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    Chapter 7   
 Safety of Antidiabetic Therapies on Bone 

             Beata     Lecka-Czernik       and     Ann     V.     Schwartz     

            Bone Remodeling 

 Maintenance of bone homeostasis throughout life relies on the bone remodeling 
process, which continually replaces old and damaged bone with new bone in order 
to maintain strength and elasticity [ 1 ]. In a healthy state, bone resorption is balanced 
with bone formation. Changes in the milieu of local and systemic factors may alter 
this balance leading to changes in the bone mass and/or bone biomechanical proper-
ties. Aging, estrogen defi ciency, and metabolic diseases negatively affect bone mass 
and/or bone quality leading to the development of osteoporosis and increased 
 fracture rate (Fig.  7.1 ).

   Three types of cells are involved in bone remodeling: osteoclasts which resorb an 
old or damaged bone, osteoblasts which form new bone at the site of the resorbed 
cavity, and osteocytes which orchestrate the whole process. Osteoclasts and osteo-
blasts/osteocytes develop from two distinct populations of stem cells residing in the 
bone marrow, hematopoietic stem cells (HSC) and mesenchymal stem cells (MSC), 
respectively. Osteoclast differentiation is determined by both, factors produced by 
cells of osteoclast lineage and factors produced by other bone marrow cells  including 
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cells of osteoblast lineage [ 2 ]. Osteoclast recruitment from the HSC pool and their 
maturation is controlled by osteoblast-derived cytokines: M-CSF, IL-6, and 
RANKL. Osteoblasts originate in a marrow MSC compartment which also produces 
adipocytes [ 3 ,  4 ]. The commitment of MSC toward either the osteoblast or adipocyte 
lineage occurs by a stochastic mechanism [ 5 ]; lineage-specifi c transcription factors, 
such as Runx2, Dlx5, and Osterix for osteoblasts and PPARγ2 and C/EBPs for adi-
pocytes are activated [ 6 – 11 ]. Activation of osteoblast-specifi c transcription factors is 
determined by a milieu of extracellular factors, which regulate the cellular activity of 
Wnt, TGFβ/BMP, and IGF-1 signaling pathways [ 12 ]. Process of bone remodeling is 
controlled by osteocytes, which represent specialized cells of osteoblast lineage [ 13 ]. 
They are located inside of bone mineralized matrix and communicate with other 
osteocytes and bone marrow environment through the system of dendrite-like pro-
cesses. Osteocytes control dynamics of bone remodeling process by secreting 
RANKL to control bone resorption and sclerostin to control bone formation [ 13 ].  

    Bone as an Integral Part of Energy Metabolism System 

 Bone is closely integrated with the system regulating energy balance. Organs 
involved in this regulation including brain, fat, gastrointestinal system, and pancreas 
are secreting hormones which in endocrine manner regulate both energy metabo-
lism and bone mass. Their effect on bone is possible because bone marrow cells, 
both mesenchymal and hematopoietic lineage, are equipped with necessary recep-
tors to respond to these signaling (Fig.  7.2 ).

   Integration of bone metabolism with energy metabolism has been presented 
recently as a model which links anabolic effect of insulin signaling in osteoblasts 
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  Fig. 7.1    Schematic representation of coupling between osteoblast, osteocyte, and osteoclast 
development and function.  MSC  mesenchymal stem cells,  HSC  hematopoietic stem cells       
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with bone turnover and regulation of insulin sensitivity in peripheral organs [ 14 ,  15 ]. 
Thus, in osteoblasts insulin signaling regulates an expression of Runx2 and osteo-
calcin production. In addition, insulin increases support for osteoclastogenesis by 
decreasing an expression of OPG, a decoy receptor for RANKL. As a result, insulin 
increases bone turnover and production of undercarboxylated osteocalcin, which in 
endocrine fashion regulates insulin release from β-cells in pancreas and production 
of adiponectin in fat tissue [ 14 – 17 ]. Although it is not clear whether this regulatory 
circuit is affected in diabetes, several studies suggest that patients with T2DM have 
decreased bone turnover [ 18 – 20 ]. If so, it would result in the decrease in osteocalcin 
production, especially its undercarboxylated form, which would lead to the attenu-
ation of signaling responsible for increasing of insulin release from the pancreas 
and increasing fat sensitivity to insulin.  

    Anti-hyperglycemic Therapies and Their Effects on Bone 

 The most common form of diabetes is insulin-independent T2DM, which is charac-
terized by insulin and glucose intolerance, and is associated with development of 
hyperglycemia and hyperinsulinemia. Therapies, either approved by FDA or in 
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  Fig. 7.2    Bone is a part of energy metabolism network. Factors and their receptors which mediate 
a cross-talk between bone and other organs involved in regulation of energy metabolism.  MCR  
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receptor,  GIPR  glucose inhibitory protein receptor,  GLP2R  glucagon inhibitory peptide receptor, 
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Phase III clinical trial, include insulin sensitizers, insulin secretagogues, and drugs 
which increase glucose excretion in the urine (SGLT2 inhibitors), regulate glucose 
absorption in intestine (amylin analog), and prevent digestion of carbohydrates 
(Alpha-glucosidase inhibitors) (Table  7.1 ).

