goes very deep
into the execution flow—recall that our simple simulation script has 156,086
function activations. As discussed before, to avoid overloading users with large
volumes of information, thus overcoming the granularity challenge, noWorkflow
only registers function activations related to user-defined functions. For the
script in Fig. 1, noWorkflow registers that csv read calls data.append (line 16),
but it does not register functions that data.append calls. At this moment, we
also capture the start time of the function activation, together with the values
of every argument, return, and globals that may be involved in the function
activation.

While monitoring only user-defined functions reduces the volume of infor-
mation to be captured, it may miss an important aspect of the experiment: file
access. Explicit open system calls in the script will be captured, but if open
is called from a function not defined by the scientist (e.g., plt.savefig on
line 33 of Fig. 1), this information would be missed by noWorkflow. noWorkflow
addresses this issue by using reflection to alter the behavior of a system call.
We implement a new function that overwrites the system’s open function and
alters its behavior so that every time open is called, we capture the content
of the file, store it, call the original open system call, and then capture and
store the file’s content again. Thus, noWorkflow preserves the content before
and after a file is accessed, allowing us to detect, for instance, if a file has been
modified.

Notice that reflection is not enough to identify which function called open.
To make this association, noWorkflow uses an activation stack : every time there
is an activation of a user-defined function, it is pushed onto the stack, and when
the activation finishes, it is popped from the stack. When open is called, the
function on top of the stack is tagged as being responsible for opening the file.
Figure 3 shows an example: when plt.savefig is called from the user-defined
function plot (line 33), its activation is pushed to the stack; when open is called
to save output.png, plt.savefig will be on top of the stack, thus allowing no-
Workflow to link it to the modified file. Right before popping an activation
from the stack, its end time and return value are registered. If a function is
activated several times, noWorkflow registers all activations and links them with
the activation on top of the stack that triggered them. This allows noWorkflow
to keep track of function activation dependencies, together with the source code
line that corresponds to this call and all information previously discussed in this
section.



78 L. Murta et al.

3.2 Provenance Storage

Because transparency is one of our goals, noWorkflow includes an embedded
storage mechanism that does not require any installation or configuration. All
provenance is automatically stored to disk in a directory named .noworkflow in
the script directory. This directory holds both a relational database for struc-
tured data and a database for file contents. These databases are linked together
by means of SHA1 hash codes.

Fig. 3. Example of how reflection and activation stack work on noWorkflow. When
open is called (2), the file is captured before executing the original system call function
(3), and since plt.savefig is on top of the stack, noWorkflow knows that this func-
tion is the one responsible for opening the file.

noWorkflow uses SQLite to store structured data which includes definition
provenance (e.g., function definitions and objects they reference, including func-
tion calls), deployment provenance (e.g., environment variables and module
dependencies), and execution provenance (e.g., runtime information about trials,
file accesses, function activations, and object values). Hash codes are also stored
whenever possible, e.g., SHA1 hashes of the source code of a function and of files
before and after access. In contrast, file contents are stored directly to disk in
what we call the content database. To avoid OS limitations regarding the number
of files that can be stored in a directory, we use the same strategy Git uses to
store files: file content is stored in a directory that corresponds to the first two
characters of its SHA1 hash in a file named by the remaining characters of the
SHA1 hash. noWorkflow maintains all files involved with the experiment, and
all SHA1 hashes stored in the relational database have a counterpart file stored
in the content database. Data in the SQLite database is always associated with
a given execution of the experiment script (i.e., a trial). This allows noWorkflow
to save disk space: whenever the hash code of a given file is the same, the hash
is stored in the database, but not the file itself again. In addition, the prove-
nance storage in noWorkflow eases reproducibility : scientists can simply share
the .noworkflow directory with their collaborators to exchange provenance data.



noWorkflow: Capturing and Analyzing Provenance of Scripts 79

3.3 Provenance Analysis

While captured provenance aids reproducibility, another important goal is facili-
tating the analysis of provenance to locate, understand, and compare techniques.
The current version of noWorkflow supports three different analysis techniques:
graph-based, diff-based, and query-based.

Graph-Based Analysis. Graph-based analysis is facilitated by visualizing the
provenance of a trial in a graph which provides an overview of the script
execution and supports comprehension of both functional and non-functional
attributes. However, the provenance of even simple scripts may consist of a large
number of function activations, particularly in the presence of loop structures,
which may lead to visualization overload problems. For this reason, noWorkflow
first summarizes the provenance before producing its activation graph. Our over-
all approach is based on a three-step strategy: summarization, construction, and
drawing.

Fig. 4. Graph-based visualization generated from the example in Fig. 1.

The summarization step aggregates different activations of a function call if
they belong to the same context (i.e., same loop). The idea is to aggregate the
provenance by activation stack, function call line number, and function name.
Therefore, each function call may have multiple activations together with their
activation arguments, return values, and timestamps. The second step consists
of building a graph from the vertices generated by the summarization step and
edges extracted from the function activation sequence. There are three types of
edges: call, when a function calls another function; sequence, when two functions
are called in sequence within the same activation stack; and return, when a
function finishes its execution and the control flow returns to the function in the
top of the stack. Finally, the third step is rendering the graph. Each vertex is
labeled with the function name and is colored according to the traffic light scale
(shades from green to yellow to red) [4]: function calls with faster activations are
colored in shades of green, while the ones with slower activations are colored in
shades of red. Each edge displays the number of times the control flow passed
through it, and each edge type has a different shape to ease the visual distinction:
call edges are thicker and darker, sequence edges are thinner and lighter, and
return edges are dashed, thicker, and darker. There is also a tooltip window that
provides detailed information about each node (activation).



80 L. Murta et al.

Figure 4 shows the graph-based visualization generated from the example of
Fig. 1. From the graph, we can observe that the script called both run simula-
tion and plot in sequence. It is also possible to see that run simulation is
much slower than plot, and that there are four loop structures in the script,
summarized by noWorkflow: two loops occurring inside csv read and two loops
occurring inside extract column.

Diff-Based Analysis. In some provenance analysis scenarios, it is crucial to
contrast two trials to understand why results differ. There are many aspects
that influence the generation of an output, including script modifications, envi-
ronment variable changes, and module updates. noWorkflow provides a mecha-
nism to contrast two trials and identify changes that may influence the results.
This mechanism allows comparison of the basic attributes of trials (e.g., date,
script, and arguments), environment variables, and module dependencies, show-
ing which attributes have changed, and which variables and modules have been
added, removed, or replaced. This is especially useful for reproducibility, since
it becomes easy to compare two executions of the same experiment in different
environments. Additionally, our diff-based strategy can be easily extended to
support object-specific diffs.

Query-Based Analysis. Since provenance data is stored in a relational data-
base, SQL would be a natural choice for the query language. However, SQL
is known to be very inefficient for recursive queries, and queries that employ
transitive closures would be hard to write and take a long time to process.
To overcome this limitation, we provide an inference-based query mechanism
based on Prolog. noWorkflow is able to export Prolog facts and rules of a given
trial which can then be used to query the collected provenance data. The facts
follow the same structure of the relational tables that we use to store prove-
nance data. To make queries easier, noWorkflow also provides a set of Prolog
inference rules. As an example, the rule access influence can be used to find
out which files may have influenced the generation of a given file. Running the
query access influence(File, ‘output.png’) returns a list of files that may
influenced the generation of output.png, which, in the case of our example, are
data1.dat and data2.dat. Note that, since we export the Prolog facts, any Prolog
system can be used. New rules can also be added by users.

4 Related Work

Different mechanisms for provenance capture have been proposed, and some can
be applied to scripts. Tools that capture provenance at the operating system
level [6,8,17] monitor system calls and track processes and data dependencies
between these processes. Because the dependencies are recorded at the process
level, it can be difficult to reconcile the provenance with the script definition
as these systems cannot see what happens inside the processes. The provenance
captured by noWorkflow is of a different nature—it represents dependencies
within processes at the function level. In this sense, our approach is closer to the



noWorkflow: Capturing and Analyzing Provenance of Scripts 81

work by Cheney et al. [2]. They proposed a formalism that uses techniques based
on program analysis slicing to represent the provenance of database queries so
that it is possible to show how (part of) the output of a query depends on (parts
of) its input. In contrast, we focus on provenance of (general) scripts, not just
database queries. Another important distinction is that noWorkflow captures
additional dependencies: it captures deployment provenance and, in addition to
function and variable dependencies, it also captures general data dependencies
from file reads and writes.

Several tools capture provenance from scripts and connect it to the experi-
ment data. Bochner et al. [1] proposed an API and a client library to capture
provenance for Python scripts. Gavish and Donoho [7] introduce the notion of a
Verifiable Computational Result (VCR), where every result is assigned a unique
identifier and results produced under the exact same conditions have the same
identifier to support reproducibility. Unlike noWorkflow, these tools are intru-
sive and require users to change their scripts and include specific API method
calls. Sumatra [3] collects provenance information from Python scripts. It is able
to capture input and output data produced by each run (as long as they are
explicitly specified by the user), parameters, module dependencies, and plat-
form information. It is also able to detect when a module the script depends
on has changed. The source code, however, needs to live in a version control
system so that changes from one version to another can be detected. Prove-
nanceCurious [10] is another tool that can infer data provenance from Python
scripts. It also uses AST analysis to capture every node of the syntax tree, and
it uses a graph to provide query capabilities. However, for every operation, it
requires input from the users regarding whether or not the operation reads or
writes persistent data—this information is transparently captured by noWorkflow.

The approach taken by Tariq et al. [19] makes use of the LLVM compiler
framework to automatically insert provenance capture at each function entry
and exit. Thus, similar to noWorkflow, their approach is transparent—users do
not need to manually annotate their code. However, there are important differ-
ences between the two approaches. Since Tariq et al. rely on a compiler, they
are restricted to capturing static information. noWorkflow, on the other hand,
captures both static and dynamic information. The latter is crucial for inter-
preted languages such as Python, since the underlying program (and objects)
can change during runtime. In addition, noWorkflow captures dependencies that
involve global variables within a function; these are ignored by Tariq et al.,
since they do not capture what happens inside functions. While our current
implementation selects user-defined functions to track, we would like to explore
mechanisms such as the one used by Tariq et al. to allow users to have more
control over the captured provenance.

5 Conclusions and Future Work

We have presented noWorkflow, an approach to capture provenance of experi-
ment scripts. Compared to previous approaches, the main benefits of noWorkflow



82 L. Murta et al.

are: (i) it is completely transparent—users do not need to instrument their code;
(ii) it systematically captures three types of provenance—definition, deployment,
and execution provenance—using non-intrusive mechanisms; (iii) it does not
require users to change their modus operandi: scripts can be outside of a con-
trolled environment and neither changes to the source code nor a version control
system are required; (iv) it provides support for different kinds of analyses over
the captured provenance data (graph-based, diff-based, and query-based); and
(v) it simplifies reproducibility, allowing scientists to exchange provenance by
sharing the .noworkflow directory with their peers. noWorkflow is available as
open source software at https://github.com/gems-uff/noworkflow. Preliminary
experiments show that its overhead is not burdensome.

One direction we plan to explore in future work is how to integrate provenance
at different levels (e.g., operating system level with function level). We also plan
to further investigate techniques for summarizing and visualizing provenance
graphs [11,14], including all three types of provenance, as well as for contrasting
different trials [15]. Last, but not least, we note that graph-based provenance
analysis opens a vast range of opportunities for automated analysis, such as:
reverse engineering workflows from scripts; optimizing scripts by either refac-
toring slow functions or running data mining algorithms to extract recurring
execution patterns; identifying flaws in script execution; and showing the script
evolution over time.

Acknowledgments. This work was supported in part by CNPq, FAPERJ, and the
National Science Foundation (CNS-1229185, CNS-1153503, IIS-1142013).

References

1. Bochner, C., Gude, R., Schreiber, A.: A python library for provenance recording
and querying. In: Freire, J., Koop, D., Moreau, L. (eds.) IPAW 2008. LNCS, vol.
5272, pp. 229–240. Springer, Heidelberg (2008)

2. Cheney, J., Ahamed, A., Acar, U.A.: Provenance as dependency analysis. Math.
Struct. Comput. Sci. 21, 1301–1337 (2011)

3. Davison, A.: Automated capture of experiment context for easier reproducibility
in computational research. Comput. Sci. Eng. 14(4), 48–56 (2012)

4. Diehl, S.: Software Visualization - Visualizing the Structure, Behaviour, and Evo-
lution of Software. Springer, London (2007)

5. Freire, J., Koop, D., Santos, E., Silva, C.: Provenance for computational tasks:
a survey. Comput. Sci. Eng. 10(3), 11–21 (2008)

6. Frew, J., Metzger, D., Slaughter, P.: Automatic capture and reconstruction of
computational provenance. Concurr. Comput. Pract. Exp. 20(5), 485–496 (2008)

7. Gavish, M., Donoho, D.: A universal identifier for computational results. Procedia
Comput. Sci. 4, 637–647 (2011)

8. Guo, P.J., Seltzer, M.: BURRITO: wrapping your lab notebook in computational
infrastructure. In: TaPP, p. 7 (2012)

9. van der Hoek, A.: Design-time product line architectures for any-time variability.
Sci. Comput. Program. 53(3), 285–304 (2004)

https://github.com/gems-uff/noworkflow


noWorkflow: Capturing and Analyzing Provenance of Scripts 83

10. Huq, M.R., Apers, P.M.G., Wombacher, A.: ProvenanceCurious: a tool to infer
data provenance from scripts. In: EDBT, pp. 765–768 (2013)

11. Koop, D., Freire, J., Silva, C.: Visual summaries for graph collections. In: 2013
IEEE Pacific Visualization Symposium (PacificVis), pp. 57–64 (2013)

12. Koop, D., Santos, E., Bauer, B., Troyer, M., Freire, J., Silva, C.T.: Bridging work-
flow and data provenance using strong links. In: Gertz, M., Ludäscher, B. (eds.)
SSDBM 2010. LNCS, vol. 6187, pp. 397–415. Springer, Heidelberg (2010)

13. Koop, D., Scheidegger, C.E., Freire, J., Silva, C.T.: The provenance of workflow
upgrades. In: McGuinness, D.L., Michaelis, J.R., Moreau, L. (eds.) IPAW 2010.
LNCS, vol. 6378, pp. 2–16. Springer, Heidelberg (2010)

14. Macko, P., Seltzer, M.: Provenance map orbiter: interactive exploration of large
provenance graphs. In: TaPP (2011)

15. Missier, P., Woodman, S., Hiden, H., Watson, P.: Provenance and data differencing
for workflow reproducibility analysis. Concurr. Comput. Pract. Exp. (2013). doi:10.
1002/cpe.3035

16. Mouallem, P., Barreto, R., Klasky, S., Podhorszki, N., Vouk, M.: Tracking files in
the kepler provenance framework. In: Winslett, M. (ed.) SSDBM 2009. LNCS, vol.
5566, pp. 273–282. Springer, Heidelberg (2009)

17. Muniswamy-Reddy, K.K., Holland, D.A., Braun, U., Seltzer, M.: Provenance-aware
storage systems. In: USENIX, p. 4 (2006)

18. Neves, V.C., Braganholo, V., Murta, L.: Implicit provenance gathering through
configuration management. In: SE-CSE, pp. 92–95 (2013)

19. Tariq, D., Ali, M., Gehani, A.: Towards automated collection of application-level
data provenance. In: TaPP, pp. 1–5 (2012)

http://dx.doi.org/10.1002/cpe.3035
http://dx.doi.org/10.1002/cpe.3035


LabelFlow: Exploiting Workflow Provenance
to Surface Scientific Data Provenance

Pinar Alper1(B), Khalid Belhajjame2, Carole A. Goble1, and Pinar Karagoz3

1 School of Computer Science, University of Manchester, Manchester, UK
alperp@cs.manchester.ac.uk

2 Université Paris Dauphine, Paris, France
3 Department of Computer Engineering,

Middle East Technical University, Ankara, Turkey

Abstract. Provenance traces captured by scientific workflows can be
useful for designing, debugging and maintenance. However, our experi-
ence suggests that they are of limited use for reporting results, in part
because traces do not comprise domain-specific annotations needed for
explaining results, and the black-box nature of some workflow activities.
We show that by basic mark-up of the data processing within activities
and using a set of domain specific label generation functions, standard
workflow provenance can be utilised as a platform for the labelling of
data artefacts. These labels can in turn aid selection of data subsets and
proxy for data descriptors for shared datasets.

Keywords: Provenance · Annotation · Scientific workflows

1 Introduction

Many fields of science are experiencing a proliferation in the sharing and re-use
of scientific datasets [TA+11]. Widespread data-oriented science and data shar-
ing necessitates principled data reporting regimes [TF+08] and richer metadata.
In this context “scientific data provenance” is considered to be essential
metadata that describes (1) the experimental context, in which data is gener-
ated, such as the scope of study, assumptions, experimental settings and descrip-
tions of specialist resources or techniques adopted [TF+08], and (2) the data’s
origins in terms of primary datasets or source databases [TA+11].

Scientists go through a phase of experiment reporting prior to sharing
datasets. During reporting they select relevant data subsets among the pool
of all results obtained and annotate data to denote its scientific provenance
using domain-specific vocabularies [TF+08]. A recent survey [TA+11] has shown
that even though there is significant tool support for the collection and analysis of
data, similar support does not exist for the organisation of results. Consequently
scientists welcome any tool support for it.

Increasingly, scientific datasets are produced from entirely computational
experiments. In many domains, Scientific Workflows have become a widespread
c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 84–96, 2015.
DOI: 10.1007/978-3-319-16462-5 7



LabelFlow: Exploiting Workflow Provenance to SSDP 85

mechanism for specifying experiments as systematic and (re)runnable composi-
tions of datasets and analysis tools [DF08]. Experiments organised as workflows
are advantageous over adhoc analyses as they provide repeatability of compu-
tation and traceability among results. Wide adoption of scientific workflows has
fostered research on workflow provenance [DF08] with several provenance models
and query mechanisms developed [Ge12,BC+12,MD+13,MLA+08]. Given their
extensive provenance traces, at first glance one expects workflow-based exper-
iments to be advantageous during experiment reporting. However, there is
little use of workflow provenance during experiment reporting. This is due to: (1)
workflow provenance being generic, implementation-oriented metadata [SSH08]
that cannot stand-in for domain-specific descriptions expected during scientific
data publishing; and (2) the established means of querying workflow provenance
i.e. lineage traversal, can be an imprecise selection mechanism for scoping data
subsets to be reported.

To this date, the approach to acquiring domain-specific annotations over
workflow generated data has been either entirely manual [ZW+04] or partially-
automated [MSZ+10]. Certain fixed characteristics at workflow description level
are collected and then propagated to data generated by executions. This fixed
metadata is useful for reporting but insufficient. Often experiments are reported
based-on parametric information that is supplied at runtime via inputs. When
one workflow execution is configured with multiple values of one parameter,
results need to be annotated accordingly. This category of dynamic information
offers significant utility in reporting yet it has received limited research attention.
On the other hand, while manual annotation can be feasible for capturing fixed
metadata, it is hard to scale for dynamic metadata.

Scientists invest significant time and effort into organising experiments as
workflows. While this brings benefits when running the experiment, it has limited
benefits for reporting. We propose to bridge this gap and exploit workflow
provenance to its full potential by treating it as a medium on which
an automated data annotation (labelling) framework can be weaved.
The benefit of labels are twofold: (1) they have the potential to stand-in as data
descriptors during publishing; and (2) they can be used for more precise scoping
of data subsets to be reported.

We describe LabelFlow, a semi-automated infrastructure for tracking domain
specific provenance withData Labels. We introduce a domain-independent process
model comprised of four operators for the in-situ generation and propaga-
tion of labels, predicated on basic information given in the form of semantic
workflow annotations, called Motifs, that describe the data processing charac-
teristic of workflow steps. We provide a practical algorithm for the generation
of Labelling Pipelines out of motif-annotated scientific workflows, and provide
an implementation where labelling pipelines are realised as functional programs.
In prior work [AGB13] we proposed requirements and a preliminary approach;
here we present a fully implemented architecture and report results on the
impact of availability of labels to provenance queries. We start by introducing a
sample real-world workflow and outline the provenance categories and queries



86 P. Alper et al.

for experiment reporting (Sect. 2). We outline the LabelFlow architecture in
Sect. 3 followed by details of the proposed solution, including Motif annotations
(Sect. 3.1), the core model for labelling pipelines (Sect. 3.2), labels (Sect. 3.3) and
labelling operators (Sect. 3.4). We review related work in Sect. 4, and conclude
in Sect. 5.

2 Motivation

Figure 1 illustrates a workflow from astronomy1 that takes as input a set of
galaxy names (“list cig name”), and outputs extinction/reddening calculations
per galaxy (“data internal extinction”), and galaxy details such as coordinates
and morphology (“ra” “dec” “sesame” “logr25”, and “leda output”). The work-
flow starts by retrieving data, including coordinates, for each galaxy through a
service based lookup from the Sesame astro-repository (Step-1- “SesameXML”).
Coordinates are used to query the Visier Database to retrieve further data
regarding galaxies (Step-2- “VII 237”). Galaxy morphology information is extr-
acted from the Visier results, which is input together with coordinates into a
local tool that computes galaxy extinction values (Step-3-“calculate internal
extinction”). The scientifically significant activities in this workflow are the data
retrievals and the local extinction calculation. The remaining activities are
data adapters [GAB+14], a.k.a. shims, which are dedicated to the extraction of
data, format transformation or moving data between the workflow environment
and the file system. An important adapter in our example is the “Flatten List”
step, which bundles all input coordinates for all galaxies from Step-1 into a single
output list for Step-2.

Workflow execution results in a set of intermediary and final data artefacts.
For a single galaxy (e.g. M31, the Andromeda Galaxy) a total of 17 final results
are generated at 6 output ports. The number of outputs increases linearly with
the number of inputs. For a list of 6 galaxy names supplied as input, we get 20+
values for extinction and 100+ values for all results. This illustrates how work-
flows as automation tools proliferate data generation and makes apparent that
manual annotation of data artefacts would quickly become a challenge for users.

The provenance landscape for workflow-generated data contains two cate-
gories of information

(i) Generic: Standard (Workflow) Provenance vocabularies make-up this cat-
egory. They capture activities, input/output ports, activity instantiations,
and data artefacts appearing at ports. Data influence and activity causality
relations are also represented at this layer [Ge12,BC+12].

(ii) Domain Specific: Field-specific vocabularies for describing the scientific
context and characteristics of data and experiments make up this category.
The importance of domain-specific metadata has been acknowledged early-
on in provenance research; 5 out of 9 of the Provenance Challenge queries
[MLA+08] are based on restrictions on either data values or “annotations”,

1 http://www.myexperiment.org/workflows/2920.html.

http://www.myexperiment.org/workflows/2920.html


LabelFlow: Exploiting Workflow Provenance to SSDP 87

Fig. 1. Sample workflow from Astronomy developed by the Wf4Ever project.

which are “assumed” to exist. Domain specific annotations can further the
categorised as containing Static or Dynamic metadata. The former identifies
fixed/general domain types for activities or their inputs and outputs. E.g.
Specifying that an activity is a SesameDB lookup, a parameter is a galaxy
name. Dynamic metadata corresponds to attributes of data that can change
from run to run. This information is often to be found innately but implicitly
within data values, e.g. the galaxy name input parameter such as M31 or
M33.

Let’s now look at the state of the art in reporting with the Lineage-Based
Approach, and compare with our proposed Label-Based Approach. In the former
we only have generic workflow provenance to query, in the latter we employ
LabelFlow to obtain domain-specific annotations, which we later query.

Lineage-Based Data Selection: One can use workflow provenance to select
data subsets by using lineage as a scoping mechanism. For instance, querying
for results that are on the derivation path of a particular input artefact, or those
whose derivation includes a particular activity. Table 1 presents three traditional
lineage queries; Q1a, Q2a are adapted from [ZS+11], and Q3a is an adaptation
of Provenance Challenge Query #6 [MLA+08]. Queries are font-highlighted to
denote the different layers of provenance metadata needed to support them.

We analyse queries with respect to their Contextual-Precision, which we
define as #ofContextually-Accurateresults

Total#ofresults . We define Contextual Accuracy as
the results actually belonging to the scope implied by the query (e.g. for Q1a the
results that actually contain data that is retrieved from the Sesame database, or
for Q2a the results that actually contain data belonging to galaxy M31).



88 P. Alper et al.

Table 1. Provenance queries to select results of interest from the execution traces of
workflow in Fig. 1. In Q(2a) we locate the specific data artefact with value M31 prior
to formulating the query.

Q1a queries for the origin of data by expressing it as a path-based linkage to
the “Sesame XML” activity in the workflow description. This way of designating
the origin proves to be a weakly precise yet robust filter (see Fig. 2 (left)). Only
one third of the results whose derivation path includes a Sesame DB lookup
actually contain data that is retrieved from the Sesame DB. Increasing the num-
ber of galaxies in a workflow run does not diminish the precision of Q1a. Q2a
defines a filter for results belonging to the Andromeda Galaxy by expressing it
as a path-based linkage to the data artefact at the galaxy name input port with
value “M31”. While Q1a puts constraints on workflow description level enti-
ties, Q2a puts restrictions on run-time provenance-level entities. As depicted in
Fig. 2 (right) the precision for Q2a quickly deteriorates. Q3a is a more elaborate
query that combines the metadata requirements of Q1a and Q2a. Q3a is not
robust against input data increase either. The fragility of queries that make use
of dynamic elements (Q2a, Q3a) is due to the well-known Black-Box nature of
workflow activities. For our case specifically, the “Flatten List” step, which bun-
dles all input coordinates for all galaxies into a single output list. At this point
we lose fine-grained traceability between a specific galaxy name and the relevant
data generated downstream in the workflow. As our example demonstrates, in
the face of loss of fine-grained traceability, path-based querying of provenance
becomes an ineffective index for reporting.

Fig. 2. Precision values for Q1 (left) and for Q2&Q3 (right) with respect to input size.



LabelFlow: Exploiting Workflow Provenance to SSDP 89

Annotation with LabelFlow and Label-Based Selection: In order to
employ LabelFlow, as a pre-requisite we developed two simple functions that
extract attributes (labels) for astronomical datasets from their XML based repre-
sentation. We associated these functions with the “SesameXML” and “VII 237”
activities, so that whenever these two data retrieval activities are used in a work-
flow they would have an associated labelling capability denoting the data’s origin
using an endpoint and its context i.e. the astronomical object it belongs to. We
also semantically annotated data adaptation steps in our astro-workflow to give
them basic transparency to denote whether inputs are carried-forward to (copied-
to) outputs. Using this information LabelFlow creates a labelling pipeline, which
we use to decorate the runs of our workflow with labels. Labels have two poten-
tial uses, as descriptors during publishing and as data selection aides. In this
work we explore the latter use of labels.

Table 1 also presents label-based data selections queries Q1b, Q2b and Q3b.
In these we directly refer to the asserted origin (has referenceURI) and the
asserted context (has Subject). Label-based queries Q1b and Q2b have higher
precision then their lineage based counterparts (see Fig. 2), which can be explain-
ed as follows. First, lineage-based association is by-definition only a pseudo mech-
anism for denoting origin/context. By replacing lineage-based association with
explicitly asserted attributes we gain in precision, as now only the data items
that originate from the Sesame DB, and their local copies are returned to Q1b.
Secondly, loss of fine-grained traceability also affects label-based query preci-
sion, see Q2b in Fig. 2 (right). While each item output from “SesameXML”
bears the correct label denoting the associated galaxy, all items in the out-
put of “Flatten List” would bear a set of labels (for all galaxies), even though
each contains the data of one. This time, however, LabelFlow offers the possibil-
ity of asserting/recovering context in other data minting steps (“VII 237”); the
labelling function associated with this step would exploit the raw data returned
from the Visier DB and associate each result item with its context using a com-
mon attribute (has subject). In precision Q3b and Q3a are of equal capability
in filtering (Fig. 2 (right)). This shows us that even though Q3b makes use of
labels, it queries workflow results with reference to a particular blindspot (i.e.
output of “Flatten List”) and therefore has precision performance equivalent
to lineage-based queries. Thus, lineage-based queries represent the bottom-line
(worst-case) precision for data scoping, where availability of labels offers the
possibility of increased precision (at varying levels depending on existence and
frequency of activities where fine-grain traceability is lost). In the remainder of
the paper we describe the LabelFlow infrastructure.

3 The LabelFlow System

Figure 3 provides the overall architecture of our approach. We undertake labelling
as an offline process, where we do not interfere with the established process of
scientific workflow design (Step A1) and execution (Step A2). Workflow runs
result in the generation of data artefacts and generic workflow provenance. These



90 P. Alper et al.

two make up our primary sources of information for obtaining and propagat-
ing domain-specific Data Labels. We perform labelling through latent processes
informed by scientific workflow descriptions themselves enriched with semantic
Motif annotations and associated Labelling Functions.

Fig. 3. Labelling System Architecture.

We operationalize the process model with Labelling Pipelines. Labels
are opaque to the process model, as it out-sources their creation to external
Labelling Functions. Using motif annotations (Step B1 in Fig. 3) and a repos-
itory of labelling functions we compile (Step B2) a labelling pipeline for a given
scientific workflow. This pipeline is in-turn used to annotate the desired execu-
tion traces of that workflow with labels (Step B3). Once labels are generated
they can be used in conjunction with generic workflow provenance metadata for
the reporting of experimental results (Step C1).

3.1 Annotation of Workflow Activities with Motifs

In a previous empirical study [GAB+14] we inspected a corpus of 240 work-
flows from 4 systems and 10 domains in order to understand the nature of
data processing in them. This resulted in a catalog of Motifs, a set of high-level
abstractions for describing activity functionality. The analysis showed that a
certain minority (30 %) group of activities perform the scientific heavy lifting
in a workflow by minting data through analysis or retrievals. The remainder



LabelFlow: Exploiting Workflow Provenance to SSDP 91

majority (70 %) are dedicated to data adaptation. A common characteristic of
adapters, is that their computation is based on value-copying from inputs to
the outputs. It follows then that we should seek labels for data artefacts that
are generated by Data Minting activities, and grab hold of labels as data passes
through (i.e. copied through) Data Preparation activities. These two categories
of behaviour form the backbone of our labelling system. In Table 2 we list a
subset of motifs with examples (including those from our astro-workflow as
applicable) and corresponding labelling behaviour. Motifs are captured in an
ontology, which we use to manually annotate activities. This basic annotation
is in turn used to infer the data handling behaviour of each step. Annotation is
finalised by collecting the particulars from the user; for value-copying, the source
and sink ports, and for data minting the associated Labelling Function (if any)
and the sink port to receive labels. Note that we scope our approach to scien-
tific dataflows, i.e. those without any explicit control construct such as looping
or branching. The pure dataflow model underpins several systems such as Tav-
erna [MSRO+10], Galaxy2 or Wings [GRK+11]. In others like Kepler [LAB+06]
and Vistrails [MSFS11] pure dataflow model is widely adopted, while control-
constructs are add-on modules or supplied in alternative design modes. We also
assume that data is structured as Collections-Items, which is a ubiquitous struc-
ture for scientific workflow systems.

Table 2. Workflow motifs, Value copying and corresponding labelling behavior

Motif src→snk Example Labelling

Data Minting I
m−1−−−→O “SesameXML”, “VII 237”,“calculate int extinction” Mint

Augmentation I
m−1−−−→O Adding a header to a CSV dataset Propagate

Extraction I
1−m−−−→ O “Select logr25 Mtype”, “’Extract DEC&RA” Propagate

Splitting I
1−1−−−→O Splitting a dataset by newline char Propagate

Flattening I
1−1−−−→O “Flatten List” Propagate

Filter I
1−1−−−→O Filtering empty rows from a CSV Propagate

Join I
m−1−−−→O Row by row dot product of two CSV tables Propagate

Union I
m−1−−−→O Concatenating two CSV tables Propagate

3.2 Labelling Pipelines

We provide a tool which takes as input a motif annotated workflow description
w and produces a labelling pipeline Πw for this workflow. Πw could in turn
be used to annotate data artefacts generated from all runs of w. A pipeline
generator implements an algorithm based on the traversal of all dataflow paths
in w. For each workflow element (i.e. activity or dataflow link) the tool checks the
availability of motif annotations and label-flow continuity and accordingly places
2 http://galaxyproject.org.

http://galaxyproject.org


92 P. Alper et al.

an operator into Πw as a labelling proxy for that element. We note that this
algorithm can operate with partial/missing annotations; in the case of missing
motif annotations, the generator simply registers the current stack of connected
labelling operators as a labelling sub-pipeline and resets. The algorithm initiates
a new thread in the labelling pipeline whenever it encounters an activity that
mints new data. To coordinate inter-operator communication among labelling
operators we use simple runs-after type control tokens. The output of the genera-
tor tool is an intermediate representation for a labelling pipeline which is further
expanded into a runnable form using the syntactic/macro expansion capabilities
of a functional programming language.

The inputs to a particular execution of the labelling pipeline Πw is the 6-
tuple 〈d, p, l, v, FL, FP 〉, where p, denotes the provenance trace of one run of
workflow w, and d denotes the set of data artefacts generated during that run.
The domain specific provenance represented with labels is accumulated in the
label space l. v is the labelling vector that the system will take into account
for label propagation. The system relies on sets of predefined functions, FL for
provisioning labels and for management of the label space (read-write) and FP

for querying generic workflow provenance.

3.3 Labels

A label is in effect a Label Instance that is defined with the triple Lins =
〈def, target, value〉. def refers to the label’s type, target is the id of the data
artefact, which the label describes, and value is the actual annotation con-
tent carried by the label. Label definitions are triples of the form Ldef =
〈name, datatype, fagg〉. They have a unique name and a datatype designator.
Labels can contain primitively typed information such as Integer or String.
fagg is the identifier for a function to be used when the system needs to aggre-
gate multiple labels of this type. For the majority of labels, this element is nil,
in which case the default aggregation function, i.e. Union, is used. A non-default
case is, for example, the spatialaggregation function which computes the convex
hull representing the overall spatial coverage of multiple datasets. Label defini-
tions are grouped together in Label Vectors, v = 〈name, {Ldef}〉. When used to
configure the run of a pipeline Πw, the vector sensitizes Πw to the label types
that it contains. Label and label vector definitions are to be made at the scientific
investigation level, which spans multiple workflow descriptions.

3.4 Labelling Operators

Labelling pipelines are compositions of four labelling operators, namely Mint,
Propagate, Distribute and Generalize (Fig. 4). In addition to input parameters,
each operator accesses the provenance space, and depending on the labelling
behaviour, accesses either the data artefacts (in case of mint) or the label space
(others). Each operator has the side-effect of populating the label space. Opera-
tors return a boolean control token that is used for composing multiple operators
into a labelling pipeline:



LabelFlow: Exploiting Workflow Provenance to SSDP 93

– Mint is a labelling proxy for those scientifically significant steps in the work-
flow. Mint obtains labels by invoking the designated external labelling func-
tion; the labels are then associated with the data artefacts that fulfil the sink
port and submitted to the label space. Minting is iterated for all invocations
of the designated activity found in the provenance trace.

– Propagate is a labelling proxy for the value-copying Data Preparation steps in
the workflow. Similar to mint, it is iterated for all invocations of the designated
activity. Propagate clones labels describing the inputs at the source port and
associates these clones with the outputs at the sink port.

– Distribute and Generalize are variants of propagation. While the former two
are labelling proxies for activities, these are labelling proxies for dataflow links
in the workflow, specifically those links with data structure depth mismatches
between the two ends. In cases where the activity at one end of a dataflow
link produces a collection, and the other end consumes an item, Distribute is
responsible for propagating labels from the top-level collection to each item
at specified depth. And vice-versa for Generalize.

Fig. 4. Labelling Operator Signatures.

3.5 Implementation

The provenance and the label spaces are underpinned by RDF based meta-
data. LabelFlow can operate over standard PROV [Ge12] + Wfprov [BC+12]
compliant provenance traces. Our provenance inquiry functions in the p space
are implemented as Java methods. We implemented labelling operators as Java
methods and labelling pipelines as Clojure programs that adhere to the dataflow
paradigm3, though in our case we flow control tokens among operators and
the inter-operator communication regarding labels is done over the shared label
space. The LabelFlow system is agnostic to the inner workings of labelling func-
tions. For our example from astronomy we had a simple local registry of labelling
functions, which are Java classes adhering to a label generation interface.

4 Related Work

As mentioned previously, provenance annotation has so far been either entirely
manual, or semi-automated with particular focus on static metadata [MSZ+10].
In [SSH08] authors describe the SPADE system where they highlight dynamic
metadata, and they too address data artefacts as the source of this information.
3 http://clojuredocs.org/clojure core/clojure.core/future.

http://clojuredocs.org/clojure_core/clojure.core/future


94 P. Alper et al.

The authors propose “semantic provenance modules” to supply this metadata
and claim modules can be integrated into workflows on-demand, though details of
the integration are omitted. When compared to our work, this work is focused on
devising an elaborate provenance ontology for one particular scientific domain,
whereas ours is a domain-independent mechanism. Moreover the SPADE system
requires altering the original scientific workflow to denote integration points,
while ours is non-intrusive to the workflow design and execution process Finally
SPADE does not address metadata propagation.

There is a large body of work on the provenance of database queries, which
is recently revisited for its applicability to workflow provenance [AD+11,IC+,
BL06]. These approaches propose white-box workflow activities that correspond
to relational query operators. The benefit of white-box steps is that they allow
full-transparency and enable fine-grained lineage, also making way for the track-
ing of cell-level value-copying and annotation propagation [BC+04]. Similarly,
work on dependency analysis in programming languages has recently found
applicability as a formal foundation for the tracking of Nested Relational Cal-
culus query provenance [CAA07]. Such white-box transparency could be instru-
mental in developing workflow debugging or change tracking aids. On the other
hand, these approaches expect data to be specified in relations and tuples,
and reduce data-processing to data-querying; both of which can be restrictive
assumptions for developing scientific workflows. In contrast, we focus on the
unexplored area of grey-box steps, and denote value-copying through a rough-
cut semantic annotation.

5 Conclusion

We described a semi-automated approach and an implemented architecture for
the generation of Labels over data artefacts generated from runs of workflow
based experiments. Labelling is performed through labelling pipelines, which use
data artefacts as the main source of information for extracting domain-specific
metadata and workflow provenance as a roadmap for association and propaga-
tion of labels with data. Pipelines are built up using four domain-independent
labelling operators, which are agnostic to the contents of the domain-specific
labels they carry around.

We argue that experiments organised as workflows make-up an ideal medium
to capture and carry domain-specific provenance. Labels, i.e. carriers of this
information, stand as a light-weight but controlled representation mechanism for
metadata, which is a middle-ground between having no explicit metadata and
having fully-fledged models that can represent complex/structured metadata.
The benefit of labelling is two-fold: not only does it make implicit informa-
tion explicit, but it also enables provenance queries that directly refer to scien-
tific provenance/context rather than expressing context indirectly it in terms of
derivation paths.

The cost involved in adapting our system is the manual annotation of work-
flow activities with motifs and developing labelling functions for the focal data



LabelFlow: Exploiting Workflow Provenance to SSDP 95

generation points in workflows. These are one-time costs. Both motif annota-
tions and labelling functions are highly reusable as most workflows are built by
re-using building blocks pooled in module libraries or service registries. Conse-
quently an annotation or a labelling proxy for a building block propagates to all
workflows that the block is involved. When compared to workflow design, the
cost of annotation is modest(as it amounts to single attribute setup per activity).
Moreover motif annotation can be (semi)automated through the application of
mining techniques to workflows and activity scripts [GCP13]. The re-usability of
labelling functions can be maximised by developing metadata extraction utilities
that operate over standardised scientific data formats.

Acknowledgements. The work has been supported in part by the award EP/G0262-
38/1 myGrid: A Platform for e-Biology Renewal, and enabled by collaborations with
the EU FP7 STREP 270192 Wf4Ever Advanced Workflow Preservation Technologies
for Enhanced Science and EU FP7 283359 BioVel BioDiversity eLaboratory.

References

[AD+11] Amsterdamer, Y., Davidson, S.B., et al.: Putting lipstick on pig: Enabling
database-style workflow provenance. PVLDB 5(4), 346–357 (2011)

[AGB13] Alper, P., Goble, C., Belhajjame, K.: On assisting scientific data curation
in collection-based dataflows using labels. In: WORKS 2013, pp. 7–16.
ACM, New York (2013)

[BC+04] Bhagwat, D., Chiticariu, L., et al.: An annotation management system for
relational databases. In: (e)Proceedings of the 13th VLDB Conference, pp.
900–911 (2004)

[BC+12] Belhajjame, K., Corcho, O., et al.: Workflow-centric research objects:
First class citizens in scholarly discourse. In: Proceedings of Workshop
on the Semantic Publishing (SePublica), Crete, Greece (2012)

[BL06] Bowers, S., Ludäscher, B.: A calculus for propagating semantic anno-
tations through scientific workflow queries. In: Grust, T., Höpfner, H.,
Illarramendi, A., Jablonski, S., Fischer, F., Müller, S., Patranjan, P.-L.,
Sattler, K.-U., Spiliopoulou, M., Wijsen, J. (eds.) EDBT 2006. LNCS,
vol. 4254, pp. 712–723. Springer, Heidelberg (2006)

[CAA07] Cheney, J., Ahmed, A., Acar, U.A.: Provenance as dependency analysis.
In: Arenas, M. (ed.) DBPL 2007. LNCS, vol. 4797, pp. 138–152. Springer,
Heidelberg (2007)

[DF08] Davidson, S., Freire, J.: Provenance and scientific workflows: challenges
and opportunities. In: SIGMOD Conference, pp. 1345–1350 (2008)

[GAB+14] Garijo, D., Alper, P., Belhajjame, K., Corcho, O., Gil, Y., Goble, C.: Com-
mon motifs in scientific workflows: An empirical analysis. Future Gener.
Comput. Syst. 36, 338–351 (2014)

[GCP13] Ghoshal, D., Chauhan, A., Plale, B.: Static compiler analysis for workflow
provenance. In: Proceedings of the 8thWorkshop onWorkflows in Support
of Large-Scale Science, WORKS 2013, pp. 17–27. ACM, New York (2013)

[Ge12] Gil, Y., Miles, S., (eds.) A primer for the prov provenance model. In:
World Wide Web Consortium (W3C) (2012)



96 P. Alper et al.

[GRK+11] Gil, Y., Ratnakar, V., Kim, J., González-Calero, P.A., Groth, P.T.,
Moody, J., Deelman, E.: Wings: Intelligent workflow-based design of com-
putational experiments. IEEE Intel. Syst. 26(1), 62–72 (2011)

[IC+] Ikeda, R., Cho, J., et al.: Provenance-based debugging and drill-down in
data-oriented workflows. In: ICDE 2012, Stanford InfoLab (2012)

[LAB+06] Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., et al.: Scientific work-
flow management and the kepler system. Concurrency Comput. Pract.
Exp. 18(10), 1039–1065 (2006)

[MD+13] Missier, P., Dey, S., et al.: D-prov: extending the prov provenance model
with workflow structure. In: Proceedings of the 5th USENIX Workshop
on the Theory and Practice of Provenance, TaPP 2013, pp. 9:1–9:7 (2013)

[MLA+08] Moreau, L., Ludäscher, B., Altintas, I., et al.: The first provenance chal-
lenge. CCPE 20(5), 409–418 (2008)

[MSFS11] Mates, P., Santos, E., Freire, J., Silva, C.T.: CrowdLabs: Social analysis
and visualization for the sciences. In: Bayard Cushing, J., French, J.,
Bowers, S. (eds.) SSDBM 2011. LNCS, vol. 6809, pp. 555–564. Springer,
Heidelberg (2011)

[MSRO+10] Missier, P., Soiland-Reyes, S., Owen, S., Tan, W., Nenadic, A.,
Dunlop, I., Williams, A., Oinn, T., Goble, C.: Taverna, reloaded. In:
Gertz, M., Ludäscher, B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp. 471–
481. Springer, Heidelberg (2010)

[MSZ+10] Missier, P., Sahoo, S.S., Zhao, J., Goble, C., Sheth, A.: Janus: FromWork-
flows to Semantic Provenance and Linked Open Data. In: McGuinness,
D.L., Michaelis, J.R., Moreau, L. (eds.) IPAW 2010. LNCS, vol. 6378, pp.
129–141. Springer, Heidelberg (2010)

[SSH08] Sahoo, S.S., Sheth, A., Henson, C.: Semantic provenance for escience:
Managing the deluge of scientific data. IEEE Internet Comput. 12(4),
46–54 (2008)

[TA+11] Tenopir, C., Allard, S., et al.: Data sharing by scientists: Practices and
perceptions. PLoS ONE 6(6), e21101 (2011)

[TF+08] Taylor, C.F., Field, D., et al.: Promoting coherent minimum reporting
guidelines for biological and biomedical investigations: the MIBBI project.
Nat. Biotechnol. 26(8), 889–896 (2008)

[ZS+11] Zhao, J., Sahoo, S.S., et al.: Extending semantic provenance into the web
of data. IEEE Internet Comput. 15(1), 40–48 (2011)

[ZW+04] Zhao, J., Wroe, C., Goble, C.A., Stevens, R., Quan, D., Greenwood, M.:
Using semantic web technologies for representing E-science provenance.
In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004.
LNCS, vol. 3298, pp. 92–106. Springer, Heidelberg (2004)



Auditing and Maintaining Provenance
in Software Packages

Quan Pham1(B), Tanu Malik2, and Ian Foster1,2

1 Department of Computer Science, The University of Chicago,
Chicago, IL 60637, USA
quanpt@cs.uchicago.edu

2 Computation Institute, The University of Chicago, Chicago, IL 60637, USA
tanum@ci.uchicago.edu

Abstract. Science projects are increasingly investing in computational
reproducibility. Constructing software pipelines to demonstrate repro-
ducibility is also becoming increasingly common. To aid the process of
constructing pipelines, science project members often adopt reproducible
methods and tools. One such tool is CDE, which is a software packaging
tool that encapsulates source code, datasets and environments. How-
ever, CDE does not include information about origins of dependencies.
Consequently when multiple CDE packages are combined and merged
to create a software pipeline, several issues arise requiring an author
to manually verify compatibility of distributions, environment variables,
software dependencies and compiler options. In this work, we propose
software provenance to be included as part of CDE so that resulting
provenance-included CDE packages can be easily used for creating soft-
ware pipelines. We describe provenance attributes that must be included
and how they can be efficiently stored in a light-weight CDE package.
Furthermore, we show how a provenance in a package can be used for cre-
ating software pipelines and maintained as new packages are created. We
experimentally evaluate the overhead of auditing and maintaining prove-
nance and compare with heavy weight approaches for reproducibility
such as virtualization. Our experiments indicate minimal overheads.

Keywords: Reproducibility · Software packaging tools · Software
provenance · Tools and methods

1 Introduction

Computational reproducibility is a challenge, yet crucial for science. To meet the
challenge, large-scale science projects are increasingly adhering to reproducibility
guidelines. For instance, software associated with a publication is made avail-
able for download (see Figshare [20], RunMyCode [21], and Research Compen-
dia [19]); but increasingly many science projects are making end-to-end software
pipelines available. These pipelines are often for the larger scientific community,
as in the case of Bio-Linux 5.0 [15], which is a bioinformatics virtual machine
c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 97–109, 2015.
DOI: 10.1007/978-3-319-16462-5 8



98 Q. Pham et al.

that provides access to several pipelines for conducting next-generation sequence
analysis, or sometimes to demonstrate project impacts as in the case of Swift
Appliance [3], a virtual machine, which demonstrates crop simulation models
using workflow systems.

To help projects adhere to these reproducibility guidelines, project members
often adopt best practices and tools for developing and maintaining software so
that their contributed software quickly becomes part of a pipeline. In this paper,
we focus on software packaging tools. We describe how auditing and maintaining
software provenance as part of a packaging tool can significantly help in building
and deploying software pipelines. In particular, provenance can be helpful in
cutting down manual effort involved in ensuring software compatibility, thus
leading to improved administration of software pipelines.

A software pipeline consists of many individual software modules. Given the
collaborative nature of science, it is not uncommon for modules to develop inde-
pendently. Furthermore, a module itself may depend upon externally-developed
libraries, which evolve independently. To ensure library compatibility, and avoid
what is often called “dependency hell”, a software module is often packaged
together with specific versions of libraries that are known to work with it. In
this way, contributing project members can ensure that their module will run
on any target system regardless of the particular versions of library components
that the target system might already have installed.

However, packaging software modules with associated dependencies, but with-
out clearly identifying the origin of the dependencies, gives rise to a number of
provenance-related questions, especially when constructing software pipelines.
For instance, determining the environment under which a dependency was built
or other dependencies which must be present for using a module, are questions
that must be answered when combining packages for creating software pipelines.
Similarly, if a new software package is released, then through dependency analy-
sis it will be useful to know which packages of a pipeline can use it. If a new
version of a library is released that contains security fixes, then it will be useful
to know which pipelines or packages are vulnerable.

To answer such questions, we must be able to capture and determine the
provenance of a software entity, i.e., capture and determine where it came from.
Current package management systems do not provide a means to audit or main-
tain software provenance within it. We use CDE, a software packaging tool that
creates a source code and data package while identifying all static and dynamic
software dependencies. CDE has also been successfully shown to create software
packages out of many development environments. Though CDE packages sta-
tic and dynamic dependencies for an application, it does not store associated
provenance.

The first contribution of this paper is to enhance CDE to include software
provenance, i.e., provenance of shared libraries and binaries on which a program
depends. We call this enhanced CDE as CDE-SP. We describe tools and meth-
ods to audit, store, and query this provenance in CDE-SP. We then describe
a science project use case in which software reproducibility is a concern. Our
second contribution is to show how provenance, audited and stored as part of



Auditing and Maintaining Provenance in Software Packages 99

(a) Audit mode (b) Execution mode

Fig. 1. CDE audit and execution modes

a CDE-SP package, can help in creating software pipelines for this use case.
Finally, we show how provenance can be maintained as new packages are built
during construction of software pipelines.

The remainder of the paper is structured as follows: We describe CDE, a
software packaging tool that can identify and package program dependencies, in
Sect. 2. Currently, CDE does not audit provenance of the program dependencies
that it determines. In Sect. 3, we describe provenance that can be audited, stored,
and queried in CDE-SP, resulting in a provenance-included package. In Sect. 4
we describe a science use case where provenance, included as part of software
packages, can help in creating pipelines. In Sect. 5 we further enhance CDE-SP to
enable it to maintain correct provenance as new packages are created. In Sect. 6,
we conduct a thorough experimental evaluation to measure the overheads associ-
ated with auditing and maintaining provenance. Section 7 provides an overview
of the related work in this area. We conclude in Sect. 8.

2 CDE: A Software Packaging Tool

The CDE tool [12,13] aims to easily create a package on a source resource and
execute a program in that package on a target resource without any installation,
configuration, or privilege permissions. It runs in two main modes: audit mode
to create a CDE package, and execution mode to execute a program in a CDE
package.

In audit mode (Fig. 1a), CDE uses the UNIX ptrace system call interposi-
tion to identify the code used by a running application (e.g., program binaries,
libraries, scripts, data files, and environment variables), which it then records
and combines to create a package. For example, when a process accesses a file
or a library using the system call fopen(), CDE intercepts that syscall, extracts
the file path parameter from the call, and makes a copy of the accessed file into
a package directory, rooted at cde-root and consisting of all sub-directories and
symbolic links of the original file’s location.

The resulting package can be redistributed and run on another target
machine, provided that the other machine has the same architecture (e.g. x86).
The original CDE as available through [12,13] was limited to major Linux ker-
nel versions (e.g. 2.6.x), but we have removed that restriction by adapting it



100 Q. Pham et al.

for the newly released Linux kernel 3.0 as well as for Mac OS X by using the
specification described here [2].

In execution mode (Fig. 1b), while executing a process from a package, CDE
also monitors that process via ptrace. Each file system call is interrupted and its
path argument is redirected to refer to the corresponding path of that file within
the root directory of the CDE package on the target resource. In essence, CDE
provides a lightweight virtualization environment to its running processes by
providing the cde-root directory as a sandbox in a chroot operation. Redirecting
all library dependency requests into this sandbox, CDE fools the target program
into believing that it is executing on the original source machine [12]. It is to
be noted that CDE binary only captures a single execution path, which is the
execution path taken during run-time. If different execution paths need different
types of dependencies, some dependencies may be left out. However, CDE does
provide external scripts in its source code to find additional dependencies from
strings inside binaries and libraries of captured packages.

3 CDE-SP: Software Provenance in CDE

The objective of auditing provenance is to capture additional details of the cre-
ation and origins of a library or a binary, such as the version of the compiler,
the compilation options used, the exact set of libraries used for linking. This
information must be gathered on a per environment basis so that it becomes
easy to compile and create software pipelines.

Audit. CDE’s audit feature identifies static and dynamic program dependen-
cies. We instrument this feature to first determine a dependency tree, and then
use UNIX utilities to store additional provenance information about each depen-
dency. To create a dependency tree, process system calls are monitored that audit
process name, owner, group, parent, host, creation time, command line, environ-
ment variables and the process binary’s path. Whenever a process executes a file
system call, a dependency of that process is recorded. In general, this depen-
dency can be a data file or a shared library. We identify shared libraries using
standard extensions, such as .so for system libraries and .jar for Java libraries,
and create a dependency tree based on these libraries. Information about bina-
ries and required shared libraries, such as version number, released version of
shared libraries, and associated kernel distribution, is audited using UNIX com-
mands file, ldd, strings, and objdump. By including these commands, we can
obtain other static and dynamic dependencies, some of which are not audited
by CDE during run-time. This set of commands is a more comprehensive way of
obtaining dependencies comparing to CDE’s external scripts. Current operating
system distribution and user information is recorded from command uname -a
and function getpwuid(getuid()).

Storage. Each package can store captured provenance to a relational database.
Since this provenance will be useful for whatever target resource package is
being used, we believe it is best to store this provenance within the package



Auditing and Maintaining Provenance in Software Packages 101

itself. We use LevelDB, a very fast and light-weight key-value storage library
for storing provenance. To store provenance graphs that contain process-file and
process-process edges, in a key-value store, we encode in the key the UNIX
process identifier along with spawn time. The value is the file path or the process
time. Table 1 describes the LevelDB schema for storing provenance graphs:

Table 1. LevelDB key-value pairs that store file and process provenance. Capital letter
words are arguments.

Key Value Explanation

pid.PID1.exec.TIME PID2 PID1 wasTriggeredBy PID2

pid.PID.[path, pwd, args] VALUES Other properties of PID

io.PID.action.IO.TIME FILE(PATH) PID wasGeneratedBy/wasUsedBy
FILE(PATH)

meta.agent USERNAME User information

meta.machine OSNAME Operating system distribution

Query. LevelDB has a minimal API for querying. Instead of providing a rich
provenance query interface, currently we implement a simple, light-weight query
interface. The interface takes as input the program whose dependencies need to
be retrieved. Using depth first search algorithm, a dependency tree in which the
input program is the root is determined. The result is saved as a GraphViz file.
Since the result may include multiple appearances of common files like those
in /lib/, /usr/lib/, /usr/share/, and /etc/ directories, the query interface also
provides an exclusion option to remove uninteresting dependencies.

4 Using CDE-SP Packages to Create Software Pipelines

We describe a software pipeline through a use case. We then describe how CDE-
SP packages can help to create the described software pipeline. The use case will
also be used for experimental evaluation in Sect. 6.

4.1 Software Pipelines

Scientists with varying expertise at the Center for Robust Decision Making on
Climate and Energy Policy (RDCEP) engage in open-source software develop-
ment at their individual institutions, and rely primarily on Linux/Mac OS X
environments. The Center often needs to merge its individual software modules
to create software pipelines. We describe software modules being developed by
three scientists, henceforth denoted as Alice, Bob, and Charlie, and the associ-
ated software pipeline that needs to be constructed.

– A measures and characterizes land usage and changes within it. She develops
data integration methods to produce higher-resolution datasets depicting



102 Q. Pham et al.

inferred land use over time. To develop the needed methods, her software envi-
ronment consists of R, geo-based R libraries (raster, ggplot2, xtable, etc.), and
specific versions of Linux packages (r-base v2.15, libgdal v1.10, libproj v4.8).

– B develops computational models for climate change impact analysis. He
conducts model-based comparative analysis, and his software environment
consists of A’s software modules to produce high-resolution datasets, and
other Linux packages, including C++, Java, AMPL [11] modeling toolkits
and libraries.

– C uses A and B’s software modules within data-intensive computing
methods to run them in parallel. C’s scientific focus is the efficiency of dis-
tributed computing methods and his software environment is primarily Java
and Python and its libraries on Linux.

– For the Center, the goal of their combined collaboration is to predict future
yields of staple agricultural commodities given changes in the climate; changes
that are expected to drive, and be influenced by, changes in land usage [9].
The Center curator’s environment is Mac OS X and a basic Unix shell.

Fig. 2. Software packages of A, B, and C

Given the linear workflow of the science problem, it is often the case that
B needs to rerun A’s software in his own environment. Instead of installing,
this can simply be achieved if A shares a CDE package with B. However, if B
attempts to create a software pipeline that includes A’s package and her software
modules, then he needs to verify the provenance of each dependency included in
A and her software. This is because a dependency with the same file path, but
built on different Linux distributions (therefore different content), will conflict.
In fact, if B creates a CDE package corresponding to this pipeline, one of the
dependencies will be overwritten in the newly created package. By using the
provenance-enabled CDE packages, which store md5 checksums of dependen-
cies, such origins can be immediately verified, without manually tracking kernel
distributions on which the dependency was built or communicating with the
author of the software. Similarly, by checking versions of all dependencies within
the package, B can document the compatibility of the newly created software
pipeline.

As the use case demonstrates, C needs to use A’s and B’s packages, and
the problem of dependency tracking, i.e., determining distributions and versions,



Auditing and Maintaining Provenance in Software Packages 103

given several dependencies and software environments, can increase significantly.
In the Appendix we describe the magnitude of the dependency tracking problem
if software development is undertaken in cloud-based environments.

