
Thomas Eisenbarth
Erdinç Öztürk (Eds.)

 123

LN
CS

 8
89

8

Third International Workshop, LightSec 2014
Istanbul, Turkey, September 1–2, 2014
Revised Selected Papers

Lightweight Cryptography
for Security and Privacy

Lecture Notes in Computer Science 8898

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Thomas Eisenbarth • Erdinç Öztürk (Eds.)

Lightweight Cryptography
for Security and Privacy
Third International Workshop, LightSec 2014
Istanbul, Turkey, September 1–2, 2014
Revised Selected Papers

123

Editors
Thomas Eisenbarth
Worcester Polytechnic Institute
Worcester, MA
USA

Erdinç Öztürk
Istanbul Commerce University
Istanbul
Turkey

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-16362-8 ISBN 978-3-319-16363-5 (eBook)
DOI 10.1007/978-3-319-16363-5

Library of Congress Control Number: 2015932981

LNCS Sublibrary: SL4 – Security and Cryptology

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

LightSec 2014 is the Third International Workshop on Lightweight Cryptography for
Security and Privacy, which was held in Eminönü, Istanbul, Turkey, during September
1–2, 2014. The workshop was sponsored by TÜBİTAK BİLGEM UEKAE (The
Scientific and Technological Research Council of Turkey, National Research Institute
of Electronics and Cryptology) and held in cooperation with the International Asso-
ciation of Cryptologic Research (IACR).

The Program Committee (PC) consisted of 31 members representing 13 countries.
There were 24 papers from 15 countries submitted to the workshop. Submitted papers
were reviewed by the PC members themselves or by assigned subreviewers. Each
submission was double-blind reviewed by at least three PC members and the sub-
missions by PC members were assigned to 14 subreviewers. The vast majority of the
papers were reviewed by four reviewers. Twelve of the papers were accepted for
presentation at the workshop, whereas two of them were conditionally accepted. These
two conditionally accepted papers were later withdrawn.

The program also included three excellent invited talks by experts in the field. The
first talk was given by Tolga Acar from Microsoft Research titled “Selecting and
Deploying Elliptic Curves in Security Protocols.” The second talk was given by Guido
Marco Bertoni from ST Microelectronics titled “Permutation-based encryption for
lightweight applications.” The final invited talk was delivered by Johann Heyszl from
Fraunhofer AISEC titled “High-Resolution Magnetic Field Side-Channels and their
Affect on Cryptographic Implementations.”

We would like to thank all the people and organizations who contributed to making
the workshop successful. First, we greatly appreciate the valuable work of the authors
and we thank them for submitting their manuscripts to LightSec 2014. We are also
grateful to the PC members and the External Reviewers whose admirable effort in
reviewing the submissions definitely enhanced the scientific quality of the program.
Thanks also to the invited speakers, Tolga Acar, Guido Marco Bertoni, and Johann
Heyszl, for their willingness to participate in LightSec 2014. We would like to also
thank Istanbul Chamber of Commerce and Istanbul Commerce University, who made
this workshop possible by letting us use their facilities. We would like to thank Ali
Boyacı and Serhan Yarkan from EE Engineering Department at Istanbul Commerce
University for their admirable help in organizing the workshop. Last but not least, we
would like to thank students of the EE Engineering Department at Istanbul Commerce
University, for their help in running the workshop.

September 2014 Erdinç Öztürk
Thomas Eisenbarth

Organization

Organizing Committee

General Chair

Erdinç Öztürk Istanbul Commerce University, Turkey

Program Committee

Program Chairs

Erdinç Öztürk Istanbul Commerce University, Turkey
Thomas Eisenbarth Worcester Polytechnic Institute, USA

Technical Program Committee

Tolga Acar Microsoft Research, USA
Onur Aciicmez Samsung, USA
Elena Andreeva COSIC, KU Leuven, Belgium
Jean-Philippe Aumasson Kudelski Security, Switzerland
Paulo Barreto University of São Paulo, Brazil
Lejla Batina Radboud University Nijmegen, The Netherlands
Guido Bertoni ST Microelectronics, Italy
Andrey Bogdanov Technical University of Denmark, Denmark
Elke De Mulder Cryptography Research Inc., USA
Kris Gaj George Mason University, USA
Berndt Gammel Infineon Technologies, Germany
Shay Gueron University of Haifa, Israel
Francisco Rodríguez Henríquez CINVESTAV-IPN, Mexico
Pascal Junod HEIG-VD, Switzerland
Jens-Peter Kaps George Mason University, USA
Mehran Mozaffari Kermani Rochester Institute of Technology, USA
Mehmet Sabir Kiraz TÜBİTAK BİLGEM UEKAE, Turkey
Xuejia Lai Shanghai Jiao Tong University, China
Albert Levi Sabanci University, Turkey
Amir Moradi Ruhr University Bochum Germany
Axel Poschmann NXP Semiconductors, Germany
Francesco Regazzoni ALaRI, Lugano, Switzerland
Arash Reyhani-Masoleh University of Western Ontario, Canada
Erkay Savaş Sabanci University, Turkey
Nitesh Saxena University of Alabama at Birmingham, USA
Ali Aydin Selçuk TOBB University of Economics and Technology,

Turkey
Georg Sigl Technische Universität München, Germany

Michael Tunstall Cryptography Research Inc., USA
Meltem Sonmez Turan National Institute of Standards and Technology,

USA
Kerem Varici Université Catholique de Louvain, Belgium
Amr Youssef Concordia University, Canada

Steering Committee

Gildas Avoine Université Catholique de Louvain, Belgium
Hüseyin Demirci TÜBİTAK BİLGEM, Turkey
Orhun Kara TÜBİTAK BİLGEM, Turkey
Erkay Savaş Sabanci University Turkey
Ali Aydın Selçuk TOBB University of Economics and Technology,

Turkey
Berk Sunar Worcester Polytechnic Institute, USA

Local Committee

Ali Boyacı Istanbul Commerce University, Turkey
Serhan Yarkan Istanbul Commerce University, Turkey

Sponsoring Institution

TÜBİTAK BİLGEM UEKAE (The Scientific and Technological Research Council of
Turkey, National Research Institute of Electronics and Cryptology)

Additional Reviewers

S. Abhishek Anand
Shivam Bhasin
Begul Bilgin
Muhammed Ali Bingol
Joppe Bos
Joo Yeon Cho
Benedikt Driessen
Baris Ege
Jialin Huang
Süleyman Kardas
Thomas Korak
Wei Li
Suresh Limkar
John Michener
Manar Mohamed

Lan Nguyen
Kostas Papagiannopoulos
Roel Peeters
Gokay Saldamli
Fabrizio de Santis
Maliheh Shirvanian
Osmanbey Uzunkol
Rajesh Velegalati
Vincent Verneuil
MarkusWamser
Michael Weiner
Hong Xu
Panasayya Yalla
Greg Zaverucha

VIII Organization

Powered by

INF Technology, Istanbul, Turkey

Organization IX

Invited Talks

Tolga Acar, Microsoft Research, USA

Selecting and Deploying Elliptic Curves in Security Protocols
The development and adoption of a cryptographic standard is a delicate endeavor with
competing and conflicting actors, which becomes only harder with integration into
security protocols some yet undefined. This talk looks at the use of Elliptic Curves
(EC) in a sliver of pervasive security protocols. We cover NIST-defined ECs, impact
of new information made available in the past couple of years, and current attempts to
alleviate sometimes unsubstantiated yet valid concerns over these curves. This talk
also presents an elliptic curve selection algorithm and its analysis from a performance
and security perspective including rigid parameter generation, constant-time imple-
mentation, and exception-free scalar multiplication.

Guido Marco Bertoni, ST Microelectronics, Italy

Permutation-based encryption for lightweight applications
In the recent years we have seen a rapid development of cryptographic primitives based
on permutations. The talk gives an overview on how you can easily build hash
functions, stream ciphers, PRNGs, authenticated encryption and other constructions
starting from a fixed-width permutation. This flexibility can be particular useful in
resource-constrained applications, basically a single primitive can satisfy all the
security needs typically requested to symmetric key primitives. Finally there will be the
introduction of Ketje, a lightweight authenticated encryption developed in collabora-
tion with Joan Daemen, Michael Peeters, Gilles Van Assche and Ronny Van Keer.

Johann Heyszl, Fraunhofer AISEC, Germany

High-Resolution Magnetic Field Side-Channels & their Affect on Cryptographic
Implementations
The last years have again seen many new developments in the field of side-channel
analysis. Partly, new insights are driven by side-channel measurement equipment
which becomes increasingly sophisticated due to the fact that respective devices are
readily available to academics, as well as to industry and potential attackers. This talk
discusses the impact of available high-resolution measurement equipment to measure
magnetic fields on implementations of cryptographic algorithms. The progress in this
segment of side-channel analysis affects different kinds of cryptographic implemen-
tations including light-weight implementations of elliptic curve cryptography,
symmetric cryptographic algorithms, physical unclonable functions as well as new
attempts to achieve leakage resilience for block ciphers by special constructions.

Contents

Efficient Implementations and Designs

The SIMON and SPECK Block Ciphers on AVR 8-Bit Microcontrollers. 3
Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark,
Bryan Weeks, and Louis Wingers

The Multiplicative Complexity of Boolean Functions on Four
and Five Variables . 21

Meltem Turan Sönmez and René Peralta

A Flexible and Compact Hardware Architecture for the SIMON
Block Cipher . 34

Ege Gulcan, Aydin Aysu, and Patrick Schaumont

AES Smaller Than S-Box: Minimalism in Software Design
on Low End Microcontrollers . 51

Mitsuru Matsui and Yumiko Murakami

Attacks

Differential Factors: Improved Attacks on SERPENT 69
Cihangir Tezcan and Ferruh Özbudak

Ciphertext-Only Fault Attacks on PRESENT . 85
Fabrizio De Santis, Oscar M. Guillen, Ermin Sakic, and Georg Sigl

Relating Undisturbed Bits to Other Properties of Substitution Boxes 109
Rusydi H. Makarim and Cihangir Tezcan

Differential Sieving for 2-Step Matching Meet-in-the-Middle Attack
with Application to LBlock . 126

Riham AlTawy and Amr M. Youssef

Match Box Meet-in-the-Middle Attacks on the SIMON Family
of Block Ciphers. 140

Ling Song, Lei Hu, Bingke Ma, and Danping Shi

Protocols

A Provably Secure Offline RFID Yoking-Proof Protocol with Anonymity . . . 155
Daisuke Moriyama

Author Index . 169

http://dx.doi.org/10.1007/978-3-319-16363-5_1
http://dx.doi.org/10.1007/978-3-319-16363-5_2
http://dx.doi.org/10.1007/978-3-319-16363-5_2
http://dx.doi.org/10.1007/978-3-319-16363-5_3
http://dx.doi.org/10.1007/978-3-319-16363-5_3
http://dx.doi.org/10.1007/978-3-319-16363-5_4
http://dx.doi.org/10.1007/978-3-319-16363-5_4
http://dx.doi.org/10.1007/978-3-319-16363-5_5
http://dx.doi.org/10.1007/978-3-319-16363-5_6
http://dx.doi.org/10.1007/978-3-319-16363-5_7
http://dx.doi.org/10.1007/978-3-319-16363-5_8
http://dx.doi.org/10.1007/978-3-319-16363-5_8
http://dx.doi.org/10.1007/978-3-319-16363-5_9
http://dx.doi.org/10.1007/978-3-319-16363-5_9
http://dx.doi.org/10.1007/978-3-319-16363-5_10

Efficient Implementations
and Designs

The SIMON and SPECK Block Ciphers on AVR
8-Bit Microcontrollers

Ray Beaulieu, Douglas Shors, Jason Smith(B), Stefan Treatman-Clark,
Bryan Weeks, and Louis Wingers

National Security Agency, 9800 Savage Road, Fort Meade, MD 20755, USA
{rabeaul,djshors,jksmit3,sgtreat,beweeks,lrwinge}@tycho.ncsc.mil

Abstract. The last several years have witnessed a surge of activity in
lightweight cryptographic design. Many lightweight block ciphers have
been proposed, targeted mostly at hardware applications. Typically soft-
ware performance has not been a priority, and consequently software
performance for many of these algorithms is unexceptional. Simon and
Speck are lightweight block cipher families developed by the U.S.
National Security Agency for high performance in constrained hardware
and software environments. In this paper, we discuss software perfor-
mance and demonstrate how to achieve high performance implementa-
tions of Simon and Speck on the AVR family of 8-bit microcontrollers.
Both ciphers compare favorably to other lightweight block ciphers on
this platform. Indeed, Speck seems to have better overall performance
than any existing block cipher — lightweight or not.

Keywords: Simon · Speck · Block cipher · Lightweight · Cryptogra-
phy · Microcontroller · Wireless sensor · AVR

1 Introduction

The field of lightweight cryptography is evolving rapidly in order to meet future
needs, where interconnected, highly constrained hardware and software devices
are expected to proliferate.

Over the last several years the international cryptographic community has
made significant strides in the development of lightweight block ciphers. There
are now more than a dozen to choose from, including Present [6], Clefia [20],
Twine [21], Hight [14], Klein [12], LBlock [25], Piccolo [19], Prince [7],
LED [13], Katan [9], TEA [23], and ITUbee [16]. Typically, a design will offer
improved performance on some platform (e.g., ASIC, FPGA, microcontroller,
microprocessor) relative to its predecessors. Unfortunately, most have good per-
formance in hardware or software, but not both. This is likely to cause problems
when communication is required across a network consisting of many disparate
(hardware- and software-based) devices, and the highly-connected nature of

The rights of this work are transferred to the extent transferable according to title
17 § 105 U.S.C.

c© Springer International Publishing Switzerland 2015 (outside the US)
T. Eisenbarth and E. Öztürk (Eds.): LightSec 2014, LNCS 8898, pp. 3–20, 2015.
DOI: 10.1007/978-3-319-16363-5 1

4 R. Beaulieu et al.

developing technologies will likely lead to many applications of this type. Ideally,
lightweight cryptography should be light on a variety of hardware and software
platforms. Cryptography of this sort is relatively difficult to create and such
general-purpose lightweight designs are rare.

Recently, the U.S. National Security Agency (NSA) introduced two general-
purpose lightweight block cipher families, Simon and Speck [2], each offering
high performance in both hardware and software. In hardware, Simon and Speck
have among the smallest reported implementations of existing block ciphers with
a flexible key.1 Unlike most hardware-oriented lightweight block ciphers, Simon
and Speck also have excellent software performance.

In this paper, we focus on the software performance of Simon and Speck.
Specifically, we show how to create high performance implementations of Simon
and Speck on 8-bit Atmel AVR microcontrollers. This paper should be useful
for developers trying to implement Simon or Speck for their own applications
and interesting for cryptographic designers wishing to see how certain design
decisions affect performance.

2 The SIMON and SPECK Block Ciphers

Simon and Speck are block cipher families, each comprising ten block ciphers
with differing block and key sizes to closely fit application requirements. Table 1
shows the available block and key sizes for Simon and Speck.

Table 1. Simon and Speck parameters.

Block size Key sizes

32 64

48 72, 96

64 96, 128

96 96, 144

128 128, 192, 256

The Simon (resp. Speck) block cipher with a 2n-bit block and wn-bit key is
denoted by Simon 2n/wn (resp. Speck 2n/wn). Together, the round functions
of the two algorithms make use of the following operations on n-bit words:

• bitwise XOR, ⊕,
• bitwise AND, &,
• left circular shift, Sj , by j bits,
• right circular shift, S−j , by j bits, and
• modular addition, +.
1 Simon 64/96 and Speck 64/96, for example, have implementations requiring just

809 and 860 gate equivalents, respectively. Some block ciphers, like KTANTAN [9],
have a fixed key and so do not require flip-flops to store it. Such algorithms can have
smaller hardware implementations than Simon or Speck, but not allowing keys to
change contracts the application space, and can lead to security issues [22].

The Simon and Speck Block Ciphers on AVR 8-Bit Microcontrollers 5

For k ∈ GF(2)n, the key-dependent Simon 2n round function is the two-stage
Feistel map Rk : GF(2)n × GF(2)n → GF(2)n × GF(2)n defined by

Rk(x, y) = (y ⊕ f(x) ⊕ k, x),

where f(x) = (Sx&S8x) ⊕ S2x and k is the round key. The key-dependent
Speck 2n round function is the map Rk : GF(2)n ×GF(2)n → GF(2)n ×GF(2)n

defined by

Rk(x, y) = ((S−αx + y) ⊕ k, Sβy ⊕ (S−αx + y) ⊕ k),

with rotation amounts α = 7 and β = 2 if n = 16 (block size = 32) and α = 8
and β = 3, otherwise. A description of the key schedules, not necessary for this
paper, can be found in the Simon and Speck specification paper [2].

3 AVR Implementations of SIMON and SPECK

We have implemented Simon and Speck on the Atmel ATmega128, a low-power
8-bit microcontroller with 128K bytes of programmable flash memory, 4K bytes
of SRAM, and thirty-two 8-bit general purpose registers. To achieve optimal
performance, we have coded Simon and Speck in assembly. The simplicity of
the algorithms makes this easy to do, with the help of the Atmel AVR 8-bit
instruction set manual [1].

Our assembly code was written and compiled using Atmel Studio 6.0. Cycle
counts, code sizes and RAM usage were also determined using this tool. Our
complete set of performance results is provided in Appendix A.

For Simon and Speck, three implementations were developed, none of which
included the decryption algorithm.2

(1) RAM-minimizing implementations. These implementations avoid the
use of RAM to store round keys by including the pre-expanded round keys
in the flash program memory. No key schedule is included for updating this
expanded key, making these implementations suitable for applications where
the key is static.

(2) High-throughput/low-energy implementations. These implemen-
tations include the key schedule and unroll enough copies of the round func-
tion in the encryption routine to achieve a throughput within about 3% of a
fully-unrolled implementation. The key, stored in flash, is used to generate
the round keys which are subsequently stored in RAM.

2 This is because one is likely to use encrypt-only modes in lightweight cryptography.
But the techniques discussed here should serve as a starting point for other kinds
of implementations, useful for a broad range of applications. Regarding decryption
functionality, we note that the Simon and Speck encryption and decryption algo-
rithms consume similar resources and are easy to implement. Simon, in particular,
has a decryption algorithm that is closely related to the encryption algorithm, and
so little additional code is necessary to enable decryption.

6 R. Beaulieu et al.

(3) Flash-minimizing implementations. The key schedule is included here.
Space limitations mean we can only provide an incomplete description of
these implementations. However, it should be noted that the previous two
types of implementations already have very modest code sizes.

In almost all cases, the registers hold the intermediate ciphertext, the cur-
rently used round key, and any data needed to carry out the computation of
a round. For the algorithms with the 128-bit block and 192-bit or 256-bit key,
there may not be enough registers to hold all of this information, and so it may
be necessary to store one or two 64-bit words of round key in RAM. Additional
modifications were necessary for the 128-bit Simon block ciphers.

We describe our various assembly implementations of Simon 64/128 and
Speck 64/128 on an AVR 8-bit microcontroller using pseudo assembly code.
When it is not obvious, we show how to translate the pseudocode into actual
assembly instructions. Although our implementations were aimed at the
ATmega128 microcontroller, the same techniques are applicable to other AVR
microcontrollers, e.g., the ATtiny line (except when noted).

4 SIMON AVR Implementations

We describe various implementations of Simon 64/128 on the ATmega128 micro-
controller. Implementations of the other algorithms in the family are similar.

The ATmega128 has thirty-two 8-bit registers. For the purpose of exposition,
we regard a sequence of four such registers as a 32-bit register, denoted by a
capital letter such as X, Y , K, etc. For instance, X = (X3,X2,X1,X0) identifies
the 32-bit register X as a sequence of four 8-bit registers. We denote the contents
of these 32-bit registers by lower case letters x, y, k, etc.

At the start of the encryption process, we assume a 64-bit plaintext pair
(x, y) resides in RAM, and is immediately loaded into an (X,Y) register pair
for processing. After 44 encryption rounds, the resulting ciphertext is stored
in RAM. The encryption cost is the number of cycles needed to transform the
plaintext into the ciphertext, including any loading of plaintext/ciphertext into
or out of RAM.3 Our performance numbers do not count the cost of RAM used
to hold the plaintext, ciphertext, or key but do include RAM used for temporary
storage (e.g., stack memory) and RAM to hold the round keys.

Except for the small code size implementations of Simon, developers should
avoid the use of any loops or branching within a round, since this can significantly
degrade overall performance and does not greatly reduce code size.

4.1 A Minimal RAM Implementation of SIMON

Here we assume the round keys have been pre-expanded (by an external device)
and stored in flash. When a round key is required, it is loaded from flash directly
into a register. Loading a byte from flash consumes three cycles.
3 The Simon and Speck specification paper [2] did not count these cycles required

for loading, although it seems proper to do so. The current performance numbers
include these costs.

The Simon and Speck Block Ciphers on AVR 8-Bit Microcontrollers 7

We begin by describing the Rotate operation, which performs a left circular
shift by one. Let X = (X3,X2,X1, X0) and let Z0 = 0. The 8-bit register Z0

should be cleared and reserved at the start of encryption. The 1-bit rotation of
the 32-bit register X is carried out using AVR’s logical shift left (LSL), rotate
left through carry (ROL), and add with carry (ADC) instructions, as follows.

(1) X0 ← LSL(X0) (logical shift left)
(2) X1 ← ROL(X1) (rotate left through carry)
(3) X2 ← ROL(X2) (rotate left through carry)
(4) X3 ← ROL(X3) (rotate left through carry)
(5) X0 ← ADC(X0, Z0) (add with carry)

In general, this standard approach to performing a rotation requires n + 1
cycles on an n byte word. Rotations by more than one bit can be achieved by
repeated one-bit rotations, though this is not always the most efficient approach.

Note that the rotation by 8 is free, because it’s just a byte permutation.4

The rotations by 1 and 2 are also inexpensive. Our pseudo instruction Move
is shorthand for two AVR MOVW instructions, each of which copies two 8-bit
words from one register to another in a single cycle. In order to use the MOVW
instruction, the 8-bit registers must be properly aligned [1]. Our other mnemonics
are also shorthand for readily apparent AVR instructions. Table 2 describes how
to implement a round of Simon.

Table 2. Low-RAM software implementation of the Simon round function.

Mnemonic Operation Register Contents Cycles

Load K ← k K = k 12

XOR K ← K ⊕ Y K = y ⊕ k 4

Move Y ← X Y = x 2

Rotate X ← S1(X) X = S1(x) 5

Move T ← X T = S1(x) 2

And T ← T &S8(Y) T = S1(x) &S8(x) 4

Rotate X ← S1(X) X = S2(x) 5

XOR X ← X ⊕ T X = S2(x) ⊕ S1(x) &S8(x) 4

XOR X ← X ⊕ K X = y ⊕ S2(x) ⊕ S1(x) &S8(x) ⊕ k 4

The basic code for a round executes in 42 cycles. For the minimal RAM
implementation, this code is put in a loop which has a 3 cycle per round over-
head. Since Simon 64/128 requires 44 rounds, an encryption will take about
44 · (42 + 3) = 1980 cycles. There are ten cycles needed for setup, a subroutine
call, and a return plus an additional 32 cycles to load the plaintext into registers

4 This rotation is also easily implemented (but not for free) on some common 16-bit
microcontrollers, like the MSP430, and using x86 SSE instructions (where no rotate
is available but a byte permutation operation is).

8 R. Beaulieu et al.

(2 cycles/byte) and load the resulting ciphertext back into RAM (2 cycles/byte).
Altogether, Simon 64/128 has an encryption cost of 253 cycles/byte.

In terms of code size, each instruction, with the exception of the Load instruc-
tion, takes twice as many bytes to store in flash as the number of cycles it takes
to execute. The four byte Load instruction, in Table 2, consumes 8 bytes of flash.
The expanded key is stored in 44 · 4 = 176 bytes of flash. So the total amount
of flash used is around 68 + 44 · 4 = 244 bytes. More bytes are required for the
counter, loading plaintext, storing ciphertext and other miscellaneous overhead
so the actual value is 290 bytes. No RAM was used for this implementation.

4.2 A High-Throughput/Low-Energy Implementation of SIMON

High-throughput implementations are useful when encrypting multiple blocks
of data. The round keys for such an implementation can initially be stored in
flash, as with our low-RAM implementations, or they can be generated using the
key schedule. In either case, the encryption process begins by placing all of the
round keys into RAM, where they are held until all of the blocks in a stream of
data have been encrypted. For our implementations, we used the key schedule
to generate the round keys, but for our timings we have not included the time to
generate and store these since this setup time is assumed to be small compared
to the time required to encrypt the data stream.

For Simon 64/128, we unrolled four rounds of the code and iterated this 11
times to carry out the 44 round encryption. Because the key is now loaded from
RAM, the Load requires only 8 cycles instead of the 12 which were needed when
loading from flash. Due to the larger code size, a four cycle overhead for each
update of the loop counter (as opposed to three cycles) is required, together
with an additional ten cycles as described earlier and 32 more cycles for loading
plaintext in registers and storing the ciphertext in RAM. The amount of unrolling
was calibrated to achieve throughput to within 3 % of the fastest (fully unrolled)
implementation, avoiding large increases in code size with minor improvements
in throughput. The cost of this implementation is 221 cycles/byte.

The code size for the encryption algorithm is about 68 · 4 = 272 bytes.
Together with the key schedule and other overhead, this implementation of
Simon 64/128 uses 436 bytes of flash. Because all of the round keys are placed
in RAM, 44 · 4 = 176 bytes of RAM are also required.

4.3 A Minimal Flash Implementation of SIMON

To reduce the already small size of Simon, we implemented several frequently
used operations as subroutines. These included the XOR, the 1-bit Rotate and the
Move instructions. Doing this, we saved a dozen bytes for Simon 64, and more
than 50 bytes for Simon 128. For Simon 32, these techniques ended up not
saving any space and degraded throughput, so we did not use them.

Simon 64/128, in particular, can be implemented using 240 bytes of flash
and with 4 · 44 = 176 bytes of RAM to store the round keys. We note that for
an additional 28 bytes of flash, decrytpion capability can be added: To decrypt,

The Simon and Speck Block Ciphers on AVR 8-Bit Microcontrollers 9

one uses the round keys in reverse order, loads the swapped ciphertext words into
the encryption round function, and reads out the plaintext words with a similar
swap. The swapped loading and output (together with the regular loading and
output) can be done with 8 additional bytes of code each, and the round keys
can be generated and stored in normal or reverse order with 12 additional bytes
of code, for a total of 8 + 8 + 12 = 28 bytes.

5 SPECK AVR Implementations

In this section, we describe the same types of implementations that we previously
developed for the Simon 64/128 block cipher. We stress that most of the imple-
mentation techniques described here apply immediately to the other members
of the Speck family.

Using the same notation as in Simon, we assume a 64-bit plaintext pair
(x, y) resides in RAM. This is immediately loaded into the 64-bit register pair
(X,Y). After 27 encryption rounds, the resulting ciphertext is loaded into RAM.
The encryption cost is the number of cycles required to load the plaintext into
registers, transform the plaintext into the ciphertext, and store the ciphertext
in RAM.

For all of our implementations, we avoid the use of any loops or branch-
ing within a round. This has the effect of making our code slightly larger but
significantly improves the overall performance.

For Simon, our main tool for trading off code size for throughput was to
partially unroll loops. It turns out that for Speck, there is more opportunity to
tune the implementation (for example using multiply instructions to accomplish
the rotation by 3 or by allowing a round to end with plaintext and key words
in the wrong places) to make it smaller or faster. Consequently, we will spend a
little more time describing Speck implementations.

5.1 A Low-RAM SPECK Implementation

Here we assume the round keys have been pre-expanded and stored in flash.
When a round key k is required, it is loaded from flash directly into a register
with a cost of 12 cycles. Table 3 describes how to implement the Speck round.

Table 3. Low-RAM software implementation of the Speck round function.

Mnemonic Operation Register Contents Cycles

Load K ← k K = k 12

Add X ← S8(S−8(X) + Y) X = S8(S−8(x) + y) 4

XOR K ← K ⊕ S−8(X) K = (S−8(x) + y) ⊕ k 4

Rotate Y ← S3(Y) Y = S3(y) 15

XOR Y ← Y ⊕ K Y = S3(y) ⊕ (S−8(x) + y) ⊕ k 4

Move X ← K X = (S−8(x) + y) ⊕ k 2

10 R. Beaulieu et al.

Note that the rotation by 8 is free, as we noted in the Simon discussion.
The Rotate and Move instructions were described earlier for Simon. To be clear,
we describe the Add operation in greater detail. If X = (X3,X2,X1,X0) and
Y = (Y3, Y2, Y1, Y0), then addition, Add, is carried out using the following AVR
instructions in the given order.

(1) X1 ← X1 + Y0 (add without carry, ADD)
(2) X2 ← X2 + Y1 (add with carry, ADC)
(3) X3 ← X3 + Y2 (add with carry, ADC)
(4) X0 ← X0 + Y3 (add with carry, ADC)

Our basic code for a round executes in 41 cycles, and this code is iterated 27
times in a loop to produce the ciphertext. The loop has an overhead of 3 cycles
per round, and since Speck 64/128 requires 27 rounds, an encryption takes
about 27 · (41 + 3) = 1188 cycles. An additional 10 more cycles for overhead
(3 cycles for setup, 3 for a subroutine call, and 4 for a return) plus 32 cycles for
loading plaintext from RAM into registers and storing ciphertext back into RAM,
brings the total number of cycles for an encryption to 1230, which translates to
1230/8 ≈ 154 cycles/byte.

As we noted in the Simon discussion, each instruction, with the exception of
the Load instruction, takes twice as many bytes to store in flash as the number
of cycles it takes to execute. The Load instruction requires 8 bytes of flash.

The Speck round keys consume 27 ·4 = 108 bytes of flash. The total amount
of flash required for the round and expanded key is 66 + 108 = 174 bytes.
Additional bytes, required for the counter, loading and storing plaintext and
ciphertext and other overhead, brings the total to 218 bytes. No RAM was
required for this implementation.

5.2 A Faster Low-RAM SPECK Implementation

If a higher-throughput/lower-energy implementation is required, we can easily
modify the implementation that we just described to obtain one which encrypts
at a rate of 142 cycles/byte using around 342 bytes of flash and no RAM.

This is done by iterating two rounds multiple times. Two rounds can be
implemented without the use of the Move that appeared in Table 3, thereby
saving two cycles per round. The two rounds are iterated in a loop 13 times
(for a total of 26 rounds) and a final single round of code as described in Table 3
is used for the 27th round. For members of the family requiring an even number
of rounds (like Speck 64/96) this extra code for the final round is not required.
For Speck 64/128, the number of cycles for a complete encryption is around
2 · 39 · 13 + 41 + 13 · 3 + 10 + 32 = 1136, or about 142 cycles/byte. About 342
bytes of flash are required.

The pseudocode for the two rounds is shown in Table 4. There, x1 and y1
are the values of the input to the second round, stored in the K and Y registers
and l is a new round key which is loaded into the X register. The output to the
second round is again stored in the proper registers, i.e., the X and Y registers.

The Simon and Speck Block Ciphers on AVR 8-Bit Microcontrollers 11

Table 4. A faster, low-RAM software implementation of two rounds of Speck.

Mnemonic Operation Register Contents Cycles

Load K ← k K = k 12

Add X ← S8(S−8(X) + Y) X = S8(S−8(x) + y) 4

XOR K ← K ⊕ S−8(X) K = (S−8(x) + y) ⊕ k = x1 4

Rotate Y ← S3(Y) Y = S3(y) 15

XOR Y ← Y ⊕ K Y = S3(y) ⊕ (S−8(x) + y) ⊕ k = y1 4

Load X ← l X = l 12

Add K ← S8(S−8(K) + Y) K = S8(S−8(x1) + y1) 4

XOR X ← X ⊕ S−8(K) X = (S−8(x1) + y1) ⊕ l 4

Rotate Y ← S3(Y) Y = S3(y1) 15

XOR Y ← Y ⊕ X Y = S3(y1) ⊕ (S−8(x1) + y1) ⊕ l 4

5.3 A High-Throughput/Low-Energy SPECK Implementation

As in the corresponding Simon implementations, the Speck encryption process
begins by placing all of the round keys into RAM and holding them there until
the data stream has been encrypted. Although we used the key schedule to
generate the round keys, the round keys could also be pre-computed and stored
in flash before loading them into RAM. For our timings, we have not included
the time to generate the round keys and store them in RAM.

The easiest way to obtain a fast encryption algorithm is just to modify the
fast, low-RAM implementation described previously using the code found in
Table 4, but now loading the round keys from RAM instead of from flash. The
cost of loading four bytes from RAM is 8 cycles, as opposed to 12 if we load from
flash. So the total cost to encrypt a block of data is 2·35·13+37+13·4+10+32 =
1041 cycles, or about 130 cycles/byte. Not including the key schedule, the code
will occupy about 232 bytes. Taking into account the key schedule, the code size
is about 352 bytes and the implementation uses 108 bytes of RAM.

We could speed this up even more, at the expense of using more flash, by
unrolling four rounds of code instead of just two. If we unroll all of the rounds
we get a heavy implementation, in terms of flash, that encrypts a block in just
123 cycles/byte. If this sort of implementation is appealing but the flash usage
is not, there is another way to get the same throughput using significantly less
flash. However, the technique only works on those AVR microcontrollers, such
as the ATmega128, which include the AVR unsigned multiplication instruction
MUL. The ATtiny line does not have the MUL instruction.

We now describe how to do the 3-bit rotation operation Rotate in 14 cycles
using 20 bytes of flash with the AVR MUL instruction. This should be compared
to the in-place rotation used earlier, which required 15 cycles and 30 bytes.

The MUL instruction operates on two 8-bit registers containing unsigned num-
bers and produces the 16-bit unsigned product in 2 cycles. The result is always
placed in the AVR register pair (R1, R0), the low bits in R0 and the high bits

12 R. Beaulieu et al.

in R1. Letting Y = (Y3, Y2, Y1, Y0) and X = (X3,X2,X1,X0), the Rotate oper-
ation, X ← S3(Y), is implemented as follows:

(1) (R1, R0) ← MUL(Y0, 8)
(2) (X1,X0) ← (R1, R0)
(3) (R1, R0) ← MUL(Y2, 8)
(4) (X3,X2) ← (R1, R0)
(5) (R1, R0) ← MUL(Y1, 8)

(6) X1 ← X1 ⊕ R0

(7) X2 ← X2 ⊕ R1

(8) (R1, R0) ← MUL(Y3, 8)
(9) X3 ← X3 ⊕ R0

(10) X0 ← X0 ⊕ R1

Here, 8 represents an 8-bit register with the value 8 stored in it. This register
should be initialized and reserved at the start of the encryption process. It should
be noted that this rotate algorithm is not in-place. Additionally, for a w-byte
word, the performance can be worse than for the standard approach: For w = 2j,
the running time is 7j cycles for this technique versus 3·(2j+1) = 6j+3 cycles for
the standard approach. Thus, for the highest speed implementations, the tech-
nique is advantageous for Speck 48 and Speck 64. For Speck 96 it doesn’t
increase throughput, but it can still significantly decrease the flash usage, and
so we adopt it. For Speck 128, the method will actually decrease throughput.
The code for a round of Speck is provided in Table 5.