   In general, there is a lack of rigorous clinical evidence regarding the skeletal 
effects of these medications. Fracture is the primary outcome of interest but is a 
relatively rare outcome, requiring large studies. Randomized controlled trials (RCT) 
of diabetes medications have not included fracture as a primary endpoint, but 
increasingly studies are reporting the evidence from fractures identifi ed as adverse 
events in RCTs. This provides the best evidence available to us regarding the clini-
cal effects of these medications on the skeleton. Large observational studies have 
also considered the effects of diabetes medications on fracture risk. However, medi-
cations may be systematically prescribed to patients with different risk profi les for 
fracture, making it diffi cult to distinguish effects of the medications themselves on 
fracture, a problem known as “allocation bias” or “confounding by indication.” 
Changes in bone mineral density are an important marker for skeletal health, but are 
not always a consistent predictor of the effects of a medication on fracture risk [ 21 ]. 
In addition, diabetic bone is compromised by other defi cits, distinct from BMD, that 
have not been clearly delineated but may include increased cortical porosity and 

   Table 7.1    Antidiabetic drugs and their effects on skeleton   

 Target  Mode of action  Class of drugs  Drugs  Skeletal effect 

 Insulin  Sensitizers  Biguanides  Metformin a   Neutral 
 TZDs (PPARγ 
agonists) 

 Pioglitazone b , Rosiglitazone b   Bone loss; 
increased 
fractures 

 Dual PPARα/
PPARγ agonists 

 Aleglitazar c   Unknown 

 Secretagogues  K+ ATP  Sulfonylureas (e.g. Glyburide a )  Neutral 
 Meglitinides (e.g. Nateglinide)  Unknown 

 GLP-1 analogs  Exenatide, Liraglutide, 
Taspoglutide c , Albiglutide c , 
Lixisenatide c  

 Unknown 

 DPP-4 inhibitors  Alogliptin c , Saxagliptin, 
Sitagliptin, Vildagliptin, 
Linagliptin 

 Decreased 
fractures 

 Analogs/other 
insulins a  

 Insulin lispro, Insulin aspart, 
Insulin glargine 

 Increased 
fractures 

 Other  SGLT2 
inhibitors 

 Canaglifl ozin, Dapaglifl ozin  Increased 
fractures 

 Amylin analog  Pramlintide  Unknown 
 Alpha-glucosidase inhibitors  Acarbose, Miglitol, Voglibose  Unknown 

   a World Health Organization Essential Medicine (WHO-EM) 
  b Restricted use in USA and Europe 
  c Phase III clinical trial was halted due to unfavorable renal effects  
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greater accumulation of advanced glycation endproducts in bone collagen (see 
Chap.   9    ). As research clarifi es which secondary markers are important predictors of 
fracture risk in diabetic patients, it will be essential to clarify how they are affected 
by diabetic medications. 

    Biguanides (Metformin) 

 Metformin is the most commonly used to increase insulin sensitivity in diabetic 
patients. Biguanides class of drugs decreases hepatic glucose production and 
increases glucose uptake in muscle. Metformin is considered by the World Health 
Organization an essential medicine satisfying the criteria of the public health rele-
vance, evidence on effi cacy and safety, and comparative cost effectiveness (  www.
who.int/medicines    ). Metformin mechanism of insulin sensitization includes activa-
tion of hepatic and muscle AMP-activated protein kinase (AMPK), which results in 
suppression of fatty acid synthesis, stimulation of fatty acid oxidation in liver and 
increase in muscle glucose uptake [ 22 ]. AMPK also decreases expression of sterol-
regulatory element-binding-protein 1 (SREBP-1), a transcription factor involved in 
adipocyte differentiation and pathogenesis of insulin resistance, dislipidemia and 
diabetes. Animal studies indicate that metformin has a positive effect on osteoblast 
differentiation due to increased activity of osteoblast-specifi c Runx2 transcription 
factor via AMPK/USF-1/SHP regulatory cascade [ 23 ] and it has a negative effect on 
osteoclast differentiation and bone loss after ovariectomy by decreasing RANKL 
and increasing osteoprotegerin levels [ 24 ]. Interestingly, in rodent models metfor-
min can prevent the adverse effects of TZDs on bone by either inducing reossifi ca-
tion of bone after rosiglitazone treatment or preventing rosiglitazone effects when 
applied in combination with rosiglitazone [ 25 ]. 

