
Chapter 8
Differential Flatness Theory for Electric
Motors and Actuators

8.1 Introduction

In this chapter, differential flatness theory is used to develop adaptive fuzzy control
for electric motors and actuators of unknown model, or of model characterized by
nonmeasurable state variables and parametric uncertainty. First, the problem of adap-
tive fuzzy control for DC electric motors is studied. The considered electric motors
can be written in the Brunovsky (canonical) form after a transformation of their state
variables and control input. The resulting control signal is shown to consist of non-
linear elements, which in case of unknown system parameters can be approximated
using neuro-fuzzy networks. An adaptation law for the neuro-fuzzy approximators
can be computed using Lyapunov stability analysis. It is shown that the proposed
adaptation law assures stability of the closed loop. First, a nonlinear DCmotor model
is used to evaluate the performance of the proposed flatness-based adaptive control
scheme.

Additionally, in this chapter it is shown that the complete 6th order model of the
induction motor satisfies differential flatness properties since all its state variables
and control inputs can be expressed as functions of the flat outputs. The flat outputs
are chosen to be the rotor’s turn angle and orientation angle of the magnetic flux.
This type of flatness-based control for the induction motor model is implemented in
cascading loops. Moreover, nonlinear Kalman Filtering methods, such the Extended
and the Unscented Kalman Filter are included in this control scheme to estimate the
state vector of the asynchronous motor using a limited number of sensors, such as
the ones measuring stator currents. In the latter case, control of the induction motor
is implemented through feedback of the estimated state vector. The efficiency of the
Kalman Filter-based control scheme is confirmed by simulation experiments.

Finally, the chapter proposes an adaptive fuzzy approach to the problem of con-
trol of electrostatically actuated MEMS (microelectromechanical systems), which is
based on differential flatness theory and which uses exclusively output feedback. It
is shown that the model of the electrostatically actuated MEMS is a differentially
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flat one and this permits to transform it to the so-called linear canonical form. For
the new description of the system’s dynamics the transformed control inputs contain
unknown terms which depend on the system’s parameters. To identify these terms
an adaptive fuzzy approximator is used in the control loop. Thus an indirect adaptive
control scheme is implemented in which the unknown or unmodeled system dynam-
ics is approximated by neuro-fuzzy networks and next this information is used by
a feedback controller that makes the electrostatically activated MEMS converge to
the desirable motion setpoints. This adaptive control scheme is exclusively imple-
mented with the use of output feedback, while the state vector elements which are
not directly measured are estimated with the use of a state observer that operates in
the control loop. The learning rate of the adaptive fuzzy system is suitably computed
from Lyapunov analysis, so as to assure that both the learning procedure for the
unknown system’s parameters, the dynamics of the observer and the dynamics of
the control loop will remain stable. The Lyapunov stability analysis depends on two
Riccati equations, one associated with the feedback controller and one associated
with the state observer. Finally, it is proven that for the control scheme that com-
prises the feedback controller, the state observer and the neuro-fuzzy approximator,
H-infinity tracking performance can be succeeded. The functioning of the control
loop has been evaluated through simulation experiments.

8.2 Flatness-Based Adaptive Control of DC Motors

8.2.1 Overview

This section is particularly concerned with differentially flat single-input dynami-
cal systems which can be written in the Brunovksy (canonical) form. As shown in
Chap.2, according to the Lie-Backlünd condition for equivalence of differentially
flat systems, if a system is differentially flat then it can be transformed to the linear
canonical (Brunovsky) form. In particular, transformation into the Brunovksy form
can be succeeded for systems that admit static feedback linearization (i.e., a change
of coordinates for both the system state variables and the system’s control input).
Single-input differentially flat systems admit static feedback linearization and there-
fore can be finally written in the Brunovsky form [340]. Moreover, flatness-based
adaptive fuzzy control can be applied to multi-input dynamical systems. For MIMO
dynamical systems which are differentially flat and which admit static feedback
linearization, transformation to the canonical (Brunovsky) form can be performed.
Additionally, even for MIMO dynamical systems which are differentially flat and
admit only dynamic feedback linearization, one can succeed transformation to the
canonical (Brunovsky) form. Therefore, there exists awide class of nonlinear dynam-
ical systems to which the proposed flatness-based adaptive fuzzy control method can
be applied [426].

http://dx.doi.org/10.1007/978-3-319-16420-5_2
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After transformation to the linear canonical form, the resulting control input is
shown to contain nonlinear elements which depend on the system’s parameters. If
the parameters of the system are unknown, then the nonlinear terms which appear in
the control signal can be approximated with the use of neuro-fuzzy networks. In this
chapter it is shown that a suitable learning law can be defined for the aforementioned
neuro-fuzzy approximators so as to preserve the closed-loop system stability. Lya-
punov stability analysis proves also that the proposed flatness-based adaptive fuzzy
control scheme results in H∞ tracking performance, in accordance to the results of
[407, 410, 413, 433].

Unlike other adaptive fuzzy control schemes which are based on several assump-
tions about the structure of the nonlinear system as well as about the uncertainty
characterizing the system’smodel, the proposed adaptive fuzzy control scheme based
on differential flatness theory offers an exact solution to the design of adaptive con-
trollers for unknown dynamical systems. The only assumption needed for the design
of the controller and for succeeding H∞ tracking performance for the control loop
is that there exists a solution for a Riccati equation associated to the linearized error
dynamics of the differentially flat model. This assumption is quite reasonable for
several nonlinear systems (including electric motors and actuators), thus providing a
systematic approach to the design of reliable controllers for such systems [426, 433].

8.2.2 Dynamics and Linearization of the DC Motor Model

The control approach to be followed in this section is similar to the one analyzed in
Chap.3. The dynamic model of the nonlinear DC motor has been already presented
in Chap.4. As explained, the dynamical model of the DC-motor model can be written
as an affine in the input system: ẋ = f (x, t)+g(x, t)u, with ẋ denoting the derivative
of the motor’s state vector, x = [x1, x2, x3]T = [θ, θ̇ , iα] (θ is the position of the
motor, θ̇ is the angular velocity of the motor and iα is the armature current) [202,
539]. Functions f (x) and g(x) are vector field functions defined as:

f (x) =
⎛
⎝

x2
k1x2 + k2x3 + k3x23 + k4T1

k5x2 + k6x2x3 + k7x3

⎞
⎠ , g(x) =

⎛
⎝
0
0
k8

⎞
⎠ (8.1)

where k1 = −F/J , k2 = A/J , k3 = B/J , k4 = −1/J , k5 = −A/L , k6 = −B/L ,
k7 = −R/L , k8 = −1/L , R and L are the armature resistance and induction
respectively, and J is the rotor’s inertia, while F is the friction. Variable A is a
constant defining the torque due to the armature’s current, while variable B is a
constant associated to the armature’s reaction. Now, the state-space equation of the
DC motor becomes

ẋ1 = x2
ẋ2 = k1x2 + k2x3 + k3x23 + k4T1
ẋ3 = k5x2 + k6x2x3 + k7x3 + k8u

(8.2)

http://dx.doi.org/10.1007/978-3-319-16420-5_3
http://dx.doi.org/10.1007/978-3-319-16420-5_4
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where T1 the load torque and u is the terminal voltage. From the second row of
Eq. (13.2) one obtains,

ẍ2 = k1 ẋ2 + k2 ẋ3 + 2k3x3 ẋ3 ⇒
ẍ2 = k1 ẋ2 + k2 ẋ3 + 2k3k5x2x3 + 2k3k6x2x23 + 2k3k7x23 + 2k3k8x3u

(8.3)

Thus, one has ẍ2 = f̄ (x) + ḡ(x)u where

f̄ (x) = k1 ẋ2 + k2 ẋ3 + 2k3k5x2x3 + 2k3k6x2x23 + 2k3k7x23 , and
ḡ(x) = 2k3k8x3

(8.4)

For the considered nonlinear electric motor model described in Eq. (8.4) it is assured
that inherently ḡ(x) �= 0, therefore again singularities are not going to appear in the
control law. Moreover, assuming the effects of friction k1x2 and of the load torque
k4T1 as external disturbances, the nonlinear DC motor model of Eq. (13.1) becomes

ẋ1 = x2
ẋ2 = k2x3 + k3x23

ẋ3 = k5x2 + k6x2x3 + k7x3 + k8u
(8.5)

Selecting the flat output to be y = x1 one can see that all state variables xi , i = 1, 2, 3
and the control input u can be expressed as functions of the flat output and its
derivatives. Indeed it holds

x1 = y
x2 = ẏ

x3 = −k2+
√

|k22+4k3 ÿ|
2k3

(8.6)

with control input
u = 1

ḡ(x)
[y(3) − f̄ (y, ẏ, ÿ)]. (8.7)

The aforementioned system of Eq. (13.4) can be written in the Brunovsky form:

⎛
⎝

ẏ1
ẏ2
ẏ3

⎞
⎠ =

⎛
⎝
0 1 0
0 0 1
0 0 0

⎞
⎠

⎛
⎝

y1
y2
y3

⎞
⎠ +

⎛
⎝
0
0
1

⎞
⎠ v (8.8)

where y1 = y and v = f̄ (x, t) + ḡ(x, t)u.
With functions f̄ (x, t) and ḡ(x, t) to be given by Eq. (8.6). The stability analysis

of the adaptive fuzzy control scheme follows the stages presented in Chap.3, for the
case of single-input dynamical systems. Using a control input as in Eq. (8.7) it was
possible to make the electric motor’s angle track any desirable setpoint. Regarding
the implementation of the flatness-based adaptive fuzzy controller, the neuro-fuzzy
approximators for functions f̄ (x, t) and ḡ(x, t) have now three inputs, i.e., x , ẋ

http://dx.doi.org/10.1007/978-3-319-16420-5_13
http://dx.doi.org/10.1007/978-3-319-16420-5_13
http://dx.doi.org/10.1007/978-3-319-16420-5_13
http://dx.doi.org/10.1007/978-3-319-16420-5_3
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and ẍ . Taking that each fuzzy input variable consists of 3 fuzzy sets, there are now
27 fuzzy rules of the form:

