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Abstract Philosophy of mathematics does not coincide as such with the research 
on the foundations of mathematics. This confluence, however, occurred at the 
beginning of the twentieth century, in the framework of the efforts spent for 
overcoming the “crisis” produced by the discovery of the antinomies. Hilbert’s 
formalism became soon the dominant view in this connection, that had also its 
philosophical counterpart in the conception of mathematics as a complex of pure 
formal systems devoid of specific meanings and referents. Agazzi has constantly 
opposed formalism, relying especially on philosophical reflections about Gödel’s 
theorems, from which he derived the recognition of meanings and contents of 
many mathematical theories. This has pushed him to revisit the work of Peano and 
his school (and to stimulate his pupils to investigate their contributions in depth). 
It turns out that Peano was a pioneer and a champion of that request of logical 
rigor that animated much of the mathematical community of his time, so that 
his defense and practice of axiomatizations and his skillful use of mathematical 
logic as a tool for this critical analysis remained paradigmatic for the foundational 
investigations. However he never accepted a formalistic conception of mathemat-
ics, and this is why he and his school (after having completed their program) 
remained outside the main stream formalistic outlook of Hilbert’s followers that 
was dominant in the first half of the twentieth century.

It is a widespread opinion that the field of research called “Foundations of 
Mathematics” has become a proper field of study at the end of the Nineteenth 
Century, deeply related with mathematical logic: Frege, Peano, Hilbert and most 
recently Gödel are just some names among the most representative ones.
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The identification of the foundations of mathematics with the philosophy of 
mathematics is disputable—even if it is widely endorsed. I don’t take this identi-
fication in a literal sense (indeed it would be obviously false because it would dis-
claim the existence of philosophy of mathematics before Frege). I rather take it to 
mean that philosophical thinking on mathematics and foundations of mathematics 
were identified during the thirty years from Frege to Gödel. Indeed, the so-called 
“Foundational” schools (Logicism, Intuitionism and Formalism) also focused on 
philosophical problems, for instance the classic one about the existence of math-
ematical entities.

Whether or not one agrees with the previous identification, it is unquestiona-
ble that it cannot be supported nowadays. There are in fact several recent philo-
sophical views developed in a non-foundationalist or even anti-foundationalist 
perspective: for instance, extreme forms of Lakatosian mathematical empiricism, 
which deny that mathematics needs foundations, hence any analysis of them. On 
the other hand, it is obvious that philosophy of mathematics—as a specific field in 
philosophy—is influenced by the more general philosophical climate, that in turn 
can influence foundations in more or less direct way. For instance, if on the one 
hand the search for rigour and strong foundations for mathematics seems consist-
ent with a Neopositivistic point of view, on the other hand the attention to the fal-
libility of mathematics, that proceeds through trials and errors, is easily associated 
with irrationalistic tendencies, especially in some countries.

Under these assumptions, the aim of this contribute is to analyze some topics in 
the philosophy of mathematics. These topics are chosen especially among those 
which directly or indirectly concern also the foundations of mathematics, and in 
 particular, those to which Evandro Agazzi has given the most relevant contributions.1

Another circumstance is worth mentioning: the research in mathematical logic 
and in the foundations of mathematics in Italy were brilliantly started by Peano’s 
school, but was rudely interrupted by many causes that I will not expose here 
totally, but that—summarizing—are only marginally connected with the influences 
of Croce’s and Gentile’s Neo-idealism and to the hostility that Peano raised among 
contemporary mathematicians. In fact, the main cause was that Peano’s school had 
completed his own foundational program and it wasn’t interested in joining the 
new programs that were then starting in other countries.2 In the Sixties of the last 
century there was a revival of foundational studies in Italy: the Italian scholars 

1It is a pleasure for me recall that I was a student of Agazzi in the early 1970s. I have taken 
part in his courses “Mathematical Logic” (at the Department of Mathematics) and “Philosophy 
of Science” (at the Department of Philosophy) and he has been my thesis supervisor when I have 
received my degree in mathematics, in 1973. Of course, these circumstances have influenced 
this contribution, in which some statements ascribed to Agazzi are not accompanied by  accurate 
bibliographic references because they are the result of my familiarity with Agazzi’s scientific 
approach.
2See Borga et al. (1985). I remind that Agazzi promoted these researches on Peano's school in 
the early 1980s thus filling a cultural gap in Italy. See Borga (2005) for a detailed analysis of the 
 different approaches to foundational analysis of Peano's and Hilbert's school.
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had, therefore, “to recover” many years of foundational research during which 
Italy was absent from the international scene.3