 Human studies of the effects of metformin on the skeleton are limited in design 
and number. The only RCT with a fracture outcome that included metformin is the 
ADOPT trial, discussed in more detail in the section on    “Thiazolidinediones 
(Rosiglitazone, Pioglitazone)” [ 26 ]. Briefl y, this trial randomized participants to 
receive metformin, glyburide (a sulfonylurea), or rosiglitazone; the primary out-
come was time to monotherapy failure. Fractures were identifi ed as adverse events. 
The fracture rates were similar in those randomized to metformin or glyburide. 
During the fi rst 12 months of ADOPT, changes in the levels of the bone resorption 
marker CTX were similar in women (difference in 12-months change: +2.0 %) and 
modestly greater in men (−8.4 %) in those assigned to metformin compared with 
glyburide [ 27 ]. The metformin group had greater decreases in levels of the bone 
formation marker P1NP (difference in 12-months change: −9.4 % women; −19.5 % 
men), compared with glyburide. 

 Several observational studies have reported a lower risk of fracture with metfor-
min use. In a study of the Danish population, metformin use was associated with 
lower fracture risk, compared with nondiabetic residents [ 28 ]. In the Rochester 
cohort, metformin use was associated with a lower rate of fracture in T2DM patients 
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(adjusted hazard ratio 0.7; 95% CI 0.6–0.96) [ 29 ]. However, other studies have 
found no difference in fracture risk with metformin use [ 30 – 35 ]. Interestingly, 
results from a study of hip fracture in Scotland suggest that metformin tends to be 
prescribed to patients with a lower overall risk of fracture while sulfonylureas are 
prescribed to those at higher risk [ 33 ]. This fi nding suggests that some of the reduc-
tion in fracture risk reported with metformin use in observational studies may be 
due to the underlying prescribing pattern.  

    Insulin 

 There are no randomized trials of insulin therapy with fracture or BMD outcomes. 
Most observational studies have identifi ed increased fracture risk in those using 
insulin [ 29 – 31 ,  36 – 38 ] although others have not found an increased risk [ 28 ,  33 ]. 
Insulin treatment is also associated with a higher risk of falls [ 39 ,  40 ], and this is 
likely a contributing factor to the increased fracture risk. Insulin does not appear to 
have a negative effect on bone; indeed, preclinical studies suggest an anabolic effect. 
Increased falls and fractures may be the result of more frequent episodes of hypo-
glycemia and greater frailty due to diabetic complications.  

    Thiazolidinediones (Rosiglitazone, Pioglitazone) 

 TZDs increase insulin sensitivity via activation of peroxisome proliferator-activated 
receptor (PPARγ). Two TZDs, rosiglitazone and pioglitazone, have been used clini-
cally since 1999. A number of studies showed superior effi cacy of TZDs over other 
available antidiabetic therapies in the control of diabetic hyperglycemia [ 41 ]. 
However, their prolonged use is associated with several adverse effects. Strong clin-
ical evidence points to the connection between rosiglitazone use and a signifi cant 
increase in risk of myocardial infarction and death from cardiovascular causes [ 42 ]. 
This association resulted in a recent review of rosiglitazone safety by the FDA and 
recommendation for its restricted use in the United States. Interestingly, piogli-
tazone use is associated with a signifi cantly lower risk of death and lower number 
of myocardial infarction and stroke incidence [ 43 ], indicating that cardiovascular 
effects of TZDs are not a drug class effect, but rather specifi cally associated with the 
TZD type. However, increased risk of bladder cancer in long time pioglitazone 
users resulted in recent restriction of its use by FDA. Both TZDs exhibit drug class 
properties of fl uid retention and weight gain [ 44 ]. Although the use of both rosigli-
tazone and pioglitazone is currently restricted, the new TZDs with better safety 
profi le are in development. Therefore, understanding TZDs mechanism of action on 
bone is needed in respect to improvement of safety for bone of new line of TZDs. 

 Although they possess benefi cial anti-hyperglycemic profi les, rosiglitazone 
and pioglitazone use is associated with adverse effects on the skeleton [ 45 ,  46 ]. 
The crucial clinical evidence of a causal connection between TZD therapy and 
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increased fracture risk was determined from secondary analyses of results from 
 randomized clinical trials of rosiglitazone and pioglitazone. The fi rst demonstration 
of increased fracture risk was reported from ADOPT (A Diabetes Outcome 
Progression Trial), designed to compare time to monotherapy failure of rosigli-
tazone, metformin and glyburide in recently diagnosed T2DM patients [ 41 ]. Because 
of growing concern, based on rodent models and clinical trials, that TZDs might 
have a negative effect on bone, the investigators undertook a post hoc analysis of 
fracture rates in the three groups, using adverse event reports to identify fractures. 
In 1840 women and 2511 men with a median follow-up of 4.0 years and an average 
age of 56 (SD 10) years, fracture rates in men did not differ across treatment groups 
[ 26 ,  41 ]. However, in women, the cumulative incidence of fractures at 5 years was 
15.1 % (11.2–19.1) with rosiglitazone, 7.3 % (95 % CI 4.4–10.1) with metformin, 
and 7.7 % (95 % CI 3.7–11.7) with glyburide, representing hazard ratios of 1.81 
(95 % CI 1.17–2.80) and 2.13 (95 % CI 1.30–3.51) for rosiglitazone compared with 
metformin and glyburide, respectively. Increased fracture rates were seen in the 
lower and upper limbs. The incidence of hip and clinical vertebral fractures did not 
differ across treatment assignments, but only four hip and three clinical vertebral 
fractures were reported in women, as expected in the age range of this trial. 
Rosiglitazone was associated with higher fracture rates in both pre-and postmeno-
pausal women, suggesting that estrogen status does not modify the effect on bone. 

