
Chapter 6
Differential Flatness Theory in Mobile
Robotics and Autonomous Vehicles

6.1 Outline

The chapter proposes differential flatness theory-based methods of filtering and
control for MIMO nonlinear dynamical systems, such as unmanned vehicles. These
can be of different types such as Unmanned Ground Vehicles (UGVs), Unmanned
Surface Vessels (USVs), Autonomous Underwater Vessels (AUVs), and Unmanned
Aerial Vehicles (UAVs). The considered nonlinear filtering schemes which are based
on differential flatness theory can be applied to autonomous vehicle models without
the need for calculation of Jacobian matrices. Nonlinear systems such as unmanned
ground vehicles, satisfying the differential flatness property, can be written in the
Brunovsky (canonical) form via a transformation of their state variables and control
inputs. After transforming the nonlinear system to the canonical form, it is straight-
forward to apply for it the standard Kalman Filter recursion. The performance of
the proposed derivative-free nonlinear filtering scheme is tested through simulation
experiments on the problem of state estimation-based control for autonomous navi-
gation of unmanned ground vehicles.

First, the chapter proposes state estimation-based control for cooperating mobile
robots, which have the kinematic model of a unicycle. To estimate with accuracy
the position of these robotic vehicles as well as their motion characteristics, fusion
of estimates from multiple sensors is performed with the use of the Derivative-free
distributed nonlinear Kalman Filter. The proposed derivative-free nonlinear filtering
method enables distributed state estimation, by substituting theExtended Information
Filter with the standard Information Filter recursion. This filtering approach has sig-
nificant advantages because, unlike the Extended Information Filter, it is not based on
local linearization of the nonlinear dynamics and computation of Jacobian matrices.
The proposed nonlinear control is in accordance with the principles of differential
flatness theory. The performance of the considered distributed filtering-based control
is tested through simulation experiments on the problem of autonomous navigation
of automatic ground vehicles (AGVs) under a master-slave scheme.
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Additionally, the chapter proposes the Derivative-free distributed nonlinear
Kalman Filter, for integrity monitoring of navigation sensors in automatic ground
vehicles (AGV). Unlike the Extended Information Filter (EIF), the proposed filter
avoids approximation errors caused by the linearization of the AGV kinematic model
and does not require the computation of Jacobians. The use of a statistical fault detec-
tion and isolation algorithm for processing the residuals generated by the proposed
filtering method, can provide an indication about the condition of the navigation
sensors and about failures that may have appeared. As an application example, the
chapter considers failure diagnosis for wheel encoders or IMU devices of an AGV.

Next, the chapter explains how controller design for autonomous 4-wheeled
ground vehicles can be performed using differential flatness theory. Using a 3-DOF
nonlinear model of the vehicle’s dynamics and through the application of differential
flatness theory, an equivalentmodel in linear canonical (Brunovksy) form is obtained.
For the latter model, a state feedback controller is developed that enables accurate
tracking of velocity setpoints. Moreover, it is shown that with the use of Kalman
Filtering it is possible to dynamically estimate the disturbances due to unknown
forces and torques exerted on the vehicle. The processing of velocity measurements
(provided by a small number of onboard sensors) through a Kalman Filter which has
been redesigned in the formof a disturbance observer results in accurate identification
of external disturbances affecting the vehicle’s dynamic model. By including in the
vehicle’s controller an additional term that compensates for the estimated disturbance
forces, the vehicle’s motion characteristics remain unchanged. Numerical simulation
confirms the efficiency of both the proposed controller and of the disturbance forces
estimator.

Moreover, in this chapter a solution to the problem of active control and dis-
turbances compensation in vehicles’ suspensions is proposed. It is shown that the
suspension model satisfies differential flatness properties and the associated flat out-
put is a weighted sum of the system’s state vector elements. Differential flatness
of the suspension’s model enables transformation into a linear canonical form for
which it is possible to design a state feedback controller. Kalman filtering is used for
estimating the nonmeasurable elements of the suspension’s transformed state vector
through the processing of measurements provided by a small number of onboard
sensors. Moreover, by reformulating the Kalman Filter as a disturbance observer
it is possible to simultaneously estimate the external disturbances and the system’s
transformed state vector. The inclusion of an additional control term based on the
disturbances estimation enables to compensate for the disturbances’ effects and to
attenuate vibrations. The performance of the proposed Kalman Filter-based active
suspension control scheme has been tested through numerical simulation experi-
ments.

Another topic treated by the chapter is the use of the Derivative-free nonlinear
Kalman Filter for developing a robust controller which can be applied to quadropters.
The control problem for quadropters is nontrivial and becomes further complicated if
this robotic model is subjected to uncertainties and external disturbances. Using dif-
ferential flatness theory, it is shown that themodel of a quadropter can be transformed
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to linear canonical form. For the linearized equivalent of the quadropter it is shown
that a state feedback controller can be designed. Since certain elements of the state
vector of the linearized system cannot bemeasured directly, it is proposed to estimate
them with the use of a novel filtering method, the so-called Derivative-free non-
linear Kalman Filter. Moreover, by redesigning the Kalman Filter as a disturbance
observer, it is shown that one can estimate simultaneously external disturbances terms
that affect the quadropter or disturbance terms which are associated with paramet-
ric uncertainty. The efficiency of the proposed control scheme is confirmed through
simulation experiments.

Finally, the chapter proposes a nonlinear control approach for an underactu-
ated vessel model based on differential flatness theory and using the Derivative-
free nonlinear Kalman Filter as a state and disturbance estimator. It is proven that
the sixth-order nonlinear model of the hovercraft is a differentially flat one. It is
shown that this model cannot be subjected to static feedback linearization; how-
ever, it admits dynamic feedback linearization which means that the system’s state
vector is extended by including as additional state variables the control inputs and
their derivatives. Next, using the differential flatness properties it is also proven that
this model can be subjected to input-output linearization and can be transformed
to an equivalent canonical (Brunovsky) form. Based on this latter description, the
design of a state feedback controller is carried out enabling accurate maneuvering
and trajectory tracking. Additional problems that are solved in the design of this
feedback control scheme are the estimation of the nonmeasurable state variables in
the hovercraft’s model and the compensation of modeling uncertainties and exter-
nal perturbations affecting vessel. To this end, the application of the Derivative-free
nonlinear Kalman Filter is proposed. This nonlinear filter consists of the Kalman
Filter’s recursion on the linearized equivalent of the vessel and of an inverse non-
linear transformation based on the differential flatness features of the system which
enables to compute estimates for the state variables of the initial nonlinear model.
The redesign of the filter as a disturbance observer makes possible the estimation and
compensation of additive perturbation terms affecting the hovercraft’s model. The
efficiency of the proposed nonlinear control and state estimation scheme is shown
again through simulation experiments.

6.2 State Estimation-Based Control of Autonomous Vehicles

6.2.1 Localization and Autonomous Navigation
of Ground Vehicles

Filtering-based state estimation for unmanned ground vehicles (UGVs) is a signifi-
cant topic because it enables their accurate localization and autonomous navigation
[39]. For nonlinear systems such as UGVs, and under the assumption of Gaussian
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noise, the Extended Kalman Filter (EKF) is frequently applied for estimating the
nonmeasurable state variables through the processing of input and output sequences
or for obtaining estimates of the state vector through the fusion of measurements
coming from various sensors [31, 68, 192, 229, 372]. The Extended Kalman Filter is
based on linearization of the system’s dynamics using a first-order Taylor expansion
[244, 405, 408, 411, 412, 421, 573]. Although EKF is efficient in several estimation
and fusion problems, it is characterized by cumulative errors due to the local lineariza-
tion assumption and this may affect the accuracy of the UGV’s motion estimation or
even risk the stability of the UGV state estimation-based control loop.

First, in this section, and using differential flatness theory, the nonlinear system
is subjected to a linearization transformation. This makes possible (i) to design an
efficient control law for trajectories tracking, and (ii) to apply to the nonlinear system
a filtering method that it is based on the standard Kalman Filter recursion. Unlike the
Extended Kalman Filter (EKF), the proposed filtering method provides estimates of
the state vector of theUGVwithout the need for derivatives and Jacobians calculation.
By avoiding linearization approximations, the proposed derivative-free nonlinear
Kalman filtering method improves the accuracy of estimation of the system state
variables, and results in smooth control signal variations and in minimization of the
tracking error of the associated control loop.

Next, the section extends the results of [424, 429] toward nonlinear dynamical
systems, such as UGVs, which are described by multi-input multi-output (MIMO)
models. Actually, the section’s results are applicable to differentially flat MIMO
nonlinear dynamical systems which after applying the differential flatness theory can
be written in the Brunovksy (canonical) form [263, 340]. Simulation experiments on
the problem of autonomous navigation of a ground vehicle are provided to test the
performance of the proposed derivative-free Kalman Filter.

6.2.2 Application of Derivative-Free Kalman Filtering
to MIMO UGV Models

6.2.2.1 Kinematic Models for Autonomous Vehicles

The proposed method of derivative-free Kalman Filtering for MIMO nonlinear sys-
tems will be analyzed through an application example. The kinematic model of a
UGV (robotic unicycle) is considered. This is given by

ẋ = vcos(θ)

ẏ = vsin(θ)

θ̇ = ω = v
L tan(φ)

(6.1)

where v(t) is the velocity of the vehicle, L is the distance between the front and
the rear wheel axis of the vehicle, θ is the angle between the transversal axis of
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the vehicle and axis O X , and φ is the angle of the steering wheel with respect to
the transversal axis of the vehicle. The position of such a vehicle is described by
the coordinates (x, y) of the center of its rear axis and its orientation is given by the
angle θ between the x-axis and the axis of the direction of the vehicle. The steering
angle φ and the speed v are considered to be the inputs of the system.

The problemof control of autonomous ground vehicles (AGVs) is first considered.
The position of such a vehicle is described by the coordinates (x, y) of the center of
its rear axis and its orientation is given by the angle θ between the x-axis and the axis
of the direction of the vehicle. The steering angle φ and the speed v are considered
to be the inputs of the system. The kinematic model of autonomous vehicles can be
expressed in the general form [429]

⎛
⎝

ẋ
ẏ
θ̇

⎞
⎠ =

⎛
⎝

cos(θ) 0
sin(θ) 0

0 1

⎞
⎠ ·

(
v(t)

v(t)ρ(t)

)
(6.2)

where (x, y) are the coordinates of the center of the vehicle’s rear wheels axis,
v(t) is the velocity of the vehicle, and θ is the angle between the transversal axis
of the vehicle and axis O X . The autonomous vehicle is a nonholonomic system.
Nonholonomic systems are characterized by nonintegrable differential expressions,
such as

n∑
i=i

fi j (q1, q2, . . . , qn, t)q̇i = 0, j = 1, 2, . . . , m (6.3)

where q̇i represents the nth generalized coordinate (state variable), m is the number
of equations defining the nonholonomic constraints, q̇i represents the generalized
speed, and fi j are nonlinear functions of qi at time t . For the kinematic model of
Eq. (6.2), the following nonholonomic constraint exists:

ẋsin(θ) − ẏcos(θ) = 0 (6.4)

The curvature radius for any path can be written as

R(t) = 1

ρ(t)
= L

tan(φ)
(6.5)

where L is the distance between the front and the back wheels, and φ (namely the
steering angle) is the angle defined by the main axis of the vehicle and the velocity
vector of the front wheel (for cart-like vehicles as shown in Fig. 6.1), or the central
front point (for car-like vehicles as shown in Fig. 6.1). The value of R(t) is usually
bounded by Rmin , the minimum curvature radius (Fig. 6.2).
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Fig. 6.1 The model of the
autonomous robotic vehicle
(cart-like vehicle)

Fig. 6.2 The model of the
4-wheel autonomous vehicle
(car-like vehicle)

6.2.3 Controller Design for UGVs

Flatness-based control canbeused for steering thevehicle along adesirable trajectory.
In the case of the autonomous vehicle of Eq. (6.1), the flat output is the cartesian
position of the center of the wheel axis, denoted as η = (x, y), while the other model
parameters can be written as:

v = ±||η̇||
(

cos(θ)

sin(θ)

)
= η̇

v tan(φ) = ldet (η̇η̈)/v3 (6.6)
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These formulas show simply that θ is the tangent angle of the curve and tan(φ)

is the associated curvature. With reference to a generic driftless nonlinear system
q̇, q ∈ Rn, w ∈ Rm , dynamic feedback linearization consists in finding a feedback
compensator of the form

ξ̇ = α(q, ξ) + b(q, ξ)u
w = c(q, ξ) + d(q, ξ)u

(6.7)

with state ξ ∈ Rv and input u ∈ Rm , such that the closed-loop system of Eqs. (6.1)
and (6.7) is equivalent under a state transformation z = T (q, ξ) to a linear system.
The starting point is the selection of a m-dimensional output η = h(q) to which
a desired behavior can be assigned (this is the previously defined flat output). One
then proceeds by successively differentiating the output until the input appears in a
nonsingular way. If the sum of the output differentiation orders equals the dimension
n + v of the extended state space, full input-state-output linearization is obtained.
The closed-loop system is then equivalent to a set of decoupled input-output chains
of integrators from ui to ηi . The exact linearization procedure is illustrated for the
vehicle’s model of Eq. (6.2). As flat output η = (x, y) the coordinates of the center
of the wheel axis is considered. Differentiation with respect to time then yields
[382, 422]

η̇ =
(

ẋ
ẏ

)
=

(
cos(θ) 0
sin(θ) 0

)
·
(

v
ω

)
(6.8)

showing that only v affects η̇, while the angular velocity ω cannot be recovered from
this first-order differential information. To proceed, one needs to add an integrator
(whose state is denoted by ξ ) on the linear velocity input

v = ξ, ξ̇ = α⇒η̇ = ξ

(
cos(θ)

sin(θ)

)
(6.9)

where α denotes the linear acceleration of the vehicle. Differentiating further one
obtains

η̈ = ξ̇

(
cos(θ)

sin(θ)

)
+ ξ θ̇

(
sin(θ)

cos(θ)

)
=

=
(

cos(θ) −ξsin(θ)

sin(θ) ξcos(θ)

) (
α

ω

) (6.10)

and the matrix multiplying the modified input (α, ω) is nonsingular if ξ �= 0. Under
this assumption one defines

(
α

ω

)
=

(
cos(θ) −ξsin(θ)

sin(θ) ξcos(θ)

)
·
(

u1
u2

)
(6.11)

and η̈ is denoted as

η̈ =
(

η̈1
η̈2

)
=

(
u1
u2

)
= u (6.12)
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which means that the desirable linear acceleration and the desirable angular velocity
can be expressed using the transformed control inputs u1 and u2. Then, the resulting
dynamic compensator is (return to the initial control inputs v and ω)

ξ̇ = u1cos(θ) + u2sin(θ)

v = ξ

ω = u2cos(θ)−u1sin(θ)
ξ

(6.13)

Being ξ∈R, it is n + v = 3 + 1 = 4, equal to the output differentiation order in
Eq. (6.12). In the new coordinates

z1 = x
z2 = y

z3 = ẋ = ξcos(θ)

z4 = ẏ = ξsin(θ)

(6.14)

The extended system is thus fully linearized and described by the chains of integra-
tors, in Eq. (6.12), and can be rewritten as

z̈1 = u1, z̈2 = u2 (6.15)

The dynamic compensator of Eq. (6.13) has a potential singularity at ξ = v = 0, i.e.,
when the vehicle is not moving, which is a case not met while executing the trajectory
tracking. It is noted, however, that the occurrence of such a singularity is structural
for nonholonomic systems. In general, this difficulty must be obviously taken into
account when designing control laws on the equivalent linear model. A nonlinear
controller for output trajectory tracking, based on dynamic feedback linearization, is
easily derived. Assume that the autonomous vehicle must follow a smooth trajectory

(xd(t), yd(t))which is persistent, i.e., forwhich the nominal velocity vd = (ẋ2d+ ẏ2d )
1
2

along the trajectory never goes to zeros (and thus singularities are avoided). On the
equivalent and decoupled systemofEq. (6.15), one can easily design an exponentially
stabilizing feedback for the desired trajectory, which has the form

u1 = ẍd + kp1(xd − x) + kd1(ẋd − ẋ)

u2 = ÿd + kp1(yd − y) + kd1(ẏd − ẏ)
(6.16)

and which results in the following error dynamics for the closed-loop system

ëx + kd1 ėx + kp1ex = 0
ëy + kd2 ėy + kp2ey = 0

(6.17)

where ex = x − xd and ey = y − yd . The proportional-derivative gains are chosen
as kp1 > 0 and kd1 > 0 for i = 1, 2. Knowing the control inputs u1, u2, for
the linearized system one can calculate the control inputs v and ω applied to the
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vehicle, using Eq. (6.7). The above result is valid, provided that the dynamic feedback
compensator does not meet the singularity. In the general case of design of flatness-
based controllers, the following theorem assures the avoidance of singularities in the
proposed control law [382]:
Theorem: Let λ11, λ12 and λ21, λ22, be respectively the eigenvalues of two equations
of the error dynamics, given in Eq. (6.7). Assume that, for i = 1, 2 it isλ11 < λ12 < 0
(negative real eigenvalues), and that λi2 is sufficiently small. If

mint≥0||
(

ẋd(t)
ẏd(t)

)
||≥

(
ε̇0x
ε̇0y

)
(6.18)

with ε̇0x = ε̇x (0) �= 0 and ε̇0y = ε̇y(0) �= 0, then the singularity ξ = 0 is never met.

6.2.4 Derivative-Free Kalman Filtering for UGVs

It is assumed now that the vehicle’s velocity has to be estimated through the process-
ing of the sequence of position measurements by a filtering algorithm. To this end,
the derivative-free Kalman Filter for MIMO nonlinear dynamical systems can been
used. From the application of the differential flatness theory presented in Sect. 6.4.3
for transforming the initial nonlinear vehicle’s model into a linearized equivalent that
is finally written in the Brunovsky form, one has Eq. (6.12) which means ẍ = u1 and
ÿ = u2. Next, the state variables x1 = x , x2 = ẋ , x3 = y, and x4 = ẏ are defined.
Considering the state vector x∈R4×1, the following matrices are also defined

A =

⎛
⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝
0 0
1 0
0 0
0 1

⎞
⎟⎟⎠

C =
(
1 0 0 0
0 0 1 0

)
(6.19)

Using the matrices of Eq. (6.26), one obtains the Brunovsky form of the MIMO
robotic unicycle

ẋ = Ax + Bv
y = Cx

(6.20)

where the new input v is given by v = [u1(x, t), u2(x, t)]T . For the robotic model
of Eq. (6.20), state estimation can be performed using the standard Kalman Filter
recursion, as described in Eqs. (4.5) and (4.6).

http://dx.doi.org/10.1007/978-3-319-16420-5_4
http://dx.doi.org/10.1007/978-3-319-16420-5_4
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6.2.5 Simulation Tests

6.2.5.1 Extended Kalman Filter-Based Navigation of the Autonomous
Vehicle

The vehicle’s kinematic model of Eq. (6.1) is considered. A GPS sensor or encoders
placed at the vehicle’s wheels can be used to provide measurements of the carte-
sian coordinates of the vehicle x(t) and y(t) (displacement of the vehicle), over a
sampling period T . The values of the vehicle’s velocity components along the x and
y axes are not directly available and are estimated through the processing of the
sequence of position measurements with the use of a filtering algorithm. Computing
the vehicle’s speed through the differentiation of the position measurements would
introduce cumulative errors in the value of the vehicle’s velocity, which in turn can
affect the performance of the control loop. To avoid such errors, an estimation of
the vehicle’s velocity is obtained through the processing of the sequence of position
measurements with the use of a filtering algorithm.

Assuming a constant sampling period Δtk = T , the measurement equation is
z(k + 1) = γ (x(k)) + v(k), where z(k) is the vector containing the sequence of
measurements of the cartesian coordinates of the vehicle and v(k) is themeasurement
noise vector.

z(k) = [x(k) + v1(k), y(k) + v2(k)], k = 1, 2, 3 . . . (6.21)

To obtain the Extended Kalman Filter (EKF), the kinematic model of the vehicle is
linearized about the estimates x̂(k) and x̂−(k), and the control input U (k) is applied.
The EKF recursion consists of the measurement update part and of the time update
part as described in Eqs. (4.13) and (4.14), respectively. One has to use the input gain
matrix L(k)

L(k) =
⎛
⎝

T cos(θ(k)) 0
T sin(θ(k)) 0

0 T

⎞
⎠ (6.22)

and to compute the Jacobian Jφ(x̂(k)) given by the following

Jφ(x̂(k)) =
⎛
⎝
1 0 −v(k)sin(θ)T
0 1 v(k)cos(θ)T
0 0 1

⎞
⎠ (6.23)

while for the elements of the process noise covariance matrix which is defined as
Q(k) = diag[σ 2(k), σ 2(k), σ 2(k)] indicative values are σ 2(k) = 10−3.