Table 5. A high-throughput/low-power round implementation of Speck

Mnemonic Operation Register Contents Cycles

Load K ← k K = k 8

Add X ← S8(S−8(X) + Y) X = S8(S−8(x) + y) 4

XOR K ← S−8(X) ⊕ K K = (S−8(x) + y) ⊕ k 4

Rotate X ← S3(Y) X = S3(y) 14

XOR X ← X ⊕ K X = (S−8(x) + y) ⊕ k ⊕ S3(y) 4

The output of the first round is stored in the (K, X) register pair. In order to
get the output in the proper, X and Y registers, we need to move X into Y and
K into X. However, if we don’t want to incur additional cycles by doing this,
then we can proceed in a manner similar to the fast, low-RAM implementation
by iterating three consecutive rounds, all identical up to a relabeling of registers.
The final output after the third round will be back in the (X,Y) register pair.
The code for doing this is shown in Table 6.

If we iterate three rounds in a loop nine times as just described, Speck
64/128 performs a full encryption in around 34 ·27+4 · 9+10+32 = 996 cycles,
or about 125 cycles/byte and, including the key schedule, uses 316 bytes of flash.

The Simon and Speck Block Ciphers on AVR 8-Bit Microcontrollers 13

Table 6. A high-throughput/low-energy three round implementation of Speck

Mnemonic Operation Register Contents Cycles

Load K ← k K = k 8

Add X ← S8(S−8(X) + Y) X = S8(S−8(x) + y) 4

XOR K ← S−8(X) ⊕ K K = (S−8(x) + y) ⊕ k = x1 4

Rotate X ← S3(Y) X = S3(y) 14

XOR X ← X ⊕ K X = S3(y) ⊕ (S−8(x) + y) ⊕ k = y1 4

Load Y ← l Y = l 8

Add K ← S8(S−8(K) + X) K = S8(S−8(x1) + y1) 4

XOR Y ← S−8(K) ⊕ Y Y = (S−8(x1) + y1) ⊕ l = x2 4

Rotate K ← S3(X) K = S3(y1) 14

XOR K ← K ⊕ Y K = S3(y1) ⊕ (S−8(x1) + y1) ⊕ l = y2 4

Load X ← m X = m 8

Add Y ← S8(S−8(Y) + K) Y = S8(S−8(x2) + y2) 4

XOR X ← S−8(Y) ⊕ X X = (S−8(x2) + y2) ⊕ m = x3 4

Rotate Y ← S3(K) Y = S3(y2) 14

XOR Y ← Y ⊕ X Y = S3(y2) ⊕ (S−8(x2) + y2) ⊕ m = y3 4

The high-throughput data for Speck 64/128, found in Table 7 of Appendix A,
was obtained by unrolling 6 rounds instead of 3 in order to get within 3% of the
fastest, fully unrolled, implementation. That gave us a 122 cycles/byte imple-
mentation but required about twice the flash.

5.4 A Small Flash SPECK Implementation

Speck can be implemented to have small code size. We have not attempted to
minimize the code size without regard to the throughput, so smaller implemen-
tations are possible. The primary savings in space was achieved by implementing
the Speck round function as a subroutine. In this way, both the key schedule
and encryption function could use it without having to duplicate code.

6 Cipher Comparisons

Although it is not the primary purpose of this paper, we shall compare the per-
formance of Simon and Speck with several other block ciphers, and with a few
stream ciphers. Comparisons along these lines can already be found in the Simon
and Speck specification paper [2]. We have not endeavored to implement all of
the discussed ciphers from scratch since this was outside the scope of our paper.
Instead, when possible, we (or others) modified the best implementations avail-
able from existing sources so that they fit within our framework. Our comparison
data and a further discussion of our methodology can be found in Appendix B.

14 R. Beaulieu et al.

For brevity, we only included algorithms with an encryption cost of 1000
cycles/byte or less. For this reason, or because the data was unavailable, well-
known lightweight block ciphers such as Present, Clefia, Katan, etc., are
not listed. We use a performance efficiency measure, rank, that is similar to a
commonly used metric (see [16,18,21]), proportional to throughput divided by
memory usage.

Among all block ciphers, Speck ranks in the top spot for every block and key
size which it supports. Except for the 128-bit block size, Simon ranks second for
all block and key sizes. Among the 64-bit block ciphers, Hight has respectable
performance on this platform, ranking higher than AES. Although Twine ranks
lower than AES, its performance is reasonable and, additionally, it has very good
hardware performance, making it one of the better lightweight designs. Some soft-
ware-based designs, like ITUbee, IDEA and TEA have poorer performance than
AES and are not compensated by particularly lightweight hardware implemen-
tations. Klein, a hardware-based design, is slow and has the least competitive
overall performance among the 64-bit block ciphers in our comparison.

Not surprisingly, AES-128 has very good performance on this platform,
although for the same block and key size, Speck has about twice the perfor-
mance. For the same key size but with a 64-bit block size, Simon and Speck
achieve two and four times better overall performance, respectively, than AES.
A few of the block ciphers in our comparison could not outperform AES, even
though they had smaller block and key sizes.

If an application requires high speed, and memory usage is not a priority,
AES has the fastest implementation (using 1912 bytes of flash, 432 bytes RAM)
among all block ciphers with a 128-bit block and key that we are aware of,
with a cost of just 125 cycles/byte [8]. The closest AES competitor is Speck
128/128, with a cost of 138 cycles/byte for a fully unrolled implementation. Since
speed is correlated with energy consumption, AES-128 may be a better choice
in energy critical applications than Speck 128/128 on this platform.5 However,
if a 128-bit block is not required, as we might expect for many applications on
an 8-bit microcontroller, then a more energy efficient solution (using 628 bytes
of flash, 108 bytes RAM) is Speck 64/128 with the same key size as AES-128
and an encryption cost of just 122 cycles/byte, or Speck 64/96 with a cost of
118 cycles/byte.

We have also compared three of the four Profile I (software) eSTREAM com-
petition finalists, Salsa 20/12 [4], Sosemanuk [3], and HC-128 [24] since there is
a general perception that well-designed stream ciphers must have better perfor-
mance than block ciphers.6 Interestingly, all of the stream ciphers are less effi-
cient than the majority of the block ciphers listed. For high-speed/low-energy
applications, if memory is not a concern, only Sosemanuk can beat the fastest
implementations of AES and Speck.

5 We do not know, for a fact, that the high-speed AES implementations, which require
frequent calls to RAM, are more energy efficient than the high-speed Speck imple-
mentations which use mostly register-to-register operations.

6 No data for the other finalist, Rabbit [5], was available.

The Simon and Speck Block Ciphers on AVR 8-Bit Microcontrollers 15

A SIMON and SPECK AVR Performance

In this section we present the results of our three AVR implementations of Simon
(Table 8) and Speck (Table 7). The headings of each column indicate the block
size/key size in bits. The first three rows of data correspond to the low flash
implementation, the next three rows to the low RAM implementation and the
last three rows are for the low cost (i.e., high-speed/low-energy) implementa-
tion. RAM and flash are measured in bytes and cost is measured in cycles/byte.
For none of the algorithms is any sort of functionality for the decryption oper-
ator included, although for Simon decryption is essentially the same as encryp-
tion, and Speck decryption uses about the same amount of resources as Speck
encryption.

Table 7. Speck AVR implementation data.

32/64 48/72 48/96 64/96 64/128 96/96 96/144 128/128 128/192 128/256

flash 118 150 156 184 192 218 254 278 330 348

RAM 44 69 72 108 112 174 180 264 272 280

cost 171 149 155 158 164 154 159 169 174 179

flash 108 154 158 214 218 324 330 460 468 476

RAM 0 0 0 0 0 0 0 0 0 0

cost 144 134 140 148 154 152 157 171 176 181

flash 440 556 586 588 628 502 624 452 632 522

RAM 44 66 69 104 108 168 174 256 272 288

cost 114 104 108 118 122 127 131 143 147 151

Table 8. Simon AVR implementation data.

32/64 48/72 48/96 64/96 64/128 96/96 96/144 128/128 128/192 128/256

flash 152 190 202 230 240 304 304 392 392 404

RAM 64 108 108 168 176 312 324 544 552 576

cost 193 206 206 222 232 262 272 346 351 366

flash 130 190 190 282 290 474 486 760 768 792

RAM 0 0 0 0 0 0 0 0 0 0

cost 207 222 222 242 253 287 297 379 384 401

flash 400 454 466 562 436 592 492 510 646 522

RAM 64 108 108 168 176 312 324 544 552 576

cost 172 191 191 209 221 253 264 337 339 357

16 R. Beaulieu et al.

B Comparison Data and Methodology

Fair comparisons adhere to a common framework. The framework provides three
important pieces of information. First, it provides a high-level, device-independent
description of what the cipher is expected to do. At a lower level, device-dependent
implementation details are provided. Finally, a performance metric is chosen to
make the comparisons meaningful. Needless to say, any ranking depends on the
framework used, especially the performance metric. The following application
types are especially relevant to lightweight cryptography.

– Fixed Key/Small Data. Fixed key applications assume the key will never
(or rarely) be changed. In hardware, area requirements can be reduced
(depending on the design and the implementation) because state for a key
schedule may not be required. In software, the key, or better yet the expanded
key, can be stored in long-term memory and the key schedule can be relin-
quished. For small data size comparisons, we may assume we are encrypting
just a single block and so incur the full cost of any setup. This application
type may be appropriate for simple authentication applications.

– Fixed Key/Large Data. This is the same as the previous type except that
the data stream is assumed to be large. For comparison purposes, we may
assume the amount of encrypted data approaches infinity, amortizing away
the setup costs. This may be appropriate for various sensor applications.

– Flexible Key/Small Data. Here, we assume the key is changed often.
In hardware or software, this necessitates the inclusion of the key schedule.
For comparison purposes, we may assume that we are encrypting a single
block of data with a never-before-seen key. This type of application may be
appropriate when the block cipher is contained in a general purpose crypto
module and the key enters the device from outside of the module.

– Flexible Key/Large Data. Similar to the preceeding except the data stream
is large. For comparison purposes, we may again assume the data stream is
(effectively) infinite, amortizing away all setup costs.

It is generally recognized in lightweight cryptography that use of the decryp-
tion operator should be avoided, if possible, in order to conserve resources.
If resources are not a big concern, one should use AES. For software applica-
tions on a microcontroller, implementations should be assembly coded in order
to reduce compiler vagaries and to provide for maximal performance (i.e., to
reduce code size and memory usage and to increase throughput).

For our comparisons, shown in Table 9, we (mostly) used the Fixed Key/
Small Data framework. For our implementations, expanded key is stored in flash
and only encryption functionality is provided. Key schedules are also absent.
The encryption procedure begins by loading the plaintext from RAM into regis-
ters. The plaintext is then transformed into the ciphertext using the encryption
operator. The resulting ciphertext is then loaded in RAM. This completes the
encryption process. RAM for holding the plaintext and ciphertext is not costed

The Simon and Speck Block Ciphers on AVR 8-Bit Microcontrollers 17

Table 9. Comparisons of Simon and Speck with some other block and stream ciphers
on the ATmega128, 8-bit microcontroller in the Fixed Key/Small Data framework.
Values in square brackets, [], are our best estimates based on the existing literature.
The higher the rank, the better the overall performance. Since our goal was to optimize
the rank, these implementations are not necessarily the fastest possible.

Size Name Flash (bytes) RAM (bytes) Cost (bytes) Rank

Comparisons with Block Ciphers

48/96 Speck 158 0 140 45.2

Simon 190 0 222 23.7

64/80 Twine 1208 23 326 2.4

Klein 766 18 762 1.6

80/80 ITUbee 586 0 294 5.8

64/96 Speck 214 0 148 31.6

Simon 282 0 242 14.7

Klein [766.] [18.] [955.] [1.3]

64/128 Speck 218 0 154 29.8

Simon 290 0 253 13.6

Hight 336 0 311 9.6

IDEA [397.] 0 338 [7.5]

Twine 1208 23 326 2.4

TEA 350 12 638 4.2

96/96 Speck 324 0 152 20.3

Simon 474 0 287 7.4

SEA [1066.] 0 805 [1.2]

128/128 Speck 460 0 171 12.7

AES 970 18 146 6.8

Simon 760 0 379 3.5

Comparisons with Stream Ciphers

128/256 Speck 476 0 181 11.6

AES 1034 18 204 4.7

Simon 792 0 401 3.1

512/256 Salsa 20/12 1092 275 177 3.4

384/128 Sosemanuk 11140 712 118 0.7

32768/128 HC-128 23100 4556 169 0.2

but RAM used for temporary storage (e.g., on the stack) is. Our low-RAM imple-
mentations of Simon and Speck were appropriate for this comparison. For the
other ciphers, implementations fitting the framework were based on the best
existing code (or performance data) we could find which maximized the overall
performance metric, rank, which is defined to be

18 R. Beaulieu et al.

(106/cost)/(flash + 2 · RAM);

higher values of rank correspond to better performance.7 In some cases, this just
amounted to stripping out the code for the decryption and key schedule algo-
rithms in existing implementations. In other cases, we wrote the code ourselves.

Note that our performance metric is an overall measure of performance and
takes into account flash, RAM and throughput. However, depending on prior-
ities, this metric may be irrelevant. If the main concern is energy efficiency,
then a more appropriate metric is just throughput and a fair comparison will
require implementations optimized for this purpose, resulting in altered rankings.
We have already alluded to this in our discussion in Sect. 6.

Referring to Table 9, all implementations, except for HC-128, were assembly
coded. Size is block size/key size for block ciphers and state size/key size for
stream ciphers. The cost is the number of cycles per byte to transform a block
of plaintext into a block of ciphertext.

The ITUbee data is taken directly from its specification paper [16]. Data for
SEA, IDEA and Klein are taken from [10,11,18], respectively. In some cases,
code size estimates had to be made to fit our framework. The TEA and Hight
implementations are our own. For AES, our numbers were kindly provided by
Dag Arne Osvik, one of the authors of [8], who made suitable code modifications
to fit our framework. The Twine data, fitting our framework, was provided
by two of the Twine designers, Kazuhiko Minematsu and Tomoyasu Suzaki.
Our numbers for Salsa 20/12 were obtained by scaling down the cost of the
Salsa 20/20 implementation provided in [15]. Data for Sosemanuk and HC-128
was obtained from [17]. We did not include the considerable setup time for HC-
128 and the moderate setup time for Sosemanuk, and of course this setup time
should be considered in the Fixed Key/Small Data framework.8

References

1. Atmel Corporation. 8-bit AVR Instruction Set, Rev. 0856I-AVR-07/10. http://
www.atmel.com/images/doc0856.pdf

2. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.
The Simon and Speck Families of Lightweight Block Ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013). http://eprint.iacr.org/

3. Berbain, C., Billet, O., Canteaut, A., Courtois, N., Gilbert, H., Goubin, L., Gouget,
A., Granboulan, L., Lauradoux, C., Minier, M., Pornin, T., Sibert, H. SOSE-
MANUK, a fast software-oriented stream cipher. In: CoRR, abs/0810.1858 (2008)

4. Bernstein, D.: The Salsa20 family of stream ciphers. In: Robshaw, M., Billet,
O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer,
Heidelberg (2008)

7 The rank is similar to the metric found in [21] except we have imposed a penalty for
using too much RAM — hence the factor of 2. Without the factor of 2, flash and
RAM have the same cost, which seems unjustifiable.

8 The HC-128 stream cipher implementation does not actually fit on the ATmega128
due to its excessive use of RAM. The C implementation of HC-128 described in [17]
has a setup cost of over 2,000,000 cycles.

http://www.atmel.com/images/doc0856.pdf
http://www.atmel.com/images/doc0856.pdf
http://eprint.iacr.org/

The Simon and Speck Block Ciphers on AVR 8-Bit Microcontrollers 19

5. Boesgaard, M., Vesterager, M., Pedersen, T., Christiansen, J., Scavenius, O.: Rab-
bit: a new high-performance stream cipher. In: Johansson, T. (ed.) Fast Software
Encryption, vol. 2887, pp. 307–329. Springer, Heidelberg (2003)

6. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

7. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knežević, M., Knudsen,
L.R., Leander, G., Nikov, V., Parr, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçın, T.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012)

8. Bos, J., Osvik, D., Stefan, D.: Fast Implementations of AES on Various Platforms.
Cryptology ePrint Archive, Report 2009/501 (2009). http://eprint.iacr.org/

9. de Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a
family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

10. Eisenbarth, T., Gong, Z., Güneysu, T., Heyse, S., Indesteege, S., Kerckhof, S.,
Koeune, F., Nad, T., Plos, T., Regazzoni, F., Standaert, F., van Oldeneel tot
Oldenzeel, L.: Compact implementation and performance evaluation of block
ciphers in attiny devices. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT
2012. LNCS, vol. 7374, pp. 172–187. Springer, Heidelberg (2012)

11. Eisenbarth, T., Kumar, S., Paar, C., Poschmann, A., Uhsadel, L.: A survey of
lightweight cryptography implementations. IEEE Des. Test Comput. 24(6), 522–
533 (2007)

12. Gong, Z., Nikova, S., Law, Y.W.: KLEIN: a new family of lightweight block ciphers.
In: Juels, A., Paar, C. (eds.) RFID. Security and Privacy. LNCS, vol. 7055, pp.
1–18. Springer, Heidelberg (2011)

13. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917. Springer, Heidelberg
(2011)

14. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee,
J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A new block cipher suitable
for low-resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 45–59. Springer, Heidelberg (2006)

15. Hutter, M., Schwabe, P.: NaCl on 8-bit AVR microcontrollers. In: Youssef, A.,
Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp.
156–172. Springer, Heidelberg (2013)

16. Karakoç, F., Demirci, H., Emre Harmancı, A.: ITUBEE: a software oriented light-
weight block cipher. In: Avoine, G., Kara, O. (eds.) Lightweight Cryptography for
Security and Privacy. LNCS, vol. 8162, pp. 16–27. Springer, Heidelberg (2013)

17. Meiser, G.: Efficient implementation of stream ciphers on embedded processors.
Masters Thesis, Ruhr-University Bochum (2007)

18. Rinne, S., Eisenbarth, T., Paar, C.: Performance analysis of contemporary light-
weight block ciphers on 8-bit microcontrollers. In: SPEED - Software Performance
Enhancement for Encryption and Decryption (2007)

19. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)

http://eprint.iacr.org/

20 R. Beaulieu et al.

20. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockci-
pher CLEFIA (extended abstract). In: Biryukov, A. (ed.) Fast Software Encryp-
tion. LNCS, vol. 4593, pp. 181–195. Springer, Heidelberg (2007)

21. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: a lightweight, ver-
satile block cipher. www.nec.co.jp/rd/media/code/research/images/twine LC11.
pdf

22. Wei, L., Rechberger, C., Guo, J., Wu, H., Wang, H., Ling, S.: Improved meet-in-
the-middle cryptanalysis of KTANTAN. Inf. Secur. Priv. ACISP 2011, 433–438
(2011)

23. Wheeler, D., Needham, R.: TEA, a tiny encryption algorithm. In: Preneel, B. (ed.)
Fast Software Encryption. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg
(1995)

24. Wu, H.: The stream cipher HC-128. www.ecrypt.eu.org/stream/p3ciphers/hc/
hc128 p3.pdf

25. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) Applied Cryptography and Network Security. LNCS, vol. 6715, pp. 327–327.
Springer, Heidelberg (2011)

www.nec.co.jp/rd/media/code/research/images/twine_LC11.pdf
www.nec.co.jp/rd/media/code/research/images/twine_LC11.pdf
www.ecrypt.eu.org/stream/p3ciphers/hc/hc128_p3.pdf
www.ecrypt.eu.org/stream/p3ciphers/hc/hc128_p3.pdf

The Multiplicative Complexity of Boolean
Functions on Four and Five Variables

Meltem Turan Sönmez1,2(B) and René Peralta1
1 National Institute of Standards and Technology,

Gaithersburg, MD, USA
{meltem.turan,rene.peralta}@nist.gov

2 Dakota Consulting Inc.,
Silver Spring, MD, USA

Abstract. A generic way to design lightweight cryptographic primi-
tives is to construct simple rounds using small nonlinear components
such as 4 × 4 S-boxes and use these iteratively (e.g., PRESENT [1] and
SPONGENT [2]). In order to efficiently implement the primitive, efficient
implementations of its internal components are needed. Multiplicative
complexity of a function is the minimum number of AND gates required
to implement it by a circuit over the basis (AND, XOR, NOT). It is
known that multiplicative complexity is exponential in the number of
input bits n. Thus it came as a surprise that circuits for all 65 536 func-
tions on four bits were found which used at most three AND gates [3].
In this paper, we verify this result and extend it to five-variable Boolean
functions. We show that the multiplicative complexity of a Boolean func-
tion with five variables is at most four.

Keywords: Affine transformation · Boolean functions · Circuit com-
plexity · Multiplicative complexity

1 Introduction

One of the important challenges in lightweight cryptography is to find efficient
implementations of secure cryptographic primitives. Many attempts [4–7] have
been done to improve the efficiency of the block cipher AES, in order to fit
the implementations in resource-constrained devices. However, even the best
implementations of AES are usually too big for constrained devices. A generic
way to design dedicated lightweight cryptographic primitives is to construct
simple rounds using small nonlinear components such as 4× 4 S-boxes and iterate
(this is done in, for example, PRESENT [1] and SPONGENT [2]). In order to
efficiently implement the primitive, efficient circuits for the internal components
are needed. Efficiency of the implementations can be assessed using different
metrics such as area, power, and energy requirements. These metrics are strongly
related to the number of logic gates used to implement the primitive.

The rights of this work are transferred to the extent transferable according to title
17 § 105 U.S.C.

c© Springer International Publishing Switzerland 2015 (outside the US)
T. Eisenbarth and E. Öztürk (Eds.): LightSec 2014, LNCS 8898, pp. 21–33, 2015.
DOI: 10.1007/978-3-319-16363-5 2

22 M.S. Turan and R. Peralta

Gate complexity is defined as the minimum number of 2-input logic gates
required to implement the primitive in a circuit. Multiplicative complexity (MC)
is another complexity measure, which is defined as the minimum number of AND
gates required to implement the primitive by a circuit over the basis (AND,
XOR, NOT), with an unlimited number of NOT and XOR gates. This is the
same as the number of multiplications needed for straight-line programs that do
arithmetic modulo 2.

Finding the gate complexity or the multiplicative complexity of a given func-
tion is computationally intractable, even for functions with a small number of
variables. In 2006, Saarinen [8] published the gate complexity distribution of
4-variable Boolean functions. In 2010, Boyar et al. [9] proposed a two-stage
heuristic method to minimize the gate complexity of Boolean circuits. In the first
state, the heuristics minimizes the number of AND gates required to implement
the circuit, and then in the second stage, the linear components are optimized.
Using this method, they constructed efficient circuits for the AES S-box over the
basis (AND, XOR, NOT).

Apart from possibly increasing the efficiency of the implementations, min-
imizing the number of AND gates provides a tool for the cryptanalysis of the
primitives. For example, according to [10,11], functions with low multiplicative
complexity are more vulnerable to algebraic attacks than those with high mul-
tiplicative complexity. This is an important observation, as a function represen-
tation tends to hide its true multiplicative complexity (e.g. consider a random
polynomial on five variables over GF (2), it is hard to see how it could possibly
be computed using only four multiplications).

Also, a relationship between collision resistance of a hash function and multi-
plicative complexity is provided in [12]. Courtois et al. [10] argued that minimizing
the number of AND gates is important to prevent against side channel attacks such
as differential power analysis. Finally, we point out that the number and position
of AND gates in a circuit is the main determinant of whether the function can be
used in the context of protocols that use homomorphic encryption.

Multiplicative complexity of a randomly selected n-variable Boolean function
is at least 2n/2 − O(n) [13]. Exhaustive study of the distribution of multiplica-
tive complexity can only be done for very small values of n. In 2013, we were
surprised to find circuits for all 65 536 functions on four bits which used at most
three AND gates [3]. Boyar et al. [12] conjecture that some five-bit Boolean func-
tions have multiplicative complexity five. It is shown in [13] that there are at
most 2k

2+2k+2kn+n+1 many n-variable Boolean functions that can be generated
using k AND gates. This is a counting argument and it is not known how tight
it is. Using this bound, it is easy to see that there exist eight-bit Boolean func-
tions with multiplicative complexity of at least eight. So, it is an open question
whether there exists n-bit Boolean functions with multiplicative complexity n,
for n = 5, 6, 7. Lower bounds are extremely difficult: no specific n-variable func-
tion has yet been proven to have multiplicative complexity larger than n− 1 for
any n.

In this paper, we focus on the multiplicative complexity of four and five-
variable Boolean functions. Using the fact that multiplicative complexity is affine

The Multiplicative Complexity of Boolean Functions 23

invariant, we first provide a succinct proof (i.e. one that does not list all circuits)
that the multiplicative complexity of four-variable Boolean functions is at most
three. Then, we extend the result for five-variable Boolean functions and show
that the conjecture given in [12] is false: any five-bit Boolean functions can be
implemented with at most four AND gates.

The organization of this paper is as follows. Section 2 provides definitions and
some known facts about Boolean functions, affine equivalence, and multiplica-
tive complexity. Section 2 focuses on affine invariance of multiplicative complex-
ity and provides results for four and five-variable Boolean functions. Section 4
concludes the paper.

2 Preliminaries

2.1 Boolean Functions

Let F2 be the binary field. An n-variable Boolean function f is a mapping from
F
n
2 to F2. Let Bn be the set of n-variable Boolean functions. Note that |Bn| = 22

n

.
Boolean functions have various representations, some are canonical, some not so.
The list of output values for each n-bit input Tf = (f(0, . . . , 0), f(0, . . . , 0, 1), . . . ,
f(1, . . . , 1)) is called the truth table representation of f . The number of ones in
Tf is called the Hamming weight of f , denoted wt(f). The Hamming distance
between two Boolean functions f, g ∈ Bn, denoted d(f, g), is wt(f + g). That is,
the Hamming distance is the cardinality of the set {x ∈ F

n
2 |f(x) �= g(x)}.

Boolean functions are also represented uniquely by the multivariate polyno-
mial called algebraic normal form (ANF)

f(x1, . . . , xn) =
∑

u∈F
n
2

aux
u (1)

where xu = xu1
1 xu2

2 · · ·xun
n is a monomial composed of the variables for which

ui = 1 and au ∈ F2. This is also called the Zhegalkin polynomial of f . The degree
of a Boolean function, denoted df , is the degree of the highest-degree monomial
in its ANF representation.

Let An be the set of n-variable affine functions, i.e., functions having degree at
most one. The nonlinearity of a Boolean function f , denoted Nf , is the minimum
Hamming distance of f to all affine functions, that is Nf = ming∈An

d(f, g).
The nonlinearity of an n-variable Boolean function is upper bounded by 2n−1 −
2n/2−1.

2.2 Affine Equivalence

Affine transformations of a function f allow for linear operations to inputs and
output of f . There are several definitions in the literature, and they are not
all equivalent to each other. Here, we will use a definition from Berlekamp and
Welch [14].

24 M.S. Turan and R. Peralta

Definition 1. An affine transformation from g to f in Bn is a mapping of the
form f(x) = g(Ax + a) + b · x + c, where

– A is a non-singular n × n matrix over F2;
– x, a are column vectors over F2;
– b is a row vector over F2; and
– c ∈ F2.

It is not hard to prove that this defines an equivalence relation on the set
of n-variable Boolean functions. Two functions f, g are affine equivalent if there
exist affine transformations between them. Affine equivalent Boolean functions
are said to be in the same equivalence class.

An algorithm to check whether two functions are equivalent is given in [15].
This algorithm also outputs an affine transformation between the input func-
tions, if one exists. The equivalence classes can be constructed using exhaustive
search for small values of n. For example, the Boolean functions with three
variables can be partitioned into three equivalence classes, and a representative
from each class can be given as {x1, x1x2 and x1x2x3}. The classification of
five-variable Boolean functions was done in 1972 by Berlekamp and Welch [14].
Maiorana [16] proved that the number of classes in B6 is 150 357. This was inde-
pendently verified by Fuller [15] and by Braeken et al. [17]. For n = 7, Hou [18]
determined that there are 63 379 147 320 777 408 548 equivalence classes. Since
the size of Bn is doubly exponential, and each equivalence class can contain
only an exponential number of functions, the number of equivalence classes is
asymptotically exponential in n (see Table 1).

Table 1. Number of equivalence classes for n ≤ 7

n |Bn| # of equivalence classes

3 28 3

4 216 8

5 232 48

6 264 150 357

7 2128 63 379 147 320 777 408 548 (this is between 265 and 266)

Some cryptographic measures such as nonlinearity, algebraic degree, and alge-
braic immunity remain unchanged after applying an affine transformation. Such
measures are said to be affine invariant [19]. Braeken et al. [17] studied the clas-
sification of Boolean functions with respect to various cryptographic properties.
Uyan [20] analyzed the Boolean functions with respect to the Walsh Spectrum
using equivalence classes.

2.3 Multiplicative Complexity

The multiplicative complexity C∧(f) of a Boolean function is the minimum num-
ber of multiplications (AND-∧ gates) that are sufficient to evaluate the function

The Multiplicative Complexity of Boolean Functions 25

over the basis (AND, XOR, NOT). The multiplicative complexity of functions
having degree d is at least d− 1 [21]. This bound is called the degree bound. Cal-
culating the multiplicative complexity of a randomly selected Boolean function
is hard even for small values of n1.

3 Multiplicative Complexity of Boolean Functions

Multiplicative complexity is invariant under affine transformations. Thus, to
bound the multiplicative complexity distribution of n-bit Boolean functions, it
is enough to bound the multiplicative complexity of a single function from each
equivalence class. Fuller presents an algorithm to find a representative from each
equivalence class [15]. Her method is practical for values of n up to six.

In order to find a circuit for f ∈ Bn with a small number of AND gates, we
use the following approach.

1. Precomputation
(a) Using the algorithm given in [15], find a “simple” (e.g., one that has a

small number of monomials in its ANF) representative for each equiva-
lence class in Bn.

(b) For each representative, find a circuit which is efficient with respect to
multiplicative complexity.

2. Find the equivalence class Cf of f .
3. Find the affine transformation from f∗, the representative of Cf , to f using

the algorithm given in [15].
4. Apply the affine transformation to the circuit for f∗. This yields a circuit for

f . The circuit will be efficient with respect to multiplicative complexity. Note
that, if the circuit found for f∗ is not optimal, this still yields an upper bound
on the multiplicative complexity of f .

In the following subsections, we used this approach to bound the multi-
plicative complexity of all Boolean functions on four and on five variables. The
approach becomes impractical as the number of variables increases due to the
following reasons; (i) the number of equivalence classes increases exponentially
with the number of variables; (ii) finding an affine transformation from f∗ to
f gets harder; and (iii) constructing circuits that are optimal with respect to
multiplicative complexity gets harder.

3.1 n = 4

There are eight equivalence classes of B4, with representatives {x1, x1x2, x1x2 +
x3x4, x1x2x3, x1x2x3 + x1x4, x1x2x3x4, x1x2x3x4 + x1x2, x1x2x3x4 + x1x2 +
x3x4}. The representatives are simple enough that optimal (with respect to

1 Lest the reader think this easy, he/she may attempt to compute the function
f(x1, x2, x3, x4, x5) = x1x2x3x4x5 + x1x2x3 + x1x2x4 + x2x3x4 + x1x2 + x1x3 +
x1x4 + x2x4 + x3x4 using only four AND gates.

26 M.S. Turan and R. Peralta

Table 2. Equivalence classes of B4

Class Representatives Implementation MC (Nf , df) # Functions

1 x1 f = x1 0 (0,1) 32

2 x1x2 t1 = x1 ∧ x2 1 (4,2) 1120

3 x1x2 + x3x4 t1 = x1 ∧ x2 2 (6,2) 896

t2 = x3 ∧ x4

f = t1 ⊕ t2

4 x1x2x3 t1 = x1 ∧ x2 2 (2,3) 3840

f = t1 ∧ x3

5 x1x2x3 + x1x4 t1 = x2 ∧ x3 2 (4,3) 26880

t2 = t1 ⊕ x4

f = t2 ∧ x1

6 x1x2x3x4 t1 = x1 ∧ x2 3 (1,4) 512

t2 = t1 ∧ x3

f = t2 ∧ x4

7 x1x2x3x4 + x1x2 t1 = x1 ∧ x2 3 (3,4) 17920

t2 = t1 ∧ x3

t3 = t2 ∧ x4

f = t3 ⊕ t1

8 x1x2x3x4 + x1x2 + x3x4 t1 = x1 ∧ x2 3 (5,4) 14336

t2 = x3 ∧ x4

t3 = t1 ∧ t2

t4 = t3 ⊕ t1

f = t4 ⊕ t2

multiplicative complexity) circuits can be easily constructed. Table 2 provides
a circuit with optimal number of AND gates for each of these representatives.
The optimality of the circuits follows from the degree bound for seven (out of
eight) of the equivalence classes. For example, according to the degree bound,
the multiplicative complexity of x1x2x3x4 + x1x2, is at least three. Optimality
of the third class, which is a sum of quadratic functions, cannot be verified by
the degree bound. That two AND gates are needed seems obvious, as the two
quadratic terms have no common variables. For a formal proof, see Mirwald
and Schnorr [22], which shows that the multiplicative complexity of a quadratic
function of the form

∑k
i=1 x2i−1x2i is k.

It is easy to find the equivalence class of a given function f ∈ B4 by checking
the nonlinearity and degree of f , since the nonlinearity and the degree pair
(Nf , df) of the representatives are distinct (See Table 2).

