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A Strategy for Bioremediation of Marine
Shorelines by Using Several
Nutrient Release Points

David Parra-Guevara and Yuri N. Skiba

Abstract In this chapter, a strategy for the bioremediation of marine shorelines
polluted with oil is presented. Several discharge points are chosen in a limited region
in order to release a nutrient and reach critical concentration of this substance in the
oil-polluted shorelines. The strategy is optimal in the sense that the location of the
discharge points and the release rates are planned so as to minimize the amount of
the nutrient introduced into the aquatic system. To accomplish this task, a variational
problem is solved to find the location of the discharge point in each oil-polluted
zone, and to determine a basic (preliminary) shape of its release rate. After that, a
quadratic programming problem is solved to specify the strength of these release
rates in order to reach the critical concentration in all the polluted zones during the
same time interval. An initial-boundary value 3D advection-diffusion problem and
its adjoint problems are considered in a limited area to model, estimate and control
the dispersion of the nutrient. It is shown that the advection-diffusion problem is well
posed, and its solution satisfies the mass balance equation. In each oil-polluted zone,
the mean concentration of nutrient is determined by means of an integral formula in
which the adjoint model solution serves as the weight function showing the relative
contribution of each source. Critical values of these mean concentrations are used as
the constraints for the variational problem as well as for the quadratic programming
problem. The ability of new method is demonstrated by numerical experiments on
the remediation in oil-polluted channel using three control zones.
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2.1 Introduction

Crude oil is one of the most important organic pollutants in marine environments.
It has been estimated that worldwide approximately 1.3 × 106 tons of petroleum
impact marine waters and estuaries annually [27]. Massive releases from pipelines,
wells and tankers receive the most public attention, but in fact these account for only
a relatively small proportion of the total petroleum entering the environment. Al-
most 50% comes from natural seeps, and less than 9% emanates from catastrophic
releases. Consumption and urban run-off is responsible for almost 40% of the input
[27]. Independently of the source of pollution, a substantial number of smaller re-
leases of petroleum occur regularly in coastal waters [14], as a result, oil stranded in
shorelines has become a common problem which needs attention.

It is well known that oil is comprised of many different toxic compounds which
endanger themarine environment involved in a spill, however there are many natural,
native microorganisms which are not only capable, but thrive on the decomposition
of these toxic compounds. This process of using microorganisms for such cleanup
efforts in shorelines is known as bioremediation, and it has proven to be a successful
method for the cleanup of marine areas affected by oil spills [7]. There are two differ-
ent types of bioremediation used for oil spill cleanup: bioaugmentation and biostim-
ulation. Bioaugmentation is the addition of microorganisms capable of degrading the
toxic hydrocarbons, in order to achieve a reduction of the pollutants. Biostimulation
is the addition of nutrients needed by indigenous hydrocarbon degrading microor-
ganisms in order to achieve maximum degradation of toxic compounds present in the
oil. The degradation of hydrocarbons (biodegradation) begins by the conversion of
the alkane chain or polycyclic aromatic hydrocarbon (PAH) into alcohol. Oxidation
then converts the compound to an aldehyde and then into an acid and eventually into
water, carbon dioxide, and biomass. In the case of the PAH, fission occurs which
ultimately leads to mineralization [47]. More than 170 genera of microorganisms
have been identified in the environment which are able to degrade hydrocarbons, due
to such diversity and different conditions at the spill site, hydrocarbons do not all
biodegrade at similar rates, and not all hydrocarbons are degradable, but estimates for
the biodegradability of different crude oils range from 70 to 97%. What remain are
principally the asphaltenes and resin compounds, which are essentially biologically
inert [38].

Although biodegradation is a particularly important mechanism for removing the
non-volatile components of oil from the environment, this is a relatively slow natural
process and may require months to years for microorganisms to degrade a signifi-
cant fraction of an oil stranded in shorelines, within the sediments of marine and/or
freshwater environments [52]. The simplest way of stimulating biodegradation, and
the only one that has achieved experimental verification in the field, is to carefully
add nitrogen and phosphorus nutrients. This was first used on a large scale in Alaska,
following the 1989 spill from the Exxon Valdez [4, 36, 37]. Two fertilizers were
used in the large-scale applications: an oleophilic liquid product designed to adhere
to oil, named Inipol EAP22 [19]; and a slow-release granular agricultural product
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called Customblen [38]. The bioremediation was very successful, as shown in a joint
monitoring program conducted by Exxon, the USEPA and the Alaska Department of
Environmental Conservation [36]. Furthermore, this was achievedwith no detectable
adverse environmental impact [4, 36, 37]. Since then, bioremediation has been used
on a limited site as part up of the cleanup of the Sea Empress spill [46], and has
been demonstrated on experimental spills in marine or brackish environments on
the Delaware Bay [48], a Texas wetland [26], a fine-sand beach in England [45],
mangroves in Australia [40], and an Arctic shoreline in Spitsbergen [35].

Due to these successes, it is desirable to include bioremediation in responses to
future spills where oil strands on rocky or inaccessible shorelines. In this situation
currents can be used to carry the nutrients to the polluted zones instead of release
it directly on the site. For such case, an important factor in achieving successful
biostimulation, is obtaining an ideal (critical) concentration of nutrients needed for
maximum growth of the organisms, and keeping this concentration as long as pos-
sible. This can become a difficult task taking into account that appropriate point for
releasing the nutrients is unknown, and also because of physical influences, such
as differences in densities, wave movements, and tidal influences. Tracer studies are
often used to examine how the motion of the water and nutrients are influenced under
different situations [2, 3].

In this chapter, a strategy is proposed for the remediation of oil-polluted marine
environments which uses the fluid dynamic in a limited water region D to distribute a
nutrient (nitrogen or phosphorus) and stimulate biodegradation in a few oil-polluted
zonesΩi of D, 1 ≤ i ≤ N . For example, some recreation or aquaculture areas can be
chosen as such zones. By the strategy, the nutrient released at points r1, r2, . . . , rN

of domain D with discharge rates Q1(t), Q2(t), . . . , QN (t) spreads by currents
and turbulent diffusion and reaches all the contaminated zones. Moreover, a critical
mean concentration of nutrient ci (higher than the natural concentration) should
be achieved and maintained in each oil-polluted zone Ωi within a certain time to
properly stimulate the growth of the oil degrading microorganisms [2]. This time
interval is denoted below as [T − τ, T ]. It should be noted that an adequate set of
release rates {Qi (t)}N

i=1 does not always exist, that is at times, this strategy fails. In
particular, this can happen when the release points {ri }N

i=1 are improperly chosen
with respect to the flow and the location of zones Ωi , or when the time T is not large
enough to let the nutrient to reach all the zones. In order to prevent such situations
the problem is solved in two stages. In the first stage, each zone Ωi is considered
separately from other and contains just one source. A variational problem is posed
and solved in order to find both the optimal location of release point ri in the zone
and the optimal release rate Qi (t) to reach the concentration ci in Ωi , 1 ≤ i ≤ N .
We prove that this problem has unique solution. In the second stage, we consider the
process of dispersion of nutrient in all zones together. Due to advection by currents,
the nutrient released in one zone can reach other polluted zones. Therefore we need to
specify (modulate) the strength of all release rates Qi (t) in order to fulfil the critical
mean concentrations ci in all the polluted zones during the time interval [T − τ, T ].
To this end, we introduce a positive coefficient γi to modulate each release rate
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Qi (t), such factors are chosen as the solution of a quadratic programming problem.
Also, we prove the existence and uniqueness of this optimization problem. Note that
a strategy is called optimal if it solves the problem and, at the same time, minimizes
the total mass introduced into the aquatic system to mitigate the impact of nutrients
on the marine environment and to reduce the remediation cost. Thus, by introducing
the least amount of nutrients, the optimal control not only cleans the zones, but also
protects the whole ecosystem.

The new strategy considers a few discharge points located so that each oil-polluted
zone contains just one discharge point. It generalizes the previous strategy where the
only source was used to distribute nutrient in all oil-contaminated areas. Analytical
and numerical results for the case of unique source were obtained by considering
variational formulations [31], quadratic programming problems [32] and linear pro-
gramming problems [33].