5 Merging Provenance in CDE-SP

While provenance-included packages can eliminate much of the manual and
tedious efforts of ensuring software compatibility, the downside is that prove-
nance stores within a package need to be effectively maintained as software
pipelines are themselves cast into new packages. Consider the Center’s need for
creating a software pipeline that satisfies reproducibility guidelines. To help the
Center build this software pipeline, assume A, B, and C share their individual
provenance-included packages. By exploring A, B and C’s package provenance,
the Center can examine all data and control dependencies among the contribut-
ing packages. The Center can then define a new experiment with steps using
data and control dependencies from the three contributed packages, and cre-
ate a new software package of this experiment. In particular, correct pathnames,
attribution, etc., will need to be verified. We next describe how CDE-SP, with
a −m option, can be used to merge provenance from contributing packages.

In the typical CDE audit phase, file system binaries and libraries found in
the path of program execution are copied to the cde-root directory. However,
provenance may indicate two dependencies with the same path but emerging
from different distributions or versions. In CDE-SP, these two files are stored
in separate directories identified by a UUID, which is unique to the machine
on which CDE-SP is executed. The UUID is the hash of the Mac address and
the operating system. By creating this separate directory based on a UUID, files
with the same paths but different origins can be maintained separately. Note that
only files with differing content but the same path are maintained in separate
UUID directories. Files with different paths can all still be in the same generic
cde-root folder. We also include versioning of UUID directories so that they are
copied and maintained correctly in new packages.

Because provenance informs that separate UUID based directories be created
within a CDE-SP package, correspondingly, the modifications are needed in the
LevelDB provenance store and the CDE-SP redirection mechanism. The Lev-
elDB path in the value field needs to reflect the UUID directory where the
dependency exists. The CDE redirection, which redirects all system calls to the
cde-root directory, in CDE-SP needs to redirect to the appropriate UUID direc-
tory. This redirection can be tricky since it needs to know where the process
is running. To enable correct redirection, CDE-SP with merge maintains a cur-
rent root id pointer for each tracing process. This bookkeeping pointer helps in
redirecting to the package root directory of the pointer in case the process forks
other processes. Alternatively, if the process performs an execve() system call,
or accesses a file, or changes directories, absolute paths are read and checked to
determine if redirection is necessary.

Another issue when merging two packages is maintaining licensing infor-
mation. While general licensing issues are outside the scope of this paper, the



104 Q. Pham et al.

current CDE-SP maintains authorship of software modules during the merge
process. When two packages are merged in their entirety, the authorship of a
new package is the combined authorship of the contributing packages. However,
when part of a contributing package is used to create a new package, then author-
ship must be validated from the provenance stored in the original package. To
validate, CDE-SP generates the subgraph associated with the part of the pack-
age, and, using subgraph isomorphism, validates that it is indeed part of the
original provenance graph.

The subgraph isomorphism (or matching) problem is NP-complete [22] lead-
ing to an exponential time algorithm. In our case, we compare file paths and
names to determine if two provenance graphs are subgraph-isomorphic. In our
implementation of VF2 subgraph-isomorphism algorithm [6], we reduce compu-
tation time by only matching provenance nodes of processes with the same path
to their binary and working directory, and only matching provenance nodes of
files with the same path. We believe that this implementation is sufficient for
validating provenance subgraph isomorphism among lightweight packaging tools.

6 Experiment and Evaluation

The benefits of reproducibility can be hard to measure. In this Section, we
describe the three experiments we conducted to determine the overall perfor-
mance of CDE-SP.

1. We determined the performance of CDE-SP in: auditing performance over-
head, disk storage increase, and provenance query runtime;

2. We determined the redirection overhead if multiple UUID-based directories
are created in CDE-SP; and

3. We compared the lightweight virtualization approach of CDE-SP with
Kameleon [10], a heavyweight virtualization approach used for reproduci-
bility.

All experiments in this section are tested on an Ubuntu 12.04.3 LTS workstation
with an 8 GBs RAM and 8-core Intel(R) processor clocking at 1600 MHz.

6.1 Audit Performance and Size Overhead in CDE-SP

In Table 2, we record execution times and disk usage of CDE and CDE-SP in
auditing a software pipeline mentioned in Sect. 4.1. Both CDE-SP and CDE are
set up for a pipeline with two applications: Aggregation and Generate Image.
Each is repeated 10 times. The result shows approximately a 2.1 % slowdown
of CDE-SP in comparison with CDE due to provenance capture. The result fits
with our observation that the overhead is from ptrace which both CDE and CDE-
SP rely on heavily to implement their capture capabilities. Additional functions
that store provenance record to LevelDB database introduce negligible prove-
nance capture overhead compared to 0–30% CDE virtualization overhead [12].
In this setup, CDE package uses 732 MB; while CDE-SP, in addition to the



Auditing and Maintaining Provenance in Software Packages 105

Table 2. Increase in CDE-SP performance is negligible in comparison with CDE

Create package Execution Disk usage Provenance query

CDE 852.6± 2.4 (s) 568.8± 2.4 (s) 732 MB

CDE-SP 870.5± 2.5 (s) 569.5± 1.8 (s) 732 MB + 236 kB 0.4± 0.03 (s)

Fig. 3. Overhead when using CDE with Kameleon VM appliance

software package, creates a LevelDB database of size 236 kB (0.03 % increase)
that contains approximately 12,000 key-value pairs.

To measure provenance query performance, we created a Python script to
query the audited LevelDB provenance database and create a provenance graph
of the experiment with common shared libraries filtered out. The Python script
reads through approximately the 12,000 key-value pairs in 0.39 s to create a
GraphViz script that can be converted to image or visualized later.

6.2 Redirection Overhead in CDE-SP

We also compared an execution of CDE package and CDE-SP package to measure
the redirection overhead of CDE-SP. Using the packages created by the above
experiment with two applications, Aggregation and Generate Image, we pipelined
output of Aggregation to input of Generate Image, which requires CDE-SP to
apply redirection among multiple CDE roots. The experiment showed 3 data
files, as outputs of Aggregation package, were moved to Generate Image package.
After the data was moved to the next package, the experiment was executed the
same as in CDE. The result shows less than a 1 % slowdown of CDE-SP, which
maybe due to initial loading of library dependencies in Generate Image package.

6.3 CDE-SP Vs Kameleon

In this experiment, we used the Kameleon engine to make a bare bone VM
appliance that contains the content of a CDE-SP package corresponding to the
software pipeline described in the use case (Sect. 4.1). The package content was



106 Q. Pham et al.

copied directly to the root file system of the VM appliance. In terms of user
software, the new VM appliance is close to a replica of the package, without any
redundant installed software. We compared the two approaches qualitatively and
quantitatively.

Qualitatively, the overhead of instantiating a VM is significant as compared to
creating a CDE-SP package. In particular, for CDE-SP the user needs to specify
input packages, and using one command, the author can create a new software
package. Kameleon is user friendly and can create virtual machine appliances in
different formats for different Linux distributions. But, users must provide self-
written YAML-formatted recipes or self-written macrosteps and microsteps to
generate customized virtual images. Based on the recipe input, it generates bash
scripts to create an initial virtual image of a Linux distribution, and populates
the initial image with more Linux packages to produce needed appliances.

Quantitatively, we compared the time for executing the software pipeline
within a CDE-SP package with time for execution within a VM. Note that
we do not compare time for initializing, since time for writing YAML scripts
cannot be measured in the case of Kameleon. During the execution, CDE-SP
redirected 2717 file-read system calls, 10 file-write system calls, 17 file-read-write
system calls. Figure 3 shows that the Kameleon VM appliance slowed down the
experiment significantly: approximately 200 % or more. This heavyweight VM
overhead is substantial in comparison with the CDE-SP lightweight approach.

7 Related Work

Details about software have been included in provenance collected within work-
flow systems. For instance, Research Objects [4], packages scientific workflows
with auxiliary information about workflows, including provenance information
and metadata, such as the authors, the version. Our focus here is not limited to
any specific workflow system.

Software packaging tools such as CDE [12,13] and Sumatra [8] can capture an
execution environment in a lightweight fashion. Sumatra captures the environ-
ment at the programming level (Python), while CDE operates at the operating
system level, and is thus more generic. Even at the system level, different trac-
ing mechanisms can be used. At the user-space level, ptrace [1] is a common
mechanism, whereas at the kernel-level, use of SystemTap [18] is more common.
SystemTap, being kernel-based, has better performance compared to ptrace since
it avoids context switching between the tracee (which is in the kernel) and the
tracer (which is user space) [14]. However, from a reproducibility standpoint,
SystemTap needs to run at a higher privilege level, i.e., it requires root access,
creating a more restricted environment.

Virtual machine images (VMIs) provide a means of capturing the environ-
ment in a form that permits later replay of a computation. Kameleon [10] uses a
bash script generator to create virtual images from scratch for any Linux distri-
butions. Using recipes, users can generate customized virtual images with pre-
defined software packages to run on different cloud computing service providers.
We have compared our approach with creating VMIs for reproducibility.



Auditing and Maintaining Provenance in Software Packages 107

Tools such as Provenance-to-Use (PTU) [17] and ReproZip [5] have demon-
strated the advantages of including provenance in self-contained software
packages. Currently, these tools include execution provenance and not soft-
ware provenance. Finally, software provenance is an emerging area that uses
Bertillonage metrics for finding software entities in large code repositories [7].
In this paper, we have described how software provenance can help in building
packages that can satisfy reproducibility guidelines.

8 Conclusion

CDE is a software packaging tool that helps to encapsulate static and dynamic
dependencies and environments associated with an application. However, CDE
does not encapsulate provenance of the associated dependencies such as their
build, version, compiler, and distribution. The lack of information about the ori-
gins of dependencies in a software package creates issues when constructing soft-
ware pipelines from packages. In this paper, we have introduced CDE-SP, which
can include software provenance as part of a software package. We have demon-
strated how this provenance information can be used to build software pipelines.
Finally, we have described how the CDE-SP can maintain provenance when used
to construct software pipelines.

Acknowledgments. The authors would like to thank the following participants in
the RDCEP Center, in particular, Neil Best, Joshua Elliott and Justin Wozniak at
The University of Chicago, Columbia University, and Argonne National Laboratory
for motivating our use case, and Allison Brizius for describing the Center’s activities.
This work is supported by NSF grant SES-0951576 and subcontract award under grant
GEO-1343816.

Appendix

In our use case, A, B, and C develop open-source code and use publicly-available
datasets. Their specified software environments, which may appear different,
can be still overlapping. To demonstrate the magnitude of overlap, we assume
that each developer uses the cloud for their research, which is not uncommon
in today’s projects, and chooses a different Linux distribution. Differences in
the choice of linux distributions is also not surprising as the Linux Counter
Distributions Report [16] indicates that there is no clean winner in terms of
usage of Linux distributions, with no one distribution accounting for more than
30 %. Further, we limit software environments to refer to application binaries
and libraries that are often overlapping and create conflicts.

If the two assumptions are sound, then the overlap in the environment, i.e.,
files which have the same path, but differing content, can be as high as 18 %. We
calculate this by taking five Linux distributions with similar setup available on
Amazon EC2. For each pair of machines, we calculate the number of files with
the same path on two machines, and the number of files with the same path on



108 Q. Pham et al.

two machines but having different md5 checksum. Table 3 shows that between
any two machines, on average, 6.8 % of files have the same path but differ in
content. In other words, these files are not interchangeable but depend on the
underlying operating system.

Table 3. Ratio of different files having the same path in 5 popular AMIs. The denom-
inator is number of files having the same path in two distributions, and the numerator
is the number of files with the same path but different md5 checksum. Ommited are
manual pages in /usr/share/ directory.

RH SUSE U12 U13

Amz 5498/23 k 3184/11 k 1203/5.4 k 1819/5.5 k

RH 3861/12 k 1654/6.6 k 2223/6.3 k

SUSE 1245/3.9 k 2085/6.4 k

U12 8226/24 k

References

1. ptrace(2) - Linux man page. http://linux.die.net/man/2/ptrace
2. Replacing ptrace(). http://uninformed.org/index.cgi?v=4&a=3&p=14
3. Swift appliance at science clouds. http://scienceclouds.org/appliances/swift-

appliance/
4. Belhajjame, K., Corcho, O., et al.: Workflow-centric research objects: First class

citizens in scholarly discourse. In: Proceedings of Workshop on the Semantic Pub-
lishing (SePublica), Crete, Greece (2012)

5. Chirigati, F., Shasha, D., Freire, J.: ReproZip: using provenance to support com-
putational reproducibility. In: USENIX Workshop on the Theory and Practice of
Provenance, TaPP 2013 (2013)

6. Cordella, L., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algo-
rithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(10),
1367–1372 (2004)

7. Davies, J., German, D.M., Godfrey, M.W., Hindle, A.: Software bertillonage.
Empirical Softw. Engg. 18(6), 1125–1155 (2013)

8. Davison, A.P.: Automated capture of experiment context for easier reproducibility
in computational research. Comput. Sci. Eng. 14, 48–56 (2012)

9. Elliott, J., et al.: Constraints and potentials of future irrigation water availability
on agricultural production under climate change. In: Proceedings of the National
Academy of Sciences (2013)

10. Emeras, J., Richard, O., Bzeznik, B.: Reconstructing the software environment of
an experiment with kameleon (2011)

11. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Mathematical Programming
Language. ATT Bell Laboratories, Murray Hill (1987)

12. Guo, P.: CDE: Run any linux application on-demand without installation. Tech-
nical. report, USENIX Association, Boston, Massachusetts (2011)

13. Guo, P.J., Engler, D.: CDE: Using System Call Interposition to Automatically
Create Portable Software Packages. USENIX Association, Portland (2011)

http://linux.die.net/man/2/ptrace
http://uninformed.org/index.cgi?v=4&a=3&p=14
http://scienceclouds.org/appliances/swift-appliance/
http://scienceclouds.org/appliances/swift-appliance/


Auditing and Maintaining Provenance in Software Packages 109

14. Keniston, J., Mavinakayanahalli, A., Panchamukhi, P., Prasad, V.: Ptrace, utrace,
uprobes: Lightweight, dynamic tracing of user apps. In: Linux Symposium (2007)

15. Krampis, K., et al.: Cloud BioLinux: pre-configured and on-demand bioinformatics
computing for the genomics community. BMC Bioinf. 13(1), 42 (2012)

16. Löhner, A.: Lico-Project information (2012)
17. Pham, Q., Malik, T., Foster, I.: Using provenance for repeatability. In: USENIX

Workshop on the Theory and Practice of Provenance (2013)
18. Prasad, V., Cohen, W., Eigler, F., Hunt, M., Keniston, J., Chen, B.: Locating

system problems using dynamic instrumentation (2005)
19. Seiler, J.: Research compendia: Connecting computation to publication (2013)
20. Singh, J.: FigShare. J. Pharmacol. Pharmacotherapeutics 2(2), 138–139 (2011)
21. Stodden, V., Hurlin, C., Perignon, C.: RunMyCode.Org: a novel dissemination and

collaboration platform for executing published computational results (2012)
22. Wegener, I.: Complexity Theory Exploring the Limits of Efficient Algorithms.

Springer, Berlin (2005)



Security and Privacy Implications
of Provenance



An Analytical Survey of Provenance Sanitization

James Cheney(B) and Roly Perera

School of Informatics, University of Edinburgh, Edinburgh, UK
{jcheney,rperera}@inf.ed.ac.uk

Abstract. Security is likely to be a critical factor in the future adoption
of provenance technology, because of the risk of inadvertent disclosure of
sensitive information. In this survey paper we review the state of the art
in secure provenance, considering mechanisms for controlling access, and
the extent to which these mechanisms preserve provenance integrity. We
examine seven systems or approaches, comparing features and identifying
areas for future work.

1 Introduction

Automatically associating data with metadata describing its provenance has
emerged as an important requirement in databases, scientific computing, and other
domains that place a premium on reproducibility, accountability or trust [27].
Providing such metadata typically involves instrumenting a system with moni-
toring or logging that tracks how results depend on inputs and on other, perhaps
untrustworthy, sources.

Publishing the entire provenance record associated with a computation is
not always feasible or desirable. Disclosing certain information may violate secu-
rity, privacy, or need-to-know policies, or expose sensitive intellectual property.
Sometimes the complete provenance record may be too detailed for the intended
audience, or may leak irrelevant implementation detail. But simply omitting
some of the provenance information may leave it unable to certify the origins of
the data product.

We refer to the general problem of ensuring that provenance solutions satisfy
not only disclosure requirements but also security or privacy requirements as
the problem of provenance sanitization or provenance abstraction. A number
of approaches to provenance sanitization have been proposed recently [3,8,15,
16,18], sometimes under other names such as provenance views or provenance
redaction. These techniques have been developed mainly for scientific workflow
systems, where provenance is viewed as a directed acyclic graph, as in the Open
Provenance Model [28].

Existing approaches have several elements in common. Typically, an obfus-
cation policy specifies the aspects of the provenance which are to be hidden.
A disclosure policy may additionally specify that certain other aspects of the
provenance are to remain visible. Sanitization then involves transforming the
provenance graph to obtain a view which satisfies both the obfuscation and
the disclosure policies.
c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 113–126, 2015.
DOI: 10.1007/978-3-319-16462-5 9



114 J. Cheney and R. Perera

Few of the existing systems have been formally studied, and the security
guarantees they actually provide are unclear. Some do provide formal guaran-
tees, but are narrow in applicability or have other shortcomings. Moreover, many
systems provide some form of security or confidentiality without considering the
impact on the causal or explanatory role of provenance. In this paper we review
the state of the art in provenance sanitization by reviewing seven systems or
approaches: ZOOM [2,13], security views [8], surrogates [3], ProPub [18], prove-
nance views [15,16], provenance abstraction [26], and provenance redaction [7].

2 Related Work

The relationship between security and provenance has been considered in several
survey or vision papers [4,20,23,25]. This paper focuses narrowly on provenance
sanitization via graph transformations; here we briefly mention some related
topics.

Formal foundations. Chong [11] gave an early definition of provenance-related
security policies. Cheney [9] subsequently generalized this approach to notions
of disclosure and obfuscation with respect to a query Q on the underlying
provenance, and a view P of the provenance. Obfuscation is similar to (non-
quantitative) opacity in computer security [1], and means that P does not allow
the user to determine whether the underlying provenance satisfies Q. Disclosure
means that P preserves Q-equivalence.

Secure provenance for evolving data. Provenance tracking is an especially critical
issue for data that changes over time [6], for which provenance can be hard
to recover after the fact. Work in this area to date includes tamper-resistant
provenance for databases [30], use of cryptographic techniques to ensure integrity
of document version history [21], and database audit log sanitization [22].

3 Background Concepts and Terminology

The solutions surveyed in Sect. 4 mainly target scientific workflow systems, with
similar notions of provenance; we review some common concepts here. Some
acquaintance with basic graph theory will be useful. For more background on
scientific workflow provenance, we refer the reader to Davidson and Freire [14].

Workflow systems and provenance graphs. A workflow system, or simply work-
flow, is a directed graph capturing the high-level structure of a software-based
business process or scientific process. Nodes represent software components called
modules, or tasks. Edges represent links, or data channels, connecting modules.
Sometimes modules are considered to have input and output ports to which
data channels are connected. Figure 1a shows a simple workflow with modules
m1 to m6.



An Analytical Survey of Provenance Sanitization 115

m2

m3

m1

m4 m5

m6
m2

m1

m6

d2
d3m3 m4 d4 m3 d5 m4 d6 m5

d8

d9d1

d7

Fig. 1. Cyclic workflow, plus bipartite provenance graph for a possible run

Node labels are typically used to identify modules. Iterative processes can
be modelled by cycles, if permitted, or via a built-in construct for iteration.
Workflow systems often support other coordination patterns such as conditional
branching and synchronisation which are beyond scope of the systems considered
here. Some permit composite modules, i.e. modules that contain other modules.

A provenance graph is a directed, acyclic graph (DAG) recording the causal
history of a data product. Often such a graph represents the (coarse-grained)
execution of a software system, such as a workflow; more generally, provenance
graphs can describe ad hoc processes or collaborations involving both human and
software components. The nodes of the graph represent participants, actions and
intermediate artifacts.

Figure 1b shows a provenance graph that captures one possible execution of
the workflow in Fig. 1a. The rectangular nodes, or activities, represent invoca-
tions of modules; the circular nodes d1 to d9, sometimes called entities, record
data values passed between modules. Moreover activities yield entities, and enti-
ties feed into activities; a graph that is partitioned in this way is called bipartite.
Bipartiteness is just one of many possible design choices for graph-structured
provenance; for example, one could add d1, . . . , d9 as labels to the edges instead
of using special nodes.

When a provenance graph represents a run of an iterative process, each mod-
ule invocation must give rise to a distinct node, to maintain acyclicity. If neces-
sary additional tags on the node label can be used to distinguish invocations of
the same module.

Sanitizing provenance graphs. The goal of provenance sanitization is to derive a
sanitized view which hides or abstracts sensitive details of a provenance graph,
whilst preserving some of its disclosure properties. Typically one wants the view
itself to be a well-formed provenance graph. Figure 2 below illustrates a simple
provenance graph with two examples of views. On the right, tasks c1 and c2
have been abstracted into a single task c3; on the left, entities d2 and d4 and
intermediate task c2 have been abstracted into a single entity d5.

d1

d2

d3

d4

c1

c2

d1

d2

d3

d4

c3

c3
d1 d3

d5

c1
c3

d5

Fig. 2. Two possible views of a provenance graph



116 J. Cheney and R. Perera

Both views are examples of quotients, arguably the simplest notion of graph view.
One specifies a quotient of a graph G = (V,E) by giving a partitioning V ′ =
{V1, . . . , Vn} of its nodes. The partitioning induces another graph G′ = (V ′, E′)
where there is an edge (Vi, Vj) ∈ E′ iff there is an edge in G between a node of Vi

and a node of Vj , for any i �= j. In Fig. 2 the dotted border labeled c3 determines
a partitioning if we consider each of the remaining nodes to inhabit a singleton
partition; the dotted border labeled d5 determines a different partitioning, under
a similar assumption.

Quotients are natural forms of provenance view as they preserve paths, which
represent relationships of direct or indirect dependency between nodes. If paths
are preserved then related nodes are mapped to related nodes in the view;
in other words, every dependency in the original graph gives rise to a depen-
dency between the corresponding view nodes. Quotients preserve paths but not
edges; for example the edges (d4, c2) and (c2, d2) have no counterpart in view #2
because all three nodes are mapped to d5. Indeed edge-preservation, or homomor-
phism, is a stronger property than we usually require for provenance sanitization,
where dependency is assumed to be reflexive and transitive.

It can also be important to consider whether paths are reflected : whether
nodes are related in the view only if there exist related nodes in the original
graph which map to those nodes in the view. This too can be understood in
terms of dependency, since it means that every reported dependency arises from
a dependency between corresponding nodes in the original graph. Quotients do
not in general reflect paths, because they coarsen the dependency relation: in
view #1, for example, d1 now appears to depend on d4, and d2 on d3. This can
be problematic if it violates cardinality constraints, such as a requirement that
every artifact be generated by at most one activity [29].

4 Survey of Techniques for Provenance Sanitization

In the ZOOM system of Biton, Cohen-Boulakia and Davidson [2,13], the
user obtains a provenance view by first defining an abstract workflow view.
A ZOOM workflow is a directed graph of atomic modules; a provenance graph is
a DAG of invocations with edges labeled with runtime values. A workflow view
is a quotienting which partitions the system into composite modules; for a given
run of the workflow, the corresponding “quotient run” can then be obtained
automatically by deriving invocations of each composite module from the invo-
cations of its constituent modules.

Figure 3 illustrates the ZOOM approach. In Fig. 3a we see the original work-
flow with the partitioning identified by dashed borders labeled c2 and c3. The
modules m1, m2 and m5 are assumed to be in singleton partitions. The induced
workflow view is shown in Fig. 3b. Then, Fig. 3c shows an execution of the work-
flow with data labels omitted; here the dashed borders represent a partitioning
of the invocations corresponding to invocations of the composite modules c2 and
c3. Figure 3d shows the corresponding quotient run where each node is mapped
to its equivalence class.



An Analytical Survey of Provenance Sanitization 117

m2

m3

m1

m6

m5

m4 m7

m8

c3

c2
m2

m3

m1

m6

m5m4 m3 m4 m7

m8

c3c3

m2

c3

m1 c2

m5

m2

c3

m1 c2

c3m5

c2

Fig. 3. ZOOM: deriving a provenance view from a workflow view

ZOOM is not overtly motivated by security, but its views can be seen as
abstracting away uninteresting parts of the graph while ensuring user-identified
“relevant” parts remain visible. ZOOM is unique in respecting the semantic
relationship between program and provenance, as alluded to by the dotted run
arrow relating Fig. 3b and d. Moreover being able to derive provenance views
from ex post facto modularisations of a workflow is extremely powerful. However,
it seems unlikely that their method for doing so (sketched only briefly in the
papers) will generalise to workflows with non-trivial control flow or settings
where submodules are shared by composite modules. In [13], most of the focus
is on workflow views instead, in particular a method for deriving workflow views
that preserve and reflect certain structural properties of the workflow, given a
user-specified set of modules that are of interest.

The security views of Chebotko, Chang, Lu, Fotouhi and Yang [8]
provide both access control and abstraction for scientific workflow provenance.
Their workflows are DAGs with additional structure to model hierarchical tasks;
the data channels of a composite task are those of its constituent tasks that
cross the boundary of the composite task, relating composite tasks to the par-
titions of a quotient view. However, composite tasks are fixed features of the
workflow rather than on-the-fly abstractions as in ZOOM, above. Being acyclic,
workflows are unable to represent iteration.

To obtain a security view, one first specifies the accessibility of the various
tasks and data channels, marking each element as accessible or inaccessible.
Inheritance rules define the accessibility of an element if it is not given explicitly.
Access control can be specified down to the level of individual ports; consistency
constraints ensure that (for example) a data value inaccessible on one port is
not accessible via another port. The access specification is then used to derive
a provenance view from which inaccessible data values, tasks and channels have
been removed.

Figure 4a shows a run of a hierarchical workflow with two levels of composite
task; both data nodes and ports have been elided for brevity. A node written as



118 J. Cheney and R. Perera

t1 t3 t5 t6
t4

t2

t1 t3 t5 t6 t1 t3 t4
t2t4

t2
t1 t3 t5 t6

t4
t2

t1 t3 t4
t2

Fig. 4. Security views: combining abstraction with access control

• indicates an input or output. In Fig. 4b, the data channel between t3 and t5
has been deleted to conform to the access specification. Although dummy nodes,
similar to the surrogates of Blaustein et al. below [3], may be added to the view
to preserve well-formedness constraints, more general integrity requirements are
not considered. For example once the edge between t3 and t5 has been deleted,
the view no longer preserves dependencies, and so its ability to provide a full
account of the output is compromised. Access control can however be combined
with quotienting. In Fig. 4c the composite module t4 has been abstracted to a
single node with two inputs, preserving the dependency structure of Fig. 4b, even
though the latter view is unsound.

Blaustein, Chapman, Seligman, Allen and Rosenthal [3] present an
approach based on surrogates. They define a protected account of a graph G to
be any graph G′, along with a path-preserving function from the nodes of G′

to the nodes of G. Since by definition every path in the view has an image in
the original graph, a protected account necessarily reflects dependencies, but
in general does not preserve them. Surrogates are a mechanism for publishing
dependency information in a way that still protects sensitive nodes and edges.

Figure 5a, adapted from [3], shows a typical graph with sensitive nodes and
edges in red. Figure 5b shows a protected account where e has been deleted
and f replaced by a surrogate f ′, shown with a dotted border, that hides its
sensitive data (perhaps its identity). The view in Fig. 5c hides two more edges,
breaking the indirect dependency between c and g. This is repaired in Fig. 5d by
a surrogate edge (dotted arrow).

b

c

e f g

b

c

f ′ g

b

c

f ′ g

b

c

f ′ g

Fig. 5. Surrogates: provenance graph, plus three protected accounts (Color figure
online)



An Analytical Survey of Provenance Sanitization 119

Blaustein et al.’s approach has three components: user privileges, which allow
the graph provider to control graph access down to the level of individual ports;
an algorithm for protecting graphs by deleting nodes and edges and adding
surrogates; and metrics for analyzing disclosure and obfuscation properties of the
resulting graph. For a given set of user privileges, their algorithm purportedly
obtains a protected account which is “maximally informative”, according to a
utility metric derived from the proportion of G-paths retained in G′ plus the
similarity of each node in G′ to its counterpart in G. However definitions given
are rather informal, and the theorems lack proofs, making this claim hard to
evaluate.

Even when a protected account satisfies a particular obfuscation policy, an
attacker may still be able to infer the original graph G from G′. To study this,
Blaustein et al. introduce the notion of opacity, a measure of the difficulty of
inferring an edge in G that is not present in G′, given a user-supplied model of
the attacker. (The notion of opacity in the security literature [1] is somewhat
different.)

The ProPub framework of Dey, Zinn and Ludäscher [18], based on Dat-
alog, provides what the authors refer to as “policy-aware” provenance saniti-
zation. A provenance query is expressed as a set of Datalog facts, asserting
that the provenance for certain data items is to be disclosed, plus additional
requirements relating to sanitization and disclosure. ProPub works directly with
a provenance graph, which may not have been derived from an underlying work-
flow. A sanitization requirement might assert that certain data associated with
a particular node is to be erased, that several nodes are to be abstracted into a
single node, or that some nodes are to be deleted; a disclosure constraint might
insist that a specific node is always retained in the view. In addition there will
usually be global policies which hold across all queries (for example to outlaw
“false dependencies” of the kind illustrated earlier in Fig. 2), as well as the usual
well-formedness conditions such as acyclicity or bipartiteness.

A unique feature of ProPub is its ability to detect conflicts in the sanitization
and disclosure requirements and to assist with their resolution. When conflicts
arise, ProPub uses a ranking scheme and various auto-correction strategies to
resolve them, with the user also able to intervene to withdraw or modify a
constraint in the light of the conflicts. For example in Fig. 6, adapted from [18],
a näıve abstraction of three nodes into a single node c4 violates both acyclicity
and bipartiteness:

d2

d3

d4

c1

c3

c2 d5

d6

d2

d3

c3

d5

d6

abstract

c4

c4

Fig. 6. ProPub: conflict detection



120 J. Cheney and R. Perera

In this case a possible resolution would be to include d3 into the abstraction as
well, removing the cycle and restoring bipartiteness. Should applying a correction
induce other conflicts, the process of conflict resolution continues. Only when a
conflict-free variant of the query is obtained can a final sanitized view be derived.
Any constraints rescinded during conflict resolution are reported alongside the
sanitized view, providing a certain level of “meta-provenance”, also a unique
feature amongst the systems considered here. For example, it might record that
a spurious dependency was tolerated in order to accommodate an abstraction.
ProPub’s logical foundation also means that the final view is guaranteed to have
the chosen disclosure and security properties.

Davidson et al. [15,16] tackle a rather different problem with provenance
views. Workflows are modelled as directed acyclic multigraphs (graphs with
potentially more than one edge between any two nodes). Edges are labeled with
identifiers called attributes which identify the port that the edge starts from;
because workflows are acyclic, the semantics of a workflow can be given as a
relation R over the set of all attributes, where each tuple consists of the data
values that arise during a possible execution. (Equivalently, one can consider
each tuple to be a labeling function assigning data values to ports.) In Fig. 7
below, adapted from [15], the workflow consists of three modules computing
Boolean functions. Port a4 of m1 is consumed by both m2 and m3. The relation
R for this particular workflow in shown in the middle of Fig. 7. Effectively R is
the natural join R1 �� R2 �� R3 of the relations R1, R2 and R3 capturing the
extension (input-output mapping) of the modules individually.

Fig. 7. Provenance views: hiding functional behaviour

Rather than hiding or abstracting parts of a particular run, Davidson et al.
are interested in hiding the extension of a sensitive module mi, namely the
relation Ri, regardless of how many different executions the user observes. They
classify modules as either public, whose behaviour is known a priori, or private,
whose behaviour must be inferred by observing R. Their approach, which is
quantitative, is based on an extension of �-diversity [24] which they call Γ -
privacy. A view is specified by giving a set V of visible attributes. The relation
ΠV (R), the projection of R to V (Fig. 7, right), defines the information that
is publicly visible through V . For any positive natural number Γ , a private
module is Γ -private with respect to V if for each input, the number of possible
outputs from that module consistent with ΠV (R) is greater than Γ . With only



An Analytical Survey of Provenance Sanitization 121

this information, an attacker is unable to predict the output of the module for
a given input with probability greater than 1/Γ .

The first paper [15] studies some specific cases, including standalone private
modules, multiple private modules, and heterogeneous workflows with a mix-
ture of private and public modules where public modules can be “privatized” by
renaming, so that their functional behaviour is no longer known. They show that
standalone Γ -privacy is composable in a workflow consisting only of private mod-
ules. The authors also study the problem of finding minimum-cost views, given
a cost function stating the penalty of being denied access to hidden attributes.
The second paper [16] studies a more general solution for heterogeneous work-
flows, which involves propagating hiding, i.e. hiding attributes of public modules
if they might disclose information about hidden attributes of private modules.
They present a composability result generalizing the one for the all-private set-
ting, to single-predecessor (that is, tree-like) workflows.

The privacy problem studied by Davidson et al. is interesting, but their work
so far has a number of drawbacks. In particular, the PTIME bounds for the algo-
rithms for mixed workflows [16] assume a fixed domain size, which in turn means
that the size of relation R is treated as a constant. If we take the domain size d
and number of attributes a into account, then the size of R is O(da), so treating
it as a constant may not be realistic. Moreover, it is also not always clear how
to choose sensible values of Γ . For example, with a domain of 1024×1024, 8-bit
grayscale images, Γ may need to be much higher than 106 to provide meaningful
privacy, because changing a single grayscale pixel does not hide much informa-
tion. (This criticism also pertains to other possibilistic definitions of security
properties, such opacity [1] and obfuscation [9].) Techniques from quantitative
information flow security [12], quantitative opacity [5] or differential privacy [19]
may be relevant here.

The provenance abstraction approach of Missier, Bryans, Gamble,
Curcin and Danger [26], implemented as ProvAbs, is based on graph quotient-
ing and finding partionings that satisfy both security needs and well-formedness
constraints. Their provenance graphs follow the PROV model [29] and its asso-
ciated constraints specification [10]. First, Missier et al. consider simple bipar-
tite provenance graphs with node types representing activities and entities, and
define three basic graph operations pclose, extend and replace. Intuitively, pclose
takes a subgraph which is a candidate for replacement, and grows it until it is
convex (there are no paths that lead out of the subgraph and back in again);
extend further grows the subgraph until both its “input” nodes and its “output”
nodes are homogeneous with respect to node type; and replace contracts such
subgraphs to single nodes and adjusts edges to preserve paths.

Figure 8, adapted from [26], illustrates extend and replace. In Fig. 8a, the user
selects activity a2 and entity e3 for abstraction. Replacing these two nodes by
either an activity or an entity whilst preserving paths would violate bipartiteness.
In Fig. 8b, extend is used to grow the target subgraph to include e4, so that
the output nodes of the target subgraph are uniformly entities. Replacing the



122 J. Cheney and R. Perera

Fig. 8. ProvAbs: growing a partition so that abstraction preserves bipartiteness

subgraph by a single abstract entity e5 in Fig. 8c is now valid, although it coarsens
the (transitive) dependencies by introducing a path between a4 and a1.

Having shown how these transformations can be used to preserve basic valid-
ity constraints, Missier et al. go on to consider graphs which incorporate the
PROV agent node type and associated relations such as attribution and delega-
tion. They consider three cases of increasing sophistication. Grouping a homo-
geneous set of agents into a single abstract agent is relatively straightforward.
Grouping agents and entities together is trickier; the type of the target abstract
node (entity or agent) must be specified, and in order to maintain the type-
correctness of certain relations between actions and agents (waw, “was associ-
ated with”) and between entities and agents (wat, “was attributed to”), the
subgraph to be abstracted must made larger. Finally, grouping arbitrary node
types together presents the additional difficulty of agent-to-agent delegation
edges (abo, “acted on behalf of”), which require similar treatment.

Like ProPub, a key feature of ProvAbs is that transformations operate directly
on the provenance graph, and are thus more suited to situations where there is
no underlying workflow. Missier et al. claim that their system avoids introduc-
ing spurious dependencies between nodes. However, their views are quotients,
which in general over-approximate dependencies, so technically this claim is
only correct for provenance applications where dependency is not required to be
transitive.

The work of Cadenhead, Khadilkar, Kantarcioglu and Thuraisingham
[7] on provenance redaction is also based on graph rewriting. Their prove-
nance graphs are tripartite and conform to the Open Provenance Model’s labeled
DAG format [28]. “Redacting”, or sanitizing, such a graph has two phases. First,
the sensitive region GQ (typically a single node or a path between two nodes)
of the original graph G is isolated using a graph query Q. Then, this region of
the graph is transformed according to an obfuscation policy expressed as rewrite
rules. A rewrite rule has two components: a production rule r : L → R, where
L is matched against subgraphs of GQ, plus an embedding specification, which
determines how edges are to be connected to R once it has replaced L. The
rewrites involve graph operations such as vertex contraction, edge contraction,
path contraction and node relabeling.

In Fig. 9, adapted from [7], hexagons represent agents, rectangles represent
processes, and circles represent artifacts. In the left graph, the gray triangle
indicates an area of the graph that was previously redacted. On the right, a
further subgraph is redacted by contracting the the wcb (“was controlled by”)



An Analytical Survey of Provenance Sanitization 123

Fig. 9. Provenance redaction: abstraction by edge contraction

edge relating a heart operation o to the surgeon s who carried out the operation,
and replacing the two nodes by another gray triangle.

Cadenhead et al.’s work is implementation-focused. Several formal definitions
are given but not always made use of, and neither are their provenance or disclo-
sure properties analyzed. One issue they do not appear to address, in contrast
for example to Missier et al. (above), is preservation of basic well-formedness
properties of the provenance graph. While edge contraction (as a particular kind
of quotient) preserves dependencies, the interaction with tripartiness is poten-
tially problematic. For example in the view in Fig. 9, the new triangle has both
an incoming and an outgoing wcb edge, because it subsumes both an agent and
a process. Moreover, as the authors themselves point out, the obfuscation policy
is only applied to a subgraph GQ of the original graph G. Sensitive informa-
tion available elsewhere in G will not be subject to the policy. Information flow
techniques [17] may be relevant here.

5 Conclusions and Future Directions

We conclude our survey with a brief feature comparison, summarised in Table 1.
The column headings refer to broad feature areas (discussed in more detail
below); � indicates reasonably comprehensive support for that feature, � lit-
tle or no support, and �� somewhere in between. Necessarily this is a somewhat
simplistic assessment.

Integrity. We divide integrity features into basic integrity maintenance (Int)
and integrity of causal or dependency structure (Dep). Even systems that make
some effort to preserve the latter, such as provenance redaction, may in so doing

Table 1. Feature comparison for the approaches surveyed



124 J. Cheney and R. Perera

violate low-level integrity constraints. In the future it seems likely that users will
take low-level integrity for granted.

Preservation or reflection of dependency structure is more challenging because
of the inherent tensions with obfuscation requirements. When arbitrary nodes or
edges can be deleted, then the user may be responsible for repairing the damage,
as with security views or surrogates. ProPub offers greater automation through
conflict detection; ProvAbs and provenance redaction make safer (if simplistic)
assumptions, by working mainly with quotient views.

Sanitization. Sanitization features range from explicit fine-grained access con-
trol (Acc), which all systems provide in some form or another, to query-based
abstraction (Qry), as offered by ProPub and provenance redaction. Query-based
systems typically subsume fine-grained access control, via fine-grained queries.

Formal and semantic properties. Few of the surveyed systems consider the prob-
lem of relating provenance views to the semantics of the underlying system
(Sem). Instead, they operate directly on provenance graphs, without regard to
how the graph was created. This is flexible, but means one cannot easily treat the
provenance view as an (abstracted) account of how something was computed.
ZOOM stands out in this respect, in relating provenance views to workflow views
for simple kinds of workflow. On the other hand, this is a hard problem to solve
in a general way.

Few existing systems provide formal guarantees of obfuscation or disclosure
properties (Form). ProPub has the advantage of a solid logical foundation. The
Γ -privacy of provenance views is a formal notion of (quantitative) opacity, but
the goal is somewhat different from the other systems considered.

Conflict detection and resolution. As mentioned, ProPub stands out in being able
to automatically detect conflicts between obfuscation and disclosure require-
ments (Conf), thanks to its logic-based approach. It is also the only system
which makes conflict resolution an explicit and persistent part of the process, pro-
viding a certain level of “meta-provenance” for the sanitization process (Meta).
If provenance security techniques are widely adopted, it seems likely that how
provenance is manipulated to hide or reveal information will itself often be the
point of interest (cf. “provenance of provenance” [29]).

Undoubtedly, controlling access to sensitive provenance metadata is of grow-
ing importance, and moreover we sometimes simply want to deliver provenance
information at a particular level of detail. However, as the summary above high-
lights, current methods for provenance sanitization are immature. Future effort
should focus on semantics, formal guarantees, and techniques for detecting and
resolving conflicting policies.

Acknowledgments. We are grateful to Jeremy Bryans, Brian Gamble, and Paolo
Missier for comments on this paper. Effort sponsored by the Air Force Office of
Scientific Research, Air Force Material Command, USAF, under grant number FA8655-
13-1-3006. The U.S. Government and University of Edinburgh are authorized to repro-
duce and distribute reprints for their purposes notwithstanding any copyright notation
thereon.



An Analytical Survey of Provenance Sanitization 125

References

1. Bailliage, R.D., Mazaré, L.: Using unification for opacity properties. In: Proceed-
ings of WITS 2004, pp. 165–176 (2004)

2. Biton, O., Cohen-Boulakia, S., Davidson, S.B., Hara, C.S.: Querying and managing
provenance through user views in scientific workflows. In: ICDE, pp. 1072–1081.
IEEE (2008)

3. Blaustein, B.T., Chapman, A., Seligman, L., Allen, M.D., Rosenthal, A.: Surrogate
parenthood: protected and informative graphs. PVLDB 4(8), 518–527 (2011)

4. Braun, U., Shinnar, A., Seltzer, M.: Securing provenance. In: Proceedings of the
3rd Conference on Hot Topics in Security, pp. 4:1–4:5 (2008)

5. Bryans, J.W., Koutny, M., Mu, C.: Towards quantitative analysis of opacity. In:
Palamidessi, C., Ryan, M.D. (eds.) TGC 2012. LNCS, vol. 8191, pp. 145–163.
Springer, Heidelberg (2013)

6. Buneman, P., Chapman, A.P., Cheney, J.: Provenance management in curated
databases. In: SIGMOD 2006, pp. 539–550 (2006)

7. Cadenhead, T., Khadilkar, V., Kantarcioglu, M., Thuraisingham, B.: Transforming
provenance using redaction. In: SACMAT, pp. 93–102. ACM, New York (2011)

8. Chebotko, A., Chang, S., Lu, S., Fotouhi, F., Yang, P.: Scientific workflow prove-
nance querying with security views. In: WAIM 2008, pp. 349–356 (2008)

9. Cheney, J.: A formal framework for provenance security. In: CSF, pp. 281–293.
IEEE (2011)

10. Cheney, J., Missier, P., Moreau, L. (eds.) De Nies, T.: Constraints of the PROV
data model. W3C recommendation, W3C, April 2013

11. Chong, S.: Towards semantics for provenance security. In: Cheney, J. (ed.) TaPP
2009. USENIX (2009)

12. Clark, D., Hunt, S., Malacaria, P.: Quantitative analysis of the leakage of confi-
dential data. Electron. Notes Theor. Comput. Sci. 59(3), 238–251 (2002). QAPL
2001

13. Cohen-Boulakia, S., Biton, O., Cohen, S., Davidson, S.: Addressing the provenance
challenge using zoom. Concurr. Comput. Pract. Exp. 20(5), 497–506 (2008)

14. Davidson, S.B., Freire, J.: Provenance and scientific workflows: challenges and
opportunities. In: Proceedings of SIGMOD 2008, pp. 1345–1350. ACM, New York,
(2008)

15. Davidson, S.B., Khanna, S., Milo, T., Panigrahi, D., Roy, S.: Provenance views for
module privacy. In: PODS, pp. 175–186 (2011)

16. Davidson, S.B., Milo, T., Roy, S.: A propagation model for provenance views of
public/private workflows. In: ICDT, pp. 165–176. ACM, New York (2013)

17. Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Commun. ACM 20(7), 504–513 (1977)

18. Dey, S.C., Zinn, D., Ludäscher, B.: ProPub: towards a declarative approach for
publishing customized, policy-aware provenance. In: Bayard Cushing, J., French,
J., Bowers, S. (eds.) SSDBM 2011. LNCS, vol. 6809, pp. 225–243. Springer,
Heidelberg (2011)

19. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006, Part II. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg
(2006)

20. Hasan, R., Sion, R., Winslett, M.: Introducing secure provenance: problems and
challenges. In: Proceedings of StorageSS 2007, pp. 13–18. ACM, New York (2007)



126 J. Cheney and R. Perera

21. Hasan, R., Sion, R., Winslett, M.: Preventing history forgery with secure prove-
nance. Trans. Storage 5, 12:1–12:43 (2009)

22. Lu, W., Miklau, G., Immerman, N.: Auditing a database under retention policies.
VLDB J. 22(2), 203–228 (2013)

23. Lyle, J., Martin, A.: Trusted computing and provenance: better together. In: Pro-
ceedings of TAPP 2010. USENIX Association, Berkeley (2010)

24. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity:
Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1) Article 3
(2007)

25. Martin, A., Lyle, J., Namilkuo, C.: Provenance as a security control. In: Proceed-
ings of TaPP 2012, pp. 3–3. USENIX Association, Berkeley (2012)

26. Missier, P., Bryans, J., Gamble, C., Curcin, V., Danger, R.: Provenance graph
abstraction by node grouping. Technical report CS-TR-1393, Newcastle University
(2013)

27. Moreau, L.: The foundations for provenance on the web. Found. Trends in Web
Sci. 2(2–3), 99–241 (2010)

28. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska,
N., Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E.,
Van den Bussche, J.: The OPM core specification (v1.1). Future Gener. Comput.
Syst. 27(6), 743–756 (2011)

29. Moreau, L., Missier, P. (eds.): PROV-DM: The PROV Data Model. W3C Recom-
mendation REC-prov-dm-20130430 (2013)

30. Zhang, J., Chapman, A., LeFevre, K.: Do you know where your data’s been? –
tamper-evident database provenance. In: Jonker, W., Petković, M. (eds.) SDM
2009. LNCS, vol. 5776, pp. 17–32. Springer, Heidelberg (2009)



A Provenance-Based Policy Control Framework
for Cloud Services

Mufajjul Ali1(B) and Luc Moreau2

1 Orange Labs, London, UK
mufajjul.ali@orange.com

2 University of Southampton, Southampton, UK

Abstract. In the context of software, provenance holds the key to
retaining a mirror instance of the lifespan of a service, which can be
replayed/reproduced from the beginning. This entails the nature of invo-
cations that took place, how/where the data were created, modified,
updated and the user’s engagement with the service. With such an ency-
clopedia of information, it opens up a diversity of value-added features
(compliance control, accountability) that can improve the usability of a
service.

In this paper, we extend our previous work on the provenance-based
policy language (cProvl) and model (cProv) by proposing a preliminary
policy control framework. The framework provides the necessary build-
ing blocks for integrating and developing services that are able to gen-
erate and use provenance data for provenance-based compliance control,
which runs on a XACML engine. We demonstrate the capability of the
framework by applying it to a service case, and conduct benchmarks to
determine its scalability and performance.

Keywords: Provenance · XACML · cProv · Prov · cProvl · Share ·
Cloud

1 Introduction

Cloud computing is built on top of many existing technologies, to support fea-
tures such as the dynamic scaling, resource pooling, pay-per usage and on-
demand self-services. While cloud computing adoption is gaining momentum
in the industry, the compliance and accountability remain its main Achilles heel
[1]. One approach to addressing this problem is through the use of provenance [2].
Provenance is a well understood area in art and digital-libraries, where lineage,
pedigree and source plays a major role in understanding how things have been
derived, and in determining the collection’s authenticity and value [3]. Prove-
nance helps in answering questions such as: What processes were involved in
transforming the data? Did the processes conform to all necessary regulations?
Where in the actual physical location within the cloud has the execution of data
taken place? Answering these questions are pivotal to achieving compliance in
the cloud environment.
c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 127–138, 2015.
DOI: 10.1007/978-3-319-16462-5 10



128 M. Ali and L. Moreau

In additional to provenance, a policy control mechanism is required to define
the compliance requirements, and to be acted upon if a violation occurs. XACML
[4], an industry wide standard is deployed by many organizations as standard
policy-based control for their services. Organizations are looking to migrate their
existing services to the cloud. Having the ability to use the existing policy control
would minimize the cost of migration, reduce deployment effort, and mitigating
the risk of using unproven technology. Its architecture is modular and provides
scope for extensibility. However, it does not cater for provenance data.

In our previous work [5], we have defined a provenance ontology that extends
the Prov model [6] for cloud-based services, and a provenance-based policy lan-
guage that can be mapped to the XACML policy language. This allows us to
express questions and conditions in the form of policies, and execute them using
the ontology via the extended XACML engine.

The contributions of this paper are as follows: First, we propose a policy
control framework that leverages on the XACML architecture and the Prov
standard for industrial cloud-based applications. Secondly, the framework is inte-
grated with a cloud-based service (a Telco’s file sharing service) to support its
compliance requirements. Finally, we perform benchmarks on the framework’s
integration with the service to evaluate its scalability and performance.

2 A Telco Service

ConfidenShare is a cloud service developed by a Telco Operator for the sharing
of sensitive and non-sensitive information such as a file, meeting data and other
data with users within the cloud environment. It uses Proxy re-encryption [7], a
cryptographic technique that allows the sharing of all or part of user’s data with
one or more parties. ConfidenShare is interoperable with many existing cloud
providers, and can meet varying country-specific cloud strategies. While the file
sharing mechanism is secure, it does not have the necessary means of declaring
constraints, capturing requirements and compliance control for them.

2.1 Service Requirements

Files are typically categorized as ‘confidential’, ‘restricted’ or ‘general’.
A ‘confidential’ file is the most restricted and only the originator (creator of

the document) is allowed to initiate the share.
A ‘restricted’ file, is where an originator can share with one or more recipi-

ents. Any changes or modifications can only be shared with the originator and
recipients of the original document only.

A ‘general’ file can be shared with any users, and there are no explicit restric-
tions on the re-sharing. A further restriction can be added to the ‘general’ cat-
egory to indicate if the file shared is modifiable, if it isn’t it can only be shared
unmodified.

Any user no longer registered with the service, all traceable files associated
with that user cannot be shared, and should be removed. This is in accordance



A Provenance-Based Policy Control Framework for Cloud Services 129

to the “EU:Right to erasure” legislation [8]. Unless explicit permission has been
given by the user to allow the retention of data they have already shared with
other users.

In all cases the provenance of the documents are intact. From the service
requirements, we can derive policies such as:

Policy 1 - If a file (fileA) is marked as ‘confidential’, only the originator is
allowed to share it with another user (userB), re-sharing by userB is not allowed.

The provenance data contains information related to when the file was cre-
ated, by whom, where, and other information that can be used to determine if
it is in compliance with this policy or not.

Policy 2 - If a user (userA) is ‘removed’ from the service, any shared files (file
X) by this user cannot be shared further (userB).

When a user is deleted, by law, all the data associated with the user must be
deleted, this includes all the shared files. Provenance data can be used to check
for the origin of a file. If the originator of the file is no longer with the system,
then any derived or shared copy of the file can be identified from the provenance
data and prevent further shares.

In order to fulfill these requirements, the following is necessary:

– Integration of the provenance capabilities to the ‘ConfidenShare’ service. The
generated provenance data can be used to check for compliance breaches,
which are fundamental to service level agreements.

– Declaration of requirements as policies, which are to run in a compliance
control engine to determine and act upon the compliance status (this will
require the generated provenance data).

2.2 Background

A number of provenance-based frameworks have been proposed [9,10]. Kepler
is a provenance framework designed to work with workflow management for
collecting, and processing of provenance data. It provides three APIs: recording,
query and management for handling such task, as well as algorithms for tracking
and finding files. While their solution works well for workflows, it is not generic
enough [9]. Karma is also a workflow-based framework [11] similar to Kepler,
but does not have the additional processing algorithms and neither incorporates
any support for provenance-based policy control.

Tsai, W.-T. et al. [12] discusses issues related to the data provenance in
SOA; focusing on the security, reliability and integrity of the data. They also
propose a SOA data-provenance framework [13], which is a more advanced ver-
sion proposed earlier by Rajbhandari, S et al. [14]. This framework is based on
the non-standard provenance model, and entails functionalities such as multiple
data provenance classification (minimal provenance, time-based, event-based,
etc.), data collection (actor-based and time-based), dynamic analysis (security
policy checking service (SPEC), integration estimation service) and others. The
checking source SPEC appears to have some degree of correlation with our work.



130 M. Ali and L. Moreau

However, no information is supplied in relation to the language used, supported
features, limitations, and how it operates on the provenance data.

Aldeco-Perez, R et al. [3] proposes a provenance-based compliance frame-
work, based on the Open Provenance Model. The framework provides a process-
ing view (represented as a provenance graph for a specific execution time) and
usage policy definition (UPD). It uses the UPD to validate against the processing
view for compliance. The framework lacks the integration with the commercial
applications and policy standard such as XACML.

K.K. Muniswamy-Reddy et al. [15,16] aims to address automation of prove-
nance collection, by proposing three protocols for storing provenance for their
existing cloud service. The provenance data is collected using their existing sys-
tem called PASS (Provenance aware storage system) [17]. Any objects stored in
the system automatically extracts the provenance data related to it, for example
a system call read, write, etc. However their solution is proprietary.

In regards to policy, Cheney, J. [18] gives a formal model for security con-
trol for provenance, and Martin, A et al. [19] provides pertinent details of the
applicability of provenance as a security control. PAPEL [20] is a provenance-
based policy language which attempts to integrate with XACML with limited
expressibility on the provenance data.

C. Dai et al. [18], proposes a confidence policy compliance query evaluation,
that restricts or grant based on a certain confidence level. However the policy
language is fairly restricted.

Much of these works are complementary to our previous work [5], on the
provenance-based policy language, but they lack any real mapping and inte-
gration with the commercial standard such the Prov and XACML. Our focus
is on using standardised policy language and model to be used in commercial
applications.

3 Policy Control Framework

It is imperative for the framework to provide ease of integration of the provenance
model cProv and policy language (cProvl). In order to support the provenance-
based compliance control, with the existing and new commercial cloud-based ser-
vices. For this purpose, we have leveraged two industrial standards: Prov and
XACML architecture, that forms the backbone of the framework’s stacks (Fig. 1).

3.1 Client Side Stack

The client stack handles operations such as the integration and generation of
provenance data, as well as the request for provenance-based compliance control.
More concretely, it is structured as a six layered stack (left image of Fig. 1).

Layer 1 - Defines the actual integration with a service. This is where one or more
services are modified to provide provenance capability (this has been applied to
the ConfidenShare service (Sect. 2)).



A Provenance-Based Policy Control Framework for Cloud Services 131

Client Stack

Server Stack

Services
cProv 

Client API

cProvl 

Client API

Converter
cProvl 

XML/cProv 

Schema

cProvl 

XML/cProvl 

Schema

Event Listener

Connector

Modules

cProv 
REST 

API

cProvl  REST API

cProvl 

Provenance Store

mySQL ExistDB HBase

cProvl

Policy Store

StoreController

Extended XACML 
Engine

cProvl to 
XACML policy 

converter

cProvl to 
XACML req/

res converter

cProvl 
Policy Language

Extended modules 
(e.g. classifier) 

APIs for handling 
policy/request 

Handling of 
Provenance data 

Provenance 
store for holding 
all the 
traceability data 

Povenance 
enabled XACML 
engine 

Provenance-aware 
policy language 

Converters for 
cProvl/XACML 

Handles 
interactions with 
the stores 

Policy store, 
containing all the 
policies 

Physical Storage 

Fig. 1. Framework Stacks

Layer 2 - Provides two APIs (provenance and policy) that assist the generation
of the provenance data, and declaration of a request for compliance control.

Layer 3 - Defines a list of converters (native to XML provenance and cProvl
XML policy request).

Layer 4 - Provides the underlying schemas for cProv provenance model and
cProvl policy request for their XML representations.

Layer 5 - Handles the generated provenance statements via the event handler,
statements are placed in a temporary queue for permanent storage.

Layer 6 - Transfers the provenance statements to permanent storage and sends
the policy request to the policy controller.

3.2 Server Side Stack

The server side stack defines operations for storing, querying and updating the
provenance store. For compliance control, it provides the mechanism for handling
policy requests, translation and execution in the extended XACML policy engine.

It contains five layers (right image of Fig. 1).

Layer 1 - Builds modules for extending functionalities, such as a classifier (not
discussed in this paper).

Layer 2 - Provides the server side integration. It has two core APIs (cProv
REST API and cProvl REST API). One for handling the provenance data and
the other for compliance control. This layer also supplies converters (cProvl to
XACML, and XACML to cProvl) for interacting with the XACML engine.

Layer 3 - Provides the mechanism for interfacing with the provenance and
policy store.



132 M. Ali and L. Moreau

Layer 4 - Defines the hierarchical storage structure. It contains the provenance
and policy store, which consists of one or more services.

Layer 5 - The actual underlying storage (currently the framework uses the
exist DB).

By adopting these standards (prov, XACML), the framework is likely to be
more compatible with the existing software development processes, tools and
infrastructure.