Example 1. Let f = 1 + x1 + x2 + x3 + x1x2 + x1x3 + x2x4 + x3x4 + x1x2x3 +
x2x3x4 + x1x3x4 + x1x2x3x4. In order to find a circuit for f with minimum

The Multiplicative Complexity of Boolean Functions 27

number of AND gates, we first need to find its equivalence class. Since (Nf ,
degree) = (3,4), f belongs to the seventh equivalence class with representative
f∗ = x1x2x3x4+x1x2. Then, we need to obtain the affine transformation between
f and f∗. Using the algorithm in [15], the transformation is obtained as

f(x) = f∗(

⎛

⎜⎜⎝

1 0 1 1
1 1 1 1
0 1 1 0
1 0 1 0

⎞

⎟⎟⎠x ⊕ (0 0 0 0)) ⊕ (0 1 1 0)x ⊕ 1. (2)

According to this transformation, input variables are transformed as follows;
x1 → x1 + x3 + x4, x2 → x1 + x2 + x3 + x4, x3 → x2 + x3, and x4 → x1 + x3,
and the affine shift is equivalent to XORing x2 + x3 + 1 to f . Given an efficient
circuit for x1x2x3x4 +x1x2, an efficient circuit for f can be found as is shown in
Table 3. The first four equations in the implementation of f are due to the linear
transformations of input variables, whereas the last three equations corresponds
to the affine shift.

Table 3. Optimal circuit for f in terms of number of AND gates.

f∗ f

t1 = x1 ⊕ x3

t2 = t1 ⊕ x4

t3 = t2 ⊕ x2

t4 = x2 ⊕ x3

t1 = x1 ∧ x2 t5 = t2 ∧ t3

t2 = t1 ∧ x3 t6 = t5 ∧ t4

t3 = t2 ∧ x4 t7 = t6 ∧ x3

f∗ = t3 ⊕ t1 t8 = t7 ⊕ t5

t9 = t8 ⊕ t3

t10 = t9 ⊕ t4

f = t10 ⊕ 1

�

3.2 n = 5

Berlekamp and Welsh [14] provided the representatives of the 48 equivalence
classes for n = 5. Table 5 in the Appendix provides the circuits to implement the
representatives of each equivalence class. Most of the representatives are simple
enough that the optimal circuits are found trivially. The circuits corresponding
to the representatives of the classes 14, 18, 26, 37, 44, 45, 46, 47, 48 are obtained
using the heuristic provided in [23]. Optimality of thirty circuits (out of 48) can
be verified using the degree bound.

28 M.S. Turan and R. Peralta

To find the equivalence class of a given function f ∈ B5, the nonlinearity and
degree of f can be utilized. Table 4 provides a classification of the equivalence
classes based on the nonlinearity of degrees. As seen from the table, for 10 of the
equivalence classes, the degree and nonlinearity uniquely determines the class
representative. Moreover, checking degree and nonlinearity of an input function
significantly reduces the possible number of equivalence classes.

Table 4. The distribution of equivalence classes of B5 according to degree and non-
linearity. The functions are written in an abbreviated notation. For example, 123+145
indicates the representative of the form x1x2x3 + x1x4x5.

4 Conclusion

We studied the multiplicative complexity of Boolean functions with four and five
variables. For four variables, we confirmed that the multiplicative complexity is
at most three by producing circuits for a representative of each of the eight
equivalence classes. We knew this was true because one of us has posted circuits
for all 216, each using at most three AND gates [3]. Those circuits are also
optimized for total number of gates: it turns out that no more than seven XOR
gates are needed by AND-optimal circuits.

The Multiplicative Complexity of Boolean Functions 29

For five variables, we disproved the conjecture that there exists Boolean func-
tions with multiplicative complexity five. We are in the process of extending this
work to six-variable Boolean functions. This will most likely require a computer
proof, as there are 150 357 equivalence classes.

Acknowledgments. We thank Çağdaş Çalık, Joan Boyar, and Magnus Find for help-
ful discussions and suggestions. We also thank our colleagues Yi-Kai Liu, Ray Perlner,
Lily Chen, and the anonymous reviewers for their useful comments.

Appendix

Table 5. Circuits for n = 5.

Class Representative Circuit MC

1 2345 t1 = 2 ∧ 3, t2 = 4 ∧ 5, f = t1 ∧ t2 3

2 2345⊕12 t1 = 3 ∧ 4, t2 = t1 ∧ 5, t3 = t2 ⊕ 1, f = 2 ∧ t3 3

3 2345⊕23 t1 = 2 ∧ 3, t2 = t1 ∧ 4, t3 = t2 ∧ 5, f = t1 ⊕ t3 3

4 2345⊕23 ⊕ 45 t1 = 2 ∧ 3, t2 = 4 ∧ 5, t3 = t1 ∧ t2, t4 = t3 ⊕ t1 3

f = t4 ⊕ t2

5 2345⊕12⊕34 t1 = 3 ∧ 4, t2 = t1 ∧ 5, t3 = t2 ⊕ 1, t4 = 2 ∧ t3, 3

f = t4 ⊕ t1

6 2345⊕123 t1 = 2 ∧ 3, t2 = 4 ∧ 5, t3 = t2 ⊕ 1, f = t3 ∧ t1 3

7 2345⊕123⊕12 t1 = 4 ∧ 5, t2 = 1 ⊕ t1, t3 = 3 ∧ t2, t4 = 1 ⊕ t3 3

f = 2 ∧ t4

8 2345⊕123⊕24 t1 = 4 ∧ 5, t2 = 1 ⊕ t1, t3 = 3 ∧ t2, t4 = 4 ⊕ t3 3

f = 2 ∧ t4

9 2345⊕123⊕14 t1 = 2 ∧ 3, t2 = 4 ∧ 5, t3 = 1 ⊕ t2, t4 = t1 ∧ t3 3

f = t4 ⊕ t2

10 2345⊕123⊕45 t1 = 2∧3, t2 = 4∧5, t3 = t2⊕1, t4 = t3 ∧ t1, 3

f = t4 ⊕ t2

11 2345⊕123⊕12⊕34 t1 = 2∧4, t2 = t1∧5, t3 = 1∧2, t4 = t2 ⊕ t3, ≤ 4

t5 = t4⊕4, t6 = t5∧3, f = t6 ⊕ t3

12 2345⊕123⊕14⊕35 t1 = 4 ∧ 5, t2 = 1 ⊕ t1, t3 = 2 ∧ t2, t4 = 5 ⊕ t3, ≤ 4

t5 = 3 ∧ t4, t6=1∧4, f = t5 ⊕ t6

13 2345⊕123⊕12⊕45 t1 = 2 ∧ 3, t2 = 1 ∧ 2, t3 = 4 ∧ 5, t4 = t2 ⊕ t3 ≤ 4

t5 = t1 ∧ t4, f = t5 ⊕ t4

14 2345⊕123⊕24⊕35 t1 = 4 ∧ 5, t2 = 1 ⊕ t1, t3 = 2 ⊕ 3, t4 = 1 ⊕ t3, ≤ 4

t5 = t4 ⊕ t1, t6 = t2 ∧ t5, t7 = 4 ⊕ t6, t8 = 2 ∧ t7,

t9 = 3 ∧ 5, f = t8 ⊕ t9
(Continued)

30 M.S. Turan and R. Peralta

Table 5. (Continued)

Class Representative Circuit MC

15 2345⊕123⊕145 t1 = 2 ∧ 3, t2 = 1 ⊕ t1, t3 = 4 ∧ 5 t4 = 1 ⊕ t3 3

t5 = t2 ∧ t4, f = 1 ⊕ t5

16 2345⊕123⊕145⊕45 t1 = 2 ∧ 3, t2 = 1 ⊕ t1, t3 = 4 ∧ 5, t4 = 1 ⊕ t3 3

t5 = t2 ∧ t4, f = t5 ⊕ t4

17 2345⊕123⊕145⊕24⊕45 t1 = 4 ∧ 5, t2 = 1 ⊕ t1, t3 = 2 ∧ 3, t4 = t3 ⊕ t1, ≤ 4

t5 = t2 ∧ t4, t6 = 2 ∧ 4, f = t5 ⊕ t6

18 2345⊕123⊕145⊕35⊕24 t1 = 2 ∧ 3, t2 = 1 ⊕ t1, t3 = t4 ∧ t5, t4 = t1 ⊕ t3, ≤ 4

t5 = t2 ∧ t4, t6 = 2 ⊕ 5, t7 = 3 ⊕ 4, t8 = t6 ∧ t7,

t9 =t3 ⊕ t8, f = t5 ⊕ t9

19 123 t1 = 1∧2, f = t1∧3 2

20 123⊕45 t1 = 1∧2, t2 = t1∧3, t3 = 4∧5, f = t2 ⊕ t3 3

21 123⊕14 t1 = 2∧3, t2 = t1⊕4, f = 1 ∧ t2 2

22 123⊕14⊕25 t1 = 2∧3, t2 = t1⊕4, t3 = t2∧1, t4 = 2∧5 3

f = t3 ⊕ t4

23 123⊕145 t1 = 2∧3, t2 = 4∧5, t3 = t1 ⊕ t2, f = 1 ∧ t3 3

24 123⊕145⊕23 t1 = 2∧3, t2 = 4∧5, t3 = t1 ⊕ t2, t4 = 1 ∧ t3 3

f = t4 ⊕ t1

25 123⊕145⊕24 t1 = 2∧3, t2 = 4∧5, t3 = t1 ⊕ t2, t4 = 1 ∧ t3 ≤ 4

t5 = 2∧4, f = t4 ⊕ t5

26 123⊕145⊕23⊕24⊕35 t1 = 1 ∧ 5, t2 = 2 ⊕ t1, t3 = 1 ⊕ 3, t4 = 3 ∧ t3 ≤ 4

t5 = 4 ⊕ t4, t6 = t2 ∧ t5, t7 = 3 ∧ 5, f = t6 ⊕ t7

27 12 f = 1∧2 1

28 12⊕34 t1 = 1∧2, t2=3∧4, f = t1 ⊕ t2 2

29 1 f =1 0

30 12345 t1 = 1∧2, t2 = t1∧3, t3 = t2∧4, f = t3∧5 4

31 12345⊕12 t1 = 1∧2, t2 = t1∧3, t3 = t2∧4, t4 = t3∧5 4

f = t4 ⊕ t1

32 12345⊕12⊕34 t1 = 1∧2, t2=3∧4, t3 = t1 ∧ t2, t4 = t3∧5 4

t5 = t4 ⊕ t1, f = t5 ⊕ t2

33 12345⊕123 t1 = 1∧2, t2 = t1∧3, t3 = t2∧4, t4 = t3∧5 4

f = t4 ⊕ t2

34 12345⊕123⊕12 t1 = 1∧2, t2 = t1∧3, t3 = t2∧4, t4 = t3∧5 4

t5 = t4 ⊕ t1, f = t5 ⊕ t2

35 12345⊕123⊕14 t1 = 2∧3, t2 = 1∧4, t3 = t2∧5, t4 = t3⊕1 4

t5 = t1 ∧ t4, f = t2 ⊕ t5

36 12345⊕123⊕45 t1 = 1∧2, t2 = t1∧3, t3 = 4∧5, t4 = t2 ∧ t3 4

t5 = t4 ⊕ t2, f = t5 ⊕ t3
(Continued)

The Multiplicative Complexity of Boolean Functions 31

Table 5. (Continued)

Class Representative Circuit MC

37 12345⊕123⊕14⊕25 t1 = 1 ⊕ 4, t2 = 3 ∧ t1, t3 = 4 ⊕ t2,
t4 = 3 ⊕ 4

4

t5 = 2 ⊕ t4, t6 = 2 ∧ 5, t7 = 3 ⊕ t6,
t8 = t5 ∧ t7

t9 = 1 ⊕ t8, t10 = t3 ∧ t9, f = t10 ⊕ t6

38 12345⊕123⊕12⊕45 t1 = 1∧2, t2 = t1∧3, t3 = 4∧5,
t4 = t2 ∧ t3

4

t5 = t4 ⊕ t1, t6 = t5 ⊕ t2, f = t6 ⊕ t3

39 12345⊕123⊕12⊕34 t1 = 1∧2, t2 = 4∧5, t3 = t1 ∧ t2,
t4 = t3 ⊕ t1

4

t5 = t4⊕4, t6=3∧t5, f = t1 ⊕ t6

40 12345⊕123⊕145 t1 = 2∧3, t2 = 4∧5, t3 = t1 ∧ t2,
t4 = t1 ⊕ t2

4

t5 = t4 ⊕ t3, f = 1 ∧ t5

41 12345⊕123⊕145⊕12 t1 = 2∧3, t2 = 4∧5, t3 = t1 ∧ t2,
t4 = t1 ⊕ t2

4

t5 = t4⊕2, t6 = t5 ⊕ t3, f = 1 ∧ t6

42 12345⊕123⊕145⊕23 t1 = 2∧3, t2 = 4∧5, t3 = t1 ∧ t2,
t4 = t3 ⊕ t1

4

t5 = t4 ⊕ t2, t6 = 1 ∧ t5, f = t6 ⊕ t1

43 12345⊕123⊕145⊕45⊕23 t1 = 2∧3, t2 = 4∧5, t3 = t1 ∧ t2,
t4 = t3 ⊕ t1

4

t5 = t4 ⊕ t2, t6 = 1 ∧ t5, t7 = t6 ⊕ t1,
f = t7 ⊕ t2

44 12345⊕123⊕145⊕24 t1 = 2 ⊕ 3, t2 = 1 ⊕ t1, t3 = 3 ∧ t2,
t4 = 4 ⊕ t3

4

t5 = 1 ∧ 4, t6 = 5 ∧ t5, t7 = 2 ⊕ t6,
f = t4 ∧ t7

45 12345⊕123⊕145⊕24⊕23 t1 = 2 ∧ 3, t2 = 3 ⊕ 4, t3 = 1 ⊕ t2,
t4 = 1 ∧ 5

4

t5 = 2 ⊕ t4, t6 = 4 ∧ t5, t7 = t3 ⊕ t6,
t8 = t1 ∧ t7

f= t8 ⊕ t6

46 12345⊕123⊕145⊕35⊕24 t1 = 4 ⊕ 5, t2 = 1 ⊕ t1, t3 = 5 ∧ t2,
t4 = 3 ⊕ t3

4

t5 = 2 ⊕ 3, t6 = 4 ∧ 5, t7 = 1 ⊕ t6,
t8 = 2 ∧ t7

t9 = t1 ⊕ t8, t10 = t4 ∧ t9, t11 = t6 ⊕ t3

f = t10 ⊕ t11
(Continued)

32 M.S. Turan and R. Peralta

Table 5. (Continued)

Class Representative Circuit MC

47 12345⊕123⊕145⊕35⊕24⊕23 t1 = 1 ⊕ 4, t2 = 1 ∧ t1, t3 = 2 ⊕ t2,
t4 = 4 ⊕ 5

4

t5 = 1 ⊕ 3, t6 = 2 ⊕ 3, t7 = 1 ⊕ t6,
t8 = 5 ∧ t7

t9 = t5 ⊕ t8, t10 = 3 ∧ t9, t11 = t4 ⊕ t10

t12 = t3 ∧ t11, f = t12 ⊕ t8

48 12345⊕123⊕145⊕45⊕35⊕24⊕23 t1 = 2 ⊕ 4, t2 = 2 ⊕ 3, t3 = 2 ⊕ 5,
t4 = t2 ∧ t3

4

t5 = t1 ⊕ t4, t6 = 1 ⊕ t3, t7 = 4 ⊕ 5,
t8 = t2 ⊕ t7

t9 = 1 ⊕ t8, t10 = 1 ∧ 4, t11 = t2 ⊕ t10,
t12 = t9 ∧ t11

t13 = t6 ⊕ t12, t14 = t5 ∧ t13,
f = t14 ⊕ t10

References

1. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

2. Bogdanov, A., Knezevic, M., Leander, G., Toz, D., Varici, K., Verbauwhede, I.:
SPONGENT: the design space of lightweight cryptographic hashing. IEEE Trans.
Comput. 62(10), 2041–2053 (2013)

3. Peralta, R.: Circuit minimization work, January 2014. http://cs-www.cs.yale.edu/
homes/peralta/circuitstuff/cmt.html

4. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES implementation on a grain of
sand. IEE Proc. Inf. Secur. 152(1), 13–20 (2005)

5. Hamalainen, P., Alho, T., Hannikainen, M., Hamalainen, T.D.: Design and imple-
mentation of low-area and low-power AES encryption hardware core. In: Proceed-
ings of the 9th EUROMICRO Conference on Digital System Design, DSD ’06,
pp. 577–583. IEEE Computer Society, Washington, DC (2006)

6. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

7. Boyar, J., Peralta, R.: A small depth-16 circuit for the AES S-box. In: Gritzalis, D.,
Furnell, S., Theoharidou, M. (eds.) SEC 2012. IFIP AICT, vol. 376, pp. 287–298.
Springer, Heidelberg (2012)

8. Saarinen, M.-J.O.: Chosen-IV statistical attacks on estream ciphers. In: Malek,
M., Fernández-Medina, E., Hernando, J. (eds.) SECRYPT, pp. 260–266. INSTICC
Press (2006)

9. Boyar, J., Peralta, R.: A new combinational logic minimization technique with
applications to cryptology. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049,
pp. 178–189. Springer, Heidelberg (2010)

http://cs-www.cs.yale.edu/homes/peralta/circuitstuff/cmt.html
http://cs-www.cs.yale.edu/homes/peralta/circuitstuff/cmt.html

The Multiplicative Complexity of Boolean Functions 33

10. Courtois, N., Hulme, D., Mourouzis, T.: Solving circuit optimisation problems in
cryptography and cryptanalysis (2011)

11. Courtois, N., Hulme, D., Mourouzis, T.: Multiplicative complexity and solving gen-
eralized brent equations with SAT solvers. In: COMPUTATION TOOLS 2012, The
Third International Conference on Computational Logics, Algebras, Programming,
Tools, and Benchmarking, pp. 22–27 (2012)

12. Boyar, J., Find, M., Peralta, R.: Four measures of nonlinearity. In: Spirakis, P.G.,
Serna, M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 61–72. Springer, Heidelberg
(2013)

13. Boyar, J., Peralta, R., Pochuev, D.: On the multiplicative complexity of Boolean
functions over the basis (∧, ⊕, 1). Theor. Comput. Sci. 235(1), 43–57 (2000)

14. Berlekamp, E.R., Welch, L.R.: Weight distributions of the cosets of the (32, 6)
Reed-Muller code. IEEE Trans. Inf. Theory 18(1), 203–207 (1972)

15. Fuller, J.E.: Analysis of affine equivalent boolean functions for cryptography. Ph.D.
thesis, Queensland University of Technology (2003)

16. Maiorana, J.A.: A classification of the cosets of the Reed-Muller code R(1,6). Math.
Comput. 57(195), 403–414 (1991)

17. Braeken, A., Borissov, Y., Nikova, S., Preneel, B.: Classification of Boolean func-
tions of 6 variables or less with respect to some cryptographic properties. In: Caires,
L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005.
LNCS, vol. 3580, pp. 324–334. Springer, Heidelberg (2005)

18. Hou, X.-D.: AGL (m, 2) acting on R (r, m)/R (s, m). J. Algebra 171(3), 927–938
(1995)

19. Carlet, C.: Boolean functions for cryptography and error correcting codes. In:
Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathemat-
ics, Computer Science and Engineering, chapter 8. Cambridge University Press,
Cambridge (2010)

20. Uyan, E.: Analysis of Boolean Functions with respect to Walsh Spectrum. Ph.D.
thesis, Middle East Technical University (2013)

21. Schnorr, C.-P.: The multiplicative complexity of Boolean functions. In: AAECC,
pp. 45–58 (1988)

22. Mirwald, R., Schnorr, C.-P.: The multiplicative complexity of quadratic Boolean
forms. Theor. Comput. Sci. 102(2), 307–328 (1992)

23. Boyar, J., Matthews, P., Peralta, R.: Logic minimization techniques with applica-
tions to cryptology. J. Cryptology 26(2), 280–312 (2013)

A Flexible and Compact Hardware Architecture
for the SIMON Block Cipher

Ege Gulcan(B), Aydin Aysu, and Patrick Schaumont

Secure Embedded Systems,
Center for Embedded Systems for Critical Applications,

Bradley Department of ECE,
Virginia Tech, Blacksburg, VA 24061, USA

{egulcan,aydinay,schaum}@vt.edu

Abstract. SIMON is a recent, light-weight block cipher developed by
NSA. Previous work on SIMON shows that it is a very promising alter-
native of AES for resource-constrained platforms. While SIMON offers a
range of block sizes and key lengths, a straightforward implementation
would select fixed values in order to achieve a compact design. In con-
trast, we propose a flexible hardware architecture on FPGAs that still
preserves the compactness of SIMON. The proposed implementation can
execute all configurations of SIMON, and thus provides a versatile archi-
tecture that enables adaptive security using a variable key-size. Moreover,
it also reduces the inefficiency of encrypting slightly longer messages
by supporting a variable block-size. The implementation results show
that the proposed architecture occupies 90 and 32 slices on Spartan-3
and Spartan-6 FPGAs, respectively. To our best knowledge, these area
results are smaller than other block ciphers of similar security level. Fur-
thermore, we also quantify the cost of flexibility and show the trade-off
between the security level, throughput and area.

Keywords: Lightweight cryptography · Block ciphers · Flexible
architectures · SIMON · FPGA

1 Introduction

Block ciphers are the building blocks of secure systems as they enable send-
ing a message over a non-secure medium. These ciphers perform symmetric-key
encryption by mapping a block of input plaintext to an output ciphertext using
a secret key. Once the ciphertext is generated, it can only be decrypted back into
the plaintext by using exactly the same secret key. Rijndael is the most widely
used block cipher algorithm and it is used as the Advanced Encryption Standard
(AES) [8].

Even though Rijndael serves as the AES, its area-cost restricts its use in
resource-critical domains like RFID tags. This is where lightweight cryptography
shines. The goal of lightweight cryptography is to minimize the area of imple-
menting and executing an operation while preserving similar or slightly reduced
c© Springer International Publishing Switzerland 2015
T. Eisenbarth and E. Öztürk (Eds.): LightSec 2014, LNCS 8898, pp. 34–50, 2015.
DOI: 10.1007/978-3-319-16363-5 3

A Flexible and Compact Hardware Architecture 35

levels of security. With the aim of reducing the area of the AES, two alternatives
named PRESENT and CLEFIA were previously developed and later standard-
ized by ISO [10]. Likewise, DARPA has an ongoing SHIELD project that is
targeted towards tackling counterfeit electronics [6]. The goal of the project is
to enable supply-chain management by means of a light-weight secure hardware
of 100 micron × 100 micron size [7]. Therefore, there are important incentives
to build the basic encryption block that are much smaller than the available
ones. SIMON is such an alternative which is optimized for compact hardware
implementations [2]. Aysu et al. showed that SIMON can break the area records
of block ciphers on FPGAs [1]. They implement a fixed 128/128 configuration
of SIMON that can only encrypt blocks of 128-bit messages using a 128-bit key.
However, the design space of digital systems are not solely composed of fixed
elements, and flexibility among others is an important design dimension.

1.1 Motivation

Security is a new design dimension for digital systems [12]. Schaumont et al.
labels this dimension as Risk and shows that flexibility, performance and risk are
the main design dimensions of secure embedded systems [18]. Furthermore, they
argue that a good design should consider the trade-offs between these dimen-
sions. In that framework, performance refers to the capability of the system for a
given target metric (throughput, energy-efficiency, area, etc.), risk is the poten-
tial for loss, and flexibility is the ability to (re)define the system parameters
and behavior. The dimension of flexibility is even more important especially for
applications with a diverse set of requirements. Wireless sensor networks (WSN)
are an outstanding example for this scenario. WSN typically consist of a large
number of devices (nodes) that are one-time programmed and deployed in the
field. The nodes run for long periods of time without human intervention.

A common practice of flexibility is to implement adaptive security for WSN.
Younis et al. proposes an adaptive security provision for wireless sensor nodes
[23]. They propose an efficient protocol in which the encryption strength (key-
size) varies between 32-bits to 128-bits depending on the trust level of the nodes.
Obviously, if a node is more trusted, an encryption with a lower level of security
allows computation savings. Wang et al. argues a similar case for computation
savings where the sensitive data within the network is encrypted with a higher
security level, while the less important information is encrypted using shorter
keys [21]. Sharma et al. claims that the application diversity of WSN ranges from
military surveillance to agriculture farming, each of which requiring a different
set of minimal security mechanisms [19]. Then, they present a comprehensive
security framework that can provide security services for a variety of applications.
Finally, Portilla et al. provides a case study on FPGAs using the Elliptic Curve
Cryptography and proposes a solution for a public-key based adaptable security
on WSN [17].

Cook et al. approaches flexibility from another perspective [5]. If an input
plaintext is even one-bit larger than the encryption block-size n, it has to be
padded to 2n and the encryption should run more than once. Therefore, they

36 E. Gulcan et al.

introduce an elastic block cipher that improves the inefficiency by allowing
a variable block-size. This methodology uses a fixed key-size with a variable
block-size.

Our solution combines the merits of both visions. We propose an architecture
that can have both variable block-size and key-size. Using such a flexible archi-
tecture enables a single device to offer adaptable security for a variety of applica-
tions, or multiple levels of security within an application. It can also reduce the
redundancy of slightly longer messages by changing the encryption block-size.
Our unified architecture also minimizes the licensing/certification efforts since
we use a single design for many different use-cases. The complex cryptographic
module validation programs like NIST CMVP [16] also make the single hard-
ware running all configurations advantageous over the collection of many that
can execute a single configuration. Yet, the proposed architecture is still very
compact which makes it very suitable for light-weight applications.

From a design methodology perspective, the proposed hardware provides
flexibility (at the expense of area and throughput) to the system by enabling
on-the-fly security configuration management. It also allows a trade-off between
the performance and risk. Our results show that the system can increase the
security from 64-bits to 256-bits (from toy-settings to high-profile security) with
a throughput degradation of a factor of 2. Moreover, to our best knowledge,
the proposed flexible hardware architecture of SIMON is still smaller than other
block ciphers of similar security level.

1.2 Organization

The rest of the paper is organized as follows. Section 2 gives a brief overview of
SIMON block cipher and its configurations. Section 3 highlights the methodology
behind the compact block cipher architectures and how to extend it for flexibility.
Section 4 shows the implementation results and presents the trade-off between
flexibility, performance and risk. Section 5 concludes the paper and comments
on possible future extensions.

2 SIMON Block Cipher

SIMON is a Feistel-based lightweight block cipher recently published by NSA,
targeted towards compact hardware implementations [2]. SIMON has ten con-
figurations optimized for different block and key sizes providing a flexible level
of security. Table 1 shows the parameters for all configurations of SIMON. The
word size n is the bit length of each word in the Feistel network, which makes
the block size to be 2n. The key length is defined as a multiple of the Feistel
word size, and the parameter m indicates the number of Feistel words in a key.
Security configuration is a new parameter that we introduce to select the desired
configuration of SIMON.

A Flexible and Compact Hardware Architecture 37

Table 1. Simon parameters

Security Block Key Word size (n) Key words (m) Rounds
configuration size (2n) size

1 32 64 16 4 32

2 48 72 24 3 36

3 48 96 24 4 36

4 64 96 32 3 42

5 64 128 32 4 44

6 96 96 48 2 52

7 96 144 48 3 54

8 128 128 64 2 68

9 128 192 64 3 69

10 128 256 64 4 72

2.1 Round Function

Figure 1 shows the round function for all configurations of SIMON. Xupper and
Xlower respectively denote the upper and lower words of the block and they
are n-bits each. These two words hold the initial input plaintext and the output
after each round is executed. The round function consists of bitwise AND, bitwise
XOR, and circular shift left operations. In each round, shifting and bitwise AND
operations are performed on the upper word and it is XORed with the lower word
and the round key. The resulting value is written back to the upper word while
its content is transferred over to the lower word. The round function continues
to run repeatedly until the desired number of rounds is reached.

Fig. 1. SIMON round function

38 E. Gulcan et al.

2.2 Key Expansion

SIMON block cipher needs unique keys for each round and the key expansion
function generates these round keys. Unlike the round function, there are three
different configurations of key expansion as the number of words in a key can
be 2, 3 and 4 depending on the configuration. Figure 2 shows the key expansion
functions for three different key lengths, corresponding to two, three or four
Feistel words respectively (m = 2, 3 or 4). The block Ki holds the round key for
the ith round. For m = 2 and m = 3, the logical operations of the key expansion
function are identical. The most significant word is circular shifted right by 3
and 4, and it is XORed with the least significant word and the round constant
zi. For m = 4, there is an extra step where the most significant word (Ki+3) is
circular shifted right by 3, XORed with Ki+1, then circular shifted right by 1
and XORed with the least significant word and the round constant. At the end of
each key expansion, the new round key is written into the most significant word,
and all the words are shifted one word right. As Ki is the key used in the current
round, it will no longer be needed and is overwritten. The key expansion function
has a sequence of one bit round constants used for eliminating slide properties
and circular shift symmetries. There are five different round constant sequences
uniquely tuned for each configuration to provide a cryptographic separation
between the different configurations.

Fig. 2. SIMON key expansions

3 Hardware Implementation

When implementing a block cipher on hardware, there are several parallelism
choices (bit level, round level, and encryption level) that affect the area and

A Flexible and Compact Hardware Architecture 39

throughput of the design. In bit level parallelism, the input size of the operators
range from one bit to n-bits where n is the block size. In round level parallelism,
we can have one round up to r-rounds per clock cycle where r is the total
number of rounds of the block cipher. Finally, in encryption level parallelism,
we can have one encryption engine up to e encryption engines where e is the
maximum number of engines that can fit in our area constraints. Depending
of the chosen levels of parallelism, our design space will range from p parallel
encryptions per clock cycles to one bit of one round of one encryption engine per
clock cycle. In order to keep the area of our design as low as possible, we used
the lowest parallelism level of one bit of one round of one engine, which is also
called the bit-serial implementation.

3.1 Bit-Serial

Figure 3 shows the details of the round (a) and key expansion functions (b,c,d)
of the bit serial SIMON. The current state holds the words that are used in the
current round and the next state holds the words that are generated after the
execution of the first round and will be used in the next round. Both of these
states share the same set of memory elements and they are overwritten in every
round. In the key expansion functions, Ki denotes the key that will be used in
the ith round. The highlighted bits indicate the bits that are processed at the
first clock cycle of each round.

Both the key expansion and the round function consist of two phases: Com-
pute and Transfer. The compute phase reads the necessary bits from the current
state, performs logic operations on them and writes the resulting bit into the
upper block of the next state, while the transfer phase copies the contents of
a word in the current states to a lower word in the next state. For the key
expansion, there are three different functions depending on the number of key
words. The compute phase is the same for m = 2 and m = 3 where only three
bits are necessary from upper and lower words. For m = 4, two additional bits
are required from the word Ki+1 to compute the next state bit. The number of
transfer phases required to finish one expansion also changes with the key words
number.

The bit serial implementation of the SIMON block cipher fits very well into
the resources of an FPGA as we can use the Look Up Tables (LUT) as memory
elements. In a Spartan-3 family FPGA, each LUT can be configured as an 16× 1
Shift Register LUT (SRL), in which we can store the words of the round and
key expansion functions. Since we are reading from and writing into the SRL
one bit per clock cycle, we will call them FIFOs throughout this paper. By using
these FIFOs we can overlap the compute and transfer phases to process one bit
in every clock cycle.

3.2 Round Function

The round function of the SIMON block cipher is the same for all ten configura-
tions except for the size of the memory elements (words). In the Feistel network

40 E. Gulcan et al.

Fig. 3. (a) SIMON Bit-serial round function, (b) SIMON Bit-serial key expansion for
m = 2, (c) SIMON Bit-serial key expansion for m = 3, (d) SIMON Bit-serial key
expansion for m = 4

A Flexible and Compact Hardware Architecture 41

of the round function, the block is separated into two words, each keeping one
half of the complete block. As the block size changes with different versions, the
size of the FIFOs holding these words also change accordingly. In order to have
a round function that can work with any of the ten versions, we need to have a
flexible length of FIFOs.

Figure 4 shows the bit serial implementation of the flexible round function of
SIMON. There are two groups of FIFOs named FIFO 1 and FIFO 2, which hold
the upper and lower words of the block. Each group is divided into subsections of
FIFOs with different sizes, connected together through multiplexers. The sizes of
the subsection FIFOs are selected such that each additional FIFO increases the
total size to be equal to the desired word size. FIFO 1 is smaller than FIFO 2 as
the eight most significant bits of the upper word are stored in the Shift Registers
Up or Down. These shift registers are required due to the circular shift pattern
of the round function. As we are using one bit input-output FIFOs, we cannot
access the intermediate bits. Therefore, the registers store the first eight bits in
flip-flops to enable parallel access. According to the security configuration input,
multiplexers select the required size of the FIFOs for both the upper and lower
words and route the incoming data to the correct subsection of FIFOs.

Each FIFO has a two input multiplexer at its input that bypasses the unused
FIFOs and routes the FIFO group input to the desired subsection FIFO. When
input ‘0’ is selected, the FIFO group input is connected to the subsection FIFO
and when input ‘1’ is selected, the next FIFOs output is connected. Figure 5
shows the required FIFO numbers for all security configurations.

For example, if the security configuration input is 1, the round function
use FIFO 1 0 and FIFO 2 0 while the rest of the FIFOs are grounded. The
output of FIFO 1 0 is connected to the input of FIFO 2 0 to perform the transfer
operation, and the data coming from SRU or SRD (depending on the round
number) is connected to the input of FIFO 1 0. When the security configuration
input changes to 2, the word size increases from 16 bits to 24 bits. Therefore,
one additional FIFO of size 8 is needed to store the upper and lower words. The
multiplexers at the inputs of FIFO 1 0 and FIFO 2 0 now select the output of
the FIFOs to their left (select input 1), and the FIFO group inputs are routed
to FIFO 1 1 and FIFO 2 1 (select input 0).

One important aspect of the bit serial implementation is the use of two sets of
shift registers named Shift Register Up (SRU) and Shift Register Down (SRD).
As the round function of SIMON requires three circular shift left operations
(1, 2 and 8) on the upper block, the current state bits required to compute the
next state bit do not go in a sequentially ordered manner. For example, when
the block size n is 32, in order to compute the bit #0 of the next state, we
need to use the bits #31, #30 and #24 of the upper block of the current state.
However, the new computed bit #0 should also be stored in the same memory
element of the upper block which causes a conflict. We need to use the bit #0 of
the current state to compute the bit #1 of the next state so we cannot overwrite
it yet. In order to solve this problem, we implemented the ping pong registers
SRU and SRD. In the even numbered rounds, the output of the LUT is written

42 E. Gulcan et al.

F
ig
.
4
.
S
IM

O
N

B
it

-s
er

ia
l
fl
ex

ib
le

ro
u
n
d

fu
n
ct

io
n

A Flexible and Compact Hardware Architecture 43

to the SRD and the output of the FIFO 1 is written to the SRU. Also for the
first eight bits, the input of the FIFO 1 is connected to the output of SRU and
for the rest it is connected to the output of SRD. In the odd numbered rounds,
we interchange the usage of SRU and SRD. By using this technique, we append
the least significant eight bits of the upper block to its most significant bits to
solve the circular shift problem and we can finish one round in n clock cycles.