Using the estimated state vector, function φ(x) appearing in the state equations
part andγ (x) appearing in themeasurements equations part of the vehicle’s kinematic

http://dx.doi.org/10.1007/978-3-319-16420-5_4
http://dx.doi.org/10.1007/978-3-319-16420-5_4
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model become φ(x̂(k)) = [x̂(k), ŷ(k)]T , and γ (x̂(k)) = [x̂(k), ŷ(k)], respectively.
The associated Jacobian matrix J T

γ (x̂−(k)) is given by

Jγ (x̂−(k)) =
(
1 0 0
0 1 0

)
(6.24)

The vehicle is steered by the flatness-based controller analyzed in Sect. 6.4.3

u1 = ẍd + K p1(xd − x) + Kd1(ẋd − ẋ)

u2 = ÿd + K p2(yd − y) + Kd2(ẏd − ẏ)

ξ̇ = u1cos(θ) + u2sin(θ)

v = ξ, ω = u2cos(θ)−u1sin(θ)
ξ

(6.25)

The use of EKF for estimating the vehicle’s velocity along the x-axis (denoted as
ẋ) and the vehicle’s velocity along the y-axis (denoted as ẏ) enables the successful
application of nonlinear steering control of Eq. (6.25).

Indicative results about tracking of the circular reference trajectory with the use
of the Extended Kalman Filters are shown in Figs. 6.3, 6.4, 6.5, and 6.6. In Fig. 6.3,
one can notice the accuracy of tracking of the reference trajectory, succeeded by the
proposed state estimation-based control scheme. In Fig. 6.4, the accuracy of tracking
of the x and y axis position setpoints is depicted. In Fig. 6.5, the associated x and y
axis tracking errors are shown. Finally, in Fig. 6.6, the x and y axis velocity estimation
errors are given.

Indicative results about tracking of the eight-shaped reference trajectory with use
of the Extended Kalman Filter are shown in Fig. 6.7, 6.8, 6.9, and 6.10. In Fig. 6.7
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Fig. 6.3 a Tracking of a circular reference trajectory (green line) by the autonomous vehicle and
associated estimation of the vehicle’s position provided by the Extended Kalman Filter (continuous
yellow line). b Tracking of a circular reference trajectory (green line) by the autonomous vehicle
and real position of the vehicle (dashed red line)
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Fig. 6.4 Tracking of a circular reference trajectory with the use of the EKF: a tracking of the x-axis
reference setpoint, b tracking of the y-axis reference setpoint
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Fig. 6.5 Tracking of a circular reference trajectory with use of the EKF: a tracking error along the
x-axis, b tracking error along the y-axis

one can notice the accuracy of tracking of the reference trajectory, succeed by the
proposed state estimation-based control scheme. In Fig. 6.8 the accuracy of tracking
of the x and y axis position setpoints is depicted. In Fig. 6.9, the associated x and
y axis tracking errors are shown. Finally, in Fig. 6.10 the x and y axis velocity
estimation errors are given.

Indicative results about tracking of the complex-curved reference trajectory with
use of the Extended Kalman Filter are shown in Fig. 6.11, 6.12, 6.13, and 6.14.
In Fig. 6.11, one can notice the accuracy of tracking of the reference trajectory,
succeeded by the proposed state estimation-based control scheme. In Fig. 6.12, the
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Fig. 6.6 Tracking of a circular reference trajectory by the autonomous vehicle with use of the EKF:
a convergence of the estimated x-axis velocity (green line) to the associated real velocity (blue line),
b convergence of the estimated y-axis velocity (green line) to the associated real velocity (green
line)
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Fig. 6.7 a Tracking of an eight-shaped reference trajectory (green line) by the autonomous vehicle
and associated estimation of the vehicle’s position provided by the Extended Kalman Filter (yellow
line). b Tracking of a circular reference trajectory (green line) by the autonomous vehicle and real
position of the vehicle (dashed red line)

accuracy of tracking the x and y axis position setpoints is depicted. In Fig. 6.13, the
associated x and y axis tracking errors are shown. Finally, in Fig. 6.14, the x and y
axis velocity estimation errors are given.



252 6 Differential Flatness Theory in Mobile Robotics and Autonomous Vehicles

0 10 20 30 40 50
−2

0

2

4

6

8

10

12

14

time

ve
hi

cl
e 

X
 p

os
iti

on

0 10 20 30 40 50
−6

−4

−2

0

2

4

6

time
ve

hi
cl

e 
Y

 p
os

iti
on

(a) (b)

Fig. 6.8 Tracking of an eight-shaped reference trajectory with use of the EKF: a tracking of the
x-axis reference setpoint, b tracking of the y-axis reference setpoint
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Fig. 6.9 Tracking of an eight-shaped reference trajectory with use of the EKF: a tracking error
along the x-axis, b tracking error along the y-axis

6.2.6 Derivative-Free Kalman Filter-Based Navigation
of the Autonomous Vehicle

The performance of the proposed derivative-free nonlinear Kalman Filter was tested
in the problem of state estimation-based control for autonomous navigation of the
previously described robotized vehicle (car-like robot) (Fig. 6.1). The differentially
flat model of the autonomous vehicle and its transformation to the Brunovksy form
has been analyzed in Sect. 6.2.2. It was assumed that only measurements of the
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Fig. 6.10 Tracking of an eight-shaped reference trajectory by the autonomous vehicle with use of
the EKF: a convergence of the estimated x-axis velocity (green line) to the associated real velocity
(blue line), b convergence of the estimated y-axis velocity (green line) to the associated real velocity
(green line)
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Fig. 6.11 a Tracking of a complex-curved reference trajectory (green line) by the autonomous
vehicle and associated estimation of the vehicle’s position provided by the Extended Kalman Filter
(yellow line). b Tracking of a circular reference trajectory (green line) by the autonomous vehicle
(red dashed line) and real position of the vehicle (dashed red line)

cartesian coordinates of the vehicle (displacement on the xy-plane) could be obtained
through a GPS unit (localization of moderate accuracy), RTK-GPS (localization of
higher accuracy), or through laser, visual, and sonar sensors with reference to specific
landmarks (the latter measuring approaches require transformation from a local to a
global coordinates system).
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Fig. 6.12 Tracking of a complex-curved reference trajectory with use of the EKF: a tracking of
the x-axis reference setpoint, b tracking of the y-axis reference setpoint
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Fig. 6.13 Tracking of a complex-curved reference trajectory with use of the EKF: a tracking error
along the x-axis, b tracking error along the y-axis

Indicative results about tracking of the circular reference trajectory with use of the
derivative-free Kalman Filter are shown in Figs. 6.15, 6.16, and 6.17. Comparing the
estimation performed by the derivative-free MIMO nonlinear Kalman Filter to the
one performed by the Extended Kalman Filter it can be noticed that the derivative-
free filtering approach results in more accurate state estimates. Finally, it is noted
that following a similar methodology the chapter’s approach can be applied also to
4-wheel autonomous vehicles.

Indicative results about tracking of the circular reference trajectory with use of the
derivative-free Kalman Filter are shown in Figs. 6.15, 6.16, and 6.17. In Fig. 6.15,
one can notice the accuracy of tracking of the reference trajectory, succeeded by
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Fig. 6.14 Tracking of a complex-curved reference trajectory by the autonomous vehicle with use of
the EKF: a convergence of the estimated x-axis velocity (green line) to the associated real velocity
(blue line), b convergence of the estimated y-axis velocity (green line) to the associated real velocity
(green line)
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Fig. 6.15 a Tracking of a circular reference trajectory (green line) by the autonomous vehicle and
associated estimation of the vehicle’s position provided by the derivative-free Kalman Filter (yellow
line). b Tracking of a circular reference trajectory (green line) by the autonomous vehicle and real
position of the vehicle (dashed red line)

the proposed state estimation-based control scheme. In Fig. 6.16, the associated x
and y axis tracking errors are shown. Finally, in Fig. 6.17, the x and y axis velocity
estimation errors are given.

Indicative results about tracking of the eight-shaped reference trajectory with
the use of Extended Kalman Filter are shown in Figs. 6.18, 6.19, 6.20, and 6.21.
In Fig. 6.18, one can notice the accuracy of tracking of the reference trajectory,
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Fig. 6.16 Tracking of a circular reference trajectory with the use of DKF: a tracking error along
the x-axis, b tracking error along the y-axis
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Fig. 6.17 Tracking of a circular reference trajectory by the autonomous vehicle with the use of
DKF: a convergence of the estimated x-axis velocity (green line) to the associated real velocity
(blue line), b convergence of the estimated y-axis velocity (green line) to the associated real velocity
(green line)

succeeded by the proposed state estimation-based control scheme. In Fig. 6.19, the
accuracy of tracking of the x and y axis position setpoints is depicted. In Fig. 6.20,
the associated x and y axis tracking errors are shown. Finally, in Fig. 6.21, the x and
y axis velocity estimation errors are given.

Indicative results about tracking of the complex-curved reference trajectory with
use of the Extended Kalman Filter are shown in Figs. 6.22, 6.23, 6.24, and 6.25. In
Fig. 6.22, one can notice the accuracy of tracking the reference trajectory, succeeded
by the proposed state estimation-based control scheme. In Fig. 6.23, the accuracy of
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Fig. 6.18 a Tracking of an eight-shaped reference trajectory (green line) by the autonomous vehicle
and associated estimation of the vehicle’s position provided by the derivative-free Kalman Filter
(yellow line). b Tracking of a circular reference trajectory (green line) by the autonomous vehicle
and real position of the vehicle (dashed red line)
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Fig. 6.19 Tracking of an eight-shaped reference trajectory with use of the DKF: a tracking of the
x-axis reference setpoint, b tracking of the y-axis reference setpoint

tracking the x and y axis position setpoints is depicted. In Fig. 6.24, the associated x
and y axis tracking errors are shown. Finally, in Fig. 6.25, the x and y axis velocity
estimation errors are given.

Comparing the estimation performed by the derivative-free MIMO nonlinear
Kalman Filter with the one performed by the Extended Kalman Filter it can be
noticed that the derivative-free filtering approach results in more accurate state esti-
mates.Moreover, comparing the associated state estimation-based control loop of the
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Fig. 6.20 Tracking of an eight-shaped reference trajectory with use of the DKF: a tracking error
along the x-axis, b tracking error along the y-axis
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Fig. 6.21 Tracking of an eight-shaped reference trajectory by the autonomous vehicle with use of
the DKF: a convergence of the estimated x-axis velocity (green line) to the associated real velocity
(blue line), b convergence of the estimated y-axis velocity (green line) to the associated real velocity
(green line)

autonomous vehicle that was based on the derivative-free MIMO nonlinear Kalman
Filter to the control that was based on the Extended Kalman Filter it was observed
that the first control scheme was significantly more robust and capable of tracking
with better accuracy the desirable trajectories. These findings show the suitability of
the considered derivative-free MIMO nonlinear Kalman Filter for localization, con-
trol, and autonomous navigation of autonomous vehicles. Finally, it is noted that the
chapter’s approach can also be applied to various types of 4-wheel robotic vehicles.
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Fig. 6.22 a Tracking of a complex-curved reference trajectory (green line) by the autonomous
vehicle and associated estimation of the vehicle’s position provided by the derivative-free Kalman
Filter (yellow line). b Tracking of a circular reference trajectory (green line) by the autonomous
vehicle and real position of the vehicle (dashed red line)
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Fig. 6.23 Tracking of a complex-curved reference trajectory with use of the DKF: a tracking of
the x-axis reference setpoint, b tracking of the y-axis reference setpoint

Results about the accuracy of estimation provided by the considered nonlinear
filtering algorithms, as well as about the accuracy of tracking succeeded by the
associated state estimation-based control loop are given in Table6.1 [437]. It can
be noticed that the Derivative-free nonlinear Kalman Filter is significantly more
accurate and robust than the Extended Kalman Filter. Its accuracy is comparable to
the one of the Unscented Kalman Filter. Moreover, its accuracy is also comparable
to the one succeeded by the Particle Filter for a moderate number of particles (e.g.,
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Fig. 6.24 Tracking of a complex-curved reference trajectory with use of the DKF: a tracking error
along the x-axis, b tracking error along the y-axis
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Fig. 6.25 Tracking of a complex-curved reference trajectory by the autonomous vehicle with use of
the DKF: a convergence of the estimated x-axis velocity (green line) to the associated real velocity
(blue line), b convergence of the estimated y-axis velocity (green line) to the associated real velocity
(green line)

N = 1000). The Particle Filter can succeed to diminish further the variance of
estimation; however, this requires a large number of particles (e.g., N > 1500) and
induces additional computational cost (see Table6.2).

The aggregate runtime and the cycle time (duration of each iteration of the fil-
ter’s algorithm) for the Derivative-free nonlinear Kalman Filter, for the Extended
Kalman Filter, for the Unscented Kalman Filter, and for the Particle Filter (in case
of N = 1000 particles), using the Matlab platform on a PC with a 1.6GHz Intel
i7 processor, is depicted in Table6.2. It can be noticed that the Derivative-free



6.2 State Estimation-Based Control of Autonomous Vehicles 261

Table 6.1 RMSE of tracking (Gaussian noise)

RMSEx RMSEy RMSEθ

SPKF 0.0146 0.0162 0.0012

PF 0.0060 0.0031 0.0230

EKF 0.0371 0.0294 0.1835

DKF 0.0086 0.0103 0.0004

Table 6.2 RMSE of tracking (Rayleigh noise)

RMSEx RMSEy RMSEθ

SPKF 0.0218 0.0238 0.0026

PF 0.0092 0.0049 0.0717

EKF 0.0475 0.0338 0.2445

DKF 0.0091 0.0102 0.0021

Table 6.3 Run time of nonlinear estimation algorithms

SPKF PF EKF DKF

Total runtime (s) 111.14 623.92 104.39 89.69

Cycle time (s) 0.0222 0.1248 0.0209 0.0179

nonlinear Kalman Filter is faster than the other nonlinear estimation algorithms.
Actually, the Derivative-free nonlinear Kalman Filter (DKF) appears to be 20%
faster than the Unscented Kalman Filter (UKF). The improved speed of the DKF
can be more apparent in higher dimensional, multidegree of freedom systems, where
the computation of cross-covariance matrices used by the UKF will impose more
numerical operations (Table6.3).

6.3 State Estimation-Based Control and Synchronization
of Cooperating Vehicles

6.3.1 Overview

In the previous section, differential flatness theory was used for filtering and con-
trol in unmanned ground vehicles (UGVs). Next, the results are generalized toward
filtering and control of cooperating vehicles. There are many types of field opera-
tions that are performed by cooperating vehicles [56]. In this section, a method for
autonomous navigation of agricultural robots under a master-slave scheme is devel-
oped. The method comprises the following elements: (i) a path planner for generat-
ing automatically the trajectory that has to be followed by the cooperating robotized
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vehicles, (ii) a nonlinear controller that makes the robots track with precision the
desirable trajectories, (iii) a distributed filtering scheme for estimating the motion
characteristics of the vehicles through the fusion ofmeasurements about the vehicles’
coordinates coming frommultiple position sensors (e.g., multiple GPS devices). The
autonomous navigation of the cooperating agricultural robots is finally implemented
through state estimation-based control. The nonlinear controller uses the estimated
state vector of the robots, as provided by distributed filtering, so as to generate the
control signal that defines the robots’ speed and heading angle.

A solution to decentralized information fusion over sensor networks, such as the
network that collects measurements for the system of the robotic harvesters, can be
obtained with the use of distributed Kalman Filtering [23, 163, 215, 264, 265, 326,
369, 380, 381, 485, 534, 552]. In this section, the previously analyzed derivative-free
approach to Extended Information filtering will be used. In the proposed derivative-
free Kalman Filtering method, the system is first subject to a linearization transfor-
mation and next state estimation is performed by applying the standardKalman Filter
recursion to the linearized model. Another issue that has to be taken into account
for the autonomous functioning of the robotized vehicles is nonlinear control for
precise tracking of desirable trajectories [69]. The chapter proposes flatness-based
control for steering the cooperatingUGVs along their reference paths [427, 535]. The
performance of the proposed distributed filtering-based control scheme is evaluated
through simulation experiments.

Such a multirobot system performs distributed information processing for esti-
mating the position and motion characteristics of the vehicles. At a first stage, mea-
surements from onboard sensors are combined with measurements from multiple
position sensors (e.g., GPS devices) and are initially processed by local filters to
provide local state vector estimates. At a second stage, the local state estimates for
the robotic vehicles are fused using a distributed filtering algorithm. Thus an aggre-
gate state vector of the robotic harvesters is obtained (see Fig. 6.26). Such a filtering
approach has several advantages: (i) it is fault tolerant: if a local information process-
ing unit is subject to a fault then state estimation is still possible, (ii) the information
processing scheme is scalable and can be expanded with the inclusion of more local
information processing units (local filters), (iii) the bandwidth for the exchange of
information between the local units and the aggregate filter remains limited since
there is no transmission of raw measurements but only transmission of local state
estimates and of the associated covariance matrices.

Under the assumption of a Gaussian measurement model, a solution to distrib-
uted information fusion for the robotized vehicles can be obtained with the use of
distributed Kalman Filtering [369, 520]. Distributed state estimation in the case of
non-Gaussian models has been also studied in several other research works [329,
462]. In this section, the Derivative-free distributed nonlinear Kalman Filter will be
compared against the Extended Information Filter, which is actually an approach for
fusing state estimates provided by local Extended Kalman Filters [264, 427].
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Fig. 6.26 Sensor fusion at the local filters for obtaining local state estimates

6.3.2 Distributed Kalman Filtering for Unmanned
Ground Vehicles

Multiple cooperating mobile robots are considered. The coordinates and motion
characteristics are monitored by several sensors, as shown in Fig. 6.27. Each mobile
robot is taken to be describedby the kinematicmodel of a unicycle vehicle. Estimation
for the individual vehicles with the use of the Extended Kalman Filter was described
in Sect. 6.2. Moreover, distributed estimation for multiple cooperating vehicles can
be based on the Extended Information Filter which was analyzed in Chap.4.

On the other side, the concept of Derivative-free distributed nonlinear Kalman
Filter has been described in Chaps. 4 and 5. It is assumed that distributed filtering is
used to estimate with accuracy the position and motion characteristics of each agri-
cultural vehicle. Each local filtering within this distributed state estimation scheme
provides an estimate of the vehicle’s state vector by fusing measurements from mul-
tiple RTK-GPS units. If the derivative-free Kalman Filter is used in place of the
Extended Kalman Filter, then in the EIF formulation, given in Eqs. (4.53) and (4.54)
the following matrix substitutions should be performed: Jφ(k)→Ad , Jγ (k)→Cd ,
where matrices Ad and Cd are the discrete-time equivalents of matrices A and C

http://dx.doi.org/10.1007/978-3-319-16420-5_4
http://dx.doi.org/10.1007/978-3-319-16420-5_4
http://dx.doi.org/10.1007/978-3-319-16420-5_5
http://dx.doi.org/10.1007/978-3-319-16420-5_4
http://dx.doi.org/10.1007/978-3-319-16420-5_4
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Fig. 6.27 Precise
localization of the
cooperating vehicles through
multisensor fusion and
distributed filtering

which have been defined in Eq. (6.26). Both the stages of the Kalman Filter and
of the Extended Kalman Filter have been explained in Chap.4. Matrices Ad and Cd

can be computed using established discretization methods. Moreover, the covariance
matrices P(k) and P−(k) are the ones obtained from the linear Kalman Filter update
equations given also in Chap.4.

It is assumed now that the vehicle’s velocity has to be estimated through the
processing of the sequence of position measurements by a filtering algorithm. To this
end, the derivative-free Kalman Filter for MIMO nonlinear dynamical systems can
been used. From the application of differential flatness theory presented in Sect. 6.2.2
for transforming the initial nonlinear vehicle’s model into a linearized equivalent that
is finally written in the Brunovsky form, one has Eq. (6.12) which means ẍ = u1 and
ÿ = u2. Next, the state variables x1 = x , x2 = ẋ , x3 = y, and x4 = ẏ are defined.
Considering the state vector x∈R4×1, the following matrices are also defined

A =

⎛
⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝
0 0
1 0
0 0
0 1

⎞
⎟⎟⎠ , C =

⎛
⎜⎜⎝
1 0
0 0
0 1
0 0

⎞
⎟⎟⎠ (6.26)

Using the matrices of Eq. (6.26), one obtains the Brunovsky form of the MIMO
robot model ẋ = Ax + Bv and y = Cx , where the new input v is given by
v = [u1(x, t), u2(x, t)]T . This is a robotic model, for which state estimation can
be performed using the standard Kalman Filter recursion.