The mainstream point of view in those years (among logicians and  scholars 
of foundations) was that mathematical theories were formal systems. This means 
that the vast majority of scholars believed that both the axiomatization step 
(of modern type, i.e. that of hypothetical-deductive systems, in Pieri’s terms) and 
the subsequent one, the formalization step, had always been accomplished. The 
latter step was completely unrelated to mathematical practice, and required that 
any theory made explicit the deductive logical rules used in providing a precise 
characterization of proofs (formal proofs) within that theory. These proofs, in 
fact, were defined as finite sequences, or finite trees, of formulas linked to each 
other by logical rules. This latter step appears obvious nowadays, especially in the 
area of computer science research that strives to attribute demonstration tasks to 
computers (computers can exclusively make formal proofs!), but in those years 
it had different reasons: it was related to Hilbert’s program, which was then very 
influential (as it still is in part nowadays). Hilbert’s program required a deep 
analysis of proofs in order to guarantee that no contradiction could be derived: 
therefore proofs should be rigorously defined (as it doesn’t happen in the math-
ematical practice!), indeed become formal, and be studied by what Hilbert calls 
Beweistheorie (proof theory). Let us emphasize—even if I said that above—that 
this approach affected scholars like logicians and researchers on foundations, 
but only very little the mathematicians working in the traditional fields of math-
ematical research. These mathematicians, in fact, considered the use of logic as 
an obstacle to their research (it was too niggling for them). By the way, this is 
a respectable approach to logic—perhaps a natural and obvious one—even if 
 sometimes it is referred to by quoting the sarcastic words that Poincaré used with 
regard to the formal proofs.

In such a context, which saw formalization as the culminating point in the 
development of a theory (not in order to work within it, but to work on the theory), 
the so-called limitative theorems came in very soon, in spite of Hilbert’s optimism 
(which in hindsight we now see as unjustified). They are theorems in logic (per-
haps meta-theorems would be a better world), which show that in looking for rig-
our at the level of formalization, we incur in irresolvable problems or problems 
which have unwelcome solutions.4

Among these theorems, the second Gödel’s Incompleteness Theorem (1931)5 
has a prominent position: for any consistent formalized system that is sufficiently 
powerful (i.e. which can formalize at least elementary arithmetic) a consistency 

3See Agazzi (1986), in particular the introduction and Cellucci (1986).
4Ladrière (1957) has been a “classic” on this topic; Agazzi (1961)—that we will mention 
 afterwards—is a systematic treatment of the most important steps in the axiomatic method's 
development. See also Agazzi (1992, 1994).
5Gődel (1931), Agazzi (1961) contains the first Italian translation of Gődel (1931). See also 
the preface by P. Pagli to the Italian edition of Shanker (1988): this preface analyzes Italian 
 circulation of Gődel’s Theorems.
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proof cannot be carried out by proof techniques belonging to the system in ques-
tion. It means that this proof cannot be achieved by means of those elementary and 
reliable methods, i.e. finitary methods, proposed by Hilbert for this purpose. Even 
if Hilbert has never said exactly what he meant by ‘finitary’ or ‘finististic’ meth-
ods, it has been immediately evident that they were just a part—actually a very 
restricted one—of all proof techniques of arithmetic.

Probably, a stronger blow to formalism was dealt by the first Gödel’s incom-
pleteness theorem, although this is seldom mentioned. This theorem concerns the 
syntactic incompleteness of arithmetic: against Hilbert’s famous claim “In mathe-
matics there is no ignorabimus”, the theorem of incompleteness of arithmetic 
showed that there are mathematical issues that cannot be decided. Indeed, there 
are closed formulas (i.e. propositions for which, given an interpretation, they can 
be said to be true or false) of which it is demonstrable that are neither provable nor 
refutable, and this phenomenon is not due to a deductive weakness of the formal 
system.6

However, a way out (today it seems we should say: an expedient) from Gödel’s 
second incompleteness theorem was proposed shortly thereafter. It was an attempt 
to extend Hilbert’s finitism by carrying out consistency proofs through methods 
which on the one hand could not be formalized within the theory under scrutiny 
(so to escape Gödel’s theorem), and on the other hand were sufficiently reliable to 
be used in the research on proof theory. They are the constructive methods, typi-
cally used in intuitionistic mathematics, but here employed in  meta-mathematics 
rather than in mathematics. It is remarkable that the consistency proof for 
 arithmetic given by Gentzen in 1936—in the so called ‘modified’ or ‘generalized’ 
Hilbert’s program—has been judged “acceptable from an intuitionistic point of 
view”, even if it is surely not finitary. But here a crucial question emerges: who 
guarantees the reliability of these constructive methods? Of course, no further 
 consistency proof was available, because it would have required further methods 
to deal with the problem (so generating an infinite regress). So, these constructive 
methods had to be accepted for their capacity to persuade intuitively; meta-mathe-
matics was by its own nature an informal theory. So, taking the search for rigour to 
the highest level by formalization, one was eventually obliged to come back to an 
informal theory, at least at the meta-mathematics level.