Rl : IF x is Al
1 AND ẋ is Al

2 AND ẍ is Al
3 THEN f̂ l is bl (8.9)

In the simulation experiments, it was assumed that at the beginning of the second
half of the simulation time an additive sinusoidal disturbance of amplitude A = 2.0
and period T = 7.5s affected the DCmotor. The position and velocity variations for
a sinusoidal setpoint are depicted in Fig. 8.1a, b, respectively. The performance of
the proposed flatness-based adaptive fuzzy control was also tested in the tracking of
a seesaw setpoint. The associated position and velocity variation are demonstrated
in Fig. 8.2a, b, respectively. The control signal in the case of tracking of a sinusoidal
setpoint is shown inFig. 8.3a,while the control signalwhen tracking a seesaw setpoint
is shown in Fig. 8.3b. Finally, the approximation of function g(x, t) in the case of
tracking of a sinusoidal setpoint is shown in Fig. 8.4a (and is marked as a dashed
line), while when tracking a seesaw setpoint the approximated function g(x, t) is
shown in Fig. 8.4b.

As already explained in Chap.3, and comparing the proposed flatness-based adap-
tive fuzzy controlmethod to other adaptive fuzzy control approaches and to the analy-
sis on neural adaptive control methods given in the relevant bibliography (e.g., [167,
168, 205]), the following can be noted: (i) the transformation of the initial nonlinear
system into the linearized Brunovksy (canonical) form does not require the compu-
tation of partial derivatives or Lie derivatives, (ii) there is no need to make restrictive
assumptions about the number of truncated higher order terms in the linearization
of the system’s nonlinear model or about a bounded error in the linearization of the
output of the neural/fuzzy approximators, (iii) the number of adaptable parameters
that is involved in the training of the neural/fuzzy approximators remains small and
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Fig. 8.1 a Tracking of a sinusoidal position setpoint (red line) by the angle of the motor. b Tracking
of a sinusoidal velocity setpoint (red line) by the angular velocity of the motor
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Fig. 8.2 a Tracking of a seesaw position setpoint (red line) by the angle of the motor. b Tracking
of a seesaw velocity setpoint (red line) by the angular velocity of the motor (continuous line)
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Fig. 8.3 a Control input of the motor when tracking a sinusoidal setpoint. b Control input of the
motor when tracking a seesaw setpoint

there is no need to use an excessive number of neural/fuzzy approximators to pro-
duce the control signal, (iv) the tracking performance of the neuro-fuzzy control
loop is evaluated with the use of specific metrics (e.g., H∞ tracking performance),
(v) the proposed flatness-based control method can be also extended to MIMO actu-
ation systems, without constraining assumptions about their dynamics and structure
(e.g. triangular, affine-in-the-input, of canonical form, etc.) [426, 433].

The problemof avoidance of singularities in the proposed control scheme has been
already discussed in Chap. 3. Flatness-based adaptive fuzzy control assures stability
of the control loop and the asymptotic elimination of the tracking error. Therefore,
it can be ensured that θ̃g = θg − θ∗

g →0 which means that ĝ(x)→g(x). Provided
that function g(x) does not become zero as long as x remains bounded, then ĝ(x)

http://dx.doi.org/10.1007/978-3-319-16420-5_3
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Fig. 8.4 a Approximation of function ḡ(x, t) of the motor model when tracking a sinusoidal
setpoint. b Approximation of function ḡ(x, t) of the motor model when tracking a seesaw setpoint

will be also different than zero. For the cart-pole system described in Eq. (3.39) and
Eq. (3.40) it holds that g(x) = 0 for x1 = θ = 0, however, for x1∈(0, π) this case is
not going to occur, even if ideally there is no function approximation error and ĝ(x)

coincides with g(x). For the considered nonlinear electric motor model described
in Eq. (8.4) it is assured that inherently ḡ(x) �= 0, therefore again singularities are
not going to appear in the control law. In the generic case, to assure the avoidance
of singularities in the proposed control scheme one has to exclude singularity points
from the reference trajectory that the system’s state vector has to track.

Singularities may appear not only in the proposed adaptive fuzzy control scheme
but in all control systems which are based on static feedback linearization. For exam-
ple, the linearization of the system through the use of a new control input of the
form v = f (x) + g(x)u means that u = g(x)−1[v − f (x)] which does exclude the
appearance of singularities. Therefore, singularities do not concern only the proposed
control method but the whole class of static feedback-based linearization schemes.
As explained in Chap.2, some modifications can be introduced in the design of the
controller to prohibit the appearance of singularities, for example, a change in coor-
dinates that results in a new state-space representation which does not include any
points of singularity [340].

8.3 Flatness-Based Control of Induction Motors
in Cascading Loops

8.3.1 Overview

This section analyzes sensorless control of induction motors with the use of control
methods which are based on differential flatness theory. Induction motors are cur-
rently a main element of several industrial systems, as well as of motion transmission

http://dx.doi.org/10.1007/978-3-319-16420-5_3
http://dx.doi.org/10.1007/978-3-319-16420-5_3
http://dx.doi.org/10.1007/978-3-319-16420-5_2
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and transportation systems. The possibility to reduce the number of sensors involved
in the control of induction motors has been a subject of systematic research during
the last years [49, 100, 170, 199, 200, 280, 296, 336, 432, 538]. As a result, state
estimation-based control has become an active research area in the field of electric
machines and power electronics. Elimination of the speed and magnetic flux sensors
has the advantages of lower cost, ruggedness as well as increased reliability. Nonlin-
earKalmanFiltering can be used to obtain accurate estimates of the inductionmotor’s
state vector through the processing of measurements coming from a small number
of sensors, e.g., control input currents applied to stator. A well-established nonlinear
Kalman Filtering approach is the Extended Kalman Filter (EKF), which is based on a
linearization of the nonlinear dynamics using a first-order Taylor expansion [31, 229,
405, 408]. Alternatively, the Unscented Kalman Filter (UKF) can be considered. The
Unscented Kalman Filter is a derivative-free state estimation method of high accu-
racy. The state distribution in UKF is approximated by a Gaussian random variable,
which is represented using a minimal set of suitably chosen weighted sample points.
These sigma points are propagated through the true nonlinear system, thus gener-
ating the posterior sigma-point set, and the posterior statistics are calculated. The
sample points progressively converge to the truemean and covariance of theGaussian
random variable [418, 419]. The use of the Unscented Kalman Filter for state estima-
tion and control of nonlinear electric motor models is a relatively new and promising
topic. Indicative results on the use of the UKF for sensorless control of induction
motors and fault diagnosis of electric drives can be found in [4, 5, 6, 233, 256].

In this section, a sensorless control scheme for induction motors is developed
consisting of (i) a nonlinear Kalman Filter, such as the Extended or the Unscented
Kalman Filter, which provides estimates of the complete 6th order state vector of
the induction motor, after sequential processing of measurements from a limited
number of sensors (as the ones measuring stator currents), (ii) a nonlinear controller
that is based on the principles of the differential flatness theory, which unlike the
conventional field-oriented control approach makes no assumption about decoupling
between the rotor’s magnetic flux and the rotor’s angular speed. The performance
of the Extended Kalman Filter-based sensorless control scheme is tested through
simulation experiments and compared to an Unscented Kalman Filter-based control
loop. It is shown that both the EKF- and the UKF-based control result in fast and
accurate trajectory tracking.

8.3.2 A Cascading Loops Scheme for Control
of Field-Oriented Induction Motors

8.3.2.1 Field-Oriented Induction Motor Model

As in the case of asynchronous generators that was analyzed in Chap.7 to derive the
dynamic model of an induction motor, the three-phase variables are first transformed

http://dx.doi.org/10.1007/978-3-319-16420-5_7
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Fig. 8.5 Schematic diagramof the proposed flatness-based control schemewith the use of nonlinear
Kalman filtering

to two-phase ones. This two-phase system can be described in the stator-coordinates
frame α−b and the associated voltages are denoted as vsα and vsb , while the currents
of the stator are isα and isb , and the components of the rotor’s magnetic flux are ψrα

and ψrb (Fig. 8.5). Then, the rotation angle of the rotor with respect to the stator is
denoted by δ, and a rotating reference frame d − q on rotor, is defined [432].

The state vector of the motor is x = [θ, ω,ψrα , ψrb , isα , isb ] (where θ stands for
the turn angle of the rotor and ω for the rotation speed), while the dynamic model of
the induction motor is written as [62, 412, 434]:

ẋ = f (x) + gα(x)vsα + gb(x)vsb + w(t)
z = h(x) + v(t)

(8.10)

with the first row to describe the state equation of the motor and the second row to
describe the measurement equation of the motor (where h(x) is a nonlinear vector
field of x). The elements of the induction motor’s dynamic model are:

f (x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

x2
μ1(x3x6 − x4x5) − TL

J−α1x3 − n px2x4 + α1Mx5
n px2x3 − α1x4 + α1Mx6

α1β1x3 + n pβ1x2x4 − γ1x5
−n pβ1x2x3 + α1β1x4 − γ1x6

⎞
⎟⎟⎟⎟⎟⎟⎠

(8.11)

gα = [0, 0, 0, 0, 1
σ Ls

, 0]T gb = [0, 0, 0, 0, 0, 1
σ Ls

]T (8.12)
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where J is the rotor’s inertia, and TL is the external load torque. The rest of the model

parameters are σ = 1 − M2/Ls Lr , α1 = Rr
Lr
, β1 = M

σ Ls Lr
, γ1 = ( M2Rr

σ Ls L2
r

+ Rs
σ Ls

),

μ1 = n p M
J Lr

, where Ls , Lr are the stator and rotor auto-inductances, M is the mutual
inductance and n p is the number of poles.