6.3.3 Simulation Tests

Master-slave cooperation of two agricultural robots was considered (see Fig. 6.26).
Themaster tractor generates a reference path and themotion characteristics (velocity,
acceleration, orientation) that the slave tractor has to follow. It was assumed thatmea-
surements of the xy coordinates of the vehicles could be obtained through multiple
GPS units (localization of moderate accuracy), or multiple local RTK-GPS stations

http://dx.doi.org/10.1007/978-3-319-16420-5_4
http://dx.doi.org/10.1007/978-3-319-16420-5_4
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Fig. 6.28 Extended Information Filtering and flatness-based control for cooperating robot har-
vesters: a synchronized tracking of reference path 1, b position of the synchronized vehicles every
100 sampling periods

(localization of higher accuracy). Moreover, localization of the vehicles could be
performed using measurements of their distance from a reference surface. This dis-
tance can be measured with the use of different onboard sensors, e.g., laser, sonar, or
vision sensors. The measurements from the GPS were combined with the distance
sensor measurements and were initially processed by local filters to provide local
state vector estimates. At a second stage, the local state estimates for the robotic
vehicles were fused using the Extended Information Filter. Using the outcome of the
Extended Information Filter state, estimation-based control was implemented.

Indicative results about tracking of various trajectories (e.g., reference paths fol-
lowed by the vehicles to perform harvesting) with use of the Extended Information
Filter are shown in Figs. 6.28, 6.29, 6.30, and 6.31. It can be noticed that the Extended
Information Filter provides accurate estimates of the vehicle’s state vector thus also
resulting in efficient tracking of the reference trajectories. Finally, it is noted that the
paper’s approach can be applied also to various types of 4WD agricultural vehicles.

6.4 Distributed Fault Diagnosis for Autonomous Vehicles

6.4.1 Integrity Testing in Navigation Sensors of AGVs

Integrity testing of navigation sensors in Automatic Ground Vehicles (AGVs) can be
succeeded through the processing of measurements from distributed sources [378,
427, 515]. On the one side, one can have estimation of the AGV’s cartesian coor-
dinates through the fusion of measurements coming from various onboard sensors
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Fig. 6.29 Extended Information Filtering and flatness-based control for cooperating robot har-
vesters: a synchronized tracking of reference path 2, b position of the synchronized vehicles every
100 sampling periods
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Fig. 6.30 Extended Information Filtering and flatness-based control for cooperating robot har-
vesters: a synchronized tracking of reference path 3, b position of the synchronized vehicles every
100 sampling periods

(considered as reference sensors, e.g., GPS devices and distance measuring devices
such as laser and vision sensors). Based on these measurements, distributed filter-
ing algorithms produce estimates of the vehicle’s state vector through a multistage
fusion procedure. On the other side, one can have an estimate of the AGV’s cartesian
coordinates using themeasurements provided by failure-prone sensors such as wheel
encoders or IMU. Residuals generation takes place through the comparison of the
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Fig. 6.31 Extended Information Filtering and flatness-based control for cooperating robot har-
vesters: a synchronized tracking of reference path 4, b detailed motion of the synchronized vehicles

coordinates of the vehicle computed through themeasurements of themonitored sen-
sors against the coordinates which are estimated by processing measurements from
the reference sensors. Finally, the statistical processing of residuals by a suitable
fault detection and isolation algorithm can provide an indication about the condition
of the navigation sensors and failures that may have appeared [31, 157, 290, 414].

This section implements distributed filtering with the use of the Derivative-free
Extended Information Filter (DEIF), for generating such residuals. As explained,
to apply the Derivative-free Extended Information Filter it is necessary first to per-
form transformation of the system’s dynamic or kinematic model into a canonical
form, and this is achieved by using a change of coordinates (diffeomorphism) that is
based on differential flatness theory. Unlike the Extended Information Filter (EIF),
the proposed filter avoids approximation errors caused by the linearization of the
AGV kinematic model and does not require the computation of Jacobians [112, 264,
369]. The Derivative-free Extended Information Filter appears to be faster than the
EIF, while also providing very accurate (in terms of variance) state estimates. The
application of the Derivative-free Extended Information Filter to AGVs confirms and
extends the initial results about the performance of derivative-free nonlinear Kalman
Filtering given in [427].

6.4.2 Sensor Fusion for AGV Navigation

To improve the accuracy of the estimation of the AGV’s state vector, fusion of the
measurements provided by onboard sensors can be performed (IMU, GPS, gyro-
compasses, laser, vision sensors). The inertial coordinates system O XY is defined.
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Fig. 6.32 Reference frames
for the AGV

Furthermore, the coordinates system O ′ X ′Y ′ is considered (Fig. 6.32). O ′ X ′Y ′
results from O XY if it is rotated by an angle θ . The coordinates of the center of
gravity of the AGV with respect to O XY are (x, y). It is assumed that the coordi-
nates of the distance measuring sensor (e.g., vision sensor or radar) with respect to
O ′ X ′Y ′ are x

′
i , y

′
i . The orientation of the AGV with respect to O XY is θ

′
i . Thus the

coordinates of the distance measuring sensor with respect to O XY are (xi , yi ) and
its orientation is θi , and are given by:

xi (k) = x(k) + x
′
i sin(θ(k)) + y

′
i cos(θ(k))

yi (k) = y(k) − x
′
i cos(θ(k)) + y

′
i sin(θ(k))

θi (k) = θ(k) + θ
′
i

(6.27)

For the localization of the AGV, a first set of measurements comprises the AGV’s
cartesian coordinates and comes from an IMU or a GPS. A second set of measure-
ments consists of the readings of the AGV’s distance d(k) from a reference surface
P j , and can be provided from a vision sensor or laser. A reference surface P j in the
AGV’s 2D motion area can be represented by P j

r and P j
n (see Fig. 6.32), where (i)

P j
r is the normal distance of the AGV from the origin O, (ii) P j

n is the angle between
the normal line to the plane and the x-direction. The sensor providing this second set
of measurements is at position [xi (k), yi (k)] with respect to the inertial coordinates
system O XY and its orientation is θi (k). Using the above notation, the distance of
the GPS sensor, from the plane P j is represented by P j

r , P j
n (see Fig. 6.32) [427]:

d j
i (k) = P j

r − xi (k)cos(P j
n ) − yi (k)sin(P j

n ) (6.28)
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In this section, it will be assumed that themeasurements vector is given by γ (x(k)) =
[x(k), y(k), d(k)], where [x(k), y(k)] are the AGV’s cartesian coordinates, and d(k)

is the distance measurement. Moreover, it is assumed that at every time instant more
than one GPSmeasurements are available and that multiple estimates of the vehicle’s
coordinates can be obtained by fusing the individual GPS measurements with the
measurement of the distance from the reference surface.

In the case of multisensor fusion with the use of the EKF a constant sampling
period Δtk = T is assumed and the measurement equation for the vehicle is z(k) =
γ (x(k)) + v(k), where z(k) is the vector containing the sequence of measurements
of the cartesian coordinates of the vehicle and v(k) is the measurement noise vector.
Apart from the coordinates of the vehicle which are provided by the IMU or GPS one
can also consider a distance measurement d(k) from a landmark surface, as shown
in Fig. 6.32. Thus, the measurements vector becomes

z(k) = [x(k) + v1(k), y(k) + v2(k), d(k) + v3(k)], k = 1, 2, 3 . . . (6.29)

To obtain the Extended Kalman Filter (EKF), the kinematic model of the vehicle
is linearized about the estimates x̂(k) and x̂−(k), and the control input U (k) is
applied, as already explained in Sect. 6.2.5.1. The EKF recursion consists of the
measurement update part and of the time update part as described in Eqs. (4.13) and
(4.14), respectively. The input gain matrix L(k) for the vehicle model can be written
in the form

L(k) =
⎛
⎝

T cos(θ(k)) 0
T sin(θ(k)) 0

0 T

⎞
⎠ (6.30)

while the Jacobian matrices Jφ(x̂(k)) and J T
γ (x̂−(k)) are given by

Jφ(x̂(k)) =
⎛
⎝
1 0 −v(k)sin(θ̂ (k))T
0 1 v(k)cos(θ̂(k))T
0 0 1

⎞
⎠ (6.31)

Jγ (x̂−(k)) =
⎛
⎝

1 0 0
0 1 0

−cos(Pn) −sin(Pn) −xi cos(θ̂(k) − Pn) − yi sin(θ̂(k) − Pn)

⎞
⎠

(6.32)

For the elements of the noise covariance matrix Q(k) = diag[σ 2(k), σ 2(k), σ 2(k)]
indicative values can be σ 2(k) = 10−3. Using the estimated state vector, function
γ (x) appearing in the measurements equations part of the vehicle’s kinematic model
becomes γ (x̂(k)) = [x̂(k), ŷ(k), d̂(k)].

http://dx.doi.org/10.1007/978-3-319-16420-5_4
http://dx.doi.org/10.1007/978-3-319-16420-5_4
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6.4.3 Canonical Form for the AGV Model

From the application of the differential flatness theory presented in Sect. 6.2, the
initial nonlinear vehicle’s model is transformed into a linearized equivalent. This is
finally written in the Brunovsky form, and one has Eq. (6.15) which means ẍ = u1
and ÿ = u2. Next, the state variables x1 = x , x2 = ẋ , x3 = y and x4 = ẏ are used.
Considering the state vector x∈R4×1, the following matrices are also defined

A =

⎛
⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ B =

⎛
⎜⎜⎝
0 0
1 0
0 0
0 1

⎞
⎟⎟⎠

C =
(
1 0 0 0
0 0 1 0

)
(6.33)

Using the matrices of Eq. (6.33), one obtains the Brunovsky (canonical) form of the
MIMO model of the AGV.

ẋ = Ax + Bv
y = Cx

(6.34)

where the new input v is given by v = [u1(x, t), u2(x, t)]T . For the system of
Eqs. (6.33) and (6.34), state estimation is possible by applying the standard Kalman
Filter. The system is first turned into discrete-time form using common discretization
methods and then the recursion of the linear Kalman Filter described in Eqs. (4.5)
and (4.6) is applied.

6.4.4 Derivative-Free Extended Information Filtering
for UGVs

As mentioned above, for the system of Eq. (6.33), state estimation is possible by
applying the standard Kalman Filter. The system is first turned into discrete-time
form using common discretization methods and then the recursion of the linear
Kalman Filter described in Eqs. (4.5) and (4.6) is applied.

If the derivative-free Kalman Filter is used in place of the Extended Kalman Filter
then in the EIF formulation, given in Eqs. (4.53) and (4.54), the following matrix
substitutions should be performed: Jφ(k)→Ad , Jγ (k)→Cd , where matrices Ad and
Cd are the discrete-time equivalents of matrices A and C which have been defined
Eq. (6.33) and which appear also in the measurement and time update of the standard
Kalman Filter recursion. Matrices Ad and Cd can be computed using established
discretization methods. Moreover, the covariance matrices P(k) and P−(k) are the
ones obtained from the linear Kalman Filter update equations given in Sect. 4.2.2.

http://dx.doi.org/10.1007/978-3-319-16420-5_4
http://dx.doi.org/10.1007/978-3-319-16420-5_4
http://dx.doi.org/10.1007/978-3-319-16420-5_4
http://dx.doi.org/10.1007/978-3-319-16420-5_4
http://dx.doi.org/10.1007/978-3-319-16420-5_4
http://dx.doi.org/10.1007/978-3-319-16420-5_4
http://dx.doi.org/10.1007/978-3-319-16420-5_4
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Finally, state estimates for the AGVwhich are provided by multiple local Kalman
Filters are fused into one single state estimate, either with the use of the Extended
Information Filter or with the use of theDerivative-free distributed nonlinear Kalman
Filter.

6.4.5 Simulation Tests

Distributed state estimation takes place in two levels (i) at the lower level local state
estimates are generated by local nonlinear filters, such as Extended Kalman Filters
or derivative-free nonlinear Kalman Filters. The latter, provide local state estimates
through the fusion of the cartesian coordinates of the AGV with the distance of
the AGV from a reference surface, (ii) at the higher level, fusion of the local state
estimates is performed with the use of distributed state estimation approaches, such
as the Extended Information Filter, and the previously described Derivative-Free
Extended Information Filter.

It is considered that the previously analyzed AGV model is monitored by n = 2
local filters that fuse different GPS measurements of the vehicle’s coordinates with
a measurement of the distance from the reference surface (provided by a vision
or laser sensor). The distributed filtering architecture and the residuals generation
procedure is shown in Fig. 6.33. The reference frames defining the AGV’s motion
and the AGV’s distance from the reference surface are according to Fig. 6.32 and
have been analyzed in [408, 427]. To decide on the existence of a navigation sensor
failure or intermittence, the produced residuals can be tested against a fault threshold
that is chosen according to the Generalized Likelihood Ratio criterion or the χ2 test
[31, 290, 414].

In the simulation experiments, various AGV trajectories were considered and an
indicative one (circular path of radius equal to 10m) is depicted in Fig. 6.34 and
6.37. Regarding computation time it was observed that the Derivative-free Extended
Information Filter was significantly faster than the Extended Information Filter, due
to no need to compute online Jacobianmatrices and partial derivatives. Results on the
EIF and the Derivative-free EIF performance, in estimating the state vector the AGV
when fusing measurements from multiple onboard sensors, are given in Figs. 6.35,
6.36, 6.38, and 6.39, respectively. In case of an IMU or encoder fault (additive fault
to the sensor’s output), one can observe deviation between the distributed filtering-
based coordinates and the coordinates which are computed using the measurements
of the monitored sensor. Further processing of the residuals by a FDI algorithm with
optimally selected fault threshold enables detection of incipient navigation sensor
faults as well as fault isolation [31, 157, 290, 414].
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Fig. 6.33 Integrity monitoring for the AGV navigation sensors using a distributed filtering scheme
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Fig. 6.34 Fault-free sensor case. Trajectory generated by state estimation-based control of the
AGVwith the use of: a standard Extended Information Filter, b Derivative-free nonlinear Extended
Information Filter
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Fig. 6.35 Fault-free sensor case. Residual of the x-axis position of the AGV generated with a
standard Extended Information Filter, b Derivative-free nonlinear Extended Information Filter
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Fig. 6.36 Fault-free sensor case. Residual of the y-axis position of the AGV generated with a
standard Extended Information Filter, b Derivative-free nonlinear Extended Information Filter

6.5 Velocity Control of 4-Wheel Vehicles

6.5.1 Overview

Next, it will be shown that differential flatness theory-based filtering and control can
be applied to more advanced models of autonomous vehicles, such as the 4-wheel
ground vehicle. The precise modeling of the vehicles’ dynamics improves the effi-
ciency of vehicles controllers in adverse cases, for example in high velocity, when
performing abrupt maneuvers, under mass and loads changes or when moving on
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Fig. 6.37 Faulty sensor case. Trajectory generated by state estimation-based control of the AGV
with the use of: a standard Extended Information Filter, b Derivative-free nonlinear Extended
Information Filter
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Fig. 6.38 Faulty sensor. Residual of the x-axis position of the AGV generated with a standard
Extended Information Filter, b Derivative-free nonlinear Extended Information Filter

rough terrain. Using model-based control approaches, it is possible to design a non-
linear controller that maintains the vehicle’s motion characteristics within desirable
ranges [39, 331, 337, 349, 350, 360, 404, 406, 516, 589]. When the vehicle’s dynam-
ics is subject tomodeling uncertainties or when there are unknown forces and torques
exerted on the vehicle it is important to be in position to estimate in real-time dis-
turbances and unknown dynamics so as to compensate for them through the control
input and to maintain the satisfactory performance of the vehicle’s automated steer-
ing system. To this direction, estimation for the unknown dynamics of the vehicle and
state estimation-based control schemes have been developed [209, 331, 496, 545].
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Fig. 6.39 Faulty sensor case. Residual of the y-axis position of the AGV generated with a standard
Extended Information Filter, b Derivative-free nonlinear Extended Information Filter

The objective of this section is two-fold. On the one side it analyzes the design
of a controller for autonomous navigation of automatic ground vehicles (AGVs). On
the other side, it proposes a solution to the problem of four-wheel vehicle control
under model uncertainties and external disturbances. Considering, that only under
ideal conditions the dynamic model of the vehicle is precisely known (e.g., there
may be variations in the transported mass, or in the cornering stiffness coefficients
characterizing the interaction of the tires with the ground, or in the position of the
vehicle’s center of gravity) and that in several cases there is uncertainty about the
forces and torques developed on the vehicle (e.g., traction and braking torques on the
wheels, forces due to traction of implements, or lateral forces which generate torques
affecting the yaw stability of the vehicle), the need for designing robust controllers
of the autonomous vehicles becomes obvious [44, 488, 497, 554]. By compensating
efficiently such disturbance forces and torques, safety features of the vehicle are
improved and its autonomous functioning remains reliable even under adverse road
conditions.

Dynamic analysis for the 4-wheel vehicle is provided. A 3-DOF model is intro-
duced having as elements the vehicle’s velocity along the horizontal and vertical
axis of an inertial reference frame as well as the rate of change of its orientation
angle (this is the angle defined by the vehicle’s longitudinal axis and the horizontal
axis of the frame). Lateral forces are shown to affect the vehicle’s motion and to be
dependent on the longitudinal and lateral velocity of the vehicle, on the yaw rate and
on the cornering stiffness coefficients for the front and rear tires. The control inputs
to the vehicles’ dynamic model are the traction/bracking wheel torque and the turn
angle of the steering wheel. Since the parameters of the dynamic model of the vehi-
cle cannot always be known with precision or may be time-varying (e.g., cornering
stiffness coefficients, transported mass) and since there may be unmodeled external
forces and torques exerted on the vehicle (e.g., due to road condition, disturbances
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in traction forces) it is important to design a control loop with robustness to the
aforementioned sources of uncertainty and disturbances, as well as to be in position
to estimate in real-time such disturbances through the processing of measurements
from a small number of onboard sensors.

Next, it is shown how a nonlinear controller for the aforementioned vehicle’s
model can be obtained through the application of differential flatness theory [152,
465, 516, 535]. The flat output for the vehicle’s model is a vector comprising the
x-axis velocity and a second variable based on a linear relation between the y-axis
velocity and the rate of change of the orientation angle [349, 350]. By expressing all
state variables and the control input of the four-wheel vehicle model as functions of
the flat output and its derivatives, the system’s dynamic model is transformed into
the linear Brunovksy (canonical) form [317, 479]. For the latter model, it is possible
to design a state feedback controller that succeeds accurate tracking of the vehicle’s
velocity setpoints.

By exploiting the vehicle’s exactly linearized model and its transformation into a
canonical form it is possible to design a linear state estimator for approximating the
system’s state vector through the processing of measurements coming from a small
number of onboard sensors. To this end, Derivative-free nonlinear Kalman Filtering
is used. Unlike the Extended Kalman Filter, the proposed filtering method provides
estimates of the state vector of the nonlinear system without the need for derivatives
and Jacobians calculation [422, 427]. By avoiding linearization approximations, the
proposed filtering method improves the accuracy of estimation of the system’s state
variables. Moreover, it is shown that it is possible to redesign the Kalman Filter in
the form of a disturbance observer, and using the estimation of the disturbance to
develop an auxiliary control input that compensates for their effects. In this way, the
vehicle’s control and autonomous navigation system can become robust with respect
to uncertainties in the model’s parameters or uncertainties about external forces and
torques. It is also noted that in terms of computation speed, the proposed Kalman
Filter-based disturbance estimator for the vehicle is faster than disturbance estimators
that may be based on other nonlinear filtering approaches (e.g., Extended Kalman
Filter, Unscented Kalman Filter or Particle Filter) thus becoming advantageous for
the real-time estimation of the unknown vehicle dynamics [436, 437].

The efficiency of the proposed nonlinear control and Kalman Filter-based distur-
bances estimation scheme is evaluated through numerical simulation tests. It will be
shown that by accurately estimating disturbance forces and torques, the control loop
succeeds elimination of the tracking error for all state variables of the vehicle.