XACML does not have any support for provenance, we have addressed this
deficiency by extending its core architecture to provide provenance support using
our cProvl policy language.

3.3 Extended XACML Architecture

Figure 2 shows how the five core XACML components: PEP (Policy Enforcement
Point), PDP (Policy Decision Point), context handler, PAP (Policy Administra-
tion Point) and PIP (Policy Information Point) [4] were extended to support the
provenance-based compliance control.

PAP (writes XACML policies and makes then available to PDP) module has
been extended to allow the creation of cProvl policies, and provides a mapping
from cProvl policies to XACML policies, as well as providing storage for these
policies.

The PEP (handles the initial incoming service specific request typically from
an application) module has been extended to cater for a service request to be
translated into cProvl request and stored in the policy store with its provenance.
The service response is treated in the same manner.

The context handler is responsible for converting a service request into an
XACML request. We provide the support for a cProvl request to be translated
into an XACML request. The request is then transferred to the PDP module.

The PDP module determines the outcome of a request. We have introduced
new functions to accommodate the handling of provenance data (used by the
translated XACML polices). Before making a decision, it may request the context
handler for additional attributes via the PIP module (in our case, attribute
references to provenance statements).

The PIP module has been extended to interface with the provenance store.
It returns the necessary statements requested by the PDP module for decision
making.

The context handler receives an XACML response from the PDP module.
We have also added the support for an XACML response translated to a cProvl
response (stored in the policy store), which is then sent to the PEP module.
The PEP translates it to service specific response and enforces the control, i.e.
Permit/Deny (detailed mapping is discussed in our previous paper [5]).

To our knowledge, this is the only framework that enables ease of integra-
tion of the extended Prov provenance model with the XACML architecture for
cloud-based services. The benefit we can see in using this framework is that only
the high level APIs can be utilised without the developers requiring knowledge



A Provenance-Based Policy Control Framework for Cloud Services 133

Fig. 2. XACML Extended Architecture to Support Provenance

of the underlying complexity of extended XACML architecture or the prove-
nance model. This can save integration and development time, is less prone to
errors, and minimizes the integration complexities, which ultimately will allow
developers to focus their efforts on the business logic.

4 Framework Service Integration

We have successfully integrated the framework with the ConfidenShare service
(Sect. 2). The service is able to generate provenance data, and apply provenance-
based control.

The sequence diagram (Fig. 3) demonstrates the interactions between the
framework’s components with the service. It shows a user, Bob, invoking a
resource share request on the ConfidenShare web client (line 1–3). The client
(using cProv client API) generates provenance data for this invocation and inter-
acts with the ‘ProvenanceHandler’ for translating it to XML Prov elements, then
storing it using the cProv server API (line 4–8).



134 M. Ali and L. Moreau

ConfidenShare – Share Operation 

Agent:Bob ConfidenShare FileStore ProvenanceStore

shareFile
getResource

validateProv

ProvenanceHandler

storeProv

201 created

ok

createSucessfully

PolicyControllerRequestHandler

genDynamicReq

genCprovlReq
storeCprovlReq
storeXACMLReq

XACMLReq

genXACMLreq

authroizationReq

validate

statusresponseMsg

301 redirect

validateProv storeTracebility

201 created
createSucessfully

genProv

genProv

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

Fig. 3. Framework Integration with the ConfidenShare Service

The next sequence (line 9) on the diagram is the ConfidenShare service gener-
ating and initiating a request (using the cProvl Client API) to validate against
the service requirements for compliance (as defined in Sect. 2.1). The policy
controller executes the request using the defined cProvl policy (Sect. 2.1) in the
XACML engine (cProvl to XACML translation/mapping is discussed in the pre-
vious paper [5]) (line 14–16). If the response is granted, then the resource share
is permitted, and the provenance record is updated (line 17–22).

An example of a dynamic request using the Client Stack (cProvl Client API)
for a share request is as follows:

// service provenance-based control request integration
dpr.constructRequest(session.get(SESSION_USER_NAME), false, filename.getName(), false,

null, ‘a-share’, true, null); //generates a cProvl request (see below)

This example can be read as a ‘ConfidenShare’ session user (‘Bob’) is request-
ing for authorization to share a file (document1). This request gets automatically
translated into an cProvl request, as follows.

<cprovl:PolicyRequest ....> <cprovl:Agent isRef="false"prov:id="confidenshare:ag-Bob"/>
<cprovl:Entity prov:id="confidenshare:e-document1">

<cprovl:reqField>cprovd:Resource</cprovl:reqField>
<cprovl:fieldValue isRef="false">confidenshare:e-document1 </cprovl:fieldValue>

</cprovl:Entity> ...
</cprovl:PolicyRequest>



A Provenance-Based Policy Control Framework for Cloud Services 135

An XACML equivalent of this request is as follows.

<Request xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17 ... CombinedDecision="false">

<Attributes Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject">

<Attribute ... AttributeId="urn:oasis:names:tc:xacml:3.0:subject-id">

<AttributeValue DataType="urn:oasis:names:tc:xacml:3.0:data-type:xpathExpression"

XPathCategory="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject">ex:ag-Bob

</AttributeValue> </Attribute> ...

</Attributes>...

</Request>

This request is used by the extended XACML engine to determine if it is
compliant with the defined policies (Sect. 2.1) using the ‘ConfidenShare’ service’s
provenance data.

By making use of the APIs, major alterations to the service and business logic
were avoided when integrating the framework with the ConfidenShare service.
This will ultimately increase the level of trust using provenance-based compliance
control in order to empower the user to verify the compliance of SLAs of cloud-
based services.

5 Evaluation of Performance

Following is an evaluation of our integration of the framework with the Con-
fidensShare service in terms of performance and scalability. Our interest is in
the provenance model, compliance control engine and policy statements. The
machine used is an Intel (R) Core (TM) i7-2820QM CPU @2.30 GHZ, with 6Gb
of RAM and 600Gb of disk space.

Hypothesis 1 (Service Statements). The integration of the cProv provenance
model with the ‘ConfidenShare’ service generates and stores provenance data at
a relatively constant time in relation to the running of the service.

Method. We generate and store the provenance statements using the cProv
client API, and cProv REST API. Policy one requires a minimum of 10 state-
ments to execute, while 20 statements for policy two. This process is repeated
1000 times and added to the existing provenance graph. This produces two
graphs of 10,000 and 20,000 statements. The time it takes between the creation
and storage of statements are recorded as a unit of 10 statements in the first
graph and 20 in the second (resulting in 2000 measurements).

Analysis. Figure 4 shows a good correlation between the provenance entries
(generation & insertion) and the time. For every statement, on average, it
required 34.371 ms. On average per unit it took 314 ms in graph one and 746 ms
in graph two. This indicates the provenance store performance for both poli-
cies are linear and in theory the store is scalable. The 34.371 ms overhead for
provenance integration is favorable for the ‘ConfidenShare’ service.

Hypothesis 2 (Compliance Control). The cProvl policies related to the ‘Con-
fidenShare’ runs in a XACML engine to support compliance control. It is likely to
add some overhead costs relative to the number of provenance statements that are
required in the policy execution.



136 M. Ali and L. Moreau

0

500000

1000000

1500000

0 250 500 750 1000
Items

tim
e

 in
 m

s 
(1

/1
0

0
0

)
cProv graph one

cProv graph two

cProvl policy one

cProvl policy two

cProvl Policy and cProv Provenance Store Performance

Fig. 4. Policy and Provenance Store Result

Method. We use the static cProvl policy one and two of the ConfidenShare
service (Sect. 2). The requests for policies are generated dynamically using cProvl
client API, which are then translated into an XACML equivalent and executed
in a extended XACML engine. The engine uses the provenance data obtained
based on the previous method to evaluate each policy. This process is repeated
1000 times and the start/finish times are recorded.

Analysis. From Fig. 4, we can also see policy one’s execution took on average
time of 731.99 ms (386.37 ms without prov generation/storage time) per execu-
tion and for policy two it took 1265.22 ms (518.77 without cProv). The addition
of the provenance compliance control almost doubles the overhead cost. This
may be due to the complex architecture (see Fig. 2), however, the performance
is still relatively good.

Hypothesis 3 (Policy Statements). The number of statements within a pol-
icy determines the execution time. Target statements are likely to take less time
to execute compared to the conditional statements, but both should have a rela-
tively constant execution time.

Method. Policy one(Sect. 2) contains four targets and three conditional state-
ments (see our previous paper [5] for further explanation). A new policy state-
ment (resource related) is added incrementally to the existing policy per
execution. This process is repeated 100 times, first with conditional statements,
and then with target statements. The time it takes to execute a policy, from
the request to the response and excluding the policy update time, is recorded.
A total of 200 measurements (100 target statements and 100 conditional state-
ments).

Analysis. As it can be seen from Fig. 5, with each addition of a policy state-
ment, there is proportional increase in the time (30 ms) it takes to execute the
policy, which is linear. The condition statements take longer to execute than
the target. This is as expected because they are multi-valued and contain dynamic
variable references, whereas targets are typically single valued statements.



A Provenance-Based Policy Control Framework for Cloud Services 137

0e+00

1e+05

2e+05

0 25 50 75 100
Policy Statements

ti
m

e
 i
n

 m
s
 (

1
/1

0
0

0
)

policy target performance

policy target scalability

policy condition performance

policy condition scalability

Policy Statements Scalability

Fig. 5. Policy Statements Scalability Result

6 Conclusion

In this paper, we have presented a provenance-aware policy control framework
that provides client and server stacks for integrating provenance model and
provenance-based compliance control seamlessly.

We have successfully integrated the framework with the ‘ConfidenShare’ ser-
vice, and have conducted few benchmarks. The results show a good linear rela-
tionship between the generation and storage of prov statements with an average
of 34.3 ms per statement. The integration of the policy language adds around
0.9 s. Both, in theory, are scalable. In regards to policy statements, with each
additional statement, the execution time increases by around 30 ms.

We can conclude from the benchmark results, the integration of the frame-
work with the ‘ConfidenShare’, can add up to 2 s to support compliance based
control (with two policies), which is reasonable and encouraging. However, for
a commercial deployment, we would need to take into account the network lag,
bandwidth, distribution of service components, and other factors to get a true
value of the overhead cost of adopting provenance based policy control [21].

Acknowledgments. The first author would like to thank Rafel Uddin, Kashif
Chawdhry, Tansir Ahmed and other members of Orange Labs for their support.

References

1. Pearson, S.: Toward accountability in the cloud. IEEE Internet Comput. 15, 64–69
(2011)

2. Weitzner, D.J., Abelson, H., Berners-Lee, T., Feigenbaum, J., Hendler, J.,
Sussman, G.J.: Information accountability. Commun. ACM 51, 82–87 (2008)

3. Aldeco-Perez, R., Moreau, L.: Information accountability supported by a
provenance-based compliance framework (2009)

4. Rissanen, E.: Extensible access control markup language (xacml) version 3.0.
(2010). http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf

5. Ali, M., Moreau, L.: A provenance-aware policy language (cprovl) and a data
traceability model (cprov) for the cloud. In: 2013 Third International Conference
on Cloud and Green Computing (CGC), pp. 479–486 (2013)

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf


138 M. Ali and L. Moreau

6. Moreau, L., Missier, P., et al.: Prov-dm: The prov data model. W3c recommenda-
tion 30 April 2013, W3C (2013)

7. Ateniese, G., Benson, K., Hohenberger, S.: Key-private proxy re-encryption.
In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 279–294. Springer,
Heidelberg (2009)

8. Ambrose, M.L., Ausloos, J.: The right to be forgotten across the pond. J. Inf.
Policy 3, 1–23 (2013)

9. Mouallem, P., Barreto, R., Klasky, S., Podhorszki, N., Vouk, M.: Tracking files in
the Kepler provenance framework. In: Winslett, M. (ed.) SSDBM 2009. LNCS, vol.
5566, pp. 273–282. Springer, Heidelberg (2009)

10. Simmhan, Y.L., Plale, B., Gannon, D., Marru, S.: Performance evaluation of the
karma provenance framework for scientific workflows. In: Moreau, L., Foster, I.
(eds.) IPAW 2006. LNCS, vol. 4145, pp. 222–236. Springer, Heidelberg (2006)

11. Simmhan, Y., Plale, B., Gannon, D.: A framework for collecting provenance in
data-centric scientific workflows. In: International Conference on Web Services,
ICWS ’06, pp. 427–436 (2006)

12. Tsai, W., Wei, X., Chen, Y., Paul, R., Chung, J.Y., Zhang, D.: Data provenance
in soa: security, reliability, and integrity. Serv. Oriented Comput. Appl. 1, 223–247
(2007)

13. Tsai, W.T., Wei, X., Zhang, D., Paul, R., Chen, Y., Chung, J.Y.: A new soa
data-provenance framework. In: Eighth International Symposium on Autonomous
Decentralized Systems, ISADS ’07, pp. 105–112 (2007)

14. Rajbhandari, S., Walker, D.: Incorporating provenance in service oriented archi-
tecture. In: International Conference on Next Generation Web Services Practices,
NWeSP 2006, pp. 33–40 (2006)

15. Muniswamy-Reddy, K.K., Macko, P., Seltzer, M.: Making a cloud provenance-
aware. In: First Workshop on on Theory and Practice of Provenance. TAPP’09,
pp. 12:1–12:10. USENIX Association, Berkeley (2009)

16. Muniswamy-Reddy, K.K., Macko, P., Seltzer, M.: Provenance for the cloud. In:
Proceedings of the 8th USENIX Conference on File and Storage Technologies.
FAST’10, pp. 15–14. USENIX Association, Berkeley (2010)

17. Seltzer, M., Muniswamy-Reddy, K., Holland, D., Braun, U., Ledlie, J.: Provenance-
aware storage systems. In: Proceedings of the USENIX Annual Technical Confer-
ence (USENIX06) (2006)

18. Cheney, J.: A formal framework for provenance security. In: 2011 IEEE 24th Com-
puter Security Foundations Symposium (CSF), pp. 281–293 (2011)

19. Martin, A., Lyle, J., Namilkuo, C.: Provenance as a security control. TaPP.
USENIX (2012)

20. Ringelstein, C., Staab, S.: PAPEL: a language and model for provenance-aware
policy definition and execution. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM
2010. LNCS, vol. 6336, pp. 195–210. Springer, Heidelberg (2010)

21. Hsu, P.F., Ray, S., Li-Hsieh, Y.Y.: Examining cloud computing adoption intention,
pricing mechanism, and deployment model. Int. J. Inf. Manage. 34, 474–488 (2014)



Applying Provenance to Protect Attribution
in Distributed Computational Scientific

Experiments

Luiz M.R. Gadelha Jr.1(B) and Marta Mattoso2

1 National Laboratory for Scientific Computing, Petrópolis, Brazil
lgadelha@lncc.br

2 Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
marta@cos.ufrj.br

Abstract. The automation of large scale computational scientific exper-
iments can be accomplished with the use of scientific workflow manage-
ment systems, which allow for the definition of their activities and data
dependencies. The manual analysis of the data resulting from their exe-
cution is burdensome, due to the usually large amounts of information.
Provenance systems can be used to support this task since they gather
details about the design and execution of these experiments. However,
provenance information disclosure can also be seen as a threat to correct
attribution, if the proper security mechanisms are not in place to protect
it. In this article, we address the problem of providing adequate secu-
rity controls for protecting provenance information taking into account
requirements that are specific to e-Science. Kairos, a provenance security
architecture, is proposed to protect both prospective and retrospective
provenance, in order to reduce the risk of intellectual property disputes
in computational scientific experiments.

1 Introduction

Provenance allows for the precise description of how a computational scientific
experiment was set up, and what happened during its execution. It also makes it
easier to reproduce an experiment for the purpose of verification. New scientific
results may be derived from the analysis of an experiment, which may produce
valuable intellectual property. Therefore, this ease of reproducibility can also
be seen as a threat to intellectual property, if the proper security mechanisms are
not in place to protect provenance information. This article follows the computer
security terminology used by Anderson [3]. An entity can be defined as a person,
a computer system or an organization. Secrecy can be defined as the property of
access to some information being limited to a number of entities. Particular cases
of secrecy are confidentiality, when a group of entities can limit access to some
information they share, and privacy, when an entity is able to limit access to
some information it knows. Integrity is the property of preventing unauthorized
or accidental modifications to some information. Authenticity is the assurance of
identity of an entity in a communication. A threat is a possible event that may
c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 139–151, 2015.
DOI: 10.1007/978-3-319-16462-5 11



140 L.M.R. Gadelha Jr. and M. Mattoso

compromise the protection of a system. A vulnerability is property of a system
that, in conjunction with a threat, may cause a system to be compromised. An
adversary can be defined as an entity that seeks to exploit some vulnerability.
One needs to identify threats, vulnerabilities and the potential damage to prove-
nance information, and to propose mechanisms to reduce or eliminate the risk of
these vulnerabilities being explored. The lack of adequate security controls may
also lead to vulnerabilities that can cause provenance information being accessed
without permission, or being modified intentionally or accidentally. Many scien-
tific communities, such as the life sciences, are sensitive to security issues, so the
absence of appropriate security controls may prevent wider adoption of prove-
nance systems in production environments in these areas. Kairos is not as rele-
vant, but still can be applied, in Open Science, where all the steps in a scientific
experiment are publicly accessible during its execution and often open to par-
ticipation. In this case, intellectual property protection is usually not a concern
due to the transparency of this methodology. The main objective of this work
is to address the problem of providing adequate security controls for protect-
ing the authorship of computational scientific experiments, taking into account
the requirements that are specific to e-Science. These requirements include, as
we describe later in this article, being able to share scientific workflow prove-
nance without loosing control on intellectual property. The early steps in the
life cycle of a computational experiment, such as the design phase, are critical
in the production of intellectual property since it is typically where the hypoth-
esis of the experiment is defined. In previous work, we have defined Kairos [12],
a security architecture for protecting the authorship of computational scien-
tific experiments by securing retrospective provenance information. However it
lacked mechanisms for protecting prospective provenance information. In this
work, we improve Kairos by including such mechanisms, allowing for security
controls to be applied at an earlier stage of the computational experiment, the
design phase, for protecting hypothesis formulation. Applying security controls
in this phase is more effective since it is less vulnerable to attacks that are typ-
ical of distributed environments used in the execution phase of the experiment.
A combination of digital signatures and cryptographic timestamps [16] are used
to build verifiable assertions on authorship and temporal information about the
computational experiment.

This work has the following contributions: a threat model for provenance
in e-Science; a new version of Kairos comprising extended security support to
different phases of the experiment; an evaluation with the proposed techniques
using a real application with provenance records from the Swift system [26]; and
an overhead analysis of the security controls implemented in this new version of
Kairos.

The remainder of this article is organized as follows. In Sect. 2, we review
related work in this subject. In Sect. 3, we present security requirements for
provenance systems in the context of e-Science, and describe a threat model for
them. In Sect. 4, we extend Kairos [12] by implementing the proposed techniques
as an extension of MTCProv [15], a provenance management system for many-
task computing. In Sect. 5, we evaluate the implementation both in terms of



Applying Provenance to Protect Attribution 141

additional storage space required and execution time. Finally, in Sect. 6, we close
with some concluding remarks.

2 Related Work

Provenance security is a relatively recent research issue [7,10,17,22,25,27], found
in different areas such as scientific workflows, databases, and storage systems.
There are cases in which the subject of provenance data may lead to privacy
concerns [10]. Intellectual property issues are also frequently mentioned in the
literature about provenance systems [18], a clear indication that provenance
information is a valuable information asset that must be protected. The most
common approach for protecting provenance is to use access control mecha-
nisms to prevent unauthorized access to this information [5,20,21]. This can be
seen as an approach that targets the protection of confidentiality and privacy.
Tan et al. [25] observed that access control is a provenance security require-
ment and that digital signatures can be used attribution and integrity. Hasan,
Sion and Winslett [17] also target confidentiality of provenance records, they
use asymmetric cryptography to achieve it and integrity is also obtained with
the use of digital signatures. Dai et al. [9] presented an approach that allows
for evaluating data trustworthiness from provenance information before using
it as input to scientific workflows that are often time consuming. Qian et al.
[22] introduce a method for building editable signatures, where multiple parties
sign data records in a chained process to assure their trustworthiness. These
approaches focus on assurance mechanisms for provenance information one gets
from third parties. Our work, on the other hand, focuses on protecting prove-
nance information that one owns and wants to share. The main contribution
of this work is the evaluation of security threats to attribution in provenance
systems in the context of e-Science and the proposition of security controls for
protection against these threats. As far as we know, no other work provides pro-
tection of computational experiment attribution with the same flexibility as in
the new version of Kairos, allowing for provenance information sharing at the
same time. To our knowledge, none of these approaches found in related work
propose security controls for protecting temporal information, a critical aspect
in asserting attribution as we argue in Sect. 3. Instead, most of them target
controlling access to provenance information. A fundamental limitation of these
approaches is that they restrict scientific collaboration. Due to concerns about
correct attribution, scientists usually start sharing their experiment descriptions
and data more openly only when their results are published in some academic
journal or conference. By protecting the integrity and authenticity of temporal
information, along with authenticity of authorship through digital signatures in
different phases of a computational experiment, the approach proposed in the
new version of Kairos, provenance information can be shared and disseminated
earlier with less concern with respect to maintenance of correct attribution. In
securing log files and audit trails [23] one is concerned with preserving integrity
with the purpose of, for instance, chronologically reproducing an attack. How-
ever, differently from Kairos, verifiable assertion of the time-stamp of each event



142 L.M.R. Gadelha Jr. and M. Mattoso

is not taken into account, which is a requirement in protecting attribution and
intellectual property.

3 Security Requirements for Provenance Systems

Scientific research pursues the generation of knowledge [4], which often involves
going through the steps of formulating a question, generating a hypothesis, mak-
ing a prediction, performing an experiment, and analyzing its outcome. If the
analysis confirms the hypothesis, one can say that new scientific knowledge was
generated as a product. A computational scientific experiment follows a simi-
lar knowledge derivation process, in which provenance information supports its
analysis phase. Therefore, one can say that provenance information is one the
most important information assets for a scientist. In Fig. 1, we describe a model
for provenance management systems upon which we analyze security threats. It
fits the definition of provenance management system commonly found in sur-
veys about provenance [6]. Provenance may be classified as prospective, when it
is captured during the workflow design phase and it describes its activities and
data dependencies, or as retrospective, when it is captured during the workflow
execution phase and it describes activity executions and data artifacts generated.
This information is used by the scientific workflow management system (SWMS)
to plan the execution of the scientific workflow and submit its application com-
ponents for execution on computational resources. A provenance management
system is given by a provenance collection service, a provenance database, and
a provenance access service. The provenance collection service gathers prospec-
tive and retrospective provenance information and stores it in the provenance
database. In our threat model, we are assuming that provenance information is
gathered at the workflow level. The provenance access service provides a brows-
ing or querying interface to the provenance database, where users can retrieve
provenance information for computational experiment analysis.

Our main objective in this section is to identify threats to the confidentiality,
integrity, authenticity, and availability of provenance information. As far as we
know, this is the first work to identify these threats and their relationship to
intellectual property protection adapted to e-Science. The methodology used
follows commonly used steps for modeling threats [24]. First one needs to identify
the main information assets of computational scientific experiments. Then, one
needs to attribute a value to each of these assets. Next, one needs to identify
existing threats to these assets and their likelyhood of materializing as attacks.
For each of these threats, the potential loss in case of a successful attack needs
to be evaluated as well as the cost of the respective security controls. Finally,
depending on the relation between potential loss and cost of security control, one
needs to decide whether to accept a risk or to establish protective mechanisms.
This risk analysis procedure should be periodically repeated for refinement and
for taking emerging threats into consideration. In e-Science, experiments are
performed using computational models to simulate phenomena. Therefore all
artifacts involved in applying the scientific method in silico can be considered



Applying Provenance to Protect Attribution 143

Fig. 1. Provenance management system model (modified from [15]).

as important information assets. This includes its input and output data sets,
and all related provenance information. Next, we explore scenarios that illustrate
threats to these assets.

{S1} Illegitimate claim of attribution. An adversary is able to intercept
network communication between the site from which a scientist submits his or
her scientific workflow for execution and the site hosting computational resources
that will execute its component applications. If the adversary is able to retrieve
retrospective provenance records he/she might be able to infer both the intent
and results of the computational scientific experiment. The adversary might
obtain the same information if he/she is able, for instance, to obtain privileged
administrative rights either in the remote computational resources. Using the
provenance records, the adversary might be able reproduce the computational
experiment. With knowledge of the intent and the results of the computational
experiment, and by having reproduced it, the adversary can eventually claim its
attribution before the original author.

{S2} Unauthorized access to private data. If proper access control is not
in place in the provenance database, or if network communication is not secured,
an adversary might have access to private data manipulated by a scientific com-
putational experiment. For instance, patient data in biomedical workflows. This
might legal action because of adequate security controls not being used while
manipulating private data.

{S3} Intentional modification of provenance records. An adversary could
modify provenance records to mislead the scientist during the analysis of a
computational scientific experiment. As a consequence, experiments that had a
relevant outcome might be disregarded. The opposite situation is also possible,
where one might spend time in experiments that did not produce valuable results.



144 L.M.R. Gadelha Jr. and M. Mattoso

{S4} Dissemination of illegitimate provenance data. An adversary dis-
seminates forged provenance records, for instance, by feeding the provenance
collection service with illegitimate data. If scientists are not able to infer the
trustworthiness of provenance information, they might reuse this forged prove-
nance data, for instance, in scientific workflow re-executions. This can induce
scientists to spend their time in computational scientific experiments that will
likely lead to irrelevant or incorrect results.

{S5} Obstruction of provenance information collection and access. An
adversary might generate a large number of requests to either the provenance
collection service or the provenance access service beyond their processing capac-
ity, turning the provenance management system unavailable to legitimate users.
This would delay the upload of provenance data from computational scientific
experiments that could be under execution. Consequently, the analysis phase of
the experiment would be hindered during this type of attack due to the unavail-
ability of supporting provenance information.

Provenance records are analogous to laboratory notebooks from traditional
scientific experiments. They record the plan of an experiment, its initial para-
meters, and its outcome. Many scientific institutions maintain guidelines [1] for
protecting any resulting intellectual property, observing that the laboratory note-
book is one of the most important elements in the process of applying for a
patent, where one should prove that the work that lead to some result was per-
formed before the work of anyone else that could claim the same result. One of
the guidelines is that notes should be signed and dated and not modified after-
wards. In the same manner, provenance records about computational scientific
experiments should be protected with appropriate security controls that enable
one to assert by whom and when an experiment was performed, and that its
provenance records were not modified afterwards. Therefore, to prevent scenario
{S1} from happening, security controls that prevent illegitimate claims of attri-
bution are an important security requirement for provenance systems. A combi-
nation of digital signatures and cryptographic timestamps [16] were used in the
Kairos [12] security architecture for provenance systems to protect retrospective
provenance, which we extend in this work to also cover prospective provenance.
Since digital signatures also protects the integrity of provenance records, Kairos
also prevents scenario {S3} from happening. Preventing scenario {S2} is a con-
cern when personal data is manipulated [10], which is not the predominant case
in e-Science. Also, personal data manipulated by scientific workflows is not as
important to the scientist as an asset as information that leads to knowledge
generation, which is the primary goal in scientific research. Therefore, scenario
{S1} has a higher potential damage than scenario {S2}. Both scenarios {S4}
and {S5} may lead a scientist to loose significant time by either being unable to
access provenance information required for experiment analysis or by consuming
data that might not be valid, leading to incorrect results [9,22]. In both of these
situations, scientists are often able to detect and correct the problems by either
blocking the source of attack and re-establishing availability or by identifying
and discarding untrustworthy data sources. Hence, we see both scenarios {S4}



Applying Provenance to Protect Attribution 145

and {S5} as less threatening than scenario {S1}, placing the protection of attri-
bution of computational scientific experiments as a security requirement that
should be given high priority. In the next section, we present security controls
for preventing this particular scenario.

4 Protecting Attribution in Distributed Scientific
Workflows

In order to protect intellectual property, Kairos provides tools given by the com-
bined use of digital signatures and the TSP [16] to securely determine the author
of provenance assertions and the date in which they were created. The secure
time-stamping process involves computing a hash value of the provenance record,
which is sent to the Time-Stamping Authority [16] (TSA). The TSA appends
to the hash the current date, obtained from a trustworthy source of time. This
pair is digitally signed, which requires access to the private key of the TSA,
resulting in a time-stamp receipt. The time-stamp receipt is sent to the user and
can be used to prove the date of creation of the provenance record. This can
be done by verifying the date contained in the digital receipt and the digital
signature of the TSA, which requires access to the public key of the TSA. We
use the notation Sign(〈object〉, 〈credential〉) to indicate the resulting object of
a digital signature operation over object 〈object〉 using credential 〈credential〉,
which consists of computing the hash value of 〈object〉 and encrypting it with the
private key associated to 〈credential〉; and TSP(〈object〉) to indicate the digital
receipt that results from applying the TSP to object 〈object〉 which results in a
time-stamp receipt, as described in Sect. 1. To also prove authorship of a prove-
nance record, we add a digital signature performed by the scientist. This allows
for the verification of both authorship and date of creation of the provenance
record. This was proposed in our previous work for protecting retrospective
provenance records [12]. However, this process was still susceptible to attacks
since retrospective provenance records are usually generated on remote compu-
tational resources during the execution of component activities of a scientific
workflow. These records can still be vulnerable to network or privileged user
attacks from the time they are generated on remote computational resources
to the time one applies the security techniques described. Our approach for
mitigating this threat consists of extending Kairos to also protect prospective
provenance, which is usually generated at the beginning of the computational
scientific experiment life cycle, before anything is sent to remote computational
resources. The procedure Sign-and-Time-stamp(P, C), for digitally signing and
time-stamping a provenance trace P using a credential C and a TSA, consists of
computing S = Sign(P, C); and then computing T = TSP(S). Finally S and T
are stored in the provenance database.

In Table 1, we present the Kairos protocol, for applying the Sign-and-Time-
stamp to both the prospective and retrospective provenance traces of a scientific
workflow execution runi, denoted by Pprospective(runi) and Pretrospective(runi)
respectively. The same protocol is illustrated in Fig. 2 using corresponding steps.



146 L.M.R. Gadelha Jr. and M. Mattoso

The pair of objects produced by the protocol in the Sign-and-Time-stamp steps
will be called a secure provenance receipt, or SP-receipt.

Fig. 2. Kairos: procedure overview.

Table 1. Description of the Kairos protocol.

Step 1. Store Pprospective(runi) in the provenance database;

Steps 2 and 3. Sign-and-Time-stamp(Pprospective(runi), C);

Step 4. Execute scientific workflow;

Step 5. Store Pretrospective(runi) in the provenance database;

Steps 6 and 7. Sign-and-Time-stamp(Pretrospective(runi), C);

An auditor can verify the SP-receipt produced by the protocol using the
public keys of both the user and the TSA. To verify the time-stamp receipt one
needs to apply the encryption function to the digital signature performed by
the TSA using its public key and compare the result with the hash value of the
concatenation of the time-stamp and the object produced by the digital signature
performed by the user. If they match, the time-stamp receipt is valid. To verify
the digital signature performed by the user, the process is analogous and uses
the public key of the user instead. A complete validation would also verify the
digital signatures in the digital certificates used in the process. These certificates
usually form a chain and the validation is completed when one reaches a trusted
certificate authority.

Next, we discuss how the protocol can support the preservation of the correct
attribution of a computational experiment. Suppose a user is the first one to run



Applying Provenance to Protect Attribution 147

a scientific workflow on a remote computational resource, with some specifica-
tion and input data sets, and follows the Kairos security protocol. Therefore,
he or she gets an SP-receipt as result. Now suppose an adversary was able to
compromise a computational resource and obtain both the prospective and ret-
rospective provenance traces. If the adversary tries to claim the authorship of
the computational scientific experiment, the user can challenge him or her to
present an SP-receipt with an earlier time-stamp for prospective provenance.
Since the prospective provenance trace was generated and time-stamped before
submitting the scientific workflow for execution to the computational resource,
the adversary would only be able to access this trace if the submitting host was
also compromised. This is less likely to happen since the submitting host is often
not shared with other users. Therefore, it is unlikely that the adversary would
be able to forge an SP-receipt containing an earlier time-stamp that the one
contained in SP-receipt of the user. The portion of the SP-receipt related to
the retrospective provenance trace can be useful, for instance, when claiming a
patent based on the outcome of the computational experiment, since detailed
description of experiment execution and its respective temporal information are
critical steps in this process.

The cryptographic data stored in MTCProv by Kairos enables queries involv-
ing security aspects of provenance to be answered. Given a dataset produced
by a scientific workflow, one can securely determine all the individuals that
were involved in the production of a particular scientific dataset. Such query
can be answered, for instance, by traversing the provenance graph recursively to
determine ancestral processes and datasets, and gathering respective name-value
annotations containing digital signatures. One can also, given several prove-
nance traces describing the generation of the same scientific dataset, securely
verify which one was the earliest. This can be done, for instance, by retrieving
name-value annotations associated to the respective executions containing time-
stamping receipts and selecting the earliest one. One important aspect of the
answers to these queries is that they are verifiable with cryptographic tech-
niques if one has access to the respective public keys of either the TSA or the
author of a digital signature. With these tools, one can more easily assert the
what, who, and when of a computational scientific experiment, essential in any
patenting process.

5 Implementation and Evaluation

The experiments with the proposed protocol are based on Swift [26], a parallel
scripting system that allows for managing many-task scientific workflows. Swift
generates provenance traces in its log files, and this information can be exported
to a relational database using a data model [15] similar to PROV [19]. Therefore,
the techniques presented in this work are also applicable to provenance infor-
mation represented using these standards. MTCProv [15] is the provenance
management component of Swift. It has a query interface with built-in proce-
dures that supports commonly used provenance queries [13,14]. We implemented



148 L.M.R. Gadelha Jr. and M. Mattoso

a prototype of Kairos in the Python programming language as a wrapper that
interacts with cryptographic functions of the OpenSSL library [2], Swift and
MTCProv. The implementation uses cryptographic functions of the OpenSSL
cryptographic toolkit: the smime function can be used for the digital signatures
and the ts function can be used to both execute the TSP and to implement
a TSA. The digital signatures and time-stamp receipts generated by the proto-
type described above are stored as name-value pair annotations associated to the
respective scientific workflow execution in the provenance database.

To evaluate the impact of Kairos, we used a a ray-tracing workflow,
c-ray.swift, that generates a number of scene definitions, invokes a ray-tracing
application to render them, and converts the resulting image frames into a video.
For each number of iterations, five executions were performed for gathering the
storage space and execution time statistics. The evaluation was performed in an
environment consisting of a submission host with a six-core Intel Xeon E7540
processor, where Swift was executed, and a remote multi-processed host with two
12-core AMD Opteron 6238 processors, where the computationally demanding
application components of the workflow were executed. To scale the execution
of the workflow, Swift is able to execute multiple ray-tracing tasks in parallel in
this remote multi-processed host using the SSH execution provider. The TSA was
installed in the submission host and we included a pause with a random duration
between 100 and 400 ms before submitting each time-stamping request, in order
to simulate the cost of communication with a remote TSA. In Fig. 3, we plot the
extra amount of storage space and execution time required by Kairos.

2 5 10 20 50

1.
03

2
1.

03
4

1.
03

6
1.

03
8

Number of frames processed by the workflow

C
os

t i
n 

st
or

ag
e 

sp
ac

e 
(p

er
ce

nt
)

2 5 10 20 50

0
5

10
15

20
25

30
35

Number of frames processed by the workflow

C
os

t i
n 

ex
ec

ut
io

n 
tim

e 
(p

er
ce

nt
)

Fig. 3. Impact of Kairos in terms of storage space and execution time.

Since the time-stamp receipt is computed from a hash value, which has a
fixed size, it will also have approximately fixed size, apart from minor variations
due to padding. The size of digital signature performed with the smime tool,
grows very slowly when compared to the size of the provenance trace. Therefore,
as one can observe in Fig. 3, the size of digital signatures and time-stamp receipts
becomes proportionally smaller as the size of the workflow grows. As mentioned
in the previous section, the current prototype also stores the original objects that



Applying Provenance to Protect Attribution 149

were signed, in addition to the digital signatures, with the purpose of enabling
signature verification. To preserve the validity of an SP-receipt, the respective
original provenance trace should not be modified. The management of cryp-
tographic data could be improved in Kairos by using cryptographic standards
that have better support for managing both digital signatures and time-stamp
receipts, such as XAdES [8]. The time to execute both the timestamp protocol
and the digital signature procedure depend on the size of the provenance trace,
since a hash value needs to be computed from its content. For the 64-step exe-
cution of the workflow, the retrospective trace has about 803 KB in size and it
takes about 35 ms to digitally sign and time-stamp it on the submission host.
Therefore, one can observe in Fig. 3 that the impact in terms of execution time is
smaller than other factors, such as the scheduling heuristics used by the execu-
tion provider and the staging-in and staging-out of files between the submission
and the multi-processed host. In the current implementation of Kairos, the gran-
ularity used for applying the security controls is at the provenance trace level.
One could alternatively use a finer-grained granularity at the provenance asser-
tion level, however the impact in terms of space would be considerably higher.
Consider, for instance, the 64-step execution of the workflow. It is given by 6403
provenance assertions, with an average size of 124 bytes. The cryptographic data
associated to the digital signatures and time-stamping receipts has an average
size of 3.3 KB per assertion, since it must contain also information about the
credentials used. This results in 20.6 MB of cryptographic data in comparison
to the total provenance trace size of 803 KB, a 26-fold increase. However, the
need of fine-grained protection is diminished by the application of the security
controls to the prospective provenance information prior to the execution of the
scientific workflow.

6 Conclusion

In this work, we survey and analyze security requirements for provenance man-
agement systems. We propose that the main information asset of these systems is
given by provenance traces describing the intellectual process of a computational
scientific experiment, which require appropriate security controls for protec-
tion. This information is particularly vulnerable in current e-Science infrastruc-
tures since they often are transferred to third-party computational resources
which scientists have little control of. Therefore, we have extended Kairos [12],
which secures the authorship and temporal information of computational scien-
tific experiments, to also protect prospective provenance and implemented it as
part of MTCProv [15], a provenance management system for many-task com-
puting. We describe useful queries that can be answered by MTCProv using
the information generated by these security controls and stored in its relational
database. The security controls implemented are essential to any claim of intel-
lectual property, where individuals need to present evidence that they were the
first ones to obtain some scientific result. The improvements implemented in
Kairos, relative to the version presented in [12], allow for better protection of



150 L.M.R. Gadelha Jr. and M. Mattoso

correct authorship attribution since it applies the proposed security controls also
to prospective provenance information at the design phase of the computational
scientific experiment life cycle. The hypothesis of the experiment is typically
defined at this stage, which makes it critical in applying security controls for pro-
tecting intellectual property. At this stage the information is much less exposed
to attacks commonly found in remote and distributed computational resources,
where retrospective provenance is gathered. We also presented an evaluation of
the impact of the proposed techniques in terms of storage space required and
execution time, concluding that it is relatively small when they are applied at
the provenance trace level of granularity. As in GSI [11], the security controls
used in Kairos are based on common public key infrastructure techniques, where
certificate authorities are trusted to digitally sign and publish, in the form of
digital certificates, public keys associated to users. Therefore, Kairos should be
relatively straightforward to integrate to existing grid computing infrastructures,
where many large scale computational scientific experiments are performed.

Acknowledgment. This work is partially funded by CNPq and FAPERJ.

References

1. Guidelines for Maintaining a Lab Notebook. Los Alamos National Laboratory
(2014)

2. OpenSSL (2014). http://www.openssl.org
3. Anderson, R.: Security Engineering: A Guide to Building Dependable Distributed

Systems, 2nd edn. Wiley, New York (2008)
4. Booth, W.C., Colomb, G.G., Williams, J.M.: The Craft of Research, 3rd edn.

University of Chicago Press, Chicago (2008)
5. Braun, U., Shinnar, A., Seltzer, M.: Securing provenance. In: Proceedings of the

3rd Conference on Hot Topics in Security, pp. 4:1–4:5. USENIX, Berkeley (2008)
6. Carata, L., Akoush, S., Balakrishnan, N., Bytheway, T., Sohan, R., Selter, M.,

Hopper, A.: A primer on provenance. Commun. ACM 57(5), 52–60 (2014)
7. Chebotko, A., Lu, S., Chang, S., Fotouhi, F., Yang, P.: Secure abstraction views for

scientific workflow provenance querying. IEEE Trans. Serv. Comput. 3(4), 322–337
(2010)

8. Cruellas, J., Karlinger, G., Pinkas, D., Ross, J.: XML advanced electronic signa-
tures (XAdES) (2003). http://www.w3.org/tr/xades

9. Dai, C., Lin, D., Bertino, E., Kantarcioglu, M.: An approach to evaluate data
trustworthiness based on data provenance. In: Jonker, W., Petković, M. (eds.)
SDM 2008. LNCS, vol. 5159, pp. 82–98. Springer, Heidelberg (2008)

10. Davidson, S.B., Khanna, S., Milo, T., Panigrahi, D., Roy, S.: Provenance views for
module privacy. In: Proceedings of ACM PODS 2011, pp. 175–186. ACM (2011)

11. Foster, I., Kesselman, C., Tsudik, G., Tuecke, S.: A security architecture for com-
putational grids. In: Proceedings of ACM CCS 1998, CCS 1998, pp. 83–92. ACM,
New York (1998)

12. Gadelha, L., Mattoso, M.: Kairos: an architecture for securing authorship and
temporal information of provenance data in grid-enabled workflow management
systems. In: IEEE Fourth International Conference on eScience (e-Science 2008),
pp. 597–602. IEEE (2008)

http://www.openssl.org
http://www.w3.org/tr/xades


Applying Provenance to Protect Attribution 151

13. Gadelha, L., Mattoso, M., Wilde, M., Foster, I.: Provenance query patterns for
many-task scientific computing. In: Proceedings of the 3rd USENIX Workshop on
Theory and Applications of Provenance, TaPP 2011 (2011)

14. Gadelha, L., Wilde, M., Mattoso, M., Foster, I.: Exploring provenance in high
performance scientific computing. In: Proceedings of the First Annual Workshop on
High Performance Computing Meets Databases, HPCDB 2011, pp. 17–20. ACM,
New York (2011)

15. Gadelha, L., Wilde, M., Mattoso, M., Foster, I.: MTCProv: a practical provenance
query framework for many-task scientific computing. Distrib. Parallel Databases
30(5–6), 351–370 (2012)

16. Haber, S., Stornetta, W.: How to time-stamp a digital document. J. Cryptol. 3(2),
99–111 (1991)

17. Hasan, R., Sion, R., Winslett, M.: Preventing history forgery with secure prove-
nance. ACM Trans. Storage 5(4), 12:1–12:43 (2009)

18. Miles, S., Groth, P., Branco, M., Moreau, L.: The requirements of recording and
using provenance in e-science. J. Grid Comput. 5(1), 1–25 (2007)

19. Moreau, L., Groth, P.: Provenance: an introduction to PROV. Synth. Lect. Semant.
Web: Theory Technol. 3(4), 1–129 (2013)

20. Nagappan, M., Vouk, M.A.: A model for sharing of confidential provenance infor-
mation in a query based system. In: Freire, J., Koop, D., Moreau, L. (eds.) IPAW
2008. LNCS, vol. 5272, pp. 62–69. Springer, Heidelberg (2008)

21. Ni, Q., Xu, S., Bertino, E., Sandhu, R., Han, W.: An access control language for a
general provenance model. In: Jonker, W., Petković, M. (eds.) SDM 2009. LNCS,
vol. 5776, pp. 68–88. Springer, Heidelberg (2009)

22. Qian, H., Xu, S.: Non-interactive editable signatures for assured data provenance.
In: Proceedings of ACM CODASPY 2011, pp. 145–156. ACM, New York (2011)

23. Schneier, B., Kelsey, J.: Secure audit logs to support computer forensics. ACM
Trans. Inf. Syst. Secur. 2(2), 159–176 (1999)

24. Swiderski, F., Snyder, W.: Threat Modeling. Microsoft Press, Redmond (2004)
25. Tan, V., Groth, P.T., Miles, S., Jiang, S., Munroe, S.J., Tsasakou, S., Moreau, L.:

Security issues in a SOA-based provenance system. In: Moreau, L., Foster, I. (eds.)
IPAW 2006. LNCS, vol. 4145, pp. 203–211. Springer, Heidelberg (2006)

26. Wilde, M., Hategan, M., Wozniak, J.M., Clifford, B., Katz, D.S., Foster, I.: Swift: a
language for distributed parallel scripting. Parallel Comput. 37(9), 633–652 (2011)

27. Xu, S., Ni, Q., Bertino, E., Sandhu, R.: A characterization of the problem of
secure provenance management. In: Proceedings IEEE International Conference
on Intelligence and Security Informatics (ISI 2009), p. 314 (2009)



Provenance Discovery and Data
Reproducibility



Looking Inside the Black-Box: Capturing Data
Provenance Using Dynamic Instrumentation

Manolis Stamatogiannakis(B), Paul Groth, and Herbert Bos

VU University Amsterdam, Amsterdam, The Netherlands
{manolis.stamatogiannakis,p.t.groth,h.j.bos}@vu.nl

Abstract. Knowing the provenance of a data item helps in ascertain-
ing its trustworthiness. Various approaches have been proposed to track
or infer data provenance. However, these approaches either treat an
executing program as a black-box, limiting the fidelity of the captured
provenance, or require developers to modify the program to make it
provenance-aware. In this paper, we introduce DataTracker, a new app-
roach to capturing data provenance based on taint tracking, a technique
widely used in the security and reverse engineering fields. Our system is
able to identify data provenance relations through dynamic instrumen-
tation of unmodified binaries, without requiring access to, or knowledge
of, their source code. Hence, we can track provenance for a variety of
well-known applications. Because DataTracker looks inside the executing
program, it captures high-fidelity and accurate data provenance.

Keywords: Dataprovenance ·Dynamic ·Taint analysis ·Taint tracking ·
PROV

1 Introduction

Provenance is a “record that describes the people, institutions, entities, and
activities involved in producing, influencing, or delivering a piece of data or a
thing” [26]. This record can be analyzed to understand if data was produced
according to regulations, understand the decision making procedure behind the
generation of data, used in debugging complex scientific programs, or used to
make trust calculations [25].

Given the need for an explicit record to analyze, the community has studied
a variety of ways to record or capture data provenance ranging from modifying
applications, to explicitly recording provenance, to reconstructing provenance
from the computational environment. In designing a provenance capture sys-
tem, one must make a trade-off between the fidelity of the captured provenance
(i.e. how accurate the provenance is) and the effort on the part of application
developers and/or users to make a system provenance-aware.

In this work, we introduce DataTracker, a new system for capturing prove-
nance that practically eliminates the effort of making an application provenance-
aware while still producing high-fidelity provenance. Analogous to high-fidelity
sound, we use this term to refer to provenance information with minimal amounts
c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 155–167, 2015.
DOI: 10.1007/978-3-319-16462-5 12



156 M. Stamatogiannakis et al.

of noise (false-positives) and distortion (misrepresentation of existing relations).
DataTracker offers both these qualities as it (a) eliminates a large number of
false-positives by tracking how data are actually used, and (b) is able to capture
provenance at the byte-level. Our system is based on dynamic taint analysis
(DTA), a method popular with the security research community, allowing our
system to leverage already available infrastructure. It can track data provenance
for a wide-variety of unmodified binaries ranging from small command line util-
ities to full-fledged editors like vim. Moreover, unlike other systems that can be
used to capture high fidelity provenance, DataTracker does not require knowledge
of the application semantics. Concretely, the contributions of this paper are:

1. A system, DataTracker1, to transparently capture data provenance of unmod-
ified binaries based on DTA.

2. An evaluation of the system that shows high-fidelity provenance capture on
small inspectable programs.

3. Case studies of provenance capture for well-known applications.

The rest of the paper is organized as follows. Section 2 discusses previous
work on capturing provenance and introduces dynamic binary instrumentation
and taint analysis, the techniques we use to implement DataTracker. In Sect. 3
we present the architecture of our system and detail its implementation. Next, in
Sect. 4 we evaluate the provenance produced by it. We use both simple programs
that address cases that are not adequately handled by the state of the art, as
well as real applications. Finally, in Sect. 5 we discuss some of the aspects of
DataTracker, highlighting possible follow-up work.

2 Background and Related Work

2.1 Capturing Provenance

Provenance has been widely studied in the database [5], distributed systems [31]
and e-science communities [9]. For a comprehensive overview of the field, we
refer the reader to Moreau [24]. Furthermore, Cheney et al. [5] and Simmhan
et al. [30] provide specialized reviews for databases and e-science respectively.
Here, we focus on systems for provenance capture.

We classify provenance capture approaches on a spectrum in terms of how
much intervention they require to make an application provenance-aware. By
intervention, we mean the modifications of a program or computational envi-
ronment to capture provenance. Typically, the more intervention required the
higher fidelity of provenance and the greater the required effort is.

At the most detailed level are systems modified to be provenance-aware. For
example, Trio DBMS [35] extends a relational database system to cope with
uncertain data and provenance. Frameworks for modifying programs to record
provenance information have also been proposed [20,23].

1 The source code of DataTracker is available on: http://github.com/m000/dtracker.

http://github.com/m000/dtracker


Looking Inside the Black-Box 157

An alternative take to provenance-awareness is the use of middleware to
wrap applications and components. The provenance is generated by the mid-
dleware after inspection of the inputs and outputs of the wrapped components.
This approach is popular with the scientific workflow community and includes
systems such as Taverna [29], VisTrails [11], Kepler [2] and Wings [17]. Other
middleware-based systems like Karma [31] are not tied to a workflow system,
but instead tap into the communication stack to capture provenance.

It has also been proposed to capture provenance by exploiting the mecha-
nisms offered by the operating system to trace the activities of programs. Such
systems include TREC [34], ES3 [12] and the work of Gessiou et al. [13]. All these
systems operate in user-space and don’t require special privileges. A slightly dif-
ferent approach is taken by PASS [14], which has been implemented as a Linux
kernel extension. From this vantage point, PASS is able to capture provenance
from multiple processes at once. The fidelity of the provenance captured by these
systems is comparable, as they all retrieve and use similar information (albeit
using different mechanisms) and all of them treat traced programs as black boxes
without tracking how data are actually processed. We consider our system to
be an extension of these approaches to support higher fidelity provenance. From
them, DataTracker is mostly related to Gessiou’s et al. system, in the sense that
both use dynamic binary instrumentation.

Finally, newer work [21,28] does not use a-priori instrumentation but attempts
to reconstruct provenance directly from data. Without primary access to the
actual provenance, this approach will always suffer from lower fidelity.

2.2 Dynamic Instrumentation and Taint Analysis

Dynamic Instrumentation: DataTracker applies Dynamic Instrumentation on
the executing programs using the Intel Pin [19] framework. Pin allows monitor-
ing and interacting with an executing program using a rich API and provides
the base platform for the implementation of Dynamic Taint Analysis (discussed
next). We picked Pin over similar Dynamic Binary Instrumentation (DBI) plat-
forms [3,27] because it is considered the easiest to work with while providing
high performance without the need for much manual tinkering. Instrumenta-
tion techniques which require modification or recompilation of the instrumented
programs [18,33] were precluded.

Dynamic Taint Analysis: Pioneered by Denning in the 70s [10], the idea
of tracking the flow of data though a program is all but new. The technique
has remained relevant through the years and has been implemented on different
levels, ranging from source code [22], to interpreters2, to full emulators [1,8].
Its most common applications are in the field of security and intrusion detec-
tion [1,7]. However, until now, it hasn’t been used for capturing provenance.

When data flow tracking is applied at runtime, it is generally called Dynamic
Flow Tracking or, equivalently, Dynamic Taint Analysis (DTA). The term taint
refers to the metadata associated with each tracked piece of data. A short and
2 E.g. Perl taint mode: http://perldoc.perl.org/perlsec.html#Taint-mode.

http://perldoc.perl.org/perlsec.html#Taint-mode


158 M. Stamatogiannakis et al.

concise definition of DTA has been given by Kemerlis et al. [16] as: “the process
of accurately tracking the flow of selected data throughout the execution of a
program or system”. The four elements that are define a DTA implementation
are: (a) the taint type, which encapsulates the semantics tracked for each piece
of data; (b) the taint sources, i.e. locations where new taint marks are applied;
(c) the taint sinks, i.e. locations where the propagated taint marks are checked
or logged; (d) a set of propagation policies that define how that taint marks are
handled during program execution.

Given the effectiveness of DTA, recently much research has been done on
reusable DTA frameworks. This was largely made possible by the maturing
of dynamic binary instrumentation platforms (see above). Dytan [6] uses the
Intel Pin [19] DBI framework and provides much flexibility for configuring taint
sources and propagation policies. Additionally, it offers some support for implicit
data flows (see Sect. 5). DTA++[15] by Kang et al. focuses on the efficient han-
dling of such implicit flows in benign programs.

A more recent effort (also based on Intel Pin) which emphasizes on perfor-
mance is libdft [16]. To achieve superior performance, libdft consciously sacrifices
some flexibility by supporting only bit or byte sized taint marks and omitting
any support for implicit data flows. DataTracker is based on libdft, however we
opted to use a modified version which adds support for arbitrary taint marks.

3 System

The architecture of DataTracker is illustrated in Fig. 1a. Colored blocks repre-
sent the additional components required for capturing provenance information
in PROV format from unmodified applications. The darker blocks are those
specifically developed for DataTracker. Due to Pin’s architecture, application
and instrumentation code appear as a single process to the OS and share the
same address space. This means that instrumentation code has access to all of
the application data and can intercept system-calls made by the application.

3.1 Modifications to Libdft

A fundamental requirement of DataTracker is the ability to use richer taint marks
than those offered by the original libdft. Libdft has been carefully optimized
with security applications in mind. For such applications, it has been argued
that byte-sized taint marks are large enough for the current crop of security
applications based on DTA [6]. So, libdft has limited the size of supported taint
marks to either 1b or 1B, which allows for optimizing the taint propagation logic
and reducing the memory requirements.

However, the requirements for DTA-based provenance applications are quite
different. In this case, the default byte-sized taint marks of libdft just do not
provide enough fidelity. In order to accommodate for the higher fidelity we need,
we opted to use a modified version of libdft developed at our lab3. The modified
3 Source code available on: https://git.cs.vu.nl/r.vermeulen/libdft.

https://git.cs.vu.nl/r.vermeulen/libdft


Looking Inside the Black-Box 159

Fig. 1. DataTracker architecture (a) and taint ranges (b, c).

version shares much code with the original, however the taint mark type and
propagation logic can be configured to match the application needs.

For DataTracker, the taint marks associated with each memory location are
modeled as set of two-tuples: {〈ufd0 :offset0〉, 〈ufd1 :offset1〉, . . .}. Each of
these tuples is 64bit long, and uniquely identifies an offset in a file4. The first
half of each tuple is a unique file descriptor (UFD) which identifies a file during
an application session. The second half represents the offset of the data within
the file mapped to the UFD. Unlike file descriptors provided by the OS, UFDs
increase monotonically and are not recycled after closing a file. Thus, they enable
us to tell apart data which outlive the file descriptor they were read from. UFDs
are only used internally and are resolved back to filenames during the conversion
to PROV.

3.2 The dtracker Pin Tool and Converter

The dtracker pin tool is the core component of DataTracker. It implements the
following functionality: (a) identifying when taint should be applied; (b) properly
setting taint marks on data; (c) logging raw provenance information.

Identification of data to taint: When an instrumented program accesses a
file for the first time, dtracker intercepts the open() system call and invokes
its UFD mapper sub-component. The mapper checks whether the file descriptor
returned by open() should be watched for input/output operations in order to
respectively assign/log taint marks. This check is necessary in order to avoid
applying taint on data that are either of no interest or highly unlikely to end-
up in the application output. Examples of such files are shared libraries, UI
icons, etc. The mapper includes heuristics to identify such files. If the mapper
determines that the file descriptor should be watched, it will create a new UFD
mapping for it. Additionally, it will check whether the file was created as a
4 For simplicity, we prefer the term “file” over the more accurate “file-like resource”.



160 M. Stamatogiannakis et al.

result of the system call and if it has been opened for writing. This information
is logged and used to avoid generating false prov:wasGeneratedBy records.

Applying taint marks: The majority of applications read data from external
sources using read() and mmap2() system calls. The return values and arguments
of these calls are intercepted by DataTracker and, if the file descriptor used is
watched, taint marks are set on the memory locations where the data were
read into. E.g. for a call read(fd, buf, size) which returns n, DataTracker will
assign tags[buf+i] ← 〈ufd[fd]:offset+i〉, ∀i ∈ [0, n). The handling of mmap2()

is similar. The required offset to create the taint mark is acquired by querying
the operating system using the lseek() system call. For file descriptors where
this is not supported (e.g. pseudo-terminal devices), DataTracker keeps separate
read/write counters. After the taint marks have been set, their propagation as
the program executes is handled by libdft.

Raw provenance logging and aggregation: While some pieces of raw prove-
nance are logged by the instrumentation code attached to open(), the bulk of
logging happens when write() and munmap() are called. A naive approach for
this logging would be to just loop through written buffer and log one entry per
tainted memory location. This strategy would easily result in very large log files.
Logging large amount of data to disk would also slow-down the execution of
the application. To avoid these issues and produce more compact and meaning-
ful output, dtracker includes a simple aggregator for the logged taint marks
which condenses logged information into two types of taint ranges: (a) Sequence
ranges (Fig. 1b), which occur when the same sequence of consecutive taint marks
appears both in the input and the output; (b) Repetition ranges (Fig. 1c), which
occur when consecutive output bytes are all marked with the same taint mark.
From the supported ranges the most common is the first, which naturally occurs
whenever data are moved or copied by the application.

Raw output to PROV converter: In order to be able to use existing tools to
further process the produced provenance, DataTracker provides a converter from
its own raw format to PROV-O, the RDF serialization of PROV. While the bulk
of the conversions are simple transformations, the converter script also needs to
maintain some internal state, in order to avoid producing false-positives in some
specific cases (e.g. false prov:wasGeneratedBy triples).