 Soon after the ADOPT fi ndings were published, Takeda performed a meta- 
analysis of pioglitazone trials and reported a similar pattern of increased fracture 
risk in women, but not men [ 47 ]. These observations were subsequently corrobo-
rated by other randomized trials. An early meta-analysis of data from ten different 
randomized controlled trials confi rmed that TZD use doubles the risk of fractures 
exclusively in women [ 48 ]. More recently, a meta-analysis of 22 randomized con-
trolled trials, including 896 fracture events, reported increased fracture incidence in 
women (OR = 1.94; 95 % CI 1.60–2.35) but not in men (OR = 1.02; 95 % CI 0.83–
1.27) [ 49 ]. Effects in women were similar for rosiglitazone (OR = 2.10; 95 % CI 
1.61–2.51) and pioglitazone (OR = 1.73; 95 % CI 1.18–2.55). 

 Because the TZD trials have included few hip or vertebral fractures, it is neces-
sary to rely on observational studies to assess whether TZD use increases fractures 
at these particular skeletal sites. A study using registry data in Scotland focused 
exclusively on hip fracture risk and reported increased risk with greater cumulative 
TZD use among those with any use (OR per year of exposure 1.18; 95 % CI 1.09–
1.28) [ 33 ]. Results were similar for pioglitazone and rosiglitazone considered sepa-
rately. In contrast to reports from randomized trials, increased hip fracture risk was 
found in men (OR per year of exposure 1.20; 95 % CI 1.03, 1.41) as well as women 
(OR per year of exposure 1.18; 95 % CI 1.07, 1.29). Those with >4 years of TZD 
use had OR for hip fracture of 1.94 (95 % CI 1.28, 2.94), compared with those who 
used a TZD for up to 2 years. Finally, results were similar when evaluated in a sub-
set with adjustment for use of other antidiabetic medications (insulin, metformin, or 
sulfonylurea). A large observational study using the UK General Practice Research 
Database also concluded that TZD use increased hip fracture incidence (Rate Ratio 
2.09; 95 % CI 1.29–3.40) as well as spine fracture incidence (RR 2.72; 95 % CI 
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1.29–5.73) [ 50 ]. This study reported similar increases in risk of any fracture in men 
(RR 1.44; 95 % CI 1.18–1.77) and women (RR 1.42; 95 % CI 1.20–1.69). 

 The principal mechanism underlying increased fracture risk with TZD use 
appears to be bone loss. A recent meta-analysis of ten randomized clinical trials that 
assessed change in BMD reported greater bone loss at the lumbar spine, total hip 
and femoral neck in women randomized to TZD treatment compared with placebo 
or other antidiabetic medication [ 49 ]. Only one trial included men. 

 Clinical studies of changes in bone turnover markers with TZD treatment have not 
provided consistent results. In the largest study to date, 12-month changes in serum 
markers were assessed in 1605 participants in ADOPT [ 27 ]. This analysis showed 
modest but statistically signifi cant increases in levels of resorption marker C-terminal 
telopeptide (CTX) in women on rosiglitazone therapy compared with glyburide 
(10.7 % difference,  p  = 0.002) or metformin (7.3 % difference,  p  = 0.029). In men, 
CTX was elevated in the rosiglitazone group compared with metformin (12.2%, 
 p  < 0.001) but not compared with glyburide. Both genders had modest reductions in 
levels of the marker of bone formation P1NP (women −4.4 %, men −14.4 %), but 
those in the metformin arm experienced greater reductions. For women, changes in 
P1NP did not differ between the rosiglitazone and glyburide groups while in men 
losses were greater in the rosiglitazone group. Although rodent models suggest an 
important role for reduced bone formation as a mechanism of bone loss with TZD 
treatment, the ADOPT results instead indicate that increases in bone resorption may 
explain at least in part the increased fracture rate in women on TZD therapy [ 27 ]. 

 Smaller trials of rosiglitazone treatment have also reported relative increases in 
markers of bone resorption compared to placebo [ 51 ,  52 ] and to metformin [ 53 ]. 
However, others have reported a relative reduction in bone formation markers with 
rosiglitazone treatment, compared with placebo [ 54 ] or with diet only treatment [ 55 ], 
and others have reported no difference [ 56 ]. For pioglitazone, the largest trial included 
156 postmenopausal women with prediabetes and found no differences in bone turn-
over markers after 12 months compared with placebo [ 57 ]. In contrast, a trial in 71 
diabetic men reported relative increases in markers of bone resorption (CTX) and 
formation (P1NP) in the pioglitazone group compared with metformin [ 58 ] while a 
trial in 86 diabetic men and women found a relative increase in a formation but not a 
resorption marker with pioglitazone treatment compared with placebo [ 59 ]. 