The process noise w(k) given in Eq. (8.10) is due to model inaccuracies associ-
ated with random variations of the model’s parameters. For example, resistances,
inductances, and magnetic permeability of the electric motor can exhibit a stochastic
variation round a nominal value. The measurement noise v(k) given in Eq. (8.10) is
due to stochastic variations of the elements of the measuring devices. If the effects
of the noise signals are not compensated by a filtering procedure, the performance
of the control loop can be unsatisfactory or even the stability of the control loop can
be risked. In the sensorless control scheme of the induction motor studied in this
section, the measured variables are considered to be the a-b reference frame currents
of the stator.

8.3.2.2 Decoupling of Speed-Flux Dynamics

The classical method for induction motors control is based on a transformation of
the stator’s currents (isα and isb ) and of the magnetic fluxes of the rotor (ψrα and
ψrb ) to the reference frame d − q which rotates together with the rotor. In the d − q
frame there will be only one nonzero component of the magnetic flux ψrd , while the
component of the flux along the q axis equals 0. The new control inputs of the system
are considered to be vsd , vsq , and are associated to the d − q frame voltages vd and
vq , respectively. The control inputs vsd , vsq are connected to vsα , vsb of Eq. (8.10),
according to the relation

(
vsα

vs b

)
= ||ψ ||·

(
ψr α ψr b
ψr b ψr α

)−1 (
vs d
vsq

)
(8.13)

where ψ = ψrd and ||ψ || =
√

ψ2
sα + ψ2

sb
. Next, the following nonlinear feedback

control law is defined

(
vs d
vsq

)
= σ Ls

⎛
⎝ −n pωisq − αMis q

2

ψr d
− αbψr d + vd

n pωis d + bn pωψr d + αMis q is d
ψr d

+ vq

⎞
⎠ (8.14)
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The control signal in the coordinates system α − b is

(
vsα

vs b

)
= ||ψ ||σ Ls

(
ψr α ψr b

−ψr b ψr α

)−1

·

·
⎛
⎝ −n pωisq − αMis q

2

ψr d
− αβψr d + vd

n pωis d + βn pωψr d + αMis q is d
ψr d

+ vq

⎞
⎠

(8.15)

Substituting Eq. (8.15) into Eq. (8.10) one obtains

d

dt
ω = μψr d isq − TL

J
(8.16)

d

dt
isq = −γ isq + vq (8.17)

d

dt
ψr d = −αψr d + αMis d (8.18)

d

dt
is d = −γ is d + vd (8.19)

d

dt
ρ = n pω + αM

isq

ψr d
(8.20)

The system of Eqs. (8.16)–(8.20) consists of two linear subsystems, where the first
one has as output the magnetic flux ψr d and the second has as output the rotation
speed ω, i.e.,

d

dt
ψr d = −αψr d + αMis d (8.21)

d

dt
is d = −γ is d + vd (8.22)

d

dt
ω = μψr d isq − TL

J
(8.23)

d

dt
isq = −γ isq + vq (8.24)

If ψr d→ψr
ref
d , i.e., the transient phenomena for ψr d have been eliminated and ψr d

has converged to a steady state value, then Eq. (8.23) is not dependent on ψr d , and
consequently the two subsystems described by Eqs. (8.21)–(8.22) and Eqs. (8.23)–
(8.24) are decoupled. The subsystem that is described by Eqs. (8.21) and (8.22) is
linear and has as control input vd , and can be controlled using methods of DC motor
control [336, 413, 434, 535].
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8.3.3 A Flatness-Based Control Approach for Induction
Motors

In [338] the voltage-fed induction machine was shown to be a differentially flat
system. It has been proven that the angle of the rotor position (rotation angle θ ) and
the angle ρ of the magnetic field (angle between flux ψra and ψrb ) constitute a flat
output for the induction motor model [117, 118, 535]. Since all state variables of
the circuits describing the induction motor dynamics can be expressed as functions
of y = (θ, ρ) and its derivatives it can be concluded that the induction motor is a
differentially flat system.

The equations of the induction motor in the d − q reference frame, given by
Eqs. (8.21)–(8.24), are now rewritten in the form of Eqs. (8.25)–(8.29):

d
dt ω = μψr d isq − TL

J (8.25)

d
dt ψr d = −αψr d + αMisd (8.26)

d
dt is d = −γ is d + αβψr d + n pωisq + αMis q

2

ψr d
+ 1

σ Ls
vs d (8.27)

d
dt isq = −γ isq − βn pωψr d − n pωis d − αMis q is d

ψrd
+ 1

σ Ls
vsq (8.28)

d

dt
ρ = n pω + αMisq

ψr d
(8.29)

The flat outputs for the voltage-fed induction motor are the angle of the rotor θ and
variable ρ, where ρ has been defined as the rotor flux angle. According to [117],
if the stator current dynamics are much faster than the speed and flux dynamics a
faster inner current control loop can be designed using only Eqs. (8.27) and (8.28)
and assuming the speed and flux as constants. For the outer speed and flux control
design, the stator currents are treated as new control inputs and the system behavior
is described by Eqs. (8.25), (8.26), and (8.29). This system of lower order is also flat
with ψrd and θ as flat outputs.

It can be shown that all state variables of the induction motor can be written
as functions of the flat outputs and their derivatives. Moreover, using Eqs. (8.27)
and (8.28) a controller that satisfies the flatness properties (and thus it can be also
expressed as a function of the flat outputs and their derivatives) is:

vsd = σ Ls(
di∗sd
dt + γ i∗sd

− αβψrd − n pωisq − αMisq
2

ψrd
+ vd) (8.30)

vsq = σ Ls(
di∗sq
dt + γ i∗sq

+ βn pωψrd + n pωisd + αMisq isd
ψrd

+ vq) (8.31)
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where i∗sq
and i∗sd

denote current setpoints. Substituting Eqs. (8.30) and (8.31) into
Eqs. (8.27) and (8.28) one obtains the dynamics of the current tracking errors.

dΔisd
dt = −γΔisd + vd (8.32)

dΔisq
dt = −γΔisq + vq (8.33)

where Δisd = (isd − i∗sd
). For the decoupled system of Eqs. (8.32) and (8.33) one

can apply state feedback control. For example, a suitable state feedback controller
would be

vd = −γ1Δisd (8.34)

vq = −γ2Δisq (8.35)

Tracking of the reference setpoint can be also succeeded for the rotor’s speed and
flux through the application of the control law of Eqs. (8.30) and (8.31) to Eqs. (8.25)
and (8.29). The control inputs are chosen as

isd = 1
αM (

dψrd
∗

dt + αψ∗
rd

+ id) (8.36)

isq = 1
μψrd

( dω∗
dt + iq) (8.37)

Denoting Δψrd = ψrd − ψ∗
rd

and Δω = ω − ω∗ the tracking error dynamics are
given by

dΔψrd
dt = −αΔψrd + id (8.38)

dΔω
dt = − T

J + iq (8.39)

The convergence of the tracking error to zero can be assured through the application
of the following feedback control laws:

id = −α1Δψrd (8.40)

iq = T
J − α2Δω (8.41)

8.3.4 Implementation of the EKF for the Nonlinear Induction
Motor Model

State estimation for nonlinear systems with the use of the Extended Kalman Filter
has been explained in Eqs. (4.13) and (4.14). To implement the Extended Kalman
Filter in the induction motor’s model that is expressed in the d − q reference frame

http://dx.doi.org/10.1007/978-3-319-16420-5_4
http://dx.doi.org/10.1007/978-3-319-16420-5_4
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the Jacobian matrices Jφ and Jγ are calculated. Thus:

Jφ = [J 1
φ , J 2

φ , J 3
φ , J 4

φ , J 5
φ , J 6

φ , ]T (8.42)

where the rows of the above-defined Jacobian matrix are given by
J 1
φ = [0, 1, 0, 0, 0, 0], J 2

φ = [0, 0, μx5, 0, μx3, 0], J 3
φ = [0, 0,−α, αM, 0, 0],

J 4
φ = [0, n px5, αβ − αMx25

x23
,−γ , n px2 + 2αMx5

x3
, 0], J 5

φ = [0,−βn px3 − n px4,

−βn px2 + αMx4x5
x23

,−n px2 − αMx5
x3

,−γ − αMx4
x3

, 0] and J 6
φ = [0, n p, −αMx5

x23
, 0,

αM
x3

, 0].

Moreover, considering that the motor’s state vector is x = [θ ,ω,ψsd ,isd ,isq ,ρ] and
that the measurable state vector elements are the stator currents, initially expressed
in the a − b reference frame as isa and isb , and equivalently in the d − q reference
frame as isd and isq , one has the measurement equation Jacobian matrix

Jγ =
(
0 0 0 1 0 0
0 0 0 0 1 0

)
(8.43)

Since the Jacobianmatrix Jφ , is associated to the drift term of the system’s dynamics,
and is computed using the system’s continuous-time description of Eq. (8.10), then
in the EKF recursion of Eqs. (4.13) and (4.14) it should be substituted by I + Ts Jφ

where Ts is the sampling period and I∈Rn×n is the identity matrix.