More recently, in a deeply changed philosophical context, some have taken a 
more radical position. Since going back to an informal treatment is unavoidable, 
sooner or later, why shouldn’t we stick to it from the beginning, giving up the for-
malization step and directing philosophical analysis directly to informal (or pre-for-
mal, not formalized) mathematics? These two approaches are deeply different: one 

6Gödel’s formula expresses within the formal system (through a technical process involving the 
arithmetization of syntax—currently called Gödelization—and the representation of the primi-
tive recursive functions in the formalized arithmetic), the (meta-theoretical) fact of being unprov-
able. In a similar way—on a semantic level—in the Liar antinomy a formula expresses its falsity. 
Since this formula is unprovable, by the adaequatio intellectus et rei condition it is therefore true 
on the natural numbers.



85Foundations and Philosophy of Mathematics

thing is resigning oneself to a certain return to the informal in metamathematics; 
another is to require that the mathematics that has to be studied (not only by mathe-
maticians, but also by philosophers) should be the non-formalized one instead.7 
However, Lakatos—from whom I have taken the above observation8– was interested 
in the philosophical revaluation of informal mathematics. Informal mathematics 
 proceed through trial-and-error processes, by ‘proofs and refutations’. Moreover, this 
is the mathematics practiced daily by mathematicians and it is different from the 
 idealization constituted by formal mathematics. In any case, Lakatos’ philosophy of 
mathematics seems to stall on fundamental questions it posed, particularly dealing 
with the problem of the potential falsifiers for informal theories.

From his Popperian, quasi-empirical and fallibilist approach, Lakatos rightly 
analyzes the problem of potential falsifiers for mathematics and correctly distin-
guishes between the cases of formal and informal theories. The theorems of the 
informal theories are the potential falsifiers of the formal theories. This is abso-
lutely natural if one believes in the supremacy of the informal theories over the 
formal ones, although it is acceptable only for well-established informal theories 
(of which formal systems are intended to be counterparts). As to the informal 
 theories, instead, Lakatos doesn’t offer an exhaustive explanation of which their 
potential falsifiers could be. He only offers unfinished glimpses, that do not seem 
to have been adequately developed by others, except by proposing again the 
 traditional problem about nature of mathematical entities.9

Agazzi’s point of view on these matters is not as extreme as Lakatos’ one, but 
there are some common elements: the need for a return to the informal in meta-
mathematics is evident. Agazzi analyzes the question concerning the return to 
informal approach in mathematics and in meta-mathematics through the distinc-
tion between—in Agazzi’s terms—the “concrete” theories and the “abstract” ones, 
which, he stresses, are featured by a very broad and general scope language. As a 
matter of fact some mathematical theories, for instance arithmetic—that deals 

7There are many doubts concerning the fact that Hilbert considered the formalized mathematic as 
‘the true’ mathematics. Formalization, as we wrote, was a step aimed to the analysis of metatheo-
retical problems.
8Lakatos (1962: 184).
9Lakatos marginally analyzed the potential falsifiers problem for the informal theories in his 
paper titled A Renaissance of Empiricism in the Recent Philosophy of Mathematics?, presented 
at the international conference on philosophy of science which took place in London (1965). 
Lakatos was one of the organizers of the conference and also editor of the proceedings (1967). 
This problem is elaborated in the expanded edition of the same paper that has been published 
posthumous (Lakatos 1976a) with the same title (but it seems to be already completed in 1967). 
In the last edition Lakatos says: “What is the 'nature' of mathematics, that is, on what basis are 
truth values injected into its potential falsifiers? This question can be in part reduced to the ques-
tion: What is the nature of informal theories, that is, what is the nature of the potential falsifiers 
of informal theories? [maybe is it the] construction the only source of truth to be injected into a 
mathematical basic statement? Or platonistic intuition? Or convention? The answer will scarcely 
be a monolithic one. Careful historico-critical case-studies will probably lead to a sophisticated 
and composite solution” (Lakatos 1976a: 40).
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with natural numbers—want to describe privileged models. Even if the approach 
can be syntactic, the guide is always semantic (the intended model). Instead, other 
theories are “abstract” by their own nature, and to have several models is an 
advantage in terms of their general application. According to Agazzi, the concrete 
theories have “a content that doesn’t appear far from the content we usually attrib-
ute to the empirical sciences”.10 These considerations can be seen as the conclu-
sion of the long course that, starting from the classic axiomatic, arrived at the 
modern one and was finally crowned by the critical awareness produced by the 
theorems on the limitations of formalisms.11 According to the classical perspec-
tive, theories were intended to deal with certain mathematical objects (discovering 
their properties), whereas after the transition to modern axiomatic, theories 
have—so to speak—emptied of their contents. This means that the syntactic view 
has become prevailing, if not unique. This fact is well illustrated by the statement 
(rather unhappy from a terminological point of view) that the axioms implicitly 
define the primitive concepts. But Gödel’s theorem shows that there are true prop-
ositions about natural numbers that nevertheless cannot be demonstrated within 
the formal system for arithmetic. This reveals that aside from the formal system 
(that, by the way, has infinite models, even not isomorphic to each other) the 
structure of natural numbers exists, regarding which arithmetic’s task should be to 
make true assertions.