 Taken together, results of available clinical studies indicate the following regarding 
TZD use (1) women are at increased risk of fractures; however, some studies point to 
elevated risk in men as well; (2) the increased fracture risk appears to be a class effect 
of currently available TZDs; (3) bone loss is an underlying mechanism; (4) fracture 
risk is increased in the extremities and most likely at the hip and spine as well. 

    Mechanism of TZD-Induced Bone Loss 

 PPARγ, an essential regulator of lipid, glucose, and insulin metabolism [ 10 ], is a 
target for TZDs. The PPARγ protein is expressed in mice and humans in two iso-
forms, PPARγ1 and PPARγ2. PPARγ1 is expressed in a variety of cell types, 
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including cells of hematopoietic lineage macrophages and osteoclasts [ 60 ], whereas 
PPARγ2 expression is restricted to cells of mesenchymal lineage adipocytes [ 61 ]. 
In bone, PPARγ2 plays an important role in regulation of MSC differentiation 
toward osteoblasts and adipocytes, and the maintenance of bone mass. Activation 
of the PPARγ2 isoform with rosiglitazone converts cells of osteoblast lineage to 
terminally differentiated adipocytes and irreversibly suppresses both the osteoblast 
phenotype and osteoblast-specifi c gene expression. Thus, in MSCs PPARγ2 acts as 
a positive regulator of adipocyte differentiation and a dominant-negative regulator 
of osteoblast differentiation [ 11 ,  62 ]. In contrast, PPARγ1 expressed in HSC pro-
motes osteoclast differentiation and bone resorption [ 60 ]. It controls an expression 
of c-fos protein, an important determinant of osteoclast lineage commitment and 
development. 

 An essential role of PPARγ in maintenance of bone homeostasis was demon-
strated in several animal models of either bone accrual or bone loss depending on 
the status of PPARγ activity [ 63 – 68 ]. In models of bone accrual, a decrease in 
PPARγ activity in either heterozygous PPARγ-defi cient mice or mice carrying a 
hypomorphic mutation in the PPARγ gene locus led to increased bone mass due to 
increased quantity of osteoblasts [ 66 ,  68 ]. Interestingly, mice defi cient in PPARγ 
expression in cells of hematopoietic lineage develop osteopetrosis and are less sen-
sitive to the TZD-induced bone loss than control mice [ 60 ]. In contrast, in rodent 
models of bone loss due to PPARγ activation, administration of rosiglitazone 
resulted in signifi cant decreases in BMD, bone volume, and changes in bone micro-
architecture [ 63 ,  67 ,  69 ]. Observed bone loss was associated with expected changes 
in the structure and function of bone marrow, which included decreased number of 
osteoblasts, increased number of adipocytes, and increased support for osteoclasto-
genesis. The degree of bone loss in response to rosiglitazone correlated with the 
animal age and the level of PPARγ expression. In younger animals with less PPARγ, 
bone loss was less extensive than in older animals [ 69 ]. Moreover, age determined 
the mechanism by which bone loss occurred. In younger animals it occurred due to 
decreased bone formation, whereas in older animals due to increased bone resorp-
tion [ 69 ]. In addition, studies of rosiglitazone effects in estrogen defi cient rats 
showed that bone loss occurred mainly due to increased bone resorption [ 64 ]. In 
conclusion, animal studies suggest that aging and estrogen defi ciency confound 
TZD-induced bone loss and determine its mechanism. 

 The negative effect of TZDs on osteoblastogenesis includes decreased activity of 
Runx2, Dlx5, and Osterix, which are osteoblast-specifi c transcription factors, and 
decreased activity of osteoblast-specifi c signaling pathways controlling bone 
homeostasis, among them Wnt, TGF-β/BMP, and IGF-1 [ 70 ,  71 ]. The effect of 
TZDs on the expression of genes essential for osteoblast development is strikingly 
similar to changes observed during aging. Due to the type of bone loss and similari-
ties to aging, some speculate that TZDs may accelerate the aging of bone [ 69 ,  72 ]. 
The complexity of TZDs effects on bone remodeling resulting from changes on 
osteoblast and osteoclast differentiation and alterations in bone marrow milieu sup-
porting remodeling are summarized in Fig.  7.3 .
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       Novel Selective PPARγ Modulators with Benefi cial Effect of Insulin 
Sensitizers and No Effect on Adipocyte Differentiation 

 The PPARγ ligand-binding domain contains a large binding pocket capable of 
encompassing a variety of ligands. This provides a wide array of potential contact 
points that can result in various PPARγ post-translational modifi cations (PTMs), 
including phosphorylation, acetylation and sumoylation, and differential recruit-
ment of coactivators, which determine specifi c activities of this nuclear receptor 
[ 73 ]. The molecular studies provide evidence for distinct mechanisms regulating the 
proadipocytic, antiosteoblastic, and insulin sensitizing activities of PPARγ and 
include the levels of Serine 273 and Serine 112 phosphorylation and functional 
interaction with other proteins such as β-catenin and molecular chaperons FKBP51 
and PP5 [ 74 – 77 ]. 