Taking into account all the above remarks, the variational problem of the optimal
two-stage remediation strategy is posed as follows:

minimize m(Q1, . . . , QN ) = 1

2

N∑

i=1

∫ T

0
Q2

i (t) dt (2.1)

subject to: ci − αi ≤ Ji (φ) = 1

τ |Ωi |
∫ T

T −τ

∫

Ωi

φ(r, t) drdt ≤ ci + βi , 1 ≤ i ≤ N

(2.2)

0 ≤ Qi (t), 0 ≤ t ≤ T, 1 ≤ i ≤ N , (2.3)

where m is the functional that represents the total mass of nutrient released into the
aquatic system within a time interval [0, T ] and φ = φ(r, t) is the concentration of
this substance at point r in D at the time t > 0. Such concentrationwill be determined
with a dispersion model described in Sect. 2.2. Besides, the functional Ji (φ) is the
mean concentration of nutrient in the i th zone Ωi within time interval [T − τ, T ]
(1 ≤ i ≤ N ). Hereafter, we refer to this functional as the direct estimation of
nutrient concentration. Without loss of generality, all the zones Ωi considered in this
chapter are nonintersecting. The constraints in Eq. (2.2) are imposed to maintain the
concentration Ji (φ) in a vicinity of the critical concentration ci required for optimal
biodegradation (1 ≤ i ≤ N ). Thus, ci −αi is the minimum concentration of nutrient
in the oil-polluted zone Ωi acceptable for efficient stimulation of the biodegradation
process, while ci + βi is the maximum allowable concentration of nutrient in the
oil-polluted zone Ωi established for the protection of aquatic system. Note that
the introduction of small positive parameters αi and βi increases the number of
feasible solutions of problem (2.1)–(2.3), and therefore this problem is less restrictive
than that described by Parra-Guevara and Skiba [29, 31]. Finally, we note that the
problem (2.1)–(2.3) can also be used to determine the optimal release parameters
in a fairly common case, when the repeated application of nutrients is required
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in the oil-contaminated areas due to the slow degradation of the oil in the marine
environment. Sufficient conditions for such a methodology are given in Sect. 2.3.

2.2 Dispersion Model

The concentration of nutrient φ(r, t) in a bounded domain D ⊂ R
3 and time interval

[0, T ] is estimated by the following dispersion model

∂φ

∂t
+ U · ∇φ − ∇ · μ∇φ + σφ + ∇ · φs =

N∑

i=1

Qi (t)δ(r − ri ) (2.4)

φs = −vsφk , in D (2.5)

μ
∂φ

∂n
= φs · n − ζφk · n on ST (2.6)

μ
∂φ

∂n
= 0 on S+ (2.7)

μ
∂φ

∂n
− Unφ = 0 on S− (2.8)

μ
∂φ

∂n
= 0 on SB (2.9)

φ(r, 0) = φ0(r) in D (2.10)

∇ · U = 0 in D. (2.11)

Here (2.4) is the advection-diffusion equation, U(r, t) is the known current velocity
that satisfies the incompressibility condition (2.11), μ(r, t) is the turbulent diffusion
coefficient,σ(r, t) is the chemical transformation coefficient characterizing the decay
rate of nutrient in water. Note that the first-order (linear) kinetics σφ describing the
process of chemical transformation is a reasonable approximation for such nutrients
inwater as the nitrogen and phosphorus. The term∇·φs in (2.4), describes the change
of concentration of nutrient per unit time because of sedimentation with constant
velocity vs > 0, and δ(r − ri ) is the Dirac delta centred at the discharge point ri .
Equation (2.6) is the boundary condition on the free surface ST of domain D, where
ζ(r, t) is the coefficient characterizing the process of evaporation of nutrient, and (2.9)
represents the boundary condition on the bottom SB of domain D. Equations (2.7)
and (2.8) are the corresponding conditions on the lateral boundary of D, besides,
S+ is the rigid or outflow part of the boundary where Un = U · n ≥ 0, and S−
is its inflow part where Un < 0 (Fig. 2.1). Finally, Eq. (2.10) represents the initial
distribution of the nutrient at t = 0. In all equations, n is the unit outward normal
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Fig. 2.1 View of domain D
from above

Fig. 2.2 Cross-sectional
area of domain D

vector to the boundary ∂ D = ST ∪ S+ ∪ S− ∪ SB of domain D, ∂/∂n is the derivative
in the normal direction, and k = (0, 0, 1)t is the unit vector directed upward in the
Cartesian coordinate system (Fig. 2.2). We observe that

k · n = 0 on S+ ∪ S− and U · n = 0 on ST ∪ SB . (2.12)

Also note that the boundary conditions (2.6)–(2.9) are general (i.e., not only for
horizontal free and bottom surfaces ST and SB), and hence, the dispersion model can
take into account free surface wave motion and marine topography.

First of all we show that the solution of dispersion model (2.4)–(2.11) satisfies
the mass balance equation. Indeed, integrating Eq. (2.4) over domain D we get

∂

∂t

∫

D
φ dr +

∫

D
U · �φ dr −

∫

D

∇ · μ∇φ dr +
∫

D

σφdr +
∫

D

∇ · φs dr

=
N∑

i=1

∫

D

Qi (t)δ(r − ri ) dr.
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Applying the divergence theorem [18], it is possible to rewrite some integrals as

∫

D

U · ∇φ dr =
∫

D

∇ · (Uφ) dr =
∫

∂ D

U · nφ d S,

∫

D

∇ · μ∇φdr =
∫

∂ D

μ∇φ · n d S =
∫

∂ D

μ
∂φ

∂n
d S,

∫

D

∇ · φs dr =
∫

∂ D

φs · n d S.

Finally, dividing each integral over boundary ∂ D into the four integrals over ST ,
S+, S− and SB , and applying Eqs. (2.6)–(2.9) and observation (2.12), we obtain the
mass balance equation:

∂

∂t

∫

D

φ dr =
N∑

i=1

Qi (t) −
∫

D

σφ dr −
∫

S+
Unφ d S −

∫

ST

ζφk · n d S +
∫

SB

νsφk · n d S.

(2.13)

Since k · n > 0 at ST and k · n < 0 at SB , the total mass of the nutrient
increases due to the discharge processes (Qi (t) > 0), and decreases because of
the chemical transformations (σ > 0), advective outflow through S+ (Un > 0),
superficial evaporation (ζ > 0) and sedimentation (vs > 0).

We now show that the dispersion problem (2.4)–(2.11) is well posed. Indeed, the
model operator is:

Aφ = U · ∇φ − ∇ · μ∇φ + σφ + ∇ · φs . (2.14)

Defining the inner product in L2 (D) as (Aφ, φ) = ∫

D
φ Aφdr we obtain the

expression

(Aφ, φ) =
∫

D

φU · ∇φ dr +
∫

D

σφ2 dr −
∫

D

φ∇ · μ∇φ dr +
∫

D

φ∇ · φs dr.

The divergence theorem allows modifying some integrals in the last equation:
∫

D

φU · ∇φ dr = 1

2

∫

∂ D

φ2U · n d S,
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∫

D

φ∇ · (μ∇φ) dr =
∫

∂ D

φμ
∂φ

∂n
d S −

∫

D

μ |∇φ|2 dr,

∫

D

φ∇ · φs dr = 1

2

∫

∂ D

φφs · n d S.

Finally, dividing each integral over ∂ D into the four integrals over ST , S+, S−
and SB , and applying the conditions (2.6)–(2.9) and (2.12), we get

(Aφ, φ) =
∫

D

σφ2 dr +
∫

D

μ |∇φ|2 dr +
∫

ST

ζφ2k · n d S

+ 1

2

{∫

S+
Unφ2 d S −

∫

S−
Unφ2 d S +

∫

ST

vsφ
2k · n d S −

∫

SB

vsφ
2k · n d S

}

(2.15)

Since Un < 0 in S−, k · n > 0 at ST and k · n < 0 at SB , Eq. (2.15) can be
rewritten as

(Aφ, φ) =
∫

D

σφ2dr +
∫

D

μ |∇φ|2 dr +
∫

ST

ζφ2k · n d S

+ 1

2

⎧
⎪⎨

⎪⎩

∫

S+∪S−

|Un| φ2d S +
∫

ST ∪SB

vsφ
2 |k · n| d S

⎫
⎪⎬

⎪⎭
.

Thus, operator A is positive semidefinite: (Aφ, φ) ≥ 0.
Taking the inner product of every term of Eq. (2.4) with φ we obtain

(
∂φ

∂t
, φ

)
= ( f, φ) − (Aφ, φ), f (r, t) =

N∑

i=1

Qi (t)δ(r − ri ).