3.3 Key Expansion

Unlike the round function, there are three different key expansion functions
depending on the block size and the key size. Figure 6 shows the flexible bit-
serial key expansion of SIMON. There are four groups of FIFOs that store the
round keys and similar to the round function, they are divided into subsection
FIFOs in order to achieve a flexible size. Since the logical operations for the key
word number m = 4 are different, we need two LUTs to perform the different key
expansion function operations. For m = 2 and m = 3 the hardware uses LUT2
for the logical operations, while for m = 4 it uses LUT1. A LUT based ROM
stores the round constants and according to the security configuration input, the
multiplexer selects the appropriate sequence.

Another difference of key generation is the dependence of the FIFO group
activity to the security configuration input. As there are three possible numbers
of key words (m = 2, 3, 4), not only the number of subsection FIFOs but also the
number of FIFO groups utilized should be flexible. The number of FIFO groups
required for each security configuration is equal to the number of key words m
of the selected configuration. For m = 2 the hardware only uses FIFO 0 and
FIFO 3. When m = 3 it also utilizes FIFO 2, and if m = 4 it enables all four
FIFO groups. Additionally, the number of subsection FIFOs changes with the
key size. Figure 5 gives the details of which FIFOs are used for all the security
configurations.

As it can be seen in Fig. 6, FIFO 3 and FIFO 1 have four (FIFO 3 FF)
and two (FIFO 1 FF) additional flip-flops at their outputs, respectively. The
necessity of these separate flip-flops come from the circular shift operations of
the key expansion function. We used the same technique to overcome the circular

Fig. 5. FIFO usage schedule

44 E. Gulcan et al.

F
ig
.
6
.
S
IM

O
N

B
it

-s
er

ia
l
fl
ex

ib
le

k
ey

ex
p
a
n
si

o
n

A Flexible and Compact Hardware Architecture 45

shift patterns of the round function, but this time we put the flip-flops at the
end of the FIFOs, as the key expansion function uses circular shift right, rather
than left. At the first four clock cycles of each round, the input for FIFO 3 is the
output of FIFO 3 FF. This way, the least significant four bits of the word are
appended into the most significant four bits. At the same time, the output of
LUT has to be connected to the same memory element which causes a conflict.
Therefore, the architecture uses another set of four flip-flops (LUT FF) that
store the output of the LUT for the first four clock cycles. After this period ends,
FIFO 3 can directly store the output of LUT since appending more bits is not
necessary. At the beginning of the second round, the content of FIFO 3 FF is not
fresh as it contains the four bits from the previous round. Therefore, FIFO 3 FF
will only be active in the first round. LUT FF takes its responsibility to append
the first four bits to FIFO 3 and also store the outputs of the LUT. Note that
in this discussion we do not mention the security configuration input because no
matter what the configuration is, FIFO 3 will use this scheduling, only the size
of the subsection FIFOs will change.

For m = 2, FIFO 3 group stores the upper key word and FIFO 0 group
stores the lower one. The transfer operation performs data transfer operation
between these two FIFOs. Since the LUT FF stores the first four bits of each
new computed key, during this period the input of FIFO 0 is LUT FF, and for
the rest of the clock cycles, it is FIFO 3. For m = 3, in addition to FIFO 0
and FIFO 3, the hardware also utilize FIFO 2 group to store the additional
key word. There are two concurrent transfer operations; the first from FIFO 3
to FIFO 2, and the second one from FIFO 2 to FIFO 0. LUT2 computes the
logical operations for both m = 2 and m = 3.

Fig. 7. SIMON modified key expansion function for m = 4

Executing a circular shift operation after a logical operation is problematic for
bit-serialized implementation. Therefore, the original form of the key expansion
for m = 4 is not suitable for a bit-serial implementation because it requires a
circular shift right operation after the XOR of Ki+3 and Ki+1. In order to solve
this problem, we modify the key expansion function for m = 4. Figure 7 shows
the required transformation. The gray regions highlight the original operations
which are replaced with the bold regions. Originally, the output of the XOR

46 E. Gulcan et al.

operation has two fanouts, one going directly to another XOR with Ki and the
second one to a circular shift operation. We moved the circular shift right by
1 operation from the output to the inputs of the XOR. The XOR from Ki+3

was originally circular shifted right by 3 and when we shift it one more after the
modification, it becomes a circular shift right by 4. Similar to the functionality
of FIFO 3 FF, FIFO 1 FF enables the circular access pattern of m = 4.

4 Implementation Results

The proposed hardware architecture is written in Verilog HDL. The Verilog HDL
RTL codes are synthesized to the Xilinx Spartan-3 s50 FPGA using a speed
grade of −5, and to the Spartan-6 lx4 FPGA using a speed grade −3. Then, the
resulting netlists are placed and routed to the same FPGAs using Planahead. In
order to minimize the slice count, we hand-pick our design elements and assign
their mapping into the slices.

4.1 Area

Comparison with Other Block Ciphers. Figure 8 shows hardware resource
utilization of our architecture and the previous work. We have compared our
work with the smallest version of AES [4], as well as alternative compact block
cipher implementations such as PRESENT [22], HIGHT [22], SEA [14], XTEA
[11], CLEFIA [3] and ICEBERG [20]. In order to have a fair comparison, we
map our hardware into the same FPGA (Spartan-3) with the previous work,
but we also show the occupied area on a more recent FPGA like Spartan-6. The
proposed hardware occupies 90 and 32 slices on a Spartan-3 and a Spartan-6
FPGA, respectively. Out of all these implementations, our hardware architecture
is the only one that provides the flexibility, whereas the rest of them use a fixed
key and block size. Yet, our flexible hardware architecture is still smaller than all
block ciphers. These results show that our bit-serial design methodology and our
back-end tool-optimization was able to achieve very compact hardware instances
while still enabling the flexibility.

Comparison with Other Flexible Architectures. There are several archi-
tectures in literature that implement the multiple configurations of AES. How-
ever, none of them where targeted for light-weight platforms. AES has three
configurations, AES-128, AES-192, and AES-256 all use 128-bit block size with
128, 192 and 256 bit key-size, respectively. McLoone et al. proposes an archi-
tecture that can perform all configurations using 4681 slices [15]. Li et al. later
optimizes this implementation and reduces the slice count to 3223 slices [13].

Comparison with Commercial Soft-Core Processors. One alternative
way to implement a flexible encryption engine on an FPGA is through a soft-
core processor. Xilinx provides Microblaze whereas Altera proposes NIOS as a
commercial soft-core processor. These processors execute software that enables

A Flexible and Compact Hardware Architecture 47

Fig. 8. Occupied slices and the resource utilization ratio of flexible SIMON vs. previous
work.

the capability of running all configurations. However, the minimum area-cost of
a NIOS and Microblaze is approximately 700 logic elements (logic element is 1
LUT + 1 register) and 600 slices, respectively. Picoblaze is an area-optimized
Xilinx processor that can bring the area-cost down to 96 slices and 1 BRAM,
which is still higher than our memory-free architecture.

4.2 Performance vs. Risk Trade-off

Figure 9 shows the trade-off between the performance and the risk. As we increase
the size of the key, we decrease the risk of the system. However, we also increase
the total time of computation because SIMON requires more rounds to complete,
and the bit-serial architecture requires more clock cycles to finish one round. For
example, if the system selects the security configuration 1, it takes 32 rounds to
complete the encryption of a 32-bit block and one round is processed in 16 clock
cycles. Therefore, the throughput of the encryption is 5.27 Mbps. On the other
hand, the system will be using a key-length of 64-bits which can be regarded as
a toy-setting since dedicated machines like COPACOBANA can break a block
cipher with 57-bits in less than a week [9]. If the system changes its settings to
the security configuration of 10, the key size will be 256-bits. Hence, the risk will
be much lower, but the throughput will decrease by a factor of 2.

48 E. Gulcan et al.

Fig. 9. Throughput (Mbps) vs. the security configuration of SIMON

Fig. 10. The cost of flexibility on area and throughput

4.3 Flexibility vs. Performance Trade-off

Flexibility comes at the expense of performance. Figure 10 illustrates the cost
of implementing the flexible architecture. We compare our flexible architecture
running at the security configuration of 8 to the results of Aysu et al., as they
both use 128-bit key size and block size [1]. Since the proposed flexible archi-
tecture has to support all available configurations, including the ones that has
larger keys and block sizes, the slice count is approximately three times of the
fixed implementation. Even though the required clock cycles to complete the
encryption is equal for the two architectures, a larger circuit causes longer inter-
connect delays and a lower maximum achievable frequency. Therefore, compared
to the fixed implementation, the throughput of the flexible architecture degrades
by 23 %.

A Flexible and Compact Hardware Architecture 49

5 Conclusion and Future Work

In this paper, we propose a flexible and compact architecture for the block cipher
SIMON. SIMON is a very promising alternative of AES for resource-constrained
platforms and we show that the bit-serialized flexible implementation of SIMON
is still smaller than other block ciphers. The proposed architecture can imple-
ment all configurations of SIMON and enables on-the-fly security configuration
management. Thus, we propose a light-weight, yet flexible and adaptive solution
for secure systems. We also show the trade-offs that a designer can utilize regard-
ing the flexibility, performance and risk. A further extension of this work may
be proposing a complete system that can use the proposed architecture in an
adaptive security protocol. Such a protocol provides different levels of security
to its users based on some pre-defined criteria or may scale-up/down the risk
on-the-fly, to meet the real-time performance requirements.

Acknowledgments. This project was supported in part by the National Science
Foundation grant no 1115839.

References

1. Aysu, A., Gulcan, E., Schaumont, P.: SIMON says: Break area records of block
ciphers on FPGAs. IEEE Embed. Syst. Lett. 6(2), 37–40 (2014)

2. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers (2013)

3. Chaves, R.: Compact CLEFIA implementation on FPGAs. In: Athanas, P., Pnev-
matikatos, D., Sklavos, N. (eds.) Embedded Systems Design with FPGAs, pp. 225–
243. Springer, New York (2013). http://dx.doi.org/10.1007/978-1-4614-1362-2 10

4. Chu, J., Benaissa, M.: Low area memory-free FPGA implementation of the AES
algorithm. In: 2012 22nd International Conference on Field Programmable Logic
and Applications (FPL), pp. 623–626, August 2012

5. Cook, D.L.: Elastic block ciphers. Ph.D. thesis, Columbia University (2006)
6. DARPA: SHIELD: supply chain hardware integrity for electronics defense pro-

posers day, February 2014
7. DARPA: Tiny, cheap, foolproof: Seeking new component to counter counterfeit

electronics, February 2014. http://www.darpa.mil/NewsEvents/Releases/2014/
02/24.aspx

8. FIPS PUB 197: AES: Advanced encryption standard. Federal Information Process-
ing Standards Publication (2001)

9. Guneysu, T., Kasper, T., Novotny, M., Paar, C., Rupp, A.: Cryptanalysis with
COPACOBANA. IEEE Trans. Comput. 57(11), 1498–1513 (2008)

10. ISO/IEC 29192–2:2012: Information technology - security techniques - lightweight
cryptography - part 2: Block ciphers (2012)

11. Kaps, J.-P.: Chai-Tea, Cryptographic Hardware Implementations of xTEA. In:
Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365,
pp. 363–375. Springer, Heidelberg (2008)

12. Kocher, P., Lee, R., McGraw, G., Raghunathan, A.: Security as a new dimension in
embedded system design. In: Proceedings of the 41st Annual Design Automation
Conference, DAC 2004, pp. 753–760. ACM, New York (2004). http://doi.acm.org/
10.1145/996566.996771, moderator-Ravi, Srivaths

http://dx.doi.org/10.1007/978-1-4614-1362-2_10
http://www.darpa.mil/NewsEvents/Releases/2014/02/24.aspx
http://www.darpa.mil/NewsEvents/Releases/2014/02/24.aspx
http://doi.acm.org/10.1145/996566.996771
http://doi.acm.org/10.1145/996566.996771

50 E. Gulcan et al.

13. Li, H.: Efficient and flexible architecture for AES. IEE Proc. Circuits, Devices Syst.
153(6), 533–538 (2006)

14. Mace, F., Standaert, F.X., Quisquater, J.J.: FPGA implementation(s) of a scalable
encryption algorithm. IEEE Trans. Very Large Scale Integration (VLSI) Systems
16(2), 212–216 (2008)

15. McLoone, M., McCanny, J.: Generic architecture and semiconductor intellectual
property cores for advanced encryption standard cryptography. IEE Proc. Comput.
Digital Tech. 150(4), 239–244 (2003)

16. NIST: Cryptographic Module Validation Program Management Manual, May
2014. http://csrc.nist.gov/groups/STM/cmvp/documents/CMVPMM.pdf

17. Portilla, J., Otero, A., de la Torre, E., Riesgo, T., Stecklina, O., Peter, S., Langen-
drfer, P.: Adaptable security in wireless sensor networks by using reconfigurable
ECC hardware coprocessors. In: IJDSN 2010 (2010). http://dblp.uni-trier.de/db/
journals/ijdsn/ijdsn2010.html#PortillaOTRSPL10

18. Schaumont, P., Aysu, A.: Three design dimensions of secure embed-
ded systems. In: Gierlichs, B., Guilley, S., Mukhopadhyay, D. (eds.)
SPACE 2013. LNCS, vol. 8204, pp. 1–20. Springer, Heidelberg (2013).
http://dx.doi.org/10.1007/978-3-642-41224-0 1

19. Sharma, K., Ghose, M.: Cross layer security framework for wireless sensor networks.
Int. J. Secur. Appl. 5(1), 35–52 (2011)

20. Standaert, F.X., Piret, G., Rouvroy, G., Quisquater, J.J.: FPGA implementations
of the ICEBERG block cipher. In: International Conference on Information Tech-
nology: Coding and Computing, ITCC 2005, vol. 1, pp. 556–561 (2005)

21. Wang, Y., Attebury, G., Ramamurthy, B.: A survey of security issues in wireless
sensor networks. IEEE Commun. Surv. Tutorials 8(2), 2–23 (2006)

22. Yalla, P., Kaps, J.: Lightweight cryptography for FPGAs. In: International Con-
ference on Reconfigurable Computing and FPGAs, ReConFig 2009, pp. 225–230
(2009)

23. Younis, M., Krajewski, N., Farrag, O.: Adaptive security provision for increased
energy efficiency in wireless sensor networks. In: IEEE 34th Conference on Local
Computer Networks, LCN 2009, pp. 999–1005, October 2009

http://csrc.nist.gov/groups/STM/cmvp/documents/CMVPMM.pdf
http://dblp.uni-trier.de/db/journals/ijdsn/ijdsn2010.html#PortillaOTRSPL10
http://dblp.uni-trier.de/db/journals/ijdsn/ijdsn2010.html#PortillaOTRSPL10
http://dx.doi.org/10.1007/978-3-642-41224-0_1

AES Smaller Than S-Box

Minimalism in Software Design on Low End
Microcontrollers

Mitsuru Matsui and Yumiko Murakami(B)

Information Technology R&D Center, Mitsubishi Electric Corporation,
Chiyoda-ku, Japan

Matsui.Mitsuru@ab.MitsubishiElectric.co.jp,

Murakami.Yumiko@cw.MitsubishiElectric.co.jp

Abstract. This paper explores state-of-the-art software implementa-
tions of “size-minimum” AES on low-end microcontrollers. In embedded
environments, reducing memory size often has priority over achieving
faster speed. Some recent lightweight block ciphers can be implemented
in 200 to 300 ROM bytes, while the smallest software implementation of
AES including key scheduling, encryption and decryption is, as far as we
know, around 1 K ROM bytes.

The first purpose of this study is to see how small AES could be. To do
this, we aggressively minimize code and data size of AES by introducing a
ring multiplication for computing the S-box without any lookup table, a
compact algorithm for embedding MixColumns into InvMixColumns,
and a tiny loop for processing AddRoundKey, ShiftRows and SubBytes
at the same time. As a result, we achieve a 192-byte AES encryption-
only code and a 326-byte AES encryption-decryption code on the RL78
microcontroller. We also show that an AES-GCM core can be imple-
mented in 429 bytes on the same microcontroller. These codes include
on-the-fly key scheduling to minimize RAM size and their running time
is independent of secret information, i.e. timing-attack resistant.

The second purpose of this research is to see what processor hard-
ware architecture is suitable for implementing lightweight ciphers from
a minimalist point of view. A simple-looking algorithm often results in
very different size and speed figures on different low-end microcontrollers
in practice, even if their instruction sets consist of similar primitive oper-
ations. We show concrete code examples implemented on four low-end
microcontrollers, RL78, ATtiny, Cortex-M0 and MSP430 to demonstrate
that slight differences of processor hardware, such as carry flag treatment
and branch timing, significantly affect size and speed of AES.

1 Introduction

Lightweight is one of the recent keywords in cryptography, with increasing mar-
ket requirements of embedded security as a background. A lot of new lightweight
symmetric ciphers and hash functions have been proposed, aiming at achieving
low resource occupation and at the same time maintaining high level security.
c© Springer International Publishing Switzerland 2015
T. Eisenbarth and E. Öztürk (Eds.): LightSec 2014, LNCS 8898, pp. 51–66, 2015.
DOI: 10.1007/978-3-319-16363-5 4

52 M. Matsui and Y. Murakami

Lightweight cryptography is in many cases studied in the context of hardware
lightweight such as low energy consumption and small circuit area, but software
lightweight is also getting paid attention. Some recent researches concentrate on
extensive software implementation of lightweight ciphers on an embedded micro-
controller [1–3].

In embedded environments, reducing memory size often has priority over
achieving faster speed and it has been reported that some lightweight block
ciphers can be implemented on an embedded microcontroller in extremely small
200 to 300 ROM bytes [3–5]. This paper goes deep into this direction for AES.
As far as we know, the smallest software AES with 128-bit key, including key
scheduling, encryption and decryption, still requires 1 K ROM bytes [3]. In fact,
to create an AES code within 1. 5K ROM bytes, loop rolling is necessary inside
its round function, which leads to heavy performance penalty. This explains why
most of known AES implementations require at least 1.5 K ROM bytes.

Our aim is to see how small AES could be, and to achieve this goal, we
aggressively try to minimize code and data size of AES. Our code does not use
any lookup tables for the S-box. It is instead computed with a Galois field inver-
sion and a matrix multiplication as in its original definition. While the matrix
multiplication is not a Galois field operation, we point out that a Galois field
multiplication included in the Galois field inversion is “essentially the same” as
the matrix multiplication since the former is a ring operation on GF (2)[x]/(x8+
x4 + x3 + x + 1) and the latter is that on GF (2)[x]/(x8 + 1). This observation
leads to a new compact logical S-box code. Note that the fact that the matrix
is circular is essential.

We next show that MixColumns can be fully embedded in InvMixColumns
not only in hardware [6] but in software in a very simple and compact manner. In
fact, InvMixColumns also works as MixColumns by just adding one conditional
jump indicating encryption or decryption into InvMixColumns. This greatly con-
tributes to code reduction of AES containing both encryption and decryption.
In addition, it is demonstrated that AddRoundKey, ShiftRows and SubBytes can
be merged into a tiny loop of around 20 bytes, except the S-box logic.

As a result, we achieve a 192-byte AES encryption-only code and a 326-byte
AES encryption-decryption code on the RL78 microcontroller. We also show that
an AES-GCM core can be implemented in 429 bytes on RL78. These algorithms
are implemented on the ATtiny microcontroller as well, and it is seen that our
resultant codes are a bit larger but much faster than those on RL78. All of these
codes include on-the-fly key scheduling to minimize RAM size, and their running
time is independent of secret information such as key and text.

The second purpose of this research is to see what processor hardware is
suitable for implementing lightweight ciphers from a minimalist point of view.
It is rather common that a code based on the same algorithm exhibits very
different size and speed figures on different low-end microcontrollers, even if
their instruction sets consist of similar primitive operations. Many types of low-
end microcontrollers have been used in real-world embedded applications, but
their comparative research from a cryptographic point of view seems missing.

AES Smaller Than S-Box 53

We show concrete examples extracted from our AES codes and implemented
on four low-end microcontrollers, RL78, ATtiny, Cortex-M0 and MSP430, and
demonstrate that slight-looking differences of hardware, in particular carry flag
treatment or branch timing, significantly affect size and speed of a target code.
We believe that this information is beneficial to not only programmers but also
designers of a cryptographic algorithm.

2 How to Minimize AES in Software

In this section we show several techniques to minimize code size of AES. For the
specification of AES and the notations, see [7]. Throughout this section, we use
C language notations in describing implementation algorithms.

2.1 SubBytes and InvSubBytes

We implement S-box S(x) and the inverse S-box IS(x) as their original formula
shown below, using an inversion over GF (28), a matrix multiplication on GF (2)8

and an xor of a constant value without any lookup tables.

S(x) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·x−1 +63, IS(x) = (x−1 +63) ·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The inversion is an operation on GF (2)[X]/(X8 +X4 +X3 +X +1) and the
matrix multiplication can be regarded as an operation on GF (2)[X]/(X8 + 1)
since it is circular. In other words, a multiplication routine on GF (28) can also
compute a matrix multiplication on GF (2)8 by just replacing the polynomial.

In general, a (random) matrix calculation is expensive in software, but in our
case, the matrix multiplication above becomes almost free by sharing it to the
Galois multiplication. This observation leads to the following simple algorithm
for computing S(x) and IS(x) as follows:

Input x, Output SubBytes(x)

01: x = INV8(x) : Galois inversion

02: x = MUL8(x,0x1f,0x101,0x63) ; matrix multiplication

03: return x ; (0x101 denotes X^8+1)

Input x, Output InvSubBytes(x)

04: x = MUL8(x,0x4a,0x101,0x05) ; matrix multiplication

05: x = INV8(x) ; Galois inversion

06: return x ; (0x05 = 0x63 * 0x4a)

54 M. Matsui and Y. Murakami

Input x, Output INV8(x) ; x^254 using a binary method

07: c = 0, y = 1

08: y = MUL8(y,x,0x11b,0) ; Galois multiplication

09: y = MUL8(y,y,0x11b,0) ; Galois multiplication

10: c = c+1 ; (0x11b denotes X^8+X^4*X^3+X+1)

11: if(c != 7) goto 08

12: return y

Input x,y,f,v, Output MUL8(x,y,f,v) ; v=v+(x*y) on GF(2)[X]/(f)

13: c = 0

14: if((x&1) == 1) v = v^y

15: x = x>>1

16: y = y<<1

17: if(y > 255) y = y^f

18: c = c+1

19: if(c != 8) goto 14

20: return v

2.2 AddRoundKey+ShiftRows+SubBytes

AddRoundKey, ShiftRows and SubBytes can be combined into in a very simple
loop by noting that ShiftRows moves its i-th input byte to the (i∗13 mod 16)-th
output byte (i = 0, 1, 2, .., 15). It is easy to see that InvShiftRows, InvSubBytes
and AddRoundKey for decryption can be written in a similar way:

Input x[0]..x[15],k[0]..k[15]

Output y[0]..y[15]=(AddRoundKey+ShiftRows+SubBytes)(x,k)

22: c = 0, d = 0

23: a = x[c]^k[c] ; AddRoundKey

24: y[d] = SubBytes(a) ; SubBytes (S-box)

25: d = d+13 mod 16 ; ShiftRows

26: c = c+1

27: if(c != 8) goto 23 ; equivalently, if(d == 0) goto 23

28: return y

2.3 Sharing MixColumns with InvMixColumns

Another trick to minimize AES is to share MixColumns with InvMixColumns
using the following equation, where the middle/left matrix is the one defined
in MixColumns/InvMixColumns, respectively. This decomposition was implicitly
used in [6] in the hardware context. Note that all entries in the middle matrix
have active bits at bit 0 and/or 1, and all entries in the right matrix have active
bits at bit 2 and/or 3.

AES Smaller Than S-Box 55

⎛

⎜⎜⎝

0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞

⎟⎟⎠ +

⎛

⎜⎜⎝

0c 08 0c 08
08 0c 08 0c
0c 08 0c 08
08 0c 08 0c

⎞

⎟⎟⎠

Using this fact, we can embed MixColumns into InvMixColumns in the follow-
ing simple way, where only one additional instruction - a conditional branch -
is necessary for detecting encryption/decryption. This algorithm consists of a
double loop to minimize its code size, where the inner loop (lines 32 to 44) com-
putes only one vector of the entire four vectors contained in the matrices. We
are again using the fact that they are circular.

Input x[0]..x[15]

Output y[0]..y[15]=MixColumns(x) or InvMixColumns(x)

29: c0 = 0 ; matrix number

30: a0 = a1 = a2 = a3 = 0

31: c1 = 0 ; vector number

32: t = x[c0*4+c1]

33: a0 = a0^t, a1 = a1^t, a2 = a2^t ; 0th bit (ENC)

34: t = t*2 on GF(256)

35: if ENCRYPTION, then go to 41

36: a2 = a2^t, a3 = a3^t ; 1st bit (DEC)

37: t = t*2 on GF(256)

38: a1 = a1^t, a3 = a3^t ; 2nd bit (DEC)

39: t = t*2 on GF(256)

40: a0 = a0^t, a1 = a1^t ; 3rd bit (DEC)

41: a2 = a2^t, a3 = a3^t ; 1st/3rd bit (ENC/DEC)

42: t = a0, a0 = a1, a2 = a3, a3 = t ; rotate shift

43: c1 = c1+1

44: if(c1 != 4) goto 32

45: y[c0*4] = a0, y[c0*4+1] = a1, y[c0*4+2] = a2, y[c0*4+3] = a3

46: c0 = c0+1

47: if(c0 != 4) goto 30

48: return y

Note that [8] reports another decomposition of the InvMixColumns matrix as
a multiplication of two matrices, not an addition, one of which is the MixColumns
matrix. Implementing this form in software leads to a bigger code than the above
because of the matrix multiplication.

3 Implementation on RL78 and ATtiny

In this section, we discuss our implementations of AES on two low-end micro-
controllers, RL78 [9] and ATtiny [10]. RL78 is a typical accumulator-based
CISC processor and ATtiny is a typical register-symmetrical RISC processor.

56 M. Matsui and Y. Murakami

We believe that looking at software implementation on processors with utterly
different architecture is of its own interest.

On each processor, we implement three instances: AES encryption-only
(AES-E), AES encryption/decryption (AES-ED) and AES Galois counter mode
(AES-GCM) [11], based on the algorithms shown in the previous section. Our top
priority is to minimize ROM size, and we also try to reduce RAM usage, which is
equally important in practice. All codes presented in this section include on-the-fly
key scheduling.

3.1 RL78 and ATtiny Microcontrollers

In this subsection we briefly introduce the two microcontrollers, RL78 and ATtiny.
More detailed architectural comparison with actual code examples will be dis-
cussed in next section.

RL78 has eight 8-bit general-purpose registers a,x,b,c,d,e,h,l, of which
many instructions accept only a or ax as a destination. A limited number of
instructions have a 16-bit form with register pairs ax,bc,de,hl. Unfortunately
an xor instruction, frequently used in block ciphers, does not have a 16-bit
form [12].

We hence often suffer from “register starvation” on this microcontroller,
which requires extra instructions and memory to save/restore data on an accu-
mulator, but a big advantage of RL78 is that code size tends to be short due
to its support of read-modify instructions. For instance, ’xor a,[hl]’, – read
from an address pointed by hl and xor to a –, is a one-cycle instruction with
one-byte length. This significantly contributes to code size reduction.

ATtiny has thirty-two 8-bit general-purpose registers r0 to r31. Most instruc-
tions have “register symmetry”, i.e. accept any register as a destination. Some
instructions dealing with immediate data accept only r16 to r31, but this sel-
dom causes trouble to a minimalist. Three register pairs (r26,r27), (r28,r29),
and (r30,r31) are used as address registers X, Y, and Z, respectively [13].

Almost all instructions of ATtiny are two-byte long and no read-modify
instructions are supported. Hence a code size of this RISC microcontroller tends
to be bigger than that of CISC RL78, but in general creating a faster code is pos-
sible due to less memory accesses and faster jump instructions. The latter is very
important because a minimum-size code often consists of many small loops.

Our coding and performance measurement is done on RL78-G12 (ROM 8 K
bytes and RAM 768 bytes) and ATtiny85 (ROM 8K bytes and RAM 512 bytes),
respectively.

3.2 Interface and Metrics

Defining a software interface clearly is particularly important for discussing a
minimal code. For instance, some implementations on ATtiny allow programmers
to destroy all registers without restoration [1,2]. Other implementations [14,15]
follow the function call conventions described by Atmel [16]. For the latter case,
a subroutine code that destroys all registers has to save/restore 18 registers at

AES Smaller Than S-Box 57

the entry and exit of the code, which requires additional 72-byte ROM and
36-byte RAM by pushing/popping these registers. Obviously this overhead is
not ignorable in our context.

While our goal is to obtain a size minimum code, we also keep a practical and
usable code in mind. We hence adopt the latter approach; that is, we create a
function callable from a high-level language and count all resources occupied by
a code in referring to ROM/RAM size, as discussed in [3]. The following is our
coding and measurement policy in this paper, balancing minimalism, usability
and security.

1. Code is described as a subroutine callable from C-language.
2. Code processes one-block data.
3. Code should be relocatable.
4. Execution time is independent of secret information (text and key).
5. ROM size includes instruction code and constant data.
6. RAM size includes plaintext/ciphertext, key, stack, and temporary memory.
7. Plaintext area is shared with ciphertext area.
8. Key area can be destroyed but is recovered at the end of the code.

RAM memory for locating parameters such as text, key and other necessary
information, is allocated in consecutive area within a callee code and its address
is passed to a caller program as an external variable.

We should clarify policy 2 in the case of AES-GCM. In AES-GCM, we intro-
duce a switch, which we call MODE, that indicates which part of AES-GCM
should be carried out, as shown in Fig. 1. Our code reads MODE included in the
parameters and executes an appropriate component of the AES-GCM algorithm.

Fig. 1. Our implementation blocks of AES-GCM

58 M. Matsui and Y. Murakami

Also, strictly speaking we apply policy 3 to our codes of ATtiny in a slightly
relaxed way. It is assumed that the RAM memory (excluding stack) resides
within the same 256-byte block without crossing a 256-byte aligned boundary.
This is because otherwise updating address registers becomes very costly.

3.3 Implementation Results

Table 1 shows our implementation results of AES-E, AES-ED and AES-GCM
on RL78 and ATtiny. We followed the coding policy described in the previous
subsection and aimed at a minimum memory size. In this table, (E) and (D)
denote speed in encryption and decryption, respectively, and (n) in AES-GCM
means MODE shown in Fig. 1.

Table 1. Size minimum implementation of AES-E, AES-ED and AES-GCM

Algorithm Controller ROM RAM Speed (cycles/block)

AES-E RL78 192 88 369901

AES-E ATtiny 214 78 262061

AES-ED RL78 326 103 374016 (E), 449408 (D)

AES-ED ATtiny 356 78 264302 (E), 318800 (D)

AES-GCM RL78 429 182 741088 (0), 40620 (1), 412608 (2,3), 40937 (4)

AES-GCM ATtiny 522 165 525882 (0), 30536 (1), 293506 (2,3), 30876 (4)

We achieved a 192-byte AES encryption code, including on-the-fly key sche-
duling, on the RL78 microcontroller. It is again noted that it runs in a con-
stant time. As far as we know, this is the smallest AES ever made in software.
Of course, its speed is very slow, but still makes sense in non timing-critical
applications since it runs in 18.5 ms/block in 20 MHz clock.

For comparison with ATtiny, RL78 is smaller but slower than ATtiny, as
expected. More specifically ATtiny is 30 % faster, but 10 % larger for AES-E and
AES-ED and 20 % larger for AES-GCM. There are two reasons why ATtiny is
much larger in AES-GCM. One is that RL78 has a 16-bit addition instruction and
a multiple-bit shift instruction, which are missing in ATtiny. These instructions
are efficiently used for counting and accumulating text length in AES-GCM.

Another and more serious reason of this is that ATtiny only allows a 6-bit
displacement in register indirect addressing. This means that an address register
must be updated every time when it points a new address that is distant from a
current address by 64 or more bytes. This restriction does not cause a problem
in AES-E and AES-ED since their RAM size is close to 64 bytes, but that of
AES-GCM is much larger, which results in visible penalty.

We will discuss more detailed software implementation issues depending on
processor hardware architecture in the next section. Here we only illustrate code
examples of AddRoundKey+ShiftRows+SubBytes to show how a small loop can

AES Smaller Than S-Box 59

be implemented on these microcontrollers in Table 2, where we use the same
assembler syntax for RL78 and ATtiny for readers’ convenience. It is seen in
AddRoundKey(AR) that a missing read-modify instruction on ATtiny is com-
pensated by its post increment addressing mode. It is also noted that ATtiny
requires more instructions to modify/restore the destination address register
at the end of SubBytes(SB), and instead RL78 needs more instructions to do
ShiftRows(SR) due to its accumulator-based architecture; i.e. no instruction
exists such as ’sub c,3’ on RL78.

Table 2. AddRoundKey+ShiftRows+SubBytes on RL78 and ATtiny

3.4 Variations

It is common in a minimum-size approach to see that a slight modification
of a source code significantly affects its performance. To see this, we unroll
a performance critical loop and measure the size and speed of resultant codes.
The performance bottleneck of our AES codes is of course computation of S-box.
In particular a multiplication on GF (2)[X]/(f), corresponding to MUL8 shown
in the implementation algorithm of SubBytes and InvSubBytes, is the critical
routine. It consists of a loop with an eight-time iteration (a code example of
this routine will be shown in the next section). Unrolling this performance-
critical loop improves speed at the cost of a small increase in ROM size as
illustrated in Table 3. This table shows that our 520-byte code of AES-GCM on
RL78 outperforms the 522-byte code on ATtiny. It should be noted that if we
see performance of these microcontrollers with the same ROM size, the lead of
ATtiny is not so big.

Table 4 shows another variation of our codes where the S-box and its inversion
routines are replaced with normal lookup tables, including previous smallest
implementations [3]. We think that ours are still a minimum record of AES,
while not a minimalist approach. In the implementation on ATtiny, we put these
lookup tables on a 256-byte address boundary for faster memory access, as most
implementations of AES on an AVR processor do [1,17,18].