6.5.2 Dynamic Model of the Vehicle

6.5.2.1 Definition of Parameters in 4-Wheel Vehicle Dynamic Model

With reference to Fig. 6.40 (where the lateral forces applied on the wheels are consid-
ered to define the vehicle’s motion) one has the following parameters: β is the angle
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Fig. 6.40 Nonlinear
4-wheeled vehicle model

2

1

between the velocity and the vehicle’s transversal angle, V is the velocity vector of
the vehicle, ψ is the yaw angle (rotation round the z axis), fx : is the aggregate force
along the x axis, fy is the aggregate force along the y axis, Tz is the aggregate torque
round the z axis, and δ is the steering angle of the front wheels [349, 360, 535].

The motion of the vehicle is described by the following set of equations:

1. Longitudinal motion

− mV (β̇ + ψ̇)sin(β) + mV̇ cos(β) = fx (6.35)

2. Lateral motion
mV (β̇ + ψ̇)cos(β) + mV̇ sin(β) = fy (6.36)

3. yaw turn
I ψ̈ = Tz (6.37)

The above-described vehicle dynamics can be also written in matrix form

⎛
⎝

−sin(β) cos(β) 0
cos(β) sin(β) 0

0 0 1

⎞
⎠

⎛
⎝

mV (β̇ + ψ̇)

mV̇
I ψ̈

⎞
⎠ =

⎛
⎝

fx

fy

Tz

⎞
⎠ (6.38)
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Finally, a matrix relation is provided about the transformation of forces on a tire
into forces and torques along the vehicle’s axes:

⎛
⎝

fx

fy

Tz

⎞
⎠ =

⎛
⎝

−sin(δ) 0
cos(δ) 1

L1cos(δ) −L2

⎞
⎠

(
F f

Fr

)
(6.39)

6.5.2.2 Vehicle Dynamical Model with Longitudinal and Lateral Forces

The previous model of Fig. 6.40 is rexamined considering that β̇ = 0 and that ψ

is the yaw angle formed between the vehicle’s longitudinal axis and the horizontal
axis of an inertial reference frame. Moreover, it is assumed that apart from the lateral
forces, there are traction torques transferred from the engine to the front wheels as
well as braking torques on the rear and front wheels. Due to the distance between
the wheels axes and the vehicle’s center of gravity, torques are also generated along
the vehicle’s z-axis. With reference to Fig. 6.41, the model of the vehicle’s dynamics
is formulated as follows [349, 360, 535]:

mαx = m(V̇x − ψ̇ V̇y) = Fx1 + Fx2

mαy = m(V̇y + ψ̇ V̇x ) = Fy1 + Fy2

Izψ̈ = Tz1 + Tz2

(6.40)

where ax and ay are accelerations along the axes of the inertial reference frame and
V̇x , V̇y in a reference frame that rotates with the yaw rate ψ̇ . The forces Fxi , i = 1, 2

Fig. 6.41 Vehicle model with longitudinal and lateral forces
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on the vehicle’s longitudinal axis and Fyi , i = 1, 2 on the vehicle’s transversal axis
are computed from the horizontal and vertical forces applied on the vehicle’s wheels
as follows:

Fx1 = Fx f cos(δ) − Fy f sin(δ)

Fx2 = Fxr

Fy1 = Fy f sin(δ) + Fy f cos(δ)
Fy2 = Fyr

Tz1 = L f (Fy f cos(δ) + Fx f sin(δ))

Tz2 = −Lr Fyr

(6.41)

About the longitudinal and the lateral forces applied to the vehicle one has:

1. Longitudinal force on the front wheel

Fx f =
(
1

R

)
(Ir ω̇ f + Tm − Tb f ) (6.42)

2. Longitudinal force on the rear wheel

Fxr = −
(
1

R

)
(Tbr + Ir ω̇r ) (6.43)

3. Lateral force on the front wheel (taking that the angle β between the vehicle’s lon-

gitudinal axis and the wheel’s velocity vector is approximated by β = Vy+ψ̇ L f
Vx

)

Fy f = C f

(
δ − Vy + ψ̇ L f

Vx

)
(6.44)

4. Lateral force on the rear wheel (taking that for the rear wheel the steering angle is
δ = 0 and that the angle β between the vehicle’s longitudinal axis and the wheel’s

velocity vector is approximated by β = Vy−ψ̇ Lr
Vx

).

Fyr = −Cr
Vy − ψ̇ Lr

Vx
(6.45)

where C f and Cr are the cornering stiffness coefficients for the front and rear
tires, respectively. Nominal values of these cornering stiffness coefficients can
be estimated through identification procedures. The substitution of Eq. (6.42) to
Eq. (6.45) into Eq. (6.40) results into

mV̇x = mψ̇Vy − Ir
R (ω̇r + ω̇ f ) + 1

R (Tm − Tb f − Tbr ) + C f (
Vy+ψ̇L f

Vx
)δ − C f δ

2

mV̇y = −mψ̇Vx − C f (
Vy+ψ̇L f

Vx
) − Cr (

Vy−ψ̇L f
Vx

) + ( 1
R )(Tm − Tb f )δ + (C f − Ir

R ω̇ f )δ

Izψ̈ = −L f C f (
Vy+ψ̇L f

Vx
) + Lr Cr (

Vy−ψ̇L f
Vx

) + L f
R (Tm − Tb f )δ + L f (Tm − Ir

R )δ

(6.46)
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The motion of the vehicle along its longitudinal axis is controlled by the traction or
braking wheel torque Tω = Tm − Tb with Tb = Tb f + Tbr and the lateral movement
via the steering angle δ. The two control inputs of the four-wheel vehicle model are

u1 = Tω

u2 = δ
(6.47)

A first form of the vehicle’s dynamic model is

ẋ = f (x, t) + g(x, t)u + g1u1u2 + g2u2
2 (6.48)

where

f (x, t) =

⎛
⎜⎜⎝

Ir
m R (ω̇r + ω̇ f )

ψ̇Vx + 1
m

(
−C f

(Vy+L f ψ̇)

Vx
− Cr

(Vy−L f ψ̇)

Vx

)

1
Iz

(
−L f C f

(Vy+L f ψ̇)

Vx
+ Lr Cr

(Vy−L f ψ̇)

Vx

)

⎞
⎟⎟⎠ (6.49)

g(x, t) =

⎛
⎜⎜⎝

1
m R

C f
m

(
Vy+L f ψ̇

Vx

)

0
(

C f R−Ir ω̇ f
m R

)

0
(L f C f R−L f Ir ω̇ f )

Iz R

⎞
⎟⎟⎠ (6.50)

g1 =

⎛
⎜⎜⎝

0
1

m R
L f
Iz R

⎞
⎟⎟⎠ g2 =

⎛
⎝−C f

m
0
0

⎞
⎠ x =

⎛
⎝

Vx

Vy

ψ̇

⎞
⎠ u =

(
u1
u2

)
(6.51)

The previously analyzed nonlinear model of the vehicle’s dynamics can be simplified
if the control inputs u1u2 and u2

2 are not taken into account. In the latter case, the
dynamics of the vehicle takes the form

ẋ = f (x, t) + g(x, t)u (6.52)

6.5.3 Flatness-Based Controller for the 3-DOF Vehicle Model

6.5.3.1 Flatness-Based Controller for the 4-Wheel Vehicle

To show that the four-wheel vehicle is differentially flat, the following flat outputs
are defined [349, 350]:

y1 = Vx

y2 = L f mVy − Izψ̇
(6.53)
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Then it holds that all elements of the system’s state vector can be written as functions
of the flat outputs and their derivatives. Indeed, for x = [Vx , Vy, ψ̇]T it holds

Vx = y1 (6.54)

Vy = y2
L f m

−
(

Iz

L f m

) (
L f my1 ẏ2 + Cr (L f + Lr )y2

Cr (L f + Lr )(Iz − L f Lr m) + (L f my1)2

)
(6.55)

ψ̇ = L f my1 ẏ2 + Cr (L f + Lr )y2
Cr (L f + Lr )(Iz − L f Lr m) + (L f my1)2

(6.56)

Expressing the system’s state variables as functions of the flat outputs, one has the
following state-space description for the system

(
ẏ1
ÿ2

)
= Δ(y1, y2, ẏ2)

(
u1
u2

)
+ Φ(y1, y2, ẏ2) (6.57)

where

Δ(y1, y2, ẏ2) =
(

Δ11(y1, y2, ẏ2) Δ12(y1, y2, ẏ2)
Δ21(y1, y2, ẏ2) Δ22(y1, y2, ẏ2)

)
(6.58)

with

Δ11(y1, y2, ẏ2) = 1

m R
(6.59)

Δ12(y1, y2, ẏ2) = C f
m (

Vy+L f ψ̇

y1
) (6.60)

Δ21(y1, y2, ẏ2) = Cr (L f +Lr )(Vy−Lr ψ̇)−L f mψ̇ y21
m Ry21

(6.61)

Δ22(y1, y2, ẏ2) =
(
−L f my1 + Lr Cr (L f +Lr )

y1

)
(L f C f R−L f Ir ω̇ f )

Iz R +
+ ((Cr (L f +Lr ))(Vy−Lr ψ̇)−L f mψ̇ y21 )

y21
·C f (Vy+L f ψ̇)

my1
− Cr (L f +Lr )

y1
RC f −Ir ω̇ f

m R

(6.62)

Moreover, about matrix Φ(y1, y2, ẏ2) it holds

Φ(y1, y2, ẏ2) =
(

Φ1(y1, y2, ẏ2)
Φ2(y1, y2, ẏ2)

)
(6.63)

with elements
Φ1(y1, y2, ẏ2) = ψ̇Vy − Ir

m R (ω̇r + ω̇ f ) (6.64)

Φ2(y1, y2, ẏ2) = −L f my1 f3(x, t) − Cr (L f +Lr )

y1
f2(x, t)+

+C f (L f +Lr )(Vy−Lr ψ̇)−L f mψ̇ y21
y21

f1(x, t) + Lr Cr (L f +Lr )

y1
f3(x, t)

(6.65)
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According to the above, the system’s control input can be also written as a function
of the flat output and its derivatives. Thus one has

(
ẏ1
ÿ2

)
= Δ(y1, y2, ẏ2)

(
u1
u2

)
+ Φ(y1, y2, ẏ2) (6.66)

i.e., (
u1
u2

)
= Δ−1(y1, y2, ẏ2)−1(

(
ẏ1
ẏ2

)
− Φ(y1, y2, ẏ2)) (6.67)

which means that provided that matrix Δ(y1, y2, ẏ2) is invertible, the control input
u = [u1, u2]T can be written as a function of the flat output and its derivatives. The
nonsingularity of matrix Δ(y1, y2, ẏ2) depends on the determinant

det (Δ(y1, y2, ẏ2)) = (Ir ω̇ f −C f R)(L2
f y21m2−Cr (L f +Lr )Lr L f m+Cr Iz Lr )

Iz R2y1m2
(6.68)

This determinant has nonzero values because it holds:

(i) (Ir ω̇ f − C f R) �= 0 since for the wheels rotational acceleration one has ω̇ f <
C f R

Ir
, and also

(ii) (L2
f y21m2 − Cr (L f + Lr )Lr L f m + Cr Iz Lr ) �= 0 when Iz > L f m.

The differentially flat model of the vehicle can be also written in a canonical form
after defining the new control input vector

(
v1
v2

)
= Δ(y1, y2, ẏ2)

(
u1
u2

)
+ Φ(y1, y2, ẏ2) (6.69)

thus one obtains a MIMO system description into canonical form, i.e.,

⎛
⎝

ẏ1
ẏ2
ÿ2

⎞
⎠ =

⎛
⎝
0 0 0
0 0 1
0 0 0

⎞
⎠

⎛
⎝

y1
y2
ẏ2

⎞
⎠ +

⎛
⎝
1 0
0 0
0 1

⎞
⎠

(
v1
v2

)
(6.70)

Once the vehicle’s model is written in the differentially flat form, the controller that
enables tracking of a desirable trajectory defined by yre f

1 , yre f
2 , ẏre f

2 is given by

v1 = ẏre f
1 − kp1(y1 − yre f

1 )

v2 = ÿre f
2 − kd2(ẏ2 − ẏre f

2 ) − kp2(y2 − yre f
2 )

(6.71)

and defining the error variables e1 = y1 − yre f
1 and e2 = y2 − yre f

2 one has the
following tracking error dynamics for the closed-loop system

ė1 + kp1e1 = 0
ë2 + kd2 ė2 + kp2e2 = 0

(6.72)
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Therefore, the suitable selection of gains kp1>0 and kp2 > 0, kd2 > 0 assures
the asymptotic elimination of the tracking errors, i.e., limt→∞e1(t) = 0 and
limt→∞e2(t) = 0.

The control input that is finally applied for the vehicle’s steering is given by

(
u1
u2

)
= Δ−1(y1, y2, ẏ2)−1(

(
v1
v2

)
− Φ(y1, y2, ẏ2)) (6.73)

or equivalently

(
u1

u2

)
= Δ−1(y1, y2, ẏ2)−1[

(
ẏre f
1 − kp1 (y1 − yre f

1 )

ÿre f
2 − kd2 (ẏ2 − ẏre f

2 ) − kp2 (y2 − yre f
2 )

)
− Φ(y1, y2, ẏ2)]

(6.74)

The transformation of the vehicle’s model into a canonical form, through the appli-
cation of differential flatness theory, facilitates not only the design of a feedback
controller for trajectory tracking but also the design of filters for the estimation of
the state vector of the vehicle out of a limited number of sensor measurements.

6.5.4 Estimation of Vehicle Disturbance Forces
with Kalman Filtering

6.5.4.1 State Estimation with the Derivative-Free
Nonlinear Kalman Filter

To account for model uncertainties and external disturbances, observer-based esti-
mation has been proposed in various forms (disturbance observers, extended state
observers, etc.) [85, 107, 108, 354].

It was shown that the initial nonlinear model of the vehicle can be written in the
MIMO canonical form

⎛
⎝

ẏ1
ẏ2
ÿ2

⎞
⎠ =

⎛
⎝
0 0 0
0 0 1
0 0 0

⎞
⎠

⎛
⎝

y1
y2
ẏ2

⎞
⎠ +

⎛
⎝
1 0
0 0
0 1

⎞
⎠

(
v1
v2

)
(6.75)

Thus one has a MIMO linear model of the form

ẏ f = A f y f + B f v
z f = C f y f

(6.76)

where y f = [y1, y2, ẏ2]T and matrices A f ,B f ,C f are in the MIMO canonical form

A f =
⎛
⎝
0 0 0
0 0 1
0 0 0

⎞
⎠ B f =

⎛
⎝
1 0
0 0
0 1

⎞
⎠ CT

f =
⎛
⎝
1 0
0 1
0 0

⎞
⎠ (6.77)
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where the measurable variables y1 = Vx , y2 = L f mVy − Izψ̇ are associated with
the linear velocity of the vehicle Vx , Vy and with its angular velocity ψ̇ . For the
aforementioned model, and after carrying out discretization of matrices A f , B f , and
C f with common discretization methods, one can perform linear Kalman filtering
using Eqs. (4.5) and (4.6). This is Derivative-free nonlinear Kalman filtering for the
model of the vehicle which, unlike EKF, is performed without the need to compute
Jacobian matrices and does not introduce numerical errors due to approximative
linearization with Taylor series expansion.

6.5.4.2 Kalman Filter-Based Estimation of Disturbances

It is assumed that disturbance forces affect the nonlinear vehicle model along its
longitudinal and transversal axis and that disturbance torques affect the nonlinear
vehicle model on its z axis. For example, disturbance forces be due to a force vector
that coincides with the vehicle’s longitudinal axis (e.g., traction disturbance) or dis-
turbance torques can be due to unmodeled lateral forces. These disturbance forces
and torques change dynamically in time and their dynamics is given by

d̃x = fdx (Vx , Vy, ψ̇)

d̃y = fdy (Vx , Vy, ψ̇)

d̃ψ = Tdψ (Vx , Vy, ψ̇)

(6.78)

Since the state variables of the vehicle’s dynamic model can be written as functions
of the flat outputs y1 and y2 and of their derivatives it also holds

d̃(i)
x = f (i)

dx
(y1, y2, ẏ2)

d̃(i)
y = f (i)

dy
(y1, y2, ẏ2)

d̃(i)
ψ = T (i)

dψ
(y1, y2, ẏ2)

(6.79)

where i = 1, 2, . . . stands for the i th order derivative of the disturbance variable.
Considering the effect of disturbance functions on the initial nonlinear state equa-

tion of the vehicle and the linear relation between the initial state variables [Vx , Vy]
and the state variables of the flat system description [y1, y2] one has the appearance
of the disturbance terms in the canonical form model of Eq. (6.70)

⎛
⎝

ẏ1
ẏ2
ÿ2

⎞
⎠ =

⎛
⎝
0 0 0
0 0 1
0 0 0

⎞
⎠

⎛
⎝

y1
y2
ẏ2

⎞
⎠ +

⎛
⎝
1 0
0 0
0 1

⎞
⎠

(
v1
v2

)
+

⎛
⎜⎝

1
m d̃x

0

L f
˙̃dy − ˙̃dψ

⎞
⎟⎠ (6.80)

Next, the state vector of the model of Eq. (7.66) is extended to include as additional
state variables the disturbance forces d̃x , d̃y , and d̃psi . Then, in the new state-space

http://dx.doi.org/10.1007/978-3-319-16420-5_4
http://dx.doi.org/10.1007/978-3-319-16420-5_4
http://dx.doi.org/10.1007/978-3-319-16420-5_7
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description one has z1 = y1, z2 = y2, z3 = ẏ2, z4 = f̃a = 1
m d̃x , z5 = ˙̃fa ,

z6 = ˙̃fb = L f
˙̃dy − ˙̃dψ , z7 = ¨̃fb, which takes the form of matrix equations

ż = Ã·z + B̃·ṽ (6.81)

where the control input is

ṽ =
(

v1 v2
1
m

¨̃dx L f d̃(3)
y − d̃(3)

ψ

)T
or

ṽ =
(

v1 v2
¨̃fa f̃ (3)

b

)T (6.82)

with

Ã =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

B̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

C̃T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 1
0 0
0 0
0 0
0 0
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.83)

where the measurable state variables are z1 and z2. Since the dynamics of the dis-
turbance terms f̃a and f̃b are taken to be unknown in the design of the associated
disturbances’ estimator one has the following dynamics:

żo = Ão·z + B̃o·ṽ + K (Coz − Coẑ) (6.84)

where K∈R7×2 is the state estimator’s gain and

Ão =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

B̃o =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

C̃T
o =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 1
0 0
0 0
0 0
0 0
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.85)

Defining as Ãd , B̃d , and C̃d , the discrete-time equivalents of matrices Ão, B̃o, and
C̃o, respectively, a Derivative-free nonlinear Kalman Filter can be designed for the
aforementioned representation of the system dynamics [436, 437]. The associated
Kalman Filter-based disturbance estimator is given by
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measurement update:

K (k) = P−(k)C̃T
d [C̃d ·P−(k)C̃T

d + R]−1

x̂(k) = x̂−(k) + K (k)[z(k) − C̃d x̂−(k)]
P(k) = P−(k) − K (k)C̃d P−(k)

(6.86)

time update:

P−(k + 1) = Ãd(k)P(k) ÃT
d (k) + Q(k)

x̂−(k + 1) = Ãd(k)x̂(k) + B̃d(k)ṽ(k)
(6.87)

To compensate for the effects of the disturbance forces it suffices to use in the control
loop the modified control input vector

v =
⎛
⎝v1 − ˆ̃fa

v2 − ˆ̃̇
fb

⎞
⎠ or v =

(
v1 − ẑ4
v2 − ẑ6

)
(6.88)

6.5.5 Simulation Tests

To evaluate for the performance of the proposed nonlinear control scheme, as well as
for the performance of the Kalman Filter-based disturbances, estimator simulation
experiments have been carried. Different velocity setpoints have been assumed (for
velocity along the horizontal and vertical axis of the inertial reference frame, as well
as for angular velocity round the vehicle’s z axis). Moreover, different disturbance
forces and torques have been assumed to affect the vehicles’ dynamic model. Using
the representation of the vehicle’s dynamics given in Eqs. (6.48)–(6.51), two gener-
alized disturbance forces/torques have been considered: the first denoted as f̃a was
associated with state variable y1, while the second one denoted as f̃b was associated
with the state variable y2. It was also assumed that the change in time of the gen-
eralized forces and torques was defined by the second derivative of the associated

variable, i.e., ¨̃fa and ¨̃fb. The disturbances dynamics was completely unknown to
the controller and their identification was performed in real time by the disturbance
estimator. The control loop used in the vehicle’s autonomous navigation is given in
Fig. 6.42.