4 Evaluation

We carry out a two part evaluation. In the first part, we examine simple base-
line programs with transparent and inspectable functionality. The goal is to
demonstrate specific cases where our system is able to improve on the quality of
produced provenance and produce less false-positives than existing approaches.
In the second part, we focus on well-know applications and show how Data-
Tracker can be used to extract useful provenance information from them without



Looking Inside the Black-Box 161

w ← argv[1].lower();
for i ← 2 to argc − 1 do

f ← open(argv[i]);
for ln in f.lines()
do

if w in
ln.lower() then

print ln;
end

end
end

(a) sgrep pseudocode

f ← open(argv[1]);
g ← open(argv[2]);
dummy ← f.readline();
g.write(“http://bit.ly/ipaw2014”);

(b) tricky pseudocode

for i ← 1 to argc − 1 do
f ← open(argv[i]);

f ′ ←
open(argv[i] + “.up”);
while
(c ← f.getc()) �=
EOF do

if ‘a’≤ c ≤‘z’
then

f ′.putc(c +
‘Z’ − ‘z’);

else
f ′.putc(c);

end
end

end

(c) upcase pseudocode

Fig. 2. Pseudocode for baseline programs.

sgrep

lorem.txt

use

out.txt

gen
der

(a) Lorem Ip-
sum

sgrep

fab3.txt

use

fab2.txt

use

fab4.txt

use

fab1.txt

use

out.txt

gender

der

(b) Aesop’s Fables

tricky

cfp.txt

use

out.txt

gen

(c) TRicky

upcase

fab2.txt

use

fab1.txt

use

fab2.txt.up
gen

der

fab1.txt.up

gen der

(d) Shout it out loud

Fig. 3. Output from baseline experiments with DataTracker.



162 M. Stamatogiannakis et al.

requiring modifications. We use the diagrammatic convention of PROV5. We
have also been able to run bigger applications like AbiWord with DataTracker.
However, in this introductory paper we will focus on simpler, more tractable
programs.

4.1 Baseline Experiments

Lorem Ipsum: In this experiment, we use sgrep, a simplified version of the
standard grep unix utility. It finds lines containing the word w specified as its
first argument inside the files specified by the rest of the arguments. The search
is case-insensitive and the found lines are printed to the standard output. Its
functionality is illustrated as pseudocode in Fig. 2a. We use sgrep to find the
lines containing word “dolor” in a file containing the standard Lorem Ipsum6

passage. The standard output is redirected to file “out.txt”.
This test demonstrates that DataTracker is able to produce the same prove-

nance graph as those of techniques like [12–14]. In Fig. 3a we can see that Data-
Tracker correctly produces the expected usage and derivation edges. Our system
also produces byte level provenance information, which has been omitted from
the graph for saving space.

Aesop’s Fables: Here, the sgrep utility is again used. This time, we are looking
to find lines containing the word “lion” in four files containing Aesop fables. Only
two of the four fables actually involve a lion.

We can see in Fig. 3b that DataTracker correctly identifies that the output
contains lines (and therefore was derived) from only two out of the four input
files. This is an improvement over systems like [12–14], which would have also
produced false derivation edges for the remaining two files. The reason that
DataTracker is able to eliminate these false positives, is that it goes beyond simply
tracking how the instrumented program exchanges data with its environment.
It actually looks inside the program, a provenance black box until now, and
determines which of the exchanged data have been used and where.

TRicky: For this experiment, we use a utility called tricky which purportedly
scans the input file for urls, and writes them to the specified output file. However,
it seems that we’ve been tricked! In reality, the program always prints the same
url regardless of the input it reads, as shown in Fig. 2b.

We ran tricky with a call for papers as input that happens to include the
exact same string that tricky has hardcoded. DataTracker was able to correctly
identify that tricky generated the output file but its contents actually have
nothing to do with the input file (Fig. 3c). Similarly with the previous example,
systems that only trace the operations performed by the instrumented program
but not the data used would have been tricked into producing a false derivation
edge. But in this case, systems that infer provenance by applying content-based
heuristics [28] would have also been tricked.

5 http://www.w3.org/2011/prov/wiki/Diagrams.
6 A common placeholder text which has been used by typesetters since the 1500s.

http://www.w3.org/2011/prov/wiki/Diagrams


Looking Inside the Black-Box 163

→
world
cruel
hello

→
hello
world
cruel

→
hello
world →

hello
cool
world

(a) vim editing scenario steps

vim.gtk

.ICEauthority

use

hello.txt

use

world.txt

use

.Xauthority

use

cruel.txt

use

.empty.txt.swx

use

0

use

empty.txt

use

.empty.txt.swp

use

out.txt gen

der
der

der

gen

der
der der

der

gen

der
derder

der der

.viminfo
gen der

der
der

(b) provenance graph

Fig. 4. Case study – vim editor.

Shout it out loud: In this final baseline experiment, we use a utility called
upcase. This program opens the files specified as arguments and produces one
output file for each of them with its contents in uppercase. The pseudocode of
upcase is shown in Fig. 2c.

This experiment is simply a verification that DataTracker is able to identify
the correct derivation edges in the case of multiple inputs and outputs. The gen-
erated graph is depicted in Fig. 3d. For upcase and N input files, other systems
would have produced a graph with N × N edges. Such a result is too vague to
be of practical use. With the use of heuristics, the quality of this result could be
improved. However, with DataTracker we don’t have to resort to heuristics that
may fail in other cases.

4.2 Case Studies

In this section we will present the provenance produced by DataTracker when
instrumenting two well-known applications: vim editor and Python.

vim editor: We used vim to run the following editing scenario (illustrated in
Fig. 4a):

1. Open empty.txt with vim.
2. Read world.txt, cruel.txt, and hello.txt into the buffer.
3. Move contents of hello.txt to the top of the buffer.
4. Remove contents of cruel.txt from the buffer.
5. Type the word “cool” in the buffer.
6. Write the buffer to out.txt and quit.



164 M. Stamatogiannakis et al.

The produced provenance graph can is shown in Fig. 4b. We can see that
the produced graph is much denser than the ones produced by the baseline
programs of Sect. 4.1. This is because vim opens numerous supporting files. We
can see that DataTracker correctly didn’t produce an out.txt

der←−−cruel.txt edge,
as the contents of cruel.txt were removed in step 3 of the scenario. It also didn’t
produce an out.txt

der←−− .empty.txt.swp edge, even though the contents of out.txt
were temporarily stored in .empty.txt.swp during the session.

Additionally, our system was able to capture provenance attributed to user
input. The node labeled “0” in the graph corresponds to the pseudo-terminal
device which is used by the program. We can see that DataTracker correctly
produced derivation edges out.txt der←−−0 and 0 der←−−0 for it: the former represents
the word “cool” we typed, while the latter denotes that whatever we typed was
also displayed on the pseudo-terminal. Capturing the user input has remained
largely unaddressed by previous work (e.g. [34]). Not only can DataTracker trace
provenance back to user’s input, but it can also pinpoint which parts of the
output were contributed by the user.

Python scripts: We used DataTracker to capture the provenance produced
by some simple Python scripts in order to test how it performs with inter-
preted languages. Due to limited space, we will only briefly present our findings.
DataTracker was able to produce correct provenance graphs on the file granu-
larity. However, the provenance of some byte ranges was not captured correctly.
This can be attributed to implicit flows, discussed in Sect. 5.

5 Discussion

The use of DTA allows for tracking of high-fidelity provenance. Following, we
discuss some shortcomings of this technique as well as avenues for future work.

Capturing implicit provenance: A noteworthy deficiency of DTA is that
it cannot easily track implicit information flows. An implicit information flow
between variables x and y occurs when the value of y is set from a variable/
constant z but the execution of the assignment is determined by the value
of x. This matches cases like conditional assignments (e.g. if (x) then y=0; else

y=1;) or assignment through lookup tables (e.g. int v[] = {1, 2, 3}; y = v[x];). In
DTA implementations like libdft [16], where taint marks propagate only through
operations directly involving a tainted location, these cases will not result in
propagation of taint from x to y. This problem had already been noted by
Denning [10] in her seminal work. The provenance relations that occur as a
result of implicit flows are called implicit provenance.

Attempting to track implicit flows may result in over-tainting and a high
number of false-positive, especially when using DTA to analyze malware [32].
For tracking taint through implicit flows in benign programs, Kang et al. pro-
pose DTA++ [15]. Their approach uses an offline analysis phase to identify loca-
tions where implicit flows occur and cause loss of taint. This is consistent with
Cavallaro’s observations [4]. However, when using DTA to capture provenance



Looking Inside the Black-Box 165

we can safely assume that our programs are benign. So, in principle, techniques
like DTA++ could be retrofitted to DataTracker to improve its recall on the
retrieved implicit provenance relations.

Performance: While performance is acceptable on most command-line pro-
grams, issues do exist. E.g. the use of large taint marks may result in increased
memory usage. The extent of this effect depends on how much tainted data
are used at once. It can be alleviated by attaching to the application after its
launch, reducing the amount of un-needed taint applied. We plan to quantita-
tively study this effect and investigate optimizations to lessen it. Another issue
is that DTA is particularly slow when instrumenting interpreted programs (see
Sect. 4.2). This is because it treats interpreted programs as data and applies
taint to them. Investigation of possible solutions to this problem is an area of
future work.

6 Conclusions

We have presented DataTracker, a novel system for capturing provenance from
unmodified binaries based on Dynamic Taint Analysis and implemented using
Dynamic Instrumentation. DataTracker advances the state of the art by not
treating executing programs as black-boxes, inferring provenance by how they
interact with their environment, but instead dynamically tracking the flow of
data through their internals, capturing high-fidelity provenance along the way.
We have shown that DataTracker is able to generate accurate provenance in cases
where state-of-the-art techniques would have produced false-positives. It is also
capable of capturing user interaction provenance and generating high-fidelity
provenance for individual byte ranges within files.

References

1. Bosman, E., Slowinska, A., Bos, H.: Minemu: the world’s fastest taint tracker. In:
Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011. LNCS, vol. 6961, pp.
1–20. Springer, Heidelberg (2011)

2. Bowers, S., McPhillips, T.M., Ludaescher, B.: Provenance in collection-oriented
scientific workflows. Concurr. Comput. Pract. Exper. 20(5), 519–529 (2008)

3. Bruening, D.L.: Efficient, transparent, and comprehensive runtime code manipu-
lation. Ph.D. thesis, MIT, Cambridge, MA, USA (2004)

4. Cavallaro, L., Saxena, P., Sekar, R.: On the limits of information flow techniques
for malware analysis and containment. In: Zamboni, D. (ed.) DIMVA 2008. LNCS,
vol. 5137, pp. 143–163. Springer, Heidelberg (2008)

5. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases: why, how, and
where. Found. Trends Databases 1(4), 379–474 (2009)

6. Clause, J., Li, W., Orso, A.: Dytan: a generic dynamic taint analysis framework.
In: Proceedings of ISSTA 2007, London, UK (2007)

7. Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., Barham,
P.: Vigilante: end-to-end containment of internet worm epidemics. ACM TOCS
26(4), 1–68 (2008)



166 M. Stamatogiannakis et al.

8. Crandall, J.R., Chong, F.T.: Minos: control data attack prevention orthogonal to
memory model. In: Proceedings of MICRO 37, Portland, OR, USA (2004)

9. Davidson, S.B., Freire, J.: Provenance and scientific workflows: challenges and
opportunities. In: Proceedings of SIGMOD 2008, Vancouver, Canada (2008)

10. Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Commun. ACM 20(7), 504–513 (1977)

11. Freire, J.-L., Silva, C.T., Callahan, S.P., Santos, E., Scheidegger, C.E., Vo, H.T.:
Managing rapidly-evolving scientific workflows. In: Moreau, L., Foster, I. (eds.)
IPAW 2006. LNCS, vol. 4145, pp. 10–18. Springer, Heidelberg (2006)

12. Frew, J., Metzger, D., Slaughter, P.: Automatic capture and reconstruction of
computational provenance. Concurr. Comput. Pract. Exper. 20(5), 485–496 (2008)

13. Gessiou, E., Pappas, V., Athanasopoulos, E., Keromytis, A.D., Ioannidis, S.:
Towards a universal data provenance framework using dynamic instrumentation.
In: Gritzalis, D., Furnell, S., Theoharidou, M. (eds.) SEC 2012. IFIP AICT, vol.
376, pp. 103–114. Springer, Heidelberg (2012)

14. Holland, D.A., Seltzer, M.I., Braun, U., Muniswamy-Reddy, K.K.: PASSing the
provenance challenge. Concurr. Comput. Pract. Exper. 20(5), 531–540 (2008)

15. Kang, M.G., McCamant, S., Poosankam, P., Song, D.: DTA++: dynamic taint
analysis with targeted control-flow propagation. In: Proceedings of NDSS 2011,
San Diego, CA, USA (2011)

16. Kemerlis, V.P., Portokalidis, G., Jee, K., Keromytis, A.D.: libdft: Practical
dynamic data flow tracking for commodity systems. In: Proceedings of VEE 2012,
London, UK (2012)

17. Kim, J., Deelman, E., Gil, Y., Mehta, G., Ratnakar, V.: Provenance trails in the
wings-pegasus system. Concurr. Comput. Pract. Exper. 20(5), 587–597 (2008)

18. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analy-
sis & transformation. In: Proceedings of CGO 2004, Palo Alto, CA, USA (2004)

19. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: building customized program analysis tools with
dynamic instrumentation. In: Proceedings of PLDI 2005, Chicago, IL, USA (2005)

20. Macko, P., Seltzer, M.: A General-purpose provenance library. In: Proceedings of
USENIX TaPP 2012, Boston, MA, USA (2012)

21. Magliacane, S.: Reconstructing provenance. In: Cudré-Mauroux, P., et al. (eds.)
ISWC 2012, Part II. LNCS, vol. 7650, pp. 399–406. Springer, Heidelberg (2012)

22. McCamant, S., Ernst, M.D.: Quantitative information-flow tracking for C and
related languages. Technical report, MIT-CSAIL-TR-2006-076, MIT, Cambridge,
MA, USA (2006)

23. Miles, S., Groth, P., Munroe, S., Moreau, L.: PrIMe: a methodology for developing
provenance-aware applications. ACM TOSEM 20(3), 8:1–8:42 (2009)

24. Moreau, L.: The foundations for provenance on the web. Found. Trends Web Sci.
2(2–3), 99–241 (2010)

25. Moreau, L., Groth, P.: Provenance: an introduction to PROV. Synth. Lect. Semant.
Web: Theory Technol. 3(4) (2013)

26. Moreau, L., Missier, P.: PROV-DM: The PROV Data Model. Recommendation
REC-prov-dm-20130430, W3C (2013)

27. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: Proceedings of PLDI 2007, San Diego, CA, USA (2007)

28. De Nies, T., Coppens, S., Van Deursen, D., Mannens, E., Van de Walle, R.: Auto-
matic discovery of high-level provenance using semantic similarity. In: Groth, P.,
Frew, J. (eds.) IPAW 2012. LNCS, vol. 7525, pp. 97–110. Springer, Heidelberg
(2012)



Looking Inside the Black-Box 167

29. Oinn, T., Greenwood, M., et al.: Taverna: lessons in creating a workflow envi-
ronment for the life sciences. Concurr. Comput. Pract. Exper. 18(10), 1067–1100
(2006)

30. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science.
SIGMOD Rec. 34(3), 31–36 (2005)

31. Simmhan, Y.L., Plale, B., Gannon, D.: Karma2: provenance management for data
driven workflows. Int. J. Web Serv. Res. 5(2), 1–22 (2008)

32. Slowinska, A., Bos, H.: Pointless tainting?: evaluating the practicality of pointer
tainting. In: Proceedings of EuroSys 2009, Nuremberg, Germany (2009)

33. Srivastava, A., Eustace, A.: ATOM: a system for building customized program
analysis tools. In: Proceedings of PLDI 1994, Orlando, FL, USA (1994)

34. Vahdat, A., Anderson, T.: Transparent result caching. In: Proceedings of USENIX
ATC 1998, New Orleans, LA, USA (1998)

35. Widom, J.: Trio a system for data uncertainty and lineage. In: Aggarwal, C.C.
(ed.) Managing and Mining Uncertain Data, vol. 35. Springer, New York (2009)



Generating Scientific Documentation
for Computational Experiments Using

Provenance

Adianto Wibisono1,2(B), Peter Bloem1, Gerben K.D. de Vries1, Paul Groth2,
Adam Belloum1, and Marian Bubak1,3

1 System and Network Engineering Group, Informatics Institute,
University of Amsterdam, Amsterdam, The Netherlands

{a.wibisono,p.bloem,g.k.d.devries,a.z.s.belloum}@uva.nl, bubak@agh.edu.pl
2 VU University Amsterdam, Amsterdam, The Netherlands

pgroth@vu.nl
3 Department of Computer Science, AGH Krakow, Kraków, Poland

Abstract. Electronic notebooks are a common mechanism for scientists
to document and investigate their work. With the advent of tools such as
IPython Notebooks and Knitr, these notebooks allow code and data to be
mixed together and published online. However, these approaches assume
that all work is done in the same notebook environment. In this work,
we look at generating notebook documentation from multi-environment
workflows by using provenance represented in the W3C PROV model.

Specifically, using PROV generated from the Ducktape workflow
system, we are able to generate IPython notebooks that include results
tables, provenance visualizations as well as references to the software
and datasets used. The notebooks are interactive and editable, so that
the user can explore and analyze the results of the experiment without
re-running the workflow.

We identify specific extensions to PROV necessary for facilitating
documentation generation. To evaluate, we recreate the documentation
website for a paper which won the Open Science Award at the ECML/
PKDD 2013 machine learning conference. We show that the documen-
tation produced automatically by our system provides more detail and
greater experimental insight than the original hand-crafted documen-
tation. Our approach bridges the gap between user friendly notebook
documentation and provenance generated by distributed heterogeneous
components.

1 Introduction

Common approaches to computational experimentation1 span a spectrum. On
one side, we find quick, informative experiments intended for fast iteration. These
often involve a single researcher, working on consumer-scale hardware, and can
1 In this paper, we will call an experiment which can be run entirely in silico (i.e. as

a computer program) a computational experiment.

c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 168–179, 2015.
DOI: 10.1007/978-3-319-16462-5 13



Generating Scientific Documentation for Computational Experiments 169

take as little as a few minutes to run. The aim is to get quick results to inform
further experiments and to build towards larger results in an iterative manner.
The environment that is used for this type of experimentation is usually designed
around quick iteration, and quick inspection of results: MATLAB, R, or a simple
UNIX command line. More recently, this is often done within interactive note-
book environments such as IPython notebooks [1], Knitr [2] or Mathematica [3].

On the other side of the spectrum we find large-scale experimentation. Well-
prepared, thoroughly designed experiments, intended to run for long amounts
of time on powerful hardware. These experiments are often implemented by
scientific programmers, separate from the researchers designing the experiment.
The chosen environment is often a workflow system [4], providing features like
monitoring of execution, robustness against hardware failure and provenance
tracking. The downside is that each experiment must be carefully prepared, and
purpose-written for the workflow system.

Experimentation usually starts with quick iterations in an interactive system,
and progresses towards the more robust environments as the experiments become
more involved, often at the expense of a re-implementation step as the code is
ported to a more robust environment. At the larger scales, iterations invariably
become slower.

Finally, once results have been produced that are expected to be fit for pub-
lication, the researchers must translate and summarize their approach to allow
for peer-review, reproduction and reuse. The ideal is to publish the datasets,
the code and to provide instructions for reproducing the experiment. In the
small-scale iterative end of the spectrum, this can be very cumbersome: gather-
ing unversioned code, unstructured datasets and documenting all idiosyncratic
steps required to execute it. In the large-scale end, experiments tend to be more
structured, as enforced by the workflow system, but the description of the work-
flow is still tied to the workflow platform. Even a provenance trace, which is
intended to illustrate the source of the results, can be difficult to interpret in its
raw form.

1.1 Main Idea

In this paper, we present a concept for generating notebook documentation for
computational experiments from provenance information. Our approach aims
to retain some of the iteration speed of the small-scale experimentation at the
large-scale end of the spectrum. This documentation generation process is built
on three ideas.

1. After a large-scale experiment has finished, many questions raised by its
output can, theoretically, be answered without re-running the experiment.
Unfortunately, these questions were not the ones which the experiment was
originally designed to answer, so the required data was not collected during
the run. Output representing as much information about the original run
as possible can help to postpone the need for a new run of a (redesigned)
experiment.



170 A. Wibisono et al.

2. While provenance is often seen as a kind of semantically annotated log file—
helping for keeping track of the origins of data, and for finding answers in the
case of unforeseen errors—a complete provenance trace will actually contain
all information about a run of a computational experiment: all data produced,
and the semantic links between them [5]. Any output required from the exper-
iment, such as tables, graphs and statistical analysis, can be reconstructed
from the provenance trace.

3. A semantically annotated representation of a run of an experiment (such as
a provenance trace) allows us to make intelligent guesses at default modes of
reporting. Thus, we can automatically create reasonable scientific documenta-
tion; reporting not only the results of the experiment, but a human-readable
representation of how the results emerged: which datasets were used, where
they can be found, what code was used, using which versions and in what
configuration. An interactive environment allows the researcher to tweak this
documentation to filter out less relevant information.

In short, we propose to put provenance at the heart of computational experimen-
tation, rather than the sidelines, to combine the best of both worlds. A large-scale
experiment is run on a workflow system, producing mainly a provenance trace.
This trace is then loaded into an interactive environment, allowing a researcher to
investigate the questions that inspired the experiment, and any further questions
that these results raise. The researcher can filter, plot and analyze the results at
length, with much greater depth than a non-semantic output, such as a CSV file,
could offer. Only when all information produced by the original run is exhausted,
does a new experiment need to be started.

When the time comes for the results to be shared, e.g. via a publication,
the provenance trace provides all required information. All that is needed is a
means to convert it to human readable form. The semantic annotations allow
us to create reasonable default documentation, while anybody interested in the
experiment can load the provenance trace into an interactive system and study
the details.

1.2 Contributions

Interactive notebooks provide both a good format for presenting default docu-
mentation and an interactive environment to study experimental results. The
proof-of-concept implementation presented in this paper uses provenance, in the
W3C PROV-O [6] format, generated by our own workflow system Ducktape2, to
automatically create IPython notebooks. We chose IPython Notebooks as this
system is becoming widely used in data processing. Additionally, they provide
a web-based environment, independent of the underlying language. This means
that future versions of our system could also support R, Julia and other pro-
gramming languages. Our notebooks have result tables and graphs, visualization
of the provenance and links to the software and datasets used. Furthermore, they

2 http://github.com/Data2semantics/ducktape.

http://github.com/Data2semantics/ducktape


Generating Scientific Documentation for Computational Experiments 171

are interactive and editable, so that the user can explore and analyze the results
of the experiment without re-running the workflow. As a running example use-
case, we take the documentation web-page that won the Open Science Award at
the ECML/PKDD 2013 machine learning conference.

The rest of this paper is structured as follows. In the next section, we discuss
related work. Section 3 describes our proof-of-concept implementation. The final
section contains conclusions and directions for future research.

2 Related Work

A key part of related work is in the area of workflow systems. Often, these
systems provide accessible documentation to the end user through graphical
representations of the workflow. Additionally, they attach detailed provenance
information to those workflows [7]. Our work is different in that we build a
notebook style representation directly from the provenance.

Other existing papers also explore and derive insight from scientific workflow
provenance, with different goals than ours. Work by Biton et al. [8] lets users
define views based on relevant workflow parts that determines how a possibly
large workflow provenance graph can be explored. The high level query languages
for provenance: QLP [9] and OPQL [10], can be used for interactive querying
and visualization. Both views simplify provenance results and allow exploration
of scientific workflow provenance at the graph level.

Close to our work is that of Gibson et al. [11], on creating an interactive
environment where provenance is stored. We see our work as complementary as
one can see the generation of the workflows as similar to generating a notebook.
Deep [12], an executable document environment that generates scientific results
dynamically and interactively, also records the provenance for these results in the
document. In this system, provenance is exposed to users via an interface that
provides them with an alternative way of navigating the executable document.

Burrito [13] is a system that uses a combination of provenance tracking and
user interface constructs for notes to help generate a lab notebook. Our approach
shares their motivation but focuses instead documenting distributed compu-
tational workflows using provenance. Similarly, Scientific Application Middle-
ware [14] combines information coming from both lab notebooks but also
distributed computational components to create documentation for experiments.
Our work adds to this vision by connecting to widely used interactive (compu-
tational) notebook environments.

The idea of using provenance as a singular result of workflow execution shares
some aims with the idea of Research Objects [15]. This is a construct that aims
to replace the traditional paper article as the main unit of scientific publication.
A research object is a package of not just the research results, but also all
artifacts used to create them, such as datasets, code and provenance. Within
the research object, the provenance is seen as a feature to facilitate auditing.
In our approach, we see the provenance as the key entry point: it should not
just be used to audit the experiments, but also to aggregate results and to



172 A. Wibisono et al.

perform statistical analyses. Our perspective does not change or replace the
use of Research Objects, but suggests that the provenance could be used as its
central component, tying together the other contents of the package.

3 Proof-of-Concept

The proof-of-concept implementation for our documentation generation app-
roach consists of three components: a workflow system, workflow provenance
and generating notebooks from provenance. We first introduce a running exam-
ple that will illustrate these three components and then we describe the compo-
nents themselves.

3.1 Running Example

The webpage3 for the paper A fast approximation of the Weisfeiler Lehman
graph kernel for RDF data [16] won one of the two Open Science Awards at
ECML/PKDD 2013, the conference where it was published. On the page, links
to software libraries, datasets and the original source code are provided, as well
as instructions on how to run the experiments using the provided material. The
datasets are available online, via figshare.com, and the code is stored in a git
repository, at github.com. We have recreated two partial experiments in the
ECML/PKDD 2013 paper [16] for our proof-of-concept. We use these experi-
ments as running examples below. Note that we do not recreate the full set of
experiments in the paper. However, the recreated parts are a representative sub-
set, since we cover both a classification experiment and a runtime experiment.

In the classification experiment a number of graph kernels for RDF data
are tested on an affiliation prediction task. The goal in this task is to predict
affiliations for persons in the dataset. Three different kernels are tested, each for a
number of parameter settings. These kernels are combined with a Support Vector
Machine (SVM) to perform prediction. To reduce randomness, the experiment
is repeated 10 times, with different random seeds.

The runtime experiment uses the same graph kernels and dataset, but this
time the kernels are computed for different fractions of that dataset to investi-
gate the runtime performance of the different kernels. The most computationally
intensive settings for the kernels are used. For each dataset fraction, the compu-
tation is performed 10 times (on 10 random subsets).

3.2 Workflow System: Ducktape

Ducktape is a light-weight workflow system developed in the context of the
Data2Semantics4 project. This project provides essential semantic infrastructure
for e-science and focuses on how to share, publish, access, analyze, interpret

3 http://www.data2semantics.org/publications/ecmlpkdd-2013/.
4 http://www.data2semantics.org.

http://figshare.com
http://github.com
http://www.data2semantics.org/publications/ecmlpkdd-2013/
http://www.data2semantics.org


Generating Scientific Documentation for Computational Experiments 173

and reuse scientific data. Ducktape is designed to compose experiments using
components developed within the project. By using an annotation approach, we
keep the system light-weight and impose little additional effort for a scientist to
use his existing code in our environment.

Ducktape uses computational modules, which are annotated pieces of codes,
typically classes. The annotations indicate what the inputs and outputs of the
module are and what the main computation routine is. Currently, Java, Python
and command line scripts are supported.

A Ducktape workflow is described in a simple data flow format represented
in YAML (YAML Ain’t Markup Language) [17], which contains a list of mod-
ules and specifications of each of the modules’ input data. Figure 1 shows part
of the workflow description for the affiliation prediction experiment. Module
inputs can either be raw data type values, i.e. integers, doubles and strings, or
data produced by other modules within the same workflow (e.g. Fig. 1, line 17,
20, 22).

Module input fields in the YAML workflow description can be supplied with
lists of inputs of the same type, to allow for parameter sweeps (Fig. 1, line 23).
Ducktape allows users to specify whether they want input lists to be consumed
in a pair-wise manner or whether the full Cartesian product between the lists
should be used in the parameter sweep. Furthermore, there are keywords to
indicate whether certain inputs represent datasets (Fig. 1, line 10), what module
outputs should be considered experimental results (Fig. 1, line 25) and for which
input parameter we want to aggregate results (Fig. 1, line 26).

3.3 Provenance: W3C PROV

Whenever a workflow is executed, Ducktape automatically generates the prove-
nance that captures this execution in the W3C PROV-O [6] format.5 Table 1
shows how the different elements of a Ducktape workflow map to the concepts
in W3C PROV. The main concepts from W3C PROV that we use are prov:Activity

and prov:Entity and their connecting relations: prov:used and prov:wasGeneratedBy.
Essentially, a workflow leads to a bipartite graph with alternating nodes of
prov:Activity and prov:Entity.

Modules are prov:Activitys and inputs and outputs are prov:Entitys. We model
this by creating a class dt-rsc:ModuleName6 with the name of the module for all
modules. Each dt-rsc:ModuleName is rdfs:subClassOf of prov:Activity. Every instance
of a module executed during the run of the workflow is an rdf:type of its corre-
sponding dt-rsc:ModuleName. We do the same for the inputs and outputs, intro-
ducing a dt-rsc:InputName or dt-rsc:OutputName for each input and output, which
are rdfs:subClassOf of prov:Entity. Each input/output instance is an rdf:type of its
corresponding dt-rsc:InputName/OutputName. Outputs that are inputs of another
module have one unique URI. For example, the specific instance of ‘seed’ with

5 We note other serializations of PROV [18] can also be supported.
6 dt-rsc is a shorthand for: http://prov.data2semantics.org/resource/ducktape/.

http://prov.data2semantics.org/resource/ducktape/


174 A. Wibisono et al.

1 workflow:

2 name: "Affiliation Prediction Experiment IPAW 2014"

3 modules:

4 - module:

5 name: RDFDataSet

6 source: d2s.RDFDataSetModule

7 inputs:

8 filename: "http://.../aifb_fixed_complete.n3"

9 ...

10 datasets: filename

11 ...

12 - module:

13 name: Experiment

14 source: d2s.SingleGraphKernelExperimentModule

15 inputs:

16 matrix:

17 - reference: RDFWLSubTreeKernel.matrix

18 ...

19 target:

20 reference: AffiliationDataSet.target

21 parms:

22 reference: LibSVMParms.parameters

23 seed: [1,2,3,4,5,6,7,8,9,10]

24 folds: 5

25 results: [accuracy, f1]

26 aggregators: seed

Fig. 1. Example of YAML workflow description from the affiliation prediction experi-
ment. The full workflow is not shown.

value ‘1’ in the module ‘Experiment’ in Fig. 1, line 23, would be of type dt-

rsc:Experiment/seed/7 which is an rdfs:subClassOf of prov:Entity.
Each module (dt-rsc:ModuleName) is associated with a prov:Agent, which rep-

resent the specific Ducktape engine used for execution (i.e. the machine(s) and
version), and a prov:Plan, the specific YAML workflow file.

Optionally, inputs can also be a dt-voc:Dataset8, if they refer to a dataset
(e.g. by a URL) or a dt-voc:Aggregator, if they determine how to aggregate exper-
iment outputs based on this input. Outputs can have the dt-voc:resultOf predicate
that links them to the workflow (i.e. prov:Plan), if they should be considered the
results of that workflow. These optional concepts are added when they are spec-
ified in the YAML workflow file.

Furthermore, we also add the software artifact dependencies that we know
that are used during execution to the provenance. This is done by creating
URI for each artifact and adding it to the prov:Plan via a new property dt-voc:-

usesArtifact. Currently, we manage our dependencies and execute our workflows

7 There can be multiple inputs/outputs with the same name, so the module name is
also included in this URI.

8 dt-voc is a shorthand for: http://prov.data2semantics.org/vocab/ducktape/.

http://prov.data2semantics.org/vocab/ducktape/


Generating Scientific Documentation for Computational Experiments 175

Table 1. Mapping of ducktape elements to W3C PROV

Ducktape W3C PROV Optional

Ducktape engine prov:Agent

Workflow description prov:Plan

Module instance prov:Activity

Input prov:Entity dt-voc:Dataset, dt-voc:Aggregator

Output prov:Entity dt-voc:resultOf

using Maven9, thus each artifact furthermore has the properties: dt-voc:

hasArtifactId, dt-voc:hasGroupId and dt-voc:hasVersion.

3.4 Notebook Generation

Based on the generated provenance, draft IPython notebooks are created. There
are two types of notebook drafts: an overview notebook with general workflow
execution information and a more detailed notebook at the workflow module
level.

The overview notebook contains general information about the workflow
plan, software artifacts and datasets used. A summary of the Ducktape modules
instantiated during the experiment and inline provenance visualization gener-
ated using Prov-O-Viz [19]10 is also included in this overview notebook to give
intuitive insight into the overall workflow execution. This notebook is illustrated
in Figs. 2 and 3.

The detailed notebook draft describes individual module execution results.
Users have access to the module input parameters and execution results through
default Python code snippets injected into the notebook. The code snippets are
generated by performing SPARQL queries on the workflow provenance graph. By
using these snippets, users can manipulate how they view the module parameters
and execution results.

We use the existing Python Data Analysis library (Pandas)11 in the code
snippets, to allow users to play with and change the view on their results. Essen-
tially, what the user has here is a data analysis view of each individual module
in workflow execution. By default we provide tables of relevant input and out-
puts for each individual module which users can change by tweaking the injected
Python code.

For modules that have input data marked as dt-voc:Aggregator, we provide a
pivot table, which aggregates the outputs that are dt-voc:resultOf, grouping by
the other input parameters. The default form of aggregation is computing the
mean value, however this can be easily changed by editing the code snippet.

9 http://maven.apache.org/.
10 http://provoviz.org.
11 pandas.pydata.org.

http://maven.apache.org/
http://provoviz.org
http://pandas.pydata.org


176 A. Wibisono et al.

Fig. 2. Overview report for the runtime experiment, part 1.

Fig. 3. Overview report for the runtime experiment, part 2.

An example of this aggregation is given in Fig. 4, where the results accuracy and
F1 are aggregated over the seed input parameter.

In summary, the notebooks for the classification12 and the runtime13 experi-
ments contain the following information: a list of datasets, a list of software arti-
facts, provenance visualization and detailed result tables. This is significantly

12 Available here: http://j.mp/ecml-notebook.
13 Available here: http://j.mp/runtime-notebook.

http://j.mp/ecml-notebook
http://j.mp/runtime-notebook


Generating Scientific Documentation for Computational Experiments 177

Fig. 4. Part of the detailed notebook for the affiliation prediction experiment which
shows a table for the Experiment module.

more information than the original webpage and the notebooks can easily be
extended by hand, both by changing the tables and adding more explanatory
text14. Currently, the notebooks lack instructions on how to re-execute the
experiments, this can be partly solved by adding instructions that explain how
to use the datasets and artifacts. However, in future work we would like to add
automatic re-execution of the workflow from the notebook, all the ingredients
are already there.

4 Conclusions and Future Work

We have described an approach for automatic generation of scientific documen-
tation for computational experiments. This is approach is based on the idea of
placing provenance at the heart of such experiments, using it as the main output,
not just as a way to trace the execution of a workflow. Interactive notebooks
provide a way to explore the results and its provenance and are an ideal starting
point for creating documentation for the experiments.

We have created a proof-of-concept implementation to automatically gen-
erate IPython notebooks from provenance created by workflows run using our
Ducktape platform. These notebooks aggregate the main results and components
of an experiment. This automatically generated draft documentation provides
14 Note that the used artifacts are different from the original version, and that the

samples above are static views requiring a local IPython environment to edit.



178 A. Wibisono et al.

more information and insight then a hand-crafted documentation page for a
machine learning paper that won an Open Science Award.

While our proof-of-concept uses a specific workflow system and a specific
interactive platform to load and analyze the provenance, the approach is trans-
ferable to other workflow systems and interactive environments. Indeed, most
PROV serializations can be represented as a more human-friendly notebook.
Central to this conception is the notion that provenance can be a true interface
between the execution of an experiment and the analysis of its results.

Another outcome of this work is confirmation of the importance of connecting
interactive notebook environments and provenance. By using the IPython Note-
book environment, we were able to benefit significantly from the variety of tools
within that community, including notebook visualization (using the nbviewer
app) and analytics. We believe that the connection between notebooks in gen-
eral and distributed provenance generation is an area that the community should
look at in more detail as there are a number of areas of interest. For instance, one
may investigate the issue of maintaining the provenance of live results streamed
to notebook environment, encapsulating provenance within a notebook or track-
ing provenance of interactive sessions.

Beyond investigating these larger themes, there are a number of concrete
extensions to the environment we intend to make. First, the current configura-
tion does not allow us to directly re-run the experiments from within the note-
books. We aim to implement such a feature to further improve reproducibility.
Furthermore, while we can create links to software artifacts that were used, it
would be even nicer to link to the actual source code for these artifacts, if that is
available. Therefore, we plan to investigate how to integrate with methods such
as GIT2Prov [20] to connect from execution to the source code. Furthermore,
we are also investigating what additional visualizations we can embed to make
the documentation richer.

Acknowledgments. We thank the reviewers and Rinke Hoekstra for their useful feed-
backs and discussion. This publication was supported by the Dutch national program
COMMIT.

References

1. Pérez, F., Granger, B.E.: IPython: a system for interactive scientific computing.
Comput. Sci. Eng. 9(3), 21–29 (2007)

2. Xie, Y.: Knitr: a general-purpose package for dynamic report generation in R. R
Package Version 1(7) (2013)

3. Wolfram, S.: The Mathematica Book, vol. 221. Wolfram Media Champaign, Illinois
(1996)

4. Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., Gannon, D., Goble, C.,
Livny, M., Moreau, L., Myers, J.: Examining the challenges of scientific workflows.
IEEE Comput. 40(12), 26–34 (2007)

5. Moreau, L.: Provenance-based reproducibility in the semantic web. Web Semant.
Sci. Serv. Agents World Wide Web 9(2), 202–221 (2011)



Generating Scientific Documentation for Computational Experiments 179

6. Lebo, T., Sahoo, S., McGuinness, D., Belhajjame, K., Corsar, D., et al.: Prov-o:
The prov ontology. W3C Recommendation. World Wide Web Consortium (2013)

7. Davidson, S., Ludaescher, B., McPhillips, T., Freire, J.: Provenance in scientific
workflow systems. Bull. Tech. Comm. Data Eng. 30(4), 44–50 (2007)

8. Biton, O., Cohen-Boulakia, S., Davidson, S.B., Hara, C.S.: Querying and managing
provenance through user views in scientific workflows. In: Proceedings of the 24th
International Conference on Data Engineering, ICDE 2008, pp. 1072–1081 (2008)

9. Anand, M., Bowers, S., Ludascher, B.: Provenance browser: displaying and query-
ing scientific workflow provenance graphs. In: 2010 IEEE 26th International Con-
ference on Data Engineering (ICDE), pp. 1201–1204, March 2010

10. Lim, C., Lu, S., Chebotko, A., Fotouhi, F., Kashlev, A.: OPQL: querying scientific
workflow provenance at the graph level. Data Knowl. Eng. 88, 37–59 (2013)

11. Gibson, A., Gamble, M., Wolstencroft, K., Oinn, T., Goble, C., Belhajjame, K.,
Missier, P.: The data playground: an intuitive workflow specification environment.
Future Gener. Comput. Syst. 25(4), 453–459 (2009)

12. Yang, H., Michaelides, D.T., Charlton, C., Browne, W.J., Moreau, L.: DEEP: a
provenance-aware executable document system. In: Groth, P., Frew, J. (eds.) IPAW
2012. LNCS, vol. 7525, pp. 24–38. Springer, Heidelberg (2012)

13. Guo, P.J., Seltzer, M.: Burrito: Wrapping your lab notebook in computational
infrastructure. In: Proceedings of the 4th USENIX Workshop on the Theory and
Practice of Provenance, TaPP 2012. USENIX Association, Berkeley (2012)

14. Myers, J.D., Chappell, A., Elder, M., Geist, A., Schwidder, J.: Re-integrating the
research record. Comput. Sci. Eng. 5(3), 44–50 (2003)

15. Bechhofer, S., De Roure, D., Gamble, M., Goble, C., Buchan, I.: Research objects:
towards exchange and reuse of digital knowledge. In: The Future of the Web for
Collaborative Science (2010)

16. de Vries, G.K.D.: A fast approximation of the Weisfeiler-Lehman graph kernel for
RDF data. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML
PKDD 2013, Part I. LNCS (LNAI), vol. 8188, pp. 606–621. Springer, Heidelberg
(2013)

17. Ben-Kiki, O., Evans, C., Ingerson, B.: Yaml ain’t markup language (yaml) version
1.1. Working Draft 2008–05 11 (2001)

18. Moreau, L., Groth, P.: Provenance: an introduction to prov. Synth. Lect. Semant.
Web: Theory Technol. 3(4), 1–129 (2013)

19. Hoekstra, R., Groth, P.: PROV-O-Viz - understanding the role of activities in
provenance. In: Ludäscher, B., Plale, B. (eds.) IPAW 2014. LNCS, vol. 8628, pp.
215–220. Springer, Heidelberg (2014)

20. De Nies, T., Magliacane, S., Verborgh, R., Coppens, S., Groth, P., Mannens, E.,
Van de Walle, R.: Git2prov: exposing version control system content as w3c prov.
In: Posters & Demonstrations Track within the 12th International Semantic Web
Conference (ISWC-2013), CEUR-WS, pp. 125–128 (2013)



Computing Location-Based Lineage
from Workflow Specifications to Optimize

Provenance Queries

Saumen Dey1(B), Sven Köhler1, Shawn Bowers2, and Bertram Ludäscher1

1 Department of Computer Science, University of California, Davis, Davis, USA
scdey@ucdavis.edu

2 Department of Computer Science, Gonzaga University, Spokane, USA

Abstract. We present a location-based approach for executing prove-
nance lineage queries that significantly reduces query execution cost
without incurring additional storage costs. The key idea of our app-
roach is to exploit the fact that provenance graphs resemble the work-
flow graphs that generated them and that many workflow computation
models assume workflow steps have statically defined data consumption-
production (i.e., data input-output) rates. We describe a new lineage
computation technique that uses the structure of workflow specifications
together with consumption-production rates to pre-compute (i.e., to fore-
cast) the access paths of all dependent data items prior to workflow exe-
cution. We also present experimental results showing that our approach
can significantly out perform traditional data lineage query techniques.

1 Introduction

Scientific workflow systems are increasingly used to automate data processing,
analysis, and visualization steps [1]. These systems typically capture the process-
ing history (i.e., the provenance) of all steps involved in a workflow run and store
this information as a provenance graph [2,3]. Provenance graphs can be used for
a number of purposes including: (i) to help explain how input data is processed
to produce output data products; (ii) to help debug workflow designs by iden-
tifying processes responsible for workflow failure and detecting workflow steps
that were affected; and (iii) to help in the reproduction of data products, e.g., by
recording the steps involved in a workflow run (along with their corresponding
parameter settings).

Each of these examples require the ability to determine how a data prod-
uct (or workflow step) depends on input data (or other workflow steps), e.g.,
by posing queries over provenance graphs. In these cases, provenance queries
return subgraphs of the given provenance graph [4], where the subgraph is often
referred to as the lineage of the data products in question. Answering such queries
requires recursion, making lineage queries potentially expensive to execute [5].
In particular, if E is the set of edges in the provenance graph, these queries may
require as many as |E| recursive steps (i.e., traversals of dependency edges).
c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 180–193, 2015.
DOI: 10.1007/978-3-319-16462-5 14



Computing Location-Based Lineage FromWorkflow Specifications 181

A better approach is to use semi-naive evaluation [6], where the number of tra-
versals is bounded by the diameter k of the provenance graph with k < |E| in
typical cases. An alternative to employing recursion is to compute and store the
transitive closure of edges in the provenance graph [4,5]. Because the transitive
closure can be computed once and reused for all lineage queries over the graph,
the time complexity required to compute the closure is often not a concern (since
the cost can be aggregated). Using the transitive closure, if V is set of nodes
in the provenance graph, the time to evaluate a lineage query is O(log|V |) with
storage cost O(|V |2). Thus, for large provenance graphs, the recursive approach
is space efficient, but not time efficient, whereas computing transitive closures is
time efficient, but not space efficient. In this paper, we propose a new technique
called location-based lineage for answering provenance queries that is both time
and space efficient.

Fig. 1. An example workflow consisting of actors (rectangles), data containers (circles),
and data flow edges annotated with consumption-production rates.

The main idea behind location-based lineage is to exploit the fact that a
workflow specification provides a blue print (or “schema”) for the provenance
graphs that they generate. The constraints imposed on provenance graphs by a
workflow specification arise from both the structure of the workflow as well as the
underlying computational model used by a workflow engine during workflow exe-
cution. As a simple example, consider the workflow specification in Fig. 1, where
U through Z denote dataflow channels and A through D denote processing steps
(i.e., actors). Based on the structure of the workflow, a data product on channel
X (output by an invocation of B) may be dependent on a data product (input
by the invocation of B) on channel Y , but cannot depend on a data product,
e.g., on channel W . The constraints imposed by workflow computation models
define the general order in which actors can be invoked as well as the number
of data items that can be consumed and produced by each actor invocation. For
instance, many workflow systems model actors as simple function calls that take
a fixed number of arguments, i.e., input values, and return a fixed number of
output values (e.g., VisTrails [7]). The synchronous dataflow (SDF) computation
model [8] extends this by allowing workflow designers to specify the number of
data items an actor needs on each input channel for the actor to be invoked, and
the number of outputs produced on each channel by an invocation. Data items
are buffered on channels until the needed number of items are received by an



182 S. Dey et al.

actor.1 Many of the scientific workflows developed in Kepler use the SDF model
of computation (e.g., see [9,10]).

Location-based lineage uses the structure of the workflow graph together with
the data consumption and production rates to precompute data dependency
information prior to workflow execution. In particular, we provide an algorithm
to compute the location of data consumed and produced by actors within chan-
nels statically (before workflow execution) and show how this information can
be used to more efficiently answer lineage queries.

Paper Organization. Section 2 describes the general workflow, computation,
and provenance models we assume for location-based lineage. Section 3 presents
our approach for computing lineage queries for various workflow patterns and
actor types. Section 4 describes the overall algorithm for computing location-
based lineage. Section 5 explains the experiments we performed to validate our
technique and analyzes the results. In Sect. 6, we discuss the recent efforts toward
finding efficient lineage computation and finally in Sect. 7, we conclude with
future directions.

2 Preliminaries: Workflow, Computation, and Provenance
Models

Here we briefly describe the assumptions made concerning workflow graphs,
provenance graphs, and workflow execution in our location-based lineage app-
roach.

Workflow Model. We assume a workflow specification W = (V,E) can be
represented as a directed graph whose nodes V = A ∪ C are partitioned into
actors A and containers C (e.g., see Fig. 1). Actors represent computational
entities that can be executed (i.e., invoked). Each invocation of an actor can
consume and produce data tokens representing either primitive or structured
values or references to external data products (e.g., a file). Containers represent
buffers (often implemented as FIFO queues) that can hold data tokens during
communication between actors. The edges of a workflow graph E = In ∪ Out
are either input edges In ⊆ C × A or output edges Out ⊆ A × C. Actors can
consume tokens from one or more containers and can produce tokens on one or
more containers. Additionally, we assume input and output edges are annotated
with token consumption and production rates, respectively. A consumption rate
is a positive integer that specifies the number of input tokens needed to invoke
an actor, and similarly, a production rate is a positive integer that specifies the
number of output tokens generated by one invocation of an actor.

Computation Model. We make similar assumptions concerning workflow exe-
cution as used in the synchronous dataflow (SDF) model. In particular, actors
can be invoked when their required number of input tokens on each channel
1 Petri net based models, although not typically used for scientific workflow systems,

also have similar constraints represented through edge multiplicities.



Computing Location-Based Lineage FromWorkflow Specifications 183

become available. Figure 1 is an example SDF workflow in which actor A can
be invoked when uc tokens in container U are available resulting in vp and wp

tokens being output to containers V and W , respectively. For many actors (e.g.,
those representing simple function calls) the consumption-production rates will
be 1 for each input and output. We also make a distinction between stateful
and stateless actors. In particular, a stateful actor maintains one or more data
tokens across its invocations within a workflow run and uses these tokens (i.e.,
the state) to compute output values. We consider two variants of stateful actors:
(1) an invocation consumes all tokens that one or more of its previous invoca-
tions received, and (2) each invocation maintains a constant number of tokens
that were consumed by its most recent invocation. Finally, to enable lineage
queries based on specific data values we assume that as a workflow is executed,
the contents of each container are persisted.

Provenance Model. We assume provenance graphs that generally follow the
Open Provenance Model [11] in which provenance information can be represented
as a directed graph P = (V,E) whose nodes V = D ∪ I represent either data
tokens D or actor invocations I and whose edges E = Used ∪ GenBy are either
used edges Used ⊆ I × D or generated-by edges GenBy ⊆ D × I. An used edge
(i, d1) ∈ E implies that an invocation i consumed token d1 as input, while a
generated-by edge (d2, i) ∈ E implies that a token d2 was output by i. In this
case we say that d2 depended on d1 (i.e., d2 is part of d1’s lineage). The complete
set of data tokens, used, and generated-by edges that led to (i.e., that lie on a
path to) a data token d denote the lineage of d. We use the following auxiliary
relation to compute the data dependencies.

ddep(D1, D2) :− genBy(D1, I), used(I, D2).

The ddep(D1, D2) relation specifies that the data D1 depends on the data D2.
Additionally, given the workflow graph W that produced the provenance graph
P , where A and C are the actors and containers of W , respectively, we assume
the relation invoc ⊆ I ×A connects each invocation i ∈ I with its corresponding
actor a ∈ A and the relation loc ⊆ D × C × L connects each data token d ∈ D
to its corresponding container c ∈ C such that d is located at position l ∈ L in
c’s persistent queue.

3 Precomputing Dependency Tables

Given a workflow W and a provenance graph P , we statically compute the lineage
of all data tokens in three steps. The first step dependenciescontainers using the
following Datalog rules.

cdep(C1, C2) :− out(P, C1), in(C2, P).
cdep∗(C1, C2) :− cdep(C1, C2).
cdep∗(C1, C2) :− cdep(C1, C), cdep∗(C, C2).



184 S. Dey et al.

The relation cdep∗(C1, C2) captures all the containers C2 on which the container
C1 depends, i.e., some token in C1 may be derived either directly or transitively
from tokens in C2. We call C2 the container dependency of each token in C1.
Note that while all tokens in a container C1 have the same set of container
dependencies, they may depend on different tokens within those containers.

The second step computes the positions of all the tokens in all container
dependencies C2 on which a token at position l in container C1 depends by
using the consumption and production rates. The result of this step is a relation

dependency(D, C1, L, C2, LS, LE)

where D is a data token in container C1 at position L that depends on the tokens
in container C2 starting at position LS and ending at position LE . We describe
how this relation is computed in the rest of this section and in Sect. 4. Finally,
the third step uses the dependency relation to answer lineage queries, which is
also further described in Sect. 4. The result of this step is a (virtual) relation

lineage(D1, D2, D3)

where data tokens D2 and D3 form a dependency edge that lies on the lineage
path of D1. Thus, ddep(D1,D2), ddep(D1,D3), and ddep(D2,D3) hold such
that given a specific token d, lineage(d,D2,D3) gives the set of dependency
(ddep(D2,D3)) edges that represent the lineage of d.

The following definitions are used to compute the dependency and lineage
information. We assume below that x is a container dependency of y and that
y[k] denotes the kth position in y.

– endx(y[k]) is the last position in x that the token at y[k] depends.
– widthxy is the number of consecutive positions in x that tokens in y depend

on.
– startx(y[k]) is the first position in x that the token at y[k] depends on such

that startx(y[k]) = endx(y[k]) − widthxy + 1.
– depx(y[k]) is the sequence of positions in x that the token at y[k] depends on

such that depx(y[k]) = [startx(y[k]), startx(y[k]) + 1, . . . , endx(y[k])].

The rest of this section describes how to compute endi(j[k]) and widthij for
various types of actors and workflow patterns. The starti(j[k]) is then computed
using endi(j[k]) and widthij .

Stateless Actors. Consider the actor B in Fig. 1 (which we assume here is
stateless). An invocation of B consumes vc tokens from container V and produces
xp tokens in container X. Let’s assume that we want to know the dependencies of
the kth token in X on the tokens in V . To do so, we need to know the invocation
of B that produced the kth token in X as well as all of the tokens from V that
were consumed. Since in each invocation, B outputs xp tokens into X, � k

xp
� is

the invocation during which the kth token was produced in X and as B consumes
vc tokens from V per invocation, endv(x[k]) = vc ∗� k

xp
� and widthvx = vc. Thus,



Computing Location-Based Lineage FromWorkflow Specifications 185

tokens from positions startv(x[k]) through endv(x[k]) in V were consumed to
produce the kth token in X.

Now, let’s assume that we want to know the dependencies of the kth token
in container X on the tokens in container U in Fig. 1 (again, assuming A is
stateless). To do so, we first compute endv(x[k]) and widthvx as above and then
use these two values to compute endu(x[k]) and widthux, where endu(x[k]) =
uc∗� endv(x[k])

vp
� and widthux = uc∗�widthvx

vp
�. We extend this approach to a chain

of n actors, where we want to know the dependencies of the kth token in the jth

container on the tokens in the ith container. We use the following formulas to
compute endi(j[k]) and widthij .

endi(j[k]) =

{
ic ∗ � endi+1(j[k])

(i+1)p
� if j > i + 1

ic ∗ � k
jp

� if j = i + 1

widthi,j =

{
ic ∗ �widthi+1,j

(i+1)p
� if j > i + 1

ic if j = i + 1

Feedback Loops. A workflow has a feedback loop if there is a cycle among
the actors and containers as shown in Fig. 2(a) and (b). In Fig. 2(a), actor A is
connected to container X with consumption and production rates xc and xp,
respectively. To prevent deadlock2, xc tokens are initially provided in X before
invocations are started. In this case, tokens from (xc + 1)th through (2 ∗ xc)th

positions in X, which are generated during the 1st invocation of A, will depend
on the first xc tokens in X. Subsequently, the pth set of xc tokens in X, which
were generated during the (p−1)th invocation of A, will depend on the (p−1)th

set of xc tokens in X. Thus, any token generated during the pth invocation will
depend on the 1st through xc ∗ (p− 1) tokens in X. Using this idea we compute
endx(x[k]) as shown below. Here widthxx = endx(x[k]), i.e., startx(x[k]) = 1.

Fig. 2. Two example workflows containing feedback loops.

endx(x[k]) =
{
xc ∗ (� k

xp
� − 1) if k > xp

0 otherwise

2 Actors in a feedback loop would be in deadlock as an actor in the loop would expect
input tokens in its input ports. But, all actors in the loop expects the same and thus,
it would get into a deadlock [8].



186 S. Dey et al.

In Fig. 2(b), a SimpleDelay (DL) actor is used to avoid deadlock and we assume
that W is the starting container into which DL initially outputs n tokens, where
2∗wc > n >= wc [8]. Here, containers V , W , and X are contained in a workflow
loop. Now assume we want to know the dependencies of the kth token in the
jth container on the tokens in the ith container. In this case, if the jth container
depends on all of the containers in the loop, we use the following formula to
compute endi(j[k]). Here widthij = endi(j[k]), i.e., starti(j[k]) = 1.

endi(j[k]) =

⎧
⎪⎨

⎪⎩

ic ∗ � endi+1(j[k])−n
(i+1)p

� if i + 1 is the starting container, e.g., W

ic ∗ � endi+1(j[k])
(i+1)p

� if i + 1 is not the starting container
0 if k <= n and i + 1 is the starting container

If the jth container does not depend on any of the containers in the loop, e.g.,
if we want to know endy(z[k]) in Fig. 2(b), then we use the formulas discussed
above for stateless actors.

Stateful Actors. Stateful actors vary based on how they buffer and pass tokens
from one invocation to the next. As discussed above, we consider two variations:
(1) Fixed Buffering, and (2) Dynamic Buffering. Let’s assume actor A is a Fixed
Buffering actor with an input container X and an output container Y such that
during any invocation, A consumes xc tokens from X and produces yp tokens into
Y . When an invocation starts, actor A first fills the buffer by consuming xc tokens
per invocation and once the buffer is full, in subsequent invocations it removes xc

tokens from the buffer (i.e., the queue) consuming xc new tokens, while keeping
the buffer size at xs. Thus, to know the dependencies of the kth token in Y on the
tokens in X, we compute endx(y[k]) and widthxy, where endx(y[k]) = xc ∗ � k

yp
�

and � k
yp

� is the invocation during which the kth token was generated. Similarly,
widthxy = xs if the buffer is full, otherwise widthxy = xc ∗ � k

yp
�. Thus, given a

chain of actors, to compute the dependencies of the kth token in the jth container
on the tokens in the ith container, we use the following formulas for endi(j[k])
and widthij .

endi(j[k]) =

{
ic ∗ � endi+1(j[k])

(i+1)p
� if j > i + 1

ic ∗ � k
jp

� if j = i + 1

widthi,j =

{
ic ∗ �widthi+1,j

(i+1)p
� + is − ic if � is

ic
� ≤ � endi+1(j[k])

(i+1)p
� − �widthi+1,j

(i+1)p
� + 1

ic ∗ � endi+1(j[k])

(i+1)p
� Otherwise

If an actor instead uses Dynamic Buffering, it will consume all of its buffered
tokens in each of its previous invocations. Note that the dependency computation
for this type of actor is exactly the same as with feedback loops with a single
actor as discussed above.