8.3.5 Unscented Kalman Filtering for Induction Motor
Control

Apart from Extended Kalman Filtering for sensorless control of the induction motor,
the Unscented Kalman Filter can be also used. The stages of Unscented Kalman Fil-
tering for nonlinear dynamical systems, consisting of time update and measurement
update have been given in Eqs. (4.18) and (4.19). In Unscented Kalman Filter-based
control a set of suitably chosenweighted sample points (sigma points) are propagated
through the nonlinear system and used to approximate the true value of the system’s
state vector and of the state vector’s covariance matrix. The UKF algorithm is also
summarized as follows:
The time update of the UKF is

xi
k = φ(xi

k−1) + L(k − 1)U (k − 1), i = 0, 1, . . . , 2n
x̂−

k = ∑2n
i=0wi xi

k−
Pxx k− = Pxx k−1 + Qk

http://dx.doi.org/10.1007/978-3-319-16420-5_4
http://dx.doi.org/10.1007/978-3-319-16420-5_4
http://dx.doi.org/10.1007/978-3-319-16420-5_4
http://dx.doi.org/10.1007/978-3-319-16420-5_4
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The measurement update of the UKF is

zi
k = h(xi

k− , uk) + rk, i = 0, 1, . . . , 2n
ẑk = ∑2n

i=0wi zi
k

Pzzk = ∑2n
i=0wi [zi

k − ẑk][zi
k − ẑk]T + Rk

Pxzk = ∑2n
i=0wi [xi

k− − ˆxk−][zi
k − ẑk]T

Kk = Pxzk Pzzk
−1

x̂k = x̂k− + Kk[zk − ẑk]
Pxx k = Pk− − Kk Pzzk K T

k

It is noted that the Unscented Kalman Filter results in posterior approximations that
are accurate to the third order for Gaussian inputs for all nonlinearities. For non-
Gaussian inputs, approximations are accurate to at least the second order, with the
accuracy of third and higher order moments determined by the specific choice of
weights and scaling factors. Furthermore, unlike EKF no analytical Jacobians of
the system equations need to be calculated. The concept of UKF for approximating
the distribution of a system’s state is given in Fig. 8.6 [533]. It can be observed that
comparing toEKF, theUKF (sigma-point) approach succeeds improved estimation of
the state vector’smean value and covariance (only 5 points are needed to approximate
sufficiently the 2D distribution).

Fig. 8.6 Approximation of a 2D distribution by the extended and Unscented Kalman Filter
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8.4 Simulation Results

The flatness-based control method for the induction motor that was presented in
Sect. 8.3.3 requires knowledge of the motor’s state vector x = [θ ,ω,ψsd ,isd ,isq ,ρ]. It
will be shown that it is possible to implement state estimation for the electric motor
using measurements only of the stator currents isa and isb . A nonlinear Kalman Fil-
ter, such as the Unscented Kalman Filter or the Extended Kalman Filter, can give
estimates of the nonmeasured state vector elements, i.e., of the rotor’s angle θ , of the
rotation speedω, of themagnetic fluxψrd , and of the angle ρ between the flux vectors
ψra and ψrb . Using currents isa and isb and the estimate ρ̂ of angle ρ, the input mea-
surements isd and isq can be provided to the nonlinear Kalman Filters. Thus one has

(
isd

isq

)
=

(
cos(ρ̂) sin(ρ̂)

−sin(ρ̂) cos(ρ̂)

)
·
(

isa

isb

)
(8.44)

The performance of the proposed sensorless control scheme,which uses the nonlinear
Kalman Filtering for estimation of the nonmeasurable parameters of themotor’s state
vector is depicted in Figs. 8.7, 8.8, 8.9, 8.10 (tracking of a sinusoidal setpoint) and
in Figs. 8.11, 8.12, 8.13, 8.14 (tracking of a seesaw setpoint). Comparison between
the sensorless control loop that is based on the Extended and the Unscented Kalman
Filter is provided.

From the simulation experiments it can be observed that the Unscented Kalman
Filter-based control results in fast and accurate trajectory tracking. The performance
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Fig. 8.7 Angle θ of the induction motor (blue line) in sensorless control when tracking a sinusoidal
setpoint (red line) and state estimation is performedwith a the ExtendedKalman Filter, bUnscented
Kalman Filter
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Fig. 8.8 Angular velocity ω of the induction motor (blue line) in sensorless control when tracking
a sinusoidal setpoint (red line) and state estimation is performed with a the Extended Kalman Filter,
b Unscented Kalman Filter
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Fig. 8.9 Control input current isd of the induction motor (blue line) in sensorless control when
tracking a sinusoidal setpoint (red line) and state estimation is performed with a the Extended
Kalman Filter, b Unscented Kalman Filter

of the UKF-based control loop, when considering as measured variables only the
stator currents, was comparable to the one of the EKF-based control loop. Methods
to further enhance the robustness of the nonlinear filtering-based control loops have
been discussed in [12, 38].
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Fig. 8.10 Control input current isq of the induction motor (blue line) in sensorless control when
tracking a sinusoidal setpoint (red line) and state estimation is performed with a the Extended
Kalman Filter, b Unscented Kalman Filter
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Fig. 8.11 Angle θ of the induction motor in sensorless control (blue line) when tracking a seesaw
setpoint (red line) and state estimation is performedwith a the ExtendedKalman Filter, bUnscented
Kalman Filter
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Fig. 8.12 Angular velocityω of the induction motor (blue line) in sensorless control when tracking
a seesaw setpoint (red line) and state estimation is performed with a the Extended Kalman Filter,
b Unscented Kalman Filter
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Fig. 8.13 Control input current isd of the induction motor (blue line) in sensorless control when
tracking a seesaw setpoint (red line) and state estimation is performed with a the Extended Kalman
Filter, b Unscented Kalman Filter
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Fig. 8.14 Control input current isq of the induction motor (blue line) in sensorless control when
tracking a seesaw setpoint (red line) and state estimation is performed with a the Extended Kalman
Filter, b Unscented Kalman Filter

8.5 Flatness-Based Adaptive Control of Electrostatic MEMS
Using Output Feedback

8.5.1 Introduction

The previously developed results on adaptive fuzzy control of nonlinear DC motors
will be further extended toward control of microactuators. As micro and nanotech-
nology develop fast, the use of MEMS and particularly of microactuators is rapidly
deploying. One can note several systemswhere the use ofmicroactuators has become
indispensable and the solution of the associated control problems has become a pre-
requisite. In [472, 487, 613, 614], electrostatic microactuators are used in adaptive
optics and optical communications. In [53, 324] microactuators are used for micro-
manipulation and precise positioning of microobjects. Several approaches to the
control of microactuators have been proposed. In [276, 292, 513] adaptive control
methods have been used. In [146, 583], solution of microactuation control prob-
lems through robust control approaches has been attempted. In [468] backstepping
control has been used, while in [513] an output feedback control scheme has been
implemented. Additional results for the stabilization and control of microactuators
have been presented in [197, 389, 513]. In such control systems, convergence of the
state vector elements to the associated reference setpoints has to be performed with
accuracy, despite modeling uncertainties, parametric variations of external perturba-
tions. Moreover, the reliable functioning of the control loop has to be assured despite
difficulties in measuring the complete state vector of theMEMS. The present section
develops a new method for the control of microelectromechanical systems (MEMS)
which is based on differential flatness theory. The considered control problem is
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a nontrivial one because of the unknown nonlinear dynamical model of the actua-
tor and because of the constraint to implement the control using exclusively output
feedback (it is little reliable and technically difficult to use sensor measurements for
the monitoring of all state variables of the microactuator). The differential flatness
theory control approach is based on an exact linearization of the MEMS dynamics
which avoids the numerical errors of the approximate linearization that is performed
by other nonlinear control methods [103, 250, 344, 452, 454].

First, the section shows that the dynamic model of the studied microactuator is a
differentially flat one. This means that all its state variables and the control input can
be written as functions of one single algebraic variable, which is the flat output, and
also as functions of the flat output’s derivatives [286, 427, 453, 465, 495]. This change
of variables (differential flatness theory-based diffeomorphism) enables to transform
the nonlinear model of the actuator into the linear canonical (Brunovsky) form [152,
351, 516, 535]. In the latter description of the MEMS the transformed control input
contains elements which are associated with the unknown nonlinear dynamics of
the system. These are identified on-line with the use of neuro-fuzzy approximators
and the estimated system dynamics is finally used for the computation of the control
signal that will make the MEMS state vector track the desirable setpoints. Thus
an adaptive fuzzy control scheme is implemented [407, 454]. The learning rate of
the neuro-fuzzy approximators is determined by the requirement to assure that the
Lyapunov function of the control loop will remain a negative definite one.

Next, another problem that has to be dealt with is that only output feedback can
be used for the implementation of the MEMS control scheme. The nonmeasurable
state variables of the microactuator have to be reconstructed with the use of a state
estimator (observer), which functions again inside the control loop. Thus, finally, the
Lyapunov function for the proposed control scheme comprises three quadratic terms:
(i) a term that describes the deviation of theMEMS state variables from the reference
setpoints, (ii) a term that describes the error in the estimation of the nonmeasurable
state vector elements of the microactuator with respect to the reference setpoints,
and (iii) a sum of quadratic terms associated with the distance of the weights of
the neuro-fuzzy approximators from the values that give the best estimation of the
unknown MEMS dynamics. It is proven that an adaptive (learning) control law can
be found assuring that the Lyapunov function will remain a negative definite one,
thus assuring that the stability of the control loop will be preserved and that accurate
tracking of the setpoints by the system’s state variables will be succeeded (H-infinity
tracking performance).