Themeasurable variables used by the control and disturbances’ estimation scheme
were the vehicle’s velocity Vx along the longitudinal axis, the vehicle’s velocity Vy

along the lateral axis and the vehicle’s yaw rate ψ̇ . The first two variables can be
obtained with the use of onboard accelerometers, while the third variable can be
obtained with the use of a gyrocompass. The longitudinal axis of the vehicle is
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∧∧
∼ ∼

Fig. 6.42 Control loop for the autonomous vehicle comprising a flatness-based nonlinear controller
and a Kalman Filter-based disturbances estimator
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Fig. 6.43 Vehicle control under disturbances profile 1: a convergence of x-axis velocity Vx to the
desirable setpoint, b convergence of the y-axis velocity Vy to the desirable setpoint

denoted as x-axis, while the lateral axis of the vehicle is denoted as y-axis. As it
can be seen in Figs. 6.43, 6.44, 6.45, 6.46, 6.47, 6.48, 6.49, and 6.50, the proposed
nonlinear controller succeeded accurate tracking of velocity setpoints. Moreover,
the efficient estimation of disturbance forces and torques that was succeeded by the
Kalman Filter-based disturbance estimator enabled their compensation through the
inclusion of an additional control term in the loop.



288 6 Differential Flatness Theory in Mobile Robotics and Autonomous Vehicles

0 5 10 15 20 25 30 35 40
−1.5

−1

−0.5

0

0.5

1

time

V
el

ψ 0 20 40
−5

0

5

10

15

time

fa
 −

 fa
es

t

0 20 40
−0.5

0

0.5

1

time

df
a/

dt
 −

 d
fa

es
t

/d
t

0 20 40
−2

0

2

4

time
df

b/
dt

 −
 d

fb
es

t
/d

t

0 20 40
−0.5

0

0.5

1

1.5

time

df
2

b/
dt

2  −
 d

f2
b

es
t

/d
t2

(a) (b)

Fig. 6.44 Vehicle control under disturbances profile 1: a convergence of yaw rate ψ̇ to the desirable
setpoint, b estimation of the disturbance terms and of their rate of change
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Fig. 6.45 Vehicle control under disturbances profile 2: a convergence of x-axis velocity Vx to the
desirable setpoint, b convergence of the y-axis velocity Vy to the desirable setpoint

6.6 Active Vehicle Suspension Control

6.6.1 Overview

Another application area of differential flatness theory-based control and filtering for
intelligent vehicles design is active suspension control. In the recent years there has
been systematic effort towards designing vehicles of improved safety and comfort
and to this end the development of active suspension control systems has been an
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Fig. 6.46 Vehicle control under disturbances profile 2: a convergence of yaw rate ψ̇ to the desirable
setpoint, b estimation of the disturbance terms and of their rate of change
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Fig. 6.47 Vehicle control under disturbances profile 3: a convergence of x-axis velocity Vx to the
desirable setpoint, b convergence of the y-axis velocity Vy to the desirable setpoint

important research topic. One can note several results about active suspension control
systems exhibiting robustness to external disturbance forces and being capable of
efficiently suppressing the vibrations induced to the vehicle by these disturbances.
H∞ controllers have been developed taking into account worst case disturbances
on the suspension models [134, 165, 579]. Moreover, there have been results on
operating the suspension’s control loop under limited information provided by a
small number of onboard sensors. This can be seen in the case of developing some
type of state estimator or statistical filter to approximate the nonmeasurable ele-
ments of the suspension’s state vector and the unknown disturbance forces. Par-
ticularly, one can note the use of Linear Quadratic Gaussian (LQG) control where
Kalman Filtering is combined with an optimal controller [193, 196, 206, 269, 341].
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Fig. 6.48 Vehicle control under disturbances profile 3: a convergence of yaw rate ψ̇ to the desirable
setpoint, b estimation of the disturbance terms and of their rate of change
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Fig. 6.49 Vehicle control under disturbances profile 4: a convergence of x-axis velocity Vx to the
desirable setpoint, b convergence of the y-axis velocity Vy to the desirable setpoint

Moreover in [207] the application of a sliding-mode controller together with Kalman
Filtering has been proposed for implementing state estimation-based control of the
suspension’s model. Additionally, disturbance observers have been used for simul-
taneous estimation of the suspension’s state vector and of the unknown external
disturbances. The suitability of disturbance observers for vibration control problems
has been shown in [26], while the efficiency of disturbance estimators in vehicle con-
trol loops and especially in the suspension control problem has been demonstrated
in [40, 121, 123, 248, 249, 491]. Finally, a scheme of distributed Kalman Filtering
has been applied to disturbances and state vector estimation for the suspension’s
mechanism in [270].
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Fig. 6.50 Vehicle control under disturbances profile 4: a convergence of yaw rate ψ̇ to the desirable
setpoint, b estimation of the disturbance terms and of their rate of change

In this section an approach to solve the problemof active control of vehicle suspen-
sions is developedwith the use of flatness-based controller and aKalman Filter-based
disturbances estimator. First, dynamic analysis for the vehicle’s suspension model
is provided. Active vehicle suspension control systems are underactuated and the
efficient suppression of disturbance inputs (e.g., due to rough road surface) is impor-
tant for attaining the performance objectives of the control loop. The elements of
the state vector are variables denoting the displacement of the sprung and unsprung
masses from their zero position and variables denoting the linear velocities of these
masses. The control inputs to the model are the force generated by the actuator
placed between the two masses (which aims at the suppression of vibrations) and the
unknown disturbance force that is generated due to contact of the tire with the road
surface. The model can take the form of a linear state-space equation. Moreover, by
assuming nonlinearities in the spring and damper terms of the suspension a nonlinear
dynamical model is obtained.

Next, it is shown how a controller for the aforementioned suspension model can
be obtained through the application of differential flatness theory [152, 465, 516,
535]. The flat output for the suspension’s model is a scalar variable which is equal
to the weighted sum of the elements of the suspension’s state vector. By expressing
all state variables and the control input of the suspension model as functions of the
flat output and its derivatives the system’s dynamic model is transformed into the
linear Brunovksy (canonical) form [317, 479]. For the latter model it is possible
to design a state feedback controller that enables accurate tracking of the vehicle’s
velocity setpoints. However, since measurements are available only for certain ele-
ments of the transformed state vector, to implement a state feedback control loop
the rest of the elements of the suspension’s transformed state vector have to be esti-
mated with the use of an observer or filter. To this end the concept of Derivative-free
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nonlinear Kalman Filtering is employed. By avoiding linearization approximations,
the proposed filtering method succeeds better estimation of the system’s state vari-
ables [422, 427].

A particular difficulty, in the case of state estimation of the suspension’s model is
the existence of the unmodeled disturbance forces. It is shown that it is possible to
redesign the Kalman Filter in the form of a disturbance observer and using the esti-
mation of the disturbance to develop an auxiliary control input that compensates for
the disturbances effects [85, 107, 108, 183, 354]. In this way the suspension’s control
system can become robust with respect to uncertainties in the model’s parameters
or uncertainties about external forces. It is also noted that in terms of computation
speed the proposed Kalman Filter-based disturbance estimator is faster than distur-
bance estimators that may be based on other nonlinear filtering approaches (e.g.,
Extended Kalman Filter, Unscented Kalman Filter or Particle Filter) thus becoming
advantageous for the real-time estimation of the unknown suspension dynamics.

The efficiency of the proposed control and Kalman Filter-based disturbances esti-
mation scheme is evaluated through numerical simulation tests. It will be shown
that the accurate estimation of the disturbance forces which are exerted on the sus-
pension enables their efficient compensation. This is achieved by introducing an
additional element in the controller that produces a counterdisturbance input based
on the estimated value for the disturbance variable. This control schemefinally results
in minimizing the effects of the disturbances on the vehicle’s parts.

6.6.2 Dynamic Model of Vehicle Suspension

6.6.2.1 Dynamics of the 2-DOF Suspension

The suspension system is depicted in Fig. 6.51 and its dynamics is written as

m1 ẍ1 + c1(ẋ1 − ẋ2) + k1(x1 − x2) = f
m2 ẍ2 + c1(ẋ2) − ẋ1 + k1(x2 − x1)+
+ c2(ẋ2 − ζ̇ ) + k2(x2 − ζ ) = − f

(6.89)

Variable x1 denotes the sprung mass displacement while variable x2 denotes the
unsprung mass displacement. Tyre’s deflection ζ and its time derivatives ζ (i). i =
1, 2, . . . represent unknown external disturbance inputs due to road surface roughness
and are assumed to be bounded. The mass that needs regulation is the sprung mass
m1 which is also considered to be larger than m2. The control force f is generated
by an actuator placed between the two masses (see Fig. 6.51).

A normalization is performed to the model through the following procedure: (i)

the normalized time is defined as τ = t
√

k1
m1

, (ii) the normalized input force is

u = f
k1
. The system constant coefficients are redefined as ε = m2

m1
, γ1 = c1

m1

√
m1
k1
,
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Fig. 6.51 An active vehicle
suspension system where
both the sprung and the
unsprung mass are connected
to a spring and a damper

γ2 = c2
m1

√
m1
k1
, κ = k2

k1
. Thus, the dynamics model of the vehicle’s suspension can

be rewritten as
ẍ1 + γ1(ẋ1 − ẋ2) + (x1 − x2) = u
εẍ2 + γ1(ẋ2 − ẋ1) + (x2 − x1)+
+ γ2(ẋ2 − ζ̇ ) + κ(x2 − ζ ) = −u

y = x1

(6.90)

The model of Eq. (6.90) can be also written is state-space form after defining the
state variables z1 = x1, z2 = ẋ1, z3 = x2, z4 = ẋ2. Thus one has

⎛
⎜⎜⎝

ż1
ż2
ż3
ż4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 1 0 0
−1 −γ1 1 γ1
0 0 0 1
1
ε

γ1
ε

− 1+κ
ε

− γ1+γ2
ε

⎞
⎟⎟⎠

⎛
⎜⎜⎝

z1
z2
z3
z4

⎞
⎟⎟⎠ +

+

⎛
⎜⎜⎝

0
1
0

− 1
ε

⎞
⎟⎟⎠ u +

⎛
⎜⎜⎝
0 0
0 0
0 0
κ
ε

γ2
ε

⎞
⎟⎟⎠

(
ζ

ζ̇

)
(6.91)

where all terms associated with disturbance ζ can be represented by the new variable
Δ. Thus one obtains

d

dτ
xs = Axs + Bu + Δ (6.92)
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6.6.2.2 A Nonlinear Model of Vehicle Suspension Dynamics

The dynamical model of the two-degrees of freedom vehicle suspension (see
Fig. 6.52) is given as follows [491]

ms z̈s + Fsd + Fsk = FA

mu z̈u − Fsk − Fsd + Kt (zu − zr ) = −FA
(6.93)

where FA is the force generated by the actuator, Fsk is the force associated with the
suspension’s spring term, Fsc is the force associated with the suspension’s damper
term and Ft = kt (zu − zr ) is a spring force associated with elasticity coefficient kt

and denoting the spring-type behavior of the wheel when in contact with the road’s
surface.

Fig. 6.52 An active
suspension system
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It holds that
Fsk (zs, zu) = ks(zs − zu) + kns (zs − zu)3 (6.94)

Fsc(zs, zu) = bs(żs − żu)+
+bns(żs − żu)2sgn(żs − żu)

(6.95)

Denoting the state variables x1 = zs , x2 = żs , x3 = zu , x4 = żu one has

ẋ1 = x2

ẋ2 = − 1
ms

[ks(x1 − x3) + kns (x1 − x3)3+
+bs(x2 − x4) + bns(x2 − x4)2sgn(x2 − x4)] + 1

ms
u

ẋ3 = x4

ẋ4 = − kt
mu

x3 + 1
mu

[ks(x1 − x3)+
+kns (x1 − x3)3 + bs(x2 − x4)+
+bns(x2 − x4)2sgn(x2 − x4)] − 1

mu
u + kt

mu
zr

(6.96)

where the term 1
mu

zr can be considered as a disturbance term. Denoting the nonlinear
functions

f1(x, t) = − 1
ms

[ks(x1 − x3) + kns (x1 − x3)3+
+bs(x2 − x4) + bns(x2 − x4)2sgn(x2 − x4)] (6.97)

g1(x, t) = 1
ms

(6.98)

f2(x, t) = − kt
mu

x3 + 1
mu

[ks(x1 − x3) + kns (x1 − x3)3+
+bs(x2 − x4) + bns(x2 − x4)2sgn(x2 − x4)] (6.99)

g2(x, t) = − 1
mu

(6.100)

one has the following state-space description

ẋ1 = x2
ẋ2 = f1(x, t) + g1(x, t)u

ẋ3 = x4
ẋ4 = f2(x, t) + g2(x, t)u

(6.101)
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6.6.3 Flatness-Based Control for a Suspension Model

6.6.3.1 A Flatness-Based Controller for the Vehicle Suspension Model

It can be proven that the suspension model is differentially flat by defining the fol-
lowing flat output [491]

F = (
0 0 0 1

)
C−1

o

⎛
⎜⎜⎝

z1
z2
z3
z4

⎞
⎟⎟⎠

i.e., F = ε
κ

x1 − εγ2
κ2

ẋ1 + εκ−γ 2
2 ε

κ2
x2 − ε2γ2

κ2
ẋ2

(6.102)

where Co stands for the system’s controllability matrix.

Co = [B, AB, A2B, A3B] (6.103)

It can be shown that all state variable of the system and the control input can bewritten
as functions of the flat output and its derivatives. Indeed for the unperturbed system,
i.e., if from the model of Eq. (6.102) the disturbance input ζ and its derivatives ζ̇ are
ignored it holds

F = ε
κ

x1 − εγ2
κ2

ẋ1 + (εκ−γ 2
2 )ε

κ2
x2 − ε2γ2

κ2
ẋ2

Ḟ = ε
κ

ẋ1 + εγ2
κ

x2 + ε2

κ
ẋ2

F̈ = −εx2
F (3) = εẋ2

(6.104)

while one also has
x1 = κ

ε
F + γ2

ε
Ḟ + F̈

x2 = κ
ε

Ḟ + γ2
ε

F̈ + F (3)

x3 = −1
ε

F̈
x4 = −1

ε
F (3)

(6.105)

while with the use of u = ẍ1 + γ1(ẋ1 − ẋ2)+ (x1 − x2) it can be also concluded that
the control input is a function of the flat output and its derivatives.

Taking also into account the effects of the disturbance input ζ and of its derivative
ζ̇ the flat output and its derivative are formulated as follows

F = ε
κ

x1 − εγ2
κ2

ẋ1 + εκ−γ 2
2 ε

κ2
x2 − ε2γ2

κ2
ẋ2

Ḟ = ε
κ

x1 − εγ2
κ2

x2 + ε2

κ
ẋ2 − εγ2

κ
ζ(τ ) − εγ 2

2
κ2

ζ̇ (τ )

F̈ = −εx2 + εζ(τ ) + εγ2(1 − 1
κ
)ζ̇ (τ ) − εγ 2

2
κ2

ζ̈ (τ )

F (3) = −εẋ2 + εζ̇ (τ ) + εγ2(1 − 1
κ
)ζ̈ (τ ) − εγ 2

2
κ2

ζ (3)(τ )

(6.106)
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Differentiating one more time the flat output one obtains

F (4) = −x1 − γ1 ẋ1 + (1 + κ)x2+
+(γ1 + γ2)ẋ2 + u − κζ(τ ) − γ2ζ̇ (τ )+
+εζ̈ (τ ) + εγ2(1 − 1

κ
)ζ (3)(τ )−

−ε
γ 2
2

κ2
ζ (4)(τ )

(6.107)

Aggregating all terms other than u into one variable

φ(τ) = x1 − γ1 ẋ1 + (1 + κ)x2 + (γ1 + γ2)ẋ2−
−κζ(τ ) − γ2ζ̇ (τ ) + εζ̈ (τ )+
+εγ2(1 − 1

κ
)ζ (3)(τ ) − εγ 2

2
κ2

ζ (4)(τ )

(6.108)

one has the system dynamics
F (4) = u + φ(τ) (6.109)

or equivalently, in state-space form

⎛
⎜⎜⎝

Ḟ1

Ḟ2

Ḟ3

Ḟ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

F1
F2
F3
F4

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝
0
0
0
1

⎞
⎟⎟⎠

(
u + φ(τ)

)
(6.110)

with the state variable Fi (τ ), i = 1, . . . , 4 to stand for the (i − 1)th order derivative
F (i−1)(t) of the flat output. The estimation of the termφ(τ) by a disturbance observer
enables to design a controller for the vehicle’s suspension model as follows

u(τ ) = F (4)
d (τ ) − k1(F (3)(τ ) − F (3)

d (τ ))−
−k2(F̈(τ ) − F̈d(τ ) − k3(Ḟ(τ )−
−Ḟd(τ )) − k4(F(τ ) − Fd(τ )) − φ̂(τ )

(6.111)

6.6.4 Compensating for Model Uncertainty with the Use
of the H∞ Kalman Filter

TheKalmanFilter for the canonical formof the suspensionmodel given inEq. (6.110)
can be redesigned to cope with the case of maximum errors of some linear combi-
nation of states for worst case assumptions of process noise, measurement noise
and disturbances. This can be useful in state estimation for the vehicle suspension
model, as a method for model uncertainty compensation. Filters designed to mini-
mize a weighted norm of state errors are called H∞ or minimax filters [177, 490].



298 6 Differential Flatness Theory in Mobile Robotics and Autonomous Vehicles

The discrete-time H∞ filter uses the same state-space model as the Kalman Filter,
which has the form

x(k + 1) = A(k)x(k) + B(k)u(k) + w(k)

z(k) = C(k)x(k) + v(k)
(6.112)

E[w(k)] = 0, E[w(k)w(k)T ] = Q(k)δi j , E[v(k)] = 0, E[v(k)v(k)T ] = R(k)δi j

and E(w(k)v(k)T ) = 0. The update of the state estimate is again given by

x̂(k) = x̂−(k) + K (k)(z(k) − C(k)x̂−(k)) (6.113)

that minimizes the trace of the covariance matrix of the state vector estimation error

J = 1

2
E{x̃(k)T ·x̃(k)} = 1

2
tr(P−(k)) (6.114)

where x̃−(k) = x(k) − x̂−(k) and P−(k) = E[x̃−(k)T · x̃−(k)]. The H∞ filtering
approach defines first a transformation

d(k) = L(k)x(k) (6.115)

where L(k)∈Rn×n is a full rank matrix. The use of the transformation given in
Eq. (6.115) allows certain combinations of states to be givenmoreweight than others.
Next, defining the estimation error variable d̃1(i) = d(i)− d̂(i), the cost function of
the H∞ filter is initially formulated as

J (k) = ∑k−1
i=0 d̃(i + 1)T S(i)d̃(i + 1)/b

b = x̃−(0)T P−(0)−1 x̃−(0) + ∑k−1
i=0wT (i + 1)Q(i + 1)−1w(i + 1)+

+∑k−1
i=0 vT (i)R(i)−1v(i)

(6.116)

where Si is a positive-definite symmetric weighting matrix. It can be observed that
both matrices S(k) and L(k) appear in the cost function and thus affect the solution
x̂−(k +1) of the optimization problem. The objective is to find state vector estimates
x̂−(k) and x̂(k) that keep the cost function below a given value 1 θ for worst case
conditions, i.e.,

J (k) <
1

θ
(6.117)

By rewriting Eq. (6.116) and substituting Eq. (6.112) a modified cost functional is
obtained

Ja(k) = − 1
θ x̃−(0)T P−(0)x̃−(0) + ∑k−1

i=0Γ (i)

Γ (i) = (x(i + 1) − x̂−(i + 1))T Wi (x(i + 1) − x̂−(i + 1))−
− 1

θ (wT (i + 1)Q(i + 1)−1w(i + 1) + (y(i) − C(i)x−(i))T R(i)−1(y(i) − C(i)x−(i)))
(6.118)
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and
W (i) = L(i)T S(i)L(i) (6.119)

This cost function does not include the dynamic model of the system given in
Eq. (6.112) and this is added by using a vector of Lagrange multipliers λ(i + 1).
This gives

J (k) = − 1
θ

x̃−(0)T P−(0)x̃−(0)+
+∑k−1

i=0 (Γi + 2λ(i+1)T

θ
)(A(i)x̂(i) + B(i)u(i)+

+w(i) − x(i + 1)) + 2λ(0)T

θ
x(0) − 2λ(0)T

θ
x(0)

(6.120)

The cost function of the filter given in Eq. (6.120) can be used as the basis for
the solution. It is aimed to find equations defining x̂−(k + 1), or equivalently a
measurement weighting matrix (similar to the Kalman gain matrix), that minimize
the cost for worst case assumptions about x(0), w(i) and y(i). Thus, the optimization
objective is formulated as

J ∗(k) = min
xi

max
x(0), w(i), y(i)

J (k) (6.121)

It is noted that the estimation algorithm uses knowledge of the output measurement
y(i) but receives no information about the initial conditions of the system x(0)
and the process noise w(i). Under this assumption, the estimation should be able
to compensate for worst case values for the unknown parameters. This is a game
theoretic problem that is solved in two steps.