60 M. Matsui and Y. Murakami

Table 3. Loop unrolled codes of AES-E, AES-ED and AES-GCM on RL78

Algorithm Controller #iterations ROM RAM Speed (cycles/blocks)

AES-E RL78 4 206 88 309901

AES-E RL78 2 234 88 279901

AES-E RL78 1 283 88 246901

AES-ED RL78 4 340 103 314016 (E), 377408 (D)

AES-ED RL78 2 368 103 284016 (E), 341408 (D)

AES-ED RL78 1 417 103 251008 (E), 301792 (D)

AES-GCM RL78 4 442 182 621088 (0), 352608 (2,3)

AES-GCM RL78 2 471 182 561088 (0), 322592 (2,3)

AES-GCM RL78 1 520 182 495104 (0), 289600 (2,3)

Table 4. Lookup table implementation of AES-E, AES-ED and AES-GCM

Algorithm Controller ROM RAM Speed (cycles/block)

AES-E [3] RL78 486 78 7288

AES-E RL78 399 78 8704

AES-E ATtiny 428 82 8870

AES-ED [3] RL78 970 84 7743 (E), 10362 (D)

AES-ED RL78 776 85 9847 (E), 13634 (D)

AES-ED ATtiny 814 82 9624 (E), 13869 (D)

AES-GCM RL78 642 172 19695 (0), 40640 (1), 51904 (2,3), 40928 (4)

AES-GCM ATtiny 730 165 19486 (0), 30536 (1), 40308 (2,3), 30876 (4)

In this implementation, ATtiny is 5–10 % larger than RL78 but its speed is
comparable with RL78 for AES-E and AES-ED because the performance gain in
S-box of ATtiny, which will be demonstrated in the next section, is lost. On the
other hand, ATtiny is much faster in all modes of AES-GCM except MODE=0.
This is because GHASH of AES-GCM, more specifically a multiplication on
GF (2128) runs much faster on ATtiny than on RL78. This will be also discussed
in the next section.

Lastly, we mention that it is possible to further reduce the code size of our
192-byte program on RL78 by relaxing (or ignoring) the coding policies shown
in this section. This is not recommended in general, but might make sense in
certain situations. The first possibility is to allow to destroy key data with-
out restoration. Our code copies key to temporary area before starting actual
encryption, and hence removing this part reduces code size by 10 bytes. Another
possibility is to remove timing-attack protection. In the MUL8 routine, which is
in the bottom of the S-box, we can quit the loop as soon as the shifted multiplier
becomes zero, without iterating eight times. The resultant code no longer runs
in constant time, but reduces register pressure and saves 4 bytes. Ignoring the

AES Smaller Than S-Box 61

function call convention gains another 2 bytes. Also without violating any pol-
icy, x254 can be computed by simply multiplying x 253 times instead of using
a binary method, which reduces further 4 bytes. We did not adopt this because
it makes the code too slow. Applying all these reduces its ROM size down to
172 bytes. It will be a less practical code, though.

4 Minimalism from Hardware Viewpoints

There are various types of microcontrollers currently available in the market,
of which low-end ones usually have a similar instruction set consisting of only
basic operations such as read/write, arithmetic, logical and branch. However, in
practice, minor-looking differences of these instructions often lead to a significant
impact on size and speed. This section takes Cortex-M0 [19] and MSP430 [20],
in addition to RL78 and ATtiny, as target microcontrollers and demonstrates
this fact using concrete code examples for AES. An architectural comparison of
these microcontrollers is summarized in the appendix.

Our first example is MUL8, a multiplication on GF (2)[X]/(f) used in S-box.
The following examples illustrate code minimum implementation of MUL8 on
these four processors. (1) corresponds to lines 15 and 16, and (2) corresponds
to lines 17 and 18 in the sequence shown in Sect. 2.1 (Tables 5 and 6).

Table 5. MUL8 on RL78 (left) and ATtiny (right)

The simplest code is on ATtiny. On RL78, an overhead for creating backup
of the accumulator is unavoidable. On the other hand RL78’s sknc instruc-
tion (replace next instruction with nop if a condition is met) works fine as
a faster alternative of jnc. A conditional taken/not-taken jump of Cortex-M0
takes three/one cycles, respectively. This means that a redundant nop instruc-
tion must be inserted for constant time execution. Also since all registers of

62 M. Matsui and Y. Murakami

Table 6. MUL8 on Cortex-M0 (left) and MSP430 (right)

Cortex-M0 are 32-bit long only, an extra instruction is required to create the
carry flag. Interestingly, a conditional jump of MSP430 always takes two cycles,
and hence a special care is need to create a timing-attack protected code. To do
this we insert a dummy conditional jump instruction with an opposite logic for
each branch, which causes a heavy size and performance penalty.

The next example is a multiplication on GF (2128) that appears in GHASH of
AES-GCM. The following codes show part of one iteration of the multiplication.
More specifically, the code consists of two functions: (1) If carry (or the highest
bit of a register) is active, then A = A xor B, (2) Rotate right shift B by one
bit. A and B are 128-bit data pointed by an address register.

The most straightforward code is RL78. Note that in the first loop the carry
flag must be checked every time to make the code run in constant time. Since
both loops handle the carry flag independently, it is not trivial to combine them
into a single loop. However for ATtiny, thanks to its sbrc instruction (replace
next instruction with nop if a bit on a register is non active), this can be done
in a very simple way (Table 7).

An obstacle of Cortex-M0 and MSP430 is that they do not have a decrement
instruction that does not touch the carry flag. In general carry-free dec/inc
instructions are frequently used for arithmetic of long integers. Moreover Cortex-
M0 does not have a rotate-shift-with-carry instruction. Hence we have to create
a rather tricky code to simulate it. This causes a significant penalty. MSP430
again suffers a speed overhead for timing adjustment, while the code is very
simply described due to its abundant addressing mode.

AES Smaller Than S-Box 63

Table 7. Multiplication on GF (2128) on RL78 (left) and ATtiny (right)

Table 8. Multiplication on GF (2128) on Cortex-M0 (left) and MSP430 (right)

64 M. Matsui and Y. Murakami

For Cortex-M0 and MSP430, we can write a much faster code by fully using
their 32-bit/16-bit wide registers. However this results in an increase in code size
because we need extra byte-swap instructions due to little-endianness of these
microcontrollers (Table 8).

5 Concluding Remarks

In this paper we explored minimalism in software implementation of AES on
various modern low-end microcontrollers. As far as the authors know, this is
the first extensive analysis of embedded software coding of symmetric primitives
toward memory size reduction with comparative viewpoints of processor hard-
ware. As concluding remarks, we mention some lessons we learned which could
be beneficial to programmers and designers of symmetric primitives for low-end
microcontrollers.

Use left shifts. Availability and efficiency of shift instructions greatly depends
on processor hardware. Some do not support shift with carry instructions.
Then adc (addition with carry) instruction can be an alternative of a left
rotation with carry.

Be aware of locality of RAM access. ATtiny accepts only 6-bit displacement
in its register indirect addressing, which is often restrictive. An order of
parameters such as text, key, temporary subkey etc., can affect code size
and performance.

Why not little endian. Most modern processors have a little endian hardware,
but most modern symmetric encryption algorithms are suitable to a big
endian architecture. RL78, ATtiny, Cortex-M0, MSP430 are all little endian.

Matrix should be circular. A circular matrix significantly contributes to
code reduction. First of all, a matrix multiplication with a circular matrix
can be described using a vector-wise loop, and also can be regarded as a
multiplication on a ring, as shown in this paper.

Appendix: Low End Microcontrollers Comparison Chart

This table is not intended to be exhaustive, but to illustrate typical cases in
implementing lightweight symmetric ciphers for readers’ convenience.

AES Smaller Than S-Box 65

RL78 ATtiny CortexM0 MSP430

Hardware Registers

- Register Size 8,16 8 32 8,16

- Number of General Registers 8 32 13 12

Addressing Modes

- Number of Operands 2 2 2,3 2

- Read-Modify(-Write) Instructions R-M No No R-M-W

- Post-Increment Addressing No Yes No Yes

Code Length (bytes)

- Operation equivalent to xor reg,[mem] 1-3 4 4 2,4

- Conditional Short Jump 2 2 2 2

- Subroutine Call 3 2 4 4

Instruction Latency (cycles)

- Read from Memory (RAM/ROM) 1/4 2/3 2 2

- Operation equivalent to xor reg,[mem] 1 2 2 2-3

- Conditional Short Jump (taken/not-taken) 4/2 2/1 3/1 2/2

- Call+Return 9 7 7 7

Supported Instructions

- Shift with multiple counts Yes No Yes No

- Rotate Shift without carry Yes No Yes No

- Rotate Shift with carry Yes Yes No Yes

- Carry preserving increment/decrement Yes Yes No No

- Conditional Skip Yes Yes No No

References

1. Eisenbarth, T., et al.: Compact implementation and performance evaluation
of block ciphers in ATtiny devices. In: Mitrokotsa, A., Vaudenay, S. (eds.)
AFRICACRYPT 2012. LNCS, vol. 7374, pp. 172–187. Springer, Heidelberg (2012)

2. Balasch, J., et al.: Compact implementation and performance evaluation of hash
functions in ATtiny devices. In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771,
pp. 158–172. Springer, Heidelberg (2013). http://eprint.iacr.org/2012/507.pdf

3. Matsui, M., Murakami, Y.: Minimalism of software implementation-extensive
performance analysis of symmetric primitives on the RL78 microcontroller.
In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 393–409. Springer, Heidelberg
(2014)

4. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK Families of Lightweight Block Ciphers. http://eprint.
iacr.org/2013/404.pdf

5. Papagiannopoulos, K., Verstegen, A.: Speed and size-optimized implementations of
the PRESENT cipher for tiny AVR devices. In: Hutter, M., Schmidt, J.-M. (eds.)
RFIDsec 2013. LNCS, vol. 8262, pp. 161–175. Springer, Heidelberg (2013)

http://eprint.iacr.org/2012/507.pdf
http://eprint.iacr.org/2013/404.pdf
http://eprint.iacr.org/2013/404.pdf

66 M. Matsui and Y. Murakami

6. Fischer, V., Drutarovsky, M., Chodowiec, P., Gramain, F.: InvMixColumn decom-
position and multilevel resource sharing in AES implementations. IEEE Trans.
VLSI Syst. 13(8), 989–992 (2005)

7. Advanced Encryption Standard (AES), Federal Information Processing Standards
Publication 197, NIST (2001)

8. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2002)
9. Renesas Electronics, RL78 Family. http://am.renesas.com/products/mpumcu/

rl78/index.jsp?campaign=gn prod
10. Atmel, tinyAVR Microcontrollers. http://www.atmel.com/products/micro

controllers/avr/tinyavr.aspx
11. Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode

(GCM) and GMAC, Special Publication 800–38D, NIST (2007)
12. RL78 Family, User’s Manual. http://documentation.renesas.com/doc/products/

mpumcu/doc/rl78/r01us0015ej0210 rl78.pdf
13. 8-bit AVR Instruction Set http://www.atmel.com/Images/doc0856.pdf
14. AVR-Crypto-Lib Wiki. http://www.das-labor.org/wiki/AVR-Crypto-Lib/en
15. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,

Schläffer, M., Thomsen, S.S.: Grøstl - a SHA-3 candidate. http://www.groestl.
info/

16. Mixing Assembly and C with AVRGCC. http://www.atmel.com/Images/doc
42055.pdf

17. Bos, J.W., Osvik, D.A., Stefan, D.: Fast Implementations of AES on Various Plat-
forms. http://eprint.iacr.org/2009/501.pdf

18. Poettering, B.: Rijndael Furious. http://perso.uclouvain.be/fstandae/lightweight
ciphers/source/AES furious.asm

19. ARM Cortex-M0 core MCUs. http://www.nxp.com/products/microcontrollers/
cortex m0 m0/

20. Overview for MSP430 Ultra-Low Power 16-bit MCUs. http://www.ti.com/lsds/ti/
microcontroller/16-bit msp430/overview.page

http://am.renesas.com/products/mpumcu/rl78/index.jsp?campaign=gn_prod
http://am.renesas.com/products/mpumcu/rl78/index.jsp?campaign=gn_prod
http://www.atmel.com/products/microcontrollers/avr/tinyavr.aspx
http://www.atmel.com/products/microcontrollers/avr/tinyavr.aspx
http://documentation.renesas.com/doc/products/mpumcu/doc/rl78/r01us0015ej0210_rl78.pdf
http://documentation.renesas.com/doc/products/mpumcu/doc/rl78/r01us0015ej0210_rl78.pdf
http://www.atmel.com/Images/doc0856.pdf
http://www.das-labor.org/wiki/AVR-Crypto-Lib/en
http://www.groestl.info/
http://www.groestl.info/
http://www.atmel.com/Images/doc42055.pdf
http://www.atmel.com/Images/doc42055.pdf
http://eprint.iacr.org/2009/501.pdf
http://perso.uclouvain.be/fstandae/lightweight_ciphers/source/AES_furious.asm
http://perso.uclouvain.be/fstandae/lightweight_ciphers/source/AES_furious.asm
http://www.nxp.com/products/microcontrollers/cortex_m0_m0/
http://www.nxp.com/products/microcontrollers/cortex_m0_m0/
http://www.ti.com/lsds/ti/microcontroller/16-bit_msp430/overview.page
http://www.ti.com/lsds/ti/microcontroller/16-bit_msp430/overview.page

Attacks

Differential Factors: Improved Attacks
on SERPENT

Cihangir Tezcan1,2(B) and Ferruh Özbudak1

1 Department of Mathematics and Institute of Applied Mathematics,
Middle East Technical University, Ankara, Turkey

2 Institute of Informatics, CyDeS Cyber Defence and Security Lab, Middle East
Technical University, Ankara, Turkey

cihangir@metu.edu.tr

Abstract. A differential attack tries to capture the round keys corre-
sponding to the S-boxes activated by a differential. In this work, we show
that for a fixed output difference of an S-box, it may not be possible to
distinguish the guessed keys that have a specific difference. We introduce
these differences as differential factors. Existence of differential factors
can reduce the time complexity of differential attacks and as an exam-
ple we show that the 10, 11, and 12-round differential-linear attacks of
Dunkelman et al. on Serpent can actually be performed with time com-
plexities reduced by a factor of 4, 4, and 8, respectively.

Keywords: S-box · Differential factor · Serpent · Differential-linear
attack

1 Introduction

Confusion layer of cryptographic algorithms mostly consists of substitution boxes
(S-boxes) and in order to provide better security against known attacks, S-boxes
are selected depending on their cryptographic properties: Low non-linear and
differential uniformity [30] provide resistance against linear and differential crypt-
analysis, respectively; high algebraic degree and branch number provides resis-
tance against algebraic [14] and cube [16] attacks; lack of undisturbed bits [37]
provides resistance against truncated [20], impossible [2], and improbable [36] dif-
ferential cryptanalysis. Moreover, recently it was shown in [9] that additive shares
can be used in threshold implementations to provide resistance against side-
channel attacks like differential power analysis [21] and the number of shares
affects the performance.

In this work, we show that a fixed S-box output difference μ may remain
invariant when the possible input pairs are XORed with some λ. We define such
λ as a differential factor for the output difference μ and we show that such a

C. Tezcan—The work of the first author was supported by The Scientific and Tech-
nological Research Council of Turkey (TÜBİTAK) under the grant 112E101 titled
“Improbable Differential Cryptanalysis of Block Ciphers”.

c© Springer International Publishing Switzerland 2015
T. Eisenbarth and E. Öztürk (Eds.): LightSec 2014, LNCS 8898, pp. 69–84, 2015.
DOI: 10.1007/978-3-319-16363-5 5

70 C. Tezcan and F. Özbudak

property of an S-box can significantly reduce the attacked key space in a differen-
tial attack which results in an attack with reduced time complexity. Our analysis
of S-boxes that are used in cryptographic algorithms show that differential fac-
tors are observed mostly in small S-boxes. We observed that 73% of all possible
bijective 3 × 3 S-boxes contain differential factors. Moreover, 4 × 4 S-boxes of
DES [28], GOST [39], LBLOCK [41], LED [18], LUFFA [12], NOEKEON [15],
Piccolo [35], Present [11], RECTANGLE [42], SARMAL [40], SERPENT [1],
spongent [10] and Twofish [33] contain differential factors.

Lightweight cryptography has become very vital with the emerging needs
in sensitive applications like RFID (Radio-frequency identification) systems and
sensor networks. For these types of special purposes, there is a strong demand
in designing secure lightweight cryptographic modules. Since most of such light-
weight algorithms have a hardware oriented design, they use small S-boxes. Thus,
differential factors pose a threat to lightweight block ciphers. We indicate the
importance of this new S-box criteria on cryptanalysis by reducing the time com-
plexities of the 10, 11, and 12-round differential-linear attacks of Dunkelman
et al. on Serpent by a factor of 4, 4, and 8, respectively. By changing the
differential, we further modify these attacks to marginally reduce the data com-
plexity. We compare our improved attacks on Serpent with the previous ones
in Table 1.

2 S-Box Evaluation

S-boxes are commonly used as non-linear components for symmetric cryptosys-
tems and hash functions. Properties of S-boxes provide resistance against many
cryptanalytic techniques.

Differential Uniformity

Definition 1. For a mapping S : Fn
2 → F

m
2 , and all Δi ∈ F

n
2 and Δo ∈ F

m
2 , let t

be the number of elements x that satisfy S(x ⊕ Δi) = S(x) ⊕ Δo. Then t/|2n| is
the differential probability of the characteristic S(Δi → Δo). The table that lists
all t values for every i, o ∈ X is called the Difference Distribution Table (DDT).

The maximum value in a DDT, excluding the zero difference case, is called
differential uniformity. S-box designers aim to minimize differential uniformity
since differential cryptanalysis [8] uses characteristics with high differential prob-
ability.

Non-linear Uniformity

Definition 2. For a mapping S : Fn
2 → F

m
2 , and all a ∈ F

n
2 and b ∈ F

m
2 , let the

numbers Lf (a, b) be defined as

Lf (a, b) := |#{x ∈ Fn
2 |a · x = b · S(x)} − 2n−1|

where a · b denotes the parity of the bit-wise product of a and b. Then S is called
non-linearly l-uniform if Lf (a, b) ≤ l for all a and b with b �= 0.

Differential Factors: Improved Attacks on SERPENT 71

Table 1. Summary of attacks on Serpent. Note that it is claimed in [27] that the
multidimensional linear attacks of [29] may not work as claimed depending on the linear
hull effect. If the claims are correct, then our use of differential factors in the attacks
of [17] becomes the best attacks for this cipher.
En - Encryptions, MA - Memory Accesses, B - bytes, CP - Chosen Plaintexts, KP -
Known Plaintexts.

#Rounds Attack Type Key Size Data Time Memory Advantage Success Reference
6 Meet-in-the-middle 256 512 KP 2247 En 2246 B - - [22]
6 Differential All 283 CP 290 En 240 B - - [22]
6 Differential All 271 CP 2103 En 275 B - - [22]
6 Differential 192, 256 241 CP 2163 En 245 B 124 - [22]
7 Differential 256 2122 CP 2248 En 2126 B 128 - [22]
7 Improbable All 2116.85 CP 2117.57 En 2113 B 112 99.9% [38]
7 Differential All 284 CP 285 MA 256 B - - [4]
10 Rectangle 192, 256 2126.3 CP 2173.8 MA 2131.8 B 80 - [6]
10 Boomerang 192, 256 2126.3 AC 2173.8 MA 289 B 80 - [6]
10 Differential-Linear All 2101.2 CP 2115.2 En 240 B 40 84% [17]
10 Differential-Linear All 2101.2 CP 2113.2 En 240 B 38 84% Sect. 4.4
10 Differential-Linear All 2100.55 CP 2116.55 En 240 B 42 84% Appx. B
11 Linear 256 2118 KP 2214 MA 285 B 140 78.5% [3]
11 Multidimensional Linear a All 2116 KP 2107.5 En 2108 B 48 78.5% [29]
11 Multidimensional Linear b All 2118 KP 2109.5 En 2104 B 44 78.5% [29]
11 Nonlinear 192, 256 2120.36 KP 2139.63 MA 2133.17 B 118 78.5% [27]
11 Filtered Nonlinear 192, 256 2114.55 KP 2155.76 MA 2146.59 B 132 78.5% [27]
11 Differential-Linear 192, 256 2121.8 CP 2135.7 MA 276 B 48 84% [17]
11 Differential-Linear 192, 256 2121.8 CP 2133.7 MA 276 B 46 84% Sect. 4.4
11 Differential-Linear 192, 256 2121.15 CP 2137.05 MA 276 B 50 84% Appx. B
12 Multidimensional Linear c 256 2116 KP 2237.5 En 2125 B 174 78.5% [29]
12 Differential-Linear 256 2123.5 CP 2249.4 En 2128.5 B 160 84% [17]
12 Differential-Linear 256 2123.5 CP 2246.4 En 2128.5 B 157 84% Sect. 4.4

a In [27], it is claimed that the correct data complexity of this attack is 2125.81 KP
and the time complexity is 2101.44 En +2114.13 MA.

b In [27], it is claimed that the correct data complexity of this attack is 2127.78 KP
and the time complexity is 297.41 En +2110.10 MA.

c In [27], it is claimed that the correct data complexity of this attack is ≥ 2125.81 KP
and the time complexity is 2229.44 En +2242.13 MA.

S-box designers aim to minimize the non-linear uniformity l since linear crypt-
analysis [26] uses linear approximations with high bias.

Branch Number

Definition 3. [32] The branch number of an n × n S-box is

BN = min
a,b �=a

(wt(a ⊕ b) + wt(S(a) ⊕ S(b))),

where a, b ∈ X and wt(a) is the Hamming weight of the bit vector a.

For a bijective S-box, the branch number is at least 2 and this property of
S-boxes is closely related to algebraic [14] and cube attacks [16].

72 C. Tezcan and F. Özbudak

Number of Shares. S-boxes are also studied for their security against side-
channel attacks. Side-channel attacks are based on the information leakage during
the computation of the hardware implementation of a cryptographic algorithm.
For instance, differential power analysis (DPA) [21] exploits the correlation
between the instantaneous power consumption of a device and the intermediate
results of a cryptographic algorithm. One countermeasure against side-channel
attacks is threshold implementation in which a variable is split into additive
shares. Bilgin et al. analyzed the number of shares of S-boxes by categorizing all
3× 3 and 4× 4 S-boxes using affine equivalence classes and investigated the cost
of this kind of protection in [9].

Undisturbed Bits. Recently in [37], undisturbed bits are introduced as prob-
ability 1 truncated differentials for S-boxes. A 13-round improbable differential
attack on Present that uses undisturbed bits is provided in [37] and it was
shown that the attack reduces to 7 rounds when the S-box is replaced with a simi-
lar one that lacks undisturbed bits. Moreover, it is shown that every bijective 3×3
S-box contains undisturbed bits and a list of ciphers were provided in [37] whose
4 × 4 S-boxes contain undisturbed bits. S-boxes with undisturbed bits should
be avoided to increase security against truncated, impossible, and improbable
differential cryptanalysis.

3 Differential Factors

A differential attack on block ciphers tries to capture the round keys correspond-
ing to the S-boxes activated by a differential. However, output difference of the
S-box operation may be invariant when the round key is XORed with some spe-
cific value. Such a case would prevent the attacker from fully capturing the round
key. This observation is similar to the linear factors of block ciphers but here
we are focusing on the S-box instead of some rounds of the cipher and we focus
on key differences.

Definition 4 ([13]). A block cipher is said to have a linear factor if, for all
plaintexts and keys, there is a fixed non-empty set of key bits whose simultaneous
complementation leaves the XOR sum of a fixed non-empty set of ciphertext bits
unchanged.

In order to have a similar property for S-boxes in the concept of differential
cryptanalysis, we define the differential factors as follows:

Definition 5. Let S be a function from F
n
2 to F

m
2 . For all x, y ∈ F

n
2 that satisfy

S(x) ⊕ S(y) = μ, if we also have S(x ⊕ λ) ⊕ S(y ⊕ λ) = μ, then we say that
the S-box has a differential factor λ for the output difference μ. (i.e. μ remains
invariant for λ).

When undisturbed bits are introduced in [37], the undisturbed bits of S-boxes
and their inverses are considered together because in substitution permutation
networks (SPNs), the inverse of an S-box is used for decryption. For instance,
a 6-round impossible differential for Present is obtained in [37] by using both

Differential Factors: Improved Attacks on SERPENT 73

undisturbed bits of its S-box and the inverse of it. In the following theorem,
we prove that the number of differential factors of an S-box is the same with
the number of differential factors of its inverse. Moreover, it also provides the
differential factors of the inverse S-box when we know the differential factors of
the S-box. Hence, there is no need to check the differential factors of the inverse
of S-boxes.

Theorem 1. If a bijective S-box S has a differential factor λ for an output
difference μ, then S−1 has a differential factor μ for the output difference λ.

Proof. Let us assume that S has a differential factor λ for an output difference μ.
If S−1(c1)⊕S−1(c2) = λ for some c1 and c2, then we need to show that S−1(c1⊕
μ) ⊕ S−1(c2 ⊕ μ) = λ.

Let c1 ⊕μ = S(p1) for some p1, then we have S(S−1(c1)⊕λ)⊕S(p1 ⊕λ) = μ
since λ is a differential factor of S for μ. Thus, we have

S−1(c1 ⊕ μ) ⊕ S−1(c2 ⊕ μ) = S−1(S(p1)) ⊕ S−1(S(S−1(c1) ⊕ λ) ⊕ μ)
= p1 ⊕ S−1(S(p1 ⊕ λ))
= p1 ⊕ p1 ⊕ λ
= λ ��

Theorem 2. If λ1 and λ2 are differential factors for an output difference μ,
then λ1 ⊕ λ2 is also a differential factor for the output difference μ. i.e. All
differential factors λi for μ form a vector space.

Proof. We are going to use the following change of variables: x′ = x ⊕ λ1 and
y′ = y ⊕ λ1. For all (x, y) pairs satisfying S(x) ⊕ S(y) = μ, we have S(x ⊕ λ1) ⊕
S(y ⊕ λ1) = μ and S(x ⊕ λ2) ⊕ S(y ⊕ λ2) = μ. Thus, we have

S(x ⊕ λ1 ⊕ λ2) ⊕ S(y ⊕ λ1 ⊕ λ2) = S(x′ ⊕ λ2) ⊕ S(y′ ⊕ λ2) = μ ��
In this section we used two variables x and y since they are directly linked to

the input pairs in differential cryptanalysis. However, same definition and the-
orems can be given using a single variable for bijective S-boxes and we provide
them in Appendix A.

3.1 Differential Factors and Cryptanalysis

We start by recalling the definition of advantage.

Definition 6 ([34]). If an attack on an m-bit key gets the correct value ranked
among the top r out of 2m possible candidates, we say the attack obtained an
(m − log(r))-bit advantage over exhaustive search.

Theorem 3. In a block cipher let an S-box S contain a differential factor λ for
an output difference μ and the partial round key k is XORed with the input of S.
If an input pair provides the output difference μ under a partial subkey k, then

74 C. Tezcan and F. Özbudak

the same output difference is observed under the partial subkey k ⊕λ. Therefore,
during a differential attack involving the guess of a partial subkey corresponding
to the output difference μ, the advantage of the cryptanalyst is reduced by 1 bit
and the time complexity of this key guess step is halved.

Proof. In a differential attack for any key k, k and k ⊕ λ would get the same
number of hits since λ is a differential factor. Hence the attacker cannot dis-
tinguish half of the guessed keys with the other half. Therefore during the key
guessing step, the attacker does not need to guess half of the keys. Thus, the
time complexity of this step is halved. ��
Corollary 1. During a differential attack involving the guess of a partial subkey
corresponding to the output difference μ of an S-box that has a vector space of
differential factors of dimension r for μ, the advantage of the cryptanalyst is
reduced by r bits and the time complexity of the key guess step is reduced by a
factor of 2r.

Proof. Follows directly from Theorems 2 and 3. ��

3.2 Relating Differential Factors to Other Properties of S-Boxes

Since we are considering non-zero μ and λ, a 3 × 3 S-box can contain at most
7 · 7 = 49 differential factors. In such a case, an S-box provides no security at
all. In [37], it was shown that every bijective 3 × 3 S-box contains undisturbed
bits. However, this is not the case for differential factors. Among the 8! = 40320
different bijective 3 × 3 S-boxes, we observed that 10752 of them do not contain
any differential factor. Moreover, 18816 of them contain 9, 9408 of them contain
25, and 1344 of them contain 49 differential factors.

We further observed that the 3 × 3 S-boxes that do not have any differential
factor also have 6 undisturbed bits, which is the smallest number of undisturbed
bits a 3 × 3 S-box can have. Thus, for the case of 3 × 3 S-boxes, it is enough to
check differential factors.

In our literature search we found 102 unique 4 × 4 S-boxes that are used in
block ciphers and hash functions and observed that 40 of them have 74 differ-
ential factors in total, without counting the differential factors of their inverses.
These are the S-boxes of DES, GOST, LBLOCK, LED, LUFFA, NOEKEON,
Piccolo, Present, RECTANGLE, SARMAL, Serpent, spongent and Twofish
and they are provided in Table 2.

During our analysis, we observed that the existence of differential factors for
an S-box is closely related to the number of nonzero entries in the columns of
the DDT table. For instance, for a differentially 4-uniform 4 × 4 S-box, which is
the best case for S-boxes of this size, we observed the following phenomenon:

Conjecture 1. A differential 4-uniform 4 × 4 S-box S has a differential factor for
the output difference μ if and only if the μ-th column of the DDT table of S
consists of only zeros and fours.

Differential Factors: Improved Attacks on SERPENT 75

The only 8×8 S-boxes we found with differential factors are the two S-boxes
of the initial version of the Crypton cipher [24]. They contain 15 differential
factors each and they are provided in Table 2. These S-boxes are replaced in the
revised version of the Crypton cipher [25] and the new S-boxes do not contain
any differential factors.

4 Improved Differential-Linear Attacks on SERPENT

4.1 SERPENT

Serpent was designed by Anderson, Biham and Knudsen in 1998. It was sub-
mitted to the AES contest and came second after Rijndael. It has a block size
of 128 bits and accepts any key size of length 0 to 256 bits. It is a 32-round
SPN, where each round consists of key mixing, a layer of S-boxes and a linear
transformation.

The 128-bit input value before round i is denoted by B̂i, i ∈ {0, . . . , 31}.
Each B̂i is composed of four 32-bit words X0,X1,X2,X3 where X0 is the left-
most word.

Three round operations are specified as follows:

1. Key Mixing: At each round Ri, a 128-bit subkey Ki is XORed with the current
intermediate data B̂i.

2. S-boxes: At each round, Ri uses a single S-box Sj , where i ≡ j (mod 8) and
i ∈ {0, . . . , 31}, 32 times in parallel. In this paper, we use the bitsliced version
of Serpent. For example, in the first round the first copy of S0 takes the
least significant bits from X0,X1,X2,X3 and returns the output to the same
bits. Thus, we obtain 32 4-bit slices referred as bi’s, where i ∈ {0, . . . , 31} and
b0 is the right most slice.

3. Linear Transformation: The four 32-bit words X0,X1,X2,X3 are linearly
mixed by the following linear operations:

X0 := X0 ≪ 13

X2 := X2 ≪ 3

X1 := X1 ⊕ X0 ⊕ X2

X3 := X3 ⊕ X2 ⊕ (X0 � 3)

X1 := X1 ≪ 1

X3 := X3 ≪ 7

X0 := X0 ⊕ X1 ⊕ X3

X2 := X2 ⊕ X3 ⊕ (X1 � 7)

X0 := X0 ≪ 5

X2 := X2 ≪ 22

B̂i+1 := X0, X1, X2, X3

where ≪ denotes the left rotation operation and
 denotes the left shift
operation.

76 C. Tezcan and F. Özbudak

Table 2. Differential Factors of Cryptographic Algorithms

S-box λ μ
Crypton S0, S1 10x 10x
Crypton S0, S1 20x 20x
Crypton S0, S1 30x 30x
Crypton S0, S1 40x 40x
Crypton S0, S1 50x 50x
Crypton S0, S1 60x 60x
Crypton S0, S1 70x 70x
Crypton S0, S1 80x 80x
Crypton S0, S1 90x 90x
Crypton S0, S1 A0x A0x
Crypton S0, S1 B0x B0x
Crypton S0, S1 C0x C0x
Crypton S0, S1 D0x D0x
Crypton S0, S1 E0x E0x
Crypton S0, S1 F0x F0x
DES1 Row3 Fx 2x
DES1 Row3 Fx 8x
DES1 Row3 Fx Ax

DES2 Row1 6x Ax

DES2 Row2 2x 7x
DES2 Row2 4x 7x
DES2 Row2 6x 7x
DES2 Row3 1x Ax

DES2 Row3 6x Ax

DES2 Row3 7x Ax

DES3 Row3 2x 6x
DES3 Row3 8x 6x
DES3 Row3 Ax 6x
DES3 Row4 3x 1x
DES3 Row4 3x 6x
DES3 Row4 3x 7x
DES3 Row4 3x 8x
DES3 Row4 3x 9x
DES3 Row4 1x Ex

DES3 Row4 2x Ex

DES3 Row4 3x Ex

DES3 Row4 3x Fx

DES5 Row4 2x Fx

DES6 Row1 9x Dx

DES6 Row2 Bx 4x
DES6 Row4 6x 6x
DES7 Row2 4x Dx

DES7 Row2 9x Dx

DES7 Row2 Dx Dx

DES7 Row4 4x 3x

S-box λ μ
DES7 Row4 1x Cx

DES7 Row4 4x Cx

DES7 Row4 5x Cx

DES7 Row4 4x Fx

DES8 Row2 6x 7x
DES8 Row2 Bx 8x
GOST S1 5x 3x
GOST S4 Dx 5x
GOST S6 9x Bx

GOST S8 7x 5x
GOST S8 Ex 6x
LBLOCK S0, S8 Bx 1x
LBLOCK S0, S8 3x 4x
LBLOCK S1, S6, S7, S9 Bx 2x
LBLOCK S1, S6, S7, S9 3x 4x
LBLOCK S2 3x 1x
LBLOCK S2 Bx 2x
LBLOCK S3 Bx 1x
LBLOCK S3 3x 8x
LBLOCK S4, S5 Bx 1x
LBLOCK S4, S5 3x 2x
LUFFA 4x 1x
LUFFA 2x 2x
NOEKEON 1x 1x
NOEKEON Bx Bx

Piccolo 1x 2x
Piccolo 2x 5x
Present, LED 1x 5x
Present, LED Fx Fx

RECTANGLE 2x 4x
RECTANGLE Ex Cx

SARMAL S2 Fx 4x
SARMAL S2 Ax 9x
Serpent S0 4x 4x
Serpent S0 Dx Fx

Serpent S1 4x 4x
Serpent S1 Fx Ex

Serpent S2 2x 1x
Serpent S2 4x Dx

Serpent S6 6x 2x
Serpent S6 Fx Fx

spongent Fx 9x
spongent 1x Fx

Twofish q0 t1 6x 9x
Twofish q1 t2 5x Bx

Differential Factors: Improved Attacks on SERPENT 77

32-round Serpent cipher may be described by the following equations:

B̂0 := P B̂i+1 := Ri(B̂i), i ∈ {0, . . . , 31} C := B̂32

where

Ri(X) = LT (Ŝi(X ⊕ Ki)), i ∈ {0, . . . , 30}
R31(X) = Ŝ31(X ⊕ K31) ⊕ K32

and Ŝi is the application of the S-box S(i (mod 8)) 32 times in parallel, and LT
is the linear transformation.