 The concern of TZDs adverse effects has prompted pharmaceutical efforts to 
develop selective PPARγ modulators which will retain high potency to treat diabetic 
disease with minimal adverse effects [ 78 ]. The PPARγ selective activators, with a 
decreased proadipocytic activity but intact insulin sensitizing activity such as 
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  Fig. 7.3    PPARγ activation with TZDs leads to multiple direct and indirect effects in the bone mar-
row which result in changes in bone cell differentiation, unbalanced bone remodeling and ulti-
mately bone loss.  Anti-OB  PPARγ activity inhibiting osteoblast differentiation,  pro-AD  PPARγ 
activity stimulating adipocyte differentiation, and  pro-OC  PPARγ activity stimulating osteoclast 
differentiation       

 

B. Lecka-Czernik and A.V. Schwartz



135

 netoglitazone, INT131, MSDC-0602 and telmisartan do not affect bone mass in 
mice treated with the therapeutic doses [ 79 – 82 ]. A new class of insulin sensitizers 
with structural similarities to telmisartan, which block Serine 273 phosphorylation 
but do not stimulate PPARγ transcriptional proadipocytic activity, has been recently 
developed [ 74 ,  83 ], however their safety for bone is not as yet determined.   

    Sulfonylureas 

 Sulfonylureas function as insulin secretagogues. This class of drugs activates sulfo-
nylurea receptors on the surface of pancreatic β cells and stimulates exocytosis of 
insulin from vesicles. In addition, sulfonylureas are associated with greater fre-
quency of hypoglycemia which may increase the risk of falls and fractures [ 84 ]. 

 In the ADOPT trial, described earlier, fracture incidence was similar in those 
randomized to a sulfonylurea (glyburide) versus metformin [ 41 ]. The results of 
observational studies have been inconsistent with reports of increased [ 34 ], decreased 
[ 28 ,  31 ] and no difference [ 29 ,  30 ,  32 ,  35 ,  50 ,  85 ,  86 ] in fracture risk among those 
using a sulfonylurea. As noted in a recent review of current literature [ 87 ], although 
a large number of studies have reported no association with fracture, the majority of 
these studies were not specifi cally intended to assess the impact of sulfonylureas in 
particular on fracture. Allocation bias is an important consideration in observational 
studies, and results from a study in Scotland suggest that patients using sulfonyl-
ureas tend to have a higher background fracture risk [ 33 ]. Although sulfonylureas 
increase hypoglycemic episodes, an observational study conducted among Kaiser 
Permanente members did not fi nd an association between sulfonylurea use and inci-
dent falls, identifi ed through inpatient and outpatient medical records [ 88 ].  

    Incretin Analogs and DPP4 Protease Inhibitors 

 This newest class of antidiabetic drugs enhances the mechanism by which enteric 
hormones stimulate insulin release from β-cells and inhibit glucagon production in 
the liver [ 89 ]. Glucose-dependent insulinotropic peptide (GIP), and glucagon-like 
peptides (GLP-1 and GLP-2), are released by gut endocrine cells in response to 
nutrient intake. Bioactivity of incretin hormones is limited by their rapid degrada-
tion and inactivation by dipeptidyl peptidase-4 (DPP-4), a serine protease that is 
present in a soluble form in plasma and is expressed in most tissues [ 90 ]. Recently, 
incretin mimetics (GLP1 receptor agonists) and DPP-4 inhibitors have emerged as 
a new class of pharmacological agents to enhance incretins action and improve 
glycemic control in patients with T2DM. Incretin mimetics and DPP-4 inhibitors 
have a major advantage over other diabetic medications in that glucose control 
remains stable with little or no rise in HbA1c levels after long periods of use. The 
side effects common for incretin-based therapies, including incretin receptors 
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agonists and DPP-4 inhibitors, consist of gastrointestinal, immune system and 
 pancreatic reactions. Since DPP-4 enzyme is known to be involved in the suppres-
sion of certain malignancies, particularly in limiting the tissue invasion of tumors, 
there is a concern that DPP-4 inhibitors may allow some cancers to progress, 
however clinical data are not as yet available [ 91 – 93 ]. 