In the first step of optimization, partial derivatives of J (k) with respect to x(0),
w(i) and λ(i) are set to zero so as to maximize the cost function of Eq. (6.120),
now being dependant only on the terms x̂−(k + 1) and y(k) which are included
in Γi . In the second step of optimization, the partial derivatives of J (k) with
respect to x̂−(k + 1) and y(k) are set to zero, to obtain a condition for the filter’s
gain matrix that minimizes this cost functional. From the optimization conditions
∂ J (k)/∂x0 = 0T , ∂ J (k)/∂w(i) = 0T , ∂ J (k)/∂λ(i) = 0T ones obtains an expres-
sion of J (k) as function of x̂−(k+1) and y(k). Next, from the optimization conditions
∂ J (k)/∂ x̂−(i + 1) = 0T , and ∂ J (k)/∂ y(i) = 0T one obtains the filter’s equations.

The recursion of the H∞ Kalman Filter can be formulated again in terms of a
measurement update and a time update part
measurement update:

D(k) = [I − θW (k)P−(k) + CT (k)R(k)−1C(k)P−(k)]−1

K (k) = P−(k)D(k)CT (k)R(k)−1

x̂(k) = x̂−(k) + K (k)[y(k) − Cx̂−(k)]
(6.122)
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time update:
x̂−(k + 1) = A(k)x(k) + B(k)u(k)

P−(k + 1) = A(k)P−(k)D(k)AT (k) + Q(k)
(6.123)

where it is assumed that parameter θ is sufficiently small to maintain

P−(k) − θW (k) + CT (k)R(k)−1C(k) (6.124)

positive definite. When θ = 0 the H∞ Kalman Filter becomes equivalent to the
standard Kalman Filter. It is noted that apart from the process noise covariance
matrix Q(k) and the measurement noise covariance matrix R(k) the H∞ Kalman
filter requires tuning of the weight matrices L and S, as well as of parameter θ .

6.6.5 Robust State Estimation with the Use
of Disturbance Observers

6.6.5.1 State Estimation with the Derivative-Free
Nonlinear Kalman Filter

Previous results about state estimation through transformation to linear canonical
forms can be found in [334, 335, 436, 437]. It was shown that the dynamical model
of the suspension can be written in the MIMO canonical form of Eq. (6.110). Thus
one has a MIMO linear model of the form

ẏ f = A f y f + B f v
z f = C f y f

(6.125)

where y f = [F1, F2, F3, F4]T and matrices A f ,B f ,C f are in the form

A f =

⎛
⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ B f =

⎛
⎜⎜⎝
0
0
0
1

⎞
⎟⎟⎠ CT

f =

⎛
⎜⎜⎝
1
0
0
0

⎞
⎟⎟⎠ (6.126)

where the measurable variables y1 = F is associated with the displacement of the
sprung and unsprung mass in the suspension model. For the aforementioned model,
and after carrying out discretization of matrices A f , B f and C f with common dis-
cretization methods one can apply linear Kalman filtering using Eqs. (4.5) and (4.6).
This is Derivative-free nonlinear Kalman filtering for the model of the suspension
which is performed without the need to compute Jacobian matrices and does not
introduce numerical errors due to approximative linearization with Taylor series
expansion.

http://dx.doi.org/10.1007/978-3-319-16420-5_4
http://dx.doi.org/10.1007/978-3-319-16420-5_4
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6.6.5.2 Kalman Filter-Based Estimation of Suspension
Disturbance Forces

Considering the effects of disturbances on the suspension’s model and after applying
a transform on the system’s state variables according to the differential flatness theory
it has been shown that the suspension model is described by

F (4) = u + φ(τ) (6.127)

The suspension’s state-space model of Eq. (6.110) will be extended to take into
account also the dynamics and the effects of the disturbance input φ(t). The extended
state vector of the suspensionmodel is defined as z∈R8×1 with z1 = F , z2 = Ḟ , z3 =
F̈ , z4 = F (3), z5 = φ, z6 = φ̇, z7 = φ̈, z8 = φ(3). The dynamics of the disturbance is
assumed to be defined by its fourth-order derivative, i.e., φ(4) = fd(F, Ḟ, F̈, F (3)).
Thus one has the extended state-space model

ż = Ã·z + B̃·ṽ
q = C̃z

(6.128)

with

Ã =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0
1 0
0 0
0 0
0 0
0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, C̃T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.129)

where the measurable variable is z1 and the control input is

ṽ = (
u, φ(4)

)T (6.130)

The disturbance estimator has the following structure

˙̂z = Ão·ẑ + B̃o·ṽ + K (z1 − ẑ1)
q̂ = C̃o ŷ

(6.131)

where the estimator’s gain K∈R8×1 and matrices Ão, B̃o and C̃o are defined as



302 6 Differential Flatness Theory in Mobile Robotics and Autonomous Vehicles

Ão =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B̃o =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0
1 0
0 0
0 0
0 0
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, C̃T
o =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.132)

The disturbance estimator’s gain K∈R8×1 will be computed through the Kalman
Filter recursion.

Defining as Ãd , B̃d , and C̃d , the discrete-time equivalents of matrices Ão, B̃o and
C̃o respectively, a Derivative-free nonlinear Kalman Filter can be designed for the
aforementioned representation of the system dynamics [436, 437]. The associated
Kalman Filter-based disturbance estimator is given by
measurement update:

K (k) = P−(k)C̃T
d [C̃d ·P−(k)C̃T

d + R]−1

x̂(k) = x̂−(k) + K (k)[z(k) − C̃d x̂−(k)]
P(k) = P−(k) − K (k)C̃d P−(k)

(6.133)

time update:

P−(k + 1) = Ãd(k)P(k) ÃT
d (k) + Q(k)

x̂−(k + 1) = Ãd(k)x̂(k) + B̃d(k)ṽ(k)
(6.134)

To compensate for the effects of the disturbance forces it suffices to use in the control
loop the modified control input vector v1 = u − φ(t).

6.6.6 Simulation Tests

To evaluate for the performance of the proposed Kalman Filter-based and distur-
bances estimation scheme for the vehicle’s suspension model simulation tests were
carried out. Different disturbance forces were assumed to be exerted on the vehicle’s
wheel due to its contact with the rough road surface. The disturbances dynamics was
completely unknown to the controller and their identification was performed in real
time by the disturbance estimator. The parameters of the suspensionmechanismwere
as follows: m1 = 2000Kg, m2 = 40Kg, K1 = 1.0 ·10e4N/m, K2 = 1.0 ·10e4N/m,
c1 = 1790N · s/m and c2 = 20N · s/m. The control loop used for the vehicle’s sus-
pension is given in Fig. 6.53.
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Fig. 6.53 Control loop for the vehicle’s suspension comprising a flatness-based nonlinear controller
and a Kalman Filter-based disturbances estimator

The monitored parameters were the state variables of the suspension. The control
input was the force generated by the actuator. The measured parameters were the
position and velocity of the sprung and unsprung mass. The dynamics of the distur-
bance force was assumed to be defined by its fourth-order derivative. The extended
state vector used by the disturbance observer was of dimension x∈R8, where the
first four state variables were describing the suspension’s model whereas the rest
four state variables were associated with the dynamics of the disturbance force. The
real-time estimation of the external disturbance that was provided by the Kalman Fil-
ter was used by an additional control term in the control loop to generate a counter
disturbance control input. Thus, the disturbance’s effects on the vehicle’s parts were
eliminated and vibrations were efficiently suppressed. As shown in Figs. 6.54, 6.55,
6.56, 6.57, 6.58, 6.59, 6.60, 6.61, 6.62, 6.63, 6.64 and 6.65 fast stabilization of the
suspension’s sprung and unsprung masses to the desirable setpoints was succeeded
and accurate estimation of the unknown disturbances forces was performed. More-
over, is should be taken into account that for common nominal values of k1 and
m1 one obtains t < τ , i.e., t =

√
m1
k1

τ which finally gives the real time scale of

suspension’s active control system.
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Fig. 6.54 Suspension control under disturbances profile 1: a convergence of sprung mass position
x1 to the desirable setpoint, b convergence of sprung mass velocity x2 to the desirable setpoint
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Fig. 6.55 Suspension control under disturbances profile 1:a convergence of unsprungmass position
x2 to the desirable setpoint, b convergence of unsprung mass velocity x4 to the desirable setpoint

6.7 State Estimation-Based Control of Quadrotors

6.7.1 Overview

Another type of autonomous vehicles in which one can apply the differential flat-
ness theory-based methods of filtering and control is Unmanned Aerial Vehicles
(UAVs). Quadrotors are four-rotor helicopters characterized by a nonlinear 6-DOF
unstable dynamical model. To succeed autonomous navigation of the quadrotors,



6.7 State Estimation-Based Control of Quadrotors 305

0 1 2 3 4 5

time
0 1 2 3 4 5

time

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12
φ

−
es

t

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

v

(a) (b)

Fig. 6.56 Suspension control under disturbances profile 1: a estimation of the disturbance terms,
b control input generated by the actuator
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Fig. 6.57 Suspension control under disturbances profile 2: a convergence of sprung mass position
x1 to the desirable setpoint, b convergence of sprung mass velocity x2 to the desirable setpoint

it is necessary to design efficient control algorithms that will exhibit robustness to
parametric uncertainties and to external disturbances. One can cite several results
on quadrotors’ control. An approach for quadrotors’ control that is based on the
transformation of their dynamical model in the linear canonical form and which is
associated with differential flatness theory has been given in [541]. Moreover, in
[3] a flatness-based control approach is applied to quadrotors’ motion control. A
predictive controller complemented by an H∞ term for additional robustness has
been analyzed and tested in the quadrotor’s flight control problem in [397, 398]. In
[52] motion control of the quadrotor was implemented using controllers of the LQR-
type and of the PID-type, while Kalman Filtering has been used to provide position
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Fig. 6.58 Suspension control under disturbances profile 2:a convergence of unsprungmass position
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Fig. 6.59 Suspension control under disturbances profile 2: a estimation of the disturbance terms,
b control input generated by the actuator

estimates out of a visual measurements system. In [77] two control strategies are
employed as baseline controllers for the quadrotor’s model: a LQR controller which
is based on a linearized model of the quadrotor and a Sliding-Mode Controller which
is based on a nonlinear model of the quadrotor. Moreover, differential flatness the-
ory has been used for trajectory planning. In [271] and in [136], adaptive control
schemes have been proposed for the quadrotor’s model. The stability of the control
loop is confirmed through the Lyapunov approach. In [43] quadrotor’s control with
the use of a sliding-mode controller and a sliding-mode disturbance observer has
been proposed.
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Fig. 6.60 Suspension control under disturbances profile 3: a convergence of sprung mass position
x1 to the desirable setpoint, b convergence of sprung mass velocity x2 to the desirable setpoint

0 1 2 3 4 5
−0.04

−0.02

0

0.02

0.04

0.06

0.08

time

x3

0 1 2 3 4 5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time

x4

(a) (b)

Fig. 6.61 Suspension control under disturbances profile 3:a convergence of unsprungmass position
x2 to the desirable setpoint, b convergence of unsprung mass velocity x4 to the desirable setpoint

In this section, a new flatness-based control method is developed for quadrotors
that is based on differential flatness theory together with the use of a disturbance
observer that is also in accordance to differential flatness theory (the previously
analyzed Derivative-free nonlinear Kalman Filter). The differential flatness theory-
based design of the controller uses a change of coordinates (diffeomorhism) that
transforms the state-space equation of the quadrotor’s model into the linear canon-
ical (Brunovsky) form [55, 152, 340, 427, 465, 535]. For the linearized equivalent
of the quadrotor it is easier to design a state feedback controller using techniques
for linear feedback controllers’ synthesis. To supply the quadrotor’s control loop
with additional robustness, a disturbance observer is used. The disturbance observer
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Fig. 6.62 Suspension control under disturbances profile 3: a estimation of the disturbance terms,
b control input generated by the actuator
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Fig. 6.63 Suspension control under disturbances profile 4: a convergence of sprung mass position
x1 to the desirable setpoint, b convergence of sprung mass velocity x2 to the desirable setpoint

makes use of the standard Kalman Filter recursion on the linearized model of the
quadrotor. It is capable of estimating simultaneously the quadrotor’s linear and rota-
tional velocities, as well as the vector of disturbances that affect the quadrotor’s
model without the need to compute Jacobian matrices. The accurate estimation of
the disturbance inputs enables to introduce an additional control term that compen-
sates for the disturbances’ effects. The accurate tracking of reference trajectories that
is performed by the quadrotor despite the existence of external disturbances is shown
in simulation experiments.

Differential flatness theory has specific advantages when used in nonlinear con-
trol systems [55, 152, 340, 427, 465, 535]. By enabling an exact linearization of the
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Fig. 6.64 Suspension control under disturbances profile 4:a convergence of unsprungmass position
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Fig. 6.65 Suspension control under disturbances profile 4: a estimation of the disturbance terms,
b control input generated by the actuator

system’s dynamical model it makes possible to avoid the use of linear models of
local validity in the controller’s design. The controller performs efficiently despite
the change of operating points. After the design of such a state feedback controller,
one can consider the inclusion in the control loop of supplementary control terms
that will provide additional robustness. Thus one can design flatness-based adaptive
fuzzy controllers or flatness-based sliding-mode controllers. As mentioned above,
it is also possible to use a disturbance estimator-based auxiliary control input for
compensating for the effects of disturbances in the feedback control loop. Moreover,
the use of differential flatness theory in the design of state estimators and filters has
also several strong points. One can perform estimation of the complete state vector
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of the system without the need to compute partial derivatives and Jacobian matrices.
Additionally, by avoiding numerical errors which are due to approximate lineariza-
tion of the system’s dynamic model (e.g., with the use of expansion in Taylor series),
linear estimation algorithms can be implemented. In the case of Kalman Filtering,
this means that one can perform state estimation with the use of the standard Kalman
Filter recursion, thus preserving the method’s optimality features and providing state
estimates of improved precision (e.g., comparing to Extended Kalman Filtering).

6.7.2 Kinematic Model of the Quadropter

As shown in Figs. 6.66 and 6.67, two reference frames are defined [397, 398]. The
first one B = [B1, B2, B3] is attached to the quadropter’s body, whereas the second
E = [Ex , Ey, Ez] is considered to be an inertial coordinates system. The Euler
angles defining rotation round the axes of the inertial reference frame E1, E2, E3 are
defined as θ , φ, and ψ , respectively. The two reference frames are connected to each
other through a rotation matrix

R =
⎛
⎝

CψCθ CψSθ Sφ − SψCφ CψSθCφ + SψSφ

SψCθ SψSθ Sφ + CψCφ SψSθCφ − CψSφ

−Sθ Cθ Sφ CθCφ

⎞
⎠ (6.135)

where C = cos(·) and S = sin(·).
The connection between velocities in the two reference frames is as follows:

VE = R·VB (6.136)

Fig. 6.66 Quadrotor
performing a surveillance
task and the associated
reference frames
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Fig. 6.67 Reference axes
for the quadropter

where VE = [uE , vE , wE ] and VB = [u B, vB , wB] are the linear velocity vectors
expressed in the two reference frames. About the angular velocities in the two refer-
ence frames the following relation holds

η̇ = W −1ω (6.137)

that is ⎛
⎝

φ̇

θ̇

ψ̇

⎞
⎠ =

⎛
⎝
1 sin(φ)tan(θ) cos(φ)tan(θ)

0 cos(φ) −sin(φ)

0 sin(φ)sec(θ) cos(φ)sec(θ)

⎞
⎠

⎛
⎝

p
q
r

⎞
⎠ (6.138)

where η = [φ, θ, ψ]T is the angular velocities vector in the inertial reference frame
andω = [p, q, r ]T is the angular velocities vector in the body-fixed reference frame.

6.7.3 Euler-Lagrange Equations for the Quadropter

The Euler-Lagrange equation for the quadropter is formulated as follows:

d
dt (

∂L
∂q̇i

) − ∂L
∂qi

=
(

fξ
τη

)
(6.139)

where the Lagrangian is defined as L(q, q̇) = ECtrans + ECrot − E p, where ECtrans

is the kinetic energy of the quadrotor due to translational motion, ECrot is the kinetic
energy of the quadrotor due to rotational motion, and E p is the total potential energy
of the quadrotor due to lift. The generalized state vector isq = [ξ T , ηT ]T ∈R6, τη∈R3
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is the torques vector that causes rotation round the axes of the body-fixed reference
frame, and fξ = R f̂ + αT is the translational force applied to the quadrotor due
to the main control input U1 along the z-axis direction, while αT = [Ax , Ay, Az]T

are the aerodynamic forces vector, defined along the axes of the inertial reference
frame. Since the Lagrangian does not contain cross-coupling between the ξ̇ and the η̇

terms, the Lagrange-Euler equations can be divided into translational and rotational
dynamics.

The translational dynamics of the quadropter is given by

mξ̈ + mge3 = fξ (6.140)

where e3 = [0, 0, 1]T is the unit vector along the z axis of the inertial reference
frame. Equation (6.140) can be written using the following three equations

ẍ = 1
m (cos(ψ)sin(θ)cos(φ) + sin(ψ)sin(φ))U1 + Ax

m

ÿ = 1
m (sin(ψ)sin(θ)cos(φ) − cos(ψ)sin(φ))U1 + Ay

m
z̈ = −g + 1

m (cos(θ)cos(φ))U1 + Az
m

(6.141)

where m is the quadropter’s mass and g is the gravitational acceleration.

The rotational dynamics of the quadropter is given by

M(η)η̈ + C(η, η̇)η̇ = τη (6.142)

where the inertia matrix M(η) is defined as

M(η) =
⎛
⎝

Ixx 0 −Ixx Sθ

0 IyyC2φ + Izz S2φ (Iyy − Izz)CφSφCθ

−Ixx Sθ (Iyy − Izz)CφSφCθ Ixx S2θ + Iyy S2φC2θ + IzzC2φC2θ

⎞
⎠

(6.143)

and the Coriolis matrix is

C(η, η̇) =
⎛
⎝

c11 c12 c13
c21 c22 c23
c31 c32 c33

⎞
⎠ (6.144)

where the elements of the matrix are

c11 = 0

c12 = (Iyy − Izz)(θ̇CφSφ + ψ̇S2φCθ) + (Izz − Iyy)ψ̇C2φCθ

c13 = (Izz − Iyy)ψ̇CφSφC2θ

c21 = (Izz − Iyy)(θ̇CφSφ + ψ̇S2φCθ) + (Iyy − Izz)ψ̇C2φCθ + Ixx ψ̇Cθ

c22 = (Izz − Iyy)φ̇CφSφ
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c23 = −Ixx ψ̇SθCθ + Iyyψ̇S2φCθ Sθ + Izzψ̇C2φSθCθ

c31 = (Iyy − Izz)ψ̇C2θ SφCφ − Ixx θ̇Cθ

c32 = (Izz − Iyy)(θ̇CφSφSθ + φ̇S2φCθ) + (Iyy − Izz)φ̇C2φCθ + Ixx ψ̇SθCθ−
−Iyyψ̇S2φSθCθ − Izzψ̇C2φSθCθ

c33 = (Iyy − Izz)φ̇CφSφC2θ − Iyy θ̇ S2φCθ Sθ−
−Izz θ̇C2φCθ Sθ + Ixx θ̇Cθ Sθ (6.145)

Thus, the mathematical model that describes the quadrotor’s rotational motion is
given by

η̈ = M(η)−1(τη − C(η, η̇)η̇) (6.146)

Denoting w = M(η)−1(τη − C(η, η̇)η̇), one has the following notation for the
rotational dynamics

⎛
⎝

φ̈

θ̈

ψ̈

⎞
⎠ =

⎛
⎝

wa

wb

wc

⎞
⎠ (6.147)

Considering small variations of the heading angle of the quadrotor round ψ = π
2 ,

denotingw1 = U1/m and taking also that the aerodynamic coefficients Ax , Ay, Az 

m, a simplified quadropter is formulated as follows [541]

ẍ = w1sin(φ) ÿ = w1cos(φ)sin(θ) z̈ = w1cos(φ)cos(θ) − g
φ̈ = wa θ̈ = wb ψ̈ = wc

(6.148)

6.7.4 Design of Flatness-Based Controller
for the Quadrotor’s Model

It will be shown, that the quadrotor’s model given in Eq. (6.148) is a differentially flat
one, i.e., that all its state variables and the associated control inputs can be written
as functions of a new variable called flat output and of its derivatives.