The key scheduling algorithm of Serpent takes a 256-bit key as an input. If
the key is shorter, then it is padded by a single bit of 1 and the remaining part
is padded by bits of 0 up to 256 bits. By using an affine recurrence, the 256-bit
key is used to construct 132 prekeys having length of 32 bits. The S-boxes are
used to produce 32-bit keywords from prekeys. The round keys are obtained by
combining these keywords.

4.2 Differential-Linear Cryptanalysis

In 1994, Langford and Hellman combined differential cryptanalysis with lin-
ear cryptanalysis and introduced differential-linear cryptanalysis [23]. They sug-
gested using a truncated differential with probability 1 and concatenating a linear
approximation with bias q (i.e. probability 1/2 + q) where the output difference
of the differential should contain zero differences in the places where input bits
masked in the linear approximation. This way one can construct differential-
linear distinguishers and the data complexity of the distinguisher is O(q−4) cho-
sen plaintexts. The exact number depends on the success probability and the
number of possible subkeys.

Moreover, Biham, Dunkelman and Keller showed that it is possible to con-
struct a differential-linear distinguisher where the differential holds with proba-
bility p < 1 and introduced enhanced differential-linear cryptanalysis [5]. They
also showed that the attack is still applicable if the XOR of the masked bits
of the differential is 1. In the enhanced method, the data complexity becomes
O(p−2q−4) chosen plaintexts.

4.3 Differential-Linear Attacks on SERPENT

In [7] a differential-linear attack on 11-round Serpent-192 and Serpent-256 is
presented. The attack combines the 3-round differential

Δ :00000000000000000000000040050000→0??00?000?000000000?00?0??0??0?0

that has a probability of p = 2−7 with the 6-round linear approximation

Λ :20060040000001001000000000000000→00001000000000005000010000100001

of [3] that has bias q = 2−27.

78 C. Tezcan and F. Özbudak

The first attack on 10-round Serpent-128 is also presented in [7] which is
obtained by removing the last round of this linear approximation. The data and
time complexities of these attacks are reduced in [17] by using the following
improvements:

1. Better analysis of the bias of the differential-linear approximation,
2. Better analysis of the success probability,
3. Changing the output mask.

Moreover in [17], these reduced complexities are used to extend the 11-round
attack and obtain the first 12-round attack on Serpent-256. In the following
section we further improve these differential-linear attacks by using the differen-
tial factors of Serpent’s S-boxes S0 and S1.

4.4 Improved Differential-Linear Attacks Using Differential Factors

The differential-linear attacks of [7,17] start at round 1 and the 3-round differ-
ential activates 5 S-boxes in this round. Two of the output differences of these
activated S-boxes are 4x and Ex which have differential factors as shown in
Table 2. The authors guess every possible 20 subkey bits corresponding to these
five S-boxes but the attacker can only obtain 18-bit advantage for this subkey
due to Theorem 3 and there is no need to try half of the subkeys correspond-
ing to these two S-boxes having differential factors. Thus, the advantage of the
differential-linear attacks on 10, 11, and 12 rounds of Serpent are actually
38, 46, and 158 bits instead of 40, 48, and 160 bits, respectively. And again by
Theorem 3, the same attacks can be performed with time complexities reduced
by a factor of 4.

Moreover, the 12-round attack of [17] adds one more round to the top of the
differential which affects every S-box at round 0 except the S-boxes 2, 3, 19, and
23 and guesses the 112 bits of the subkey corresponding to these active S-boxes.
However, by using the undisturbed bits of Serpent, we observed that the output
difference of the S-box 8 is exactly 4x. Since μ = 4x also has a differential factor
for S0, the attacker’s advantage reduces to 157 bits and the time complexity of
the attack further reduces by a factor of 2. Table 3 summarizes this 12-round
attack and highlights the differential factors and the undisturbed bits that are
used to reduce the time complexity.

We also observed that by replacing the 3-round differential with a more
probable one, we can perform these attacks with less data complexity and capture
four more subkey bits with a time complexity increased by a factor of 23.35.
These modified attacks are provided in Appendix B.

5 Conclusion

In this paper, we introduced a new S-box evaluation criteria that we call differ-
ential factors. Differential factors are mostly observed in small S-boxes like 3×3
and 4 × 4 which are preferred in hardware oriented lightweight block ciphers.

Differential Factors: Improved Attacks on SERPENT 79

Table 3. 12-round differential-linear attack of [17]. Output differences µ that contain
differential factors, which are 4x and Ex for S1 and 4x for S0, are shown in bold.
Undisturbed bits are shown in italic.

Input

X0: ???? ???? 0??? 0??? ???? ???? ???? 00??
X1: ???? ???? 0??? 0??? ???? ???? ???? 00??
X2: ???? ???? 0??? 0??? ???? ???1 ???? 00??
X3: ???? ???? 0??? 0??? ???? ???? ???? 00??

S0

X0: ??0? 00?0 0000 0?00 00?0 0000 00?? 00??
X1: ??0? ???? 00?0 0??? 0??? ???0 0?00 0000
X2: 000? 00?? 0??0 0?00 ??00 ?001 0?00 0000
X3: ?0?? ?0?? 00?? 0??? ??0? 0??0 ?001 0000

LT

X0: ?000 0000 0000 0??0 0?00 ?000 0000 0000
X1: ?000 0000 0000 0??0 0?00 ?000 0000 0000
X2: ?000 0000 0000 0??0 0?00 ?000 0000 0000
X3: ?000 0000 0000 01?0 0?00 1000 0000 0000

S1

X0: 0000 0000 0000 0100 0000 0000 0000 0000
X1: 1000 0000 0000 0010 0100 0000 0000 0000
X2: 0000 0000 0000 0000 0100 1000 0000 0000
X3: 0000 0000 0000 0010 0100 0000 0000 0000

LT

X0: 0000 0000 0000 0000 0000 0000 0001 0000
X1: 0000 0000 0000 0000 0000 0000 0000 0000
X2: 0000 0000 0000 0000 0000 0000 1001 0000
X3: 0000 0000 0000 0000 0000 0000 0000 0000

9-Round Differential-Linear Characteristic Δ ◦ Λ
Last Round

We show that differential factors may reduce the attacked key space in differen-
tial cryptanalysis and its variants which results in an attack with reduced time
complexity. As an example, we show that the differential factors of Serpent’s
S-boxes are overlooked in Dunkelman et al.’s differential-linear attacks on Ser-
pent and the attacked round keys cannot be fully recovered in these attacks.
We reduce the time complexities of these attacks by using the differential factors
and provide the best differential-linear attacks on this cipher.

A Equivalent Definitions with only One Variable

When defining differential factors in Sect. 3, we used two variables x and y since
they are directly linked to the input pairs in differential cryptanalysis. One can
observe that the same definition and theorems of Sect. 3 for bijective S-boxes
can be given by using a single variable. We provide them as follows.

80 C. Tezcan and F. Özbudak

Definition 7. S has a differential factor λ for the output difference μ if

S−1(S(x) ⊕ μ) ⊕ λ = S−1(S(x ⊕ λ) ⊕ μ)

for all x.

Proposition 1. Definition 5 is equivalent to Definition 7.

Proof. Since S(x) ⊕ S(y) = μ, we have y = S−1(S(x) ⊕ μ). Similarly, y ⊕ λ =
S−1(S(x ⊕ λ) ⊕ μ) since S(x ⊕ λ) ⊕ S(y ⊕ λ) = μ. XORing both equations gives
λ = S−1(S(x) ⊕ μ) ⊕ S−1(S(x ⊕ λ) ⊕ μ) and we are done. ��
Definition 8. S has a differential factor λ for the output difference μ if

S(S−1(x) ⊕ λ) ⊕ μ = S(S−1(x ⊕ μ) ⊕ λ)

for all x.

Proposition 2. Definition 5 is equivalent to Definition 8.

Proof. Let y = S(x). Then the Definition 7 becomes

S−1(y ⊕ μ) ⊕ λ = S−1(S(S−1(y) ⊕ λ) ⊕ μ)

for all y. Applying the S operation on both sides of the equation gives

S(S−1(y ⊕ μ) ⊕ λ) = S(S−1(y) ⊕ λ) ⊕ μ

for all y and we are done. ��
Thus, Propositions 1 and 2 prove the Theorem 1.

Proposition 3. If λ1 and λ2 are differential factors for an output difference μ,
then λ1 ⊕ λ2 is also differential factor for the output difference μ. i.e. All differ-
ential factors λi for μ forms a vector space.

Proof. We have

S−1(S(x) ⊕ μ) ⊕ λ1 = S−1(S(x ⊕ λ1) ⊕ μ)

for all x, by Definition 7. And we have

S−1(S(x ⊕ λ1) ⊕ μ) ⊕ λ2 = S−1(S(x ⊕ λ1 + λ2) ⊕ μ)

since λ2 is a differential factor. Thus, we get

S−1(S(x) ⊕ μ) ⊕ λ2 ⊕ λ2 = S−1(S(x ⊕ λ1 ⊕ λ2) ⊕ μ)

for all x and we are done. ��

Differential Factors: Improved Attacks on SERPENT 81

B 3-Round Differentials with Higher Probability

The rounds of the 3-round differential used in the differential-linear attacks of
[7,17] have probabilities 2−5, 2−1, and 1 but the authors observed experimen-
tally that this differential has probability 2−7 instead of 2−6. We observed that
there are 3-round differentials of Serpent with probability 2−5 that can be
combined with the same linear approximations. The rounds of these differential
have probabilities 2−5, 1, and 1 and for this reason, the theoretical and practi-
cal probabilities of these differentials are the same. However, these differentials
activate six S-boxes at the first round of the attack instead of five. So replacing
the original differential with one of them results in capturing four more subkey
bits but time complexity of the attacks also increases by a factor of 24.

Since the data complexity of a differential-linear attack is of O(p−2q−4) and
replacing the differential result in p = 2−5 instead of 2−7, one would expect
the modified attacks to have data and time complexities reduced by a factor
of 24. However, experiment results show that the gain in the modified attacks
is at most a factor of (2−0.32)2. This is because the transition between the orig-
inal differential and the linear approximation is far better than expected. For
instance, when the original 3-round differential is combined with a 1-round lin-
ear approximation of bias 2−5, Dunkelman et al. experimentally verified that the
4-round differential-linear path has bias 2−13.75, instead of 2 ·2−7 ·(2−5)2 = 2−16.
We performed similar experiments on five different 3-round differentials with
probability 2−5 using 234 pairs and the results are summarized in Table 4.

Table 4. 4-Round biases for 3-round differentials with probability 2−5 and 1-round
linear approximation with bias 2−5.

Input Difference #Active Standard

X0 X1 X2 X3 (in Hexadecimal) S-boxes Bias Deviation

1 40000000 00000000 40000002 00000000 6 2−13,49 2−18.03

2 00000000 40000000 40000002 00000000 6 2−13,43 2−18.11

3 00000000 40000000 00000002 40000000 6 2−13,56 2−18.07

4 00000000 40000000 40000002 00000002 6 2−13,43 2−18.19

5 00000002 00000000 00000012 00000000 6 2−14,65 2−18.00

We replace the original differential with the second one from Table 4 and
obtain new 10, and 11 round differential-linear attacks. This change provides a
4-round bias of 2−13,43 instead of 2−13.75. Thus the data and time complexity
gain in the modified attack is a factor of (2−0.32)2. This differential activates
six S-boxes instead of five so we capture four more subkey bits and the time
complexity is multiplied by 24. We summarize this modified attack in Table 5.
Note that there are two differential factors for this differential, too. Since the
rest of our modified attacks are almost identical to the attacks of [17], we refer
the interested reader to [17].

82 C. Tezcan and F. Özbudak

Table 5. 11-Round differential-linear attack with a 3-round differential of probabil-
ity 2−5. Output differences µ = 4x and µ = Ex that contain differential factors for S1

are shown in bold. Undisturbed bits are shown in italic.

Input

X0: 0??0 0000 0000 00?0 0000 ?00? 00?0 0000
X1: 0??0 0000 0000 00?0 0000 ?00? 00?0 0000
X2: 0??0 0000 0000 00?0 0000 ?00? 00?0 0000
X3: 0??0 0000 0000 0010 0000 ?00? 0010 0000

S1

X0: 0000 0000 0000 0010 0000 0000 0000 0000
X1: 0110 0000 0000 0000 0000 1001 0000 0000
X2: 0000 0000 0000 0000 0000 0001 0010 0000
X3: 0000 0000 0000 0000 0000 1001 0000 0000

LT

X0: 0000 0000 0000 0000 0000 0000 0000 0000

←−
−−

−−
−−

−−
−−

p = 2−5

X1: 0100 0000 0000 0000 0000 0000 0000 0000
X2: 0100 0000 0000 0000 0000 0000 0000 0010
X3: 0000 0000 0000 0000 0000 0000 0000 0000

S2

X0: 0000 0000 0000 0000 0000 0000 0000 0000
X1: 0000 0000 0000 0000 0000 0000 0000 0010
X2: 0100 0000 0000 0000 0000 0000 0000 0000
X3: 0000 0000 0000 0000 0000 0000 0000 0010

LT

X0: 0000 0000 0000 0000 0000 0000 0000 0000
X1: 0000 0000 0000 0000 0000 0000 0000 0000
X2: 0000 0000 1000 0000 0000 0000 0000 0000
X3: 0000 0000 0000 0000 0000 0000 0000 0000

S3

X0: 0000 0000 ?000 0000 0000 0000 0000 0000
X1: 0000 0000 ?000 0000 0000 0000 0000 0000
X2: 0000 0000 ?000 0000 0000 0000 0000 0000
X3: 0000 0000 ?000 0000 0000 0000 0000 0000

LT

X0: 00?0 0000 0000 ?000 0000 0??0 0?00 ?00?
X1: 0000 ?00? 0000 0000 0000 0000 00?0 0000
X2: 0000 0000 ?0?? 000? 0000 0000 000? 0?00
X3: 0?00 0000 0000 0000 0?00 0000 0000 00?0

S4

X0: 0??0 ?00? ?0?? ?00? 0?00 0??0 0??? ????
X1: 0??0 ?00? ?0?? ?00? 0?00 0??0 0??? ????
X2: 0??0 ?00? ?0?? ?00? 0?00 0??0 0??? ????
X3: 0??0 ?00? ?0?? ?00? 0?00 0??0 0??? ????

6-Round Linear Approximation Λ
Last Round

References

1. Biham, E., Anderson, R., Knudsen, L.R.: Serpent: a new block cipher proposal.
In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, p. 222. Springer, Heidelberg
(1998)

2. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials. J. Cryptol. 18(4), 291–311 (2005)

3. Biham, E., Dunkelman, O., Keller, N.: Linear cryptanalysis of reduced round ser-
pent. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, p. 16. Springer, Heidelberg
(2002)

4. Biham, E., Dunkelman, O., Keller, N.: The rectangle attack - rectangling the
serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, p. 340.
Springer, Heidelberg (2001)

Differential Factors: Improved Attacks on SERPENT 83

5. Biham, E., Dunkelman, O., Keller, N.: Enhancing differential-linear cryptanalysis.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 254–266. Springer,
Heidelberg (2002)

6. Biham, E., Dunkelman, O., Keller, N.: New results on boomerang and rectangle
attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, p. 1.
Springer, Heidelberg (2002)

7. Biham, E., Dunkelman, O., Keller, N.: Differential-linear cryptanalysis of serpent.
In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 9–21. Springer, Heidelberg
(2003)

8. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Cryptol. 4(1), 3–72 (1991)

9. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implementa-
tions of all 3 × 3 and 4 × 4 S-boxes. In: Prouff, E., Schaumont, P. (eds.) CHES
2012. LNCS, vol. 7428, pp. 76–91. Springer, Heidelberg (2012)

10. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.:
Spongent: a lightweight hash function. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011)

11. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

12. Canniere, C.D., Sato, H., Watanabe, D.: Hash function Luffa: Specification. Sub-
mission to NIST (Round 2) (2009)

13. Chaum, D., Evertse, J.H.: Crytanalysis of DES with a reduced number of rounds:
sequences of linear factors in block ciphers. In: Williams, H.C. (ed.) CRYPTO.
LNCS, vol. 218, pp. 192–211. Springer, Heidelberg (1985)

14. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined sys-
tems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
267–287. Springer, Heidelberg (2002)

15. Daemen, J., Peeters, M., Assche, G.V., Rijmen, V.: Nessie proposal: NOEKEON.
NESSIE proposal, 27 October 2000

16. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009)

17. Dunkelman, O., Indesteege, S., Keller, N.: A differential-linear attack on 12-round
serpent. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008.
LNCS, vol. 5365, pp. 308–321. Springer, Heidelberg (2008)

18. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

19. Helleseth, T. (ed.): Advances in Cryptology - EUROCRYPT 1993. LNCS, vol.
765. Springer, Heidelberg (1994)

20. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.)
FSE. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1994)

21. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, p. 388. Springer, Heidelberg (1999)

22. Kohno, T., Kelsey, J., Schneier, B.: Preliminary cryptanalysis of reduced-round
Serpent. In: AES Candidate Conference, pp. 195–211 (2000)

23. Langford, S.K., Hellman, M.E.: Differential-linear cryptanalysis. In: Desmedt,
Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 17–25. Springer, Heidelberg (1994)

84 C. Tezcan and F. Özbudak

24. Lim, C.H.: Crypton: A new 128-bit block cipher - specification and analysis (1998)
25. Lim, C.H.: A revised version of CRYPTON - CRYPTON V1.0. In: Knudsen, L.R.

(ed.) FSE 1999. LNCS, vol. 1636, p. 31. Springer, Heidelberg (1999)
26. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)

EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)
27. McLaughlin, J., Clark, J.A.: Filtered nonlinear cryptanalysis of reduced-round

serpent, and the wrong-key randomization hypothesis. In: Stam, M. (ed.) IMACC
2013. LNCS, vol. 8308, pp. 120–140. Springer, Heidelberg (2013)

28. National Bureau of Standards: Data Encryption Standard. FIPS PUB 46.
National Bureau of Standards, U.S. Department of Commerce, Washington D.C.,
(15 January 1977)

29. Nguyen, P.H., Wu, H., Wang, H.: Improving the algorithm 2 in multidimensional
linear cryptanalysis. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS,
vol. 6812, pp. 61–74. Springer, Heidelberg (2011)

30. Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)

31. Preneel, B., Takagi, T. (eds.): CHES 2011. LNCS, vol. 6917. Springer, Heidelberg
(2011)

32. Saarinen, M.J.O.: Cryptographic analysis of all 4 × 4 s-boxes. In: Miri, A.,
Vaudenay, S. (eds.) Selected Areas in Cryptography. Lecture Notes in Computer
Science, vol. 7118, pp. 118–133. Springer, Heidelberg (2011)

33. Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., Ferguson, N.: Twofish:
A 128-bit block cipher. In: First Advanced Encryption Standard (AES) Confer-
ence (1998)

34. Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. J.
Cryptol. 21(1), 131–147 (2008)

35. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Pic-
colo: an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)

36. Tezcan, C.: The improbable differential attack: cryptanalysis of reduced round
CLEFIA. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498,
pp. 197–209. Springer, Heidelberg (2010)

37. Tezcan, C.: Improbable differential attacks on PRESENT using undisturbed bits.
J. Comput. Appl. Math. 259, 503–511 (2014)

38. Tezcan, C., Taşkın, H.K., Demircioğlu, M.: Improbable differential attacks on
SERPENT using undisturbed bits. In: Poet, R., Rajarajan, M. (eds.) Proceedings
of the 7th International Conference on Security of Information and Networks,
Glasgow, Scotland, UK, September 9-11, 2014. p. 145. ACM (2014)

39. V. Dolmatov (ed.): GOST 28147–89: Encryption, decryption, and message
authentication code (MAC) algorithms. In: Internet Engineering Task Force RFC
5830 (March 2010)

40. Varici, K., Özen, O., Çelebi Kocair: Sarmal: Sha-3 proposal. Submission to NIST
(2008)

41. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

42. Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: Rectangle:
A bit-slice ultra-lightweight block cipher suitable for multiple platforms. IACR
Cryptology ePrint Archive 2014, 84 (2014)

43. Zheng, Y. (ed.): Advances in Cryptology - ASIACRYPT 2002. Lecture Notes in
Computer Science, vol. 2501. Springer, Heidelberg (2002)

Ciphertext-Only Fault Attacks on PRESENT

Fabrizio De Santis(B), Oscar M. Guillen, Ermin Sakic, and Georg Sigl

Lehrstuhl für Sicherheit in der Informationstechnik,
Technische Universität München, Munich, Germany

{desantis,oscar.guillen,ermin.sakic,sigl}@tum.de

Abstract. In this work, we introduce fault attacks on PRESENT with
faulty ciphertexts-only. In contrast to current differential fault attacks on
PRESENT, which are mostly chosen-plaintext attacks, our fault attacks
do not require the knowledge of the plaintexts to recover the secret key.
This is a typical scenario when plaintexts are not easily accessible for the
attacker, like in the case of smart devices for the upcoming Internet-of-
Things (IoT) era where input data are mostly assembled within the cryp-
tographic device, or when protocol-level countermeasures are deployed to
prevent chosen-plaintext attacks explicitly. Our attacks work under the
assumption that the attacker is able to bias the (nibble-wise) distribu-
tion of intermediate states in the final rounds of PRESENT by careful
fault injections. To support our statements, we provide a detailed sim-
ulation analysis to estimate the practical attack complexities of (faulty)
ciphertext-only fault attacks on PRESENT-80 discussing different fault
injection scenarios. In the best case analysis (worst-case security sce-
nario), only two faulty ciphertexts and negligible computational time
are required to recover the entire secret key.

1 Introduction

Fault attacks are well-known implementation attacks introduced in the mid-
nineties by Boneh et al. [12] to defeat the security of cryptographic protocols
and devices. Since then, several fault attacks against symmetric [10,24,26] and
asymmetric [9,12] cryptographic algorithms have been proposed in literature.
Today, fault attacks still represent one of the major threats against the security
of cryptographic implementations and the quest for new attacks and counter-
measures is still a vivid area of research, as testified by the many conferences
and recent developments [3,13]. The main idea behind fault attacks is to disrupt
the normal functioning of a cryptographic device in order to induce errors during
the cryptographic computations and exploit the associated (side-channel) infor-
mation to finally recover the secret key. Nowadays, faults can be injected into
cryptographic devices using several (low-budget) injection techniques such as:
over-/under voltage feeding, injection of sudden transient changes (spikes) in
the power supply lines [6,7], glitch insertion in the signal lines (e.g., clock or
reset line), high-energy injections using strong near-field Electro-Magnetic (EM)
radiations [28] as well as light sources such as UV lamps, camera flashes [29] and
lasers [30], or by simply bringing the device temperature outside the working
c© Springer International Publishing Switzerland 2015
T. Eisenbarth and E. Öztürk (Eds.): LightSec 2014, LNCS 8898, pp. 85–108, 2015.
DOI: 10.1007/978-3-319-16363-5 6

86 F. De Santis et al.

ranges [18]. Like the more classical cryptanalytic attacks, also fault attacks can
be classified according to how much knowledge about the input-output charac-
teristic of a cryptosystem is given to the adversary: the vast majority of fault
attacks known to date are either known-plaintext or chosen-plaintext attacks,
while only very recently (faulty) ciphertext-only fault attacks were introduced
in [14]. This class of attacks is the most generic one, as it only assumes that a
collection of (faulty) ciphertexts obtained under the same secret key is known
to the adversary.

As part of the new international standard for lightweight cryptography,
named ISO/IEC 29192-2:2012 [19], PRESENT is one of the cryptographic algo-
rithms of choice to secure Internet-of-Things (IoT) applications, specially for
low-power and resource-constrained devices. IoT applications span from sim-
ple Radio-Frequency IDentification (RFID) tags, through Wireless Sensor Net-
works (WSNs) all the way to intelligent interfaces that connect and communicate
within social, environmental, and user contexts [2,8]. While some RFID tags may
use challenge-response authentication protocols, where an attacker could poten-
tially have direct access to the input values of a cryptographic operation, in
WSNs and more complex applications, the input values will come as a result of
sensing and data processing, and therefore will typically not be easily accessible
to the attacker (e.g., due to privacy issues) [1]. Even though theoretically an
attacker could gain enough knowledge of the internal operation of such crypto-
graphic devices to try to infer the plaintexts, it is clear that such endeavor would
require significant effort making it more efficient to run ciphertext-only attacks
in practice.

In this work, we introduce fault attacks on PRESENT-80 and PRESENT-
128 with faulty ciphertexts-only. In contrast to state-of-the-art fault attacks on
PRESENT, our attacks do not require the knowledge of plaintext inputs to
recover the secret key, and work under the assumption that the attacker is able
to bias the (nibble-wise) distribution of intermediate states in the final rounds
of PRESENT. These minimal attack assumptions are of particular relevance
in the context of low-cost cryptographic devices, where simple protocol-level
countermeasures based on input randomization [16] are typically deployed in
place of more expensive algorithmic-level countermeasures based on redundant
computations [16,22].

Previous Work. Differential fault attacks on PRESENT-80 were first introduced
in [21]. They require about 25.64 pairs of correct and faulty ciphertexts to retrieve
the 64-bit last round key, plus an additional 216 key search to recover the full
80-bit secret key. Subsequently, a differential fault attack on PRESENT-80’s key-
schedule algorithm was introduced in [32], exploiting a nibble-wise fault model.
This attack requires 26 pairs of correct and faulty ciphertexts on average to
recover 51-bit of the last round key and additional 229 key search to recover
the full 80-bit secret key. Improved differential fault attacks on PRESENT-
80 and PRESENT-128 were described in [33], again exploiting a nibble-wise
fault model. In the case of PRESENT-80, the attack requires 23 faulty pairs on
average to reduce the key space to 214.7, while in the case of PRESENT-128

Ciphertext-Only Fault Attacks on PRESENT 87

the attack requires 24 faulty pairs on average to reduce the key space to 221.1.
State-of-the-art differential fault attacks on PRESENT-80 are provided in [4].
They require 24.17 faulty ciphertexts on average and at least one pair of cor-
rect and faulty ciphertexts to recover the key with “negligible computational
power”. Finally, statistical differential fault attacks were introduced in [15]. The
estimated overall attack complexity was 236.3. All these fault attacks are either
known-plaintext or chosen-plaintext and therefore they can not be mounted when
the adversary has access only to the ciphertexts, like in most applications where
data is assembled internally and transmitted to other devices encrypted (e.g.,
IoT applications) or when input randomization countermeasures are deployed to
explicitly chosen-plaintext attacks [16].

Our Contribution. In this work, we take the approach initiated by [14] and
describe some fault attacks on PRESENT-80 and PRESENT-128 using faulty
ciphertexts-only. Our attacks work under the weak and realistic assumption that
the attacker is able to inject faults in at least one round and obtain nibble-
wise faulty intermediate states in the final rounds of PRESENT1. Also, unlike
the previous fault attacks on PRESENT, we do not require the adversary to be
able to collect pairs of correct and faulty ciphertexts for the same plaintext and
secret key, rather we assume that the plaintexts are unknown to the attacker and
randomly-chosen for each cryptographic operation. We lay stress on the fact that
all the fault attacks on PRESENT known so far [4,15,32,33] are not applicable
in a (faulty) ciphertext-only scenario, as they all require the knowledge of at
least one plaintext input.

Organization. We start introducing the notation and the necessary background
information about PRESENT in Sect. 2. Then, we introduce faulty ciphertext-
only attacks in Sect. 3. Our fault attacks on PRESENT are provided in Sect. 4,
while a detailed simulation-based results analysis is provided in Sect. 5. Eventu-
ally, we conclude in Sect. 6.

2 Background and Notation

2.1 The PRESENT Block Cipher

PRESENT is a lightweight block cipher designed to fit ultra-constrained cryp-
tographic devices [11]. The PRESENT block cipher is a SP-network and comes
in two variants: PRESENT-80 with a block length of 64-bit and a key length
of 80-bit, and PRESENT-128 with a block length of 64-bit and a key length of
128-bit. The datapath of both variants consists of 31 rounds and a final post-
whitening key addition. Each round of the encryption algorithm consists of a
bit-wise key addition (addRoundKey), a nibble-wise non-linear substitution layer

1 The attacker can (possibly) exploit faulty intermediate states in different rounds
obtained by injecting faults across different cryptographic computations and it is
not required to inject multiple faults during the same cryptographic operation.

88 F. De Santis et al.

(sBoxlayer) and a bit-wise linear mixing layer (pLayer). The non-linear layer
implements a 4 × 4-bit S-box operation which is applied 16 times to cover the
full 64-bit state length. The linear mixing layer operates a bitwise permutation
of the current state (e.g., the bit at the jth position is moved to the P (j)th

position according to the permutation table defined in [11, Sect. 3]). A sketch of
the PRESENT-80 encryption algorithm is provided in Algorithm 1.

Algorithm 1. PRESENT-80 Encryption Algorithm
Input: p, K
Output: c = Enc(p, K)
1: K1, . . . , K32 ← KeySchedule80(K) # generate round keys
2: s ← p
3: for i = 1 to 31 do # iterate the round function for 31 times
4: s ← pLayer(sBoxlayer(s ⊕ Ki))
5: end for
6: c ← s ⊕ K32 # final key whitening
7: return c

The two variants of the block cipher differ only in the key schedule algorithm
(Line 1 of Algorithm 1). In the case of PRESENT-80, the 32 round keys Ki =
κi
63κ

i
62 . . . κi

0 (1 ≤ i ≤ 32) are obtained from the secret key K = κ79κ78 . . . κ0 by
applying the following transformations (i − 1) times and finally extracting the
left-most 64-bit:

1. the key is cyclically shifted by 61 positions to the left
2. the left-most 4-bit of the key are passed through the 4 × 4-bit S-box
3. the round constant RCi is bit-wise added to the key bits κ19κ18κ17κ16κ15.

In the case of PRESENT-128, the 32 round keys Ki = κi
63κ

i
62 . . . κi

0 (1 ≤
i ≤ 32) are derived from the secret key K = κ127κ126 . . . κ0 by applying the
following transformations (i−1) times and finally extracting the left most 64-bit:

1. the key is cyclically shifted by 61 positions to the left
2. the left-most 8-bit of the key are passed through the implementation of two

4 × 4-bit S-boxes
3. the round constant RCi is bit-wise added to the key bits κ66κ65κ64κ63κ62.

Please refer to [11] for the full specification of the PRESENT block cipher.

2.2 Notation

Let C̃r = {c̃1r, c̃
2
r, . . . , c̃

n
r } be the set of faulty ciphertexts obtained by injecting

faults in the rth round with 1 ≤ r ≤ 31. Let ar, sb and pr be the abbrevia-
tions for the addRoundKey, sBoxlayer and pLayer operations, respectively. Let
Si

r(op) denote the intermediate state of the PRESENT block cipher right after
the op ∈ {ar, sb, pr} operation in the rth round during the ith execution. Let
S̃i

r(op) denote the faulty intermediate state and let Ŝi
r(op, k) denote the hypothet-

ical intermediate state obtained by applying a key guess k. For the sake of clarity,

Ciphertext-Only Fault Attacks on PRESENT 89

the argument op will be omitted when referring generically to the intermediate
state of any of the round operations. Let the suffix [j] denote the jth nibble and
the suffix {j} denote the jth bit of the intermediate state (e.g., pLayer(·)[j] denote
the jth nibble after the linear mixing layer and Si

r{j} denote the jth bit of Si
r).

Finally, we denote by 1/Qr the (nibble-wise) fault rate obtained in the rth round
e.g., Qr = 16 if all the 16 nibbles of the state can be faulted simultaneously in the
rth round or Qr = 1 if only one nibble can be faulted in the rth round.

3 Faulty Ciphertext-Only Attacks

Faulty ciphertext-only attacks were introduced in [14] and mostly generalize
the statistical differential fault attacks presented in [15,27]. The main differ-
ence between statistical differential fault attacks and fault attacks with faulty
ciphertext-only is that the former exploits differential faulty distributions, for
which the attacker is required to collect pairs of correct and faulty ciphertexts
for the same plaintext and secret key values, while the latter exploits the distri-
bution of faulty intermediate states only.

3.1 Statistical Distinguishers

Fault attacks with faulty ciphertext-only exploit the bias introduced in the distri-
bution of intermediate states by careful fault injections. The secret key is recov-
ered by evaluating the empirical distribution of hypothetical faulty intermediate
states Ŝi

r(k) for each key guess k by the means of a statistical distinguisher Δ.
A statistical distinguisher Δ takes a set of faulty ciphertexts C̃ as input and
return a score value for each key guess indicating its eligibility as a candidate for
the correct key. The key guess corresponding to the highest or the lowest score is
typically chosen as candidate for the correct key. In practice, there exists several
possible statistical distinguishers and one would aim at using the most efficient
one, that is, the distinguisher which is able to identify the correct key with the
lowest number of faulty ciphertexts.

The choice of the distinguisher typically depends on how much previous
knowledge the adversary has about the distribution of faulty intermediate states.
If the attacker knows the distribution pk∗(·) of the faulty intermediate states
S̃r (or, more generally, the distribution fk∗(·) of any proper function ζ(·) of
the faulty intermediate state S̃r e.g., the Hamming weight), then the attacker
can efficiently identify the correct key using a maximum likelihood based dis-
tinguisher ΔML [27], by evaluating the likelihood function of the hypothetical
intermediate states for each key guess k:

arg max
k

n−1∏

i=0

fk∗
(
ζ(Ŝi

r(k)[j])
)

Most frequently, it is not possible for the attacker to profile the distribution
of the faulty intermediate states in advance. In this case, the attacker can try

90 F. De Santis et al.

to identify the correct key k∗ under the assumption that the distribution of the
faulty intermediate states fk(·) for all the wrong-key guesses k �= k∗ is close to a
supposed distribution q(·), while the distribution of the faulty intermediate state
for the correct-key guess fk∗(·) is far from q(·). This assumption is generally
referred in literature as the wrong-key assumption [17,20,27]. In this case, the
attacker can try to distinguish the correct key using a χ2-test based distinguisher
Δχ2 by evaluating the test for each key guess k:

arg max
k

∑

x∈�(ζ)

q(x) (fk(x) − q(x))2 ,

where �(ζ) denotes the common sample space defined by the image of ζ. In case
q(·) is chosen to be the discrete uniform distribution, then the χ2 test-based
distinguisher is also called Square Euclidean Imbalance (SEI) in cryptographic
literature [14,20,27].