This perspective puts forward, however, the problem of what kind of existence 
should be assigned to the objects of a theory: for instance, Kronecker claims that 
the numbers are created by God, while for Frege and Russell they are sets. Again, 
for intuitionistic mathematics numbers are built on the basis of two-ity. Who is 
right? We are dealing with a multiplicity of choices. Agazzi seems to be inclined 
toward a constructive conception, that also gives him the possibility to treat in a 
unified manner both mathematics and empirical theories. An empirical theory cuts 
out its “objects” within a universe of “things” using the operational predicates. 
They represent the “point of view” of the theory, from which objects are studied.

Similarly, mathematical objects will be identified by the operations that are 
considered typical of the theory under scrutiny (for instance, let us consider the 
difference between the arithmetic of natural numbers and that of the integers or of 
the rational numbers, based on the fact that we want to operate with subtraction 
and division, without exceptions).

It will not seem inappropriate, I hope, to recall an observation due to Peano, 
focused on a distinction similar to the one I’m dealing with. In 1906, Peano wrote 
that a consistency proof is not required for theories such as arithmetic or geometry, 
while it is appropriate when the postulates are hypothetical and do not correspond 
to real facts. The context was that of the early meta-theoretical researches at the 
beginning of the twentieth century. In 1900, in Paris, Hilbert had posed the ques-
tion concerning the consistency of mathematical analysis. Russell, in 1902, had 

10Agazzi (1978: 172).
11Agazzi (1961).
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discovered his antinomy. In 1904, Hilbert had set the ground of what became later 
his foundational program. Moreover, there had been some “misunderstandings” 
between Padoa and Hilbert (actually, of Padoa concerning Hilbert’s judgment on 
his work), while Pieri had supported the idea that it was in principle appropriate 
looking for a consistency proof.12 In this context, Peano had stayed on the side-
lines of the debate: as mentioned above, a consistency proof is not necessary for 
what Agazzi calls “concrete” theories, since they “speak” about certain real 
objects. This position could be labeled as a form of Platonism, and one could 
stress what Pieri pointed out as the difference between his own “abstract” position 
and Peano’s physico-geometrical one. But maybe, this position is more sophisti-
cated. Peano has written: “The axioms of arithmetic, or of geometry, are satisfied 
by the idea that every writer of arithmetical and geometrical issues has about the 
number and the point”. Moreover, Peano has added: “We think the number, there-
fore it exists”.13 It’s remarkable that right when the formal way to think the mathe-
matical theories has been developed, also a distinction has been made according to 
which just some axiomatic systems retain the status of theories provided with 
contents.

If all this seems to undermine the epistemological interest of the attempts to 
prove the consistency of arithmetic, let us remind that this interest has always been 
restricted: it was nothing more than a step toward more significant mathematical 
theories. Moreover, it must never be forgotten that the problem for which the solu-
tions had been sought was the consistency of analysis, and that the first result 
obtained within Hilbert’s program was a proof given by Ackermann in 1924—
which later on has been shown to be wrong14—whose aim was to prove the 
 consistency of classical analysis.