Using the condition (Aφ, φ) ≥ 0 and theSchwarz inequality [17], the last equation
implies the inequality

(
φ,

∂φ

∂t

)
≤ ‖φ‖‖ f ‖, ‖φ‖ = √

(φ, φ).

Further, (
φ,

∂φ

∂t

)
= 1

2

∂

∂t
‖φ‖2 = ‖φ‖ ∂

∂t
‖φ‖
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and hence,
∂

∂t
‖φ‖ ≤ ‖ f ‖.

Finally, the integration over time interval (0, T ) leads to

‖φ‖ ≤ T max
0≤t≤T

‖ f (r, t)‖ +
∥∥∥φ0(r)

∥∥∥ . (2.16)

Since the dispersion model (2.4)–(2.11) is linear with respect to φ, estimation (2.16)
assures that the solution of problem (2.4)–(2.11) is unique and continuously depends
on the initial conditions and forcing. Also, using the method described by Skiba and
Parra-Guevara [43], it is possible to prove the existence of generalized solution of
problem (2.4)–(2.11), that is the model (2.4)–(2.11) is well posed in the sense of
Hadamard [13]. Also note that the positive semidefiniteness of operator A allows
us to split the operator A in coordinate directions, and with the help of numerical
schemes by Marchuk [22] and Crank-Nicolson [8] construct unconditionally stable
and efficient numerical algorithm of second approximation order in space and time
for the solution of problem (2.4)–(2.11) [41].

2.3 Adjoint Functions and the Duality Principle

It is rather difficult to analyse and solve the variational problem (2.1)–(2.3) because
the constraints in (2.2) are related with the solutions Qi of the control problem
implicitly through the solution φ of the dispersion model (2.4)–(2.11). In order to
establish an explicit dependence of the constraints on the control functions Qi , we
now introduce onemore model which is adjoint to the dispersion model (2.4)–(2.11).
It means that the operator A∗ is adjoint to the operator A of the model (2.4)–(2.11)
in the sense of the Lagrange identity

(Aφ, g) = (φ, A∗g),

where (·, ·) denotes the inner product in the Hilbert space L2(D) [22]. Solutions of
this adjoint model will be used to establish a duality principle for the mean con-
centration of the released nutrient in the marine environment. Let us construct the
operator A∗. The inner product (Aφ, g) is

(Aφ, g) =
∫

D

gU · ∇φ dr +
∫

D

σgφ dr −
∫

D

g∇ · μ∇φ dr +
∫

D

g∇ · φs dr.

The integrals in the last expression can be rewritten with the divergence theorem
as follows ∫

D

gU · ∇φ dr =
∫

∂ D

gφU · n d S −
∫

D

φU · ∇g dr,
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∫

D

g∇ · μ∇φ dr =
∫

∂ D

gμ
∂φ

∂n
d S −

∫

∂ D

φμ
∂g

∂n
d S +

∫

D

φ∇ · μ∇g dr,

∫

D

g∇ · φs dr =
∫

∂ D

gφs · n d S −
∫

D

φ∇ · gs dr,

where gs = −vs gk. Then

(Aφ, g) =
∫

D

φ(−U · ∇g − ∇ · μ∇g + σg − ∇ · gs) dr

+
∫

∂ D

gφU · n d S +
∫

∂ D

φμ
∂g

∂n
d S −

∫

∂ D

gμ
∂φ

∂n
d S +

∫

∂ D

gφs · n d S.

Dividing the integrals over boundary ∂ D into four integrals over ST , S+, S− and
SB , and using conditions (2.6)–(2.9) and (2.12), we obtain that

(Aφ, g) =
∫

D

φ(−U · ∇g − ∇ · μ∇g + σg − ∇ · gs) dr

provided that the function g satisfies the boundary conditions (2.20)–(2.23) (see
below). Thus, the Lagrange identity is fulfilled if

A∗g = −U · ∇g − ∇ · μ∇g + σg − ∇ · gs .

On the other hand, multiplying Eq. (2.4) by g and integrating the result over the
space-time domain D × (0, T ), we get

T∫

0

∫

D

g
∂φ

∂t
drdt +

T∫

0

∫

D

g Aφ drdt =
T∫

0

∫

D

g

{
N∑

i=1

Qi (t)δ(r − ri )

}
drdt.

Integration by parts of the first integral, together with conditions (2.10) and
g(r, T ) = 0, leads to

T∫

0

∫

D

g
∂φ

∂t
drdt = −

∫

D

g(r, 0)φ0(r) dr −
T∫

0

∫

D

φ
∂g

∂t
drdt
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Applying now Eq. (2.4), the Lagrange identity and the well-known property of
the Dirac delta one can obtain

T∫

0

∫

D

φ
{
−∂g

∂t
+ A∗g

}
drdt =

N∑

i=1

T∫

0

Qi (t)g(ri , t) dt +
∫

D

g(r, 0)φ0(r) dr. (2.17)

In order to take advantage of Eq. (2.17), which explicitly relates the discharge
rates of nutrient Qi (t) with the concentration of nutrient φ(r, t) through the adjoint
function g, we consider the following adjoint dispersion model:

− ∂g

∂t
− U · ∇g − ∇ · μ∇g + σg − ∇ · gs = p(r, t), (2.18)

gs = −vs gk in D, (2.19)

μ
∂g

∂n
+ ζgk · n = 0 on ST , (2.20)

μ
∂g

∂n
+ Ung = 0 on S+, (2.21)

μ
∂g

∂n
= 0 on S−, (2.22)

μ
∂g

∂n
= −gs · n on SB, (2.23)

g(r, T ) = 0 in D. (2.24)

Note that the boundary conditions (2.20)–(2.23) and final condition (2.24) im-
posed on the solution are those that guarantee the fulfilment of the Lagrange identity.
Furthermore, one can see that the first, the second and the fifth terms of Eqs. (2.4)
and (2.18) have opposite signs. Thus, the comparison of the equations and boundary
conditions of the models (2.4)–(2.12) and (2.18)–(2.24) leads to the important result:
if the adjoint model (2.18)–(2.24) is solved backward in time (from t = T to t = 0)
then it also has a unique solution, which continuously depends on the forcing p(r, t).
This result can be immediately shown by the transformation of variable t

′ = T − t ,
cf. [43].

Moreover, the forcing p(r, t) of Eq. (2.18) can be defined so that the mean con-
centration of nutrient

Ji (φ) = 1

τ |Ωi |
∫ T

T −τ

∫

Ωi

φ(r, t) drdt

in an oil-polluted zone Ωi ⊂ D will be explicitly related with all the discharge rates
Q j (t), j = 1, . . . , N , and initial concentration of nutrient φ0(r) through the adjoint
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solution g. Indeed, let us take

p(r, t) =
{

1
τ |Ωi | , r ∈ Ωi and t ∈ (T − τ, T )

0, otherwise

where |Ωi | denotes the volume of oil-polluted zone, and τ is the time required for the
nutrient to reach its critical concentration in the zone. Then the use of this formula
in (2.18) leads to

Ji (φ) =
N∑

j=1

∫ T

0
gi (r j , t)Q j (t) dt +

∫

D
gi (r, 0)φ

0(r) dr, (2.25)

also known as the duality principle. Provided that φ0(r) = 0 for the first discharge
of nutrient, the last formula is reduced to

Ji (φ) =
N∑

j=1

∫ T

0
gi (r j , t)Q j (t) dt. (2.26)

The use of (2.26) in (2.2) for each zone Ωi (i = 1, . . . , N ), transforms the
variational problem (2.1)–(2.3) to a more convenient form for the analysis:

minimize m(Q1, . . . , QN ) = 1

2

N∑

j=1

∫ T

0
Q2

j (t) dt (2.27)

subject to: ci − αi ≤
N∑

j=1

∫ T

0
gi (r j , t)Q j (t)dt ≤ ci + βi , 1 ≤ i ≤ N (2.28)

0 ≤ Q j (t), 0 ≤ t ≤ T, 1 ≤ j ≤ N . (2.29)

Note that problem (2.27)–(2.29) uses N adjoint functions gi (r, t), which, when
restricted to the discharge points r j , j = 1, . . . , N , generate N 2 temporal influ-
ence functions gi (r j , t). Each function gi (r j , t) compresses dynamical information
necessary to estimate how a signal emitted at point r j impacts the zone Ωi . As a
consequence, the duality principle (2.26) quantifies the total effect on zone Ωi due
to the signals emitted at points r j , j = 1, . . . , N .