8.5.2 Dynamic Model of the Electrostatic Actuator

The considered MEMS (electrostatic microactuator) is depicted in Fig. 8.15. The
dynamic model of the MEMS has been analyzed in [180, 203, 614–616], where
model-based control approaches have been mostly developed. It is assumed that
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Q(t) is the charge of the device, while ε is the permitivity in the gap. Then the
capacitance of the device is

C(t) = εA
G(t) (8.45)

while the attractive electrostatic force on the moving plate is

F(t) = V 2
n
2

∂C
∂G = − εAV 2

n
2G2(t)

= − Q2(t)
2εA

(8.46)

Thus, the equation of motion of the actuator is given by

mG̈(t) + bĠ(t) + k(G(t) − G0) = − Q2(t)
2εA

(8.47)

FromEqs. (8.46) and (8.47) it can be concluded that the electrostatic force F increases
with the inverse square of the gap, while the restoring mechanical force which is
associated with the term k(G(t)− G0) increases linearly with the plate deflection. A
critical value for the voltage across the device is called pull-in voltage and is given
by [613]

Vpi =
√

8kG2
0

27C0
(8.48)

It is assumed that the MEMS starts operating from an initially uncharged state at t =
0. Then the charge of the electrodes at time instant t is given by Q(t) = ∫ t

0 Is(τ )dτ ,
or equivalently Q̇(t) = Is(t). By applying Kirchhoff’s voltage law one has for the
current that goes through the resistor

Q̇(t) = 1
R (Vs(t) − Q(t)G(t)

εA ) (8.49)

Next, the equations of the system’s dynamics given in Eqs. (8.47)–(8.49) undergo
a transformation which consists of a change of the time scale τ = ωt and of the
following normalization

x = 1 − G
G0

q = Q
Q pi

u = Vs
Vpi

i = Is
Vpi ω0C0

r = ω0C0R
(8.50)

where C0 = εA
G0

, Q pi = 3
2C0Vpi is the pull-in charge corresponding to the pull-in

voltage, ω0 = √
k/m is the undamped natural frequency, and ζ = b

2mω0
is the damp-

ing ratio. The normalized voltage across the actuator can be expressed in terms of
normalized deflection x of the moveable electrode, that is, uo = 3

2q(1 − x), while
the dynamics of the normalized charge is q̇ = 2

3 i .
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Fig. 8.15 Diagram of the 1-DOF parallel-plate electrostatic actuator

After the aforementioned normalization and transformation, the dynamic model of
the actuator is written as [613]

ẋ = v
v̇ = −2ζv − x + 1

3q2

q̇ = 1
r q(1 − x) + 2

3r u
(8.51)

The model’s state variables are defined as follows: ẋ = v: is a variable denoting
the speed of deflection of the moving electrode, q is a variable denoting the ratio
between the actual change of the plates Q and the pull-in charge Q pi . It holds that
q = Q

Q pi
, where Q pi = 3

2CoVpi and Vpi is the pull-in voltage.

8.5.3 Linearization of the MEMS Model Using Lie Algebra

The MEMS nonlinear dynamics given in Eq. (8.51), with state vector defined as
x = [x, v, q], is also written in the form

ẋ = f (x) + g(x)u (8.52)

where the vector fields f (x) and g(x) are defined as

f (x) =
⎛
⎝

v
−2ζv − x + 1

2q2

− 1
r q(1 − x)

⎞
⎠ g(x) =

⎛
⎝

0
0
2
3r

⎞
⎠ (8.53)

Using the above formulation, one can arrive at a linearized description of the
MEMS dynamics using a differential geometric approach and the computation of Lie
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derivatives. The following state variables are defined: z1 = h1(x) = x , z2 =
L f h1(x) and z3 = L2

f h1(x). It holds that

z2 = L f h1(x)⇒z2 = ∂h1
∂x1

f1 + ∂h1
∂x2

f2 + ∂h1
∂x3

f3⇒
z2 = 1 f1 + 0 f2 + 0 f3⇒z2 = f1⇒z2 = v⇒z2 = ẋ

(8.54)

In a similar manner one computes

z3 = L2
f h1(x)⇒z3 = ∂z2

∂x1
f1 + ∂z2

∂x2
f2 + ∂z2

∂x3
f3⇒

z3 = 0 f1 + 1 f2 + 0 f3⇒z3 = v̇⇒z3 = ẍ
(8.55)

Morever, it holds that

ż3 = x (3) = L3
f h1(x) + Lg L2

f h1x ·u (8.56)

where

L3
f h1(x) = L f z2⇒L3

f h1(x) = ∂z3
∂x1

f1 + ∂z3
∂x2

f2 + ∂z3
∂x3

f3⇒
L3

f h1(x) = 1 f1 − 2ζ f2 + 2
3q f3⇒L3

f h1(x) = v − 2ζ v̇ + 2
3q(− 1

r q(1 − x))⇒
L3

f h1(x) = ẏ − 2ζ ÿ + 2
3q[− 1

r q(1 − x)]⇒L3
f h1(x) = −2ζ ÿ − ẏ − 1

r (1 − y) 23q2⇒
L3

f h1(x) = −2ζ ÿ − ẏ − 2
r (1 − y)[ÿ + 2ζ ẏ + y]

(8.57)

Following a similar procedure one finds

Lg L2
f h1(x) = Lgz3⇒Lg L2

f h1(x) = ∂z3
∂x1

g1 + ∂z3
∂x2

g2 + ∂z3
∂x3

g3⇒
Lg L2

f h1(x) = 1g1 − 2ζ g2 + 2
3qg3⇒Lg L2

f h1(x) = 4
9r q⇒

Lg L2
f h1(x) = 4

9r

√
3[ÿ + 2ζ ẏ + y]

(8.58)

For the linearized description of the MEMS dynamics given in Eq. (8.56), and using
that v = L3

f h1(x) + Lg L2
f h1(x)u one arrives also at the state-space description

⎛
⎝

ż1
ż2
ż3

⎞
⎠ =

⎛
⎝
0 1 0
0 0 1
0 0 0

⎞
⎠

⎛
⎝

z1
z2
z3

⎞
⎠ +

⎛
⎝
0
0
1

⎞
⎠ v (8.59)

zmeas = (
1 0 0

)
⎛
⎝

z1
z2
z3

⎞
⎠ (8.60)
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For the linearized description of the system given in Eq. (8.69) the design of a state
feedback controller is carried out as follows:

v = y(3)
d − k1(ÿ − ÿd) − k2(ẏ − ẏd) − k3(y − yd) (8.61)

which results in tracking error dynamics of the form

e(3)(t) + k1ë(t) + k2ė(t) + k3e(t) = 0 (8.62)

By selecting the feedback gains ki , i = 1, 2, 3 such that the characteristic polynomial
of Eq. (8.62) to be a Hurwitz one, it is assured that limt→∞e(t) = 0.

8.5.4 Differential Flatness of the Electrostatic Actuator

8.5.4.1 Differential Flatness Properties of the Electrostatic
Microactuator

The dynamic model of the electrostatic actuator given in Eq. (8.51) is considered.
The flat output of the model is taken to be y = x . Therefore, it also holds v = ẏ.
From the second row of the state-space equations, given in Eq. (8.51) one has

ÿ = −2ζ ẏ − y + 1
3q2⇒q2 = 3[ÿ + 2ζ ẏ + y]

⇒q = √
3[ÿ + 2ζ ẏ + y]⇒q = fq(y, ẏ, ÿ)

(8.63)

From the third row of the state-space equations, given in Eq. (8.51) one has

u = 3r
2 [q̇ + 1

r q(1 − x)]⇒u = fu(y, ẏ, ÿ) (8.64)

Since all state variables and the control input of the system are expressed as functions
of the flat output and its derivatives, it is concluded that the model of the electrostatic
actuator is a differentially flat one.

8.5.4.2 Linearization of the MEMS Model Using Differential Flatness
Theory

From the second row of the state-space model given in Eq. (8.51) it holds that

ÿ = −2ζ ẏ − y + 1
3q2 (8.65)

By deriving once more with respect to time one gets

y(3) = −2ζ ÿ − ẏ + 2
3qq̇ (8.66)
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By substituting the third row of the state-space model given in Eq. (8.51) one obtains

y(3) = −2ζ ÿ − ẏ + 2
3q[− 1

r q(1 − x) + 2
3r u]⇒

y(3) = −2ζ ÿ − ẏ − 2
3r (1 − x)q2 + 4

9r qu
(8.67)

Next, using from Eq. (8.63) that q2 = ÿ + 2ζ ẏ + y or equivalently that q =√
ÿ + 2ζ ẏ + y the following relation is obtained

y(3) = −2ζ ÿ − ẏ − 2
e (1 − y)[ÿ + 2ζ ẏ + y] + 4

9r

√
3[ÿ + 2ζ ẏ + y]u (8.68)

or equivalently
y(3) = f (y, ẏ, ÿ) + g(y, ẏ, ÿ)u (8.69)

where
f (y, ẏ, ÿ) = −2ζ ÿ − ẏ − 2

r (1 − y)[ÿ + 2ζ ẏ + y] (8.70)

g(y, ẏ, ÿ) = 4
9r [√3[ÿ + 2ζ ẏ + y] (8.71)

For the linearized description of the MEMS dynamics given in Eq. (8.69), and using
the notation z1 = y, z2 = ẏ and z3 = ÿ, and v = f (y, ẏ, ÿ) + g(y, ẏ, ÿ)u one
arrives also at the state-space description