Example. We now show (by example) how to use the formulas discussed in this
section. Consider the example workflow shown in Fig. 1 and assume that all the



Computing Location-Based Lineage FromWorkflow Specifications 187

Fig. 3. This is partial execution details of the workflow in Fig. 1. In (a), and (b) we
show partial invocation details of actors B, and A respectively. In (c) we show the
relationship among U and X channel, which are transitively dependent.

actors are stateless. Assume we want to know the dependencies of the 3rd token
in container X, i.e., on which all tokens in containers V and U the 3rd token in
container X depends. We use the cdep∗(C1, C2) to find out that any token in X
depends on tokens in V and U . First, we find the dependencies of x[3] on the
tokens in V . Here, xp = 2, k = 3, and vc = 3 using the stateless actor formulas
from which we get endv(x[k]) = 6 and weightvx = 3. That is, the token at x[3]
depends on the tokens at v[4], v[5], and v[6], as shown in Fig. 3(a). These depen-
dencies are captured in the dependency relation as dependency(id, x, 3, v, 4, 6),
where id is assumed to be the token identifier for x[3]. Second, we need to find
the dependencies of v[4], v[5], and v[6] on the tokens in U . Here, vp = 2, k =
6, and uc = 2 and thus we get endu(v[k]) = 6 and weightuv = 4. Then v[4],
v[5], and v[6] tokens depend on the u[3], u[4], u[5], and u[6] tokens, which is
shown in Fig. 3(b). These dependencies are captured in the dependency relation
as dependency(id, x, 3, u, 3, 6).

In Sect. 4, we discuss how to compute the lineage relation once all the
dependency tuples have been obtained.

4 Querying Lineage Using Dependency Tables

Our approach allows users to ask for the lineage of one or more data tokens
within a single query. Here we assume that each of the data tokens D1 from
which lineage should be computed is stored in a relation input(D1). From
dependency(D1, C1, L1, C2, LS, LE), we know that D1 is a data token in container
C1 at position L1 and that it depends on the tokens in container C2 starting at
position LS and ending at position LE . We also assume a relation loc(D2, C2, L2)
that captures the tokens stored within each container during workflow execution
such that a token D2 was stored in container C2 at location L2. Given these
relations, we use the following Datalog rules to compute the lineage relation.



188 S. Dey et al.

depData(D1, D2) :− input(D1), dependency(D1, C1, L1, C2, LS, LE),
loc(D2, C2, L2), L2 ≥ LS, L2 ≤ LE.

lineage(D1, D2, D3) :− depData(D1, D2), depData(D1, D3), ddep(D2, D3).

As shown, the temporary depData(D1,D2) relation computes the data tokens D2

that D1 has as a dependency by comparing D2’s position in container C2 against
LS and LE . This information is then used to build the final lineage(D1, D2, D3)
relation.

To better understand the performance of our location-based lineage tech-
nique we compare its runtime and space requirements to lineage computation
techniques based on the semi-naive query evaluation approach and the approach
of directly storing the transitive dependency closure. We briefly describe these
two techniques below.

Semi-Naive Query Evaluation. First, we query the ddep(D1, D2) relation to
find the tokens D2, on which D1 directly depends. Then, we compute the “tran-
sitive” dependencies of D1 in rounds, where in each round we find new reachable
data tokens. The dep(D1, D2, D3, J) relation captures the reachable token D3 along
with the token D2 from which D3 is reachable from D1. Here, J is the round
number with at most N rounds, where N is the diameter of the data dependency
graph (based on the ddep(D1, D2) relation). This approach is implemented using
the following Datalog rules and further details can be found in [6].

delta(D1, D2, D3, I) :− ddep(D1, D3), I = 1, input(D1), D2 = D1.

newDep(D1, D2, D3, J) :− delta(D1, D2, D, I), ddep(D, D3), J = I + 1.

delta(D1, D2, D3, J) :− newDep(D1, D2, D3, J),¬dep(D1, D2, D3, I), I = J − 1.

dep(D1, D2, D3, J) :− delta(D1, D2, D3, J).
lineage(D1, D2, D3) :− dep(D1, D2, D3, ).

Transitive Closure Based Query Evaluation. In this approach, the transi-
tive closure of data dependencies is first computed and stored. Once stored, all
subsequent lineage queries are answered directly from the closure. The follow-
ing Datalog rules demonstrate the approach where the transitive closure of the
ddep(D1, D2) is stored in the ddep∗(D1, D2) relation. Then, the lineage(D1, D2, D3)
relation is computed using the ddep∗(D1, D2) and ddep(D1, D2) relations.

ddep∗(D1, D2) :− ddep(D1, D2).
ddep∗(D1, D2) :− ddep(D1, D), ddep∗(D, D2).

lineage(D1, D2, D3) :− input(D1), ddep∗(D1, D2), ddep∗(D1, D3), ddep(D2, D3).

5 Experiments and Results

Experiment Setup. We used three workflow patterns as shown in Fig. 4 to
evaluate our location-based lineage (LBL) computation technique against the



Computing Location-Based Lineage FromWorkflow Specifications 189

(a) Chain. (b) Ladder graph (c) Binary tree

Fig. 4. Different workflow patterns we used in our experiments.

two natural choices Semi-Naive Query Evaluation (SNL) and Transitive Closure
Based Query Evaluation (TCL)3. In all our experiments, the workflow spec-
ification and provenance graphs were generated for all three workflows using
the respective models presented in Sect. 2. We generated provenance graphs for
first workflow shown in Fig. 4(a), which forms a chain pattern, with 30 tokens
in the first container, all the actors with three invocations, and with both the
consumption and production rates equal to10 for all containers, while varying
the number of actors in the chain. Similarly, for the second workflow shown in
Fig. 4(b), which forms a ladder graph pattern, we assumed only one token for
both the initial containers and assumed both the consumption and production
rates equal to 1 for all containers, and we generated the provenance graphs by
varying the number of actors in the graph. For the third workflow shown in
Fig. 4(c), which forms a binary tree pattern, we assumed only one token to the
initial container and assumed both the consumption and production rates to be
1 for all the containers, and generated provenance graphs by varying the height
of the tree.

For all three lineage querying techniques, i.e., LBL, SNL, and TCL, discussed
in this paper, we persist the provenance graph. In addition, for LBL we compute
and persiste the dependency(D, C1, L, C2, LS, LE), and loc(D, C, L) relations and for
TCL we compute and persist the ddep∗(D1, D2) relation.

We then evaluated lineage queries using the algorithms discussed in Sect. 4,
where we ran all the queries 100 times and took an average query time.

LBL 

TCL 

SNL 

(a) Chain workflow

LBL 

TCL 

SNL 

(b) Ladder graph workflow

LBL 

TCL 

SNL 

(c) Binary tree workflow

Fig. 5. Comparisons of run times of computing lineage.

Analysis. When we review the chart in Fig. 5(a), we see that as the size of
the workflow grow, i.e., the number of actors grow, SNL outperforms TCL.
3 we introduce these acronyms to be used in the charts presenting the results in Figs. 5

and 6.



190 S. Dey et al.

This is because of the high growth rate of the ddep∗(D1, D2) relation for TCL
over the size of the workflow. In Fig. 5(b), TCL outperforms SNL. There are
two reasons, (i) number of iterations for SNL, which is directly proportional
to the size of the graph, and (ii) growth in data volume, which is not high in
this case as both consumption and productions are 1. Thus, the growth in data
volume of the ddep∗(D1, D2) relation for TCL is not significant. Now, in case
the containers have higher consumption of productions rates as in the case of
Fig. 5(a), SNL would eventually outperform TCL. In Fig. 5(c), we find TCL to
be non-linear, where as both SNL and LBL are linear with very low slopes.
This is because of the properties of a binary tree. From any given leaf node,
to find its lineage, SNL needs the number of iterations equal to the height of
the binary tree and in each iteration, SNL only find one new edge, whereas
the volume of the ddep∗(D1, D2) relation for TCL is large, which be seen in
Fig. 6(c). In all three charts in Fig. 5, we see that LBL to be linear with very
low slopes and we observed that as the size of workflow and the consumption
and production rates grows, LBL scales better compare to TCL and SNL. Here,
the observations are (i) when the consumption and production rates grows, the
volume of ddep∗(D1, D2) relation grows rapidly adversely impacting TCL, but
does not impact LBL, and (ii) when the size of the workflow grows, the number
of rounds for SNL grows, which impacts its performance, without impacting
LBL.

LBL 

TCL 

(a) Chain workflow

LBL 

TCL 

(b) Ladder graph workflow

LBL 

TCL 

(c) Binary tree workflow

Fig. 6. Comparisons of additional space requirements of computing lineage

We discussed in Experiment Setup that for SNL we only store the prove-
nance graph, but for both TCL and LBL we store additional metadata towards
improving efficiencies of lineage queries. Thus, we compare these additional stor-
age requirements by both TCL and LBL as shown in Fig. 6. In Fig. 6(a), we
see that LBL is linear with the size of the workflow, whereas TCL is not. TCL
maintains all pairs of token dependencies with a storage cost of O(|V |2), whereas
LBL maintains only one record for all the dependencies for a token to all tokens
of another container with a storage cost of O(|V | ∗ k), where |V | and k are the
number of tokens and the number of containers respectively, with |V | >> k.
Now, in case there is only one token in a container then storage requirements of
both LBL and TCL become same. This is the reason why in Fig. 6(b) and (c)
the space requirements for both LBL and TCL are same.



Computing Location-Based Lineage FromWorkflow Specifications 191

Thus, these experiments show that LBL outperforms the traditional lineage
querying techniques and is more scalable both in query time and additional space
requirements.

6 Related Work

The problem of efficiently evaluating lineage queries has been an active area of
research and many approaches have been introduced. Heinis et al. [5] proposed
an extension to tree-based interval encoding that supports DAGs. As part of
this approach, a DAG representing provenance information is converted to a
(compressed) tree structure. While this can improve query execution time (based
on using interval encodings), the storage cost can significantly increase since
shared portions of the graph are copied in the corresponding tree structure.
Both [5] and LBL support lineage for all tokens, where only LBL is both space
and time efficient.

The Zoom*UserView by Biton et al. [12] allows users to specify the relevant
parts of a workflow, customize both the workflow and provenance based on that
specification, and then query the reduced provenance graph based on a “vir-
tual” workflow. Missier et al. [13] developed an efficient and scalable algorithm
for querying fine-grained lineage information by exploiting the model of compu-
tation used in the Taverna workflow system [14]. LBL is similar to [13] as both
techniques are exploiting the constraints of models of computation, but, LBL
(i) precomputes lineage even before the execution of the workflow by forecasting
the sizes of the input containers and later adjusts the lineage with the actual
sizes, and (ii) enables lineage for all the tokens and thus expands the use of
provenance, e.g., for focused data analysis where only input dependencies of an
output is needed, and debugging where dependencies on the intermediate tokens
are also needed.

Trio [15] and GridDB [16] use recursive query evaluation on a collection-based
data model to answer lineage queries. Both [15,16] support lineage for all tokens
as LBL does, but, LBL is time efficient while incurring very little additional
space cost.

7 Conclusion and Future Work

Lineage information plays a key role in helping users understand and reuse
data generated by scientific workflow systems. Many applications of provenance
within these systems rely on being able to easily pose and efficiently answer
lineage queries, which for data-intensive workflows require evaluation techniques
that are both time and space efficient. While semi-naive query evaluation is
generally space efficient, it may result in slow query execution time, whereas
computing and storing transitive closures can result in faster query execution
time at the cost of increased storage space. In this paper, we have developed a
new location-based lineage approach that is both space and time efficient. Our
approach exploits information available in workflow specifications, in particular,



192 S. Dey et al.

container dependency information and the consumption-production rate con-
straints used in many workflow systems. Our experimental results demonstrate
that the location-based lineage technique is both efficient and scalable for vari-
ous types of workflow patterns and results in both faster query evaluation time
and lower storage space requirements than using semi-naive query evaluation
and storing transitive closures. As future work, we are currently extending the
location-based approach presented here to support more complex data structures
(e.g., collections of data tokens) that are increasingly being developed for more
general dataflow frameworks.

Acknowledgments. Supported in part by NSF ACI-0830944 and IIS-1118088.

References

1. Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., Gannon, D., Goble, C.,
Livny, M., Moreau, L., Myers, J.: Examining the challenges of scientific workflows.
Computer 40(12), 24–32 (2007)

2. Davidson, S.B., Boulakia, S.C., Eyal, A., Ludäscher, B., McPhillips, T.M., Bowers,
S., Anand, M.K., Freire, J.: Provenance in scientific workflow systems. IEEE Data
Eng. Bull. 30(4), 44–50 (2007)

3. Miles, S., Deelman, E., Groth, P., Vahi, K., Mehta, G., Moreau, L.: Connecting
scientific data to scientific experiments with provenance. In: Proceedings of the
IEEE International Conference on e-Science and Grid Computing, pp. 179–186
(2007)

4. Anand, M.K., Bowers, S., Ludäscher, B.: Techniques for efficiently querying scien-
tific workflow provenance graphs. In: EDBT, pp. 287–298 (2010)

5. Heinis, T., Alonso, G.: Efficient lineage tracking for scientific workflows. In: Pro-
ceedings of the 2008 ACM SIGMOD International Conference on Management of
Data, pp. 1007–1018. ACM (2008)

6. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases, vol. 8. Addison-
Wesley, Reading (1995)

7. Koop, D., Freire, J., Silva, C.T.: Enabling Reproducible Science with VisTrails.
CoRR abs/1309.1784 (2013)

8. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75(9), 1235–
1245 (1987)

9. Sun, S., Chen, J., Li, W., Altintas, I., Lin, A.W., Peltier, S., Stocks, K., Allen, E.E.,
Ellisman, M.H., Grethe, J.S., Wooley, J.C.: Community cyberinfrastructure for
advanced microbial ecology research and analysis: the CAMERA resource. Nucleic
Acids Res. 39, 546–551 (2011)

10. Altintas, I., Wang, J., Crawl, D., Li, W.: Challenges and approaches for dis-
tributed workflow-driven analysis of large-scale biological data: vision paper. In:
EDBT/ICDT Workshops, pp. 73–78 (2012)

11. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska,
N., Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E.,
den Bussche, J.V.: The open provenance model core specification (v1.1). Future
Gener. Comput. Syst. 27(6), 743–756 (2011)

12. Biton, O., Cohen-Boulakia, S., Davidson, S.: Zoom* userviews: querying relevant
provenance in workflow systems. In: Proceedings of the 33rd International Confer-
ence on Very Large Data Bases, pp. 1366–1369. VLDB Endowment (2007)



Computing Location-Based Lineage FromWorkflow Specifications 193

13. Missier, P., Paton, N.W., Belhajjame, K.: Fine-grained and efficient lineage query-
ing of collection-based workflow provenance. In: EDBT, pp. 299–310 (2010)

14. Turi, D., Missier, P., Goble, C., De Roure, D., Oinn, T.: Taverna workflows: syntax
and semantics. In: International e-Science and Grid Computing Conference, pp.
441–448 (2007)

15. Benjelloun, O., Sarma, A.D., Halevy, A., Theobald, M., Widom, J.: Databases with
uncertainty and lineage. VLDB J. 17(2), 243–264 (2008)

16. Liu, D.T., Franklin, M.J.: GridDB: a data-centric overlay for scientific grids.
In: Proceedings of the Thirtieth International Conference on Very Large Data
Bases, vol. 30, pp. 600–611. VLDB Endowment (2004)



System Demonstrations



Interrogating Capabilities of IoT Devices

Stanislav Beran, Edoardo Pignotti(B), and Peter Edwards

Computing Science and dot.rural Digital Economy Hub, University of Aberdeen,
Aberdeen AB24 5UA, UK

{s.beran,e.pignotti,p.edwards}@abdn.ac.uk

Abstract. In this demo we present the Trusted Tiny Things system that
can be used to interrogate Internet of Things (IoT) devices and present
users with information about their characteristics and capabilities. The
system consists of a mobile application used to retrieve information about
IoT devices supported by RESTful web services. In order to infer IoT
device capabilities our services perform reasoning over the provenance
of devices characterised using an extension of the PROV-O ontology.
In this demo we illustrate the use of the system with two distinct IoT
devices: an NFC tag used at bus stops to provide a means to access
real-time bus timetables, and a blackbox device installed into vehicles
by insurance companies to track driving behaviour.

Keywords: Internet of things · Provenance · Transparency

1 Introduction

The Trusted Tiny Things project1 is exploring how semantic technologies can
make Internet of Things (IoT) devices more transparent to users. IoT devices
now routinely gather, analyse and manipulate data from their surroundings;
they are also capable of exchanging such data with other devices and services
by means of M2M (Machine to Machine) communications. The need for trans-
parency in the IoT domain is seen as crucial in order to ensure the legitimacy
of activities performed by devices, but also to increase security and privacy [1].
Certain operations associated with IoT devices may be deemed undesirable by
users (e.g. third-party data sharing, consumption of personal data), and there-
fore users should be made aware of such capabilities. In this paper we argue
that by publishing information about IoT devices such as manufacturer, owner,
device type) according to the linked data principles [2] and by capturing their
provenance (e.g. services, owners, organisations, etc.), it is possible to make
capabilities of IoT devices more transparent.

We are investigating these issues via two user scenarios. The first of these
explores the use of NFC tags attached to timetables at bus stops in Aberdeen-
shire, UK. A user with an NFC enabled phone can scan such tags to access a
1 This research is supported by the UK Research Councils’ Digital Economy IT
as a Utility Network+ (EP/K003569/1) and the dot.rural Digital Economy Hub
(EP/G066051/1).

c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 197–202, 2015.
DOI: 10.1007/978-3-319-16462-5 15



198 S. Beran et al.

real-time bus timetable via the phone’s web browser. Users may expect that the
service is operated by Aberdeenshire Council, but in fact it is run by an external
IT solutions provider. As part of offering the service, this third party organi-
sation collects data from the smartphone (e.g. IP address, type of smartphone
device). Our second user scenario investigates the use of in-car blackboxes, which
are being installed into vehicles by insurance companies. These devices are used
to track driver’s behaviour in order to tailor insurance premiums to individuals.
The devices continuously collect data (e.g. GPS location, acceleration, driving
patterns, etc.) and connect to a third party service that collects the data on
behalf of the insurance company. In this scenario the service could change over
time. For example, a new organisation (e.g. a car manufacturer analysing engine
management data) could be allowed to use the data generated by the sensors.

2 Semantic Framework

In order to inform the design of a semantic framework for IoT devices we have
conducted three participatory design events involving a total of 14 participants
with different technological backgrounds. Participants were asked to discuss
issues surrounding the capabilities of IoT devices. Questions were posed such
as: What do you think are the capabilities of this device? and What kind of
capabilities would you want to be aware of before interacting with this kind of
device?. We have developed an OWL ontology2 (illustrated in Fig. 1) to link
physical entities (iota:PhysicalEntity) with their IoT components (iota:Device3)
using concepts derived from a model created as part of the Internet of Things
Architecture (IoTa) project4. This allows us to identify those IoT devices and
their virtual representations (iota:VirtualEntity) so we can analyse their charac-
teristics and capabilities. The PROV-O [3] ontology is used as an upper ontology
and allows us to characterise entities (data), activities (device processes and oper-
ations) and agents (either software or physical) associated with IoT devices and
supporting services. For example, we can associate a particular device activity
(e.g. location sensing) to the agent that initiated the operation (e.g. insurance
company). Using PROV-O allows queries to be formulated such as: Who initi-
ated the action? What entities have been used? When was a particular action
executed? However, PROV-O on its own cannot answer questions such as: Why
and for what purpose were the data used? Is the data confidential?

Guided by user requirements we have designed an ontology to support infer-
ences about device capabilities using provenance described according to the
PROV-O and IoTa ontology. We created a lightweight ontological model called
T35 that provides annotations over provenance records. Using this model, we
2 http://t3.abdn.ac.uk/ontologies/iota.owl.
3 An artefact that provides an interface between the digital world and the physical
world.

4 http://www.iot-a.eu.
5 http://t3.abdn.ac.uk/ontologies/t3.owl.

http://t3.abdn.ac.uk/ontologies/iota.owl
http://www.iot-a.eu
http://t3.abdn.ac.uk/ontologies/t3.owl


Interrogating Capabilities of IoT Devices 199

Fig. 1. An extract of the iota ontology representing relationships between a virtual
entities and a physical entities in the internet of things

are able to annotate the qualified usage class (prov:Usage) with ttt:purpose to
describe why a particular entity (data) is used by a specific activity.

When managing provenance of IoT devices it is not always possible to instru-
ment devices and services to generate information about their usage and operation
(retrospective provenance). In some cases, manufacturers can provide information
on how devices are intended to operate (prospective provenance). In our frame-
work we therefore make provision for both kinds of provenance. Our framework
is also capable of distinguishing between direct capabilities (activities performed
onboard the device) and indirect capabilities (activities performed by associated
devices or services).

In order to infer the capabilities of IoT devices using our ontological frame-
work we can associate rules to specific classes of ttt:Capability. We make use of
the SPIN ontology6 to support the use of SPARQL to specify rules and logical
constraints necessary to reason about capabilities. The SPIN ontology allows
SPARQL queries to be represented in RDF and associated to classes in an
ontology using a pre-defined spin:rule property that can be used to specify infer-
ence rules using SPARQL CONSTRUCT, DELETE and INSERT statements.
Figure 2 (top box) shows an example of such a rule for the ttt:DataConsumption
class. The rule is designed to traverse a PROV-O provenance graph starting from
an instance of an iota:Device and to identify activities that have used or gener-
ated entities classified as personal data. Once such activities have been identified
the rule specifies how an annotation about the data consumption capability is
generated, including a link to the agent responsible for the activity and the spe-
cific purpose. In this ontology we have also specified two rules that are used
to determine what provenance has been used to infer a specific device capabil-
ity. These rules make use of the ttt:Follows qualified relationship to distinguish
between prospective and retrospective provenance and are illustrated in Fig. 2
(bottom left and bottom right boxes).

Participants during our design exercises highlighted the need to provide
contact information about agents (individuals or organisations) responsible for

6 http://spinrdf.org/spin.html.

http://spinrdf.org/spin.html


200 S. Beran et al.

Fig. 2. Example of device capability inference rule (top box) and two rules used to
distinguish between prospective and retrospective provenance (bottom left and bottom
right boxes).

certain devices and therefore we use the FOAF7 ontology. The class foaf: Orga-
nization is defined as a subclass of prov:Agent. Figure 3 presents a visualisation
of the device capabilities in a mobile app and the respective sample provenance
graph taken from the bus stop scenario.

3 The Trusted Tiny Things System

In order to support our semantic framework we have developed a software
infrastructure (see Fig. 4) that can be used to query, update and register IoT
devices and to notify the user of any changes in the capabilities of a particular
device. We store device data in an OpenRDF Sesame8 triplestore. Additionally,
we utilize a MySQL database server to store smartphone IDs (used to identify
users) and accepted device capabilities. Our framework is composed of five core
services, which are responsible for registering devices to our system, updating
and synchronizing the provenance record, providing access to information, rea-
soning over the provenance record to infer capabilities, and notifying users about
changes in device provenance. In order for a user to interact with the system, we
have implemented an Android mobile application (Fig. 3), that is able to query

7 http://www.foaf-project.org/.
8 http://www.openrdf.org.

http://www.foaf-project.org/
http://www.openrdf.org


Interrogating Capabilities of IoT Devices 201

prov:SoftwareAgent
iota:Service

ttt:NFCDevice
iota:Device

iota:represents

Device 
Characteristics

(owner,manufacturer,
description)

prov:Entity

used

xsd:String

the mobile 

rdfs:type

prov:Usage

prov:entity
ttt:purpose

xsd:String

Data usage by 
the Activity/

ttt:PersonalData

ttt:description

prov:Agent
foaf:Organization

actedOnBehalfOf

prov:Activity

wasAssociatedWith

characterisedBy

Fig. 3. Smartphone app showing the capabilities of a bus stop NFC tag (left) and an
extract of the supporting provenance (right).

and visualise capabilities of IoT devices registered in our system and to notify
users of changes in the provenance record. The application can be downloaded
from the Google Play Store9.

Storage

Onotlogies

IoT Device Provenance Smartphone IDs and Device Capabilities

T3 Annotations and Capabilities W3C PROV IoTA FOAF

Core Services
Capability Reasoning Register Query

RESTful API Services

Update

Fig. 4. Trusted Tiny Things System Architecture

The provenance-based approach for determining the capabilities of a device
has certain advantages over similar compliance-based alternatives. In Google
Play, for example, users are presented with a list of access permissions based
on the capabilities of the app being installed. These permissions are determined
only by the functionalities implemented in the app (e.g. use of the GPS sensor)
disregarding how and why information is used and by whom. However, by using
9 https://play.google.com/store/apps/details?id=uk.ac.abdn.t3.trustedtinythings.

https://play.google.com/store/apps/details?id=uk.ac.abdn.t3.trustedtinythings


202 S. Beran et al.

a provenance-based approach, it is possible to define capabilities in terms of how
information has been used. Moreover, the Google Play approach notifies users
of changes only when a new version of the app is pushed into the store. In our
approach, such changes are determined using the provenance record which is
independent from new versions of applications, devices or services (e.g. change
in the server infrastructure with regards to manipulation of user’s data triggers
notification to user).

4 Demonstration Content

In the demonstration we will illustrate the behaviour of the system using the two
scenarios described above. In the Bus Stop scenario we will highlight the capa-
bilities of the NFC device based on prospective provenance. A short presentation
video of this scenario can be viewed at our Trusted Tiny Things website10. In the
car blackbox scenario we will demonstrate how retrospective provenance is used
to infer the capabilities of the telemetry box. Finally, we will showcase our noti-
fication service by changing the way that the insurance service operates (it will
begin to share sensor data with car manufacturers). We will demonstrate how
our system would detect the change and infer new capabilities associated with
this change (i.e. confidential data is now shared with a third-party company).

References

1. Weber, R.H., Weber, R.: Internet of Things. Springer, New York (2010)
2. Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. Int. J. Semant.

Web Inform. Syst. 5(3), 1–22 (2009)
3. Lebo, T., Sahoo, S., McGuinness, D., Belhajjame, K., Cheney, J., Corsar, D.,

Garijo, D., Soiland-Reyes, S., Zednik, S., Zhao, J.: Prov-o: The prov ontology. W3C
Recommendation, 30 April 2013

10 http://t3.abdn.ac.uk.

http://t3.abdn.ac.uk


A Lightweight Provenance Pingback and Query
Service for Web Publications

Tom De Nies1(B), Robert Meusel2, Dominique Ritze2,
Kai Eckert2, Anastasia Dimou1, Laurens De Vocht1,

Ruben Verborgh1, Erik Mannens1, and Rik Van de Walle1

1 Ghent University - iMinds - Multimedia Lab, Ghent, Belgium
{tom.denies,anastasia.dimou,laurens.devocht,

ruben.verborgh,erik.mannens,rik.vandewalle}@ugent.be
2 Research Group Data and Web Science,

University of Mannheim, Mannheim, Germany
{robert,dominique,kai}@informatik.uni-mannheim.de

Abstract. Web resources, such as publications, datasets, pictures and
others can be directly linked to their provenance data, as described in
the specification about Provenance Access and Query (PROV-AQ) by
the W3C. On its own, this approach places all responsibility with the
publisher of the resource, who hopefully maintains and publishes prove-
nance information. In reality, however, most publishers lack incentives
to publish the provenance of resources, even if the owner would like
such information to be published. Currently, it is very intricate to link
existing resources to new provenance information, either provided by the
owner or a third party. In this paper, we present a solution for this prob-
lem by implementing a lightweight, read/write provenance query service,
integrated with a pingback mechanism, following the PROV-AQ recom-
mendation.

1 Introduction

Provenance is an essential part of trust and value assessment of web content,
as it describes everything involved in producing this content. The PROV-AQ
document [KGM+13] describes several options to access provenance:

– providing a link header in the HTTP response of the resource
– providing a link element in its HTML representation
– providing a prov:has provenance relation in its RDF representation

In all these cases, however, the representation of the resource is directly
linked to its corresponding provenance, so that only the publisher of the resource
is in control of which provenance information is provided. This type of “pack-
aged” solution gives rise to multiple issues, particularly when the owner of the
resource is not in control of the publication process. In this paper, we will focus
on the domain of scientific publishing since it is a striking example showing this
c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 203–208, 2015.
DOI: 10.1007/978-3-319-16462-5 16



204 T. De Nies et al.

characteristic. Furthermore, the need of providing additional provenance infor-
mation in this domain has long been identified [DF08,ZGSB04].

In the domain of scientific publishing, the resource (usually a PDF document)
is published by the publisher, whereas its provenance (e.g. datasets, processes,
and/or software used) is generally controlled by the author. Besides provenance
information created at publication time, additional information such as pointers
to corrections or derivations – forward-links in the provenance chain – should be
added to enhance the value and the trustworthiness of the resource. The process
of most publishers is currently not designed for this kind of updates, as they
do not include information about the creation process at all. For example, an
empirical study for economics journals shows that of all 141 considered journals,
over 70% do not have any policy dealing with the data used in the journal
publications [Vla13].

While general approaches to store and query workflow provenance have been
introduced, c.f. [DWW+11,DMMM11,GJM+06], these solutions date from
before the publication of the W3C PROV standard, and/or constitute highly
customized architectures. Additionally, in these solutions, the responsibility for
publishing the provenance still lies either with the author or publisher, with
no method to establish a pingback or backlink to the other party. Despite the
PROV-AQ description [KGM+13] and the possibility to apply basic technolo-
gies, to the best of our knowledge a lightweight, distributed solution has not
been implemented yet.

A possible, fully distributed solution to this problem is the concept of prove-
nance pingback, as introduced in PROV-AQ. Provenance pingback enables the
establishment of forward-links, e.g. to get to know which resources are based on
a certain resource or who makes use of the resource. This solution, however, also
highly relies on the goodwill and technological know-how of publishers to provide
a pingback URI. Additionally, this would require the publishers to implement a
management system aiding in the decision of which provenance is accepted to be
published with the associated resource(s). These facts justify the clear need for a
lightweight and flexible solution, in the form of an independent service. An inde-
pendent service has the advantage that it does not rely on the cooperation of the
publishers and enables all authors to use this service. The distributed nature of
the Semantic Web makes this technically possible. Such a service needs to allow
the storage and retrieval of provenance links for published resources, thereby
enriching them with information that is otherwise hard to expose. PROV-AQ
defines a mechanism for this concept, named provenance query services.

In the following, we introduce our implementation of such a service targeted
at the domain of scientific publishing (Sect. 2). Further, we show the advantages
of our solution in this application domain (Sect. 3). We discuss the presented
approach within Sect. 4 and finish the paper with the conclusion.

2 Lightweight Distributed Provenance Service

We propose a lightweight, RESTful web service for linking resources published
on the Web with their provenance information. The solution allows pushing



A Lightweight Provenance Pingback and Query Service for Web Publications 205

and querying of provenance information. This way, a seamless integration with
existing publication management systems, such as Research Gate, Mendeley,
Google Scholar, etc., is achieved. Figure 1 shows the process diagram of our
service.1 If possible, the publisher should support a provenance service by linking
to it using a pingback URI and provenance query service URI as specified in
PROV-AQ, but this is not a strict prerequisite. Note that in Fig. 1, both these
URIs are represented by the prov service uri.

Publisher

Author

Consumer

Provenance
Pingback

&
Query
Service

Provenance

Provenance

POST

prov_service_uri

Provenance

GET
resource_uri

data
+ prov_service_uri

resource_uri
+ prov_service_uri

+ resource_uri

1

2
3

GET
resource_uri

Fig. 1. The process diagram of our provenance pingback and query service.

1. An author POSTs provenance about a published resource, identified by the
resource uri, to a service, identified by the prov service uri. Both, the
resource uri and the prov service uri are forwarded to the publisher.

2. A consumer requests (GET) the publication with the resource uri at the
publisher and gets the data about the publication resp. the publication itself.
Ideally (but not necessarily), the publisher of the resource provides the whole
service as a pingback URI. This way, whenever consumers access the resource
through the publisher, they are provided with the proper prov service uri,
at which the provenance can be found. Note that if the publisher does not
provide a prov service uri, this does not prevent the author from posting
his/her provenance to a service of his/her choice (e.g., where provenance of
the same domain is collected). We briefly elaborate on alternatives in Sect. 4.

3. With both, the prov service uri and the resource uri, the consumer GETs
all additional provenance information of the resource provided by the author.
Using the PROV Data Model allows users to provide and retrieve provenance
of the resource as a whole, as well as the provenance of certain sub-parts of
the publication, such as data, code, etc.

1 A live demonstration of this service can be accessed at http://git2prov.org/
prov-pings.

http://git2prov.org/prov-pings
http://git2prov.org/prov-pings


206 T. De Nies et al.

3 Application Domain

Application domains that illustrate the merit of provenance query services
include, but are not limited to: online news, blogs, digital books, code repositories,
and data sets. In the following, we describe use cases that illustrate the different
benefits provided by such a query service in our chosen domain of
scientific publications:

Increase the trust in published results: In the area of scientific publications the
typical metadata provided by the publishers are information about the authors,
the proceedings or book where the publication can be found and temporal infor-
mation as the year and month of the publication. It is metadata about the
finalized publication, not metadata about the creation process. The metadata
describing the process – the provenance data, as provided by a provenance query
service – is much richer, revealing not only publications that the author has used
to compile the text, i.e., the references, but also additional information about the
original research data used, the methodology and the configurations of experi-
ments to derive the results. The availability and verifyability of this information
contributes to the trust in the published results.

Find related work: Beyond building trust in a specific publication, the prove-
nance data also helps to identify related work, in this case work that uses the
same original data or the same method. Results obtained on the same data are
much more comparable. Applications of the same method on different data can
demonstrate the general applicability of an approach. Contradicting interpreta-
tions of data can be found simply by the fact that both interpret the same data.
Currently, information about original data can only be derived by reading the
publications, which make it very time consuming or even practically impossible
to find all relevant publications. With proper provenance data, this becomes triv-
ial. To support this use case, our service specifically supports the submission of
links between publications and used datasets by third parties, e.g. by an (semi-)
automated process as described by Boland et al. [BREM12].

Update and link to future work: Although the authors as well as the publishers
are making huge efforts to create a final, perfect and error-free version of a publi-
cation, it happens that published results are superseeded by future work, not to
mention actual corrections in the case of errors identified after the publication.
Minor updates of applied methods, adoptions to newer datasets or application
versions, as well as errors in the code, dataset and process happen more often
than not. Even when the additions to existing work lead to a new publication, it
is not trivial to find this newer publication. Smaller corrections, however, often
do not even result in a proper new publication and an author has no reasonable
way to add something to already published work. A provenance query service
including the capacity of a pingback overcomes these problems, as the author is
able to point to a newer, updated version of a publication. Such forward links
in the provenance chain are not limited to the original author, in fact everyone
can indicate that a later work builds on top of the publication.



A Lightweight Provenance Pingback and Query Service for Web Publications 207

4 Discussion and Future Work

To realize the full potential of our approach, there are a number of considerations
to be made for its integration.

The first issue to be considered is the author verification & curation. When
a third party provides provenance information of a resource, this provenance
might be inaccurate or even harmful when used to assess the trustworthiness of
the resource. In order to prevent this, a form of verification should be deployed by
the author upon the submission of provenance information. An already practiced
solution, which is also applicable for scientific publications, is the approval of the
email address which is usually associated with the publications of an author. This
mechanism is exemplarily used by Google Scholar. Alternatively, an authorship
claiming mechanism similar to http://authorclaim.org could be implemented.
Here, authors of information linked to provenance can claim ownership of the
published provenance as well.

Another issue is the tracking of provenance of the provenance. Within a sys-
tem where anyone can make claims about any resource, keeping track of the
origin of submitted information and the evolution is crucial. Possible mecha-
nisms to overcome this, can be found in version control systems, from which the
provenance information can then be extracted using a mapping service such as
Git2PROV [DNMV+13]. A similar mapping could also support the resolution
of the provenance authoring issues. Needles to say, that such a service needs an
user-friendly way to specify provenance information, otherwise the obstacle of
getting started will prevent authors and publishers to adapt the service.

At last, the question remains what happens when the publisher does not
play along and refuses to publish the link to a provenance service. A single,
global provenance service is neither realistic nor desirable. Whereas a peer-to-
peer communication between provenance services could be a possibility, a more
straight-forward solution would be a registry for provenance services or a dedi-
cated search engine functioning as main entry point to provenance information.
The investigation of all these issues remains future work.

5 Conclusion

We have shown that the wide-spread provision of provenance query services will
be a useful addition to the Web. We illustrated this by implementing such a
service for the domain of online (scientific) publications, where it has important
implications regarding discoverability and reproducibility. Provenance informa-
tion can not only increase the trust in the published results, it also allows the
retrieval of publications that share parts of their provenance, most importantly
publications that use the same research data. The same holds for future publi-
cations that build on current ones.

We believe these services will form an essential step towards a distributed
Web of publications, where the provenance provides the silk to make it sustain-
able and trustable.

http://authorclaim.org


208 T. De Nies et al.

Acknowledgments. The research activities in this paper were funded by Ghent Uni-
versity, iMinds (by the Flemish Government), the IWT Flanders, the FWO-Flanders,
and the European Union.

References

[BREM12] Boland, K., Ritze, D., Eckert, K., Mathiak, B.: Identifying references to
datasets in publications. In: Zaphiris, P., Buchanan, G., Rasmussen, E.,
Loizides, F. (eds.) TPDL 2012. LNCS, vol. 7489, pp. 150–161. Springer,
Heidelberg (2012)

[DF08] Davidson, S.B., Freire, J.: Provenance and scientific workflows: challenges
and opportunities. In: Proceedings of the International Conference on
Management of Data (SIGMOD), pp. 1345–1350. ACM, New York (2008)

[DMMM11] Ding, L., Michaelis, J., McCusker, J., McGuinness, D.L.: Linked prove-
nance data: a semantic Web-based approach to interoperable workflow
traces. Future Gener. Comput. Syst. 27(6), 797–805 (2011)

[DNMV+13] De Nies, T., Magliacane, S., Verborgh, R., Coppens, S., Groth, P.,
Mannens, E., Van de Walle, R.: Git2PROV: exposing version control
system content as W3C PROV. In: Proceedings of the Posters & Demon-
strations Track within the12th International Semantic Web Conference
(ISWC), pp. 125–128. CEUR-WS, Aachen (2013)

[DWW+11] Dalman, T., Weitzel, M., Wiechert, W., Freisleben, B., Noh, K.: An online
provenance service for distributed metabolic flux analysis workflows. In:
Proceedings of the 9th European Conference on Web Services (ECOWS),
pp. 91–98. IEEE Computer Society, Washington, DC (2011)

[GJM+06] Groth, P., Jiang, S., Miles, S., Munroe, S., Tan, V., Tsasakou, S., Moreau,
L.: An Architecture for Provenance Systems. Technical report, University
of Southampton, February 2006

[KGM+13] Klyne, G., Groth, P., Moreau, L., Hartig, O., Simmhan, Y., Myers, J.,
Lebo, T., Belhajjame, K., Miles, S.: PROV-AQ: Provenance Access and
Query, W3C (2013)

[Vla13] Vlaeminck, S.: Data management in scholarly journals and possible roles
for libraries-some insights from edawax. Liber Quart. J. Assoc. Eur. Res.
Libr. 23(1), 48–79 (2013)

[ZGSB04] Zhao, J., Goble, C.A., Stevens, R., Bechhofer, S.: Semantically linking
and browsing provenance logs for e-science. In: Bouzeghoub, M., Goble,
C.A., Kashyap, V., Spaccapietra, S. (eds.) ICSNW 2004. LNCS, vol. 3226,
pp. 158–176. Springer, Heidelberg (2004)



Provenance-Based Searching and Ranking
for Scientific Workflows

Vı́ctor Cuevas-Vicentt́ın1(B), Bertram Ludäscher1, and Paolo Missier2

1 Department of Computer Science, University of California at Davis,
One Shields Avenue, Davis, CA 95616, USA

victorcuevasv@gmail.com, ludaesch@ucdavis.edu
2 School of Computing Science, Newcastle University, Claremont Tower 9.08,

Newcastle upon Tyne NE17RU, UK
paolo.missier@ncl.ac.uk

Abstract. We present PBase, a scientific workflow provenance reposi-
tory that supports declarative graph queries and keyword-based graph
searching, complemented with ranking capabilities taking into consid-
eration authority and quality of service criteria. Given the widespread
use of scientific workflow systems and the increasing support and rele-
vance of provenance as part of their functionality, the challenge arises
to enable scientists to use provenance for the discovery of experiments,
programs, and data of interest. PBase aims to satisfy this requirement
while also presenting to the user a customized graphical user interface
that greatly facilitates the exploration of the repository and the visual-
ization of results.

Keywords: Provenance · Scientific workflows · Graph keyword search ·
Quality of service · Ranking

1 Introduction

Scientific workflow management systems (SWMSs) offer numerous advantages
for computational experiments exploiting scientific data. Through a friendly user
interface, the various tasks comprising an experiment can be associated with con-
crete computational actors (e.g. Web Services, scripts, etc.) and organized in a
pipeline, which can be easily modified and shared. Furthermore, the execution
environment of the SWMS often offers capabilities such as fault tolerance, dis-
tributed execution, and scalability. An additional capability of modern SWMSs
is to automatically record the context and events associated with the execution
of a workflow, resulting in a trace that represents the retrospective provenance
of the associated data products.

Much effort has been devoted to modeling scientific workflow provenance and
enabling its capture in SWMSs. In addition, graph querying techniques and their
related declarative query languages have been successfully applied to provenance
data, enabling its close examination for purposes such as debugging or attribu-
tion. We consider an scenario in which scientists are interested in discovering
c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 209–214, 2015.
DOI: 10.1007/978-3-319-16462-5 17



210 V. Cuevas-Vicentt́ın et al.

high quality experiments, programs, and data from third parties related to their
research. In this scenario, as users of a scientific workflow provenance reposi-
tory, they are first likely to want to interact with the system via simple keyword
searches that bring ranked results, and then possibly through a sophisticated
declarative query language that yields exact results.

Therefore we introduce PBase, a scientific workflow provenance repository
that enables, besides declarative queries, searching and ranking under various
criteria and at different granularities. Concretely, users can search annotated
workflows and traces based on criteria that apply globally to entire workflows and
traces, or individually to their component actors and data products. Result items
can be obtained not only if they contain the associated keywords but also if they
are related to items that contain them. The criteria or facets under consideration
include quality of service and authority metrics computed from the provided
traces, to which additional information sources can be incorporated as well.
These features are supported by a custom GUI that facilitates the visualization
of workflows, their associated traces, and the search and query results.

2 Provenance-Based Searching for Scientific Workflows

PBase adopts the ProvONE1 model which represents workflows (prospective
provenance) and execution traces (retrospective provenance) in a generic manner
aiming to cover the majority of SWMSs. ProvONE is serialized in an OWL 2
ontology and data instances are represented in RDF. Searching and ranking
in the PBase repository is performed by keyword searches complemented by
authority and quality of service criteria, which we briefly describe next.

2.1 Authority

We adopt the ObjectRank [HHP08] metric, which is applied in three variants
that in turn can be combined to yield an overall ranking.

Global ObjectRank represents the overall importance of a node in a way
similar to PageRank. This metric captures, for instance, that a data item that is
used in important experiments may be regarded as important, whereas an ordi-
nary experiment that uses important data may itself not be important. However,
while PageRank is computed uniformly based on the links between web pages,
ObjectRank is computed taking into consideration the semantics of the rela-
tions between entities. This occurs as specified by the authority transfer schema
graph, which through weights established by domain experts, specifies the flow of
authority across the data entities in an adjustable manner. An example authority
transfer schema graph is depicted in Fig. 1 for our domain of concern.

To find entities relevant for a particular keyword query, the keyword-specific
ObjectRank metric is also calculated for all keywords subject to a threshold
value. In this manner nodes that do not contain the keywords but are relevant
1 http://purl.org/provone.

http://purl.org/provone


Provenance-Based Searching and Ranking for Scientific Workflows 211

wasDerivedFrom0

Publica on Data
used

wasDerivedFrom

0.7

0
0.4

0.4
0.3

Author Workflow

wasA ributedTo wasA ributedTo
0.3

0.3
0.3

0 3

0.50.5

wasA ributedTo
0.3

Fig. 1. Example authority transfer schema graph

for the query can be found and ranked. Finally, an inverse ObjectRank metric
captures the specificity of results, placing a stronger constraint on matching
the keywords of the query for cases in which the user is interested in a specific
type of experiment, for example, rather than those related to a particular area.
These keyword-specific metrics are computed for the most important annotated
elements of both workflows and traces, i.e., actors and their executions and data
items. If multiple traces are associated with a workflow, these can yield different
values for a given query, due to possible missing nodes in some traces in the case
of failures, for example. Collections of workflows and traces can be ranked based
on the resulting values of its constituent nodes.

Furthermore, a global graph is constructed from traces to generate the Objec-
tRank values, whenever it is possible to identify that data generated from one
workflow is used in another. This “stitching” of traces is currently limited to
unique identifiers, future work involves developing alternative methods in the
absence of such identifiers, by analyzing metadata, for example. If additional
provenance information is available about the workflows and data, it can be
incorporated into the global graph. For example, information about publica-
tions and authors as depicted in Fig. 1. Note that although the global graph is
constructed from provenance information, it can be configured in various ways
as required by domain experts.

2.2 Quality of Service

Numerous criteria of this type are applicable to the individual programs and
data associated with workflows and their traces, the individual metrics in turn
can be aggregated to assess the quality of the entire workflow, even before it
is executed. In PBase we adopt the framework introduced in [CMSA04] which
takes into consideration: time, cost, and reliability. The execution time is usually
specified by timestamps in provenance traces, although not detailed in terms of
setup and remote invocation duration, for example. We assume given measures
of cost, which can be related to computational resources use or monetary cost.
Reliability follows from measuring the number of times a given actor failed during
its execution, which is normally inferable from traces.

The manner in which the individual metrics are aggregated for complete
workflows depends on the different constructs present in the workflow as well as
on the metric type. For instance, for parallel execution, the execution time of



212 V. Cuevas-Vicentt́ın et al.

the parallel execution construct built from multiple branches corresponds to the
maximum execution time of a branch. Alternatively, the reliability of a workflow
built from a sequence of actors is calculated by multiplying the reliability metrics
of the individual actors.

Table 1 shows the specific calculations for time, cost, and reliability (T , C,
and R respectively) if we denote by cij the sequential composition of components
ci and cj ; whereas the parallel composition of a series of components ci delimited
by an and-split operator a and an and-join operator b is denoted by cab.

Table 1. Example quality of service metrics calculations

Sequential execution Parallel execution

T (cij) = T (ci) + T (cj) T (cab) = maxi∈{1..n}{T (ci)}
C(cij) = C(ci) + C(cj) C(cab) =

∑
i∈{1..n} C(ci)

R(cij) = R(ci) ∗ R(cj) R(cab) =
∏

i∈{1..n} R(ci)

3 Demonstration and Implementation

The aforementioned search criteria can be applied to the PBase repository via
a GUI (see Fig. 2) that facilitates the visualization of workflows and their cor-
responding traces, as well as of the resulting metrics on their nodes. Keyword
queries can be issued either for workflows or traces through their corresponding
panels. The ranked results can be browsed over and at any time the workflow
corresponding to a trace (or vice versa) can be visualized side by side. The nodes
forming part of a result are also highlighted analogously and the various metrics
associated with each node can be visualized by overlays next to the nodes, while
global ranking lists are presented in a pop-up window.

Furthermore, it may be the case that the user is interested in a particular
node, and wants to know which nodes are reachable from it (i.e. its lineage), then
she can select the node and the reachable nodes are highlighted. This is done
efficiently on the client side with the use of a tree cover encoding [ABJ89]. We
also offer the capability to evaluate SPARQL queries on workflows and traces
and visualize their results, as described in [CKL+14], which however describes an
earlier version of our repository that did not include any searching and ranking
functionality.

The system is implemented following a three-tier architecture, in which the
user interacts with the system through a Web GUI that employs the mxGraph
library for graph visualization in combination with the YUI JavaScript frame-
work. The application logic is organized into various components that run as
a Java application on the Tomcat server. Some of these components expose a
series of Restful Web services that enable the interaction with the client. Com-
munication takes place using the JSON data format. The data is stored in the
TDB RDF triplestore of the Jena framework.



Provenance-Based Searching and Ranking for Scientific Workflows 213

Fig. 2. Graphical user interface of PBase

Currently, for testing and demonstration purposes we have created a syn-
thetic dataset of workflows and their corresponding traces obtained via simula-
tion, which are stored in accordance to the ProvONE model. These workflows
correspond to series-parallel graphs generated randomly. Quality of service val-
ues are assigned randomly as well during the simulation process, which takes
possible failures into consideration. Annotations to describe actors, data, and
additional entities were obtained from myExperiment and ProgrammableWeb
for example domains and are processed with the Lucene Java library.

4 Future Work

In regards to keyword relevance ranking for collections of workflows and their
corresponding traces, currently we simply compute the average ranking of nodes
above a certain threshold. Future work involves more sophisticated ranking tech-
niques and exploring top-k result retrieval techniques. We also plan to incorporate
quality of service metrics aggregation for various workflow models. Presently the
graph algorithms run on custom Java code, future work involves exploring high
performance graph libraries as well as graph distributed computing frameworks.

5 Related Work

The use of authority metrics such as ObjectRank for provenance is explored in
[IHFG12], which however focuses on a generic computing framework rather than
a repository. The computation of aggregate quality of service metrics has received
significant attention for business processes, for example in [YDGBn+12]. Our
approach aims to enable the use of techniques developed through research to
enhance some of the functionality present in systems such as myExperiment
[DRGS09].



214 V. Cuevas-Vicentt́ın et al.

Acknowledgement. This work was supported by NSF Award OCI–0830944 (Data-
ONE).

References

[ABJ89] Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management of tran-
sitive relationships in large data and knowledge bases. In: Proceedings
of the 1989 ACM SIGMOD International Conference on Management
of Data, SIGMOD 1989, pp. 253–262. ACM, New York (1989)

[CKL+14] Cuevas-Vicentt́ın, V., Kianmajd, P., Ludäscher, B., Missier, P.,
Chirigati, F.S., Wei, Y., Koop, D., Dey, S.C.: The PBase scientific work-
flow provenance repository. Int. J. Digit. Curation 9(2), 28–38 (2014)

[CMSA04] Cardoso, J., Miller, J., Sheth, A., Arnold, J.: Quality of service for work-
flows and web service processes. J. Web Seman. 1, 281–308 (2004)

[DRGS09] De Roure, D., Goble, C., Stevens, R.: The design and realisation of the
experimentmy virtual research environment for social sharing of work-
flows. Future Gener. Comput. Syst. 25(5), 561–567 (2009)

[HHP08] Hristidis, V., Hwang, H., Papakonstantinou, Y.: Authority-based key-
word search in databases. ACM Trans. Database Syst. 33(1), 1:1–1:40
(2008)

[IHFG12] Ives, Z.G., Haeberlen, A., Feng, T., Gatterbauer, W.: Querying prove-
nance for ranking and recommending. In: Proceedings of the 4th
USENIX Conference on Theory and Practice of Provenance, TaPP 2012,
p. 9. USENIX Association, Berkeley (2012)

[YDGBn+12] Yang, Y., Dumas, M., Garćıa-Bañuelos, L., Polyvyanyy, A., Zhang, L.:
Generalized aggregate quality of service computation for composite ser-
vices. J. Syst. Softw. 85(8), 1818–1830 (2012)



PROV-O-Viz - Understanding the Role
of Activities in Provenance

Rinke Hoekstra1,2(B) and Paul Groth1

1 Network Institute, VU University Amsterdam,
Amsterdam, The Netherlands

{rinke.hoekstra,p.t.groth}@vu.nl
2 Faculty of Law, University of Amsterdam, Amsterdam, The Netherlands

Abstract. This paper presents PROV-O-Viz, a Web-based visualization
tool for PROV-based provenance traces coming from various sources,
that leverages Sankey Diagrams to reflect the flow of information through
activities. We briefly discuss the advantages of this approach compared to
other provenance visualization tools. PROV-O-Viz has already been used
to visualize provenance traces generated by very different applications.

Keywords: Provenance · Visualization · Sankey · Information flow ·
Linked data · Reusability

1 Introduction

Understanding data provenance (the origin or source of data) is a critical facilita-
tor for data quality, trust, reproducibility, compliance and debugging of complex
computational systems [1]. In 2013, the World Wide Web consortium released
the W3C PROV standards that enable the interchange of provenance between
systems [2]. These standards are becoming increasingly implemented [3].

Given the wealth of provenance information available, techniques are needed
to help users navigate and investigate this information space. Several works have
focused on the visualization or provenance using a number of presentation para-
digms including networks, data flow graphs, and radial layouts [4,5], https://
provenance.ecs.soton.ac.uk/vis/.

Here, we focus on a visualization approach to identify important activities
within a provenance graph and link those activities together. Additionally, our
aim is to show how this approach can be useful in an uncontrolled setting, i.e. for
PROV coming from multiple environments, generated through the execution of
diverse and potentially undefined tasks or workflows. To do so, we demonstrate
a Sankey Diagram based visualization of PROV and apply that visualization
to multiple provenance traces originating from multiple environments, machine
learning experiments, version control systems (GitHub), and scientific workflows
originating from different workflow systems. The demonstration is available at
http://provoviz.org.

c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 215–220, 2015.
DOI: 10.1007/978-3-319-16462-5 18

https://provenance.ecs.soton.ac.uk/vis/
https://provenance.ecs.soton.ac.uk/vis/
http://provoviz.org


216 R. Hoekstra and P. Groth

Paste PROV-O RDF, or connect to a SPARQL endpoint

Fig. 1. Add PROV-O by pasting text, or by connecting to a SPARQL endpoint.

2 Sankey Diagrams

Our approach adopts Sankey Diagrams, which visualize the magnitude of flow
within in a network. Sankey diagrams are particularly helpful in locating choke
points or other places that aggregate flow. Specifically, we view a provenance
graph as a network of activities where data flows through and between activities.
Our aim then is to provide a view that allows us to:

1. determine important activities based on data flow; and
2. understand how data flows through a selected activity.

In a standard, directed acyclic graph (DAG) rendering, this flow gets easily
lost in a large network. Other layouts, for example radial layouts, focus on the
interconnectivity of data or activities. Furthermore, other layout approaches do
not leverage the temporal ordering inherent in provenance graphs.

3 PROV-O-Viz

PROV-O-Viz is a web-based PROV visualization tool that leverages Sankey
Diagrams and adds a number of provenance specific features. PROV-O-Viz uses
the PROV-O RDF serialization of PROV. Figures 1 and 2 show a screenshots of
PROV-O-Viz where we highlight these features:

1. Import of PROV data from both plain text and published data (i.e. available
at a URL)



PROV-O-Viz - Understanding the Role of Activities in Provenance 217

Select one of the activities in the PROV graph

Missing type information is automatically inferred

Embed the generated visualisation in your own webpage

Fig. 2. Visualization of a provenance trace generated by Ducktape.

2. Focus on particular activities within a provenance diagram, by selecting them
from a dropdown box.

3. Highlight data flows in and out of activities within the diagram,; the width
of the box indicates the amount of information flowing through the activity.

4. Leverage reasoning to fill out missing information within a provenance graph.

Additionally, we allow provenance graphs to be embedded directly within
web pages. This allows provenance visualizations to be included directly with
other web applications. Furthermore, this visualization is self contained. Once
the provenance is rendered there is no need to call to the server. For example, in
LinkItUp ([7], http://linkitup.data2semantics.org), an application to enrich the
content of data with metadata, PROV-O-Viz is used to display the provenance
of how the application enriches data with this extra data. Thus, users under-
stand how the application makes its suggestions. (We will also demonstrate this
capability.)

3.1 Evaluation

We evaluated the visualization capabilities of PROV-O-Viz by using it to inspect
PROV data coming from four different sources. First of all, the provenance traces
of scientific workflows executed through the Taverna and WINGS workflow sys-
tems, that are made available as part of the Wf4Ever ProvBench benchmark.1

1 See https://github.com/provbench/Wf4Ever-PROV/.

http://linkitup.data2semantics.org
https://github.com/provbench/Wf4Ever-PROV/


218 R. Hoekstra and P. Groth

Fig. 3. Overview report of a runtime experiment, generated by Ducktape [6].

The Taverna PROV traces do not explicitly provide the type of events and
activities that many visualizations rely on. PROV-O-Viz automatically infers
these types by applying reasoning over the PROV-O schema definitions. Even
though some of these datasets are relatively large, focusing on the ego graph of
information dependencies flowing through the selected activity allows the visual-
ization to remain manageable. At the moment, however, PROV-O-Viz generates
a visualization for the ego graph centered around every activity. This means that
for provenance traces that contain very many connected activities, the process
of generating the Sankey diagram may take a long time. After the diagrams
have been built, the visualization will be very responsive. Embedded PROV-
O-Viz diagrams are already generated, and therefore do not suffer from this



PROV-O-Viz - Understanding the Role of Activities in Provenance 219

potential performance hit. The next version will feature a more responsive user
interface, that keeps users up-to-date as to the progress made in generating the
visualizations.

The Ducktape platform2 is another such scientific workflow system that is
focused on Machine Learning tasks. The visualization in Fig. 2 is based on the
provenance of one of the steps in a Machine Learning pipeline. Ducktape can
generate interactive reports of workflow execution that embeds a visualization
of its provenance trace [6]. See Fig. 3 for a screenshot of such a report.

The LinkItUp3 system for enriching metadata for datasets stored in the
Figshare.com scientific data publishing platform, stores all enrichment activi-
ties performed by users as part of a provenance trace. This provenance trace
can be inspected from within the application through a call to the PROV-O-Viz
API.