However, if a repeated discharge of nutrient is needed for degrading oil-residuals,
then the nonzero initial concentration of the nutrient must be taken into account (see
(2.25)). It should be noted that, due to microbial intake of nutrient in the oil-polluted
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zones and the water outflow from region D, the concentration of nutrient decreases
in region D towards its natural value. Therefore, the following conditions for the
mean concentration of nutrient must be fulfilled since the moment t0 > T :

1

|Ωi |
∫

Ωi

φ(r, t) dr < ci + βi i = 1, . . . , N t ≥ t0 (2.30)

The moment t0 can be determined through monitoring the mean concentration of
nutrient in region D or by using the solution φ forecasted by the model (2.4)–(2.11)
with the forcing Q j (t) equal to zero for t > T and j = 1, . . . , N . Once conditions
(2.30) are fulfilled, the initial concentration for modelling the next application of
nutrient is chosen as

ϕ0(r) = φ(r, t0) (2.31)

and the next time interval for such modelling is [t0, t0 + T ]. Due to the conditions
(2.30), the contribution of the new initial condition ϕ0(r) to the mean concentrations
of nutrient during time interval [t0 + T − τ, t0 + T ] is less than the upper bounds
ci +βi inΩi , (i = 1, . . . , N ). Note that without such conditions the feasibility space
for problem (2.1)–(2.3) is empty and there is no solution to the control problem.

Thus, if the conditions (2.30) are fulfilled then one can take t0 = 0 and consider
the problem (2.27)–(2.29) again for modelling the second discharge of nutrient with
the following positive parameters:

c
′
i = ci −

∫

D
gi (r, 0)ϕ

0(r) dr, i = 1, . . . , N . (2.32)

Note that the adjoint functions in (2.32)must be calculated in time interval [t0, t0+
T ]. Also we assume, without loss of generality, that negative values, if they appear
on the left side of the constraints (2.28), are replaced by zero.With these remarks, the
variational problem (2.27)–(2.29) represents a general remediation strategy which
can be applied repeatedly.

It is important to note that all the adjoint solutions gi (r j , t) which figure in con-
straints (2.28) are independent of the discharge rates Q j (t). This non-negative solu-
tions are determined by the dynamical processes in region D and serve in constraints
(2.28) as the weight functions characterizing the effect of the discharge of nutrient at
a point r j on the mean concentration of nutrient in a zone Ωi (see Figs. 2.3, 2.4 and
2.5). In other words, the adjoint solutions are the influence functions (or information
functions) in the control theory. That is why the adjoint problem solutions are widely
used in the sensitivity study of various models, and in particular, in the atmosphere
and ocean model, weather forecast and climate theory [21, 23], data assimilation
problems [24], problems of identification of unknown pollution sources, like nuclear
accidents [28, 34, 39, 50], simulation of oil pollution [9, 42] and optimal control in
pollution problems [1, 15, 16, 20, 22, 30, 33, 49].
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2.4 Peculiarities of Dual Estimates and Sensitivity Formulas

We now discuss the main features of the dual estimate (2.25), or its simplification
(2.26), and show the usefulness of the adjoint estimates in the study of sensitivity
of mean concentration Ji (φ) to variations in the discharge rates and positions of the
sources as well as in the initial distribution φ0(r) of nutrient.

In environmental monitoring, the adjoint estimate (2.25) is a good complement
to the direct mean concentration estimate Ji (φ). One can use either direct or adjoint
estimates depending on the specific situation. Assume, for example, that the mean
concentration Ji (φ) of a nutrient is monitored in N ecologically important zones Ωi

of domain D (i = 1, . . . , N ). If the number of zones N is large enough then it is
better to solve problem (2.4)–(2.11) and use direct estimate of Ji (φ) in each zone. On
the other hand, if number N is rather small then it is more effective and economical
to solve adjoint problem (2.18)–(2.24) and use adjoint estimate (2.25). Unlike the
direct mean concentration estimate of nutrient, the adjoint estimate (2.25) permits to
explicitly evaluate the contribution of each source to value Ji (φ).

In the case of invariable emission rates (Q j (t) = Q j ), evaluation (2.26) becomes
even simpler:

Ji (φ) =
N∑

j=1

Q j wi j , (2.33)

where

wi j =
∫ T

0
gi (r j , t) dt. (2.34)

Each weight wi j depends only on the adjoint solution and characterizes the con-
tribution of the source with emission rate Q j to the mean concentration Ji (φ) in
Ωi .

What is then the basic difference between the direct and adjoint estimates of the
mean concentration of nutrient Ji (φ)? The direct estimate, relating to the solution
φ(r, t) of problem (2.4)–(2.11), is independent of a concrete zoneΩ , but depends on
the discharge rates Q j and position r j of sources, and also on the initial distribution of
nutrient φ0(r) in D. For this reason such a estimate is preferable if one needs to know
the concentration of a substance in many zones of D, or in each point of D × (0, T ).
However, in themodel sensitivity study, this approach requiresmuch computing time,
because the solution φ(r, t) of problem (2.4)–(2.11) must be recalculated whenever
new values of the parameters Q j , r j or φ0(r) are used. Unlike it, the solutions of
adjoint problem gi (r j , t) depend onΩi zone, but are independent of Q j , r j or φ0(r).
In the adjoint evaluation (2.25), gi (r j , t) serves as the weight function characterizing
the model response to these three parameters. Since the problem is linear, Eq. (2.25)
leads to the main sensitivity formula

δ Ji (φ) =
N∑

j=1

∫ T

0
gi (r j , t)δQ j (t) dt +

∫

D
gi (r, 0)δφ

0(r) dr (2.35)
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that relates a variation δ Ji (φ) in the mean concentration of nutrients in Ωi with
variations δQ j and δφ0 in the emission rates Q j and initial distribution of nutrient
φ0. It makes the estimates (2.25) and (2.35) rather efficient and computationally
economical, because the solutions gi (r j , t), once found, can be re-used in these
formulas for different values of Q j , r j or φ0(r).

The effect of changing the position of sources from r j to r j́ , j = 1, . . . , N , is
estimated by the formula

δ Ji (φ) =
N∑

j=1

∫ T

0

{
gi (r j́ , t) − gi (r j , t)

}
Q j (t) dt. (2.36)

Finally, we give without proof a general sensitivity formula

δ Ji (φ) =
N∑

j=1

∫ T

0
gi (r j , t)δQ j (t) dt +

∫

D
gi (r, 0)δφ

0(r) dr

−
∫ T

0

∫

ST

gi (r, t)φ(r, t)δζ(r, t) d Sdt −
∫ T

0

∫

D
gi (r, t)B(r, t) drdt,

(2.37)

where

B(r, t) = δU · ∇φ − ∇ · δμ∇φ + δσφ + δvs
∂φ

∂z
,

cf. [43], taking into account arbitrary variations δQ j (t) and δφ0(r), and small varia-
tions δU, δσ , δμ, δvs and δζ in the domain D. Unlike the previous formulas, estimate
(2.37) is more complicated, because it uses solutions of both problems (2.4)–(2.11)
and (2.18)–(2.24) and linearised equations for perturbations.

2.5 Main and Adjoint Numerical Schemes of the Dispersion
Problem

In this section, balanced and absolutely stable second-order finite diference schemes
based on the application of the splittingmethod byMarchuk [22] andCrank-Nicolson
schemes [8] are developed to solve numerically the dispersion model (2.4)–(2.11)
and its adjoint formulation (2.18)–(2.24). Since theywere described in detail in Skiba
[41], we give here only basic results.