⎛
⎝

ż1
ż2
ż3

⎞
⎠ =

⎛
⎝
0 1 0
0 0 1
0 0 0

⎞
⎠

⎛
⎝

z1
z2
z3

⎞
⎠ +

⎛
⎝
0
0
1

⎞
⎠ v (8.72)

zmeas = (
1 0 0

)
⎛
⎝

z1
z2
z3

⎞
⎠ (8.73)

For the linearized description of the system given in Eq. (8.69) the design of a state
feedback controller is carried out as follows:

v = y(3)
d − k1(ÿ − ÿd) − k2(ẏ − ẏd) − k3(y − yd) (8.74)

which results in tracking error dynamics of the form

e(3)(t) + k1ë(t) + k2ė(t) + k3e(t) = 0 (8.75)

By selecting the feedback gains ki , i = 1, 2, 3 such that the characteristic polynomial
of Eq. (8.75) to be a Hurwitz one, it assured that limt→∞e(t) = 0.
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8.5.5 Adaptive Fuzzy Control of the MEMS Model Using
Output Feedback

8.5.5.1 Problem Statement

In subsection8.5.4 the model of the MEMS actuator was transformed to a form
for which it is possible to apply differential flatness theory-based adaptive fuzzy
control. The purpose for using adaptive control, is to solve themicroactuator’s control
problem in case that its dynamics is unknown and the state vector is not completely
measurable. It has been shown that after applying the differential flatness theory-
based transformation, the following nonlinear SISO system is obtained:

x (n) = f (x, t) + g(x, t)u + d̃ (8.76)

where f (x, t), g(x, t) are unknown nonlinear functions and d̃ is an unknown addi-
tive disturbance. The objective is to force the system’s output y = x to follow a
given bounded reference signal xd . As explained in Chap.3, in the presence of non-
Gaussian disturbances w, successful tracking of the reference signal is denoted by
the H∞ criterion [454] ∫ T

0
eT Qedt ≤ ρ2

∫ T

0
wT wdt (8.77)

where ρ is the attenuation level and corresponds to the maximum singular value of
the transfer function G(s) of the linearized equivalent of Eq. (8.76).

8.5.5.2 Transformation of Tracking into a Regulation Problem

The H∞ approach to nonlinear systems control consists of the following steps: (i)
linearization is applied, (ii) the unknown system dynamics are approximated by
neural of fuzzy estimators, (iii) an H∞ control term, is employed to compensate for
estimation errors and external disturbances. If the state vector is not measurable, this
can be reconstructed with the use of an observer.

For measurable state vector x , desirable state vector xm and uncertain functions
f (x, t) and g(x, t) an appropriate control law for (8.76) would be

u = 1

ĝ(x, t)
[x (n)

m − f̂ (x, t) + K T e + uc] (8.78)

where, f̂ and ĝ are the approximations of the unknown parts of the system dynamics
f and g respectively, andwhich can be given by the outputs of suitably trained neuro-
fuzzy networks. The term uc denotes a supervisory controller which compensates
for the approximation error w = [ f (x, t)− f̂ (x, t)]+[g(x, t)− ĝ(x, t)]u, as well as
for the additive disturbance d̃ . Moreover the vectors K T = [kn, kn−1, . . . , k1], and

http://dx.doi.org/10.1007/978-3-319-16420-5_3
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eT = [e, ė, ë, . . . , e(n−1)]T are chosen such that the polynomial e(n) + k1e(n−1) +
k2e(n−2) + · · · + kne is Hurwitz. The control law of Eq. (8.78) in Eq. (8.76) results
into

x(n) = f (x, t) + g(x, t) 1
ĝ(x,t) [x

(n)
m − f̂ (x, t) − K T e + uc] + d̃ ⇒

x(n) = f (x, t) + {ĝ(x, t) + [g(x, t) − ĝ(x, t)]} 1
ĝ(x,t) [x

(n)
m − f̂ (x, t) − K T e + uc] + d̃ ⇒

x(n) = f (x, t) + { ĝ(x,t)
ĝ(x,t) [x

(n)
m − f̂ (x, t) − K T e + uc] + [g(x, t) − ĝ(x, t)]u + d̃ ⇒

x(n) = f (x, t) + x(n)
m − f̂ (x, t) − K T e + uc + [g(x, t) − ĝ(x, t)]u + uc + d̃ ⇒

x(n) − x(n)
m = −K T e + [ f (x, t) − f̂ (x, t)] + [g(x, t) − ĝ(x, t)]u + uc + d̃ ⇒

x(n) = −K T e + uc + [ f (x, t) − f̂ (x, t)] + [g(x, t) − ĝ(x, t)]u + d̃
(8.79)

The above relation can be written in a state equations form. The state vector is taken
to be eT = [e, ė, . . . , e(n−1)], which yields

ė = Ae − BK T e + Buc + B{[ f (x, t) − f̂ (x, t)] + [g(x, t) − ĝ(x, t)]u + d̃}
(8.80)

or equivalently

ė = (A − BK T )e + Buc + B{[ f (x, t) − f̂ (x, t)] + [g(x, t) − ĝ(x, t)]u + d̃}

e1 = CT e
(8.81)

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · · · · 0
0 0 1 · · · · · · 0
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · · · · 1
0 0 0 · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

BT = (
0, 0, . . . , 0, 1

)
, CT = (

1, 0, . . . , 0, 0
)

K T = (
k0, k1, . . . , kn−2, kn−1

)

(8.82)

where e1 denotes the output error e1 = x −xm . Equation (8.81) describes a regulation
problem.

8.5.5.3 Estimation of the State Vector

As explained in Chap.5, the control of the system described by Eq. (8.76) becomes
more complicated when the state vector x is not directly measurable and has to be
reconstructed through a state observer. The following definitions are used:

http://dx.doi.org/10.1007/978-3-319-16420-5_5
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• error of the state vector e = x − xm

• error of the estimated state vector ê = x̂ − xm

• observation error ẽ = e − ê = (x − xm) − (x̂ − xm)

When an observer is used to reconstruct the state vector, the control law of Eq. (8.78)
is written as

u = 1

ĝ(x̂, t)
[x (n)

m − f̂ (x̂, t) + K T e + uc] (8.83)

Applying Eq. (8.83) to the nonlinear system described by Eq. (8.76), after some oper-
ations results into

x (n) = x (n)
m − K T ê + uc + [ f (x, t) − f̂ (x̂, t)]+

[g(x, t) − ĝ(x̂, t)]u + d̃

It holds e = x − xm ⇒ x (n) = e(n) + x (n)
m . Substituting x (n) in the above equation

gives
e(n) + x (n)

m = x (n)
m − K T ê + uc + [ f (x, t) − f̂ (x̂, t)]+

+[g(x, t) − ĝ(x̂, t)]u + d̃ ⇒ (8.84)

ė = Ae − BK T ê + Buc + B{[ f (x, t) − f̂ (x̂, t)]+
+[g(x, t) − ĝ(x̂, t)]u + d̃} (8.85)

e1 = CT e (8.86)

where e = [e, ė, ë, . . . , e(n−1)]T , and ê = [ê, ˙̂e, ¨̂e, . . . , ê(n−1)]T .

The state observer is designed according to Eqs. (8.85) and (8.86) and is given by
[454]: ˙̂e = Aê − BK T ê + Ko[e1 − CT ê] (8.87)

ê1 = CT ê (8.88)

The observation gain Ko = [ko0 , ko1 , . . . , kon−2 , kon−1 ]T is selected so as to assure
the convergence of the observer.

8.5.5.4 Additional Control Term for Disturbances Compensation

The additional term uc which appears in Eq. (8.83) is used in the observer-based
control to compensate for:

• The external disturbances d̃
• The state vector estimation error ẽ = e − ê = x − x̂
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• The approximation error of the nonlinear functions f (x, t) and g(x, t), denoted
as w = [ f (x, t) − f̂ (x̂, t)] + [g(x, t) − ĝ(x̂, t)]u

The control signal uc consists of 2 terms, namely:

• the H∞ control term, ua = − 1
r BT Pẽ for the compensation of d and w

• the control term ub for the compensation of the observation error ẽ

8.5.5.5 Dynamics of the Observation Error

The observation error is defined as ẽ = e − ê = x − x̂ . Substructing Eq. (8.87) from
Eq. (8.85) as well as Eq. (8.88) from Eq. (8.86) one gets

ė − ˙̂e = A(e − ê) + Buc + B{[ f (x, t) − f̂ (x̂, t)]+
+[g(x, t) − ĝ(x̂, t)]u + d̃} − KoCT (e − ê)

e1 − ê1 = CT (e − ê)

i.e.,

˙̃e = Aẽ + Buc + B{[ f (x, t) − f̂ (x̂, t)]+
+[g(x, t) − ĝ(x̂, t)]u + d̃} − KoCT ẽ

ẽ1 = CT ẽ

which can be written as

˙̃e = (A − KoCT )ẽ + Buc + B{[ f (x, t) − f̂ (x̂, t)]+
+[g(x, t) − ĝ(x̂, t)]u + d̃

(8.89)

ẽ1 = Cẽ (8.90)

8.5.5.6 Approximation of the Unknown MEMS Dynamics

Neuro-fuzzy networks can be trained on-line to approximate parts of the dynamic
equation of nonlinear systems, as well as to compensate for external disturbances.
The approximation of functions f (x, t) and g(x, t) of Eq. (8.83) can be carried out
with Takagi–Sugeno neuro-fuzzy networks of zero or first order (Fig. 3.1). These
consist of rules of the form:

Rl : IF x̂ is Al
1 AND

˙̂x is Al
2 AND · · · AND x̂ (n−1) is Al

n
THEN ȳl = ∑n

i=1wl
i x̂i + bl , l = 1, 2, . . . , L

http://dx.doi.org/10.1007/978-3-319-16420-5_3
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The output of the neuro-fuzzy model is calculated by taking the average of the
consequent part of the rules

ŷ =
∑L

l=1 ȳl∏n
i=1μAl

i
(x̂i )

∑L
l=1

∏n
i=1μAl

i
(x̂i )

(8.91)

where μAl
i
is the membership function of xi in the fuzzy set Al

i . The training of
the neuro-fuzzy networks is carried out with 1st order gradient algorithms, in pat-
tern mode, i.e., by processing only one data pair (xi , yi ) at every time step i . The
estimation of f (x, t) and g(x, t) can be written as

f̂ (x̂ |θ f ) = θT
f φ(x̂)ĝ(x̂ |θg) = θT

g φ(x̂) (8.92)

where φ(x̂) are kernel functions with elements φl(x̂) =
∏n

i=1μAl
i
(x̂i )

∑L
l=1

∏n
i=1μAl

i
(x̂i )

l =
1, 2, . . . , L . It is assumed that that the weights θ f and θg vary in the bounded areas
Mθ f and Mθg which are defined as

Mθ f = {θ f ∈ Rh : ||θ f || ≤ mθ f }
Mθg = {θg ∈ Rh : ||θg|| ≤ mθg } (8.93)

with mθ f and mθg positive constants. The values of θ f and θg for which optimal
approximation is succeeded are:

θ∗
f = arg minθ f ∈Mθ f

[supx∈Ux ,x̂∈Ux̂
| f (x) − f̂ (x̂ |θ f )|]

θ∗
g = arg minθg∈Mθg

[supx∈Ux ,x̂∈Ux̂
|g(x) − ĝ(x̂ |θg)|]

The variation ranges of x and x̂ are the compact sets

Ux = {x ∈ Rn : ||x || ≤ mx < ∞},
Ux̂ = {x̂ ∈ Rn : ||x̂ || ≤ mx̂ < ∞} (8.94)

The approximation error of f (x, t) and g(x, t) is defined as

w = [ f̂ (x̂ |θ∗
f ) − f (x, t)] + [ĝ(x̂ |θ∗

g ) − g(x, t)]u ⇒
w = {[ f̂ (x̂ |θ∗

f ) − f (x |θ f )] + [ f (x |θ f ) − f (x, t)]}+
{[ĝ(x̂ |θ∗

g ) − g(x̂ |θg)] + [g(x̂ |θg) − g(x, t)]}u
(8.95)

where

• f̂ (x̂ |θ∗
f ) is the approximation of f for the best estimation θ∗

f of the weights’ vector
θ f .
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• ĝ(x̂ |θ∗
g ) is the approximation of g for the best estimation θ∗

g of the weights’ vector
θg .

The approximation error w can be decomposed into wa and wb, where

wa = [ f̂ (x̂ |θ f ) − f̂ (x̂ |θ∗
f )] + [ĝ(x̂ |θg) − ĝ(x̂ |θ∗

g )]u
wb = [ f̂ (x̂ |θ∗

f ) − f (x, t)] + [ĝ(x̂ |θ∗
g ) − g(x, t)]u

Finally, the following two parameters are defined:

θ̃ f = θ f − θ∗
f , θ̃g = θg − θ∗

g (8.96)

8.5.6 Lyapunov Stability Analysis

The adaptation law of the neuro-fuzzy approximators weights θ f and θg as well
as of the supervisory control term uc is derived from the requirement for negative
definiteness of the Lyapunov function

V = 1

2
êT P1ê + 1

2
ẽT P2ẽ + 1

2γ1
θ̃T

f θ̃ f + 1

2γ2
θ̃T

g θ̃g (8.97)

The selection of the Lyapunov function is based on the following principle of indirect
adaptive control ê : limt→∞ x̂(t) = xd(t) and ẽ : limt→∞ x̂(t) = x(t). This yields
limt→∞ x(t) = xd(t). Substituting Eqs. (8.85), (8.86) and Eqs. (8.89), (8.90) into
Eq. (8.97) and differentiating results into

V̇ = 1
2
˙̂eT P1ê + 1

2 êT P1
˙̂e + 1

2
˙̃eT P2ẽ + 1

2 ẽT P2 ˙̃e + 1
γ1

θ̃T
f

˙̃
θ f + 1

γ2
θ̃T

g
˙̃
θg (8.98)

which in turn gives

V̇ = 1
2 {(A − BK T )ê + KoCT ẽ}T P1ê + 1

2 êT P1{(A − BK T )ê + KoCT ẽ}+
+ 1

2 {(A − KoCT )ẽ + Buc + Bd + Bw}T P2ẽ + 1
2 ẽT P2{(A − KoCT )ẽ+}

+Buc + Bd + Bw + 1
γ1

θ̃T
f

˙̃
θ f + 1

γ2
θ̃T

g
˙̃
θg

(8.99)
or, equivalently

V̇ = 1
2 {êT (A − BK T )T + ẽT C K T

o }P1ê + 1
2 êT P1{(A − BK T )ê + KoCT ẽ}+

+ 1
2 {ẽT (A − KoCT )T + BT uc + BT w + BT d}P2ẽ + 1

2 ẽT P2{(A − KoCT )ẽ+
+Buc + Bw + Bd} + 1

γ1
θ̃T

f
˙̃
θ f + 1

γ2
θ̃T

g
˙̃
θg

(8.100)
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V̇ = 1
2 êT (A − BK T )T P1ê + 1

2 ẽT C K T
o P1ê+

+ 1
2 êT P1(A − BK T )ê + 1

2 êT P1KoCT ẽ+
+ 1

2 ẽT (A − KoCT )T P2ẽ + 1
2 BT P2ẽ(uc + w + d)+

+ 1
2 ẽT P2(A − KoCT )ẽ + 1

2 ẽT P2B(uc + w + d)+
+ 1

γ1
θ̃T

f
˙̃
θ f + 1

γ2
θ̃T

g
˙̃
θ g

(8.101)

Assumption 1: For given positive definite matrices Q1 and Q2 there exist positive
definite matrices P1 and P2, which are the solution of the following Riccati equations
[454]

(A − BK T )T P1 + P1(A − BK T ) + Q1 = 0 (8.102)

(A − KoCT )
T

P2 + P2(A − KoCT )−
−P2B( 2r − 1

ρ2 )BT P2 + Q2 = 0
(8.103)

The conditions given in Eqs. (8.102)–(8.103) are related to the requirement that the
systems described by Eqs. (8.87), (8.88), (8.89), and (8.90) exhibit stable dynamics.
Substituting Eqs. (8.102)–(8.103) into V̇ yields

V̇ = 1
2 êT {(A − BK T )T P1 + P1(A − BK T )}ê + ẽT C K T

o P1ê+
+ 1

2 ẽT {(A − KoCT )T P2 + P2(A − KoCT )}ẽ + BT P2ẽ(uc + w + d)+
+ 1

γ1
θ̃T

f
˙̃
θ f + 1

γ2
θ̃T

g
˙̃
θg

(8.104)

which is also written as

V̇ = − 1
2 êT Q1ê + ẽT C K T

o P1ê − 1
2 ẽT {Q2 − P2B( 2r − 1

ρ2 )BT P2}ẽ+
+BT P2ẽ(uc + w + d) + 1

γ1
θ̃T

f
˙̃
θ f + 1

γ2
θ̃T

g
˙̃
θg

(8.105)

The supervisory control uc is decomposed in two terms, ua and ub

ua = − 1
r p1nẽ1 = − 1

r ẽT P2B + 1
r (p2nẽ2 + · · · + pnnẽn) =

= − 1
r ẽT P2B + Δua

(8.106)

where p1n stands for the last (nth) element of the first row of matrix P2, and

ub = −[(P2B)T (P2B)]−1(P2B)T C K T
o P1ê (8.107)

• ua is an H∞ control used for the compensation of the approximation error w
and the additive disturbance d̃. Its first component − 1

r ẽT P2B has been chosen so
as to compensate for the term 1

r ẽT P2B BT P2ẽ, which appears in Eq. (8.105). By
subtracting the second component − 1

r (p2nẽ2 + · · · + pnnẽn) one has that ua =
− 1

r p1nẽ1, which means that ua is computed based on the feedback the measurable
variable ẽ1. Equation (8.106) is finally rewritten as ua = − 1

r ẽT P2B + Δua .
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Fig. 8.16 The proposed H∞ control scheme

• ub is a control used for the compensation of the observation error (the control
term ub has been chosen so as to satisfy the condition ẽT P2Bub = −ẽT C K T

o P1ê
(Fig. 8.16).