 Nutritional hormones are known to be important in bone turnover; as soon as a 
meal is ingested, bone breakdown is suppressed [ 94 ,  95 ]. Osteoblasts and osteo-
clasts express receptors for both GIP and GLP incretins. A number of studies indi-
cate that GLP-2 acts mainly as an antiresorptive hormone [ 96 ], while GIP can act 
both as an antiresorptive and anabolic hormone [ 97 ,  98 ]. Mice defi cient in GLP-1 
receptor develop cortical osteopenia and have more fragile bone as well as increased 
quantity of osteoclasts and increased bone resorption [ 99 ]. GLP-1 receptor signal-
ing may play an essential role in the control of bone resorption indirectly, through a 
calcitonin-dependent pathway. Calcitonin treatment effectively suppressed bone 
resorption markers in Glp-1r(−/−) mice, and the GLP-1 receptor agonist exendin-4 
increased calcitonin gene expression in the thyroid of wild-type mice [ 99 ]. 
Interestingly, although animal studies showed that DPP-4 inhibitor sitagliptin did 
not affect bone density, however the absence of DPP-4 in Dpp-4(−/−) mice lead to 
the greater bone loss after ovariectomy as compared to animals with unaltered 
DPP-4 expression [ 100 ]. In summary, a number of animal studies indicate that 
incretins have benefi cial effects on bone mass and protective effects on bone quality. 
Therefore, antidiabetic therapies which increase GIP and GLP hormone levels and 
their bioactivity might exert benefi cial effects on human bone. 

 Since incretin-based therapy is relatively new, the clinical data of its safety for 
bone is just emerging. The 44-week treatment of T2DM patients with incretin 
mimetic exenatide did not decrease total body BMD, although it decreased body 
weight by 6 % [ 101 ]. Currently, two meta-analyses of incretin mimetics and fracture 
outcomes, reported as serious adverse events, have been published. The fi rst meta- 
analysis included seven trials with placebo or other antidiabetic medications as the 
comparison group and a total of 19 fractures [ 102 ]. There was no difference in 
fracture incidence between incretin mimetic treatment and the comparator groups 
(MH OR 0.75; 95 % CI 0.28–2.02), but confi dence intervals were wide. A second 
meta-analysis included 14 trials with 38 fractures and also found no difference in 
fracture incidence (MH OR 1.05; 95 % CI 0.59–1.87) [ 103 ]. However, when exam-
ined separately, the investigators found decreased fracture incidence for liraglutide 
treatment (MH OR 0.38; 95 % CI 0.17–0.87) and increased fracture incidence for 
exenatide treatment (MH OR 2.09; 95 % CI 1.03–4.21), both compared with pla-
cebo or other antidiabetic medications. The reason for this difference is not imme-
diately apparent and may be a chance fi nding. Liraglutide and exenatide have similar 
effects on blood glucose and body weight without an increased frequency of hypo-
glycemia. An important limitation of these trials is their relatively short length for 
the purposes of assessing fracture risk. Only fi ve of the trials were 52 weeks or 
longer, and effects on fracture risk that are operating through changes in bone would 
be expected to develop over periods of a year or more. 
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 A meta-analysis of 28 clinical trials of DPP-4 inhibitors with duration of at least 
24 weeks included 63 fractures reported as serious adverse events. Treatment with 
DPP-4 inhibitors was associated with a reduced risk of fractures (Mantel Haenszel 
Odds Ratio 0.60; 95 % CI 0.37–0.99) compared to placebo and other treatments 
[ 104 ]. Excluding TZDs or sulfonylurea as comparators yielded similar results 
(MH OR 0.56; 95 % CI 0.33–0.93). As noted for the trials of incretin mimetics, an 
important weakness of these results is the short duration of the trials. Only 7 of the 
28 trials were 52 weeks or longer. More clinical studies on the effects of incretin 
mimetics and DPP-4 inhibitors on BMD and fracture risk with stratifi cation accord-
ing to gender, postmenopausal status, and age are needed.  

    SGLT2 Inhibitors 

 In 2013 and 2014 the fi rst of two SGLT2 inhibitors class of diabetes drugs, cana-
glifl ozin and dapaglifl ozin, were approved by FDA for improving glycemic control 
in T2DM patients in conjunction with diet and exercise. Both drugs are selective and 
reversible inhibitors of sodium glucose co-transporter 2 (SGLT2), which is respon-
sible for the majority of glucose reabsorption in kidney. Bone safety of dapaglifl ozin 
has been evaluated in a randomized trial, adding study drug or placebo to metformin 
in T2DM patients with inadequate control on metformin. Results have been reported 
after 50 weeks [ 105 ] and 102 weeks [ 106 ] of treatment. At 102 weeks, the trial was 
completed by 140 patients, men and postmenopausal women. The dapaglifl ozin 
group lost more weight than the placebo group (difference of −2.42 kg; 95 % CI 
−3.64, −1.21). In spite of the greater weight loss, no signifi cant differences were 
identifi ed in changes from baseline in markers of bone formation (P1NP) and bone 
resorption (CTX). Bone loss was greater at the femoral neck in those treated with 
dapaglifl ozin but the difference was not statistically signifi cant (difference −0.94 %; 
95 % CI −2.21, 0.35). Differences in BMD changes at the lumbar spine and total 
hip were smaller and also not statistically signifi cant. There were no signifi cant 
treatment-by-gender interactions. In a 104-week trial of dapaglifl ozin to assess effi -
cacy among T2DM patients with moderate renal impairment, 252 patients were ran-
domized to dapaglifl ozin (5 or 10 mg) or placebo. The treated groups lost weight 
compared with placebo but glycemic control was not different. More fractures were 
reported in the treated groups ( N  = 13) than the placebo group ( N  = 0). Dapaglifl ozin 
is not recommended for use in patients with moderate renal impairment [ 107 ]. 