The following state variables are introduced x1 = x , x2 = ẋ , x3 = y, x4 = ẏ,
x5 = z, x6 = ż, x7 = φ, x8 = φ̇, x9 = θ , x10 = θ̇ , x11 = ψ , x12 = ψ̇ . Thus, one
has the following state-space description for the quadrotor’s dynamic model

ẋ1 = x2 ẋ2 = w1sin(x7) ẋ3 = x4 ẋ4 = w1cos(x7)sin(x9)
ẋ5 = x6 ẋ6 = w1cos(x7)cos(x9) ẋ7 = x8 ẋ8 = wa

ẋ9 = x10 ẋ10 = wb ẋ11 = x12 ẋ12 = wc

(6.149)

The flat output of the system is taken to be the vector y f = [x1, x3, x5, x7, x9, x11]T .
It holds that
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x1 = [1 0 0 0 0 0]y f x2 = [1 0 0 0 0 0]ẏ f x3 = [0 1 0 0 0 0]y f x4 = [0 1 0 0 0 0]ẏ f
x5 = [0 0 1 0 0 0]y f x6 = [0 0 1 0 0 0]ẏ f x7 = [0 0 0 1 0 0]y f x8 = [0 0 0 1 0 0]ẏ f
x9 = [0 0 0 0 1 0]y f x10 = [0 0 0 0 1 0]ẏ f x11 = [0 0 0 0 0 1]y f x12 = [0 0 0 0 0 1]ẏ f

(6.150)

According to Eq. (6.150) all state variables of the quadropter can be written as func-
tions of the flat output and its derivatives. Using this and Eq. (6.149), one also has
that the control inputs of the quadropter’s model, w1, wa , wb, and wc can be written
as functions of the flat output and its derivatives. Therefore, it is confirmed that the
system is a differentially flat one.

Defining now the new control inputs

v1 = w1sin(x7) v2 = w1cos(x7)sin(x9) v3 = w1cos(x7)cos(x9)
v4 = wa v5 = wb v6 = wc

(6.151)

one has the following state-space description for the system

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẏ f1
ÿ f1
ẏ f2
ÿ f2
ẏ f3
ÿ f3
ẏ f4
ÿ f4
ẏ f5
ÿ f5
ẏ f6
ÿ f6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y f1
ẏ f1
y f2
ẏ f2
y f3
ẏ f3
y f4
ẏ f4
y f5
ẏ f5
y f6
ẏ f6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

v1
v2
v3
v4
v5
v6

⎞
⎟⎟⎟⎟⎟⎟⎠

(6.152)

and the measurement equation for this system becomes

⎛
⎜⎜⎜⎜⎜⎜⎝

z1
z2
z3
z4
z5
z6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y f1
ẏ f1
y f2
ẏ f2
y f3
ẏ f3
y f4
ẏ f4
y f5
ẏ f5
y f6
ẏ f6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.153)
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Thus, using differential flatness theory, the quadrotor’s model has been written in a
MIMOlinear canonical (Brunovsky) form,which is both controllable andobservable.

After being written in the linear canonical form, the quadrotor’s state-space equa-
tion comprises six subsystems of the form

ÿ fi = vi , i = 1, . . . , 6 (6.154)

For each one of these subsystems, a controller can be defined as follows:

vi = ÿd
fi

− kdi (ẏ fi − ẏd
fi
) − kpi (y fi − yd

fi
), i = 1, . . . , 6 (6.155)

The control scheme is implemented in the form of two cascading loops. The inner
control loop controls rotation angles, while the outer control loop sets the desired
values of the rotation angles, so as to control position in the xyz-reference system.
The computation of the reference setpoints for the rotation angles φd(t), θd(t), and
ψd(t) and for the cartesian coordinates xd(t),yd(t), and zd(t) takes into account the
constraints imposed by the system dynamics.

6.7.5 Estimation of the Quadrotor’s Disturbance Forces and
Torques with Kalman Filtering

It was shown that the initial nonlinear model of the quadrotor can be written in
the MIMO canonical form of Eqs. (6.152) and (6.153). Next, it is assumed that the
quadrotor’s model is affected by additive input disturbances, thus one has

ẍ1 = (w1 + d1)sin(x7)
ẍ3 = (w1 + d1)cos(x7)sin(x9)
ẍ5 = (w1 + d1)cos(x7)cos(x9)

ẍ7 = wa + da

ẍ9 = wb + db

ẍ11 = wc + dc

(6.156)

or using the new state variables y fi i = 1, . . . , 12 of the differential flatness theory-
based model and the transformed inputs vi , i = 1, . . . , 6 one has

ÿ f1 = v1 + d1sin(y f7)

ÿ f3 = v2 + d1cos(y f7)sin(y f9)

ÿ f5 = v3 + d1cos(y f7)cos(y f9)

ÿ f7 = v4 + da

ÿ f9 = v5 + db

ÿ f11 = v6 + dc

(6.157)
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while by redefining the disturbance terms as d̃1 = d1sin(y f7), d̃2 = d1cos(y f7)

sin(y f9), d̃3 = d1cos(y f7)cos(y f9), d̃4 = da , d̃5 = db and d̃6 = dc, the dynamics of
the disturbed system can be written as

ÿ f1 = v1 + d̃1
ÿ f3 = v2 + d̃2
ÿ f5 = v3 + d̃3
ÿ f7 = v4 + d̃4
ÿ f9 = v5 + d̃5
ÿ f11 = v6 + d̃6

(6.158)

The system’s dynamics can be also written as ẏ f1 = y f2 , ẏ f2 = v1 + d̃1, ẏ f3 = y f4 ,
ẏ f4 = v2 + d̃2, ẏ f5 = y f6 , ẏ f6 = v3 + d̃3, ẏ f7 = y f8 , ẏ f8 = v4 + d̃4, ẏ f9 = y f10 ,
ẏ f10 = v5 + d̃5, ẏ f11 = y f6 , ẏ f6 = v6 + d̃6.

Without loss of generality, it is assumed that the dynamics of the disturbances

terms are described by their second-order derivative, i.e., ¨̃di = fdi , i = 1, . . . , 6.
Next, the extended state vector of the system is defined so as to include disturbance
terms as well. Thus one has the following state variables

z f1 = y f1 z f2 = y f2 z f3 = y f3 z f4 = y f4 z f5 = y f5 z f6 = y f6
z f7 = y f7 z f8 = y f8 z f9 = y f9 z f10 = y f10 z f11 = y f11 z f12 = y f12

z f13 = d̃1 z f14 = ˙̃d1 z f15 = ¨̃d1 z f16 = d̃2 z f17 = ˙̃d2 z f18 = ¨̃d2
z f19 = d̃3 z f20 = ˙̃d3 z f21 = ¨̃d3 z f22 = d̃4 z f23 = ˙̃d4 z f24 = ¨̃d4
z f25 = d̃5 z f26 = ˙̃d6 z f27 = ¨̃d5 z f28 = d̃6 z f29 = ˙̃d6 z f30 = ¨̃d6

(6.159)

Thus, the disturbed system can be described by a state-space equation of the form

ż f = A f z f + B f v
zmeas

f = C f z f
(6.160)

wherematrices A f ∈R30×30, B f ∈R30×6, andC f ∈R6×30, are described inEq. (6.162).
For the model of Eqs. (6.160) and (6.162), and after carrying out discretization of

matrices A f , B f , and C f with common discretization methods, one can implement
the standard Kalman Filter algorithm using Eqs. (4.5) and (4.6). This is Derivative-
free nonlinear Kalman filtering for the model of the quadropter which, unlike EKF,
is performed without the need to compute Jacobian matrices and does not introduce
numerical errors due to approximative linearization with Taylor series expansion.

The dynamics of the disturbance terms d̃i , i = 1, . . . , 6 are taken to be unknown
in the design of the associated disturbances’ estimator. Defining as Ãd , B̃d , and C̃d ,
the discrete-time equivalents of matrices Ã f , B̃ f , and C̃ f , respectively, one has the
following dynamics:

˙̂z f = Ã f ·ẑ f + B̃ f ·ṽ + K (zmeas
f − C̃ f ẑ f ) (6.161)

http://dx.doi.org/10.1007/978-3-319-16420-5_4
http://dx.doi.org/10.1007/978-3-319-16420-5_4
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where K∈R30×6 is the state estimator’s gain. The associated Kalman Filter-based
disturbance estimator is given by [422, 453]

A f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

01×1 1 01×28
01×12 1 01×17
01×3 1 01×26
01×15 1 01×14
01×5 1 01×24
01×18 1 01×11
01×7 1 01×22
01×21 1 01×8
01×9 1 01×20
01×24 1 01×5
01×11 1 01×18
01×27 1 01×2
01×13 1 01×16
01×14 1 01×15
01×30
01×16 1 01×13
01×17 1 01×12
01×30
01×19 1 01×10
01×20 1 01×9
01×30
01×22 1 01×7
01×23 1 01×6
01×30
01×25 1 01×4
01×26 1 01×3
01×30
01×28 1 01×1
01×29 1
01×30

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

B f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

01×6
1 01×5

01×1 1 01×4
01×6
01×2 1 01×3
01×6
01×3 1 01×2
01×6
01×4 1 01×1
01×6
01×5 1
018×6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C f =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 01×29
01×2 1 01×27
01×4 1 01×25
01×6 1 01×23
01×8 1 01×21
01×10 1 01×19

⎞
⎟⎟⎟⎟⎟⎟⎠

(6.162)
measurement update:

K (k) = P−(k)C̃T
d [C̃d ·P−(k)C̃T

d + R]−1

ẑ f (k) = ẑ−
f (k) + K (k)[zmeas

f (k) − C̃d ẑ−
f (k)]

P(k) = P−(k) − K (k)C̃d P−(k)

(6.163)

time update:

P−(k + 1) = Ãd(k)P(k) ÃT
d (k) + Q(k)

ẑ−
f (k + 1) = Ãd(k)ẑ f (k) + B̃d(k)ṽ(k)

(6.164)
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To compensate for the effects of the disturbance forces it suffices to use in the control
loop the modified control input vector

v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 − ˆ̃d1
v2 − ˆ̃d2
v3 − ˆ̃d3
v4 − ˆ̃d4
v5 − ˆ̃d5
v6 − ˆ̃d6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

or v =

⎛
⎜⎜⎜⎜⎜⎜⎝

v1 − ẑ13
v2 − ẑ16
v3 − ẑ19
v4 − ẑ22
v5 − ẑ25
v6 − ẑ28

⎞
⎟⎟⎟⎟⎟⎟⎠

(6.165)

6.7.6 Simulation Tests

Initial simulation experiments were concerned with flight control of the quadropter
in the disturbance-free case. The considered reference trajectories are shown in
Fig. 6.68. The implementation of the flatness-based control enabled accurate tracking
of the reference trajectories. Convergence has been succeeded for the linear position
and velocity variables to the associated setpoints as it can be seen in Fig. 6.69a, b
and in Fig. 6.70a. Moreover, there has been convergence of the angular position and
velocity variables to the associated setpoints as it can be seen in Fig. 6.70a and in
Fig. 6.71a, b.

Additional simulation experiments were concerned with control of the quadropter
in flight under disturbance forces and torques. The estimation of the disturbance
forces and torques is shown in Fig. 6.72. The implementation of the flatness-based
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Fig. 6.68 Control of the quadrotor in the disturbance-free case: a trajectory of the quadrotor in the
cartesian space, b projection of the quadrotor’s trajectory in the xy plane
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Fig. 6.69 Control of the quadrotor in the disturbance-free case: a position and velocity along the
x axis, b position and velocity along the y axis
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Fig. 6.70 Control of the quadrotor in the disturbance-free case: a position and velocity along the
z axis, b rotation angle φ and associated angular speed

control enabled accurate tracking of the reference trajectories. There has been con-
vergence of the linear position and velocity variables to the associated setpoints as it
can be seen in Fig. 6.73a, b and in Fig. 6.74a. Moreover, there has been convergence
of the angular position and velocity variables to the associated setpoints as it can be
seen in Fig. 6.74b and in Fig. 6.75a, b.
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Fig. 6.71 Control of the quadrotor in the disturbance-free case: a rotation angle θ and associated
angular speed, b rotation angle ψ and associated angular speed
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Fig. 6.72 Use of the Derivative-free nonlinear Kalman Filter in estimation of disturbances: a
associated with linear motion, b associated with the rotational motion of the vehicle (blue line real
value, green line estimated value)

6.8 State Estimation-Based Control of the Underactuated
Hovercraft

6.8.1 Overview

Another significant application field for differential flatness theory-based methods
for filtering and control is localization and autonomous navigation of unmanned
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Fig. 6.73 Control of the quadrotor in the presence of external disturbances a position and velocity
along the x axis, b position and velocity along the y axis (blue line real value, green line estimated
value, red line setpoint)
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Fig. 6.74 Control of the quadrotor in the presence of external disturbances: a position and velocity
along the z axis, b rotation angle φ and associated angular speed (blue line real value, green line
estimated value, red line setpoint)

surface vessels (USVs) and autonomous underwater vessels (AUVs). In particular,
the problem of autonomous navigation of surface vessels such as hovercrafts has
received particular attention, since it can find use in both security purposes and
passenger transportation [114, 401, 451, 492, 509]. The problem of control and
trajectory tracking for unmanned surface vessels of the hovercraft type is nontrivial
because the associated kinematic model is a high-order nonlinear one [17, 128, 184,
499, 531]. Another problem that has to be dealt with is that the hovercraft’s model
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Fig. 6.75 Control of the quadrotor in the presence of disturbances: a rotation angle θ and associated
angular speed, b rotation angle ψ and associated angular speed (blue line real value, green line
estimated value, red line setpoint)

is underactuated [2, 34, 41, 191, 384, 486, 502]. Indicative results on control of
underactuated dynamical systems can be found in [399, 400, 445]. Moreover, as
explained in Chap.2, the hovercraft’s model cannot be subjected to static feedback
linearization, but admits only dynamic feedback linearization. This means that to
succeed linearization, the state-space description of the system has to be augmented
by considering as additional state variables the control inputs and their derivatives.
Thus, finally the control input that is applied to the vessel contains integral terms of
the tracking error. The present chapter proposes a solution to the control problem
of hovercrafts control with the use of differential flatness theory and of a nonlinear
filtering method, the so-called Derivative-free nonlinear Kalman Filter.

First it is shown that the hovercraft’s model is differentially flat. This means that
all its state variables and the control inputs can be written as functions of one single
algebraic variable which is the flat output and of the flat output’s derivatives [55, 152,
263, 286, 340, 427, 464, 465, 495]. By exploiting the differential flatness properties it
is shown that the system can be transformed into the linear canonical form, through
dynamic feedback linearization. To succeed this, dynamic extension is performed
which means that the state-vector’s dimension is increased by considering as addi-
tional state variables certain control inputs and their derivatives. For the linearized
equivalent of the system, the design of a state feedback controller is possible, through
the use of pole placement techniques. Next, to estimate the nonmeasurable state vari-
ables of the vessel and to identify additive disturbance terms that affect the system,
the Derivative-free nonlinear Kalman Filter is redesigned as a disturbance observer
[31, 408, 414, 435–437, 447]. This estimation algorithm consists of the standard

http://dx.doi.org/10.1007/978-3-319-16420-5_2
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Kalman Filter recursion applied on the linearized equivalent of the hovercraft and of
an inverse transformation that is based on differential flatness theory which permits
to compute estimates of the state variables of the initial nonlinear system.

6.8.2 Lie Algebra-Based Control of the Underactuated
Hovercraft

In Chap.2, it was shown that the extended model of the vessel is a differentially flat
one. Using its differential flatness properties, the vessel’s model was transformed
into the linear canonical (Brunovsky) form. It will be shown that one can arrive at
an equivalent description of the hovercraft’s dynamics using Lie algebra [461]. The
sixth-order state-space equation of the underactuated hovercraft model (Figs. 2.3 and
6.76) is given by

ẋ = ucos(ψ) − vsin(ψ)

ẏ = usin(ψ) + vcos(ψ)

ψ̇ = r
u̇ = v·r + τu

v̇ = −u·r − βv
ṙ = τr

(6.166)

where x and y are the cartesian coordinates of the vessel, ψ is the orientation angle,
u is the surge velocity, v is the sway velocity, and r is the yaw rate. The hovercraft’s
model is also written in the matrix form:

Fig. 6.76 Underactuated hovercraft performing maneuvers and the associated reference frames

http://dx.doi.org/10.1007/978-3-319-16420-5_2
http://dx.doi.org/10.1007/978-3-319-16420-5_2
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⎛
⎜⎜⎜⎜⎜⎜⎝

ẋ
ẏ
ψ̇

u̇
v̇
ṙ

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

ucos(ψ) − vsin(ψ)

usin(ψ) + vcos(ψ)

r
vr

−ur + βv
0

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0
1 0
0 0
0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(
τu

τr

)
(6.167)

or equivalently, one has the description

˙̃x = f (x̃) + gṽ (6.168)

The system’s state vector is denoted as x̃ = [x, y, ψ, u, v, r ]T , f (x̃)∈R6×1, and
g(x̃) = [ga, gb]∈R6×2, while the control input is the vector ṽ = [τu, τr ]T .

The system’s state vector is extended by including as additional state variables the
control input τu and its first derivative τ̇u . These are denoted as z1 = τu and z2 = τ̇u .
The extended state-space description of the system becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ
ẏ
ψ̇

u̇
v̇
ṙ
ż1
ż2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ucos(ψ) − vsin(ψ)

usin(ψ) + vcos(ψ)

r
vr + z1

−ur + βv
0
z2
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0
0 0
0 0
0 1
0 0
1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
τ̈u

τr

)
(6.169)

or equivalently, one has the description

ż = f (z) + g(z)ṽ (6.170)

The extended system’s state vector is denoted as z = [x, y, ψ, u, v, r, z1, z2]T .More-
over, one has f (z)∈R8×1, and g(z) = [ga, gb]∈R8×2, while the control input is the
vector ṽ = [τ̈u, τr ]T . Next, the following system outputs are defined

z1.1 = x z2,1 = y (6.171)

Moreover, the new state variables are defined

z1,2 = L f z1,1 z2,2 = L f z2,1

z1,3 = L2
f z1,1 z2,3 = L2

f z2,1

z1,4 = L3
f z1,1 z2,4 = L3

f z2,1

(6.172)
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The system will be brought to a linearized input-output form using

ż1,4 = L4
f z1,1 + Lga L3

f z1,1τ̈u + Lgb L3
f z1,1τr

ż2,4 = L4
f z2,1 + Lga L3

f z2,1τ̈u + Lgb L3
f z2,1τr

(6.173)

It holds that z1,1 = x . Thus one has

z1,2 = L f z1,1⇒
z1,2 = ∂z1,1

∂x f1 + ∂z1,1
∂y f2 + ∂z1,1

∂ψ
f3 + ∂z1,1

∂u f4 + ∂z1,1
∂v f5 + ∂z1,1

∂r f6 + ∂z1,1
∂z1

f7 + ∂z1,1
∂z2

f8⇒
z1,2 = 1· f1⇒z1,2 = ucos(ψ) − vsin(ψ)

(6.174)
Similarly, one obtains

z1,3 = L2
f z1,1⇒

z1,3 = ∂z1,2
∂x f1 + ∂z1,2

∂y f2 + ∂z1,2
∂ψ

f3 + ∂z1,2
∂u f4 + ∂z1,2

∂v f5 + ∂z1,2
∂r f6 + ∂z1,2

∂z1
f7 + ∂z1,2

∂z2
f8⇒

z1,3 = (−usin(ψ) − vcos(ψ)) f3 + cos(ψ) f4 − sin(ψ) f5⇒
z1,3 = (−usin(ψ) − vcos(ψ))r + cos(ψ)(vr + z1) − sin(ψ)(−ur + βv)⇒

z1,3 = τucos(ψ) + βvsin(ψ)