Based on the same principle, yet another option consists in evaluating just a
characteristic of the faulty intermediate distributions under the assumption that
a distinguishable characteristic does exist for the correct key only. For instance,
it is possible to try distinguishing the correct key by evaluating the sample mean
for each key guess k, as follows:

arg min
k

1
n

n−1∑

i=0

ζ(Ŝi
r(k)[j])

When ζ(x) is chosen to be the Hamming weight of x, this latest distinguisher
corresponds to the minimum average Hamming weight distinguisher ΔHW used
in [14]. In practice, many other distinguishers could be used, but hereinafter we
will consider ΔML, Δχ2 and ΔHW only.

3.2 Fault Models

Ciphertext-only fault attacks require biasing the distribution of intermediate
states away from their original distribution determined by the specific crypto-
graphic algorithm. We model the fault injection repeatability of a given injection
setup with the injection probability 1/η. Then, we summarize the attacker’s fault
injection capabilities in the following three fault models:

Fault Model 1. “{0, 1} → 0 bit-clears” with probability 1/η:

Pr
(
S̃i

r[j] = Si
r[j] ∧ c

)
=

1
η
,

where c ∈ Z16\{15} is a constant value that specifies which bits get cleared
and the ∧ represents the boolean AND operation (e.g., c = (0011)2 clears the
first two most significant bits of Si

r[j], while leaving the two least significant
bits untouched).

Ciphertext-Only Fault Attacks on PRESENT 91

Fault Model 2. “1 → 0 bit-flips” with probability 1/η:

Pr
(
S̃i

r[j] = Si
r[j] ∧ (mr ∨ c)

)
=

1
η
,

where mr
$← {0, 1}4 is a uniform randomly drawn mask, the ∨ operator

defines the boolean OR operation and c ∈ Z16\{15} is a constant value
that specifies which bits might get flipped (e.g., for c = (0011)2 the first two
most significant bits of Si

r[j] might get flipped depending on the first two
most significant random bits of mr. The value of c is a fixed property for a
given injection setup, while the value of mr can change at every injection.

Fault Model 3. Combined “{0, 1} → 0 bit-clears” and “1 → 0 bit-flips” with
probability 1/η:

Pr
(
S̃i

r[j] = (Si
r[j] ∧ mr ∧ c)

)
=

1
η
,

where mr
$← {0, 1}4 is a uniform randomly drawn mask and c ∈ Z16\{0, 15}

is a constant value that specifies which bits get cleared and which bits might
get flipped as in the previous fault models.

All the three fault models allow for complementary fault models (e.g.,
“{0, 1} → 1 bit-sets” or “0 → 1 bit-flips”) which can be obtained simply by
swapping the operations ∧ and ∨ and by taking e.g., c ∈ Z16\{0} from the
original models. We argue that these models have been proven practical several
times in practice using (low-budget) fault injection equipments: Fault Model 1.
has been proved experimentally feasible in [30], while Fault Model 2. and Fault
Model 3. have been shown practical in [5] by careful glitch injections into the
clock line. Similarly, the complementary “{0, 1} → 1 bit-sets” or “0 → 1 bit-
flips” fault models have been obtained in practice e.g., in [23] using high-energy
near-field radiations or in [5,25] by inserting glitches into pre-charged buses.
Finally, please note that our model possibly allows for different fault models
on different nibbles, hence allowing for e.g., bit-flips at different positions for
different nibbles.

4 Faulty Ciphertext-Only Attacks on PRESENT

Fault attacks typically exploit faulty computations to recover the last round key
first and then invert the key schedule algorithm to finally recover the secret key.
However, in the case of PRESENT, recovering the last round key is not sufficient
to invert the key schedule algorithm and recover the secret key. More precisely, in
order to invert the key schedule algorithm of PRESENT from a single round key,
an additional 215 average guess work would be required in the case of PRESENT-
80, while an additional 263 average guess work would be required in the case of
PRESENT-128. However, in a (faulty) ciphertext-only scenario, guessing the

92 F. De Santis et al.

correct key e.g., for the case of PRESENT-80, is not straightforward, as the
attacker does not have access to the plaintexts to quickly verify the key guesses.
Yet, it could be possible to verify different key guesses under the assumption that
the distribution of plaintexts for the correct key guess is somewhat different than
the one for a wrong key guess. In case this assumption is valid, then the attacker
could e.g., estimate the distribution of plaintexts for each key guess and select
the key guess which leads to the set of plaintexts with the smallest entropy -
that is, under the assumption that wrong-key guesses maximize the entropy of
plaintexts, while the correct key minimizes it. Although appealing, this approach
would require a very large number of ciphertexts depending on intrinsic difficulty
of estimating the entropy of plaintexts in the particular application case (e.g.,
depending on whether randomization countermeasures like in [16] are deployed
or not).

A more suitable and convenient approach for the attacker is to recover mul-
tiple (consecutive) round keys in the last rounds of PRESENT and invert the
key schedule algorithm using multiple round keys. In the case of PRESENT-80,
the key schedule can be inverted using two consecutive 64-bit round keys, say
the post-whitening key K32 and the last round key K31, while in the case of
PRESENT-128, the key schedule can be inverted using three consecutive 64-bit
round keys, say the post-whitening key K32, the last round key K31 and the
second to last round key K30.

In the following subsections, we develop two attack strategies which mainly
differ in whether they exploit faulty nibbles located across multiple rounds or just
in a single round. The first strategy recovers the round keys one after another by
iteratively exploiting faulty nibbles starting from the last round and peeling off
one round after another. Please note that this strategy only requires faulty states
across different rounds, but does not require to inject multiple faults during the
same cryptographic computation. The second strategy is based on exploiting
faulty nibbles from one single round only and by recovering multiple consecutive
round keys at the same time. For each attack, we compute the time complex-
ity τ and data complexity δ requirements as a function of the number of faulty
ciphertexts NA,S

Δ required to distinguish the distribution of a faulty nibble for
the correct key. We will estimate actual values of NA,S

Δ by simulations in Sect. 5.
To lighten the notation, we will simply refer to N (instead of NA,S

Δ) in the next
subsections. However, please note that the number of faulty ciphertexts required
to distinguish the correct key depends on the specific considered attack A, the
fault injection setup S and the intrinsic efficiency of the chosen statistical dis-
tinguisher Δ. For the sake of compactness, we assume that each target nibble
requires the same number of faulty ciphertexts for a given triple < A,S,Δ >
in our analysis. In practice, the veracity of this assumption depends on the spe-
cific fault injection setup S which specifies in which the round the attacker is
able to inject faults, the fault model, the fault rate 1/Qr and the fault injection
probability 1/η.

Ciphertext-Only Fault Attacks on PRESENT 93

4.1 Fault Attacks on PRESENT-80

Fault Attacks Across Multiple Rounds. The secret key can be recovered by
exploiting faulty intermediate states located across multiple rounds by peeling
off one round after the other. This strategy exploits faulty nibbles located after
either one of the addRoundKey, sBoxlayer or pLayer operations in both the 31st

round and in the 30th round. It requires two sets of faulty ciphertexts C̃30 and
C̃31 which can be (possibly) obtained faulting the cryptographic computations
in different rounds.

Assuming that the state after the sBoxlayer is targeted, then we can express
every nibble j ∈ [0, 15] of the hypothetical intermediate state Ŝi

31(sb)[j] as a func-
tion of the faulty ciphertexts c̃i

31 and post-whitening key guess K̂32 as follows:

Ŝi
31(sb)[j] = pLayer−1(c̃i

31 ⊕ K̂32)[j]

= pLayer−1(c̃i
31)[j] ⊕ k̂32[j]

, (1)

where k̂r[j] = pLayer−1(K̂r)[j] denote the jth-nibble of the round key guess K̂r

when the inverse pLayer operation is applied to it. This simple equation allows
to recover the 16 nibbles of the post-whitening key K32 by 16 independent search
using 24 key nibble guesses, leading to a time complexity of 24 ∗ 16 ∗ N = 28 ∗ N
and a data complexity �16/Q31 ∗ N to recover the post-whitening key K32

from faulty intermediate states in the 31st round. The next step is to repeat
the attack by exploiting the (nibble-wise) faulty states in the 30th round to
recover the 16 nibbles of the last round key K31 and finally invert the key
schedule algorithm. Thus, by assuming that the post-whitening key K32 has
been successfully recovered using Eq. (1), the intermediate state Si

31(ak) can be
computed backwards from the faulty ciphertexts c̃i

30. Then, each nibble of the
last round key K31 can be recovered by 16 independent searches ∀j ∈ [0, 15]
as before:

Ŝi
30(sb)[j] = pLayer−1(Si

31(ak))[j] ⊕ k̂31[j] (2)

Assuming that the number of faulty ciphertexts N required to successfully
attack the nibbles in the 30th round is the same as the attack in the 31st round
as well as their fault rates Q = Q31 = Q30, then the time and data complex-
ity requirements of the attack are simply doubled, being 29∗N and 2∗�16/Q∗N ,
respectively. This attack strategy can be improved if the faulty nibbles of the
30th round are located after the pLayer operation. In this case, it is possible to
target directly the 5 least significant nibbles of K31 only, which are sufficient to
invert the key schedule together with K32, leading to an improved data complex-
ity

(�5/Q30+�16/Q31
)∗N and time complexity of (28+5∗24)∗N ≈ 28.39 ∗N .

The total time complexity can be further reduced down to ≈ 28.29∗N by observ-
ing that 4 bit of the 5 faulted nibbles of K31 are actually known from K32.

Fault Attacks in One Single Round Only. Yet another strategy is to recover
the secret key from faulty intermediate state located in one single round only.
In this case, one very first option is to proceed as in Eq. (1) by recovering the

94 F. De Santis et al.

post-whitening key K32 and verifying the entropy of plaintexts for the remaining
216 key guesses instead of proceeding backwards. This attack has a time com-
plexity of N ∗ 28 + C ∗ 216 and a data complexity of N ∗ Q31 + C, where C
is minimum number of correct ciphertexts required to properly estimate the
entropy of plaintexts for each key guess.

As discussed previously, a more suitable approach in the context of faulty-
ciphertext only attacks is to recover the 32nd and 31st round keys simultaneously.
In this case, there are at least two possible options depending on whether the
faulty nibbles are located either after the addRoundKey/sBoxlayer operations
or after the pLayer operation in the 30th round.

The first attack option requires faulty nibbles after the addRoundKey or after
the sBoxlayer operation in the 30th round. In this case, all the 16 nibbles of the
post-whitening key K32 and 16 bits of the last round key K31 can be recovered
simultaneously with a time complexity of N∗4∗220 = N∗222 by four independent
searches on 20 key bits each. Assuming that the faulty nibbles are located after
the sBoxlayer operation, we can describe the four independent searches ∀j ∈
{0, 1, 2, 3} and q ∈ {0, 4, 8, 12} by the following system of equations:

⎧
⎨

⎩

T i[j + q] = pLayer−1(c̃i
30)[j + q] ⊕ k̂32[j + q]

U i[j + q] = sBoxlayer−1(T i)[j + q]
Ŝi
30(sb)[4 ∗ j] = pLayer−1(U i)[4 ∗ j] ⊕ k̂31[4 ∗ j]

(3)

In order to recover the remaining 12 ∗ 4 = 48 key bits of the last round key K31,
Eq. (2) can be used as the post-whitening key K32 has been fully recovered after
Eq. (3). This leads to a time complexity of N ∗ 4 ∗ (220 + 3 ∗ 24) ≈ N ∗ 222.

The second attack option requires faulty nibbles after the pLayer operation
in the 30th round. In this case, the nibbles of the round keys K32 and K31 can
be recovered two at a time simultaneously leading to a reduced time complexity
of N ∗ (28 ∗16) = N ∗212. In fact, in this case, it is possible to write the following
simplified equations ∀j ∈ [0, 15]:

Ŝi
30(pr)[j] = sBoxlayer−1(pLayer−1(c̃i

30 ⊕ K̂32))[j] ⊕ K̂31[j]

In all the cases the data complexity is �16/Q30 ∗ N . Please refer to Figs. 4
and 5 in Appendix A for a visualization of the fault propagation pattern and the
corresponding necessary guess work for these attacks.

4.2 Fault Attacks on PRESENT-128

The attacks on PRESENT-128 mostly resemble and extend the attack strategies
previously presented for PRESENT-80, as the only difference between the two
variants of the PRESENT block cipher lies in the key-schedule algorithm.

Fault Attacks in Multiple Rounds. The first attack strategy consists in
exploiting any of the previously presented multiple rounds attacks on PRESENT-
80 to recover the post-whitening key K32 and the last round key K31 and then

Ciphertext-Only Fault Attacks on PRESENT 95

testing the entropy of plaintexts for a reduced set of 23 key guesses, only. In the
best considered case (worst-case security), this attack has a time complexity of
N ∗ 28.29 + 23 ∗ C and a data complexity of

(�5/Q30 + �16/Q31
) ∗ N + C.

Alternatively, a second attack strategy it to exploit one more faulty nibble
after either the addRoundKey or after the sBoxlayer operation in the 29th round
in order to recover the least significant nibble of the second-to-last round key K30,
once the the post-whitening key K32 and the last round key K31 have been
successfully recovered. In the best considered case (worst-case security), this
attack has a time complexity of N ∗(28.29+24) ≈ N ∗28.36 and a data complexity
of

(�5/Q30 + �16/Q31
) ∗ N + N .

Fault Attacks in a Single Round Only. As in the previous case, one first
strategy would consist in exploiting any of the previously presented single rounds
attacks on PRESENT-80 to recover the post-whitening key K32 and the last
round key K31 simultaneously and then testing the entropy of plaintexts for
a reduced set of 23 key guesses, only. In the best considered case (worst-case
security), this attack has a time complexity of N ∗ 212 + 23 ∗ C and a data
complexity of �16/Q30 ∗ N + C.

As a second alternative strategy, it is possible to exploit the faulty nibbles
located after the pLayer operation in the 29th round by four independent to
recover the post-whitening key K32, the last round key K31 and the second
to last round key K30 simultaneously. This strategy has a time complexity of
4 ∗ N ∗ (224 + 3 ∗ 28) ≈ N ∗ 226 and a data complexity of �16/Q29 ∗ N . The
attack can be visualized with the help of Fig. 6 in Appendix A.

5 Simulation Analysis

Based upon the distinguishers, the fault models and the attacks, presented in the
previous sections, we performed several simulations to estimate the number of
faulty ciphertexts NA,S

Δ required to a successful key-recovery fault attack. As a
metric to estimate NA,S

Δ , we computed the guessing entropy and the success
rate [31] over 100 trials, and defined NA,S

Δ as the number of faulty ciphertexts
required to obtain a 100% success rate or, equivalently, a zero guessing entropy.
In the following, we discuss the results of our simulations for different configu-
rations of the triple < A,S,Δ > in the case of PRESENT-80 only. We expect
similar considerations to apply for the case of PRESENT-128 as well.

Fault Models. Faulty ciphertext-only fault attacks require faulty intermediate
states in the final rounds of PRESENT in order to recover the last round keys.
This means that faults can be injected either directly in the final rounds or
even in previous middle rounds and let them propagate until the final rounds.
In the first case, under the reasonable assumption that the intermediate values
are uniformly distributed in the final rounds of PRESENT, the distributions
of faulty intermediate values depend only on the fault model and the injection
probability (which only make the distributions more “noisy”). The small size

96 F. De Santis et al.

of our nibble-wise fault models actually allows for the enumeration of all the
possible fault distributions for the three considered fault models described in
Sect. 3.2, which are provided in Appendix B (Figs. 7, 8, and 9) for the conve-
nience of the reader. In the second case, instead, the distributions depend not
only on the previous parameters, but also on the specific look of intermediate
cryptographic operations, the fault rate (number of nibbles which can be faulted
per cryptographic operation) as well as through how many rounds the faults are
propagated. Considering the worst-case security scenario, where the attacker is
able to inject faults directly in the final rounds with probability 1 using the Fault
Model 1. with c = 0 and Q = 16 (the intermediate states are cleared entirely),
faulty ciphertext-only attacks over multiple rounds have a data complexity of
2 (resp. time complexity of 29.29) using either ΔML or ΔHW, which significantly
improve state-of-the-art fault attack complexities (cf. Sect. 2).

Considering the more relaxed Fault Model 2., instead, Fig. 1 shows the guess-
ing entropy for all the possible values of c obtained using the average Ham-
ming weight ΔHW as a distinguisher. Interestingly, the success probability of the
attacks in this case does not only depend on how many bits are flipped, but also
on which particular bits are flipped. Similar results and considerations apply for
Fault Model 3. being just a combination of bit clears and bit flips.

0 200 400 600 800
0

10

20

30

G
ue

ss
in

g
E

nt
ro

py

Number of Faulty Ciphertexts

1 × "1 → 0" bit flips

0 200 400 600 800
0

10

20

30

G
ue

ss
in

g
E

nt
ro

py

Number of Faulty Ciphertexts

2 × "1 → 0" bit flips

0 200 400 600 800
0

10

20

30

G
ue

ss
in

g
E

nt
ro

py

Number of Faulty Ciphertexts

3 × "1 → 0" bit flips

0 200 400 600 800
0

10

20

30

G
ue

ss
in

g
E

nt
ro

py

Number of Faulty Ciphertexts

4 × "1 → 0" bit flips

Fig. 1. Guessing entropy for attacks on the last two rounds of PRESENT using Fault
Model 2. for all the possible values of c, ΔHW, injection probability 1, fault rate
Q = 16.

Single vs. Multiple-Round Attacks. Single round attacks have the advantage to
require faulty intermediate states in only a single round, but on the other side

Ciphertext-Only Fault Attacks on PRESENT 97

they have an increased time complexity as described in Sect. 4. In Fig. 2, we
report the success rate of attacks computed over single vs. multiple rounds in
the case of Fault Model 2. with c = 0 and Q = 16 (the intermediate states
are cleared entirely) using the average Hamming weight distinguisher ΔHW. The
confidence intervals are computed using the normal approximation method for
a confidence level of 95% and are depicted using dashed gray lines. It can be
observed that the two attacks converge pretty fast to the asymptotic value, while
single round attacks have a larger variance, multiple round attacks requires a
smaller number of faulty ciphertext to distinguish the correct key. However,
please note the multiple round attacks have always doubled data complexity
requirements by construction, as they have to iterate the attack at least twice to
recover the last two round keys. Hence, the attacks have almost the same data
complexity requirements.

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

S
uc

ce
ss

 R
at

e

Number of Faulty Ciphertexts

Multiple Rounds
Single Round

Fig. 2. Success rate and guessing entropy for attacks over single vs. multiple rounds
using ΔHW, Fault Model 2., c = 0, injection probability 1, fault injection rate
Q = 16.

Distinguishers. The maximum likelihood based distinguisher ΔML represents
the worst-case scenario analysis, where it is assumed that the attacker is able
to profile the distribution of faulty intermediate states determined by the given
fault injection setup (e.g., from an identical copy of the target of evaluation or
from running simulations). However, depending on the particular fault model,
other distinguishers might have similar performance. For instance, in the case
of Fault Model 2. with c = 0, the distribution of faulty intermediate state which
are clearly biased towards zero, hence leading the average Hamming weight dis-
tinguisher ΔHW to perform comparably to ΔML. On the other side, decreasing
the fault injection probability, ΔML performs much better in distinguishing the
correct key as the average Hamming weight distinguisher would not be able to
consider the noise introduced by the mixture of correct uniformly distributed
intermediate values and faulty biased intermediate values. Finally, the Δχ2 dis-
tinguisher has been revealed to be totally ineffective in many of the considered
cases, as it practically happens that the distributions of faulty intermediate
states, though different for different key guesses, they all lay at the same “dis-
tance” from the uniform distribution. This effect has been observed also in [14]

98 F. De Santis et al.

and it is actually caused by the bijective property of the cryptographic operations
involved in the backward computations of faulty intermediate values. In this case,
backward computations only lead to permutations of the values under different
key guesses (the score value computed by Δχ2 is the same value for all the key
guesses), which breaks the wrong-key assumption and therefore make the correct
key indistinguishable from the other key guesses. Hence, in order to be able to
use Δχ2 to distinguish the correct key effectively, an additional requirement on
the distributions of faulty intermediate values must be required, that is, the dis-
tribution of faulty intermediate values must be different from a given reference
distribution (e.g., the uniform distribution) and not symmetric under different
key guesses.

Injection Probability. Finally, we evaluate the effect of different injection prob-
abilities p ∈ {1, 0.5, 0.33, 0.25} on the success rate of multi-round attacks using
the average Hamming weight distinguisher as depicted in Fig. 3. We observe that,
depending on the considered fault model, the data complexity scales differently
with the injection probability. This effect can be explained by looking at the
distribution of faulty intermediate values which, depending on the fault model,
are more or less biased towards zero.

0 500 1000 1500
0

0.5

1

S
uc

ce
ss

 R
at

e

Number of Faulty Ciphertexts

0 500 1000 1500
0

0.5

1

S
uc

ce
ss

 R
at

e

Number of Faulty Ciphertexts

p: 1.00
p: 0.50
p: 0.33
p: 0.25

p: 1.00
p: 0.50
p: 0.33
p: 0.25

Fig. 3. Success rate for different injection probabilities p ∈ {1, 0.5, 0.33, 0.25} using
ΔHW, Fault Model 1., c = 0 (top), Fault Model 2., c = 0 (below), multiple rounds
attacks, injection rate Q = 16.

Ciphertext-Only Fault Attacks on PRESENT 99

6 Conclusion

In this work, we have introduced fault attacks on PRESENT-80 and PRESENT-
128 with (faulty) ciphertexts-only and provided a detailed simulation analysis
discussing different injection setups. In contrast to state-of-the-art differential
fault attacks on PRESENT, faulty ciphertext-only attacks do not require the
knowledge of plaintext values. These minimal attack requirements make
ciphertext-only fault attacks of particular interest when considering the security
of low-cost cryptographic devices, as they can completely defeat the security of
typical low-cost fault attack countermeasures such as input randomization-based
countermeasures. Indeed, we have shown by simulations that faulty ciphertext-
only attacks on PRESENT-80 have considerably low time and data complexities
in many attack scenarios and they are even more efficient than state-of-the-art
fault attacks when worst-case security analysis is considered (average data com-
plexity is 2 and time complexity is 29.29). In order to assess the real threat in a
practical scenario, future work will comprise performing various fault injection
attacks on low-cost cryptographic devices to compare experimental and simula-
tions results.

Finally, we lay stress on the fact that faulty ciphertext-only attacks are not
limited to the fault models and distinguishers presented in this work. In prin-
ciple, any fault model which can lead to a bias of the intermediate states of
PRESENT in the final rounds and any distinguisher which can effectively dis-
cern the bias can be used. This fact leaves an interesting research question open
for further research, that is: up to which round faults can be injected and which
fault models remain valid in order to obtain exploitable faulty intermediate states
in the final rounds of PRESENT. This question has no trivial answer as the
distributions obtained in the final rounds of PRESENT from fault injections
in middle rounds will depend on many parameters such as the number of
rounds, the fault model, the specific look of cryptographic operations and the
fault injection rate. Most importantly, fault injections in the middle rounds
should not only deliver distributions which are biased in the final rounds of
PRESENT, but also which can be exploited by the considered distinguishers
e.g., they must be independent of the secret key and not symmetric under dif-
ferent key hypotheses.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions. This work has been funded in part by the
German Federal Ministry of Education and Research 163Y1200D (HIVE).

100 F. De Santis et al.

A Fault Propagation in the Datapath of PRESENT

Fig. 4. Fault propagation with fault injection after the addRoundKey operation in the
30th round. Gray: faulted bits. Blue: key bits to guess (Color figure online).

Ciphertext-Only Fault Attacks on PRESENT 101

Fig. 5. Fault propagation with fault injection after the pLayer operation in the 30th

round. Gray: faulted bits. Blue: key bits to guess (Color figure online).

102 F. De Santis et al.

Fig. 6. Fault propagation with fault injection after the pLayer operation in the 29th

round. Gray: faulted bits. Blue: key bits to guess (Color figure online).

Ciphertext-Only Fault Attacks on PRESENT 103

B Probability Distributions of Faulty Intermediate
Nibbles

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

Fig. 7. Estimated probability distributions of (nibble-wise) faulty intermediate states
for Fault Model 1. for all c ∈ Z16\{15}.

104 F. De Santis et al.

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

Fig. 8. Estimated probability distributions of (nibble-wise) faulty intermediate states
for Fault Model 2. for all c ∈ Z16\{15}.

Ciphertext-Only Fault Attacks on PRESENT 105

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

Fig. 9. Estimated probability distributions of (nibble-wise) faulty intermediate states
for Fault Model 3. for all c ∈ Z16\{0, 15}.

106 F. De Santis et al.

References

1. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor
networks. IEEE Commun. Mag. 40(8), 102–114 (2002)

2. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

3. Avoine, G., Kara, O. (eds.): LightSec 2013. LNCS, vol. 8162. Springer, Heidelberg
(2013)

4. Bagheri, N., Ebrahimpour, R., Ghaedi, N.: New differential fault analysis on
present. EURASIP J. Adv. Signal Process. 2013(1), 1–10 (2013). http://dx.
doi.org/10.1186/1687-6180-2013-145

5. Balasch, J., Gierlichs, B., Verbauwhede, I.: An in-depth and black-box character-
ization of the effects of clock glitches on 8-bit MCUs. In: 2011 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC), pp. 105–114, September 2011

6. Barenghi, A., Bertoni, G., Breveglieri, L., Pellicioli, M., Pelosi, G.: Low volt-
age fault attacks to aes. In: 2010 IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), pp. 7–12, June 2010

7. Barenghi, A., Hocquet, C., Bol, D., Standaert, F.-X., Regazzoni, F., Koren,
I.: Exploring the feasibility of low cost fault injection attacks on sub-threshold
devices through an example of a 65nm AES implementation. In: Juels, A., Paar,
C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 48–60. Springer, Heidelberg (2012).
http://dx.doi.org/10.1007/978-3-642-25286-0 4

8. Bassi, A., Horn, G.: Internet of things in 2020: A roadmap for the future. European
Commission: Information Society and Media (2008)

9. Biehl, I., Meyer, B., Müller, V.: Differential fault attacks on elliptic curve cryp-
tosystems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 131–146.
Springer, Heidelberg (2000). http://dx.doi.org/10.1007/3-540-44598-6 8

10. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997). http://dx.doi.org/10.1007/BFb0052259

11. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). http://dx.doi.org/10.1007/978-3-540-74735-2 31

12. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking
cryptographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997.
LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997). http://dx.doi.org/
10.1007/3-540-69053-0 4

13. Fischer, W., Schmidt, J.M. (eds.): 2013 Workshop on Fault Diagnosis and Toler-
ance in Cryptography, Los Alamitos, CA, USA, 20 August 2013. IEEE (2013)

14. Fuhr, T., Jaulmes, E., Lomne, V., Thillard, A.: Fault attacks on aes with faulty
ciphertexts only. In: 2013 Workshop on Fault Diagnosis and Tolerance in Cryp-
tography (FDTC), pp. 108–118, August 2013

15. Gu, D., Li, J., Li, S., Ma, Z., Guo, Z., Liu, J.: Differential fault analysis on
lightweight blockciphers with statistical cryptanalysis techniques. In: Bertoni, G.,
Gierlichs, B. (eds.) 2012 Workshop on Fault Diagnosis and Tolerance in Cryptog-
raphy, Leuven, Belgium, 9 September 2012, pp. 27–33. IEEE (2012)

16. Guilley, S., Sauvage, L., Danger, J.L., Selmane, N.: Fault injection resilience.
In: 2010 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC),
pp. 51–65, August 2010

http://dx.doi.org/10.1186/1687-6180-2013-145
http://dx.doi.org/10.1186/1687-6180-2013-145
http://dx.doi.org/10.1007/978-3-642-25286-0_4
http://dx.doi.org/10.1007/3-540-44598-6_8
http://dx.doi.org/10.1007/BFb0052259
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/3-540-69053-0_4
http://dx.doi.org/10.1007/3-540-69053-0_4

Ciphertext-Only Fault Attacks on PRESENT 107

17. Harpes, C., Kramer, G.G., Massey, J.L.: A generalization of linear cryptanalysis
and the applicability of Matsui’s piling-up lemma. In: Guillou, L.C., Quisquater,
J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 24–38. Springer, Heidelberg
(1995)

18. Hutter, M., Schmidt, J.M.: The temperature side channel and heating fault
attacks. Cryptology ePrint Archive, Report 2014/190 (2014). http://eprint.iacr.
org/

19. ISO: Information technology – security techniques – lightweight cryptography –
part 2: Block ciphers. ISO/IEC 29192–2:2012, International Organization for
Standardization, Geneva, Switzerland (2012)

20. Junod, P.: Statistical cryptanalysis of block ciphers. Ph.D. thesis, IC, Lausanne
(2005)

21. Li, J., Gu, D.: Differential fault analysis on present. In: CHINACRYPT 2009,
pp. 3–13 (2009)

22. Maistri, P.: Countermeasures against fault attacks: the good, the bad, and the
ugly. In: Proceedings of the 2011 IEEE 17th International On-Line Testing Sym-
posium, IOLTS 2011, p. 134137. IEEE Computer Society, Washington, DC (2011).
http://dx.doi.org/10.1109/IOLTS.2011.5993825

23. Moro, N., Dehbaoui, A., Heydemann, K., Robisson, B., Encrenaz, E.: Electromag-
netic fault injection: towards a fault model on a 32-bit microcontroller. In: 2013
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 77–88.
IEEE (2013)

24. Mukhopadhyay, D.: An improved fault based attack of the advanced encryp-
tion standard. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol.
5580, pp. 421–434. Springer, Heidelberg (2009). http://dx.doi.org/10.1007/978-
3-642-02384-2 26

25. Neve, M., Peeters, E., Samyde, D., Quisquater, J.J.: Memories: a survey of their
secure uses in smart cards. In: Proceedings of the Second IEEE International
Security in Storage Workshop, 2003, SISW 2003, pp. 62–62. IEEE (2003)

26. Piret, G., Quisquater, J.-J.: A differential fault attack technique against SPN
structures, with application to the AES and KHAZAD. In: Walter, C.D.,
Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer,
Heidelberg (2003). http://dx.doi.org/10.1007/978-3-540-45238-6 7

27. Rivain, M.: Differential fault analysis on DES middle rounds. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 457–469. Springer, Heidelberg (2009).
http://dx.doi.org/10.1007/978-3-642-04138-9 32

28. Schmidt, J.M., Hutter, M.: Optical and em fault-attacks on crt-based rsa: concrete
results. In: Karl C. Posch, J.W. (ed.) Austrochip 2007, 15th Austrian Workhop on
Microelectronics, Proceedings, Graz, Austria, 11 October 2007, pp. 61–67. Verlag
der Technischen Universität Graz (2007)

29. Schmidt, J.M., Hutter, M., Plos, T.: Optical fault attacks on aes: a threat in
violet. In: Naccache, D., Oswald, E. (eds.) 6th Workshop on Fault Diagnosis and
Tolerance in Cryptography - FDTC 2009, pp. 13–22. IEEE-CS Press (2009)

30. Skorobogatov, S.: Flash memory ‘bumping’ attacks. In: Mangard, S., Standaert,
F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 158–172. Springer, Heidelberg
(2010). http://dx.doi.org/10.1007/978-3-642-15031-9 11

31. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the anal-
ysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT
2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). http://dx.
doi.org/10.1007/978-3-642-01001-9 26

http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1109/IOLTS.2011.5993825
http://dx.doi.org/10.1007/978-3-642-02384-2_26
http://dx.doi.org/10.1007/978-3-642-02384-2_26
http://dx.doi.org/10.1007/978-3-540-45238-6_7
http://dx.doi.org/10.1007/978-3-642-04138-9_32
http://dx.doi.org/10.1007/978-3-642-15031-9_11
http://dx.doi.org/10.1007/978-3-642-01001-9_26
http://dx.doi.org/10.1007/978-3-642-01001-9_26

108 F. De Santis et al.

32. Wang, G., Wang, S.: Differential fault analysis on present key schedule. In: Pro-
ceedings of the 2010 International Conference on Computational Intelligence and
Security, CIS 2010, pp. 362–366. IEEE Computer Society, Washington, DC (2010).
http://dx.doi.org/10.1109/CIS.2010.84

33. Zhao, X., Guo, S., Wang, T., Zhang, F., Shi, Z.: Fault-propagate pattern based
dfa on present and printcipher. Wuhan Univ. J. Nat. Sci. 17(6), 485–493 (2012).
http://dx.doi.org/10.1007/s11859-012-0875-7

http://dx.doi.org/10.1109/CIS.2010.84
http://dx.doi.org/10.1007/s11859-012-0875-7

Relating Undisturbed Bits to Other Properties
of Substitution Boxes

Rusydi H. Makarim1,2,3(B) and Cihangir Tezcan3,4,5

1 Mathematical Institute, Leiden University, Leiden, The Netherlands
r.h.makarim@math.leidenuniv.nl

2 CWI Cryptology Group, Amsterdam, The Netherlands
makarim@cwi.nl

3 Institute of Applied Mathematics, Middle East Technical University,
06800 Çankaya, Ankara, Turkey

4 Department of Mathematics, Middle East Technical University,
06800 Çankaya, Ankara, Turkey

5 Institute of Informatics, CyDeS Cyber Defence and Security Laboratory,
Middle East Technical University, 06800 Çankaya, Ankara, Turkey

cihangir@metu.edu.tr

Abstract. Recently it was observed that for a particular nonzero input
difference to an S-Box, some bits in all the corresponding output dif-
ferences may remain invariant. These specific invariant bits are called
undisturbed bits. Undisturbed bits can also be seen as truncated differen-
tials with probability 1 for an S-Box. The existence of undisturbed bits
was found in the S-Box of Present and its inverse. A 13-round improb-
able differential attack on Present was provided by Tezcan and without
using the undisturbed bits in the S-Box an attack of this type can only
reach 7 rounds. Although the observation and the cryptanalytic applica-
tion of undisturbed bits are given, their relation with other properties of
an S-Box remain unknown. This paper presents some results on math-
ematical properties of S-Boxes having undisturbed bits. We show that
an S-Box has undisturbed bits if any of its coordinate functions has a
nontrivial linear structure. The relation of undisturbed bits with other
cryptanalytic tools such as difference distribution table (DDT) and linear
approximation table (LAT) are also given. We show that autocorrelation
table is proven to be a more useful tool, compared to DDT, to obtain
all nonzero input differences that yield undisturbed bits. Autocorrelation
table can then be viewed as a counterpart of DDT for truncated differ-
ential cryptanalysis. Given an n × m balanced S-Box, we state that the
S-Box has undisturbed bits whenever the degree of any of its coordinate
function is quadratic.