The above mentioned Lakatos’s approach has inspired a few years later the 
well-known book Proofs and Refutations: The Logic of Mathematical Discovery. 
It is a manifesto of the modern mathematical empiricism (or quasi-empiricism). 
More recently, this empiricism in mathematics has in turn provided new trends in 
the philosophy of mathematics. These trends agree on the end of foundationalism 
and the fallibility of mathematics (often labeled as “loss of certainty”). Again, they 
agree with the assimilation of mathematics to empirical theories (encouraged by 
the results concerning computers-aided proofs), and share doubts on the value of 

12Padoa accused Hilbert to have not given due consideration to his solution of the non-contra-
diction of arithmetic (of integers), which was based—as we would say nowadays—on the exist-
ence of the standard model (Padoa 1903). For his part, Pieri initially seems to put some distance 
between himself and Padoa, hence to agree with Hilbert on the opportunity of seeking a “direct” 
proof of the non-contradiction of the arithmetic axioms. But Pieri had the idea—really distant 
from the approach of the emerging Hilbert’s program—of looking for an arithmetic's model 
within a system that could be considered “of pure logic”, that is, without using another auxiliary 
system (Pieri 1904).
13Peano (1906), in Opere Scelte, I, p. 343.
14Ackermann himself had corrected his mistakes in the preliminary drafts. As a result, his dem-
onstration allows us to prove merely the consistency of a part of arithmetic rather than proving 
the consistency of mathematical analysis.
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traditional proving activities, that sometimes have even been declared “dead”. 
Finally, These trends agree in linking this topic to the chronic troubles affecting 
the daily teaching of mathematics, and in blaming formalism for them (which, I 
submit, is at least arguable).15

However, on this occasion the target is not merely the formalization, rather 
mathematical logic itself. Mathematical logic had been the main protagonist in the 
foundational studies, for instance in Frege and Russell’s logicism—which placed 
it as foundation of mathematics—and in the Hilbertian formalism, in which it was 
an essential tool for the formalization of mathematical theories, as well as for the 
consistency proofs. It has been considered appropriate to replace—at a methodo-
logical level—this kind of logic—that, meanwhile, had become a proper and 
autonomous mathematical discipline—with a new logic, a logic of discovery, as 
the subtitle of Lakatos’ book points out explicitly. Summarizing, the object of phi-
losophy of mathematics should not be the “justification moment” but the mathe-
matical practice, that is mathematics in its development, that includes, especially, 
the set of all those procedures followed in the search for proofs, of which there is 
no trace in the final proof (formal or not). The traditional studies on foundations 
have disregarded too much this aspect, focusing on the analysis of proofs as fin-
ished products. This deficiency has produced a widespread and almost complete 
lack of interest of mathematicians on the topics related with the philosophy of 
mathematics. This line of research seems to require our encouragement, but only 
on condition that—this is my opinion—it is placed side by side with foundational 
research, that is, it doesn’t have to replace it. However, the foundational researches 
have moved forward in the meantime, even if with purposes dissimilar from the 
original ones.16

Specifically, regarding Agazzi’s perspective, it seems his ideas—especially 
with reference to the limitation theorems and the proposal to treat mathematics 
and empirical theories unitarily—constitute an authentic and original anticipation 

15See the anthology (Tymoczko 1986) for these new directions in the philosophy of mathematics. 
Tymoczko’s book has been reviewed in Zentralblatt by Agazzi. At the end of his review he says: 
“This book is very stimulating and fulfills its task of providing a philosophical elucidation of sev-
eral hitherto perhaps too little considered aspects of the nature of mathematics” (Zbl.Math.608, p. 
6). About the same topic there are other readings, starting with Hersh (1979). They are scientific 
divulgation books (that have also achieved some success), as Davis and Hersh (1981) whose cen-
tral chapter is remarkably titled “From Certainty to Fallibility”, and Kline (1980), both translated 
in Italian. To these books we might add Cellucci (2002), that agrees with Tymoczko’s conclusion 
on the end of foundational studies and share with it the hope for a revival of interest for the ana-
lytic method and the logic of discovery, and Hersh (2006), that contains the English translation of 
the introduction by Cellucci’s book in the second chapter.
16Actually not so different from each other if we think that the recent Simpson’s book (Simpson 
1999)—that wants to be an important book on the foundations of mathematics—aims to the con-
struction of as much as possible mathematics in “weak” formal systems, for which Hilbert’s pro-
gram becomes achievable. In this case, objects of revision are the formal systems, on which it is 
conjectured that they have been chosen stronger than what is really needed for the formalization 
of the current mathematics.
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of positions developed in the following years. His latest stances focused on more 
extreme forms of mathematical empiricism—besides indicating that Agazzi is in 
line with some basic issues about the cognitive value of mathematics—show a 
constant interest toward this question and this gives us hope that some pages of 
his philosophy of mathematics that have yet to be written, will indeed be written in 
the next few years.
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