Using the continuity Eq. (2.11), the operator A of Eq. (2.4) can be written as
A = A1 + A2 + A3, where
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A1φ = 1

2

∂

∂x
(uφ) + 1

2
u

∂φ

∂x
− ∂

∂x
μ

∂φ

∂x
+ 1

3
σφ

A2φ = 1

2

∂

∂y
(vφ) + 1

2
v
∂φ

∂y
− ∂

∂y
μ

∂φ

∂y
+ 1

3
σφ (2.38)

A3φ = 1

2

∂

∂z
(w̃φ) + 1

2
w̃

∂φ

∂z
− ∂

∂z
μ

∂φ

∂z
+ 1

3
σφ

and w̃ = w − vs .
We now show that each one-dimensional split operator Ai (i = 1, 2, 3) is positive

semidefinite (or positive definite if σ > 0), cf. [41]. For simplicity, consider only the
case when domain D is a cube [0, X ] × [0, Y ] × [0, Z ]. Then

∫ X

0
φ A1φdx = 1

3

∫ X

0
σφ2dx +

∫ X

0
μ

(
∂φ

∂x

)2

dx +
[
1

2
φ2u − μφ

∂φ

∂x

]X

0
.

Assume that u(0) > 0 and u(X) > 0. Then the boundary point x = 0 belongs to S−,
while point x = X belongs to S+. Applying condition (2.8) at x = 0 and condition
(2.7) at x = X , we get

[
1

2
φ2u − μφ

∂φ

∂x

]X

0
= 1

2
[φ2(X)u(X) + φ2(0)u(0)] ≥ 0.

Since σ > 0 and μ > 0, we conclude that

(A1φ, φ)L2(D) =
∫ Z

0

∫ Y

0

∫ X

0
φ A1φ dxdydz ≥ 0.

In the same way one can show that A2 and A3 are also positive semidefinite
operators. It should be noted that this proof is also true for any region D which
represents a union of finite number of cubes.

On the other hand, the operator of the adjoint problem (2.18)–(2.24) and (2.11)
is the adjoint of A, and can be written as the sum A∗ = A∗

1 + A∗
2 + A∗

3 where

A∗
1g = −1

2

∂

∂x
(ug) − 1

2
u

∂g

∂x
− ∂

∂x
μ

∂g

∂x
+ 1

3
σφ

A∗
2g = −1

2

∂

∂y
(vg) − 1

2
v
∂g

∂y
− ∂

∂y
μ

∂g

∂y
+ 1

3
σφ (2.39)

A∗
3g = −1

2

∂

∂z
(w̃g) − 1

2
w̃

∂g

∂z
− ∂

∂z
μ

∂g

∂z
+ 1

3
σφ.

Suppose for simplicity that μ = μ(z), and define the net functions on different
grids:
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φi jk = φ(xi , y j , zk), ui jk = u(xi−1/2, y j , zk), vi jk = v(xi , y j−1/2, zk)

wi jk = w(xi , y j , zk−1/2), μk = μ(zk), vi jk = v(xi , y j , zk−1/2)

The second-order discrete approximation of the operators Ai and continuity
Eq. (2.11) have the following form (invariable indices i , j , k are omitted)

(
Ah
1φ

)

i jk
= ui+1φi+1 − uiφi−1

2Δx
− μk

[
φi+1 − 2φi + φi−1

]

(Δx)2
+ σφi

3
(2.40)

(
Ah
2φ

)

i jk
= v j+1φ j+1 − v jφ j−1

2Δy
− μk

[
φ j+1 − 2φ j + φ j−1

]

(Δy)2
+ σφ j

3
(2.41)

(
Ah
3φ

)

i jk
= w̃k+1φk+1 − w̃kφk−1

2Δz
− μk+1(φk+1 − φk) − μk(φk − φk−1)

(Δz)2
+ σφk

3
(2.42)

(ui+1 − ui )

Δx
+ (v j+1 − v j )

Δy
+ (wk+1 − wk)

Δz
= 0 (2.43)

We immediately obtain the form of adjoint operators (Ah
i )∗ if we substitute u,

v, w̃, and φ in (2.40)–(2.43) by −u, −v, −w̃, and g, respectively. To show how the
boundary conditions are discretised, we give only one example (see [41] for more
details). Let ui jk be a positive value of the u-component of the velocity at the left
boundary point M = (x1/2, y j , zk) of the grid domain. Then, Un = −u1 jk < 0, i.e.,
the point M belongs to S−, and conditions (2.8) and (2.22) are approximated as

μk
(φ0 jk − φ1 jk)

Δx
− u1 jk

(φ0 jk − φ1 jk)

2
= 0, g0 jk = g1 jk (2.44)

Thus, for any i (i = 1, 2, 3), the discrete operators Ah
i and

(
Ah

i

)∗
are positive

semidefinite, and they are skew-symmetric if μ = σ = 0 and S is the coast line
(Un = 0 everywhere at S).

The problems (2.4)–(2.11) and (2.18)–(2.24) are solved in time with the sym-
metrized double-cycle componentwise splitting method by Marchuk [23, 41], i.e.,
within each double time step interval (tn−Δt, tn+Δt) themain and adjoint numerical
schemes have the form

Φ

[
n − 3 − i

3

]
− Φ

[
n − 4 − i

3

]
= −τ

2
Ah

i

(
Φ

[
n − 3 − i

3

]

+ Φ

[
n − 4 − i

3

])
(i = 1, 2)
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Φ

[
n + 1

3

]
− Φ

[
n − 1

3

]
= −τ Ah

3

(
Φ

[
n + 1

3

]
+ Φ

[
n − 1

3

])
+ 2τq[n]

(2.45)

Φ

[
n + 4 − i

3

]
− Φ

[
n + 3 − i

3

]
= −τ

2
Ah

i

(
Φ

[
n + 4 − i

3

]

+ Φ

[
n + 3 − i

3

])
(i = 2, 1)

and

G

[
n + 3 − i

3

]
− G

[
n + 4 − i

3

]
= −τ

2
(Ah

i )∗
(

G

[
n + 3 − i

3

]

+ G

[
n + 4 − i

3

])
(i = 1, 2)

G

[
n − 1

3

]
− G

[
n + 1

3

]
= −τ(Ah

3)
∗
(

G

[
n − 1

3

]
+ G

[
n + 1

3

])
+ 2τp[n]

(2.46)

G

[
n − 4 − i

3

]
− G

[
n − 3 − i

3

]
= −τ

2
(Ah

i )∗
(

G

[
n − 4 − i

3

]

+ G

[
n − 3 − i

3

])
(i = 2, 1),

where Φ and G are the vectors representing the grid values of solutions φ and g
at fractional time steps, and q and p are the vectors representing the grid values of
functions Q and P at moment tn , respectively [41]. The discretization in time of
each one-dimensional split problem is performed with the Crank-Nicolson scheme,
and the resulting discrete problem is efficiently solved by the Thomas’ factorization
method for the tridiagonal matrices [24]. The unconditional stability of the numerical
schemes (2.45) and (2.46) directly follows from the inequalities

‖Φ[n + 1]‖ ≤ ‖Φ[n − 1]‖ + 2τ ‖q[n]‖ (2.47)

and
‖G[n − 1]‖ ≤ ‖G[n + 1]‖ + 2τ ‖p[n]‖ , (2.48)

where ‖·‖ is the Euclidean vector norm [41]. The use of Lagrange identity leads to
the equation

G∗[n + 1]Φ[n + 1] + τp∗[n]
(

Φ

[
n + 1

3

]
+ Φ

[
n − 1

3

])

= τ

(
G∗

[
n + 1

3

]
− G∗

[
n − 1

3

])
q [n] + G∗[n − 1]Φ[n − 1]

(2.49)
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in each subinterval [tn −Δt, tn +Δt]. The sum of such relations over all subintervals
in [0, T ] (i.e., over all n) and the use of conditions (2.10) and (2.24) leads to a discrete
version of adjoint estimate (2.26).

2.6 Theoretical Results: Existence, Uniqueness
and Formulation of Discharge Parameters

2.6.1 First Stage: Discharge Points and Basic Form
of Discharge Rates of Nutrient

In order to find the optimal discharge points ri in D, and the basic shape of discharge
rates Qi (t) at these points, we consider here the variational problem (2.27)–(2.29)
for N = 1 and α1 = β1 = 0. That is we consider in the first stage of the strategy
just a local problem of remediation in which the critical concentration c1 is reached
exactly. Thus, taking into account the corresponding adjoint function g1(r, t) for the
oil-polluted zone Ω1, the variational problem becomes

minimize m(Q) = 1

2

∫ T

0
Q2(t) dt (2.50)

subject to:
∫ T

0
g1(r1, t)Q(t) dt = c1 (2.51)

Q(t) ≥ 0, 0 ≤ t ≤ T (2.52)

where, for simplicity, we have omitted the subindex in the release rate, that is Q(t) =
Q1(t). At first, the site r1 ∈ D is considered as any point such that

P(r1) =
∫ T

0
g1(r1, t) dt > 0. (2.53)

The set of points where condition (2.53) holds is called support of function P [11].
Note that condition (2.53) is necessary to satisfy constraint (2.51) and that such
condition is fulfilled for any point r1 in the polluted zone Ω1. Moreover, condition
(2.53) is also satisfied for points that are outside Ω1 but fairly close to this area;
such points are adjacent to Ω1 and are located on the streamlines coming into the
zone. The size of such set of points depends on how large is the parameter T and the
velocity of the flow ‖U‖2 in a neighbourhood of the zone Ω1.
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2.6.1.1 Existence and Uniqueness

In this section the existence and uniqueness of solution to variational problem (2.50)–
(2.52) is proved. To this end, we remind some properties of the Hilbert space H =
L2(0, T ) together with a strong result of approximation theory (a minimum distance
theorem).