The control scheme is depicted in Fig. 10.18. Substituting Eqs. (8.106) and (10.212)
in V̇ , one gets

V̇ = − 1
2 êT Q1ê + ẽT C K T

o P1ê − 1
2 ẽT Q2ẽ + 1

r ẽT P2B BT P2ẽ−
− 1

2ρ2 ẽT P2B BT P2ẽ + ẽT P2Bub − 1
r ẽT P2B BT P2ẽ + BT P2ẽ(w + d + Δua)+

+ 1
γ1

θ̃T
f

˙̃
θ f + 1

γ2
θ̃T

g
˙̃
θg

(8.108)
or equivalently,

V̇ = − 1
2 êT Q1ê − 1

2 ẽT Q2ẽ − 1
2ρ2 ẽT P2B BT P2ẽ + BT P2ẽ(w + d + Δua)+

+ 1
γ1

θ̃T
f

˙̃
θ f + 1

γ2
θ̃T

g
˙̃
θg

(8.109)

http://dx.doi.org/10.1007/978-3-319-16420-5_10
http://dx.doi.org/10.1007/978-3-319-16420-5_10
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It holds that ˙̃
θ f = θ̇ f − θ̇∗

f = θ̇ f and ˙̃
θg = θ̇g − θ̇∗

g = θ̇g . The following weight
adaptation laws are considered:

θ̇ f =
{−γ1ẽT P2Bφ(x̂) i f ||θ f || < mθ f

0 ||θ f || ≥ mθ f

(8.110)

θ̇g =
{−γ2ẽT P2Bφ(x̂)uc i f ||θg|| < mθg

0 ||θg|| ≥ mθg

(8.111)

To set θ̇ f and θ̇g equal to 0, when ||θ f ≥ mθ f ||, and ||θg ≥ mθg || the projection
operator is employed [427]:

P{γ1ẽT P2Bφ(x̂)} = −γ1ẽT P2Bφ(x̂) +
+γ1ẽT P2B

θ f θ
T
f

||θ f ||2 φ(x̂)

P{γ1ẽT P2Bφ(x̂)uc} = −γ1ẽT P2Bφ(x̂)uc +
+γ1ẽT P2B

θ f θ
T
f

||θ f ||2 φ(x̂)uc

The update of θ f follows a gradient algorithm on the cost function 1
2 ( f − f̂ )2 [31,

405]. The update of θg is also of the gradient type, while uc implicitly tunes the
adaptation gain γ2. Substituting Eqs. (8.110) and (8.111) in V̇ gives

V̇ = − 1
2 êT Q1ê − 1

2 ẽT Q2ẽ − 1
2ρ2 ẽT P2B BT P2ẽ + BT P2ẽ(w + d + Δua)+

+ 1
γ1

θ̃T
f (−γ1ẽT P2Bφ(x̂)) + 1

γ2
θ̃T

g (−γ2ẽT P2Bφ(x̂)u)

(8.112)
which is also written as

V̇ = − 1
2 êT Q1ê − 1

2 ẽT Q2ẽ − 1
2ρ2 ẽT P2B BT P2ẽ + ẽT P2B(w + d + Δua)−

−ẽT P2Bθ̃T
f φ(x̂) − ẽT P2Bθ̃T

g φ(x̂)u
(8.113)

and using Eqs. (8.92) and (8.96) results into

V̇ = − 1
2 êT Q1ê − 1

2 ẽT Q2ẽ − 1
2ρ2 ẽT P2B BT P2ẽ + ẽT P2B(w + d + Δua)−

−ẽT P2B{[ f̂ (x̂ |θ f ) + ĝ(x̂ |θ f )u] − [ f̂ (x̂ |θ∗
f ) + ĝ(x̂ |θ∗

g )u]}
(8.114)

where [ f̂ (x̂ |θ f ) + ĝ(x̂ |θ f )u] − [ f̂ (x̂ |θ∗
f ) + ĝ(x̂ |θ∗

g )u] = wa . Thus setting w1 =
w + wa + d + Δua one gets

V̇ = − 1
2 êT Q1ê 1

2 ẽT Q2ẽ − 1
2ρ2 ẽT P2B BT P2ẽ + BT P2ẽw1 ⇒

V̇ = − 1
2 êT Q1ê 1

2 ẽT Q2ẽ − 1
2ρ2 ẽT P2B BT P2ẽ + 1

2wT
1 BT P2ẽ + 1

2 ẽT P2Bw1

(8.115)



438 8 Differential Flatness Theory for Electric Motors and Actuators

Lemma: The following inequality holds

1
2 ẽT P2Bw1 + 1

2wT
1 BT P2ẽ − 1

2ρ2 ẽT P2B BT P2ẽ ≤ 1
2ρ

2wT
1 w1 (8.116)

Proof : The binomial (ρa − 1
ρ

b)2 ≥ 0 is considered. Expanding the left part of the
above inequality one gets

ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0 ⇒ 1

2ρ
2a2 + 1

2ρ2 b2 − ab ≥ 0 ⇒ ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2 ⇒

1
2ab + 1

2ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2

The following substitutions are carried out: a = w1 and b = ẽT P2B and the previous
relation becomes

1
2wT

1 BT P2ẽ + 1
2 ẽT P2Bw1 − 1

2ρ2 ẽT P2B BT P2ẽ

≤ 1
2ρ

2wT
1 w1

(8.117)

The above inequality is used in V̇ , and the right part of the associated inequality is
enforced

V̇ ≤ − 1

2
êT Q1ê − 1

2
ẽT Q2ẽ + 1

2
ρ2wT

1 w1 (8.118)

Thus, Eq. (8.118) can be written as

V̇ ≤ −1

2
ET QE + 1

2
ρ2wT

1 w1 (8.119)

where

E =
(

ê
ẽ

)
, Q =

(
Q1 0
0 Q2

)
= diag[Q1, Q2] (8.120)

Hence, the H∞ performance criterion is derived. For ρ sufficiently small Eq. (8.118)
will be true and the H∞ tracking criterionwill be satisfied. In that case, the integration
of V̇ from 0 to T gives

∫ T
0 V̇ (t)dt ≤ − 1

2

∫ T
0 ||E ||2dt + 1

2ρ
2
∫ T
0 ||w1||2dt ⇒

2V (T ) − 2V (0) ≤ −∫ T
0 ||E ||2Qdt + ρ2

∫ T
0 ||w1||2dt ⇒

2V (T ) + ∫ T
0 ||E ||2Qdt ≤ 2V (0) + ρ2

∫ T
0 ||w1||2dt

It is assumed that there exists a positive constant Mw > 0 such that
∫ ∞
0 ||w1||2dt ≤

Mw. Therefore for the integral
∫ T
0 ||E ||2Qdt one gets

∫ ∞

0
||E ||2Qdt ≤ 2V (0) + ρ2Mw (8.121)
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Thus, the integral
∫ ∞
0 ||E ||2Qdt is bounded and according to Barbalat’s Lemma

limt→∞ E(t) = 0 ⇒ limt→∞ê(t) = 0
limt→∞ẽ(t) = 0

Therefore limt→∞ e(t) = 0.

8.5.7 Simulation Tests

The performance of the proposed output feedback-based adaptive fuzzy control
approach for MEMS (microactuator) was tested in the case of tracking of several
reference setpoints. The only measurable variable used in the control loop was the
microactuator’s deflection variable x . The dynamic model of the MEMS, as well as
the numerical values of its parameters were considered to be completely unknown.
The control loop was based on simultaneous estimation of the unknown MEMS
dynamics (this was performed with the use of neuro-fuzzy approximators) and of the
nonmeasurable elements of the microactuator’s state vector, that is, of the deflections
change rate ẋ and of the charge of the plates q (this was performed with the use of
the state observer). The obtained results are presented in Figs. 8.17, 8.18, 8.19, 8.20,
8.21. The real values of the monitored parameters (state vector variables) are denoted
with blue line, the estimated variables are denoted with green line, and the reference
setpoints are plotted as red lines. It can be noticed that differential flatness theory-
based adaptive fuzzy control of the MEMS, succeeded fast and accurate tracking of
the reference setpoints.
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Fig. 8.17 Output feedback-based adaptive fuzzy control of MEMS (microactuator)—Test 1: a
state variables xi , i = 1, . . . , 3 of the initial nonlinear system, b transformed state variables yi ,
i = 1, . . . , 3 (blue line real value, red line setpoint)
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Fig. 8.18 Output feedback-based adaptive fuzzy control of MEMS (microactuator)—Test 2: a
state variables xi , i = 1, . . . , 3 of the initial nonlinear system, b transformed state variables yi ,
i = 1, . . . , 3 (blue line real value, red line setpoint)
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Fig. 8.19 Output feedback-based adaptive fuzzy control of MEMS (microactuator)—Test 3: a
state variables xi , i = 1, . . . , 3 of the initial nonlinear system, b transformed state variables yi ,
i = 1, . . . , 3 (blue line: real value, red line: setpoint)

The implementation of the proposed control scheme requires that the two algebraic
Riccati equations which have been defined in Eqs. (8.102) and (8.103) are solved in
each iteration of the control algorithm. These provide the positive definitematrices P1
and P2 which are used for the computation of the control signals ua and ub which have
been defined in Eqs. (8.106) and (8.107). The transients of the state vector elements
xi , i = 1, . . . , 3 observed while tracking the reference setpoints, are determined by
the values given to the positive definite matrices Qi , i = 1, 2, as well as by the value
of the parameter r and of the H-infinity coefficient (attenuation level) ρ. Moreover,
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Fig. 8.20 Output feedback-based adaptive fuzzy control of MEMS (microactuator)—Test 4: a
state variables xi , i = 1, . . . , 3 of the initial nonlinear system, b transformed state variables yi ,
i = 1, . . . , 3 (blue line: real value, red line: setpoint)
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Fig. 8.21 Output feedback-based adaptive fuzzy control of MEMS (microactuator)—Test 5: a
state variables xi , i = 1, . . . , 3 of the initial nonlinear system, b transformed state variables yi ,
i = 1, . . . , 3 (blue line: real value, red line: setpoint)

the values of the feedback control gains K and Ko also affected the convergence
characteristics of the controller and of the observer. It has been confirmed that the
variations of both xi , i = 1, . . . , 3 and of the control input u were smooth.

From the simulation tests it can be noticed that the proposed adaptive control
scheme that was based on differential flatness theory assured the stability of the
microactuator’s control loop, as well as good transient performance in the tracking
of the reference setpoints.
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