(6.175)
Equivalently, it holds that

z1,4 = L3
f z1,1⇒z1,4 = L f z1,3 ⇒

z1,4 = ∂z1,3
∂x f1 + ∂z1,3

∂y f2 + ∂z1,3
∂ψ

f3 + ∂z1,3
∂u f4 + ∂z1,3

∂v f5 + ∂z1,3
∂r f6 + ∂z1,3

∂z1
f7 + ∂z1,3

∂z2
f8

(6.176)

while after intermediate operations one obtains

z1,4 = (−τusin(ψ) + βvcos(ψ)) f3 + βsin(ψ) f5 + cos(ψ) f7⇒
z1,4 = (−τusin(ψ) + βcos(ψ))r + βsin(ψ)(−ur + βv) + cos(ψ)z2⇒

z1,4 = (τ̇usin(ψ) + βvcos(ψ))r + βsin(ψ)(−ur + βv) + cos(ψ)z2
(6.177)

or, using the extended state vector variables notation one has

z1,4 = z2cos(ψ) − z1sin(ψ)r − βursin(ψ) − β2vsin(ψ) + βvcos(ψ)r (6.178)

It also holds that

ż1,4 = L4
f z1,1 + Lga L3

f z1,1τ̈u + Lgb L3
f z1,1τr⇒

ż1,4 = L f z1,4 + Lga z1,4τ̈u + Lgb z1,4τr
(6.179)

where

L f z1,4 = ∂z1,4
∂x f1 + ∂z1,4

∂y f2 + ∂z1,4
∂ψ

f3 + ∂z1,4
∂u f4 + ∂z1,4

∂v f5 + ∂z1,4
∂r f6 + ∂z1,4

∂z1
f7 + ∂z1,4

∂z2
f8

(6.180)
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which gives

L f z1,4 = (−z2sin(ψ) − z1cos(ψ)r − βurcos(ψ) − β2vcos(ψ) − βvsin(ψ)r)r+
+(−βrsin(ψ))(vr + z1) + (−β2sin(ψ) + βcos(ψ)r)(−ur + βv)+

+(−z1sin(ψ) − βvsin(ψ) + βvcos(ψ))0 + (−sin(ψ)r)z2
(6.181)

while after some intermediate computations one obtains

L f z1,4 = −2z2sin(ψ)r − z1cos(ψ)r2−
−βvr2sin(ψ) − βz1rsin(ψ)−
−βur2cos(ψ) + β2ursin(ψ)−

−β3vsin(ψ) − β2vrcos(ψ) − βur2cos2(ψ) + β2vrcos(ψ)

−βvr2sin(ψ)

(6.182)

In a similar manner, one computes

Lga z1,4 = ∂z1,4
∂x ga1 + ∂z1,4

∂y ga2 + ∂z1,4
∂ψ

ga3 + ∂z1,4
∂u ga4+

+ ∂z1,4
∂v ga5 + ∂z1,4

∂r ga6 + ∂z1,4
∂z1

ga7 + ∂z1,4
∂z2

ga8

Lga z1,4 = ∂z1,4
∂z2

⇒Lga z1,4 = cos(ψ)

(6.183)

and also

Lgb z1,4 = ∂z1,4
∂x gb1 + ∂z1,4

∂y gb2 + ∂z1,4
∂ψ

gb3 + ∂z1,4
∂u gb4+

+ ∂z1,4
∂v gb5 + ∂z1,4

∂r gb6 + ∂z1,4
∂z1

gb7 + ∂z1,4
∂z2

gb8

Lgb z1,4 = ∂z1,4
∂r ⇒Lgb z1,4 = −z1sin(ψ) − βusin(ψ) + βvcos(ψ)

(6.184)

In an equivalent way, and using that z2,1 = y2 = y one can compute

z2,2 = L f z2,1⇒z2,2 = ∂z2,1
∂x f1 + ∂z2,1

∂y f2 + ∂z2,1
∂ψ

f3 + ∂z2,1
∂u f4+

+ ∂z2,1
∂v f5 + ∂z2,1

∂r f6 + ∂z2,1
∂z1

f7 + ∂z2,1
∂z2

f8⇒
z2,2 = 1· f2⇒z2,2 = usin(ψ) + vcos(ψ)

(6.185)

Equivalently, one has

z2,3 = L2
f z2,1⇒z2,3 = L f z2,2⇒

z2,3 = ∂z2,2
∂x f1 + ∂z2,2

∂y f2 + ∂z2,2
∂ψ

f3 + ∂z2,2
∂u f4 + ∂z2,2

∂v f5 + ∂z2,2
∂r f6 + ∂z2,2

∂z1
f7 + ∂z2,2

∂z8
f8⇒

z2,3 = (ucos(ψ) − vsin(ψ))r + sin(ψ)(vr + z1) + cos(ψ)(−ur + βv)⇒
z2,3 = z1sin(ψ) + βvcos(ψ)

(6.186)
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In an equivalent manner, one obtains

z2,4 = L3
f z2,1⇒z3,3 = L f z2,3 ⇒

z2,4 = ∂z2,3
∂x f1 + ∂z2,3

∂y f2 + ∂z2,3
∂ψ

f3 + ∂z2,3
∂u f4 + ∂z2,3

∂v f5 + ∂z2,3
∂r f6 + ∂z2,3

∂z1
f7 + ∂z2,3

∂z2
f8⇒

z2,4 = (cos(ψ) − βvsin(ψ)) f3 + βcos(ψ) f5 + sin(ψ) f7⇒
z2,4 = (z1cos(ψ) − βvsin(ψ))r + (βcos(ψ)(−ur + βv) + sin(ψ)z2⇒
z2,4 = z1cos(ψ)r − βvrsin(ψ) − βurcos(ψ) + β2vcos(ψ) + z2sin(ψ)

(6.187)
Moreover, it holds that

ż2,4 = L4
f z2,1 + Lga L3

f z2,1τ̈u + Lgb L3
f z2,1τr (6.188)

where

L4
f z2,1 = L f z2,4⇒

L4
f z2,1 = ∂z2,4

∂x f1 + ∂z2,4
∂y f2 + ∂z2,4

∂ψ
f3 + ∂z2,4

∂u f4 + ∂z2,4
∂v f5 + ∂z2,4

∂r f6 + ∂z2,4
∂z1

f7 + ∂z2,4
∂z2

f8
(6.189)

which gives

L4
f z2,1 = [−z1sin(ψ)r − βvrcos(ψ) + βursin(ψ) − β2vsin(ψ) + z2cos(ψ)]r+

[−βrcos(ψ)](vr + z1) + [−βrsin(ψ) + β2cos(ψ)](−ur + βv)+
[z1cos(ψ) − βvsin(ψ) − βucos(ψ)]0 + [cos(ψ)r ]z2 + [sin(ψ)]0

(6.190)
and after additional computations one arrives at the form

L4
f z2,1 = −z1r2sin(ψ) − βvr2cos(ψ) + βur2sin(ψ) − β2vrsin(ψ) + z2rcos(ψ)−

−βvr2cos(ψ) − βr z1cos(ψ) + βur2sin(ψ) − β2rvsin(ψ)−
−β2urcos(ψ) + β2vcos(ψ) + z2rcos(ψ)

(6.191)
Proceeding as before, one computes

Lga L3
f z2,1 = Lga z2,4⇒

Lga L3
f z2,1 = ∂z2,4

∂x ga1 + ∂z2,4
∂y ga2 + ∂z2,4

∂ψ
ga3 + ∂z2,4

∂u ga4+
+ ∂z2,4

∂v ga5 + ∂z2,4
∂v ga6 + ∂z2,4

∂z1
ga7 + ∂z2,4

∂z2
ga8⇒

Lga L3
f z2,1 = ∂z2,4

∂z2
⇒Lga L3

f z2,1 = sin(ψ)

(6.192)

Equivalently, one computes

Lgb L3
f z2,1 = Lgb z2,4⇒

Lgb L3
f z2,1 = ∂z2,4

∂x gb1 + ∂z2,4
∂y gb2 + ∂z2,4

∂ψ
gb3 + ∂z2,4

∂u gb4+
+ ∂z2,4

∂v gb5 + ∂z2,4
∂r gb6 + ∂z2,4

∂z1
gb7 + ∂z2,4

∂z2
gb8⇒

Lgb L3
f z2,1 = ∂z2,4

∂v ⇒
Lgb L3

f z2,1 = z1cos(ψ) = βvsin(ψ) − βucos(ψ)

(6.193)
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The aggregate dynamics of the input-output linearized system is

x (4) = L4
f z1,1 + Lga L3

f z1,1τ̈u + Lgb L3
f z1,1τr

y(4) = L4
f z2,1 + Lga L3

f z2,1τ̈u + Lgb L3
f z2,1τr

(6.194)

By defining the new control inputs

v1 = L4
f z1,1 + Lga L3

f z1,1τ̈u + Lgb L3
f z1,1τr

v2 = L4
f z2,1 + Lga L3

f z2,1τ̈u + Lgb L3
f z2,1τr

(6.195)

one arrives at the following description for the input-output linearized system

x (4) = v1
y(4) = v2

(6.196)

which can be also written in the state-space form

˙̃z = Az̃ + Bṽ
z̃m = Cz̃

(6.197)

or using that z̃ = [z1,1, z1,2, z1,3, z1,4, z2,1, z2,2, z2,3, z2,4]T , equivalently one has

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ż1,1
ż1,2
ż1,3
ż1,4
ż2,1
ż2,2
ż2,3
ż2,4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1,1
z1,2
z1,3
z1,4
z2,1
z2,2
z2,3
z2,4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0
1 0
0 0
0 0
0 0
0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
v1
v2

)
(6.198)

while the associated measurement equation is

(
zm
1

zm
2

)
=

(
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1,1
z1,2
z1,3
z1,4
z2,1
z2,2
z2,3
z2,4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.199)
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A suitable feedback control law for the linearized system is

v1 = x (4)
d − k11(x (3) − x (3)

d ) − k12(ẍ − ẍd) − k13(ẋ − ẋd) − k14(x − xd)

v2 = y(4)
d − k21(y(3) − y(3)

d ) − k22(ÿ − ÿd) − k23(ẏ − ẏd) − k24(y − yd)
(6.200)

One can also compute the control input that is finally applied to the hovercraft model.
It holds that

ṽ = f̃ + M̃ũ (6.201)

where matrices and vectors ṽ, f̃ , M̃ , and ũ are defined as

ṽ =
(

v1
v2

)
f̃ =

(
L4

f z1,1
L4

f z2,1

)
M̃ =

(
Lg,a L3

f z1,1 Lgb L3
f z1,1

Lg,a L3
f z2,1 Lg,b L3

f z2,1

)
ũ =

(
τ̈u

τr

)
(6.202)

The above equation can be solved with respect to ũ, which finally gives

ũ = f̃ + M̃−1(ṽ − f̃ ) (6.203)

The vector ũ is the control input that is finally applied to the system, which finally
means that the control signal contains integrals of the tracking error.

Since in the case of transformation of the nonlinear vessel dynamics to an equiv-
alent linear form, with the use of differential flatness theory, one arrives at the state-
space model of Eqs. (6.198) and (6.199). The design of the flatness-based feedback
controller for the hovercraft is also given by Eqs. (6.198)–(6.203).

6.8.3 Flatness-Based Control of the Underactuated Vessel

In Chap.2 it has been proven that the model of the underactuated vessel given in
Eq. (6.166) is a differentially flat one. By exploiting differential flatness properties,
the hovercraft’s dynamic model was transformed into the canonical form and a state
feedback controller was designed for it.

For the linearized equivalent of the system it is also possible to perform state
estimation using the Derivative-free nonlinear Kalman Filter. Before computing the
Kalman Filter stages, the matrices A, B, and C previously defined in Eq. (6.197) are
substituted by their discrete-time equivalents Ad , Bd , and Cd . This is done through
common discretization methods. The recursion of the filter’s algorithm consists of
two stages:
measurement update:

K (k) = P−CT
d [P−CT

d P + R]−1

ẑ(k) = ẑ−(k) − K (k)[Cd z(k) − Cd ẑ−(k)]
P(k) = P−(k) − K (k)Cd P−(k)

(6.204)

http://dx.doi.org/10.1007/978-3-319-16420-5_2
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time update:
P−(k + 1) = AT

d P(k)Ad + Q(k)

ẑ−(k + 1) = Ad ẑ(k) + Bdu(k)
(6.205)

Moreover, by using the nonlinear transformations which are provided by differential
flatness theory according to Eqs. (2.88), (2.91), (2.93), and (2.98) one can obtain
estimates of the state variables of the initial nonlinear hovercraft model.

6.8.4 Disturbances’ Compensation with the Use
of the Derivative-Free Nonlinear Kalman Filter

Next, it is assumed that the input-output linearized equivalent of the system, is sub-
jected to disturbance terms which express the effects of both modeling uncertainty
and of external perturbations. Thus one has

x (4) = v1 + d̃1
y(4) = v2 + d̃2

(6.206)

It is considered that the disturbance signals are equivalently represented by their
time derivatives (up to order n) and by the associated initial conditions (however
since disturbances are to be estimated with the use of the Kalman Filter, finally the
dependence on knowledge of initial conditions becomes obsolete). It holds that

d̃(n)
1 = fd1 d̃(n)

2 = fd2 (6.207)

The system’s state vector is extended by including as additional state variables the
disturbances’ derivatives. Thus, taking that the derivative’s order is n = 2 one has

zd,1 = d̃1 zd,2 = ˙̃d1 zd,3 = d̃2 zd,4 = ˙̃d2 (6.208)

and the extended state-space description of the system becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ż1,1
ż1,2
ż1,3
ż1,4
ż2,1
ż2,2
ż2,3
ż2,4
żd,1
żd,2
żd,3
żd,4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1,1
z1,2
z1,3
z1,4
z2,1
z2,2
z2,3
z2,4
zd,1
zd,2
zd,3
zd,4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

τ̈u

τr

fd1
fd2

⎞
⎟⎟⎠ (6.209)

http://dx.doi.org/10.1007/978-3-319-16420-5_2
http://dx.doi.org/10.1007/978-3-319-16420-5_2
http://dx.doi.org/10.1007/978-3-319-16420-5_2
http://dx.doi.org/10.1007/978-3-319-16420-5_2
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while the associated measurement equation is

(
z1,1
z2,1

)
=

(
1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0

)
ze (6.210)

where ze = [z1,1, z1,2, z1,3, z1,4, z2,1, z2,2, z2,3, z2,4, zd,1, zd,2, zd,3, zd,4]T is the
extended state vector. Thus, the extended state-space description of the hovercraft
model takes the form

że = Aeze + Beve

zmeas
e = Ceze

(6.211)

For the extended state-space description of the system, one can design a state esti-
mator of the form ˙̂ze = Aoze + Bove + K (zmeas

e − Coẑe)

ẑmeas
e = Coẑe

(6.212)

where for the matrices Ao and Co it holds Ao = Ae and Co = Ce while for matrix
Bo one has

BT
o =

⎛
⎜⎜⎝
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎠ (6.213)

Again the Kalman Filter recursion provides joint estimation of the nonmeasurable
state vector elements, of the disturbances’ inputs and of their derivatives. Prior to
computing the Kalman Filter stages, the previously defined matrices A,B and C are
substituted by their discrete-time equivalents Aed ,Bed and Ced . This is done through
common discretization methods. The recursion of the filter’s algorithm consists of
two stages. Thus, one has
measurement update:

K (k) = P−
e CT

ed
[P−

e Ced
T Pe + Re]−1

ẑe(k) = ẑ−
e (k) − K (k)[Ced ze(k) − Ced ẑe−(k)]

Pe(k) = P−
e (k) − K (k)Ced P−

e (k)

(6.214)

time update:

P−
e (k + 1) = Aed

T Pe(k)Aed + Qe(k)

ẑ−
e (k + 1) = Aed ẑe(k) + Bed ve(k)

(6.215)

To compensate for the disturbances effects, the modified control input that is applied
to the system is

v1 = x (4)
d − k11(x (3) − x (3)

d ) − k12(ẍ − ẍd) − k13(ẋ − ẋd) − k14(x − xd) − ẑd,1

v2 = y(4)
d − k21(y(3) − y(3)

d ) − k22(ẍ − ÿd) − k23(ẏ − ẏd) − k24(y − yd) − ẑd,2
(6.216)
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6.8.5 Simulation Tests

The performance of the proposed nonlinear control scheme was evaluated in the
case of several reference setpoints. The associated results are presented in Figs. 6.77,
6.78, 6.79, 6.80, and 6.81. It can be observed that in all cases the nonlinear feed-
back controller succeeded fast and accurate tracking of the reference setpoints. The
Derivative-free nonlinear Kalman Filter enabled estimation of the nonmeasurable
variables of the system’s state-vector which were needed for the implementation of
the feedback control scheme. Moreover, by using the inverse transformation that was
provided by differential flatness theory it was possible to obtain estimates of the state
variables of the initial nonlinear system.

The convergence of the state variables of the hovercraft (position x ,y to the desir-
able setpoints is shown in Figs. 6.77a, 6.78a, 6.79a, 6.80a, and 6.81a. The estimation
of the disturbance terms that were applied to the hovercraft model are depicted in
Figs. 6.77b, 6.78b, 6.79b, 6.80b and 6.81b, respectively. It can be noticed again that
the proposed feedback nonlinear control scheme succeeded fast and accurate tracking
to these setpoints.

For the underactuated hovercraft, one can succeed exactly the same motion and
orientation control as in the case of the fully actuated vessel. Therefore, it is possible
for the hovercraft to track complicated reference paths with excellent accuracy while
keeping also the desirable velocity. This has been demonstrated through a series of
examples, in the simulation tests section of the manuscript (Figs. 6.77, 6.78, 6.79,
6.80, and 6.81). It is noteworthy that the dynamic feedback linearization procedure
which has been implemented on the hovercraft’s model, results in the canonical
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Fig. 6.77 Reference path 1. a Trajectory tracking for states x , y of the underactuated hovercraft.
b Estimation of disturbance inputs affecting the hovercraft, with the use of the Derivative-free
nonlinear Kalman Filter
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Fig. 6.78 Reference path 2. a Trajectory tracking for states x , y of the underactuated hovercraft.
b Estimation of disturbance inputs affecting the hovercraft, with the use of the Derivative-free
nonlinear Kalman Filter
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Fig. 6.79 Reference path 3. a Trajectory tracking for states x , y of the underactuated hovercraft.
b Estimation of disturbance inputs affecting the hovercraft, with the use of the Derivative-free
nonlinear Kalman Filter

form description of Eqs. (2.123) and (2.124) which is confirmed to be controllable.
Practically, this means that under the proposed control scheme, the vessel can reach
any point in its motion plane and can track any reference path.

The possibility for the appearance of singularities in the computation of the control
signal of the hovercraft is also present in all static or dynamic feedback linearization
algorithms which arrive at a transformed control input of the form v = f (x, t) +
g(x, t)u, that is u = g(x, t)−1[v − f (x, t)]. There are two cases: (i) due to the

http://dx.doi.org/10.1007/978-3-319-16420-5_2
http://dx.doi.org/10.1007/978-3-319-16420-5_2
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Fig. 6.80 Reference path 4. a Trajectory tracking for states x , y of the underactuated hovercraft.
b Estimation of disturbance inputs affecting the hovercraft, with the use of the Derivative-free
nonlinear Kalman Filter
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Fig. 6.81 Reference path 5. a Trajectory tracking for states x , y of the underactuated hovercraft.
b Estimation of disturbance inputs affecting the hovercraft, with the use of the Derivative-free
nonlinear Kalman Filter

inherent model of g(x, t) its inverse never becomes 0. In such a case, the singularity
problem is avoided, (ii) for certain areas of the state vector space x∈Rn the zeroing
of g(x, t)−1 becomes possible. For the latter case, the avoidance of singularities can
be succeeded by a state variable transformation into a new state-space representation
which does not include any points of singularity.

Finally, it is noted that the presented simulation experiments have been performed
under the assumption that the hovercraft was subjected to external disturbances such
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as wind or current. The proposed control scheme is robust to modeling uncertainties
and external perturbations. This is a prerequisite in the design of control systems
for underactuated surface vessels [129, 176, 312, 359, 482, 602]. First, it has been
proven that the feedback control applied on the input-output linearized model of
the hovercraft succeeded the placement of all poles of the control loop in the left
complex semiplane. Next, it can be confirmed that the extended state-space model of
the hovercraft, which contains disturbances as additional state variables, has multiple
poles at the origin (multiple poles at zero). Thus, stabilization can be succeeded using
pole placement methods.With the use of the Derivative-free nonlinear Kalman Filter,
it became possible to identify the perturbation andmodeling uncertainty terms in real-
time and subsequently to compensate for them through the inclusion of an additional
term in the control signal. This amendment in the feedback control scheme provided
the control loop with additional robustness features. Finally, it is worth mentioning
that the proposed control scheme had an excellent performance although it was
not possible to measure directly all elements of the state vector (only the cartesian
coordinates of the vessel could be measured) and several state variables had to be
estimated with the use of filtering.
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