Theorem 2.1 ([5]) A non-empty closed convex set in a uniformly convex Banach
space possesses a unique point closest to a given point.

Lemma 2.1 ([5]) The space H = L2(0, T ) is a uniformly convex Banach space.

We point out that the meaning of condition (2.50) is the minimization of the norm
(distance) in the space H . It is for this reason Theorem 2.1 is useful in proving the
existence and uniqueness. We now consider the specific set and point in space H for
which Theorem 2.1 is applied.

Definition 2.1 The feasible space F for variation problem (2.50)–(2.53) is given as
follows

F =
{

Q ∈ H ; Q(t) ≥ 0, 0 ≤ t ≤ T, and
∫ T

0
Q(t)g1(r1, t)dt = c1

}
(2.54)

Lemma 2.2 The feasible space F is a non-empty set in space H.

Proof Because the adjoint solution g1(r1, t) is a non-negative square-integrable func-
tion, we have that

Q∗(t) = c1g1(r1, t)
∫ T
0 g2

1(r1, t) dt
(2.55)

is a function in H that fulfils constraints (2.51) and (2.52). Therefore, Q∗(t) belongs
to the feasible space F . The lemma is proved.

The meaning and usefulness of function Q∗(t) defined by (2.55) is established in
the next section.

Lemma 2.3 The feasible space F is a convex set in H.

Proof In fact, let Q1, Q2 ∈ F and λ ∈ (0, 1). Then, evidently, λQ1 + (1− λ)Q2 ≥
0, 0 ≤ t ≤ T . Besides,

∫ T

0
(λQ1 + (1 − λ)Q2)g1(r1, t) dt = λc1 + (1 − λ)c1 = c1

and hence, F is a convex set in H . The lemma is proved.

Lemma 2.4 The feasible space F is a closed set in H.
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Proof To show this we must prove that F = F [10]. Let Q0 be an element of F .
Then there is a sequence {Qk}∞k=1 in F such that

‖Qk − Q0‖ → 0 as k → ∞

Assume that Q0(t) < 0 in some interval I ⊂ (0, T ) of positive measure |I | > 0.
Then

‖Qk − Q0‖2 =
∫ T

0
(Qk − Q0)

2 dt ≥
∫

I
(Qk − Q0)

2 dt ≥
∫

I

Q2
0 dt = l > 0

The last inequality contradicts the convergence of sequence {Qk}∞k=1 in H , and hence,
Q0 is a non-negative function in (0, T ).

On the other hand, applying the Schwarz inequality we get

∣∣∣∣c1 −
∫ T

0
Q0g1(r1, t)dt

∣∣∣∣ =
∣∣∣∣
∫ T

0
(Qk − Q0) g1(r1, t)dt

∣∣∣∣

≤ ‖Qk − Q0‖ ‖g1(r1, t)‖ → 0 as k → ∞

and therefore
∫ T
0 Q0g1(r1, t) dt = c1, that is Q0 ∈ F . The lemma is proved.

Note that the zero function q(t) ≡ 0, 0 ≤ t ≤ T, does not belong to the feasible
set F . Indeed, the constraint (2.51) is not satisfied for such function because c1 > 0.
This remark allows us to establish the most important result of this section.

Theorem 2.2 The variational problem (2.50)–(2.52) has non-trivial unique solution
in the space H.

Proof By Lemma 2.1, the space H is a uniformly convex Banach space. Besides,
by Lemmas 2.1, 2.2 and 2.3, the feasibility space F is a non-empty closed convex
set in H . Therefore, due to Theorem 2.1, there is a unique function Q∗ ∈ F that
minimizes the distance between the set F and the point q ≡ 0. That is according to
(2.50), function Q∗ minimizes the objective functional m(Q). Finally, we observe
that Q∗ �= 0 because q /∈ F , and hence, the unique solution of problem (2.50)–(2.52)
is non-trivial. The theorem is proved.

It is shown in the next section that function Q∗, mentioned in Theorem 2.2, is
precisely the function (2.55).

2.6.1.2 Optimal Discharge Parameters and the Adjoint Functions

The analytical expression for the optimal discharge rate Q∗, namely, the solution
of variational problem (2.50)–(2.52), can be obtained by means of the method of
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Lagrange multipliers [44]. Let

L(Q) = 1

2

∫ T

0
Q2(t) dt − λ

{∫ T

0
g1(r1, t)Q(t) dt − c1

}
(2.56)

be the Lagrange functional corresponding to problem (2.50)–(2.52), where λ is the
respective Lagrange multiplier. The first variation of L in the sense of Gateaux [44]
is calculated as

δL(Q; δQ) = ∂

∂ε
L(Q + εδQ)ε=0 =

∫ T

0

{
Q(t) − λg1(r1, t)

}
δQ dt (2.57)

where δQ is the variation of Q. A necessary condition for Q∗ to be a minimum is
δL(Q∗; δQ) = 0, for any δQ [44]. Therefore, from Eq. (2.57) we get

Q∗(t) = λg1(r1, t), (2.58)

where the Lagrange multiplier λ is determined by means of the constraint (2.51) in
the way

λ = c1∫ T
0 g2

1(r1, t) dt
. (2.59)

The final result is obtained by substituting Eq. (2.59) in (2.58).
Note that, due to Schwarz inequality [17],

0 <

∫ T

0
g1(r1, t) dt ≤ T

1
2

{∫ T

0
g2
1(r1, t) dt

} 1
2

and therefore
∫ T
0 g2

1(r1, t)dt > 0, that is function Q∗ is well-defined by the
Eqs. (2.58) and (2.59). Besides, since g1(r1, t) ≥ 0, we conclude that Q∗(t) ≥ 0,
0 ≤ t ≤ T .

We now show that Q∗, defined by (2.58) and (2.59), also satisfies the sufficient
condition to be a minimum. Indeed, let Q0 = Q∗ + δQ be a feasible discharge rate.
From constraint (2.51) we have

∫ T

0
g1(r1, t)δQ dt = 0, (2.60)

where δQ �= 0 is an arbitrary variation of Q∗. Then,

m(Q0) − m(Q∗) =
∫ T

0
Q∗(t)δQdt + 1

2

∫ T

0
δ2Q dt. (2.61)
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Due to Eq. (2.58) and condition (2.60), Eq. (2.61) can be written as

m(Q0) − m(Q∗) = λ

∫ T

0
g1(r1, t)δQ dt + 1

2

∫ T

0
δ2Q dt = 1

2

∫ T

0
δ2Q dt > 0

where λ is given by (2.59). Thus, m(Q0) > m(Q∗), and hence, Q∗ defined by (2.58)
and (2.59) is the global minimum of variational problem (2.50)–(2.52). Note that
Theorem 2.2 from the previous section ensures the uniqueness of this minimum.

On the other hand, the mass of nutrient introduced into the aquatic system by
means of the discharge rate Q∗ is assessed as

m(Q∗) = c21
2
∫ T
0 g2

1(r1, t) dt
(2.62)

so that, in order to minimize the amount of mass, the integral

I (r1) =
∫ T

0
g2
1(r1, t) dt (2.63)

must take its maximum value. Thus, the optimal discharge point r∗
1 is chosen so as to

maximize the area under the function g2
1(r1, t), t ∈ (0, T ). Note that I (r1) defined

by (2.63) is a continuous non-linear function of three real variables r1 = (x, y, z),
which has a global maximum in the closed setΩ1. Indeed, according to the definition
of the adjoint model forcing p(r, t), the greatest values of the adjoint function are
always achieved at the points of domain Ω1.