 There are no available studies of the effects of canaglifl ozin on bone turnover or 
BMD. Increased incidence of upper extremity fractures with canaglifl ozin treatment 
was reported in the Prescribing Information by the manufacturer [ 108 ]. In a meta- 
analysis of eight clinical trials with longer mean duration of treatment (68 weeks), 
the incidence rate of fracture was 14.2, 18.7, and 17.6 per 1000 patient-years of 
exposure to comparator, canaglifl ozin 100 mg and canaglifl ozin 300 mg. FDA 
approval for canaglifl ozin included a requirement for postmarketing studies to 
monitor for bone safety [ 109 ].  
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    Amylin Analogs 

 Amylin, also known as Islet Amyloid Polypeptide (IAPP), is a 37-residue peptide 
hormone produced in pancreatic β-cells. Amylin is co-secreted with insulin and 
plays a role in glycemic regulation by slowing gastric emptying, promoting satiety 
and decreasing glucose levels in circulation. Amylin, like insulin, is absent in indi-
viduals with T1DM. Amylin belongs to the family of regulatory hormones that are 
structurally and functionally related to calcitonin, calcitonin gene-related peptide 
and adrenomedulin   , and signals through the calcitonin receptor modifi ed for amylin- 
specifi c activity by binding to receptor activity modifying proteins (RAMP) [ 110 ]. 
Cellular studies have shown that amylin may stimulate osteoblast proliferation and 
may inhibit osteoclast development and activity through increasing cyclic AMP 
[ 111 ]. These activities have been confi rmed in several animal studies which showed 
a positive effect of amylin on trabecular and cortical bone volume [ 111 ] and some 
of them are indicative that the bone response to amylin may differ depending on 
diabetes status [ 112 ]. 

 Human data suggest that there is a functional link between amylin and skeletal 
health. Amylin levels decrease with aging and correlate inversely with osteoporosis 
[ 113 ]. In addition, reduced amylin levels are associated with low BMD in women 
with anorexia nervosa and are signifi cant predictors of BMD and of  Z -scores at the 
femoral neck and at the total hip in this group of patients [ 114 ]. 

 An analog of amylin, pramlintide, had been approved for therapy in 2005 by 
FDA to treat diabetes. It is used as an adjunctive therapy with insulin in both T1DM 
and T2DM. Pramlintide allows patients to use less insulin, because it improves 
hemoglobin 1Ac levels, lowers average blood sugar levels, and substantially reduces 
blood sugar that occurs in diabetic individuals right after eating. 

 Although animal studies suggest positive effect of amylin on bone, the clinical 
studies do not provide supporting results. Pramlintide safety on bone was assessed 
in a study conducted on patients with T1DM who injected the drug for 12 months. 
BMD measurements of the lumbar spine by dual-energy X-ray absorptiometry 
(DXA), and biochemical markers of bone metabolism (serum-calcium, PTH, osteo-
calcin, urinary pyridinium cross-links) before and one year after starting pramlint-
ide therapy showed no signifi cant changes. It is concluded that a 1-year pramlintide 
therapy does not affect bone density or bone metabolism in patients with type 1 
diabetes mellitus without osteopenia (based on the markers used) [ 115 ].  

    Alpha-Glucosidase Inhibitors 

 Alpha-glucosidase inhibitors are saccharides that act as competitive inhibitors of 
enzymes needed to digest carbohydrates, specifi cally alpha-glucosidase enzymes in 
the brush border of the small intestines, which subsequently leads to the reduction 
of blood sugar levels. Therapy with alpha-glucosidase inhibitors is associated with 
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several side effects which are in close relation to their mechanism of action and 
include increased levels of carbohydrates in the intestine causing fl atulence and 
diarrhea. There are no available information on bone safety of alpha-glucosidase 
inhibitors.   

    Conclusions 

 In conclusion, the available evidence indicates that antidiabetic therapies may either 
increase fracture risk (TZDs and insulin), may not affect this risk (sulfonylureas and 
metformin) or may possibly decrease the risk (DPP-4 inhibitors). From a bone per-
spective, metformin and sulphonylureas are safer than TZDs; randomised trials 
have shown that TZDs decrease BMD and increase fracture risk. The mechanism of 
TZD-induced bone loss includes unbalanced bone remodeling processes resulting 
from decreased bone formation and increased bone resorption. Animal studies sug-
gest that aging and estrogen defi ciency may modify the effects of TZDs on bone and 
determine the mechanism of bone loss. The emerging potential of incretin-based 
therapies as sparing or perhaps even benefi cial for bones requires systematic clinical 
assessment in the future.     
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