Git2PROV is a web service that can convert Git version histories to a prove-
nance trace expressed in various PROV compliant syntaxes.4 Every commit is
represented as a PROV activity. Visualizing these graphs can be even more chal-
lenging than those of the workflow systems because version commit histories are
tree-shaped, and highly connected: they all originate from the same initial com-
mit. Workflow systems can produce large graphs, but oftentimes these are in
fact multiple separate graphs for runs against multiple files.

4 Conclusion

In this demonstration, we show how generic visualization tools can be used to
interrogate provenance coming from multiple different applications. This pro-
vides evidence that provenance can provide added value without domain specific
extensions. In future work we will focus on the ability to generate entity-centric
diagrams, a browsing feature, allowing users to click through the various parts
of the provenance graph. We are furthermore considering the implementation a
more efficient method for calculating the information flow, e.g. based on central-
ity measures based on current flow in an electrical network [8].

Acknowledgements. This work was funded under the Dutch national programme
COMMIT.

References

1. Freire, J., Bonnet, P., Shasha, D.: Computational reproducibility: state-of-the-
art, challenges, and database research opportunities. In: Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data. SIGMOD ’12,
pp. 593–596. ACM, New York (2012)

2 See https://github.com/Data2Semantics/ducktape.
3 See http://linkitup.data2semantics.org.
4 See http://git2prov.org.

https://github.com/Data2Semantics/ducktape
http://linkitup.data2semantics.org
http://git2prov.org


220 R. Hoekstra and P. Groth

2. Groth, P., Moreau, L.: PROV overview: An overview of the prov family of docu-
ments. Technical report, W3C (2013)

3. Huynh, T.D., Groth, P., Zednik, S.: Prov implementation report. Technical report,
W3C (2013)

4. Borkin, M.A., Yeh, C.S., Boyd, M., Macko, P., Gajos, K.Z., Seltzer, M.,
Pfister, H.: Evaluation of filesystem provenance visualization tools. IEEE Trans.
Visual Comput. Graphics 19(12), 2476–2485 (2013)

5. Meyer, B., Prohaska, S., Hege, H.C.: Provenance visualization and usage. Technical
report (2009)

6. Wibisono, A., Bloem, P., de Vries, G.K., Groth, P., Belloum, A., Bubak, M.:
Generating scientific documentation for computational experiments using prove-
nance. In: Proceedings of IPAW 2014 (2014)

7. Hoekstra, R., Groth, P.: Linkitup: link discovery for research data. In: Discovery
Informatics: AI Takes a Science-Centered View on Big Data, AAAI Fall Symposium
Series (2013)

8. Brandes, U., Fleischer, D.: Centrality measures based on current flow. In:
Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 533–544. Springer,
Heidelberg (2005)



Joint IPAW/TaPP Poster Session



The Aspect-Oriented Architecture of the CAPS
Framework for Capturing, Analyzing

and Archiving Provenance Data

Peer C. Brauer, Florian Fittkau, and Wilhelm Hasselbring(B)

Software Engineering Group, Kiel University, Kiel, Germany
{pcb,ffi,wha}@informatik.uni-kiel.de

With aspect-oriented programming techniques, modularity may be achieved
via separating cross-cutting concerns. Data provenance can be considered as a
cross-cutting concern: code for collecting provenance data is usually scattered
across various places in a software system. Aspect-oriented programming allows
to seamlessly integrate cross-cutting concerns into existing software applications
without interference with the original system.

Following this approach, CAPS1 is a framework to weave provenance-captu-
ring mechanisms into existing Java applications, which are not yet provenance
aware. The CAPS framework employs AspectJ [5],2 the Kieker framework [4,7],3

the Java Management Extensions JMX,4 and some Java security mechanisms
to automatically collect the provenance information. Woven inside the applica-
tion as a minimal-invasive integration of the provenance capturing mechanisms,
CAPS monitors the execution of the software. Whenever a data set is processed,
CAPS creates the corresponding provenance graph entry. The graph itself is
stored in an integrated provenance archive build on top of the Neo4j graph
database.5 CAPS is implemented and evaluated in the context of the PubFlow
workflow system for semi-automatic research data publication [2]. In particu-
lar, workflow-generated provenance data is automatically gathered via CAPS,
without mixing program logic with provenance mechanisms.

For deployment, CAPS provides a GWT-based web interface,6 which allows
the user to upload his own scientific Java applications to the CAPS runtime
environment. While uploading the application, the user has to provide basic
information about the application and its runtime environment. These include:
– the deployment type of the application (e.g., web based, Java archive),
– virtual machine parameters,
– application parameters and
– the URL of an existing CAPS Provenance Archive instance in case of stand-

alone applications.
1 CAPS stands for Capturing and Archiving Provenance in Scientific workflows.
2 http://eclipse.org/aspectj/.
3 http://kieker-monitoring.net/.
4 http://docs.oracle.com/javase/tutorial/jmx/.
5 http://www.neo4j.org/.
6 http://www.gwtproject.org/.

c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 223–225, 2015.
DOI: 10.1007/978-3-319-16462-5 19

http://eclipse.org/aspectj/
http://kieker-monitoring.net/
http://docs.oracle.com/javase/tutorial/jmx/
http://www.neo4j.org/
http://www.gwtproject.org/


224 P.C. Brauer et al.

Based on the provided information, CAPS suggests so-called application profiles
for the application to be deployed. A profile contains a predefined selection of
aspects and Kieker monitoring probes, that are applicable to the type of the
given application. CAPS also provides profiles for Java-based workflow systems
such as jBPM.7 The user can refine the suggested profile or switch to another
profile that collects more detailed information profile.

After selection of the profile to be applied to the application, CAPS creates
a runtime configuration based on the provided information. After the creation
of the profile, the user may check the configuration via a profiling run.

If the user chooses to initiate a profiling run, the system starts the application
and displays the provenance information, captured by CAPS. This provides the
user the opportunity to check, whether all relevant aspects of the system are
under surveillance, and whether the monitoring level should be increased or
decreased. The user can repeat this process to optimize the provenance trace
produced by CAPS.

CAPS uses the Java sandbox security mechanism to intercept I/O and net-
work calls.8 We employ these components by weaving our monitoring probes
directly into those methods that are responsible for checking the applications’
calls against the JVM security constrains. CAPS also alters the configuration of
the JVM for the client application which always activates the sandbox, when-
ever the application starts. It also obtains additional basic runtime information
about the client application by querying the JMX interface.

Next, the user has to decide, whether the application should be exported as
a standalone application, such that it can be used without CAPS, or whether
the application should be added to the CAPS application library. For standalone
applications, CAPS creates a so-called CAPS connector and embeds it into the
application. The connector is responsible for connecting the application to the
CAPS server, so the provenance data created by the application can be analyzed
and archived.

To extract the provenance information from the collected monitoring data,
CAPS utilizes the existing data analysis functionality of the Kieker framework,
i.e. the analysis framework and the Kieker WebGUI [3].

CAPS provides specific Kieker filters, that can be used to filter the prove-
nance data from the stream of monitoring records. These filters is described
in [1]. CAPS comes with predefined analysis components, and offers the user to
create her own analysis components. Predefined analyses are, for example, avail-
able for creating the PROV-O9 provenance graph or for reconstructing workflows
in scientific workflow environments.

To store the provenance information collected by the framework, CAPS uses
an integrated provenance archive. The archive is built on top of the Eclipse
7 http://www.jboss.org/jbpm.
8 http://docs.oracle.com/javase/7/docs/technotes/guides/security/spec/
security-spec.doc1.html.

9 http://www.w3.org/TR/prov-o/.

http://www.jboss.org/jbpm
http://docs.oracle.com/javase/7/docs/technotes/guides/security/spec/security-spec.doc1.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/spec/security-spec.doc1.html
http://www.w3.org/TR/prov-o/


The Aspect-Oriented Architecture of the CAPS Framework 225

Modeling Framework Project (EMF),10 the Google Web Toolkit (GWT)11 the
PubFlow Graphframework,12 and Neo4j. It was a result of the W3C call for
implementations of the PROV-O data model.13 The provenance archive is devel-
oped based on an extended version of the PROV-DM [6], implemented with
the Eclipse Modeling Framework. We made small additions to the PROV-DM
model, such that we can store some additional information, like execution time
stamps and user roles. However, we keep our model compatible to the original
W3C PROV-DM. As persistence layer for our provenance archive we chose a
Neo4j graph database. This offers the advantage of benefiting from the specific
graph algorithms provided by the database engine. To store our EMF model
in the graph database we are currently building a new persistence layer based
on neo4emf,14 a framework that allows mapping an EMF model to a Neo4j
database.

References

1. Brauer, P.C., Hasselbring, W.: Capturing provenance information with a workflow
monitoring extension for the Kieker framework. In: Proceedings of the 3rd Interna-
tional Workshop on Semantic Web in Provenance Management, CEUR-WS, May
2012. http://eprints.uni-kiel.de/19636/

2. Brauer, P.C., Hasselbring, W.: PubFlow: a scientific data publication framework
for marine science. In: Proceedings of the International Conference on Marine Data
and Information Systems (IMDIS 2013), vol. 54, pp. 29–31, September 2013. http://
eprints.uni-kiel.de/22399/

3. Ehmke, N.C.: Everything in sight: Kieker’s WebGUI in action. In: Proceedings of the
Symposium on Software Performance: Joint Kieker/Palladio Days 2013, pp. 11–19.
CEUR-WS, Nov 2013. http://eprints.uni-kiel.de/22528/

4. van Hoorn, A., Waller, J., Hasselbring, W.: Kieker: A framework for application per-
formance monitoring and dynamic software analysis. In: Proceedings of the 3rd joint
ACM/SPEC International Conference on Performance Engineering (ICPE 2012),
pp. 247–248. ACM, April 2012. http://eprints.uni-kiel.de/14418/

5. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of aspectJ. In: Lindskov Knudsen, J. (ed.) ECOOP 2001. LNCS, vol. 2072,
p. 327. Springer, Heidelberg (2001)

6. Moreau, L., Missier, P.: PROV-DM: The prov data model. Technical report, World
Wide Web Consortium (2013)

7. Rohr, M., van Hoorn, A., Matevska, J., Sommer, N., Stoever, L., Giesecke, S.,
Hasselbring, W.: Kieker: Continuous monitoring and on demand visualization of
Java software behavior. In: Proceedings of the IASTED International Conference
on Software Engineering 2008 (SE’08), pp. 80–85, Feb 2008

10 http://www.eclipse.org/modeling/emf/.
11 http://www.gwtproject.org/.
12 http://www.pubflow.uni-kiel.de/en/the-framework/the-graphframework.
13 http://www.w3.org/TR/2013/NOTE-prov-implementations-20130430/.
14 http://neo4emf.com/.

http://eprints.uni-kiel.de/19636/
http://eprints.uni-kiel.de/22399/
http://eprints.uni-kiel.de/22399/
http://eprints.uni-kiel.de/22528/
http://eprints.uni-kiel.de/14418/
http://www.eclipse.org/modeling/emf/
http://www.gwtproject.org/
http://www.pubflow.uni-kiel.de/en/the-framework/the-graphframework
http://www.w3.org/TR/2013/NOTE-prov-implementations-20130430/
http://neo4emf.com/


Improving Workflow Design Using Abstract
Provenance Graphs

Tianhong Song1(B), Saumen Dey1, Shawn Bowers2, and Bertram Ludäscher1

1 Department of Computer Science, University of California, Davis, Davis, USA
thsong@ucdavis.edu

2 Department of Computer Science, Gonzaga University, Spokane, USA

1 Introduction and Motivation

A scientific workflow consists of a series of structured activities and computa-
tions that arise in scientific problem-solving. Recent work [7] has demonstrated
that collection-oriented modelling and design (COMAD) [3] leads to simpler and
more robust workflow design. In COMAD, for example, each actor is wrapped
with a well defined configuration that hides the low level complexities of “wiring”
processes together with respective data sources. On the other hand, some dataflow
details (e.g., fine-grained data dependency information) are hidden in the work-
flow graph that the user may construct an erroneous or unoptimized workflow due
to lack of information. Such problems are difficult to detect before workflow execu-
tion. Hence, configuring, maintaining and designing a collection-oriented workflow
is sometimes challenging and time-consuming, in addition, large-scale workflows
often tend to run for long time, therefore, error free and optimized workflow design
is always desired.

Several approaches have been developed to detect and resolve workflow design
issues in order to improve the correctness and efficiency of workflows, e.g., based
on graph traversal [4], graph reduction [5], and graph refactoring [2]. Similar
work has been done in the domain of Business Process Management [1] and
Process-aware Information Systems [6]. However, much less work focuses on
collection-oriented workflows. In previous work [8] abstract provenance graphs
(APGs) have been proposed as a means to detect workflow design issues. APGs
summarize all possible concrete provenance graphs and are computed prior to
workflow execution via a static analysis technique, where fine-grained depen-
dency information can be found.

Here, we extend this approach and illustrate how fine-grained data-oriented
APGs can be used to improve workflow design by graph querying and pattern
matching. Specifically, we propose to improve the state-of-the-art of workflow
design and analysis and report on this ongoing work on both of the following
fronts by employing abstract provenance information to: (1) Detect design prob-
lems. We show a declarative approach that workflow analysis can be performed
by specifying and applying a set of queries and properties on APGs to detect
design problems. (2) Improve workflow design. We propose to exploit APGs to
derive a more parallel workflow structure prior to execution and to discover other
optimization opportunities.
c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 226–228, 2015.
DOI: 10.1007/978-3-319-16462-5 20



Improving Workflow Design Using Abstract Provenance Graphs 227

Fig. 1. Example workflow with actor configurations (a) and its inferred APG (b)
showing fine-grained data dependencies. Highlighted edges reveal read-before-updated
(RBU) pattern matching the query (read−1.bypass∗.update), indicating a design prob-
lem. Example workflow without the same problem (c) and its inferred APG (d).

We use data curation workflows as an example to showcase our work. A
data curation workflow consists of several actors (processes) representing data
validation tasks and connections among them indicating how the data flows.
The data stream flowing among actors consists of a set of records (collections),
each record contains a set of attribute-value pairs and each value is a concrete
data item (e.g. scientific name). Each actor in a data curation workflow reads
a data stream and validates and updates certain data items (“update”) which
may use other data items as references (“read”) and the remaining (irrelevant)
data items will be automatically transported bypassing the actor (“bypass”).

2 Our Approach and Example

After an APG is constructed, design problems can be detected by checking
whether the graph violates certain rules or constraints. Some of the problems
can be recognized as graph patterns, e.g., certain type of edge cannot occur after
another type. In this way, these problematic patterns can be discovered using
graph queries. If the result of certain query is empty, this indicates a certain
pattern is not present in the graph. So the corresponding workflow does not
have this type of problem, otherwise, the workflow has this problem. Then we
can inform the user about the design problems and suggest ways to fix them.

APGs can also be used to improve workflow design. Instead of constraints,
optimization opportunities can be discovered by graph queries. If the result of a
query is not empty, this indicates certain type of optimization opportunity has
not been fully exploited. In addition, after the corresponding workflow has been
improved, the same query can be applied again to check whether this type of
opportunity has been fully exploited or not.

As the first prototype, we have identified some example constraints and opti-
mization opportunities that can be discovered by Regular Path Query. Here, we
show an example constraint called “No read-before-update”. An example data
curation workflow with two actors is shown in Fig. 1(a) where the “Scientific
Name Validator” in the workflow validates “SciName” and the “Flowering Time



228 T. Song et al.

Validator” validates “RepCon” using “SciName” as a reference. This workflow
has a problem that if “SciName” is not valid in the original input collection,
then “Flowering Time Validator” may yield incorrect result due to the invalid
reference. So sometimes we need to enforce a constraint that the data items used
as references should be validated first. If we query the APG in Fig. 1(b) using
this query read−1.bypass∗.update1, the result will not be empty since “SciName”
is read before it is validated. So we can conclude that the example workflow vio-
lates the “No read-before-update” constraint. The workflow shown in Fig. 1(c)
doesn’t have this issue (the order of actors is different), then if we apply the
same query on the inferred APG in Fig. 1(d), the result is empty. Also, queries
can be used to check whether a problematic workflow has been fixed or not.

Acknowledgements. Supported in part by NSF DBI-0960535 and ACI-0830944.

References

1. Brogi, A., Corfini, S., Popescu, R.: Semantics-based composition-oriented discovery
of web services. ACM Trans. Internet Technol. (TOIT) 8(4), 19:1–19:39 (2008)

2. Cohen-Boulakia, S., Chen, J., Missier, P., Goble, C., Williams, A.R., Froidevaux,
C.: Distilling structure in Taverna scientific workflows: a refactoring approach.
BMC Bioinform. 15(Suppl. 1), S12 (2014)

3. McPhillips, T., Bowers, S., Zinn, D., Ludäscher, B.: Scientific workflow design for
mere mortals. Future Gener. Comput. Syst. 25(5), 541–551 (2009)

4. Meda, H.S., Sen, A.K., Bagchi, A.: On detecting data flow errors in workflows. J.
Data Inf. Qual. (JDIQ) 2(1), 4 (2010)

5. Sadiq, W., Orlowska, M.E.: Analyzing process models using graph reduction tech-
niques. Inf. Syst. 25(2), 117–134 (2000)

6. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support
features-enhancing flexibility in process-aware information systems. Data Knowl.
Eng. 66(3), 438–466 (2008)

7. Zinn, D.: Modeling and Optimization of Scientific Workflows. Ph.D. thesis, UC
Davis, Davis, California (2010)

8. Zinn, D., Ludäscher, B.: Abstract provenance graphs: anticipating and exploiting
schema-level data provenance. In: McGuinness, D.L., Michaelis, J.R., Moreau, L.
(eds.) IPAW 2010. LNCS, vol. 6378, pp. 206–215. Springer, Heidelberg (2010)

1 Reversed read edge followed by an update edge with zero or more bypass edges in-
between.



Early Discovery of Tomato Foliage Diseases
Based on Data Provenance
and Pattern Recognition

Diogo Nunes1, Carlos Werly1, Gizelle Kupac Vianna1,
and Sérgio Manuel Serra da Cruz1,2,3(&)

1 UFRRJ – Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
{diogo_c_nunes,carlos_werly,kupac,serra}@ufrrj.br

2 PPGMMC/UFRRJ – Programa de Pós Graduação Modelagem Matemática e
Computacional, Seropédica, RJ, Brazil

3 PET-SI/UFRRJ – Programa de Educação Tutorial-Sistemas de Informação,
Seropédica, RJ, Brazil

Abstract. This work presents an approach focused in enhancing the quality of
tomato crops. We are developing and using low cost computational strategies to
support early detection of the late blight. Our approach consorts tomatoes cul-
tivars in an experimental field with inexpensive computer-aided resources based
on Web and Android mobile tools in which workers collect scouting data and
annotations and take images about the state of the crop, and in image filtering
techniques and pattern recognition to detect foliage diseases on tomatoes ima-
ges. In this study, we use provenance metadata about field observations, images
and farmers’ annotations as well, to improve the efficiency and accuracy of the
patterns recognition algorithms. Our identification method achieved a hit rate of
94.12 %, using a reduced set of digital images of the tomato crops.

Keywords: Provenance � Pattern recognition � Neural networks

1 Introduction

Side by side with a very competitive agribusiness, Brazil have a dynamic and diver-
sified family agriculture, composed by 4.3 million small agricultural establishments,
responsible for the production of very important products. This diversity at production
gives a huge economic value for the Brazilian agriculture, which nowadays experi-
ments a strong rhythm of growth at its productivity [1]. In 2013, it contributed
approximately with 6 % of Brazil’s Gross National Product [2]. Thus there are real key
benefits in ensuring the quality of data used by farmers, smallholder and agronomists to
support activities such as monitoring permanent or temporary crops, and planning for
sustainable development.

Among the temporary crops with very expressive value of production are the
tomatoes. Tomatoes are climacteric soft skin fruits, highly susceptible to diseases and
contamination, mainly through injured skin or damaged tissues during the plantation
stage [3]. The indiscriminate use of pesticides in tomato crops brings serious problems

© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 229–231, 2015.
DOI: 10.1007/978-3-319-16462-5_21



to human health and to environment. Last but not least, smallholders may lack the
resources to comply the increasingly strict standards of food safety, as customer
traceability needs, safety verification and inventory control, mainly because they do not
have full access to computer-based systems that alert, detect or predict the occurrence
of diseases. Such facilities may aid smallholders and farmers to reduce the chemical
management of tomato diseases, to grow their income levels and to deliver healthier
products. This research presents an approach focused in enhancing the quality of
tomatoes crops based on provenance annotations and neural networks.

2 Materials and Methods

We are developing a loosely coupled distributed system that uses low cost computa-
tional strategies to support early detection of the late blight [4], the commonest tomato
disease in Brazil. Late blight is severe and results in losses to tomato crops, especially
in colder and wet periods of the year. The disease is visually recognized by the
appearance of dark spots on tomato leaves, whose blotches vary from brown or gray to
pale green, often located at the edges of the tomato leaves [3, 4].

Our approach consorts real field data from 66 different genotypes of tomatoes
cultivars (plant varieties produced by breeding, grown under the principles of organic
agriculture in a controlled experimental field) with inexpensive computer-aided
resources based on:

(i) Android-based mobile tools in which smallholders may collect scouting data
attributes for pests such as the occurrence of weeds, insects and diseases. They could
also collect common annotations about the crop status and other environmental
information, take georeferenced photos about the infected (or suspected) tomato stems
and leaves, with a built-in camera. The tools would also manage the collected data and
provenance annotations;

(ii) Image filtering techniques and pattern recognition based on Multilayer Per-
ceptron neural networks to detect late blight on tomatoes images. Once acquired, these
scouting data, annotations and images are transferred from the mobile devices to a base
station that hosts the Web application and an Internet connection. To ensure that the
data collected in the field have a good level of quality, the dataset is pre-processed with
the objective to produce higher quality data. The processor checks the missing or
erroneous data and annotations, the outliers and the quality of the images before
performing pattern recognition algorithms. The Web application allows users to
investigate rectified faulty data and annotate datasets with provenance to reduce error
propagation on long-term evaluations. Besides, it is designed to allow the creation of
analytical reports to empower smallholder and farmers, allowing them to: visualize the
spreading of late blight on the field; reduce chemical sprayings; send or receive reports
and image samples to agronomist professional services.

3 Foliage Disease Pattern Recognition

In this study, we use provenance annotations about field observations, to improve the
efficiency and accuracy of patterns recognition algorithms, previously developed by our

230 D. Nunes et al.



research group [5, 6]. The pattern recognition algorithm performs the following steps:
first, it reduces the definition of the colored images about 70 % in order to speed the
performance of further procedures; second, the reduced colored image is converted to
black and white images; third, the reduced color images are used to generate novel
images, containing only red, green and black pixels. Over the images created by the
previous steps, we conduct a counting of pixels from different color bands. These
counters are then stored in a repository that contains the absolute number of pixels of
each color. Next, data are normalized, generating a new repository of those variables.
Finally, the variables are evaluated to recognize the pattern of late blight disease, more
specifically; the recognition used techniques of MLP neural networks [7].

4 Conclusion

Our foliage diseases identification approach achieved a hit rate of 94.12 %, using a
reduced set of digital images and annotations about the tomato crops. The main role of
provenance in our research is to ensure food safety, consumer protection and to offer
opportunities to smallholders to run their operations more productively. The software
tools were designed to use low cost apparatus and to guarantee the ease of use, because
smallholders have little room for error and little expertise in digital processing with
sophisticated programs.

Acknowledgements. We are grateful by the financial support provided by FAPERJ (E-26/
112.588/2012 and E-26/110.928/2013 and FNDE-MEC-SeSU.

References

1. IBGE - Brazil in Figures (2013). http://biblioteca.ibge.gov.br/visualizacao/periodicos/2/bn_
2013_v21.pdf

2. IBGE - Contas Nacionais Trimestrais Indicadores de Volume e Valores Correntes. (2013)
http://ftpibge.gov.br/Contas_Nacionais/Contas_Nacionais_Trimestrais/Fasciculo_
Indicadores_IBGE/pib-vol-val_201304caderno.pdf

3. Nakano, O.: As pragas das hortaliças: seu controle e o selo verde. Horticultura Brasileira, Vol.
17, n.1 UnB (1999)

4. Correa, F.M., Bueno Filho, J.S.S., Carmo, M.G.F.: Comparison of three diagrammatic keys
for the quantification of late blight in tomato leaves. Plant Pathol. 58, 1128–1133 (2009)

5. Vianna, G.K., Cruz, S.M.S.: Análise Inteligente de Imagens Digitais no Monitoramento da
Requeima em Tomateiros. Anais do IX Congresso Brasileiro de Agroinformática. Cuiabá, MT
(2013)

6. Cruz, S.M.S., Campos, M.L.M., Mattoso, M.: Towards a taxonomy of provenance in sci-
entific workflow management systems. In: Proceedings of the SERVICES 2009 Congress,
pp. 259–266, Los Angeles (2009)

7. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, New York
(1995)

Early Discovery of Tomato Foliage Diseases 231

http://biblioteca.ibge.gov.br/visualizacao/periodicos/2/bn_2013_v21.pdf
http://biblioteca.ibge.gov.br/visualizacao/periodicos/2/bn_2013_v21.pdf
http://ftpibge.gov.br/Contas_Nacionais/Contas_Nacionais_Trimestrais/Fasciculo_Indicadores_IBGE/pib-vol-val_201304caderno.pdf
http://ftpibge.gov.br/Contas_Nacionais/Contas_Nacionais_Trimestrais/Fasciculo_Indicadores_IBGE/pib-vol-val_201304caderno.pdf


Provenance in Open Data
Entity-Centric Aggregation

Fausto Giunchiglia and Moaz Reyad(B)

Department of Information Engineering and Computer Science,
University of Trento, Trento, Italy
{fausto,reyad}@disi.unitn.it

http://www.disi.unitn.it

1 Motivation and goals

Recently an increasing number of open data catalogs appear on the Web [1].
These catalogs contain data that represents real world entities and their attri-
butes. Data can be imported from several catalogs to build web services; hence
there is a need to trace the source of each entity and attribute value in a way
that handles also the possible conflicts between attribute values coming from
overlapping sources [2]. For open data, source tracing requires capturing both
the provenance [3] of the attribute values and the identity links [4] between
entities. Moreover, resolving the conflicts manually becomes harder with the
increasing size of data.

We propose a source tracing module that extends any existing import process
by making it tracing-aware. The source tracing module contains three tools:
authority, provenance and evidence. Authority provides rules for overriding
attribute values, provenance specifies the source of an attribute value and evi-
dence provides identity links between entities.

2 Problem

The problem of tracing sources is studied with respect to an import process
that takes an open data catalog and extracts entities and their attribute values
from its contents. The extracted entities and attribute values are imported into
a database called entity base.

A common category of the open data repositories is the DCAT catalog.
DCAT1 (Data Catalog Vocabulary) is an RDF vocabulary for describing datasets
in a data catalog. A DCAT catalog can have one or more datasets, a dataset
can have one or more distributions. DCAT catalogs exist within a Web-based
system called CKAN. CKAN2 (Comprehensive Knowledge Archive Network) is
a dataset distribution system. Datasets are distributed as packages. Each pack-
age has one or more resource groups, and each resource group has one or more
resources.

An erratum to this chapter is available at 10.1007/978-3-319-16462-5 39
1 http://www.w3.org/TR/vocab-dcat/.
2 http://ckan.org.

c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 232–234, 2015.
DOI: 10.1007/978-3-319-16462-5 22

http://www.w3.org/TR/vocab-dcat/
http://ckan.org


Provenance in Open Data Entity-Centric Aggregation 233

Open data catalogs contain data that represents objects from the real world.
We refer to real world objects that are of enough importance to be given a name
as entities. An example for entities is Italy. There are different entity types, such
as Locations. Italy is an entity of type Location. The type of entity gives the list
of attribute definitions that can be assigned to an entity of this type. Location
entities may have the attribute Area which holds the value of the total area of
the location. The values of the attribute definitions for a specific entity are called
attribute values.

The entity base is populated with entities through an import process which
can be, for instance, a generic work flow for importing any dataset or a custom
procedure for importing a specific dataset. We consider any import process that
has the following three aspects:

1. Partiality: The import process may take a partial input.
2. Overlap: Imported data may be disjoint or overlapped with existing entities

and attribute values in the entity base.
3. Multiple Imports: The import process may run multiple times on the same

catalog.

3 Our Approach

Fig. 1. Extending an import process with the source tracing module

We propose a source tracing module that extends any existing import process
by making it tracing-aware (see Fig. 1). The source tracing module contains three
tools: authority, provenance and evidence.

3.1 Authority

Authority is a meta-attribute of an element (entity type, an attribute definition,
an entity or an attribute value) that provides a connection between the element
and the resource which has the authority to create or update it. Authority is



234 F. Giunchiglia and M. Reyad

specified through a set of authority rules. An authority rule is a relation between
a resource and one or more elements which is called the scope, with a ranking
value that is called the priority.

The scope specifies the set of elements that are affected by an authority rule.
We support four ordered levels of authority scope: (1) entity type, (2) a set of
entities, (3) attribute definition and (4) attribute value. The three aspects of
the import process (partiality, overlap and multiple imports) can happen at any
scope. The priority is a ranking value that is assigned to order if multiple sources
are given authority for the same scope. This ranking is a total order. Authority
should be defined for each element. Its purpose is to help in finding a winning
resource if there is a conflict between two resources in an attribute value.

3.2 Provenance and Evidence

An import process runs on an external resource and extracts entities and their
attribute values from it. Before creating or updating the entities and their
attribute values in the entity base, a tracing-aware import process creates a
graph of elements between the external source and the entity base. This graph
is shown in Fig. 2. The ultimate goal of this graph is to trace the sources of
each element in the entity base. The graph is connected to the entity base
through provenance and evidence. Provenance is a meta-attribute that speci-
fies the source of an attribute value; while evidence is an attribute that links an
entity with another external entity which represents the same real world object.

Fig. 2. Provenance graph for the entity base

References

1. Braunschweig, K., Eberius, J., Thiele, M., Lehner, W.: The state of open data limits
of current open data platforms (2012)

2. Bleiholder, J., Naumann, F.: Data fusion. ACM Comput. Surv. 41(1), 1:1–1:41
(2009)

3. Moreau, L., Groth, P.T.: Provenance: An Introduction to PROV. Synthesis Lectures
on the Semantic Web: Theory and Technology. Morgan & Claypool, San Rafael
(2013)

4. Halpin, H., Place, B.: When owl:sameas isn’t the same: An analysis of identity links
on the semantic web. In: Linked Data on the Web (LDOW) (2010)



Enhancing Provenance Representation
with Knowledge Based on NFR Conceptual
Modeling: A Softgoal Catalog Approach

Sérgio Manuel Serra da Cruz1,2,3(&) and André Luiz de Castro Leal1

1 UFRRJ – Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
2 PPGMMC/UFRRJ – Programa de Pós Graduação em Modelagem Matemática

e Computacional, Seropédica, RJ, Brazil
3 PET-SI/UFRRJ – Programa de Educação Tutorial - Sistemas de Informação,

Seropédica, RJ, Brazil
andrecastr@gmail.com, serra@ufrrj.br

Abstract. This work explores the organization of the provenance as a catalog
of non-functional requirement (NFR). It considers provenance as a quality factor
that should be incorporated since the early stages of software development as
softgoals. The aim of this research is to introduce a systematic approach to
design a provenance catalog using consolidated software engineering tech-
niques. The study is an effort to depict provenance as patterns supported by
Softgoal Interdependency Graphs (SIG) and Goal-Question-Operationalization
method (GQO), a reusable framework that makes explicit characterization,
decomposition, relationships and operationalization of elements that can be
satisfied during the software design.

Keywords: Provenance � Non-functional requirements � Softgoal catalog �
NFR patterns

1 Introduction

In Software Engineering (SE), one kind of requirement is called non-functional
requirement. NFR is difficult to capture, organize, reuse and test; therefore, they are
usually evaluated subjectively. NFR are known as constraints or quality requirements
[1, 2] and are treated as softgoals [3]; they are targets that do not need to be addressed
in an absolutely way but in a good enough sense [6]. The systematic treatment for NFR
in early stages of software development may introduce positive contributions and
increase software quality. The conceptual modeling for quality considering provenance
as NFR is still underexplored either in the SE or Database domains. This is important
because the quality achieved by data provenance has a clear proximity with software
traceability. Both subjects are considered hot topics, offering potential benefits to data
management and software development respectively.

Traceability and provenance handling consists of storing metadata that enables to
reconstruct these chains of operations at different levels of abstraction. Due to the
similarities between traceability and provenance [12], we advocate that the provenance

© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 235–238, 2015.
DOI: 10.1007/978-3-319-16462-5_23



can also be considered as NFR in software development. There several representations
of provenance focused on data [4, 7–9] and very few works of provenance focused on
the software process [12, 13]. Data provenance authors use taxonomies, recommen-
dations or ontologies to describe the elements involved in the conceptualization,
classification and hierarchical structure of distinct kinds of provenance metadata.
However, our research, differently from related works propose a new approach based
on reusable catalogs (conceptual models) not only to represent provenance as a quality
factor, but also to aid reducing the gap between software specification, its operation-
alizations and the diversity of data provenance descriptors generated by its execution.

The aim of this work is to present the steps to map provenance as NFR catalogs,
using a systematic approach based on NFR framework [5], NFR patterns [6] and NRF
catalogs [5, 10]. The NFR framework and the NFR patterns provide a solid theoretical
foundation for treating NFR, with appropriate representation schemas and rules. In
particular, the NFR pattern focuses on the reuse of NFR knowledge [3, 5]. NFR
patterns may be decomposed to create/compose more precise and unambiguous pat-
terns to build larger ones or be instantiated to create occurrence patterns using existing
ones as templates.

2 Modeling Provenance as a NFR Catalog

Our proposal is one of the first to represent provenance as a quality factor within a
catalog based on NFR framework and NFR patterns. We stress that the modeling effort
is not a simple representation based on hierarchies of provenance or data provenance
standards. Just the contrary, The NFR catalog was modeled taking into account the
decomposition of softgoals to be addressed or achieved by (business or scientific)
systems that require different kinds of provenance. Besides, our contribution also
exposes the links and impacts between the software softgoals. We introduce a novel
perception of provenance, describing it as a quality that must be satisfied to enhance the
software traceability, enabling the construction of verifiable chains of operations in
software systems to produce pieces of data with higher quality and embedded with data
provenance descriptors.

The development of a Provenance NFR Catalog used several patterns defined by
Supakkul et al. [6]: (i) Objective Patterns used to capture the definition of NFRs in
terms of specific (soft)goals to be achieved; (ii) Problem Patterns captured knowledge
of problems or obstacles to achieve goals; (iii) Alternatives Patterns (operationaliza-
tions) used to capture different means, solutions, and requirements mappings; (iv)
Selection Patterns used to choose the best alternative considering their side-effects. To
elaborate the provenance NFR Catalog we defined a set of three modeling steps.

First Step - The conceptual model was conceived to follow the Objective Pattern. The
result is a Provenance SIG (not depicted here due to space restrictions). An SIG is a
graph that shows two elements of Objective Patterns. First element is the Identification
Pattern, where Provenance is modeled as the root of the graph. The second element is the
Decomposition Pattern with relations, like ‘Capturable’, ‘Classifiable’ were presented.
Such relations were based on the provenance taxonomy proposed by Cruz et al. [7].

236 S.M.S. da Cruz and A.L. de Castro Leal



The Provenance SIG was focused on the positive or negative contribution of the
relations represented by links of the type HELP, HURT, BREAK and MAKE and also
decompositions, operationalizations and argumentations represented by the links OR/
AND [5].

Second Step - In this step we defined three patterns: GrupoIdentification, Questions and
Alternatives. The definition of such categories is important because they help designers to
define the questions and further select the operationalizations during the software devel-
opment process. After these definitions, it was possible specify the QuestionIdentification
[10] and combine them with the GroupIdentification. The questions were answered
according to the list of operationalizations for the softgoals (Alternative Patterns). Their
impact on other NFR softgoals (previously defined in the SIG graph) were evaluated and
then linked with questions as alternative responses. The operationalizations were repre-
sented at the lowest level of the SIG graph as leafs associated with NFR softgoals by
contribution links of the type ANSWER.

Third Step - After defining the above mentioned patterns; it was possible to use SE
standardized document like GQO [10] to organize and represent the knowledge
achieved by the previous steps. The result of such effort was a conceptual model with
the knowledge about provenance in a framework that can be used in (business or
scientific) systems or even be shared, reused and evolved by third-party.

3 Conclusion

In this work, we introduce an original proposal about treating provenance of software
development as a quality factor of (business or scientific) systems. Our research pro-
vides systematic approach based on conceptual modeling to represent provenance as
NFR. We stress that our study is supported by consolidated methods of SE that do not
substitute, but may compliment, traditional data provenance standards and specifica-
tions. We also agree with [11, 14] on the need for further empirical research on the use
of NFRs and SIG during requirements engineering. As future work, we will expand the
catalog through larger number of softgoals and operationalizations and evaluate it in
different domains.

Acknowledgements. We are grateful by the financial support provided by FAPERJ (E-26/
112.588/2012 and E-26/110.928/2013 and FNDE-MEC-SeSU.

References

1. Sommerville, I., Sawyer, P., Viller, S.: Viewpoints for requirements elicitation: a practical
approach, In: 3rd IEEE International Conference on Requirements Engineering, pp. 74–81
(1998)

2. Abran, A., Bourque, P., Dupuis, R., MooreDonald, J.W.: SWEBOK: Guide to the Software
Engineering Body of Knowledge. IEEE Press, Piscataway (2004)

Enhancing Provenance Representation with Knowledge 237



3. Chung, L.: Non-functional requirements. Department of Computer Science, The University
of Texas at Dallas. http://www.utd.edu/*chung/RE/NFR-18–4-on-1.pdf

4. Simmhan, Y., Plale, B., Gannon, D.: A survey of data provenance in e-science. SIGMOD
Rec. 34(3), 31–36 (2005)

5. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-functional Requirements in Software
Engineering. Kluwer Academic Publishers, Boston (1999)

6. Supakkul, S., Hill, T., Chung, L., Than, T.T., Leite, J.C.S.P.: An NFR pattern approach to
dealing with NFRs. In.: 18th IEEE International Requirements Engineering Conference,
Sydney, vol. 18. pp. 179–188 (2010)

7. Cruz, S.M.S., Campos, M.L.M., Mattoso, M.: Towards a taxonomy of provenance in
scientific workflow management systems. In: Proceedings of the SERVICES 2009 Congress,
pp. 259–266. Los Angeles (2009)

8. Zhao, J. Bizer, C. Gil, Y. Missier, P.. Sahoo S.: Provenance requirements for the next
version of RDF. In: Proceedings of the W3C Workshop - RDF Next Steps, Palo Alto (2010)

9. Moreau, L.: The foundations for provenance on the web. Found. Trends Web Sci. 2, 99–241
(2010)

10. Serrano, M., Leite, J.C.S.P.: Capturing transparency-related requirements patterns through
argumentation. In: 1st International. Workshop on Requirements Patterns (RePa), pp. 32–41
(2011)

11. Leal, A.L.C., Sousa, H.P., Leite, J.C.S.P.: Modelo orientado à meta para estabelecer relações
de contribuição mútua entre Proveniência, Transparência e Confiança. In: XVII Workshop
on Requirements Engineering (WER14), Pucón, Chile (2014). (in portuguese)

12. Asuncion, H.U., Asuncion, A.U., Taylor, R.N.: Software traceability with topic modeling.
In: 32nd International Conference on Software Engineering (ICSE), pp. 95–104. Cape Town
(2010)

13. Barbero, M., Didonet, M., Del Fabro, J.B.: Traceability and provenance issues in global
model management. In: 3rd ECMDA-Traceability Workshop (2007)

14. Leal, A.L.C., Cruz, S.M.S.: Transparência em Experimentos Científicos Apoiados Em
Proveniência: Uma Perspectiva para Workflows Científicos Transparentes. In: 2nd
WTRANS-SBSI (2014)

238 S.M.S. da Cruz and A.L. de Castro Leal

http://www.utd.edu/%7echung/RE/NFR-18%e2%80%934-on-1.pdf


Provenance Storage, Querying,
and Visualization in PBase

Vı́ctor Cuevas-Vicentt́ın1(B), Parisa Kianmajd1, Bertram Ludäscher1,
Paolo Missier2, Fernando Chirigati3, Yaxing Wei4, David Koop3,

and Saumen Dey1

1 University of California at Davis, Davis, USA
{victorcuevasv,parisa.kianmajd}@gmail.com

ludaesch@ucdavis.edu
2 Newcastle University, Newcastle upon Tyne, UK

Paolo.Missier@ncl.ac.uk
3 New York University, New York, USA

{fchirigati,dakoop}@nyu.edu
4 Oak Ridge National Laboratory, Oak Ridge, USA

weiy@ornl.gov

Abstract. We present PBase, a repository for scientific workflows and
their corresponding provenance information that facilitates the sharing
of experiments among the scientific community. PBase is interoperable
since it uses ProvONE, a standard provenance model for scientific work-
flows. Workflows and traces are stored in RDF, and with the support of
SPARQL and the tree cover encoding, the repository provides a scalable
infrastructure for querying the provenance data. Furthermore, through
its user interface, it is possible to: visualize workflows and execution
traces; visualize reachability relations within these traces; issue SPARQL
queries; and visualize query results.

Keywords: PBase · ProvONE · Scientific workflows · Provenance repos-
itory

1 Introduction

In the past few years, scientific workflows have been often used to define and
execute a range of experiments. As science is collaborative, the need arises for
a repository that allows multiple users to store and query scientific workflow
provenance information. Additionally, such a repository must be interoperable,
in the sense that workflow traces may come from different systems, and scalable
as the number and the size of traces grow, providing an efficient query evaluation.

This paper presents PBase [CKL+14], which addresses three main key points:
facilitate the sharing of scientific workflows and their corresponding execution
traces among the scientific community; allow user interaction so that users can
further explore the repository data; and provide both sharing and interaction in
an interoperable and scalable manner. Our repository achieves these goals by:
c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 239–241, 2015.
DOI: 10.1007/978-3-319-16462-5 24



240 V. Cuevas-Vicentt́ın et al.

Fig. 1. The PBase Web GUI and its main components.

(i) making use of ProvONE [Dat14a], a standard provenance model that brings
the advantages of the emerging W3C PROV standard [W3C13] and that
addresses the interoperability challenge; (ii) defining a representative set of
queries, identified in collaboration with climate scientists, that characterizes
the required functionality and user interaction; and (iii) providing a scalable
infrastructure based on TDB, the RDF triplestore of the Jena Framework1 that
supports SPARQL, an expressive query language, and its efficient evaluation.
PBase also incorporates the tree cover encoding proposed by Agrawal et al.
[ABJ89] to improve the performance of reachability queries.

To the best of our knowledge, PBase is the first repository to address all the
aforementioned challenges.

2 PBase Features

Interoperability. PBase uses ProvONE [Dat14a] to represent both prospective
provenance (i.e. workflow specifications) and retrospective provenance (i.e. execu-
tion traces). ProvONE is an extension of the W3C PROV [W3C13] standard and
it is specified through an ontology serialized in OWL-2. Its goal is to be expres-
sive enough to cover most workflow models used by different scientific workflow
management systems, which allows PBase to work in an interoperable manner.

User Interaction. An essential feature for a provenance repository is to visual-
ize a workflow and its various execution traces. PBase uses a Web GUI for this
purpose (see Fig. 1). Furthermore, in collaboration with climate scientists, we
have identified a series of queries, specified in SPARQL, that are representative
for the functionalities that they require (such queries are available in [Dat14b]).
As users may not be familiar with SPARQL, PBase also allows these queries to
1 http://jena.apache.org/.

http://jena.apache.org/


Provenance Storage, Querying, and Visualization in PBase 241

be issued from the GUI interface through their textual description. When the
results of a query are generated, besides presenting them in a text representa-
tion, the provenance nodes corresponding to the results are highlighted. To see
the lineage of a particular node in a workflow or trace, users can select this node
and use the option to highlight its ancestors and descendants.

Scalability. We adopt RDF to store workflows and execution traces—in par-
ticular, we use TDB from the Jena Framework. As an example, XML traces
from VisTrails2 can be uploaded through the Web and they are automatically
translated into ProvONE RDF and stored in TDB. As mentioned before, PBase
uses SPARQL to issue queries in the repository, which allows for an expressive
and efficient evaluation. The tree cover encoding [ABJ89] is also implemented:
it enables determining reachability relations between nodes by simply compar-
ing integer range intervals, thus avoiding more costly graph explorations and
enhancing the performance of PBase.

3 Conclusion

We have presented PBase, a repository for scientific workflows and their cor-
responding execution traces. It can be regarded as a step towards a repository
supporting sophisticated provenance querying and analytics over a large collec-
tion of traces. PBase was developed in the context of DataONE3, a large scale
and federated data infrastructure serving the Earth Sciences community, and
our ultimate goal is to incorporate it into this infrastructure.

Acknowledgments. The authors thank: members of the DataONE Provenance Work-
ing Group, for helping in the specification of PBase; and members of the DataONE
EVA Working Group, for their collaboration. This work was supported by NSF Award
OCI-0830944 (DataONE).

References

[ABJ89] Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management of transi-
tive relationships in large data and knowledge bases. In: Proceedings of the
1989 ACM SIGMOD International Conference on Management of Data,
SIGMOD 1989, pp. 253–262. ACM, New York (1989)

[CKL+14] Cuevas-Vicentt́ın, V., Kianmajd, P., Ludäscher, B., Missier, P., Chirigati,
F.S., Wei, Y., Koop, D., Dey, S.C.: The PBase scientific workflow prove-
nance repository. Int. J. Digit. Curation 9(2), 28–38 (2014)

[Dat14a] DataONE Provenance Working Group. ProvONE: A PROV Extension
Data Model for Scientific Workflow Provenance (2014). http://purl.org/
provone

[Dat14b] DataONE Provenance Working Group. The ProvONE Scientific Workflow
Provenance Dataset (2014). http://purl.org/provone/provbench

[W3C13] W3C Provenance Working Group. PROV Overview (2013). http://www.
w3.org/TR/2013/NOTE-prov-overview-20130430/

2 http://www.vistrails.org/.
3 http://www.dataone.org/.

http://purl.org/provone
http://purl.org/provone
http://purl.org/provone/provbench
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/
http://www.vistrails.org/
http://www.dataone.org/


Engineering Choices
for Open World Provenance

M. David Allen(&), Adriane Chapman, and Barbara Blaustein

The MITRE Corporation, Mclean, USA
{dmallen,achapman,bblaustein}@mitre.org

Abstract. This work outlines engineering decisions required to support a
provenance system in an open world where systems are not under any common
control and use many different technologies. Real U.S. government applications
have shown us the need for specialized identity techniques, flexible storage,
scalability testing, protection of sensitive information, and customizable prov-
enance queries. We analyze tradeoffs for approaches to each area, focusing more
on maintaining graph connectivity and breadth of capture, rather than on fine-
grained/detailed capture as in other works. We implement each technique in the
PLUS system, test its real-time efficiency, and describe the results.

Keywords: Provenance � Lineage � Pedigree � System engineering

1 Introduction

All provenance systems to this point have been applied to “closed world” systems. As
described in [12], a closed world system contains at least one of the following prop-
erties: The underlying application or systems are known in advance and provenance
enabled; a provenance administrator has administrative privileges for the systems and
applications in use; or full knowledge of either the data or processes is known in
advance. These assumptions work very well for scientific applications [5, 15, 19, 27,
30], within relational databases [9, 14], and for specific applications [15]. However, the
world of large-scale enterprises, as typified by our U.S. government sponsors, is much
messier.

Our users typically operate in environments that involve computations distributed
across personnel and systems in very large enterprises. Their interests usually do not lie
with replication of results or very fine-grained provenance, but with more general
queries whose purpose is to help users build trust that a particular dataset is appropriate
for their use. Government sponsors are trying to exploit available assets from other
government groups, so most users who wish to use novel datasets will eventually need
to investigate the provenance of that information to determine its suitability for the
mission at hand. In Sects. 2–6, we describe system design research that is required for
functioning open-world provenance systems. Section 7 evaluates each proposed
technique. We discuss related work and conclude in Sects. 8 and 9 respectively.

© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 242–253, 2015.
DOI: 10.1007/978-3-319-16462-5_25



2 Identity

The PROV Data Model [20, 28] uses URLs/URIs as identifiers for most things. If two
entities have the same identifier then they are considered equal. We concur with this
definition, but we have a frequent need to establish a common identifier that can be
computed no matter what system/user/environment/organization is involved in the
manipulation of the artifact. Figure 1 motivates the need for extensive identity capa-
bilities in any open-world provenance system. A set of simulation parameters are given
to a program that produces CSV data as an output (with a log). Days later, that CSV file
is sent via a thumb drive or other unobservable method to a different user in another
organization, across several network boundaries. That file is then saved to the user’s
hard disk and run through a separate analysis process. Figure 1(a) shows what can
happen without an identification technique to establish common identity of data or
process nodes in a provenance graph. An identification technique is fundamental,
because we must concede that observing every provenance link without exception is
unlikely. Our strategy, then, is to determine ways of identifying or “tagging” data in a
way that will persist wherever and however the data might travel outside of our ability
to observe it, resulting in a graph like that shown in Fig. 1(b).

Imposing an artifact naming or URI convention on provenance capture will not
work in wide collaborations, and essentially no assumptions can be placed on the
storage or transmission method of the data. Over a distributed system, it is entirely
possible to see several, unrelated “Hello World Output.txt” files. Name, file size,
owner, or other related metadata is useful to capture, but does not provide a sound basis
for identification. Content does provide a basis: across many systems, the same file can
be copied and the name changed, but the underlying information is the same: Alice’s
MyNotes.docx is the same as Bob’s AliceNotes.docx in content.

When capturing and reporting provenance in complex environments, there may be
multiple, independent observations of the same thing (sending system observes

Program C:\data.csv

F:\data.csv 
(Thumb Drive)

Analysis

Simulation
Parameters

Results.xslx

C:\ log.txt

Program C:\data.csv
CBI:  ff19a9f Analysis

Simulation
Parameters

Results.xslx

C:\log.txt

b)

a)

Fig. 1. (a) Two independent but related provenance graphs. (b) The correct provenance graph
with the same data artifact from both graphs correctly identified.

Engineering Choices for Open World Provenance 243



transmission of M; receiving system Y observes the receipt of M). Additionally, data or
processes may be observed via different technical channels (program generates a file
M on disk; months later, user receives email with attachment M). These requirements
create situations where disconnection and duplication occurs [4].

The solution is to adopt content- or context-bound identifiers. A content-bound
identifier (CBI) is any identifier that is effectively computed as a function of the content
of a data item. Content-bound identifiers permit two independent observers to identify
the item the same way, even if they are ignorant of the existence of the other observers.
Provenance reporting systems can use content-bound identifiers as a way of synchro-
nizing multiple observers/reporting clients, and de-duplicating what would otherwise
become redundant and disconnected. Context-bound identifiers are more suitable for
tracking different program executions across different environments; at the moment,
content-bound identification of data is most useful because data is what is moving
across machine boundaries. Some computing environments such as Hadoop move the
processing to the data because of data volumes. Invocations can be de-duplicated with
context-bound identifiers; unfortunately unlike content-bound identifiers, what con-
stitutes a good context-bound identifier will be different depending on the underlying
computational system.

In the example above, we must establish that the file named data.csv and the thumb-
drive data are the same document, as shown in Fig. 1(b). Using content-bound iden-
tifiers, all parties that touch the file will compute the same CBI, thus providing the
proof that the provenance graphs are indeed joined.

There are many available options for cryptographic hash functions; most have some
suitability for content-bound identifiers. This section is not an exhaustive review, but
just a brief look at two very common functions, along with their pros and cons. MD5,
first published in 1992, produces 128-bit digests (hashes), while SHA256 is an instance
of the SHA-2 cryptographic hash function that produces 256-bit digests.

Hash functions for provenance identity should be evaluated in terms of three
aspects: performance (data volume hashed in a given period of time), resistance to
collision (likelihood that two different data items would have the same digest), and size
(how much data the digest contains). In terms of these tradeoffs, SHA-256 is larger,
more robust/resistant to collisions, and slower than MD5 (see Sect. 7.1). MD5 is
discouraged for cryptographic applications [29] yet is still in wide use in environments
where collisions are not a primary concern.

3 Storage

There are several options for storing provenance information. These include: relational [5,
6, 31]; flat file [23]; bound to the data itself [17]; graph-based [13, 18, 25]. These storage
options are not mutually exclusive. It is possible to take information from a database,
output provenance for a particular file and bind it to the data. However, the choice of
which storage strategy to use for a provenance management system depends on factors
including: technology required by provenance-using applications; directives and man-
dates; provenance information required (the required usage of the provenance information
will dictate the style in which it is stored); network architecture (transmission between

244 M. David Allen et al.



different enclaves can be problematic, or even impossible); trust architecture (with many
different government partners, trust issues may dictate that provenance needs to be hosted
in a particular place, or not combined with other sources). At various times in our research
system, PLUS, we have used relational databases, flat files, XML, and graph databases to
store provenance.

XML: XML and other hierarchical document formats such as JSON and BSON are
workable solutions, but an imperfect fit; the data model behind XML and JSON is
fundamentally a tree, although XML languages that support directed graphs (i.e.
GraphML) can help. XML is well-suited to expressing a subset of provenance graphs
and data structures, but to express the full range of directed graphs, implementers will
either fall back on the use of “pointers” (e.g. XML ID/IDREF) or data duplication
within the document to express directed graphs without tree assumptions. In other
words, the underlying model gets messy. In our experience, XML is useful as an
interchange format, but not as a storage format because it complicates query.

Relational: For several years, our software used MySQL and PostgreSQL as a storage
layer, providing us with extensive experience on the pros and cons of relational storage
for provenance. Relational databases are attractive because of their wide adoption and
mature tooling. We found, though, that the RDMBS made path-associative query
extremely difficult. Storing provenance in an RDBMS typically involves a table of
nodes and a table of edges. These designs are excellent for bulk query that does not
require much edge traversal (“Fetch all provenance owned by Bob”), but tend to be
very poor at path-associative queries (“Fetch all provenance that is between 2 and 5
steps downstream of X”). Path-associative queries typically end up being translated as
dynamically constructed, variably recursive SQL queries that join nodes to edges.
RDMBS rapidly pushes developers down the path of re-implementing basic graph
techniques the RDBMS does not provide (e.g. shortest path algorithms) rather than
exploiting known good implementations.

Graph DBs: Our findings over time have indicated that general purpose graph dat-
abases (such as Neo4J or, in principle, RDF triple stores) are by far the best fit for
provenance, for two simple compelling reasons: (1) the graph model under the hood of
a graph database is fundamentally a match for the core of provenance (a directed
graph), and (2) graph databases will typically provide graph-oriented query languages
(such as Cypher within Neo4J, or perhaps SPARQL within RDF triple stores) which
greatly facilitate provenance queries. The negative aspect of graph databases is that
because they are “naturally indexed” by relationships/edges, they do not perform as
well on bulk queries mentioned above. While such bulk queries do have important
uses, the most interesting and powerful provenance queries (see Sect. 8) typically are
path-associative. This style of query emphasizes the strengths of graph query lan-
guages; an emphasis which plays to many of the weaknesses of other languages.

Engineering Choices for Open World Provenance 245



4 Protection

Our US government sponsors are particularly concerned about protection of prove-
nance information. Many times, materials and methods are more protected and sen-
sitive than the resulting information. At a minimum, we must apply classic access
control techniques to the provenance information [26]. However, classic access con-
trols break provenance graphs. If a single node or edge within the provenance graph
cannot be shown, then the provenance graph may be severely truncated. Consider the
chain graph shown in Fig. 2(a). If the process B is sensitive and restricted, then
the provenance graph showing descendants of A will only consist of A, instead of the
richer graph. To this end, we have created surrogates as described in [10], in which we
guarantee that protected nodes and edges will not be shown, but the utility of the graph
is maximized by inserted surrogate nodes and edges.

The model we have adopted calls for permitting the attachment of various “priv-
ilege classes” to individual provenance nodes; users who attempt to access node
information must demonstrate that they belong to the correct privilege class. Our notion
of a privilege class is meant to subsume what we might otherwise refer to as a “role” or
an “attribute” and, as such, the model is suitably general so that it can describe RBAC
or ABAC. If users possess the right privilege classes, access is provided as normal. But
if they do not, the surrogate algorithm seeks to provide access to as much information
as possible, subject to user-configurable policies.

5 Testing

There have been previous efforts at creating provenance flows for testing. Of particular
interest is the ProvBench effort [7] and the Provenance Challenge [1, 21]. ProvBench
aims to distribute annotated provenance flows so that both the provenance and the
intent of the overall workflow are understood within the dataset. We wish to exercise
the system to ensure that it can work over any size or shape provenance graph in order
to ensure all algorithms can function over bushy or sparse graphs. We do not claim that
the generators discussed create provenance similar to the real observations; we target
generators sufficiently tunable that they can mimic any form.

Chain Tree Inverted Tree

a)

b)

Composite 
Example: 
Diamond

Full Account Surrogate Account

A B C A CA

RBAC Account

Fig. 2. (a) Example of provenance graph protection using surrogates. (b) Sample motif graphs.

246 M. David Allen et al.



Motif Generators: We began with the observation that any provenance graph of any
size and shape can be described as a conjunction of a set of smaller graph “primitives”
or “motifs”. Figure 2(b) shows the set of possible motifs that are generated by a motif
generator. We built a motif generator that permits users to generate any number of
randomly chosen motifs, with tunable connection parameters. In the most simple case,
a motif generator might choose 100 random motifs; it would then choose a random
node from within each motif and link it to a randomly chosen node from the next motif.
Note that complex motifs such as a “diamond shape” can be created by joining simpler
motifs (a tree, with an inverted tree).