Because all these results can successively be applied to each oil-polluted zone,
we conclude that during the first stage of the remediation strategy, the method allows
us to determine the discharge points r∗

i , one in each oil-polluted zone Ωi , as well
as to define with Eqs. (2.58) and (2.59) the corresponding basic discharge rates of
nutrient:

Q∗
i (t) = λi gi (r

∗
i , t) = ci∫ T

0 g2
i (r∗

i , t)dt
gi (r

∗
i , t), i = 1, . . . , N . (2.64)

Note that all the discharge parameters are calculated by using the adjoint model
solutions.

2.6.2 Second Stage: Modulation of Basic Discharge Rates

In the second stage of the remediation strategy, we determine positive parameters
γ1, γ2 . . . , γN such that the new discharge rates of nutrient

Qi (t) = γi Q∗
i (t), 1 ≤ i ≤ N (2.65)
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would satisfy the (global) variational problem (2.27)–(2.29). These parameters mod-
ulate the intensity of the basic release rates to fulfil the requirements for the nutrient
concentrations in all oil-contaminated zones Ωi . Such correction on the basic dis-
charge rates is needed because the nutrient discharged in one zone could reach the
other zones during the time interval (0, T ) due to the processes of advection and
diffusion.

Substituting Eq. (2.65) in the variational problem (2.27)–(2.29) we obtain a
quadratic programming problem whose solution determines the optimal parameters
γ ∗

i , and hence, the optimal discharge rates at points r∗
i , i = 1, . . . , N :

minimize m(γ1, . . . , γN ) = 1

2

N∑

j=1

p2jγ
2
j (2.66)

subject to: ci − αi ≤
N∑

j=1

ai jγ j ≤ ci + βi , i = 1, . . . , N (2.67)

γ j ≥ 0, j = 1, . . . , N (2.68)

where p2j = ∫ T
0 [Q∗

j (t)]2 dt and ai j = ∫ T
0 Q∗

j (t)gi (r∗
j , t) dt , i, j = 1, . . . , N .

The solution of the quadratic programming problem (2.66)–(2.68) exists because
the corresponding feasible space is a compact set in R

N and the objective function
m is a continuous function of several real variables [17]. Besides, such a solution
is unique because m is also a strictly convex function and the feasibility space is a
convex set in RN [5]. It is assumed here that the feasibility space is a non-empty set
due to the introduction of suitable (large enough) parameters αi and βi .

The quadratic programming problem (2.66)–(2.68) can be solved using the quad-
prog routine of MATLAB as soon as the adjoint functions are determined. Regard to
this routine, we point out that, when the only constraints of the problem are the upper
and lower bounds of variables, i.e., no linear inequalities or equalities are specified,
the default quadprog algorithm is the large-scale method. Moreover, if the prob-
lem has only linear equalities, i.e., no upper and lower bounds or linear inequalities
are specified, the default quadprog algorithm is also the large-scale method. This
method is a subspace trust-region method based on the interior-reflective Newton
method described in Coleman and Li [6]. Each iteration involves the approximate
solution of a large linear system using the preconditioned conjugate gradient method
(PCG). Otherwise, medium-scale optimization is used, and quadprog uses an ac-
tive set method, which is also a projection method, similar to that described in Gill
et al. [12]. It finds an initial feasible solution by solving a linear programming prob-
lem [25, 51]. Due to the structure of quadratic programming problem (2.66)–(2.68),
the second method of quadprog routine is applied in the examples.
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2.7 Numerical Examples of Remediation in a Channel

In order to illustrate themethod developedwe nowconsider a two-dimensional exam-
ple of remediation in a channel of one hundred and twenty metres long [0, 120] and
ten metres wide [0, 10]. The channel contains three oil-polluted zones Ωi (N = 3).
The critical nutrient concentrations ci (grm]−3) in the zones vary from one ex-
periment to another according to Table2.1. The zones under consideration are:
Ω1 = [20, 30] × [9, 10], Ω2 = [40, 60] × [9, 10] and Ω3 = [96, 100] × [0, 2].
The parameters of the adjoint model (2.18)–(2.24) have been taken as follows: the
velocity vector U is directed along the channel and is equal to 30 mh−1, the dif-
fusion coefficient μ is 6m2 h−1, the coefficient of chemical decay σ is 1 h−1, and
ζ = vs = 0. The discharge of nutrient is performed from the optimal points during
four hours, (0, T ) ≡ (0, 4), and the mean concentration is controlled within the last
one-hour interval (3, 4), i.e., τ = 1 h.

For each oil polluted zone the adjoint model (2.18)–(2.24) was solved by means
of the bidimensional version of the splitting-up method (2.45)–(2.46) which is de-
scribed in Sect. 2.5. The parameters of discretization are the same in all the numerical
experiments. The mesh size is the same in both directions, namely,Δx = Δy = 0.4,
and the corresponding mesh size in the time direction isΔt = 0.005. The function I ,
given by Eq. (2.63), was built for each polluted zone through the respective adjoint
solution. In each case, by themaximization of function I wedetermined the following
optimal discharge points: r∗

1 = (20.2, 9.8), r∗
2 = (40.2, 9.8) and r∗

3 = (96.2, 0.2).
For this grid (as well as for finer grids) we obtained that the optimal discharge site
tends to be the point at the left-superior corner of the zones Ω1 and Ω2, and the
left-inferior corner of zone Ω3, as it must be in order to have the maximum impact
of nutrient in each polluted zone.

The adjoint solutions gi j = gi (r∗
j , t), for the i th polluted zone and the j th optimal

discharge point, are plotted in Figs. 2.3, 2.4 and 2.5. According to Eq. (2.64), the
basic discharge rate for each polluted zone Ωi is a multiple of the adjoint function
gii = gi (r∗

i , t). From the shape of these functions, given in Figs. 2.3, 2.4 and 2.5,
one concludes that the basic discharge rates are equal to zero in the time interval
[0, 2.25]. According to Eq. (2.25), this means that a basic discharge rate influences
the nutrient concentration of a polluted zone only if the adjoint function of the zone
is non-zero in the time interval [2.25, 4.0]. Figure2.3 shows that g12 and g13 do not
satisfy this condition, and therefore the discharge of nutrients at points r∗

2 and r∗
3 has

no influence on its concentration in zone Ω1, as it was to be expected due to the flow
direction and the location of zones in the channel.

Table 2.1 Concentrations ci
(grm−3) in the three polluted
zones

Concentration\Experiment 1 2 3 4 5

c1 0.8 1.0 0.5 1.2 0.6

c2 0.8 0.8 1.0 0.5 1.2

c3 0.8 0.5 1.5 1.2 0.6
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Fig. 2.3 Adjoint functions
gi j = gi (r∗

j , t)

corresponding to zone Ω1
(i = 1) when they are
restricted to the optimal
discharge points r∗

j
( j = 1, 2, 3)
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Fig. 2.4 Adjoint functions
gi j = gi (r∗

j , t)

corresponding to zone Ω2
(i = 2) when they are
restricted to the optimal
discharge points r∗

j
( j = 1, 2, 3)
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A similar result follows from Fig. 2.5, since the adjoint functions g31 and g32 are
almost zero in the time interval [2.25, 4.0], and therefore the discharge of nutrients at
points r∗

1 and r∗
2 practically has no influenceon its concentration in zoneΩ3.However,

it follows fromFig. 2.4 that function g21 is positive in the time interval [2.25, 4.0], and
hence, the discharge of nutrient at point r∗

1 influences its concentration in zone Ω2,
as it was expected. Finally, the temporal behaviour of adjoint function g23 allows us
to conclude that the discharge at point r∗

3 does not affect the concentration of nutrient
in Ω2.