Graph Simulation: Our graph simulator, DAGAholic, focuses on guaranteeing certain
properties of the generated graph, including its size and edges, but does not generate
any particular shape. DAGAholic is given parameters including number of nodes,
proportions of data vs. invocations in the graph, and so on. Users specify a graph
connectivity, which is the probability that a given node will be connected to something
downstream in the provenance graph; 0.25 indicates that 25 % of nodes in the resulting
graph will have an outbound provenance relationship. DAGAholic also has a rich set of
options for protecting graphs. Because the determination to create a specific edge is
based on a random number, the graphs, while generally conforming to the sparse/bushy
objective, will be individually distinct.

6 Output

We provide basic access to all provenance graphs via the Cypher query language,
provided by Neo4J, to permit arbitrary query against stored provenance. Most users do
not want to interact with the provenance graph or write queries. Instead, they have a
goal such as checking the fitness for use of a particular item. One of our most common
access patterns, then, is to establish the user’s “fitness parameters” for information; for
example, “I’m only interested in data less than 30 days old, which was processed by the
Air Force, and went through System X”. These parameters are then encoded as a set of
pre-canned, but keyword-customizable, provenance queries [11]. Canned queries can
then be arranged into dashboards for users which answer their questions, but do not
require technical knowledge of provenance or query. Table 1 shows examples of
canned queries currently packaged within PLUS, which can be combined into custom
fitness assessments for new users.

Table 1. Examples of “canned queries released with PLUS”

Query Description

Trace Taint Sources Find all upstream “nodes marked as “tainted” or “corrupted” to
determine quality of present information

Chain of Custody Whose hands has this data passed through?
Time Span The oldest item, the newest, and the time span between them
Distinct Sources Number of distinct upstream sources: e.g., is this analysis based on

five independent reports, or just one?

Engineering Choices for Open World Provenance 247



7 Implementation and Evaluation

Each problem discussed has been addressed within the PLUS system.1 In this section,
we use PLUS to demonstrate tradeoffs for these techniques and to illuminate the final
system design decisions within PLUS.

7.1 Identity

Hashing is useful to define identity for artifacts from many different systems. In order
to show that system performance is not unduly affected by incorporating hashing as an
identifier, we created several data artifacts, of varying sizes, and ran them through each
hashing function. Figure 3(a) shows the results; it only costs a few milliseconds on
even the largest files. We also observe through these runs that the average memory size
is 0 kB and the maximal memory size is between 2768 kB and 2928 kB, likely at
process startup. Thus, we believe that using the hash value as an identifier is an
acceptable method for identity, because its computational cost is low, and its memory
requirements are small and fixed, irrespective of the input size. Because of concerns
discussed earlier about compromises to MD5, we generally recommend the more
secure and adopted SHA-2 algorithm, computing 256 bit hashes.

7.2 Storage

Using commercially available systems, such as MySQL and Neo4 J, the speed of each
system is acceptable for a wide range of queries, but there are substantial performance

0

2

4

6

8

10

12

0 2E+09

T
im

e
 (

m
s

)

File Size (bytes)

MD5 Sha256

0.5

1

0.7 0.8 0.9 1

U
ti

li
ty

Opacity

Tree Surrogate Tree Hide
Lattice Surrogate Lattice Hide
Inverted Tree Surrogate Inverted Tree Hide
Diamond Surrogate Diamond Hide
Chain Surrogate Chain Hide
Star Surrogate Star Hide
Bipartite Surrogate Bipartite Hidea) b)

Fig. 3. (a) The time required to use hashing to generate a file identity using either MD5 or
Sha256. (b) The tradeoff in utility for hiding or surrogating several sample graphs.

1 https://github.com/plus-provenance/plus.

248 M. David Allen et al.

https://github.com/plus-provenance/plus


differences between different types of queries. Instead of comparing performance
directly, we look at how easy or hard it is to perform operations specific to provenance.
In order to provide an estimate on ease, we measure the lines of code required to create
the functionality within the system, with either a relational or graph database backend.
“Source lines of code” is unavoidably a coarse measure; in some cases minor differences
may be accounted for by issues such as indentation style, volume of comments, and so
on. These numbers are presented as our concrete implementation experience, and to
provide a rough sense of the difficulty of implementation. We would expect alternative
implementations to encounter the same set of issues we present in the discussion.

Our measures exclude the number of lines of code necessary for translating graph
nodes into provenance objects (taking properties from the DB and putting them into
java objects). In many applications, this serialization/deserialization of objects between
the database and the object model is largely housekeeping work. Table 2 shows the
lines of source code required for each storage implementation within PLUS.

When loading a graph from a database, the resulting provenance collections form
the basis of data presented to the user visually, and sent to other systems as reports. As
a necessary prerequisite for so many other operations, loading a graph is probably the
most common operation that a provenance system will do. In Neo4j, we use a traversal
framework; the traverser does all of the work, and as the nodes and edges are returned,
they are turned into provenance objects and added to a result collection. In MySQL, the
traverser is custom-implemented code, essentially an iterator which fetches and joins
nodes and edges. These issues apply to implementations that trace chains of custody
and get indirect sources of taint.

Because data must be fetched via SQL when using MySQL, it is extremely difficult
to implement arbitrary graph queries. With natively supported graph query languages

Table 2. A snapshot of the code base required to support provenance manipulation.

Function Description Neo4j MySQL

Load Graph
from DB

Building database queries, iterating through results,
returning a provenance collection consisting of
nodes, edges, non-provenance edges, and actors

141 538

Trace Chain of
Custody

Tracing through an entire provenance graph from
some starting point, and extracting an ordered list
of all owners of all data in the graph

85 638

Get Indirect
Sources of
Taint

Examine a particular provenance node and
determine, at any distance upstream from the
current node, if there is a marking indicating that
one of its ancestors is “tainted” (e.g. has a
problem, or is based on bad information as
asserted by a user)

40 606

Arbitrary
Graph Query

The ability for the user to formulate an arbitrary
read-only query to traverse provenance graphs,
returning any computable subset of provenance
information

50 N/A

Engineering Choices for Open World Provenance 249



(such as Neo4j’s cypher) most of the code is given over to simple housekeeping, such
as query sanitization to apply safeguards to prevent the user from modifying or deleting
data with a query. When using such graph databases, no new code is introduced; the
user is simply given an interface to perform queries as they might with SQL, and a few
utilities to visualize or report the results.

7.3 Protection

As discussed above, we need to protect sensitive data in provenance graphs, while
maximizing the graphs’ utility. We start with some basic graphs in classic patterns
shown in Fig. 2(b), and “hide” the dashed edge within the graph. Figure 3(b) shows the
difference between breaking the graph at the sensitive edge, as would occur with basic
access control strategies, and surrogating. Since more of the graph is available for
consumption with surrogating, the utility of the final provenance graph is higher.

7.4 Testing

The testing package included with the PLUS system has the ability to create generic
provenance graphs of varying shapes and sizes. We are mostly concerned that the
creation of a suite of provenance test graphs does not take undue time or resources.
Figure 4 shows the time it takes to generate a set of provenance test graphs. Our test
runs indicate that the cost in time is not exorbitant, allowing the system to be easily
used for scalability testing.

1
10

100
1000

10000

0 50 100 150 200

ti
m

e
 (

m
s

)

Number of Motifs in the provenance graph

1

10

100

1000

10000

0 100 200 300 400 500

ti
m

e
 (

m
s

)

Number of Provenance Nodes in graph

1

10

100

1000

10000

0 0.2 0.4 0.6 0.8 1

ti
m

e
 (

m
s

)

a) Nodes:Edges Ratio in Provenance graphb)

c)

Fig. 4. (a) the time required to produce provenance test graphs, based on the number of nodes in
the graph. (b) The time to create synthetic provenance graphs based on the node to edge ratio. (c)
The time to create motif graphs based on the number of motifs in the final graph.

250 M. David Allen et al.



8 Related Work

Closed World Systems: The overriding characteristic of current provenance systems is
the assumption of a closed world system – a contained environment over which the
provenance system has full knowledge of all the data and processes used within the
contained environment. Workflow-based systems such as [5, 27, 30] contain provenance
for all of the executions and data that are executed by the system. Because the workflow is
executed within this closed world system, complete provenance capture of the workflow
run is possible. Moreover, since the provenance is used within the system, it can use the
identity and storage based within those systems. In application-based provenance, certain
applications are provenance capture enabled. For instance, in ES3 [15], or MapReduce
[23], the applications used by scientists for data analysis are modified to capture prove-
nance of their use. While these applications could be run over open, heterogeneous-style
systems, they specifically create assumptions to form a closed world.

Identity: The MD5 hashing function was created in 1992 [24], while SHA-0 was
developed by the National Security Administration (NSA) in 1993 and approved for
use by the National Institute of Standards and Technology (NIST) in 2001 [22]. The
work of [29] showed that the MD5 and SHA-1 algorithms were vulnerable to attack
based on hash collisions. At present, SHA-256 is considered a secure algorithm.

Storage: Past efforts (e.g., [3]) have found relational databases to be of limited use, and
achieved maximal performance once a native database for the given format was cho-
sen; provenance, as a graph, is no different. Of interest, the tutorial guide for graph
databases [25] cites provenance as an inherently good use of a graph database.

Testing: The provenance community has two styles of testing: actual generated
provenance [1, 8, 16, 21] and the scalable but less empirical style presented in this
work. As a community, we should be heading towards a benchmarking standard that
tests query workload, use cases and scalability, just like the database community [2].

9 Conclusions

We have outlined some of the engineering decisions required to support a provenance
system in an open world, one in which systems are not controlled or homogenous. New
engineering designs are needed to support the real U.S. government applications we
have observed. These systems tend to be less concerned with fine-grained and deeply
detailed provenance, and more concerned with issues of maintaining graph connec-
tivity, providing flexible and expansive query, and enabling capture in very hetero-
geneous environments with as little performance impact as possible. We describe
solutions to identity, base storage, protection with utility, and scalability testing; all
needed to make provenance a viable open-world solution. Our open-source provenance
solution, PLUS, is at https://github.com/plus-provenance/plus.

Engineering Choices for Open World Provenance 251

https://github.com/plus-provenance/plus


Acknowledgements. The authors thank Len Seligman, Arnie Rosenthal, Maggie Lonergan,
Paula Mutchler, Jared Mowery, Erin Noe-Payne, Zack Panitzke, Brenda Davies, Jesse Freeman,
Blake Coe, and Sung Kim for their contributions to the PLUS system.

References

1. Provenance Challenge (2010). http://twiki.ipaw.info/bin/view/Challenge/
2. Transaction Processing Performance Council (2013). http://www.tpc.org/
3. Al-Khalifa, S., Yu, C., Jagadish, H.V.: Querying structured text in an XML database. In:

SIGMOD (2003)
4. Allen, M.D., Chapman, A., Blaustein, B., Seligman, L.: Getting it together: enabling multi-

organization provenance exchange. In: TaPP (2011)
5. Anand, M.K., Bowers, S., McPhillips, T., Ludascher, B.: Efficient provenance storage over

nested data collections. In: EDBT, pp. 958–969 (2009)
6. Artem Chebotko, S.L., Fei, X., Fotouhi, F.: RDFPROV: a relational RDF store for querying

and managing scientific workflow provenance. Data Knowl. Eng. 69, 836–865 (2010)
7. Belhajjame, K., Gomez-Perez, J.M., Sahoo, S.: ProvBench (2013). https://sites.google.com/

site/provbench/provbench-at-bigprov-13
8. Belhajjame, K., Zhao, J., Garijo, D., Garrido, A., Soiland-Reyes, S., Alper, P., Corcho, O.: A

workflow PROV-corpus based on taverna and wings. In: Khalid Belhajjame, J.M.G.-P.,
Sahoo, S. (ed.) ProvBench (2013)

9. Benjelloun, O., Sarma, A.D., Halevy, A., Widom, J.: ULDBs: databases with uncertainty
and lineage. In: VLDB, pp. 953–964, Seoul, Korea (2006)

10. Blaustein, B., Chapman, A., Seligman, L., Allen, M.D., Rosenthal, A.: Surrogate
parenthood: protected and informative graphs. In: PVLDB (2010)

11. Chapman, A., Allen, M.D., Blaustein, B.: It’s about the data: provenance as a tool for
assessing data fitness. In: TaPP (2012)

12. Chapman, A., Blaustein, B.T., Seligman, L., Allen, M.D.: PLUS: a provenance manager for
integrated information. In: IEEE Computer Information Reuse and Integration (2011)

13. Dey, M. Agun, M. Wang, Ludäscher, B., Bowers, S., Missier, P.: A provenance repository
for storing and retrieving data lineage information. Technical Report, DataONE Provenance
and Workflow Working Group (2011)

14. Foster, J.N., Green, T.J., Tannen, V.: Annotated XML: queries and provenance. In: PODS,
pp. 271–280 (2008)

15. Frew, J., Metzger, D., Slaughter, P.: Automatic capture and reconstruction of computational
provenance. Concurr. Comput. Pract. Exper. 20, 485–496 (2008)

16. L. M. R. G. Jr., M. Wilde, Mattoso, M., Foster, I.: Provenance traces of the swift parallel
scripting system. In: Khalid Belhajjame, J.Z., Gomez-Perez, J.M., Sahoo, S. (ed.)
ProvBench (2013)

17. Mason, C.: Cryptographic Binding of Metadata. National Security Agency’s Review of
Emerging Technologies, vol. 18 (2009)

18. Missier, P., Chen, Z.: Extracting PROV provenance traces from Wikipedia history pages. In:
EDBT (2013)

19. Missier, P., Embury, S.M., Greenwood, M., Preece, A., Jin, B.: Managing information
quality in e-science: the qurator workbench. In: SIGMOD, pp. 1150–1152 (2007)

20. Moreau, L., Groth, P.: Provenance An Introduction to PROV. Morgan & Claypool
Publishers, San Rafael (2013)

21. Moreau, L., Ludäscher, B., et al.: Special issue: the first provenance challenge. Concurr.
Comput. Pract. Experience 20, 409–418 (2008)

252 M. David Allen et al.

http://twiki.ipaw.info/bin/view/Challenge/
http://www.tpc.org/
https://sites.google.com/site/provbench/provbench-at-bigprov-13
https://sites.google.com/site/provbench/provbench-at-bigprov-13


22. NIST, Descriptions of SHA-256, SHA-384, and SHA-512 (2001)
23. Park, H., Ikeda, R., Widom, J.: RAMP: A system for capturing and tracing provenance in

MapReduce workflows. In: VLDB (2011)
24. Rivest, R.: The MD5 message-digest algorithm. IETF Working Memo (1992). http://tools.

ietf.org/html/rfc1321
25. Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly Media Inc, Sebastopol

(2013)
26. Rosenthal, A., Seligman, L., Chapman, A., Blaustein, B.: Scalable access controls for

lineage. In: Theory and Practice of Provenance (2008)
27. Scheidegger, C.E., Vo, H.T., Koop, D., Freire, J., Silva, C.: Querying and re-using

workflows with VisTrails. In: SIGMOD (2008)
28. W3C, Provenance Data Model (2013). http://www.w3.org/TR/prov-dm/
29. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R. (ed.)

EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)
30. Wolstencroft, K., Haines, R., et al.: The taverna workflow suite: designing and executing

workflows of web services on the desktop, web or in the cloud. Nucleic Acids Res. 41,
w557–w561 (2013)

31. Xiey, Y., Muniswamy-Reddy, K.-K., Fengy, D., Liz, Y., Longz, D.D.E., Tany, Z., Chen, L.:
A hybrid approach for efficient provenance storage. In: CIKM (2012)

Engineering Choices for Open World Provenance 253

http://tools.ietf.org/html/rfc1321
http://tools.ietf.org/html/rfc1321
http://www.w3.org/TR/prov-dm/


Towards Supporting Provenance Gathering
and Querying in Different
Database Approaches

Flavio Costa1(&), Vítor Silva1, Daniel de Oliveira2,
Kary A.C.S. Ocaña1, and Marta Mattoso1

1 COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
{flscosta,silva,kary,marta}@cos.ufrj.br

2 Fluminense Federal University, Niteroi, Brazil
danielcmo@ic.uff.br

Abstract. The amount of provenance data gathered from Scientific Workflow
Management Systems (SWfMS) and stored in databases has been growing
considerably. Some difficulties are related to representation, access and query
provenance databases. Despite the effort of PROV W3C group, data analyses
may require different strategies of query specification because of the volume of
data to be analyzed and the nature of queries. Another important point is the new
approaches to store and retrieve provenance, some technologies are more
appropriate than others. However, when applications are tightly coupled to
specific technologies, it is difficult to take advantage of innovation. Based on
these issues, we have built WfP-API, an API to store and perform queries in
different provenance databases.

1 Introduction

Due to specific characteristics of Scientific Workflow Management Systems (SWfMS),
experiments can generate provenance data in many different ways, in many different
formats or even in many different repositories [1, 2]. To diminish the difficulties to deal
with provenance coming from different repositories, W3C defined the PROV data
model, which is currently a recommendation [3]. To represent typical properties on
provenance from scientific workflows, we proposed PROV-Wf [4], an specialization of
PROV. PROV-Wf represents provenance data gathered from scientific workflow
executions to be queried during or after execution. We implemented PROV-Wf in a
relational database, enabling the analysis of provenance data in a well-structured way
with SQL. However, the interaction of scientists with PROV-Wf databases is typically
through an interface with parameterized pre-defined relational queries. In fact, there is
no consensus on the best representation to deal with provenance and database systems
can vary in performance significantly even within the same data schema representation.
For example, different database indexing and storage approaches may present different

The research presented in this paper was partially funded by CNPq and FAPERJ grants.

© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 254–257, 2015.
DOI: 10.1007/978-3-319-16462-5_26



performance characteristics to execute provenance queries [5]. We can also mention
that learning new database semantics for querying provenance is not an easy activity,
especially for a non-specialist in computer science. In this paper, we propose WfP-API
as an alternative way to SWfMS to have more flexibility when storing and querying
provenance data. The API aims at storing provenance data in a variety of databases
without having to concern about database system specific features. Our contribution is
towards a PROV-Wf – based API, to be invoked from SWfMS, which is agnostic to the
underlying database system. The API allows for querying provenance associated with
workflow systems using one data model.

2 WfP-API: Storing and Querying Workflow
Provenance Data

WfP-API is a provenance API that queries provenance databases based on the elements
of PROV-Wf data schema [4]. WfP-API has two layers: WfP Object Layer and WfP
Connector Layer. The former layer represents scientific workflows using adapted
elements from PROV-Wf. In this first version, WfP Object Layer does not represent the
agent elements (Scientist and Machine), while the software agent (Program) and Exe-
cute activity (PROV core structure of activity) are represented within the Activation
concept. WfP Object Layer relies on object-oriented model to ease the integration with
SWfMS to perform queries in DBMS. WfP Connector Layer establishes a connection
between WfP-API object representation and DBMS. For each DBMS, a new instance of
the connector has to be implemented. WfP-API currently supports Neo4J DBMS. Users
of WfP-API need to choose the type of database to define connectors, while invocation
to WfP Object layer is the same for every database connector.

3 Implementation and Final Remarks

WfP-API was developed according to the class diagram of Fig. 1. The dark gray classes
describe each element of a scientific workflow (defined by WfP Object Layer) and
scientists manipulate properties by calling getters and setters methods, such as get-
StartTime (that returns the activity start time) method in Activity class. Light gray
classes represent internal controllers to define workflow structure (Object class) and
connect WfP-API and the developed queries for a specific DBMS system (through
Connector class). According to the specified database system, WfP Connector layer
instantiates an object to use the DBMS, such as Neo4J Connector class. This class
implements every abstract method from Connector class, with respect to the DBMS
query language. Users may also need other queries than defined by WfP-API. In this
case, they have to define their queries using the workflow object representation and
extend connectors of the chosen DBMS.

Finally, the white classes represent DBMS connectors to the WfP-API. For
example, for Neo4J DBMS we developed a Neo4JConnector class, which presents
methods to establish a connection with this system (start method), to close this con-
nection (close method), to determine workflow structure (storeActicity method), to

Towards Supporting Provenance Gathering and Querying 255



store provenance data at runtime (updateRunningActivations method) or to execute
custom queries developed by users (getWorkflowExecutionTime method).

WfP-API represents provenance based on the PROV-Wf data model, which follows
W3C PROV recommendations. Furthermore, specialists only need to learn workflow
semantics, since database semantics are already defined in WfP Connector Layer.
Preliminary results showed that WfP-API was able to perform several queries that
allow for steering of scientific workflow executions.

References

1. Chirigati, F., Freire, J.: Towards integrating workflow and database provenance. In: Groth, P.,
Frew, J. (eds.) IPAW 2012. LNCS, vol. 7525, pp. 11–23. Springer, Heidelberg (2012)

2. Allen, M.D., Chapman, A., Blaustein, B., Seligman, L.: Getting it together: enabling multi-
organization provenance exchange. In: TaPP (2011)

3. Missier, P., Belhajjame, K., Cheney, J.: The W3C PROV family of specifications for mod-
elling provenance metadata. In: EDBT/ICDT 2013, pp. 773–776. ACM, New York, NY, USA
(2013)

Fig. 1. Class diagram of WfP-API

256 F. Costa et al.



4. Costa, F., Silva, V., De Oliveira, D., Ocaña, K., Ogasawara, E., Dias, J., Mattoso, M.:
Capturing and querying workflow runtime provenance with PROV: a practical approach. In:
EDBT/ICDT 2013 Workshops, pp. 282–289. ACM, New York, NY, USA (2013)

5. Muniswamy-Reddy, K.-K.: Deciding how to store provenance. Technical report 03-06,
Computer Science, Harvard University (2006)

Towards Supporting Provenance Gathering and Querying 257



Provenance for Explaining
Taxonomy Alignments

Mingmin Chen1(B), Shizhuo Yu1, Parisa Kianmajd1, Nico Franz2,
Shawn Bowers3, and Bertram Ludäscher1

1 Department of Computer Science, UC Davis, Davis, USA
{michen,szyu,pkianmajd,ludaesch}@ucdavis.edu

2 School of Life Sciences, Arizona State University, Tempe, USA
nico.franz@asu.edu

3 Department of Computer Science, Gonzaga University, Spokane, USA
bowers@gonzaga.edu

Derivations and proofs are a form of provenance in automated deduction that
can assist users in understanding how reasoners derive logical consequences from
premises. However, system-generated proofs are often overly complex or detailed,
and making sense of them is non-trivial. Conversely, without any form of prove-
nance, it is just as hard to know why a certain fact was derived.

We study provenance in the application of Euler/X [1], a logic-based toolkit
for aligning multiple biological taxonomies. We propose a combination of approa-
ches to explain both, logical inconsistencies in the input alignment, and the
derivation of new facts in the output taxonomies.

Taxonomy Alignment. Given taxonomies T1, T2 and a set of articulations A,
all modeled as monadic, first-order constraints, the taxonomy alignment problem
is to find “merged” taxonomies that satisfy Φ = T1 ∪ T2 ∪ A. An alignment can
be inconsistent (Φ is unsatisfiable), unique (Φ has exactly one minimal model),
or ambiguous (Φ has more than one minimal model). For example, let T1 be
given by isa (subset) constraints b ⊆ a, c ⊆ a, coverage constraint a = b ∪ c,
and sibling disjointness b ∩ c = ∅. Similarly, T2 is given by isa constraints e ⊆ d,
f ⊆ d, coverage d = e ∪ f, and sibling disjointness e ∩ f = ∅.

An expert aligns T1 and T2 using articulations a = d, b � e, c � f, and b � d;
see Fig. 1. We would like to “apply” all of these relations between the two tax-
onomies, and output a merged taxonomy.

Inconsistency Explanation. Usually T1 and T2 are considered immutable
or correct by definition, whereas A might contain modeling errors. Euler/X
applied to Fig. 1 finds that the constraints are unsatisfiable, and performs a
model-based diagnosis. The result lattice (Fig. 2) highlights minimal inconsistent
subsets (MIS) and maximal consistent subsets (MCS). The MIS {A1,A2,A3}
indicates which articulations are inconsistent with T1, T2. To further explore the
inconsistency, the system-derived MCS can be employed: Fig. 3 shows the merged
taxonomies (a.k.a. “possible worlds”) obtained from the MCS. Here, each MCS
corresponds to one possible world.1

1 In general, a MCS can yield many possible worlds. Such ambiguities arise when the
alignment input is underspecified.

c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 258–260, 2015.
DOI: 10.1007/978-3-319-16462-5 27



Provenance for Explaining Taxonomy Alignments 259

isa

isa

=

<

<

<

isa

isa

Taxonomy T1 Taxonomy T2 Articulations

r1: b isa a r5: e isa d A1: a = d
r2: c isa a r6: f isa d A2: b � e

r3: a = b ∪ c r7: d = e ∪ f A3: c � f
r4: b ∩ c = ∅ r8: e ∩ f = ∅ A4: b � d

Fig. 1. Alignment problem: Taxonomies T1 (given by set constraints r1, . . . , r4) and T2

(constraints r5, . . . , r8) are related via articulations A (constraints A1, . . . , A4).

Fig. 2. Diagnosis for A = {A1, . . . ,A4}: solid red octagons and solid green boxes denote
MIS and MCS, respectively. The (in)consistency of all other combinations are implied
(Color figure online).

Using expert knowledge or further constraints2 a preferred merge result can
be selected to further analyze and then repair the inconsistency. Here, suppose
the user chose the first maximal consistent subset {A1,A2,A4}. It follows from
A1,A2 and the input taxonomies T1, T2 that f � c. However, A3 is c � f yielding
a contradiction. Now the problem is to explain why f � c is inferred.

Derivation Explanation. To understand how f � c is inferred, we may need
to inspect its logical derivation or an abstraction of it. We obtain this prove-
nance in Euler/X by keeping track of the rules r1, . . . , r8 and input align-
ments A1, . . . ,A4 used by the reasoner. Figure 4 depicts the resulting provenance
overview.

Related Work. Data provenance is an actively researched area and is closely
related to proofs and derivations in logical reasoning. Our inconsistency expla-
nation is based on Reiter’s model-based diagnosis [6], which has been studied
extensively and applied to many areas, e.g., type error debugging, circuit diagno-
sis, OWL debugging, etc. We have adapted the HST algorithm in [4] to compute

2 E.g., the output for MCS {A2,A3,A4} might be less desirable since it is not a tree.



260 M. Chen et al.

Fig. 3. Merged taxonomies (possible worlds) for MCS {A1,A2,A4}, {A1,A3,A4}, and
{A2,A3,A4}. Grey boxes are fused concepts; bold, red edges represent inferred relations
(Color figure online).

Fig. 4. Provenance of f � c (depicted as f < c). Lightly colored 3D-boxes are input
facts (taxonomies and input alignment). Inferred relations are shown as darker boxes
(Color figure online).

all MIS and MCS for inconsistency explanation. The problem was shown to
be Trans-Enum-complete by Eiter and Gottlob [2]. Inspired by the ideas of a
provenance semirings [3] and Datalog debugging [5], our approach explains the
derivation of the inferred relations.

Acknowledgments. Supported in part by NSF IIS-1118088 and DBI-1147273.

References

1. Chen, M., Yu, S., Franz, N., Bowers, S., Ludäscher, B.: Euler/X: A toolkit for
logic-based taxonomy integration. In: 22nd International Workshop on Functional
and (Constraint) LogicProgramming (WFLP), Kiel, Germany (2013)

2. Eiter, T., Gottlob, G.: Hypergraph transversal computation and related problems
in logic and AI. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002.
LNCS (LNAI), vol. 2424, pp. 549–564. Springer, Heidelberg (2002)

3. Green, T., Karvounarakis, G., Tannen, V.: Provenance semirings. In: ACM Sym-
posium on Principles of Database Systems (PODS), pp. 31–40 (2007)

4. Horridge, M., Parsia, B., Sattler, U.: Explaining inconsistencies in OWL ontologies.
In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp. 124–137. Springer,
Heidelberg (2009)

5. Köhler, S., Ludäscher, B., Smaragdakis, Y.: Declarative datalog debugging for mere
mortals. In: Barceló, P., Pichler, R. (eds.) Datalog 2.0 2012. LNCS, vol. 7494, pp.
111–122. Springer, Heidelberg (2012)

6. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)



Challenges for Provenance Analytics
Over Geospatial Data

Daniel Garijo1(B), Yolanda Gil2, and Andreas Harth3

1 Ontology Engineering Group,
Universidad Politécnica de Madrid, Madrid, Spain

dgarijo@fi.upm.es
2 Information Sciences Institute,

University of Southern California, Los Angeles, USA
gil@isi.edu

3 Institute AIFB, Karlsruhe Institute of Technology,
Karlsruhe, Germany

harth@kit.edu

Abstract. The growing availability of geospatial data online, the
increased use of crowdsourced maps and the advent of geospatial mash-
ups have led to systems that deliver data to users after integration from
many sources. In such systems, understanding the provenance of geospa-
tial data is crucial for assessing the quality of the data and deciding
on whether to rely on the data for decision making. To be able to use
and analyze provenance in geospatial integration systems in a princi-
pled manner, we identify different levels of provenance in the geospatial
domain, provide a set of provenance questions from the point of view
of end users, and relate our geospatial provenance model to the W3C
PROV recommendation.

1 Introduction

The Open Geospatial Consortium and the World Wide Web Consortium are
working jointly towards standards for linking and integrating geospatial data [1].
As geospatial data is often used in decision making (e.g., navigation), the accu-
racy of integrated data is important. While we specifically cover provenance
for geospatial information, some of these challenges are present in many other
domains as well. The area of geospatial data integration is a prime scenario
for provenance management, as the involved data and systems are complex and
exhibit many challenging characteristics:

– External sources: when integrating two geospatial datasets, an algorithm might
consult other sources.

– Human-in-the-loop processes: in some cases, the integration might involve
manual intervention, to check particular values by seeking additional confir-
mation or even perhaps with eyes on target.

– Crowdsourcing: datasets may have been collected from many small contribu-
tions, which should attacj provenance too.

c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 261–263, 2015.
DOI: 10.1007/978-3-319-16462-5 28



262 D. Garijo et al.

– Granularity: geospatial information may be represented at different levels of
granularity in space; a geographical feature can be a point in space (e.g., a
road intersection), a one-dimensional segment (e.g., a bridge that connects
two points) or a two-dimensional region (e.g., a parking lot).

– Computation: spatial reasoning may be needed to compute relationships
between features; the integration system may have to integrate computed
relations from different sources.

– Versioning: maps are updated as the original data sources are updated. The
objects in a map themselves can have multiple revisions.

We present an initial study on the requirements and challenges of tracking
geospatial provenance, based on discussions with researchers and practitioners
at several meetings and workshops on geospatial data.

2 Geospatial Provenance Model

Before we explain how to apply the W3C PROV standard model [2] to the
geospatial domain, we present a classification of provenance levels on geospatial
data:

– Dataset-level provenance: provenance assertions about a map as a single entity.
The map contains objects, and these objects contain properties and values,
but provenance is associated with the map as a whole.

– Object-level provenance: how different objects were created in the map.
– Property-level provenance: enables us to answer questions about attributes

and attribute values of objects shown in the map.

Modeling detailed provenance across all levels presents a challenge of scale.
Maps can have millions of objects, and if we represented each of the integration
processes for each object, the amount of information could become larger than
the map itself, especially if we assume updates at regular intervals. Property-level
provenance aggravates the scale issues of object-level provenance.

In Fig. 1, we list user questions concerning geospatial provenance, grouped
according to our provenance model for geospatial data.

Applying PROV to the geospatial domain is straightforward for dataset-
level and object-level provenance, as we can use dataset and object identifiers as
handle for attaching provenance records to. Property-level provenance requires a
more involved approach, as properties are typically accessed through the object
and cannot be referenced as a separate entity. Therefore, we would either need
to create new identifiers for each property assertion, or to repeat the property
assertion itself to be able to attach the provenance record to. Tracking appearing
and disappearing objects or values across versions would require to store the
entire history of all datasets, including provenance records.



Challenges for Provenance Analytics Over Geospatial Data 263

Fig. 1. User questions concerning geospatial provenance.

References

1. Archer, P.: Joint W3C/OGC Workshop on Linking Geospatial Data, March 2014.
http://www.w3.org/2014/03/lgd/

2. Moreau, L., Missier, P.: PROV-DM: The PROV Data Model (2012). http://www.
w3.org/TR/prov-dm/

http://www.w3.org/2014/03/lgd/
http://www.w3.org/TR/prov-dm/
http://www.w3.org/TR/prov-dm/


Adaptive RDF Query Processing
Based on Provenance

Marcin Wylot1, Philippe Cudré-Mauroux1, and Paul Groth2(B)

1 University of Fribourg, Fribourg, Switzerland
{marcin,phil}@exascale.info

2 VU University Amsterdam, Amsterdam, The Netherlands
p.t.groth@vu.nl

Given the increasing amounts of RDF data available from multiple heteroge-
nous sources, as evidenced by the Linked Open Data Cloud, there is a need
to track provenance within RDF data management systems [1]. In [8], we pre-
sented TripleProv, a database system supporting the transparent and automatic
capture of detailed provenance information for arbitrary queries. A key focus
of TripleProv is the efficient implementation of provenance-enabled queries over
large scale RDF datasets. TripleProv is based on a native RDF store, which we
have extended with two different physical models to store provenance data on
disk in a compact fashion. In addition, TripleProv supports several new query
execution strategies to derive provenance information at two different levels of
aggregation. At one level, the exact sources for a query results can be identified.
The second, more detailed level, provides the full lineage of the query results
including the various constraints, projections and joins involved in answering
the query. In addition to these levels of aggregation at the data source level,
we support tracking the provenance at the quadruple level. That is, every quad
(i.e. tuple) is annotated and those annotations are tracked through the query
processing pipeline. This tracking is done by leveraging the concept provenance
polynomials [3]. That is capturing the provenance representation as a formula
over tuples. Our work follows on from previous work on annotating or coloring
RDF triples [2,9] by focusing on both scale and query adaptivity.

At the logical level, we use two basic operators to express the provenance
polynomials. The first one (⊕) to represent unions of sources, and the second
(⊗) to represent joins between sources.

Unions are used in two cases when generating the polynomials. First, they are
used when a constraint or a projection can be satisfied with triples coming from
multiple sources (meaning that there are more than one instance of a particular
triple which is used for a particular operation). The following polynomial:

l1 ⊕ l2 ⊕ l3

for instance, encodes the fact that a given result can originate from three different
sources (l1, l2, or l3). Second, unions are also used when multiple entities satisfy
a set of constraints or projections.

As for the join operator, it can also be used in two ways: to express the fact
that sources were joined to handle a constraint or a projection, or to handle
c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 264–266, 2015.
DOI: 10.1007/978-3-319-16462-5 29



Adaptive RDF Query Processing Based on Provenance 265

object-subject or object-object joins between a few sets of constraints. The fol-
lowing polynomial:

(l1 ⊕ l2) ⊗ (l3 ⊕ l4)

for example, encodes the fact that sources l1 or l2 were joined with sources l3
or l4 to produce results.

Provenance polynomials can be used to compute a trust or information qual-
ity score based on the sources used in the result.

TripleProv works on large scale real world data. We have tested the system on
two datasets consisting of over 110 million triples each. Each dataset is roughly
25 GB in size. The datasets are drawn, respectively, from two crawls of the Web:
the Billion Triple Challenge1 and the Web Data Commons2 [7].

Based on this foundation, this work presents preliminary results on adaptively
modifying query execution based on provenance. Specifically, we have extended
TripleProv to allow a specific list of sources (e.g. trusted sources) to be provided
which are to be used when answering a query. Additionally, one can also specify
a list of sources to avoid during query execution (e.g. a list of untrusted sources).
The specified lists are checked at every stage of query execution process. This
means that even at the level of intermediate results, which are not necessarily
presented as an output, we ensure that these data sources are not touched. We
note that this trigger based approach allows for potentially dynamic changes in
the source list at query execution.

Such adaptive query processing is useful for a number of use cases. For
instance, one could restrict the results of a query to certain subsets of sources
or use provenance for access control such that only certain sources will appear
in a query result. Identifying results (i.e., particular triples) with overlapping
provenance is also another prospective use case. Additionally, one could detect
whether a particular result would still be valid when removing a source dataset.
We could also extend our approach to with Hartig’s tSPARQL [4] to be able to
query trust annotations in combination with provenance sources.

In [8], we found that provenance tracking within the database caused between
a 60–70% overhead. While this is acceptable for many use cases, it would be ben-
eficial if the performance would be faster. We believe that by taking advantage of
knowing data provenance one could potentially optimize the performance of the
database. We note that our approach focused on adjusting the pipeline of query
processing verses querying provenance after the fact as in other systems [5,6].
An interesting area of work would be to study the trade off between runtime
query adaptation based on provenance and post hoc provenance queries.

This work is a first step towards showing how provenance can be used to
make it easier to work with heterogenous RDF data.

Acknowledgements. This work was funded in part by the Swiss National Science
Foundation under grant number PP00P2 128459 and by the Data2Semantics project
in the Dutch national program COMMIT.

1 http://km.aifb.kit.edu/projects/btc-2009/.
2 http://webdatacommons.org/.

http://km.aifb.kit.edu/projects/btc-2009/
http://webdatacommons.org/


266 M. Wylot et al.

References

1. Ding, L., Peng, Y., da Silva, P.P., McGuinness, D.L.: Tracking RDF graph prove-
nance using RDF molecules. In: International Semantic Web Conference (2005)

2. Flouris, G., Fundulaki, I., Pediaditis, P., Theoharis, Y., Christophides, V.: Coloring
RDF triples to capture provenance. In: Bernstein, A., Karger, D.R., Heath, T.,
Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009.
LNCS, vol. 5823, pp. 196–212. Springer, Heidelberg (2009)

3. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proceedings
of the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, pp. 31–40. ACM (2007)

4. Hartig, O.: Querying trust in RDF data with tSPARQL. In: Aroyo, L., et al. (eds.)
ESWC 2009. LNCS, vol. 5554, pp. 5–20. Springer, Heidelberg (2009)

5. Karvounarakis, G., Ives, Z.G., Tannen, V.: Querying data provenance. In: Pro-
ceedings of the 2010 ACM SIGMOD International Conference on Management of
data, pp. 951–962. ACM (2010)

6. Miles, S.: Electronically querying for the provenance of entities. In: Moreau, L.,
Foster, I. (eds.) IPAW 2006. LNCS, vol. 4145, pp. 184–192. Springer, Heidelberg
(2006)

7. Mühleisen, H., Bizer, C.: Web data commons - extracting structured data from
two large web corpora. In: Bizer, C., Heath, T., Berners-Lee, T., Hausenblas, M.
(eds.), LDOW. CEUR Workshop Proceedings, vol. 937. CEUR-WS.org (2012)

8. Wylot, M., Cudré-Mauroux, P., Groth, P.: Tripleprov: efficient processing of lineage
queries over a native rdf store. In: Proceedings of the 23rd Intenational World Wide
Web Conference (WWW’2014) (2014)

9. Zimmermann, A., Lopes, N., Polleres, A., Straccia, U.: A general framework for rep-
resenting, reasoning and querying with annotated semantic web data. Web Semant.
11, 72–95 (2012)



Using Well-Founded Provenance Ontologies
to Query Meteorological Data

Thiago Silva Barbosa1, Ednaldo O. Santos1, Gustavo B. Lyra1,
and Sérgio Manuel Serra da Cruz1,2,3(&)

1 UFRRJ – Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
{thiago,ednaldo,gblyra,serra}@ufrrj.br

2 PPGMMC/UFRRJ – Programa de Pós Graduação Modelagem
Matemática e Computacional, Seropédica, RJ, Brazil

3 PET-SI/UFRRJ – Programa de Educação Tutorial - Sistemas de Informação,
Seropédica, RJ, Brazil

Abstract. The analysis of increasing flow of data about Tropical rainfall is a big
challenge faced by meteorologists. This work presents an approach to pre-process,
organize and query high quality meteorological data. Thus, we present a semantic
approach that uses well-founded ontologies that help meteorologists to develop
SPARQL queries that navigate over high quality data and provenance metadata
collected during the execution meteorological in silico experiments.

Keywords: Provenance � Foundational ontology � Meteorology

1 Introduction

There is great interest in determining the periods and the probability of occurrence of
extreme hydrometeorological events so as to mitigate possible associated risks to cit-
izens and agribusiness. Briefly, meteorological data flows from lots of sensors through
heterogeneous apparatus to scientists’ databases where they perform statistics, analytics
to tune mathematical models to study the occurrences extreme events. Therefore, in this
work, we present an approach that uses well-founded ontologies [1, 3, 8] and prove-
nance management techniques to aid researchers to investigate the cause of erroneous
values detected at any point of the pre-processing chain and to query high quality
meteorological.

2 Materials and Methods

Meteorological Data and Pre-processors - Daily raw rainfall data were obtained from
75 weather stations geographically scattered in the southeast region of Rio de Janeiro
State, Brazil, one of the regions subject to the occurrence of extreme rainfall events.
The datasets are part of long meteorological series (bigger than 20 years since 1960).
The series were extracted over the Web from FAO and HidroWeb systems [4] by a
Web framework named “Meteoro”, previously developed by our research group [2],
which uses several Vistrails workflows as chains of pre-processors to generate higher

© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 267–270, 2015.
DOI: 10.1007/978-3-319-16462-5_30



quality curated meteorological data. The pre-processors checks: high–low extreme
daily values, internal consistency, temporal and spatial outliers, missing and erroneous
data. The framework allows meteorologists to rectify gap data and annotate datasets
with provenance to reduce error propagation on long-term meteorological investiga-
tions. Besides, the framework also generates a structured relational repository of high
quality meteorological data. The quality of data in the repository generated was
evaluated by Precinoto et al. (2013) [5]. However, despite the computations, data are
still faulty and presents some semantic inconsistencies. Thus, in order to reduce the
semantic gaps, we developed well founded provenance ontology to annotate meteo-
rological data of the repository.

Well-Founded Ontologies - In this work, we have used the ontologically well-founded
UML modeling profile named OntoUML presented by Guizzardi and Halpin [3] to
develop well-founded ontologies. This profile comprises a number of stereotyped
classes and relations implanting a metamodel that reflect the structure and axiomat-
ization of a foundational and domain independent ontology named Unified Foundation
Ontology (UFO). We also used the Open proVenance Ontology (OvO) [1] which is
based in three other theories: the lifecycle of scientific experiments, presented by
Mattoso et al. [6], PROV-O and PROV-DM specifications and UFO itself. OvO’s
concepts are modeled as UML profile because of the widespread understanding of
classes and relations and their suitability. OvO was developed as a set of three sub-
ontologies: (i) in silico scientific experiment sub-ontology, (ii) experiment composition
sub-ontology, (iii) experiment execution sub-ontology. The sub-ontologies comple-
ment each other; they are connected by relations between their concepts as well as by
formal axioms.

3 Meteoro Ontology and WebOntology Query Tool

Meteoro is an application ontology that maps the concepts of (i) the pre-processing
steps of raw meteorological data into curated data; (ii) provenance metadata about data
transformations executed by the pre-processors and; (iii) the characteristics about the in
silico experiments performed by the meteorologists. It makes these concepts explicit,
extends the OvO to that domain, besides reuses the concepts of provenance in large
scale scientific experiments described by Cruz et al. [1, 8]. Meteoro, like OVO, was
designed using OLED (OntoUML Lightweight Editor) [3], it is an editor for On-
toUML, aimed to provide a simple, lightweight and integrated set of features such as
model editing, syntax verification, instances simulation via Alloy, anti-pattern man-
agement and transformations to OWL. In other words, Meteoro is first modeled in an
ontologically well-founded language that explicitly commits to fundamental ontolog-
ical distinctions in their metamodels comprising type such as: Rigid (Kinds and
subKinds), Anti-Rigid (Phases and Roles) and Semi-Rigid (Mixins). After that, it can
be converted to another language that supports inferences and reasonings.

Meteoro Ontology - To be computed, the ontology has to be codified into another
language that supports automated inferences. Besides, it must consider legacy appli-
cations and other relevant requirements such as reasonable computational efficiency

268 T.S. Barbosa et al.



and compatibility with Semantic Web standards. Thus, we transformed Meteoro from
OLED to OWL taking advantage of the Protégé editor. The codification of well-
founded ontologies to OWL is complex. The mappings between two radically different
languages need for customizations to represent each domain element. During the
execution of this work OLED was still under development; thus we used two rounds of
mapping. As the first round, we used the mapping rules defined by Zamborlini et al.
[7]. As the second round of mapping, we used rules to match the concepts of the
ontology to the relations of the meteorological repository. This approach allows rela-
tional databases to offer their contents as virtual RDF graphs without the replication of
the RDB in RDF triples. Besides, it permits meteorologists to develop SPARQL
queries and navigate over meteorological data and provenance metadata thought the
concepts of the ontology.

WebOntology Tool - We have noticed that it was not trivial for meteorologists to
create SPARQL queries that involve meteorological data, provenance metadata and
also ontology classes. Thus, we developed a simple web-based graphical query tool
named WebOntology that uses the Meteoro ontology to assist meteorologists with
respect to the process of query formulation over the meteorological repositories. There
are two main functionalities that we considered important to be mentioned: (i) Manage
Queries: It aims to reduce the researcher’s (re)work. It allows them to create, execute,
delete and update SPARQL queries over the data repository; (ii) SPARQL EasyBuilder:
It lets meteorologists create simple queries even without knowing the syntax of the
language. Therefore, it allows users to navigate through the concepts and properties and
graphically develop simple queries by selecting features like ontology class, object,
properties and values to be searched.

4 Conclusion

This work presented an approach to help meteorologist to manage curated data about
Tropical rainfall. Our proposal incorporates well-founded ontologies, provenance and
Semantic Web standards to recover high quality meteorological data annotated with
provenance metadata generated during early stages of data transformation.

Acknowledgements. We are grateful by the financial support provided by FAPERJ (E-26/
112.588/2012 and E-26/110.928/2013) and FNDE-MEC-SeSU.

References

1. Cruz, S.M.S, Campos, M.L.M., Mattoso, M.: A foundational ontology to support scientific
experiments (2012). ceur-ws.org/Vol-728/paper6.pdf

2. Lemos Filho, G.R., et al.: Assimilação, Controle de Qualidade e Análise de Dados de
Meteorológicos Apoiados por Proveniência. In: VII Brazilian E-science Workshop (2013)

3. Guizzardi, G., Halpin, T.: Ontological foundations for conceptual modeling. Appl. Ontol.
3, 91–110 (2008)

Using Well-Founded Provenance Ontologies to Query Meteorological Data 269

http://ceur-ws.org/Vol-728/paper6.pdf


4. HidroWeb: Sistemas de Informação Hidrológicas (2014). http://hidroweb.ana.gov.br/
5. Precinoto, R.S., et al.: Aplicação de Regressão Linear Múltipla para Preenchimento de Falhas

de Dados Pluviométricos no Estado do Rio de Janeiro. In: Anais XVII SBMET (2012)
6. Mattoso, M., et al.: Towards supporting the life cycle of large scale scientific experiment. Int.

J. Bus. Process Integr. Manage. 5(1), 79–92 (2010)
7. Zamborlini, V., Gonçalves, B., Guizzardi, G.: Codification and application of a well-founded

heart-ECG ontology (2011). http://www.inf.ufes.br/*gguizzardi/camera-ready_paper48363.pdf
8. Cruz, S.M.S.: Uma Estratégia de Apoio à Gerência de Dados De Proveniência em Experi-

mentos Científicos. Ph.D. Thesis, Federal University of Rio de Janeiro - COPPE, Brazil
(2011)

270 T.S. Barbosa et al.

http://hidroweb.ana.gov.br/
http://www.inf.ufes.br/~gguizzardi/camera-ready_paper48363.pdf


Applying W3C PROV to Express Geospatial
Provenance at Feature and Attribute Level

Joan Masó1(&), Guillem Closa1, and Yolanda Gil2

1 Center for Ecological Research and Forestry Applications,
08193 Cerdanyola del Vallès, Spain

joan.maso@uab.cat, g.closa@creaf.uab.cat
2 Information Sciences Institute, University of Southern California,

4676 Admiralty Way, Marina del Rey, CA 90292, USA
gil@isi.edu

Abstract. This paper presents the application of PROV to geospatial data. In
particular, it is applied to the vector model, where geospatial phenomena are
represented as a collection of individual objects (called features) that are
described with a lot of geographical (point, lines, polygons, etc.) and non-
geographical (names, measures, etc.) properties (sometimes called attributes).
We present an approach to describe in W3C PROV the distributed data sources
and the processes involved in the generation/revision of a geospatial dataset.

Keywords: W3C � Geospatial provenance � RDF � Distributed environments

1 Geospatial Provenance in W3C PROV

This paper presents an application of PROV to describe geospatial provenance gen-
erated on a distributed environment and encoded in RDF. To apply PROV in the
geospatial domain it is important to identify the different elements that PROV provides
and map them to geospatial concepts. The PROV Data Model relies on the definition of
entities, activities, and agents and the relations among them [1]. In the geospatial world
information is stored in features. A feature is described as a set of geographical and
non-geographical properties (sometimes called attributes). Features can be tangible,
such as rivers; or an abstract concept, such as political boundaries [2]. Geographical
properties are the position and shape of a feature that can be expressed as a point a line
or a polygon (as a sequence of coordinates). Non-geographical property can be for
example the name of a river.

Each geospatial feature can be considered a PROV entity, and we refer to the
provenance associated with it as feature-level provenance. Geospatial features are
grouped in collections of features. A feature collection (called datasets) can also
be considered an entity in PROV (in fact, an entity collection), the dataset-level prov-
enance. In many occasions, feature properties are processed with different techniques
and can come from different origins. In that case, their attributes (also considered
entities), have their own provenance, the attribute-level. Therefore, we capture

© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 271–274, 2015.
DOI: 10.1007/978-3-319-16462-5_31



geospatial provenance information at three different levels of granularity. In a Geospatial
Information System (GIS) context, activities are executions that create and manipulate
datasets, features and attributes (such as buffer generation or conflation execution).
Activities can be executed in a GIS platform or a web processing service. Each of the
individual activities can be associated with a general process that can be represented as a
PROV Plan. The GIS platform or the web processing service can be considered a plan
collection. Another important aspect to consider is identifying the PROV agents, that can
be either responsible of an individual process execution (activity) or be the developer of a
general process (plan).

We use the RDF subclass mechanism to map geospatial elements to PROV classes,
as shown in Fig. 1. In addition, we use the Turtle notation here to show examples, with
geospatial concepts shown with the “ows” namespace. For example:

2 W3C PROV Relations Applied to Geospatial Provenance

In our application, we can derive a new dataset by combining two data sources through
an activity requested by an agent. A new features wasGeneratedBy the combination
process and wasDerivedFrom the two initial features. In RDF:

At the same time, the geospatial process wasAssociatedWith an agent, which can be
considered the author (wasAttributedTo) of the new features:

We can associate the individual execution with the generic GIS tools used (plan)
and with the developer of the tools:

Fig. 1. The correspondence between W3C PROV and Geospatial concepts

272 J. Masó et al.



These examples describe feature-level provenance, but the same relations can be
used at dataset or attribute level. This is an excerpt of the provenance for 2 attributes of
newFeature1:

3 W3C PROV and RDF to Express Geospatial Provenance

The Open Geospatial Consortium has defined a standard for geospatial processing on
the web called Web Processing Service (WPS) [3]. As a use case, we have defined how
to implement a distributed process for the conflation of two datasets as a WPS process.
In the geospatial field, a conflation process is defined as the process of combining
geographic information from overlapping sources so as to retain accurate data, mini-
mize redundancy, and reconcile data conflicts [4]. In our case, a U.S. Geological
Survey (USGS) dataset was enhanced with Open Street Map (OSM) dataset by adding
new features or updating the geometry or other attributes. The conflation process uses a
matching and enrichment algorithm controlled by a distance parameter (that acts as a
threshold for the conflation step where features in the OSM beyond that distance will
not be conflated with a given USGS feature). Dataset-level provenance information
captures the purpose of each parameter, the name of the authors of the data and the
processes involved, the date and time of both the process development and the exe-
cution. During conflation, some completely new features are added, and for them
feature-level provenance is provided. Other features are conflated by modifying only
the geometrical property (location) or the non-geometrical properties, and a more
detailed and granular attribute-level provenance is used.

4 Conclusions

PROV can be used to express, store and query geospatial information. The model
presented defines geospatial entities and captures provenance at 3 levels of granularity.
The RDF encoding of PROV can express well the provenance of the geospatial objects,
roles and relations with a uniform approach. PROV was found more flexible, easier to
understand, and more compact than ISO19115 XML encoding that is traditionally used
in the geospatial community.

Acknowledgments. This work is a continuation of the GeoViQua FP7 project, and organized
and funded by the Open Geospatial Consortium as part of the OWS10 Interoperability Experi-
ment. It was also supported in part by the US Air Force Office of Scientific Research with grant
FA9550-11-1-0104.

Poster: Applying W3C PROV to Express Geospatial Provenance 273



References

1. Moreau, L., Missier, P. (eds.): PROV-DM: The PROV Data Model. World Wide Web
Consortium (2013)

2. Lake, R., et al.: GeographyMark-Up Language.Wiley, Chichester (2004). ISBN 978-0470871546
3. Schut, P.: OpenGIS Web Processing Service Version 1.0.0. OGC 05-007r7 (2007)
4. Chen, C.-C., et al.: Automatically and accurately conflating raster maps with orthoimagery.

Geoinformatica 12(3), 377–410 (2008). doi:10.1007/s10707-007-0033-0

274 J. Masó et al.

http://dx.doi.org/10.1007/s10707-007-0033-0


ProvStore: A Public Provenance Repository

Trung Dong Huynh(B) and Luc Moreau

Electronics and Computer Science, University of Southampton,
Southampton SO17 1BJ, UK

{tdh,l.moreau}@ecs.soton.ac.uk

Abstract. ProvStore is the first online public provenance repository
supporting the new PROV standards by W3C. It allows users and appli-
cations to store and (optionally) publish the provenance of their data
on the Web. Provenance documents can be transformed, visualized, and
shared in various serializations, with all the functionality also available
to third-party applications via a RESTful API (OAuth supported).

1 Provenance Repository

ProvStore (https://provenance.ecs.soton.ac.uk/store/) is the first public reposi-
tory of provenance documents supporting the PROV standards for provenance
on the Web by the World Wide Web Consortium [MM13]. Users can regis-
ter for a free account, allowing them to upload and share provenance docu-
ments either privately or publicly in various representations (see Fig. 1 for an
example1). Specifically, it supports the Provenance Notation (PROV-N), RDF
encoded using the PROV Ontology (PROV-O) in Turtle or TriG formats, PROV-
XML, and PROV-JSON [HJK+13].

By default, documents submitted to ProvStore are private and can only be
accessed by their owners. Document owners, however, can choose to share their
documents with others in two ways: making a document public, i.e. available to
any visitor to ProvStore, or sharing it with specific ProvStore’s users. The former
is useful for users who want to expose the provenance of their resources (e.g.
papers, reports, data sets) to the public; the link to a document on ProvStore
can be attached as the provenance URI along with the corresponding resource.2

In the latter, different access roles can be set to authorized users for fine-grain
access control: administrator, editor, contributor, or reader. Except reader, all
other roles and the owner can append new provenance bundles to a document
after it has been created. It is suitable for sharing provenance between a team
of collaborating humans and/or applications (see Sect. 3 for more information
about the application programming interface provided by ProvStore).

ProvStore was funded by the UK Engineering and Physical Sciences Research
Council (EPSRC) as part of project Orchid, grant EP/I011587/1.

1 Online address: https://provenance.ecs.soton.ac.uk/store/documents/1979/.
2 See www.w3.org/TR/prov-aq for more information on provenance access and query.
Document links on ProvStore support HTTP content negotiation. For example, if
the HTTP request specify a header Accept: application/json, the PROV-JSON
representation of the provenance document will be returned.

c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 275–277, 2015.
DOI: 10.1007/978-3-319-16462-5 32

https://provenance.ecs.soton.ac.uk/store/
https://provenance.ecs.soton.ac.uk/store/documents/1979/
www.w3.org/TR/prov-aq


276 T.D. Huynh and L. Moreau

Fig. 1. The screen-shot of a ProvStore document.

On each document (Fig. 1), users can see its provenance descriptions in
PROV-N, along with some statistics about the numbers of assertions. ProvStore
also provides a number of provenance network metrics [EHM+12] calculated on
the graph representation of the document. As mentioned above, access links to
various provenance representations are included, in addition to a numbers of
provenance transformations and visualizations (see Sect. 2). The provenance of
the document can be checked directly from inside the document page (provided
by the external ProvValidator service3).

2 Provenance Transformation and Visualization

A provenance document can contain bundles, which are a PROV construct to
support bundling a set of provenance descriptions (so allowing provenance of
provenance to be expressed) [MM13]. To support relating provenance statements
within a document across its bundles, ProvStore can produce a flattened repre-
sentation of the document in which all of its provenance statements are merged
into a flat document. In this representation, the provenance of entities distrib-
uted in multiple bundles can be “connected” for further examination.

In addition to the flattened representation, ProvStore provides a number of
provenance views: Data Flow (concerned with the flow of information or the trans-
formations of things), Process Flow (concernedwith the processes that took place),
and Responsibility (assigning responsibility for what happened) [MG13, Chap. 3].

3 provenance.ecs.soton.ac.uk/validator.

http://provenance.ecs.soton.ac.uk/validator


ProvStore: A Public Provenance Repository 277

These views are simplified versions of the original document produced by select-
ing only the relevant provenance descriptions from it. They can facilitate the
examination of provenance information by allowing users to focus on a single
aspect of it rather than the full descriptions. Each of the views can be applied
either on the original document or its flattened version.

All versions (original or flattened, optionally simplified in a provenance view)
of a ProvStore document can be visualized in a (static) graphical representation
(in the SVG, PNG, or PDF formats). In addition, ProvStore provides inter-
active visualization tools for users to explore a provenance graph through a
Hive plot (highlighting input, output, and intermediary nodes), a Wheel plot
(showing the density of connections to/from nodes), a Gantt chart (presenting
entities, activities, and agents on a time line), and a Sankey diagram (showing
flows of ‘influence’ between provenance elements). All the interactive visualiza-
tions, except the Gantt chart, also allow filtering on provenance assertion types
to simplify the visualizations.

3 RESTful Application Programming Interface (API)

All of the functionality described in the previous sections (with the exception of
interactive features like validation and visualizations) can be accessed program-
matically via a RESTful API4 over the Hypertext Transfer Protocol. ProvStore,
hence, can serve as a provenance storage-and-publish service on the cloud, pro-
viding applications a means to make the provenance of their data available online
as soon as it is generated/recorded. Authorized applications must authenticate
with ProvStore’s API either by using their (revocable) secret API keys or by
following the OAuth (version 1) protocol. With the latter, ProvStore enables
users of any third-party applications or web sites (that registered with it) to
store or access their provenance data directly from inside such applications in a
seamless fashion.

References

[EHM+12] Ebden, M., Huynh, T.D., Moreau, L., Ramchurn, S., Roberts, S.: Network
analysis on provenance graphs from a crowdsourcing application. In: Groth,
P., Frew, J. (eds.) IPAW 2012. LNCS, vol. 7525, pp. 168–182. Springer,
Heidelberg (2012)

[HJK+13] Huynh, T.D., Jewell, M.O., Sezavar Keshavarz, A., Michaelides, D.T.,
Yang, H., Moreau, L.: The PROV-JSON serialization. Technical report,
World Wide Web Consortium, April 2013

[MG13] Moreau, L., Groth, P.: Provenance: An Introduction to PROV. Morgan &
Claypool, San Rafael (2013)

[MM13] Moreau, L., Missier, P.: PROV-DM: The PROV Data Model. Technical
report, World Wide Web Consortium, W3C Recommendation (2013)

4 See provenance.ecs.soton.ac.uk/store/help/api for the full specification of the API
and example codes.

http://provenance.ecs.soton.ac.uk/store/help/api


Sentence Templating for Explaining Provenance

Heather S. Packer(B) and Luc Moreau

Web And Internet Science Group, University of Southampton, Southampton, UK
{hp3,L.Moreau}@ecs.soton.ac.uk

Abstract. Disseminating provenance data to users can be challenging
because of its technical content, and its potential scale and complex-
ity. Textual narrative and supporting images can be used to improve a
user’s understanding of provenance data. This early work aims to sup-
port the exploration of provenance data by allowing users to query prove-
nance data with a provenance subject (either an entity, activity or agent)
recorded in it.

1 Introduction

Provenance data can be hard for both expert and non-expert users to understand
because of its technical content, and its potential scale and complexity. In order
to address these obstacles, we propose allowing users to explore provenance data
via an explanation service. This service requires provenance data and a single
subject (either an entity, activity or agent) described in the data, as parameters.
It returns a description of the subject, which includes text and a provenance
graph.

Section 2 describes the sentence templates used to generate a textual nar-
rative of a provenance subject. Following that, Sect. 3 describes the provenance
graphs generated to support the textual narrative. We then provide conclusions
and discuss future work in Sect. 4.

2 Sentence Templating

The explanation service uses sentence templates to explain the provenance types
defined in the prov [1] W3C’s standard for provenance (see Table 1 for exam-
ples). The sentence templates are strung together to form a paragraph describ-
ing the entities, agents and activities which relate to the subject. For example,
the following paragraph has been generated about the provenance subject rs:/
rideRequest/1 from the provenance in Fig. 1.

The rs:/rideRequest/1 is a UserInput entity. It was generated by the activ-
ity rs:post ride request 103 . It was attributed to the agent rs:/users/agent2 . It
was used by the activity rs:store ride request81935 .

c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 278–280, 2015.
DOI: 10.1007/978-3-319-16462-5 33



Sentence Templating for Explaining Provenance 279

entity(rs:/rideRequest/1, [prov:type=‘prsm:UserInput’])
activity(rs:post ride request 103, -, -, [prov:type=‘prsm:Provide Info’])
activity(rs:store ride request81935, -, -, [prov:type=‘prsm:StoreData’])
agent(rs:ride server, [prov:type=‘prsm:webserver’])
agent(rs:/users/agent2, [prov:type=‘prsm:loggedInUser’])
wasGeneratedBy(rs:/rideRequest/1, rs:post ride request 103, -)
used(rs:store ride request81935, rs:/rideRequest/1, -)
wasInformedBy(rs:store ride request81935, rs:post ride request 103)
wasAttributedTo(rs:/rideRequest/1, rs:/users/agent2)
wasAssociatedWith(rs:post ride request 103, rs:/users/agent2, -)
wasAssociatedWith(rs:store ride request81935, rs:ride server, -)

Fig. 1. Provenance extract used for the ride share example.

3 Provenance Graphs

As well as providing sentences which describe a subject, we also generate prove-
nance graphs highlighting the agents, activities, entities and relationships which
are in the textual narrative. The graphs represent the provenance data described
in the narrative using the standard colours used in prov and greys out data that
was not used. In our example from the previous section, Fig. 2 shows which items
were used in the narrative.

Table 1. Template Sentence examples, where items in {} are variables which can be
either a single item or a list.

Prov Types Sentence template

Entity The {subject} is a {type} entity

Agent The {subject} is a {type} agent

Activity The {subject} is a {type}activity
Alternate It was an alternate of {alternate/s}
Association It was associated with agent/s {agent/s}
Attribution It was attributed to agent/s {agent/s}
Collections It was a member of the {collection/s} collection/s

Communication It was informed by {agent/s}
Delegation It acted on behalf of {agent/s}
Derivation The {subject} was derived from the entity/ies

{entity/ies}
Specialization and Revision The {subject} was a specialisation of the entity

{entity}, and is a revision of {entity/ies}
Generation It was generated by the activity {activity/ies}
Usage It was used by the activity/ies {activity/ies}



280 H.S. Packer and L. Moreau

Fig. 2. A graph generated using the ride share example.

4 Conclusion

The explanation service provides users with a description of a provenance subject
using text and images. For future work, we plan to expand and develop two
categories of sentence templates: inspection, which are used to describe facts;
and comparison, which are to rank a subject against others. We will also consider
policies to support privacy and security in the templates. Finally, we will explore
how to foster trust using templates by adopting different authorial tones in the
narrative and granularities of explanations about policies, such as privacy and
how provenance data is used.

Acknowledgments. The research leading to these results has received partially fund-
ing from the European Community’s Seventh Framework Program (FP7/2007-2013)
under grant agreement n. 600854 Smart Society: hybrid and diversity-aware collective
adaptive systems: where people meet machines to build smarter societies http://www.
smart-society-project.eu/.

Reference

1. Moreau, L., Missier, P. (eds.) Belhajjame, K., B’Far, R., Cheney, J., Coppens, S.,
Cresswell, S., Gil, Y., Groth, P., Klyne, G., Lebo, T., McCusker, J., Miles, S., Myers,
J., Sahoo, S., Tilmes, C.: PROV-DM: The PROV Data Model. W3C Recommen-
dation REC-prov-dm-20130430, World Wide Web Consortium, Oct 2013. http://
www.w3.org/TR/2013/REC-prov-dm-20130430/

http://www.smart-society-project.eu/
http://www.smart-society-project.eu/
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
http://www.w3.org/TR/2013/REC-prov-dm-20130430/


Extending PROV Data Model
for Provenance-Aware Sensor Web

Peng Yue(&), Xia Guo, Mingda Zhang, and Liangcun Jiang

State Key Laboratory of Information Engineering in Surveying,
Mapping and Remote Sensing, Wuhan University,

129 Luoyu Road, Wuhan 430079, China
geopyue@gmail.com

Abstract. Provenance has become a fundamental issue in Sensor Web, since it
allows applications to answer “what”, “why”, “where”, “when”, and “how”
queries related to the consumption process, which finally helps to determine the
usability and reliability of data products. This paper proposes how the W3C
PROV Data Model (PROV-DM) [1] can be used for creating a lineage model for
Sensor Web to support interoperability.

In the sensor domain, the observation values, phenomenon measurement, observation
location, time of observation, and observation procedure are important parts to answer
sensor discovery queries. They are categorized as “what”, “why”, “where”, “when”,
and “how” queries in this paper. These five perspectives, together, construct the lineage
for an observation. In this paper, OCG standards and W3C SSN ontology [2] are
leveraged to provide comprehensive domain vocabularies for Sensor Web, which
are later mapped into concepts in PROV-DM for modeling observation lineage. It is
possible to adopt SSN solely as the vocabularies and map them to W3C PROV.
However, we argue that the solution of adopting O&M basic observation model [3] as a
core with its complements by SSN ontology could facilitate the extraction of PROV
data from the large amount of existing observation data following the OGC Sensor
Web standards.

The domain vocabularies adopt the base Observation model in the O&M, enriched
by classes and properties in the SSN ontology (Fig. 1). Within the O&M standard, an
observation (OM_Observation) is defined as “an act of observing a property or phe-
nomenon, with the goal of producing an estimate of the value of the property”, and a
feature (GFI_Feature) is “an abstraction of real world phenomenon”. Result (Result-
Data) records the value of an observation. featureOfInterest and observedProperty
together sketch the phenomenon to be measured. The “what” and “why” questions can
then be answered using these entities. Furthermore, responsible party information is
added using the class CI_ResponsibleParty from ISO19115:2003 to record the person
or party responsible for the observation. An observation often involves a procedure,
which can be a sensor, a human observer, or a series of process steps. Thus, a procedure
(OM_Process) has two subconcepts: Sensor and Process. Observers (Observer) and
sensing devices (SensingDevice) are modeled as subconcepts of Sensor. The Process
can be understood as a processing method with Input and Output to describe how
observations were made. These definitions together, answer the “how” question in

© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 281–284, 2015.
DOI: 10.1007/978-3-319-16462-5_34



provenance queries. Besides, the System and Platform are also added according to
relationships among the sensor, system, and platform defined from the system
perspective of the SSN ontology. Location and time, which are not described in the
SSN ontology, answer “Where” and “When” questions, using associations with Sensor
and Process respectively.

Fig. 1. Domain vocabularies for Sensor Web

Fig. 2. Observation lineage model by extending PROV-DM

282 P. Yue et al.



Mapping domain vocabularies from the Sensor Web to PROV-DM can facilitate
interoperable provenance modeling. Figure 2 shows domain-specific extensions of W3C
PROV by creating mapping from the domain vocabularies in Fig. 1 to PROV-DM.

GFI_PropertyType and GFI_Feature are entities that together can be used to
describe the phenomenon observed by an observation. An observation (OM_Obser-
vation) is then a kind of Activity. The relationships observedProperty and featureOf-
Interest are categorized as the relation concept Usage. The procedure associates
OM_Observation and OM_Process, and thus can be also seen as a kind of Usage. The
relation result follows the relation concept Generation as the results are generated by
observation activities. CI_ResponsibleParty is responsible for the observation, and then
the relation sponsor is categorized as the relation concept Association. The subconcepts
of OM_Process, such as Process, Sensor, and SensingDevices are all entities.

In the paper, an ontology is used to represent the observation lineage model which
are extended to PROV-O, using rdfs:subClassOf and rdfs:subPropertyOf relationships.
The observation lineage model is then enriched according to the specific sensors and
database schema when dealing with the PM cases. A relational database is used to store
datasets including observation values and corresponding metadata. The datasets content
is then mapped into RDF, which is published as linked data and thereby allows to be
browsed and searched.

Three typical query examples, including temporal and spatial provenance filtering,
are conducted and showed through a prototype system. One of the query examples
following the SPARQL syntax is showed in Table 1. Specially, to demonstrate the
potential of interoperability, a query example is also conducted with combining generic
concepts in PROV-O and domain-specific concepts in observation lineage ontology.
Using OWL reasoners, concepts and relations that are mapped to PROV can be dis-
covered by applying PROV-related queries.

Acknowledgements. We are grateful to the anonymous reviewers for their constructive com-
ments. The work is supported jointly by National Basic Research Program of China
(2011CB707105), National Natural Science Foundation of China (41271397), and Program for
New Century Excellent Talents in University (NCET-13-0435).

Table 1. The query example

SELECT ?sensor ?geonames ?latitude ?longitude 

WHERE {

     ?Observation  prov-pmsw:procedure  ?sensor.

   ?sensor  prov-pmsw:type  "sensingdevice".

   ?Observation  prov-pmsw:resultTime  ?instanceTime.

   ?instanceTime  prov-pmsw:xsdDateTime  ?xsdDateTime.

    FILTER(?xsdDateTime >= "2013-06-16T08:00:00+08" && ?xsdDateTime <= "2013-

06-16T08:00:00+08").

   ?sensor  prov-pmsw:hasLocation  ?location.

   ?location  prov-pmsw:geonames  ?geonames.

   ?location  prov-pmsw:wgs84_lat  ?latitude.

   ?location  prov-pmsw:wgs84_long  ?longitude.

FILTER(?geonames="Nanjing").

}

POSTER: Extending PROV Data Model for Provenance-Aware Sensor Web 283



References

1. Moreau, L., Missier, P.: ROV-DM: The PROV Data Model. WWW document (2013). http://
www.w3.org/TR/prov-dm/

2. W3C 2005 Semantic Sensor Network Ontology. WWW document. http://www.w3.org/2005/
Incubator/ssn/ssnx/ssn

3. Cox S 2007 Observation and Measurements Implementation Specification, Version 1.0. Open
Geospatial Consortium document No. OGC 07-022r1

284 P. Yue et al.

http://www.w3.org/TR/prov-dm/
http://www.w3.org/TR/prov-dm/
http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
http://www.w3.org/2005/Incubator/ssn/ssnx/ssn


SC-PROV: A Provenance Vocabulary
for Social Computation

Milan Markovic(B), Peter Edwards, and David Corsar

Computing Science and dot.rural Digital Economy Hub,
University of Aberdeen, Aberdeen AB24 5UA, UK
{m.markovic,p.edwards,dcorsar}@abdn.ac.uk

Abstract. In this paper we present SC-PROV - an extension to
PROV-O and P-PLAN that is designed to capture the provenance of
social computations.

1 Introduction

The Web has enabled the rapid growth of various forms of social computation
[RG13] - hybrid workflows that consist of tasks executed by both computational
agents and humans. Such workflows are typically used to solve problems that
are difficult for machines (e.g. image classification). We have previously argued
[MEC13] that existing social computation systems suffer from a lack of trans-
parency, that makes decisions about the reliability of participants and the quality
of generated solutions difficult. We believe that such transparency issues could be
addressed by recording the provenance of social computation executions. While
PROV-O1 can be used to document retrospective provenance (such as execution
traces of workflows) this would not include details of why or how a workflow
was expected to execute [MDB+13,GG12]. For this purpose, P-PLAN2 extends
PROV-O with the ability to document workflow plans in terms of steps and vari-
ables. However, in order to improve the transparency of social computations and
support enhanced reasoning about human participants (and their contributions),
we believe that plans should also include additional elements describing impor-
tant characteristics of the social computation [MEC13]. These include pre and
post conditions associated with social computation tasks, e.g. a participant must
be an English speaker and the outcome has to be validated by two additional
participants. Also needed is a means to describe incentives that are associated
with successful completion of a task (e.g. receive 10 points). We have developed
SC-PROV as an extension of PROV-O and P-PLAN to enable descriptions of
such conditions and incentives as part of the social computation plan. In addi-
tion, SC-PROV enables such concepts to be mapped to a provenance record
describing the execution trace (Fig. 1).

The research described here is supported by the award made by the RCUK Dig-
ital Economy programme to the dot.rural Digital Economy Hub; award reference:
EP/G066051/1.

1 http://www.w3.org/TR/prov-o/.
2 http://vocab.linkeddata.es/p-plan/.

c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 285–287, 2015.
DOI: 10.1007/978-3-319-16462-5 35

http://www.w3.org/TR/prov-o/
http://vocab.linkeddata.es/p-plan/


286 M. Markovic et al.

p-plan: Entity 
(prov: Entity)

p-plan: Activity
(prov: Activity) prov:used

prov:wasGeneratedBy

 p-plan:correspondsToStep

p-plan:Plan
(prov:Plan)

p-plan: Step p-plan:isStepOfPlan

sc-prov: 
Incentive

sc-prov: 
Postcondition

sc-prov:hasPostcondition
sc-prov:hasIncentive

p-plan: 
Variable

p-plan:hasOutputVar

sc-prov:dependsOn

sc-prov: 
Precondition

sc-prov:hasParameter

sc-prov:hasPrecondition

 p-plan:correspondsToVariable

sc-prov:Problem

prov: Agent

prov:hadPlan

 prov:wasAssociatedWith

p-plan:hasInputVar

 sc-prov:hasRole

sc-prov: 
Input

sc-prov: 
Output

 sc-prov:Solution

 sc-prov:hasQualifiedInput
 sc-prov:hasQualifiedOutput

 sc-prov:hasRole

sc-prov:hasParameter
 sc-prov:variable

 sc-prov:variable

sc-prov: 
Reward

sc-prov:isInstanceOf

Fig. 1. PROV-O and corresponding extensions including P-PLAN and SC-PROV.

2 Model Description

SC-PROV reuses the concepts defined by P-PLAN to enable the basic structure
of a social computation workflow to be captured. P-PLAN describes plans in
terms of p-plan:Step and p-plan:Variable. Steps represent activities that should
be executed as part of the workflow. A variable can be related to a particular
step as either an input or output variable. The p-plan:correspondsToVariable
property maps a variable to a p-plan:Entity that was used or generated by a
p-plan:Activity during execution. Similarly, steps can be mapped to a p-plan:
Activity via the p-plan:correspondsToStep property. To augment such descrip-
tions of tasks in the context of social computations, SC-PROV defines sc-prov:
Precondition, sc-prov:Postcondition, sc-prov:Incentive and sc-prov:Reward. A
precondition defines a subclass of prov:Entity representing constraints that should
be satisfied before a plan step can be fulfilled (e.g. the required location of a
human worker). A precondition is associated with a step via the sc-prov:has
Precondition property and can be linked to parameters of type p-plan:Variable
(e.g. GPS coordinates) using the sc-prov:hasParameter property. As every pre-
condition is a subclass of prov:Entity, it can be linked to the retrospective prove-
nance described by PROV-O. For example, a provenance record might include a
prov:Activity that evaluated whether the precondition was satisfied and therefore
used the entity representing the precondition as well as entities corresponding
to its parameters. A postcondition defines a subclass of prov:Entity representing
constraints that should be satisfied after the completion of a particular step for
it to be considered successful. For example, a postcondition of a human task
might require an agent to produce a solution that should be validated at least
by another two agents. The properties sc-prov:hasPostcondition and sc-prov:
hasParameter are analogous to those described for sc-prov:Precondition. The
sc-prov:Incentive class is a subclass of prov:Entity representing an incentive asso-
ciated with the successful completion of a task. This concept can be understood
as a thing (e.g. £10, increased knowledge, etc.) that would be realised by a



SC-PROV: A Provenance Vocabulary for Social Computation 287

worker following successful completion of a task. An incentive is associated with
a step via the sc-prov:hasIncentive property. A property sc-prov:dependsOn is
defined to link the concept of the incentive and a postcondition, where the post-
condition is used to describe circumstances under which a worker should receive
the reward described by the incentive. The concept of sc-prov:Reward defines
a subclass of prov:Entity representing a realisation of the promised incentive
(e.g. a voucher worth £10). The sc-prov:isInstanceOf property can be used to
map a promised task incentive with such a reward. In a social computation con-
text, there are two important types of variables, namely problems and solutions,
which describe the purpose and outcomes of the computation. Using P-PLAN
concepts, a problem would be described by a set of variables that represent a
problem statement and serve as an input to a step (e.g. human task). Simi-
larly, a solution would be described by a set of variables that specify the answer
to the problem. SC-PROV defines two sc-prov:Role’s (sc-prov:Problem and sc-
prov:Solution) to describe the expected function of a variable in a step. The
qualified relation3 pattern is used to model properties p-plan:hasInputVar and
p-plan:hasOutputVar as resources. For this sc-prov:Input describes a variable
that will be taken as an input for a step and sc-prov:Output describes a variable
that will be produced as an output of a step in the planned execution. Properties
sc-prov:hasRole and sc-prov:variable can then be used to associate the role with
a variable.

3 Future Work

In our future work we aim to develop a framework utilising the SC-PROV ontol-
ogy to record the provenance of a number of social computations. The aim is to
demonstrate the utility of provenance records documented using SC-PROV by
evaluating the potential of such data to support reasoning about participants’
trustworthiness and thus aid workforce selection.

References

[GG12] Garijo, D., Gil, Y.: Augmenting prov with plans in p-plan: scientific
processes as linked data. In: Proceedings of the Second International Work-
shop on Linked Science 2012 - Tackling Big Data, CEUR (2012)

[MDB+13] Missier, P., Dey, S., Belhajjame, K., Cuevas-Vicenttin, V., Ludaescher, B.:
D-prov: extending the prov provenance model with workflow structure.
Technical report, Newcastle University (2013)

[MEC13] Markovic, M., Edwards, P., Corsar, D.: Utilising provenance to enhance
social computation. In: Alani, H., et al. (eds.) ISWC 2013, Part II. LNCS,
vol. 8219, pp. 440–447. Springer, Heidelberg (2013)

[RG13] Robertson, D., Giunchiglia, F.: Programming the social computer. Philos.
Trans. R. Soc. A: Math. Phys. Eng. Sci. 371(1987), 20120379 (2013)

3 http://patterns.dataincubator.org/book/qualified-relation.html.

http://patterns.dataincubator.org/book/qualified-relation.html


RDataTracker and DDG Explorer

Capture, Visualization and Querying
of Provenance from R Scripts

Barbara S. Lerner1(B) and Emery R. Boose2

1 Mount Holyoke College, South Hadley, MA 01075, USA
blerner@mtholyoke.edu

2 Harvard Forest, Harvard University, Petersham, MA 01366, USA

Scientific data provenance is gaining interest among both scientists and com-
puter scientists. The current state of the art of provenance capture requires
scientists to adopt new technologies, most commonly workflow systems such
as Kepler [BML+06], Vistrails [SKS+08] or Taverna [MBZ+08], among others.
While there are likely additional benefits to adopting these systems, they present
a hurdle to scientists who are more interested in focusing on science than in learn-
ing new technologies. The work described in this poster is aimed at exploring the
extent to which we can support scientists while expecting a minimal investment
in terms of additional effort on their part.

This work has been developed in collaboration with ecologists at Harvard
Forest, a 3500 acre facility operated by Harvard University and serving as a
Long-Term Ecological Research (LTER) site funded by the National Science
Foundation. Many of these ecologists perform data analysis using R, a widely
used scripting language that includes extensive statistical analysis and plotting
functionality. These scientists are committed to understanding their data, mak-
ing sure that their data analyses are done in an appropriate manner, and sharing
their data and results with others. For these reasons, they appreciate the value
that collecting data provenance may have, but they are not enthusiastic about
learning new tools. In this poster, we present two tools aimed at this audience:
RDataTracker and DDG Explorer. RDataTracker [LB14] is used to collect data
provenance during the execution of an R script. DDG Explorer is the tool that
is used to examine and query the resulting data provenance.

1 Capturing Data Provenance with RDataTracker

RDataTracker is an R library that contains functions to build a provenance graph
based on the execution of an R script and/or user activity in the R console. At
a minimum, the scientist needs to load the library, initialize the provenance
graph at the start of execution, and save the provenance graph at the end. As a
script executes or the user enters commands at the console, a provenance graph
is constructed that records the operations that are executed, the data that are
used, and where variables are assigned.
c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 288–290, 2015.
DOI: 10.1007/978-3-319-16462-5 36



RDataTracker and DDG Explorer 289

The user can increase the amount of information collected during execution
by including more instrumentation. In particular, by doing this the user can:

– Save copies of input and output files as well as copies of plots created.
– Include details of provenance that occurs within the execution of functions.
– Introduce levels of abstraction that allow the provenance graph to be viewed

with a varying amount of detail.
– Checkpoint the entire R state and restore it later, capturing the checkpoint

and restore operations in the provenance graph so that the data derivation
links correctly show the effects of the checkpoint and restore operations and
files are restored to the contents they had at the time of the checkpoint.

– Capture error messages generated by the R interpreter or RDataTracker and
include them in the provenance graph as an aid to debugging.

This work differs from CXXR [SR10,RS12], an implementation of the R inter-
preter that includes automated provenance collection. In CXXR, the data prove-
nance is made available to the programmer via functions within the R session,
but there is no provenance recorded within functions and the data provenance
is not stored persistently.

2 Viewing and Querying Provenance with DDG Explorer

DDG Explorer is a tool that supports the querying and visualization of the
provenance graphs created by RDataTracker. DDG Explorer has been carefully
designed to be language agnostic and also supports the display and querying of
provenance graphs created from the execution of Little-JIL processes [OCE+10,
LBO+11]. This poster focuses on provenance collected in R.

With DDG Explorer, the user can load a provenance graph written by RData-
Tracker. In addition to the usual navigation and querying facilities provided by
provenance browsers, DDG Explorer takes advantage of the abstraction and
checkpoint/restore features of RDataTracker to provide additional navigation
capabilities. The levels of abstraction captured in RDataTracker allow for sec-
tions of the full provenance graph to be collapsed to an individual node. This
allows for navigation at a high level of abstraction. By clicking on a collapsed
node, the node is expanded to expose more detail.

DDG Explorer also uses checkpoint/restore information to hide detail and
selectively expose it. In particular, the provenance that occurs between a check-
point and when that checkpoint is restored is collapsed to a single node. By
clicking on the collapsed node, the user can see the details of the activity that
occurred between the checkpoint and restore.

The normal mode of operation that we expect is for users to write and execute
their scripts, examine the resulting provenance graphs and use the information
to refine the scripts, iterating until the script behaves as expected and the prove-
nance graph contains the desired amount of detail. At that point, the user can
save the provenance graph and associated files to a database.



290 B.S. Lerner and E.R. Boose

3 Conclusion

RDataTracker and DDG Explorer support the collection of data provenance from
the execution of R scripts and R console commands. Our goal is to provide tools
that are easy for scientists to learn and that offer an immediate payback for a
small effort and increasing value as the scientist becomes familiar with the tools
and invests more effort in their use. Initial results have been encouraging and
we will continue to improve upon the types of information that we capture and
to reduce the effort required by scientists.

Acknowledgments. The authors acknowledge intellectual contributions from collab-
orators Leon Osterweil and Aaron Ellison and Harvard Forest REU students Sophia
Taskova, Antonia Oprescu, and Shaylyn Adams. The work was supported by NSF
grants DEB-0620443, DEB-1237491, and DBI-1003938, the Charles Bullard Fellow-
ship at Harvard University, and a faculty fellowship from Mount Holyoke College and
is a contribution from the Harvard Forest Long-Term Ecological Research (LTER)
program.

References

[BML+06] Bowers, S., McPhillips, T., Ludäscher, B., Cohen, S., Davidson, S.B.: A
model for user-oriented data provenance in pipelined scientific workflows.
In: Moreau, L., Foster, I. (eds.) IPAW 2006. LNCS, vol. 4145, pp. 133–147.
Springer, Heidelberg (2006)

[LB14] Lerner, B.S., Boose, E.R.: RDataTracker: collecting provenance in an inter-
active scripting environment. In: TAPP 2014, Cologne, Germany, June 2014

[LBO+11] Lerner, B., Boose, E., Osterweil, L.J., Ellison, A.M., Clarke, L.A.:
Provenance and quality control in sensor networks. In: Proceedings of the
Environmental Information Management (EIM) 2011 Conference, Santa
Barbara, California, September 2011

[MBZ+08] Missier, P., Belhajjame, K., Zhao, J., Roos, M., Goble, C.: Data lineage
model for Taverna workflows with lightweight annotation requirements. In:
Freire, J., Koop, D., Moreau, L. (eds.) IPAW 2008. LNCS, vol. 5272, pp.
17–30. Springer, Heidelberg (2008)

[OCE+10] Osterweil, L.J., Clarke, L.A., Ellison, A.M., Boose, E.R., Podorozhny, R.,
Wise, A.: Clear and precise specification of ecological data management
processes and dataset provenance. IEEE Trans. Autom. Sci. Eng. 7(1),
189–195 (2010)

[RS12] Runnalls, A., Silles, C.: Provenance tracking in R. In: Groth, P., Frew,
J. (eds.) IPAW 2012. LNCS, vol. 7525, pp. 237–239. Springer, Heidelberg
(2012)

[SKS+08] Scheidegger, C., Koop, D., Santos, E., Vo, H., Callahan, S., Freire, J., Silva,
C.: Tackling the provenance challenge one layer at a time. Concurr. Com-
put. Pract. Exp. 20(5), 473–483 (2008)

[SR10] Silles, C.A., Runnalls, A.R.: Provenance-awareness in R. In: McGuinness,
D.L., Michaelis, J.R., Moreau, L. (eds.) IPAW 2010. LNCS, vol. 6378, pp.
64–72. Springer, Heidelberg (2010)



Provenance Support for Medical Research

Richard McClatchey(&), Jetendr Shamdasani,
Andrew Branson, and Kamran Munir

Centre for Complex Cooperative Systems, FET, UWE Bristol,
Coldharbour Lane, Bristol, UK

{richard.mcclatchey,jetendr.shamdasani,

andrew.branson,kamran.munir}@cern.ch

Abstract. This poster paper introduces a system known as CRISTAL [1] and
the experience using it for medical research, primarily in the neuGRID [2] and
neuGridforUsers (N4U) projects. These projects aim to provide detailed trace-
ability for research analysis processes in the study of biomarkers for Alzheimer’s
disease. They have faced major challenges in managing data volumes and
algorithm complexity leading to problems associated with information tracking,
analysis reproducibility and scientific data verification. We present a working
system that supports provenance data management for medical researchers.

Medical informatics has increasingly required systems that facilitate historical data
capture and management in order to support researchers’ analyses through workflow
based algorithms. To facilitate the requirement of tracking large scale analyses, we
have adopted CRISTAL [1], a workflow and ‘provenance data’ tracking solution. Its
use has provided a rich environment for neuroscientists to track and manage the
evolution of both data and workflows in neuGRID and N4U. In the N4U project in
particular we have developed a so called Virtual Laboratory (VL). One major goal of
the VL is to ensure the reproducibility of results and to allow sharing of analysis
information between researchers. All of the workflows in N4U after design are auto-
mated, their complete history from design to orchestration being captured and stored.
Another feature of the VL is its collaborative environment, allowing for ‘provenance’
information to be shared and used by various researchers. The N4U VL is based on
services layered on top of the neuGRID infrastructure, described in detail in [2].

The VL was developed for neuroscientists involved in Alzheimer’s studies but has
been designed to be reusable across other medical research communities. It has been
designed to provide access to infrastructure resident data and to enable the analyses
required by the medical research community. This has been achieved by basing the
N4U virtual laboratory on an integrated Analysis Base [3], which has been developed
following the detail requirements from both neuGRID and N4U projects. This Analysis
Base provides an integrated medical data analysis environment to exploit neuroscience
workflows, large image datasets and algorithms for scientific analyses. Once
researchers conduct their analyses information from the Analysis Base, the analysis
definitions and resulting data along with the user profiles are also made available in the
Base for tracking and reusability purposes in a so-called Analysis Service via a Science
Gateway, Analysis Workarea and Information Services. (see Fig. 1).

The N4U Analysis Service provides access to tracked information (images, pipe-
lines and analysis outcomes) for querying/browsing, visualization, pipeline authoring

© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 291–293, 2015.
DOI: 10.1007/978-3-319-16462-5_37



and execution. Its Work Area is a facility for users to define new pipelines or configure
existing pipelines to be run against selected datasets and dispatch to conduct analysis.
The N4U Science Gateway provides facilities that include a Dashboard, Online Help
and Service interfaces for users to interact with the underlying set of N4U services. The
N4U Analysis Base: (a) indexes all external clinical datasets (b) registers neuroscience
pipeline definitions and/or associated algorithms (c) stores provenance and user-derived
data resulting from pipeline executions on the Grid (d) provides access to all datasets
stored on the infrastructure and (e) stores users’ analysis definitions and linking them
with the existing pipelines and datasets definitions.

CRISTAL is a data and workflow tracking system which was used to trace the
construction of the CMS experiment at the CERN LHC [4]. Using the facilities for
description and dynamic modification in CRISTAL in a generic and reusable manner,
CRISTAL is able to provide dynamically modifiable and reconfigurable workflows.
It uses the “description-driven” nature of CRISTAL models to act dynamically on
process instances already running, and can intervene in the actual process instances
during execution (for further detail refer to [1]). These processes can be dynamically
(re)-configured based on the context of execution without compiling or stopping the
process and the user can make modifications directly upon any process parameter
whilst preserving all historical versions so they can run alongside the new version. In
neuGRID/N4U, we have used CRISTAL to provide the provenance needed to support
neuroscience analysis and to track individualized analysis definitions and usage pat-
terns, thereby creating a practical knowledge base for neuroscience researchers.

CRISTAL captures provenance data that emerges in the specification and execution
of the stages in analysis workflows. The provenancemanagement service also keeps track

Fig. 1. The N4U Virtual Laboratory

292 R. McClatchey et al.



of the origins of the data products generated in an analysis and their evolution between
different stages of research analysis. CRISTAL is a system that records every change
made to its objects, which are referred to as CRISTAL Items. Whenever a modification is
made to any piece of data, the definition of that piece of data or application logic, the
change and the metadata associated with that change (e.g. who made the change, when
and for what purpose) are stored alongside that data. This makes CRISTAL applications
fully traceable, and this data may be used to assemble detailed provenance information.

In N4U, CRISTAL manages data from the Analysis Service as Items, containing the
full history of computing task execution; it can also provide this level of traceability for any
piece of data in the system, such as the datasets, pipeline definitions and queries. Prove-
nance querying facilities are provided by the Querying Service in neuGRID/N4U. The
ability of description-driven systems to both copewith change and to provide traceability of
such changes (i.e. the ‘provenance’ of the change) we see as one of the main contributions
of the CRISTAL approach to building flexible and maintainable systems and we believe
this makes a significant contribution to how enterprise systems can be implemented.

In the future we will develop a so-called User Analysis module which will enable
applications to learn from their past executions and improve and optimize new studies
and processes based on the previous experiences and results. Using machine learning
approaches, models will be formulated that can derive the best possible optimisation
strategies using the past execution of experiments and processes. These models will
evolve over time and will facilitate decision support in designing, building and running
the future processes and workflows in a domain. A provenance analysis mechanism
will be built on top of the data that has been captured in CRISTAL. It will employ
approaches to learn from the data that has been produced, find common patterns and
models, classify and reason from the information accumulated and present it to the
system in an intuitive way. Work is also ongoing to make CRISTAL compliant with
emerging provenance standards such as the Open Provenance Model, OPM [5].

References

1. Branson, A., et al.: CRISTAL : A practical study in designing systems to cope with change.
Inf. Syst. J. 42, 139–152 (2014). Elsevier Publishers

2. Anjum, A. et al.: Provenance management for neuroimaging workflows in neuGRID. In:
International Conference on P2P, Parallel, Grid, Cloud and Internet Computing. Barcelona,
Spain (2011)

3. Munir, K., et al.: An integrated e-science analysis base for computational neuroscience
experiments and analysis. Procedia – Soc. Behav. Sci. 73, 85–92 (2013)

4. Chatrchyan, S. et al.: The compact muon solenoid experiment at the CERN LHC. The
Compact Muon Solenoid Collaboration. J. Instr. 3, Article No: S08004, pp. 1–361 (2008).
Institute of Physics Publishers

5. Shamdasani, J. et al.: Towards semantic provenance in CRISTAL. In: Proceedings of the 3rd
International Workshop on the Role of Semantic Web in Provenance Management (SWPM12),
pp. 29–36. IEEE Press, Heraklion May (2012). ISBN: 978-1-4673-1328-5

Provenance Support for Medical Research 293



Experiencing PROV-Wf for Provenance
Interoperability in SWfMSs

Wellington Oliveira1,2(&), Daniel de Oliveira1,
and Vanessa Braganholo1

1 Instituto de Computação, Universidade Federal Fluminense (UFF),
Niterói, Brazil

{wellmor,danielcmo,vanessa}@ic.uff.br
2 Departamento Acadêmico de Ciência da Computação,

Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais,
Rio Pomba Campus, Juiz de Fora, Brazil

Abstract. Analyzing disperse and heterogeneous provenance data usually
requires using higher-level tools which scientists need to learn. In our view,
scientists should be able to analyze provenance in the SWfMS of their choice.
In this paper, we propose Géfyra, an architecture based on the PROV-Wf model,
which provides a way to capture heterogeneous provenance data from different
SWfMSs into a single format. Géfyra exports and imports provenance data to/
from different SWfMSs, allowing scientists to use the system of their choice.

1 Introduction

Depending on the size and complexity of the scientific experiment, it can be divided/
modelled into two or more workflows (i.e. fragments) [1]. This division can ease the
management of the experiment, reducing the total execution time, and enables a
cooperative work where each research team works on parts of the experiment in an
“independent” way [2]. From there, data provenance management becomes a challenge
when the workflow (and their fragments) needs to be executed in more than one
SWfMS, and each SWfMS has its own associated provenance model.

For scientists to analyze, share, and combine provenance data generated by dif-
ferent systems, it is necessary to ensure the interoperability between these SWfMSs.
Some authors propose an additional layer in a higher level of abstraction [3] to perform
the mediation between the provenance data items collected in the various SWfMSs. In
our view, the provenance data should be “imported” to one of the SWfMSs used
(preferably that the scientist is used to) so that the analysis is performed in a single
system, taking advantage of the existing analysis infrastructure of these SWfMSs.
Thus, in this paper we propose Géfyra, an approach for provenance data interopera-
bility between existing SWfMSs. Géfyra is based on a recently proposed provenance
model called PROV-Wf [4].

© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 294–296, 2015.
DOI: 10.1007/978-3-319-16462-5_38



2 Géfyra: Making Provenance Interoperable

Our main goal in this paper is to provide a bridge between different SWfMSs so that it
allows scientists to analyze provenance data generated by other SWfMS. Thus, we
named our approach as Géfyra, which means “bridge” in Greek. We designed a rep-
resentation schema in XML Schema (which we call Prov-Wf Schema) to create and/or
validate provenance data from heterogeneous data sources. While designing it, we used
some elements of PROV-XML [5] and included all entities and relationships of the
PROV-Wf conceptual model. The resulting schema is available at www.ic.uff.br/
*vanessa/papers/PROV-Wf.xsd.

The Géfyra architecture is shown in Fig. 1. To convert provenance data from
SWfMS A to SWfMS B, the Géfyra Broker triggers the cartridge of SWfMS A, which
converts the data stored in SWfMS A’s provenance repository to an XML file that
follows the PROV-Wf Schema. This XML file is then sent to the Géfyra Broker, which
stores it in the PROV-Wf Repository and sends it to the cartridge within SWfMS B for
conversion. The cartridge of SWfMS B then converts the XML file to SWfMS B’s
provenance repository format, and stores the provenance information in the repository
of that SWfMS. Note that each Cartridge knows how to convert from a specific
SWfMS format to the PROV-Wf XML format, and vice versa.

3 Experimental Evaluation and Final Remarks

To evaluate Géfyra, we use the SciPhy [6] workflow that is executed in two SWfMSs
that can collect and store provenance data in a relational database: SciCumulus and
VisTrails. This way, we develop two cartridges (PROV-Wf_Sci and PROV-Wf_Vis) to
map the provenance data from SciCumulus and VisTrails to XML (according the
PROV-Wf Schema) and in the opposite direction, from XML to the SWfMS itself. In
order to assess the quality of our mapping, we developed a series of queries to evaluate
the amount of tuples and fields, types and values of attributes and the compatibility
between the databases of the two SWfMSs. We also were inspired by the queries of the
First and Second Provenance Challenges [7]. Our main goal was to evaluate infor-
mation loss that might occur in the import process (since there are some attributes that
do not exist in both models), and capture mistakes in our mapping.

To evaluate our results we use the concepts of precision and recall. Thus, we
execute the queries in two provenance databases (SciCumulus and VisTrails) to assess

Fig. 1. The Géfyra conceptual architecture.

Experiencing PROV-Wf for Provenance Interoperability in SWfMSs 295

http://www.ic.uff.br/~vanessa/papers/PROV-Wf.xsd
http://www.ic.uff.br/~vanessa/papers/PROV-Wf.xsd


the amount of records and check whether the fields were aligned to the attributes of the
respective elements in the PROV-Wf Schema. Tables 1 and 2 show the results.

The Géfyra architecture is flexible and extensible: new cartridges of different
SWfMSs can be connected to it at any time (as shown in Fig. 1). Géfyra maps
heterogeneous provenance data sources, allowing the data from a SWfMS to be con-
verted to XML and the latter to another SWfMS. This way, it is not necessary to
convert provenance data from each SWfMS to all other provenance systems one wants
to use, as Géfyra converts the data to a single XML format that can be shared by all
SWfMSs. As a limitation, since one data model may contain data that cannot be
mapped to Prov-Wf, some data may be lost in the conversion process. This is the
tradeoff of being able to use a single system for analysis.

As future work, we intend to implement cartridges to other SWfMS, we intend to
further explore the semantic dimension of the provenance data, and the implications of
such a dimension in the mapping of different provenance data sources.

References

1. Marinho, A., Murta, L., Werner, C., Braganholo, V., da Cruz, S.M.S., Ogasawara, E.,
Mattoso, M.: ProvManager: a provenance management system for scientific workflows.
Concurr. Comput. Pract. Exp. 24, 1513–1530 (2012)

2. Altintas, I., Anand, M.K., Crawl, D., Bowers, S., Belloum, A., Missier, P., Ludäscher, B.,
Goble, C.A., Sloot, P.M.: Understanding collaborative studies through interoperable workflow
provenance. In: McGuinness, D.L., Michaelis, J.R., Moreau, L. (eds.) IPAW 2010. LNCS,
vol. 6378, pp. 42–58. Springer, Heidelberg (2010)

3. Ellqvist, T., Koop, D., Freire, J., Silva, C., Stromback, L.: Using mediation to achieve
provenance interoperability. In: 2009 World Conference on Services – I, pp. 291–298 (2009)

4. Costa, F., Silva, V., de Oliveira, D., Ocaña, K., Ogasawara, E., Dias, J., Mattoso, M.: Cap-
turing and querying workflow runtime provenance with PROV: a practical approach. In: Joint
EDBT/ICDT 2013 Workshops, pp. 282–289. ACM, New York (2013)

5. Moreau, L.: PROV-XML: The PROV XML Schema. http://www.w3.org/TR/prov-xml/
6. Ocaña, K.A., de Oliveira, D., Ogasawara, E., Dávila, A.M., Lima, A.A., Mattoso, M.: SciPhy:

A cloud-based workflow for phylogenetic analysis of drug targets in protozoan genomes. In:
Norberto de Souza, O., Telles, G.P., Palakal, M. (eds.) BSB 2011. LNCS, vol. 6832, pp. 66–70.
Springer, Heidelberg (2011)

7. Moreau, L., Ludäscher, B. et al.: Special issue: The first provenance challenge. Concurr.
Comput. Pract. Exp. 20, 409–418 (2008)

Table 1. Results for SciCumulus Table 2. Results for VisTrails

296 W. Oliveira et al.

http://www.w3.org/TR/prov-xml/


Erratum to: Provenance in Open Data
Entity-Centric Aggregation

Fausto Giunchiglia and Moaz Reyad(&)

Department of Information Engineering and Computer Science,
University of Trento, Trento, Italy

{fausto,reyad}@disi.unitn.it

http://www.disi.unitn.it

Erratum to:
Chapter 22: B. Ludäscher and B. Plale (Eds.)
Provenance and Annotation of Data and Processes,
DOI: 10.1007/978-3-319-16462-5_22

The name of the first author of the paper starting on page 232 of this volume has been
printed incorrectly. It should read:

Fausto Giunchiglia

The online version of the original chapter can be found under DOI 10.1007/978-3-319-16462-5_22

© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, p. E1, 2015.
DOI: 10.1007/978-3-319-16462-5_39



Author Index

Ali, Mufajjul 127
Alper, Pinar 84

Barbosa, Thiago Silva 267
Belhajjame, Khalid 84
Belloum, Adam 168
Beran, Stanislav 197
Blaustein, Barbara 242
Bloem, Peter 168
Boose, Emery R. 288
Bos, Herbert 155
Bowers, Shawn 180, 226, 258
Braganholo, Vanessa 71, 294
Branson, Andrew 291
Brauer, Peer C. 223
Bryans, Jeremy 3
Bubak, Marian 168

Chapman, Adriane 242
Chauhan, Arun 56
Chen, Mingmin 258
Cheney, James 113
Chirigati, Fernando 71, 239
Closa, Guillem 271
Corsar, David 285
Costa, Flavio 254
Cudré-Mauroux, Philippe 264
Cuevas-Vicenttín, Víctor 209, 239
Curcin, Vasa 3

da Cruz, Sérgio Manuel Serra 229, 235, 267
Danger, Roxana 3
David Allen, M. 242
de Castro Leal, André Luiz 235
De Nies, Tom 203
de Oliveira, Daniel 254, 294
De Vocht, Laurens 203
de Vries, Gerben K.D. 168
Dey, Saumen 180, 226, 239
Dimou, Anastasia 203

Eckert, Kai 203
Edwards, Peter 197, 285

Firth, Hugo 16
Fittkau, Florian 223
Foster, Ian 97
Franz, Nico 258
Freire, Juliana 71

Gadelha, Luiz M.R. Jr. 139
Gamble, Carl 3
Garijo, Daniel 261
Ghoshal, Devarshi 56
Gil, Yolanda 261, 271
Giunchiglia, Fausto 232
Goble, Carole A. 84
Groth, Paul 155, 168, 215, 264
Guo, Xia 281

Harth, Andreas 261
Hasselbring, Wilhelm 223
Hoekstra, Rinke 215
Huynh, Trung Dong 44, 275

Jiang, Liangcun 281

Karagoz, Pinar 84
Kianmajd, Parisa 239, 258
Köhler, Sven 180
Koop, David 71, 239

Lebo, Timothy 31
Lerner, Barbara S. 288
Ludäscher, Bertram 180, 209, 226, 239, 258
Lyra, Gustavo B. 267

Malik, Tanu 97
Mannens, Erik 203
Markovic, Milan 285
Masó, Joan 271
Mattoso, Marta 139, 254
McClatchey, Richard 291
McGuinness, Deborah L. 31
Meusel, Robert 203
Missier, Paolo 3, 16, 209, 239
Moreau, Luc 44, 127, 275, 278



Munir, Kamran 291
Murta, Leonardo 71

Nunes, Diogo 229

Ocaña, Kary A.C.S. 254
Oliveira, Wellington 294

Packer, Heather S. 278
Perera, Roly 113
Pham, Quan 97
Pignotti, Edoardo 197
Plale, Beth 56

Reyad, Moaz 232
Ritze, Dominique 203

Santos, Ednaldo O. 267
Sezavar Keshavarz, Amir 44
Shamdasani, Jetendr 291

Silva, Vítor 254
Song, Tianhong 226
Stamatogiannakis, Manolis 155

Van de Walle, Rik 203
Verborgh, Ruben 203
Vianna, Gizelle Kupac 229

Wei, Yaxing 239
Werly, Carlos 229
West, Patrick 31
Wibisono, Adianto 168
Wylot, Marcin 264

Yu, Shizhuo 258
Yue, Peng 281

Zhang, Mingda 281

298 Author Index


	Preface
	Organization
	Contents
	Standardization of Provenance Models,
Services, Representations

	ProvAbs: Model, Policy, and Tooling for Abstracting PROV Graphs
	1 Introduction
	1.1 Abstracting Provenance
	1.2 Contributions
	1.3 Related Work

	2 Essential PROV
	3 Abstraction by Grouping
	3.1 Core Concepts
	3.2 Convexity, Closure, Extensions, and Replacement
	3.3 T-Grouping

	4 Policy Model
	4.1 ProvAbs Tool

	5 Summary
	References

	ProvGen: Generating Synthetic PROV Graphs with Predictable Structure
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 Graph Generation Model
	3 Mapping the Model to Graph DBMS Queries
	3.1 From Seed Traces to MATCH Query Clauses
	3.2 Constraints as WHERE Clauses
	3.3 Generator Loop

	4 Evaluation Methodology
	5 Conclusion
	References

	Applications of Provenance

	Walking into the Future with PROV Pingback: An Application to OPeNDAP Using Prizms
	1 Introduction
	2 The State of the Linked PROV Cloud
	2.1 PROV Occurrences in OpenLink Software's LOD Cache
	2.2 PROV Occurrences in datahub.io's Dataset Catalog

	3 Approach
	3.1 Prizms' ``SDV'' Dataset Organization: Source, Dataset, Version
	3.2 A Concrete Basis: Modeling the Structure of the Host System
	3.3 Minimal Modifications to the Host System (e.g. OPeNDAP)
	3.4 Prizms Publishes Host System's prov:has_provenance Target
	3.5 Prizms Accepts Pingback Pointers
	3.6 Walking into the Future

	4 Discussion
	5 Conclusion
	References

	Provenance for Online Decision Making
	1 Introduction
	2 Scenario: A Crowd-Sourcing Application
	3 Annotation Computation Framework (ACF)
	4 Online Annotation Computation System (OACS)
	5 Quality Model (QM)
	5.1 Validity Measure (VM)
	5.2 Reliability Measure (RM)
	5.3 Finish Measure (FM)

	6 Decision Making in CollabMap
	7 Experiments and Results
	8 Related Work
	9 Conclusion
	References

	Regenerating and Quantifying Quality of Benchmarking Data Using Static and Dynamic Provenance
	1 Introduction
	2 Related Work
	3 Formalization of Benchmark Provenance
	3.1 Model of Benchmarking
	3.2 Model of Provenance Capture
	3.3 Quantification of Data Quality

	4 Provenance-Aware Benchmarking Framework
	4.1 Static Provenance Capture
	4.2 Runtime Provenance Capture
	4.3 Fine-Grained Provenance Capture
	4.4 PROV Model for Benchmark Provenance

	5 Evaluation
	6 Conclusion and Future Work
	References

	Provenance Management
Architectures and Techniques

	noWorkflow: Capturing and Analyzing Provenance of Scripts
	1 Introduction
	2 Provenance of Scripts
	2.1 Provenance Representation
	2.2 Provenance Granularity

	3 noWorkflow
	3.1 Provenance Capture
	3.2 Provenance Storage
	3.3 Provenance Analysis

	4 Related Work
	5 Conclusions and Future Work
	References

	LabelFlow: Exploiting Workflow Provenance to Surface Scientific Data Provenance
	1 Introduction
	2 Motivation
	3 The LabelFlow System
	3.1 Annotation of Workflow Activities with Motifs
	3.2 Labelling Pipelines
	3.3 Labels
	3.4 Labelling Operators
	3.5 Implementation

	4 Related Work
	5 Conclusion
	References

	Auditing and Maintaining Provenance in Software Packages
	1 Introduction
	2 CDE: A Software Packaging Tool
	3 CDE-SP: Software Provenance in CDE
	4 Using CDE-SP Packages to Create Software Pipelines
	4.1 Software Pipelines

	5 Merging Provenance in CDE-SP
	6 Experiment and Evaluation
	6.1 Audit Performance and Size Overhead in CDE-SP
	6.2 Redirection Overhead in CDE-SP
	6.3 CDE-SP Vs Kameleon

	7 Related Work
	8 Conclusion
	References

	Security and Privacy Implications
of Provenance

	An Analytical Survey of Provenance Sanitization
	1 Introduction
	2 Related Work
	3 Background Concepts and Terminology
	4 Survey of Techniques for Provenance Sanitization
	5 Conclusions and Future Directions
	References

	A Provenance-Based Policy Control Framework for Cloud Services
	1 Introduction
	2 A Telco Service 
	2.1 Service Requirements 
	2.2 Background

	3 Policy Control Framework
	3.1 Client Side Stack 
	3.2 Server Side Stack
	3.3 Extended XACML Architecture

	4 Framework Service Integration
	5 Evaluation of Performance
	6 Conclusion
	References

	Applying Provenance to Protect Attribution in Distributed Computational Scientific Experiments
	1 Introduction
	2 Related Work
	3 Security Requirements for Provenance Systems
	4 Protecting Attribution in Distributed Scientific Workflows
	5 Implementation and Evaluation
	6 Conclusion
	References

	Provenance Discovery and Data
Reproducibility

	Looking Inside the Black-Box: Capturing Data Provenance Using Dynamic Instrumentation
	1 Introduction
	2 Background and Related Work
	2.1 Capturing Provenance
	2.2 Dynamic Instrumentation and Taint Analysis

	3 System
	3.1 Modifications to Libdft
	3.2 The dtracker Pin Tool and Converter

	4 Evaluation
	4.1 Baseline Experiments
	4.2 Case Studies

	5 Discussion
	6 Conclusions
	References

	Generating Scientific Documentation for Computational Experiments Using Provenance
	1 Introduction
	1.1 Main Idea
	1.2 Contributions

	2 Related Work
	3 Proof-of-Concept
	3.1 Running Example
	3.2 Workflow System: Ducktape
	3.3 Provenance: W3C PROV
	3.4 Notebook Generation

	4 Conclusions and Future Work
	References

	Computing Location-Based Lineage from Workflow Specifications to Optimize Provenance Queries
	1 Introduction
	2 Preliminaries: Workflow, Computation, and Provenance Models
	3 Precomputing Dependency Tables
	4 Querying Lineage Using Dependency Tables
	5 Experiments and Results
	6 Related Work
	7 Conclusion and Future Work
	References

	System Demonstrations

	Interrogating Capabilities of IoT Devices 
	1 Introduction
	2 Semantic Framework
	3 The Trusted Tiny Things System
	4 Demonstration Content
	References

	A Lightweight Provenance Pingback and Query Service for Web Publications
	1 Introduction
	2 Lightweight Distributed Provenance Service
	3 Application Domain
	4 Discussion and Future Work
	5 Conclusion
	References

	Provenance-Based Searching and Ranking for Scientific Workflows
	1 Introduction
	2 Provenance-Based Searching for Scientific Workflows
	2.1 Authority
	2.2 Quality of Service

	3 Demonstration and Implementation
	4 Future Work
	5 Related Work
	References

	PROV-O-Viz - Understanding the Role of Activities in Provenance
	1 Introduction
	2 Sankey Diagrams
	3 PROV-O-Viz
	3.1 Evaluation

	4 Conclusion
	References

	Joint IPAW/TaPP Poster Session

	The Aspect-Oriented Architecture of the CAPS Framework for Capturing, Analyzing and Archiving Provenance Data
	References

	Improving Workflow Design Using Abstract Provenance Graphs
	1 Introduction and Motivation
	2 Our Approach and Example
	References

	Early Discovery of Tomato Foliage Diseases Based on Data Provenance and Pattern Recognition
	Abstract
	1 Introduction
	2 Materials and Methods
	3 Foliage Disease Pattern Recognition
	4 Conclusion
	Acknowledgements
	References

	Provenance in Open Data Entity-Centric Aggregation
	1 Motivation and goals
	2 Problem
	3 Our Approach
	3.1 Authority
	3.2 Provenance and Evidence

	References

	Enhancing Provenance Representation with Knowledge Based on NFR Conceptual Modeling: A Softgoal Catalog Approach
	Abstract
	1 Introduction
	2 Modeling Provenance as a NFR Catalog
	3 Conclusion
	Acknowledgements
	References

	Provenance Storage, Querying, and Visualization in PBase
	1 Introduction
	2 PBase Features
	3 Conclusion
	References

	Engineering Choices for Open World Provenance
	Abstract
	1 Introduction
	2 Identity
	3 Storage
	4 Protection
	5 Testing
	6 Output
	7 Implementation and Evaluation
	7.1 Identity
	7.2 Storage
	7.3 Protection
	7.4 Testing

	8 Related Work
	9 Conclusions
	Acknowledgements
	References

	Towards Supporting Provenance Gathering and Querying in Different Database Approaches
	Abstract
	1 Introduction
	2 WfP-API: Storing and Querying Workflow Provenance Data
	3 Implementation and Final Remarks
	References

	Provenance for Explaining Taxonomy Alignments
	References

	Challenges for Provenance Analytics Over Geospatial Data
	1 Introduction
	2 Geospatial Provenance Model
	References

	Adaptive RDF Query Processing Based on Provenance
	References

	Using Well-Founded Provenance Ontologies to Query Meteorological Data
	Abstract
	1 Introduction
	2 Materials and Methods
	3 Meteoro Ontology and WebOntology Query Tool
	4 Conclusion
	Acknowledgements
	References

	Applying W3C PROV to Express Geospatial Provenance at Feature and Attribute Level
	Abstract
	1 Geospatial Provenance in W3C PROV
	2 W3C PROV Relations Applied to Geospatial Provenance
	3 W3C PROV and RDF to Express Geospatial Provenance
	4 Conclusions
	Acknowledgments
	References

	ProvStore: A Public Provenance Repository
	1 Provenance Repository
	2 Provenance Transformation and Visualization
	3 RESTful Application Programming Interface (API)
	References

	Sentence Templating for Explaining Provenance
	1 Introduction
	2 Sentence Templating
	3 Provenance Graphs
	4 Conclusion
	Reference

	Extending PROV Data Model for Provenance-Aware Sensor Web
	Abstract
	Acknowledgements
	References

	SC-PROV: A Provenance Vocabulary for Social Computation
	1 Introduction
	2 Model Description
	3 Future Work
	References

	RDataTracker and DDG Explorer
	1 Capturing Data Provenance with RDataTracker
	2 Viewing and Querying Provenance with DDG Explorer
	3 Conclusion
	References

	Provenance Support for Medical Research
	Abstract
	References

	Experiencing PROV-Wf for Provenance Interoperability in SWfMSs
	Abstract
	1 Introduction
	2 Géfyra
: Making Provenance Interoperable
	3 Experimental Evaluation and Final Remarks
	References

	Erratum to: Provenance in Open DataEntity-Centric Aggregation
	Author Index