Thus, the polluted zones are not independentwith respect to the dispersionprocess,
since the release of nutrient in a particular zone can affect the concentration in
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Fig. 2.5 Adjoint functions
gi j = gi (r∗

j , t)

corresponding to zone Ω3
(i = 3) when they are
restricted to the optimal
discharge points r∗

j
( j = 1, 2, 3)
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Table 2.2 Modulation parameters γ ∗
i for the basic discharge rates

Parameter\Experiment 1 2 3 4 5

γ ∗
1 1.0000 1.0000 1.0000 1.0000 1.0000

γ ∗
2 0.9579 0.9473 0.9789 0.8989 0.9789

γ ∗
3 1.0000 1.0000 1.0000 1.0000 1.0000

other zones. If it is the case, the application of second stage of the remediation
strategy is necessary to correct the intensity of the basic discharge rates. To this end,
the quadratic programming problem (2.66)–(2.68) was solved by using the adjoint
functions gi j = gi (r∗

j , t), the critical concentrations ci given in Table2.1 and the
corresponding basic discharge rates. Table2.2 summarizes the optimal modulation
parameters γ ∗

i obtained for each experiment.
For all the experiments, the slack variables of the quadratic programming prob-

lem (2.66)–(2.68) are taken equal to zero: αi = βi = 0 (i = 1, 2 and 3), hence,
each critical concentration ci is reached in the respective oil polluted zone exactly.
Table2.2 shows that the only discharge rate which must be corrected is that located
in zoneΩ2 (γ ∗

2 < 1 in the five experiments). This is a consequence of the impact that
the discharge of nutrient at point r∗

1 has on the zone Ω2. The optimal discharge rates
for experiments 1 and 4 are shown in Figs. 2.6 and 2.7, respectively. As compared
with Fig. 2.6, the intensity of functions Q1 and Q3 in Fig. 2.7 has increased. This is
the result of the raise in the critical concentrations from 0.8 to 1.2 (see Table2.1. At
the same time, the decrease in the intensity of function Q2 in Fig. 2.7 compared to
Fig. 2.6 is explained by the drop in the critical concentration of nutrient from 0.8 to
0.5 and also by the correction of Q2 through the parameter γ ∗

2 (see Table2.2).
It should be noted that in all the experiments, the slack variables are not necessary

because the feasible space of problem (2.66)–(2.68) is nonempty when αi = βi = 0
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Fig. 2.6 Optimal discharge
rates Qi (t) = γ ∗

i Q∗
i (t),

i = 1, 2 and 3, for
Experiment 1
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Fig. 2.7 Optimal discharge
rates Qi (t) = γ ∗

i Q∗
i (t),

i = 1, 2 and 3, for
Experiment 4
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(i = 1, 2 and 3), and therefore the existence of the optimal solution is assured.
However, such variables are required for the general formulation of the strategy. For
example, when the critical concentrations for the three polluted zones are c1 = 19.0,
c2 = 0.8 and c3 = 0.8 then the feasible space of problem (2.66)–(2.68) is empty.
Indeed, in this case, the basic discharge rate at point r∗

1 is so intensive that the
concentration of nutrient in the zone Ω2 cannot be maintained as low as 0.8. On
the other side, if nonzero slack variables are introduced as α1 = β1 = 0.1 and
αi = βi = 0 (i = 2, 3), then the feasible space of problem (2.66)–(2.68) is nonempty
and we have the optimal solution: γ ∗

1 = 0.9947, γ ∗
2 = 0.0048 and γ ∗

3 = 1.0000.
Figure2.8 shows the optimal discharge rates obtained for the three polluted zones.
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Fig. 2.8 Optimal discharge
rates Qi (t) = γ ∗

i Q∗
i (t),

i = 1, 2 and 3, for the
critical concentrations
c1 = 19.0, c2 = 0.8 and
c3 = 0.8, and slack variables
α1 = β1 = 0.1 and
αi = βi = 0 (i = 2, 3)
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Note that Q2 is practically zero, and hence, the discharge rate Q1 is responsible for
the concentration reached in zone Ω2.

2.8 Conclusions

The main objectives of the mathematical modelling in the environment protection
are the identification of emission rates of sources and their positions, the prediction
of concentrations of different substances (pollutants, cleanears, nutrients, etc.), the
development of themethodswhich help to prevent dangerous pollution levels (control
of emissions) and the search of new strategies for the remediation of polluted zones.
In this chapter, we have presented amethod for the cleanup of the oil-polluted marine
environment through bioremediation. It is assumed that oil is stranded in some zones
at the shoreline and the goal is to release a nutrient into aquatic system in order to
increase the amount of indigenous microorganisms which degrade the pollutants in
such zones. Thus, the specific objective is to determine the appropriate parameters
of releasing the nutrient, namely, the discharge sites and the discharge rates, in order
to reach critical (necessary) concentrations of the nutrient in the polluted zones. All
the unknown parameters are chosen for minimizing the total mass of the released
nutrient, with the aim to minimize the impact on the environment and the cost of
remediation.

To this end, the problem is solved in two stages. In the first stage, each zone Ωi is
considered separately from other and contains just one source. In order to reach the
critical concentration ci in each polluted zoneΩi (1 ≤ i ≤ N ), a variational problem
is posed and solved with the aim to find both the optimal location of release point ri
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in the zone and the optimal release rate Qi (t), also named as basic or preliminary
discharge rate. We prove that this problem has unique solution.

In the second stage, we consider the process of dispersion of nutrient in all zones
together. Due to advection by currents, the nutrient released in one zone can reach
other polluted zones. Therefore wemust specify (modulate) the strength of all release
rates Qi (t) in order to fulfil the criticalmean concentrations ci in all the polluted zones
during the time interval [T − τ, T ]. To this end, we introduce positive coefficients
γi to replace all release rates Qi (t) by γi Qi (t). These coefficients are chosen as
the solution of a quadratic programming problem where the objective function for
minimizing is the mass of nutrient introduced by the new discharge rates γi Qi (t).
Also, we prove the existence and uniqueness of this optimization problem.

Both stages of this remediation strategy use the adjoint solutions to assess the
mean concentration of nutrient in the oil-polluted zones. Such approach is quite
useful. Indeed, in the first stage, the optimal release point for a specific oil-polluted
zone is found bymaximizing a continuous non-linear function of three real variables.
The function is built with the adjoint problem solution corresponding to the selected
zone. In addition, the respective basic discharge rate is determined as a multiple of
the adjoint solution which is evaluated at the optimal discharge point. Of course, the
basic discharge rate also depends on the critical concentration for the respective oil-
polluted zone. And in the second stage, the adjoint solutions, evaluated at the optimal
discharge points, are also used to pose the constraints for the quadratic programming
problem.

Thus, this new remediation method is strongly based on the adjoint estimates.
Nevertheless, it also uses the direct concentration estimates of nutrient in the pol-
luted zones when various discharges of the nutrient are needed. Therefore, the two
equivalent (direct and adjoint) estimates complement each other well in the assess-
ment of nutrients and control of pollutants. The direct estimates, utilizing the solution
of the advection-diffusion problem, enable making the comprehensive analysis of
ecological situation in the whole area. On the other hand, the adjoint estimates use
solutions of the adjoint problems and explicitly depend on the positions of sources,
their discharge rates, and also on the initial distribution of nutrient in the region. Be-
sides, the solutions of adjoint problem serve as influence (weight) functions, which
show the impact of the location of discharge source and its intensity on the con-
centration of nutrient in each oil-polluted zone. Therefore, the adjoint estimates are
effective and economical in the sensitivity study of the concentrations of nutrient to
variations in the model parameters.

Owing to special boundary conditions, both the main and adjoint problems are
well-posed according to Hadamard, that is the solution of each problem exists, is
unique and stable to initial perturbations. These conditions are reduced to the well-
known and natural boundary conditions in the non-diffusion limit (pure advection
problem) and also in the case of a closed sea basin (when the boundary is the coast
line).

Finite difference schemes for the solution of the main and adjoint transport prob-
lems are also given. The schemes are balanced, unconditionally stable, of second-
order approximation, and are based on using the splittingmethod andCrank-Nicolson
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scheme. In the absence of dissipation and sources, each scheme has two conserva-
tion laws. All one-dimensional discrete equations obtained at every fractional step
of the splitting algorithm are efficiently solved by the Thomas factorization method
for tridiagonal matrices.

Finally, we point out that the adjoint technique described in this chapter can also
be used for the solution of such problems as the control of industrial emissions,
the detection of the enterprises which violate the emission rates prescribed by a
control, and the estimation of the intensity of a pollution source in the case when its
position is known. For example, the last cases include a nuclear (or chemical) plant
accident or nuclear bomb explosion (testing, terrorist attacks, and others). In all these
situations, the source position is known or can easily be located (from a satellite or
other monitoring equipment), and then our method gives a lower bound of the source
intensity, which can be useful in the assessment of the scale of accident.
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