Keywords: Block cipher · Substitution box · Undisturbed bits ·
Truncated differential

Cihangir Tezcan—The work of the second author was supported by The Scientific
and Technological Research Council of Turkey (TÜBİTAK) under the grant 112E101
titled “Improbable Differential Cryptanalysis of Block Ciphers”.

c© Springer International Publishing Switzerland 2015
T. Eisenbarth and E. Öztürk (Eds.): LightSec 2014, LNCS 8898, pp. 109–125, 2015.
DOI: 10.1007/978-3-319-16363-5 7

110 R.H. Makarim and C. Tezcan

1 Introduction

The emerging trends of small-scale computing devices raise the need for suitable
cryptographic primitives, especially block ciphers. Two main challenges to design
a block cipher for small-scale devices are the limited memory and available power.
Some of the proposals for lightweight block ciphers, such as Present [2] and
Rectangle [17], are designed in bit-oriented fashion. This is due to the efficiency
of bit-level operation in hardware implementation.

In [16], Tezcan observed that for a particular nonzero input difference to
the substitution box (S-Box) of Present, in all of the output differences, there
exist some bits that remain the same. These specific invariant bits are called
undisturbed bits. For instance, with input difference 9 = (1, 0, 0, 1) the least
significant bit of every possible output difference is undisturbed and its value is
equal to zero. The existence of undisturbed bits can also be equally seen as a
truncated differential [7] with probability one for a given S-Box. This allows an
attacker to have longer truncated differential for bit-oriented ciphers. In [16], a
13-round improbable differential attack was provided for Present and without
using undisturbed bits, the best attack of this type can only reach 7 rounds
(Table 1).

Table 1. The 4 × 4 S-Box of Present.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) 12 5 6 11 9 0 10 13 3 14 15 8 4 7 1 2

Proving the exact security bound of a block cipher against differential crypt-
analysis is a challenging task. Typically the designer of block cipher would
perform computer-aided search to find the best differential characteristic on
reduced-round version of the cipher. One obvious way to improve the complex-
ity of the searching algorithm is by reducing the search space. In [15] Sun et al.
used the undisturbed bits in the S-Box of Present as additional constraint
for searching the best differential in related-key settings. The existence of undis-
turbed bits remove some differential patterns that would never occur and, hence,
reduce the search space of the differential characteristics. The undisturbed bits
are then converted into linear inequalities for Mixed-Integer Linear Program-
ming (MILP) model. The term conditional differential propagation is used by
the authors to describe this behaviour.

In [16], it was shown that all 3×3 bijective S-Boxes contain undisturbed bits.
Moreover, many 4 × 4 S-Boxes of cryptographic algorithms are also evaluated
in [16], and it was observed that 66% of these S-Boxes contain undisturbed bits.
Since bit-oriented lightweight block ciphers use small S-Boxes, undisturbed bits
pose a threat to the security of these ciphers.

Although previous literature have discussed the observation on undisturbed
bits and its application in cryptanalysis of block ciphers, the relation of undis-
turbed bits with other properties of an S-Box remain unknown. The main goal

Relating Undisturbed Bits to Other Properties of Substitution Boxes 111

of this paper is to address this open problem and presents the relation of undis-
turbed bits to other properties in an S-Box. All necessary notations and prelim-
inaries on Boolean functions and S-Boxes are given in Sect. 2.

We breakdown the primary goal of this paper into several sub-problems. The
first sub-problem is, one may ask the implication of undisturbed bits to the com-
ponent functions of an S-Box. Specifically, we would like to focus on the com-
ponent functions of an S-Box where the undisturbed bits occur. The second
sub-problem is the relation of undisturbed bits with other cryptanalytic tools for
S-Boxes. We want to see the existence of undisturbed bits from the point of view
of two well-known cryptanalytic tools, difference distribution table (DDT) [1] and
linear approximation table (LAT) [10]. We will address these two sub-problems
and show the relation of undisturbed bits with the notion of linear structure in
Sect. 3. The third sub-problem in this work deals with a problem of developing
dedicated cryptanalytic tool to obtain all nonzero input differences that yield
undisturbed bits. In Sect. 4 autocorrelation table will be introduced as a crypt-
analytic tool, in addition to DDT and LAT, that can be used to find undisturbed
bits. Lastly, we ask what would be the property of an S-Box that may indicate
whether an S-Box has undisturbed bits. We will show in Sect. 5 that a balanced
n × m S-Box with a quadratic coordinate function has undisturbed bits. We
conclude this paper in Sect. 6.

2 Notations and Preliminaries

The cardinality of a set V is denoted by |V |. Let F2 = {0, 1} be a finite field with
two elements and F

n
2 be n-dimensional vector space over F2. Any element of Fn

2

is denoted by x = (xn−1, . . . , x0). The notation ⊕ is used to denote the addition
in F2 as well as F

n
2 . The vector x = (xn−1, . . . , x0) ∈ F

n
2 can be represented as

integer by x =
∑n−1

i=0 xi2i and its associated integer representation is written
using boldface type font. The standard basis for F

n
2 is represented by

en−1 = (1, 0, 0, . . . , 0), . . . e1 = (0, . . . , 0, 1, 0), e0 = (0, 0, . . . , 0, 1)

The vector ei is called the i-th standard basis of Fn
2 . The integer representation

of each i-th standard basis of Fn
2 is given by 2i. The inner product of vectors

x, y ∈ F
n
2 is defined as x ·y = xn−1yn−1 ⊕· · ·⊕x0y0. The weight of vector x ∈ F

n
2

is defined as the number of its nonzero components, denoted wt(x). Note that
in this paper every vector is considered as column vector, but we will continue
writing it in row-wise manner.

2.1 Boolean Functions

A Boolean function f : Fn
2 �→ F2 is a map from F

n
2 to F2. The associated sign

function f̂(x) for every Boolean function f is defined by f̂(x) = (−1)f(x) ∈
{−1, 1}. The weight of a Boolean function f , denoted by wt(f), is defined as
wt(f) = |{x ∈ F

n
2 | f(x) �= 0}|. A Boolean function f with wt(f) = 2n−1 is

112 R.H. Makarim and C. Tezcan

called a balanced function. If for every x ∈ F
n
2 the Boolean function f(x) = τ for

a fixed τ ∈ F2, then we call f a constant function. The distance of two Boolean
functions f, g, denoted by dt(f, g) is defined as the number of entry in which
they differ, i.e. dt(f, g) = |{x ∈ F

n
2 | f(x) �= g(x)}|.

A Boolean function can be represented using algebraic expression

f(x) = f(xn−1, . . . , x1, x0) =
⊕

u∈F
n
2

aux
un−1
n−1 · · · xu0

0 =
⊕

u∈F
n
2

auxu (1)

The coefficient au is obtained by au =
⊕

x�u f(x) where x � u means that
xi ≤ ui for all 0 ≤ i ≤ n − 1 (we say that u covers x). We refer to expression
given in Eq. (1) as the algebraic normal form (ANF) of f . The degree of Boolean
function, deg(f), is defined as the maximal monomial degree in its ANF rep-
resentation. The following proposition gives an upper bound of the degree for
balanced function.

Proposition 1 [14]. For a balanced n-variable Boolean function with n ≥ 2,
deg(f) ≤ n − 1.

An affine function is a Boolean function such that its ANF is of the form ω·x⊕ε =
ωn−1xn−1 ⊕ · · · ⊕ ω0x0 ⊕ ε for ω = (ωn−1, . . . , ω0) ∈ F

n
2 and ε ∈ F2. The vector

ω is the coefficient vector of the affine function. If ε = 0, the function ω · x is
called a linear function. The following proposition characterizes the weight of
affine functions.

Proposition 2. Every affine function with nonzero coefficient vector is bal-
anced. If the coefficient vector is zero vector, the affine function is a constant
function.

In the analysis of a Boolean function, Walsh-Hadamard Transform is an impor-
tant tool that could determine various properties of the function. We give the
following definition of Walsh-Hadamard Transform as well as its inverse trans-
form.

Definition 1 (Walsh-Hadamard Transform). The Walsh value of f at ω ∈
F

n
2 is defined by

Wf (ω) =
∑

x∈F
n
2

(−1)f(x)(−1)ω·x =
∑

x∈F
n
2

f̂(x)(−1)ω·x

The inverse transform is defined by

f̂(x) = 2−n
∑

ω∈F
n
2

Wf (ω)(−1)x·ω

The vector (Wf (0), . . . ,Wf (2n−1)) is called the Walsh spectrum of f . One of
the properties of a Boolean function that can be determined from the Walsh
value is balancedness.

Relating Undisturbed Bits to Other Properties of Substitution Boxes 113

Proposition 3. The Boolean function f is balanced if and only if Wf (0) = 0.

Another important tool in analysis of Boolean functions is the notion of auto-
correlation and its relation with undisturbed bits are discussed in Sect. 3.

Definition 2 (Autocorrelation). The autocorrelation of n-variable Boolean
function f at α ∈ F

n
2 is defined by

rf (α) =
∑

x∈F
n
2

(−1)f(x)(−1)f(x⊕α) =
∑

x∈F
n
2

(−1)f(x)⊕f(x⊕α).

We refer to vector (rf (0), . . . , rf (2n−1)) as the autocorrelation spectrum of f .
The relation of autocorrelation and Walsh-transform is given by the Wiener-
Khinthcine’s Theorem.

Theorem 1 (Wiener-Khinthcine [12]). The expression of the autocorrelation
in terms of Walsh value is equal to

rf (α) = 2−n
∑

ω∈F
n
2

W2
f (ω)(−1)α·ω

A cryptographic criteria which is closely related to its autocorrelation is Strict
Avalanche Criterion (SAC). An n-variable Boolean function f satisfies SAC if
changing any one of the n bits in the input results in the output of the function
being changed with probability 1/2. It is clear that the following proposition fol-
lows from the definition of SAC and could be treated as an equivalent definition.

Proposition 4. An n-variable Boolean function f satisfies SAC if and only if the
function f(x)⊕f(x⊕α) is balanced for every α ∈ F

n
2 with wt(α) = 1. Equivalently,

the function f satisfies SAC if and only if rf (α) = 0, with wt(α) = 1.

An n-variable Boolean function is said to satisfy propagation criterion of degree
k, which we denote by PC(k), if changing any i (1 ≤ i ≤ k) of the n bits
in the input results in the output of the function being changed for half of
the times. This definition generalizes the notion of SAC, which clearly equals
to PC(1) function. The following proposition is analogous to the one given in
Proposition 4.

Proposition 5. An n-variable Boolean function f satisfies PC(k) if and only
if all of the given values

rf (α) =
∑

x∈F
n
2

(−1)f(x)(−1)f(x⊕α) = 0 1 ≤ wt(α) ≤ k

The derivative of f at α ∈ F
n
2 is defined as Dαf(x) = f(x) ⊕ f(x ⊕ α). The

derivative of f at any point in F
n
2 can also be treated as an n-variable Boolean

function. The autocorrelation of a Boolean function can then be expressed in
terms of its derivative as rf (α) =

∑
x∈F

n
2
(−1)Dαf(x). The following proposition

gives an upper bound of the degree of a derivative function.

114 R.H. Makarim and C. Tezcan

Proposition 6 [9]. If f is an n-variable Boolean function and α ∈ F
n
2 , then

deg(Dαf) ≤ deg(f) − 1.

If Dαf(x) is a constant function, then α is a linear structure of f [6,8].
The zero vector 0 is a trivial linear structure since D0f(x) = 0 for all x ∈ F

n
2 .

We say that the function f has a linear structure if there exists a nonzero vector
α ∈ F

n
2 such that Dαf(x) is a constant function. The notation LSf is used to

denote the set of all linear structures of f . The set of all n-variable Boolean
functions that has linear structure is denoted by LS(n). From the point of view
of autocorrelation, a vector in F

n
2 is a linear structure if it satisfies the following

proposition.

Proposition 7. The vector α ∈ F
n
2 is a linear structure of f if and only if

rf (α) = ±2n.

Proposition 8. Any vector in F
n
2 is a linear structure of every affine functions.

Proof. Let α ∈ F
n
2 . Recall that we can represent affine function as ω · x ⊕ ε with

ω ∈ F
n
2 and ε ∈ F2. The derivative of affine function ω · x ⊕ ε at α is equal to

(ω · x ⊕ ε) ⊕ (ω · (x ⊕ α) ⊕ ε) = (ω · x ⊕ ε) ⊕ ((ω · x ⊕ ω · α) ⊕ ε)
= ω · α

This implies that the derivative of affine function ω · x ⊕ ε at α is equal to ω · α
for all x ∈ F

n
2 and, hence, is a constant function. Clearly α is a linear structure

of ω · x ⊕ ε.
�

2.2 Substitution Boxes

An n × m S-Box is a mapping S : Fn
2 �→ F

m
2 . The internal structure of an S-Box

can be decomposed into Boolean functions. Let y = (ym−1, . . . , y0) ∈ F
m
2 and

y = S(x). The component of y can be computed by yi = hi(x). The function
hi : F

n
2 �→ F2 is called the coordinate function of S-Box S. The component

functions of S-Box S are the mapping b · S(x) for all nonzero b ∈ F
m
2 . The

component functions are essentially generalization of coordinate functions of
an S-Box by considering its linear combination. It follows that the coordinate
function hi(x) = ei · S(x) where ei is the i-th standard basis of Fm

2 .
An n × m S-Box S is balanced if it takes every value of Fm

2 the same number
2n−m of times [3]. The following proposition characterizes a balanced S-Box from
the balancedness of its component functions.

Proposition 9 [3]. An n × m S-Box is balanced if and only if its component
functions are balanced, that is if and only if for every nonzero b ∈ F

m
2 , the

Boolean function b · S(x) is balanced.

The notion of linear structures in Boolean functions can be extended for the case
of S-Boxes. The definition of an S-Box that has a linear structure was originally
proposed by Chaum [5] and Evertse [6]. They define that an S-Box has a linear
structure by considering the existence of nontrivial linear structure in any of the
component functions of the S-Box.

Relating Undisturbed Bits to Other Properties of Substitution Boxes 115

Definition 3 (S-Box with linear structures [5,6,11]). An n × m S-Box S
is said to have a linear structure if there exists a nonzero vector α ∈ F

n
2 together

with a nonzero vector b ∈ F
m
2 such that b · S(x) ⊕ b · S(x ⊕ α) takes the same

value c ∈ F2 for all x ∈ F
n
2 .

Proposition 10. An n × m S-Box S is said to have a linear structure if there
exists a nonzero vector α ∈ F

n
2 together with a nonzero vector b ∈ F

m
2 such that

rb·S(α) = ±2n

In the cryptanalysis of block ciphers, the two most well-known cryptanalytic
tools to analyse properties of an S-Box are DDT and LAT.

Let x, x′ ∈ F
n
2 be two inputs to the S-Box S and y = S(x), y′ = S(x′) be

their corresponding outputs. We refer to the difference in the input x ⊕ x′ = α
as the input difference to S. Similarly y ⊕ y′ = β is the output difference of S
corresponding to input difference α. DDT examines how many times a certain
output difference of an S-Box occur for a given input difference. The definition
of DDT is given as follows.

Definition 4. For an n × m S-Box S, the entry in the row s ∈ F
n
2 and column

t ∈ F
m
2 (considering their integer representation) of difference distribution table

of S is defined by DDT(s, t) = |{x ∈ F
n
2 | S(x) ⊕ S(x ⊕ s) = t}|.

The probability of an input difference α that yields the output difference β is
then defined by

PrS [α → β] = 2−n|{x ∈ F
n
2 | S(x) ⊕ S(x ⊕ α) = β}|

= 2−n · DDT(α,β)

On the other hand, LAT is used to find the best linear approximation for an
S-Box involving the parity bits of its input and output. The definition of linear
approximation table is given as follows.

Definition 5. For an n × m S-Box S, the linear approximation table of S at
row s ∈ F

n
2 and column t ∈ F

m
2 (considering their integer representation) is

defined as
LAT(s, t) = |{x ∈ F

n
2 | s · x = t · S(x)}| − 2n−1

3 Undisturbed Bits and Linear Structures

In this section we recall the definition of undisturbed bits and provide its relations
with autocorrelation, derivative, and linear structure of coordinate functions in
an S-Box. The notation S = (hm−1, . . . , h0) will be used consistently for the rest
of the paper to denote the n × m S-Box S : Fn

2 �→ F
m
2 with coordinate functions

hm−1, . . . , h0, where hi : Fn
2 �→ F2.

Definition 6 (Undisturbed Bits). Let α ∈ F
n
2 be a nonzero input difference

to S-Box S and Ωα = {β = (βm−1, . . . , β0) ∈ F
m
2 | PrS [α → β] > 0} be the

116 R.H. Makarim and C. Tezcan

set of all possible output differences of S corresponding to α. If βi = c for a
fixed c ∈ F2 and for all β ∈ Ωα with i ∈ {0, . . . , m − 1}, then the S-Box S has
undisturbed bits. In particular, we say that for input difference α, the i-th bit of
the output difference of S is undisturbed (and its value is c).

Recall that any output of the S-Box as the element of F
m
2 can be computed

component-wisely using coordinate functions of an S-Box. If PrS [α → β] > 0,
then there exists a v ∈ F

n
2 such that S(v) ⊕ S(v ⊕ α) = β. It follows that the

component of the output difference vectors β = (βm−1, . . . , β0) can be obtained
by βi = hi(v) ⊕ hi(v ⊕ α). The following result is an implication from this
observation.

Theorem 2. For a nonzero input difference α ∈ F
n
2 and i ∈ {0, . . . , m − 1},

the i-th bit of the output difference of S is undisturbed if and only if Dαhi(x) =
hi(x) ⊕ hi(x ⊕ α) is a constant function.

Proof. Suppose for an input difference α the i-th bit of the output difference of
S is undisturbed. Let Ωα = {β = (βm−1, . . . , β0) ∈ F

m
2 | PrS [α → β] > 0} be

the set of all possible output differences of S corresponding to α. Definition 6
tells us that for all β = (βm−1, . . . , β0) ∈ Ωα the component βi = c for a
fixed c ∈ F2. Since βi = hi(v) ⊕ hi(v ⊕ α) for some v ∈ F

n
2 and because the

computation of output differences in Ωα run through all the elements of F
n
2 ,

clearly Dαhi(x) = hi(x) ⊕ hi(x ⊕ α) = c for all x ∈ F
n
2 . Hence Dαhi(x) is a

constant function. The converse part of the proof can be done by reversing the
previous step.
�
The value of undisturbed bits can then be deduced whether the constant func-
tion Dαhi(x) is equal to zero or one, for each x ∈ F

n
2 . Because Dαhi(x) is a

constant function, then the nonzero vector α is a linear structure of the coordi-
nate function hi. Equivalently, since α is a nonzero vector, then hi is a function
with linear structure. This result shows that a particular S-Box has undisturbed
bits if any of its coordinate functions has a nontrivial linear structure. In order
to see if an S-Box has undisturbed bits, it is sufficient to check the derivative of
each coordinate function at every nonzero element of Fn

2 .
Theorem 2 also relates an S-Box which has undisturbed bits with Defini-

tion 3 about an S-Box with linear structures. It shows that an S-Box that has
undisturbed bits belongs to special class of S-Boxes with linear structures by
only considering the existence of linear structures in its coordinate functions.
This can be described by the following proposition, and it can be treated as an
equivalent definition for an S-Box that has undisturbed bits.

Proposition 11. An n × m S-Box S is said to have an undisturbed bit if there
exists a nonzero vector α ∈ F

n
2 together with a nonzero vector b ∈ F

m
2 with

wt(b) = 1 such that b · S(x) ⊕ b · S(x ⊕ α) takes the same value c ∈ F2 for all
x ∈ F

n
2 .

In other words, if an S-Box S has undisturbed bits, then S has a linear structure.
However, the converse is not true in general. Thus, Definition 3 can be seen as a
generalization of undisturbed bits.

Relating Undisturbed Bits to Other Properties of Substitution Boxes 117

The existence of undisturbed bits in an S-Box may also be used to describe
the unsatisfiability of the corresponding coordinate functions against SAC. We
state it in the following remark.

Remark 1. Let Ii = {α ∈ F
n
2 , α �= 0 | hi(x) ⊕ hi(x ⊕ α) is a constant function}

be the set such that for any α ∈ Ii the i-th bit of the output difference of S
is undisturbed. Equivalently Ii is the set of all nonzero linear structures of the
coordinate function hi, i.e. Ii = LShi

\ {0}. We set

d = min
α∈Ii

wt(α)

If d = 1, then from Proposition 4 it follows that the coordinate function hi does
not satisfy Strict Avalanche Criterion (SAC). However, this remark can not be
generalized for d > 1. The reason is because if there exists a d′ with 1 ≤ d′ < d
such that the coordinate function does not satisfy PC(d′) then d is not a proper
bound for the unsatisfiability condition.

A trivial lemma can be derived from Theorem 2 to indicate whether an S-Box
has undisturbed bits from the autocorrelation of its coordinate functions. We
will use the following lemma to show the relation of other cryptanalytic tools
with undisturbed bits.

Lemma 1. For a nonzero input difference α ∈ F
n
2 , the i-th bit of the output

difference of S is undisturbed if and only if

rhi
(α) = ±2n

for i ∈ {0, . . . , m − 1}.
Proof. Suppose for a nonzero input difference α ∈ F

n
2 , the i-th bit of the output

difference of S is undisturbed. From Theorem 2 the vector α is a linear structure
of coordinate function hi. It follows that from Proposition 7 we have rhi

(α) =
±2n. The converse can be proven by reversing the previous steps.
�
The remaining part of this section describes the relation of some existing crypt-
analytic tools with undisturbed bits. In particular, we give the relation of undis-
turbed bits with two most important cryptanalytic tools for an S-Box, namely
DDT and LAT. The following theorem of [18] provides a relation between DDT
and the autocorrelation of the component functions of an S-Box.

Theorem 3 [18]. The relation between difference distribution table and the
autocorrelation of the component functions of S is given by

rj·S(α) =
∑

v∈F
m
2

DDT(α,v)(−1)j·v

for α ∈ F
n
2 and j ∈ F

m
2 .

Using Lemma 1 the relation of undisturbed bits and DDT can be easily shown
in Corollary 1.

118 R.H. Makarim and C. Tezcan

Corollary 1 (DDT and Undisturbed Bits). For a nonzero input difference
α ∈ F

n
2 , the i-th bit of the output difference of S is undisturbed if and only if

∑

v∈F
m
2

DDT(α,v)(−1)ei·v = ±2n

for i ∈ {0, . . . , m − 1} and ei is the i-th standard basis of Fm
2 .

Proof. Suppose for a nonzero input difference α ∈ F
n
2 , the i-th bit of the output

difference of S is undisturbed. From Lemma1 we have rhi
(α) = ±2n. Since

rhi
(α) = rei·S(α) it follows from Theorem 3 that

∑
v∈F

m
2
DDT(α,v)(−1)ei·v =

±2n. The converse can be trivially proved by reversing the previous steps.
�
Linear approximation table (LAT) is used as a counterpart of DDT in the domain
of linear cryptanalysis. Although undisturbed bits are useful in constructing
truncated differential for bit-oriented cipher, one may also indicate the existence
of undisturbed bits from LAT. We will use a well-known relation of LAT and
the Walsh value of component functions of an S-Box in Lemma2. Together
with Theorem 1 (Wiener-Khintchine) and Lemma1, the relation of LAT and
undisturbed bits can be established. The main result is given in Theorem4.

Lemma 2. The relation between linear approximation table of S and the Walsh
transform of the component functions of S is given by

LAT(a, b) =
1
2
Wb·S(a)

for a ∈ F
n
2 and b ∈ F

m
2 .

Theorem 4 (LAT and Undisturbed Bits). For a nonzero input difference
α ∈ F

n
2 , the i-th bit of the output difference of S is undisturbed if and only if

22−n
∑

a∈F
n
2

LAT(a,2i)2(−1)α·a = ±2n

for i ∈ {0, . . . , m − 1}.
Proof. Firstly, we claim that 22−n

∑
a∈F

n
2
LAT(a, b)2(−1)α·a = rb·S(α). The

proof of the claim is as follows

22−n
∑

a∈F
n
2

LAT(a, b)2(−1)α·a = 2−n
∑

a∈F
n
2

22 · LAT(a, b)2(−1)α·a

= 2−n
∑

a∈F
n
2

(2 · LAT(a, b))2(−1)α·a

= 2−n
∑

a∈F
n
2

Wb·S(a)2(−1)α·a from Lemma 2

= rb·S(α) from Theorem 1

Relating Undisturbed Bits to Other Properties of Substitution Boxes 119

Clearly we have

22−n
∑

a∈F
n
2

LAT(a,2i)2(−1)α·a = rei·S(α) = rhi
(α) = ±2n

where ei is the i-th standard basis of Fm
2 . Immediately from Lemma 1, for nonzero

input difference α the i-th bit of the output difference of S is undisturbed.
Conversely, if for a nonzero input difference α the i-th bit of the output

difference of S is undisturbed, Lemma1 implies that rhi
(α) = ±2n. From our

claim we can have ±2n = rei·S(α) = 22−n
∑

a∈F
n
2
LAT(a,2i)2(−1)α·a.
�

4 Autocorrelation Table

One way to check the existence of undisturbed bits in an S-Box is by taking a
nonzero input difference and see whether there are some bits in all the corre-
sponding output differences that remain invariant. This can be done by observing
the DDT of an S-Box. However, this indirect approach can be improved if one
is able to find a dedicated cryptanalytic tool for the case of undisturbed bits.

In this section, we extend the result of Lemma 1 and provide a tool called
autocorrelation table, which was also appeared previously in [18]. Though it
was introduced earlier, the application of autocorrelation table for cryptanalysis
of block ciphers was not mentioned. We will show that autocorrelation table
is proven to be a more useful tool, compared to DDT, to check if an S-Box
has undisturbed bits. Moreover, we will be able to obtain all nonzero input
differences that has undisturbed bits in its corresponding output differences.
Because undisturbed bit is also a truncated differential of probability one in
an S-Box, autocorrelation table can be viewed as a counterpart of DDT in the
domain of truncated differential cryptanalysis.

Definition 7 (Autocorrelation Table [18]). For a ∈ F
n
2 and b ∈ F

m
2 , we

define autocorrelation table of S-Box S, denoted as ACT, where the entry in the
row a and column b is equal to

ACT(a, b) = rb·S(a)

Proposition 10 provides an equivalent description of an S-Box that has linear
structure from the the autocorrelation of its component functions. Autocorrela-
tion table can then be used to determine if an S-Box has linear structure.

Theorem 5. An S-Box S has a linear structure if and only if there exists a
nonzero α ∈ F

n
2 and a nonzero b ∈ F

m
2 such that ACT(α, b) = ±2n.

Proof. This is an immediate consequences from Definition 3 and
Proposition 10.
�
Remark 2. Let α be an input difference to S and let

Ωα = {β ∈ F
m
2 | PrS [α → β] > 0}

be the set of all possible output differences of S corresponding to α. If the entry
ACT(α, b) = +2n (resp. −2n), for b ∈ F

m
2 , then b ·β = 0 (resp. 1) for all β ∈ Ωα.

120 R.H. Makarim and C. Tezcan

To determine if an S-Box has undisturbed bits, it is sufficient to observe nonzero
row entries in each column of autocorrelation table that correspond to the
autocorrelation spectrum of coordinate functions of the S-Box, i.e. the column
2i, i ∈ {0, . . . , m − 1}. The result is given as the following corollary.

Corollary 2. For a nonzero input difference α, the i-th bit of the output differ-
ence of S is undisturbed if and only if ACT(α,2i) = ±2n, for i ∈ {0, . . . , m−1}.
Proof. From Theorem 2, the vector α is a linear structure of the coordinate
function hi. Clearly this is a direct consequence of Theorem 5.
�
Autocorrelation table of the S-Box of Present is provided in Table 2. Some
input differences that have undisturbed bits in its corresponding output differ-
ences can be observed in column 1, which is the autocorrelation spectrum of
the rightmost coordinate function. One may see in row entries 1, 8, and 9 at
column 1 have value ±24 = ±16. Note that the row index represents the input
difference and the column index represents the component functions of the S-
Box. The magnitude of the entry indicate the value of undisturbed bits, where
the sign “+” and “−” correspond to the undisturbed bit value equal to zero and
one, respectively.

In Table 2 one may also find component functions, other than the coordinate
functions, which have linear structures. For instance, the component functions
in S-Box of Present represented by 10 · S(x) and 11 · S(x) have nontrivial
linear structures (this can be seen in column 10 and 11 in Table 2 where some
of the nonzero row entries are equal to ±2n). The implication of this result
was given in Remark 2. However, it remains unknown whether the existence of
linear structures in component functions of an S-Box other than the coordinate
functions could improve or lead to a new approach in (truncated)-differential
cryptanalysis of bit-oriented block cipher.

5 S-Boxes with Undisturbed Bits

Recall from Theorem 2 that an S-Box has undisturbed bits if the derivative of
any of its coordinate function at a nonzero vector in F

n
2 is a constant function.

The existence of an S-Box that has undisturbed bits can then be reduced into
a question whether any of the coordinate functions of the S-Box has a nonzero
linear structure.

So far the known Boolean functions that have nonzero linear structures are
affine functions (from Proposition 8). If an S-Box has affine coordinate function,
then definitely the S-Box has undisturbed bits. However, this is unlikely to occur
in real case. This will lead to a linear approximation that involves input and
output bits of the S-Box with probability one, and clearly does not serve its
purpose as a nonlinear layer for block ciphers.

In order to find Boolean functions with linear structure, Proposition 6 restrict
our attention to the Boolean functions of low degree. The following result is due
to Carlet [4]. The complete proof of the following lemma is given in the appendix.

Relating Undisturbed Bits to Other Properties of Substitution Boxes 121

Table 2. Autocorrelation table of the S-Box of Present. Column 1 correspond to the
autocorrelation spectrum of the rightmost coordinate function h0. Notice that the row
entries 1,8,9 are equal to ±16. Thus, for input difference 1,8,9, the 0-th bit of the
output difference of Present’s S-Box is undisturbed. The value of undisturbed bits is
either 0 or 1, depending whether the magnitude is + or −, respectively.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

1 16 −16 0 0 0 0 0 0 0 0 −16 16 0 0 0 0

2 16 0 0 −8 −8 0 −8 8 0 −8 0 0 0 0 0 8

3 16 0 −8 0 0 −8 0 0 8 0 0 0 −8 −8 8 0

4 16 0 0 −8 −8 0 0 0 0 −8 0 0 −8 8 0 8

5 16 0 8 0 0 −8 −8 −8 −8 0 0 0 0 0 8 0

6 16 0 −8 8 0 0 0 0 −8 8 0 −16 0 0 0 0

7 16 0 0 0 0 0 8 −8 0 0 0 −16 8 −8 0 0

8 16 −16 −8 8 0 0 0 0 −8 8 0 0 0 0 0 0

9 16 16 0 0 −8 −8 0 0 0 0 0 0 0 0 −8 −8

10 16 0 0 −8 0 8 −8 8 0 −8 0 0 0 0 −8 0

11 16 0 8 0 8 0 0 0 −8 0 0 0 −8 −8 0 −8

12 16 0 0 −8 0 8 0 0 0 −8 0 0 −8 8 −8 0

13 16 0 −8 0 8 0 −8 −8 8 0 0 0 0 0 0 −8

14 16 0 0 0 0 0 0 0 0 0 −16 0 0 0 0 0

15 16 0 0 0 −8 −8 8 −8 0 0 16 0 8 −8 −8 −8

Lemma 3 [4]. If f is a balanced n-variable Boolean function with deg(f) = 2,
then there exists a nonzero α ∈ F

n
2 such that Dαf(x) = f(x) ⊕ f(x ⊕ α) = 1 for

all x ∈ F
n
2 .

We extend the result from Lemma 3 in Theorem 6 to show that an S-Box with
at least one quadratic coordinate function has undisturbed bits. Hence we show
that one may determine whether an S-Box has undisturbed bits from the degree
of its coordinate functions.

Theorem 6. Let S be a balanced n×m S-Box and hm−1, . . . , h0 be its coordinate
functions. If there exists a coordinate function hi with deg(hi) = 2 then the S-
Box S has undisturbed bits. More precisely, there exists a nonzero α ∈ F

n
2 such

that for input difference α, the i-th bit of the output difference of S is undisturbed
and its value is 1.

Proof. From Proposition 9, for every nonzero b ∈ F
m
2 all the component func-

tions b ·S(x) are balanced Boolean functions, including the coordinate functions
hm−1, . . . , h0 of S. If there exists a coordinate function hi with deg(hi) = 2,
Lemma 3 says that there is a nonzero α ∈ F

n
2 such that Dαhi(x) = 1 for all

x ∈ F
n
2 . Theorem 2 implies that for input difference α, the i-th bit of the output

difference of S is undisturbed and its value is 1.
�

122 R.H. Makarim and C. Tezcan

Corollary 3. If S is a balanced n×m S-Box with n = 3, then S has undisturbed
bits. Moreover, for every i ∈ {0, . . . , m − 1} there exists a nonzero α ∈ F

n
2 such

that for input difference α, the i-th bit of the output difference of S is undisturbed
and its value is 1.

Proof. Since S is a balanced S-Box, based on Proposition 1 then deg(b · S) ≤ 2
for all nonzero b ∈ F

m
2 . It follows that every coordinate functions of S is of degree

≤ 2. The results follows immediately from Theorem 6 and Proposition 8.
�
In [16] it was stated that every bijective 3 × 3 S-Box has undisturbed bits.
Since bijective 3 × 3 S-Boxes are balanced S-Boxes, it follows immediately from
Corollary 3 that they have undisturbed bits. This can be seen as an alternative
proof of [16] where the author used the equivalence classes of 3 × 3 bijective
S-Boxes.

Corollary 4. Every 3 × 3 bijective S-Box has undisturbed bits.

6 Conclusion and Further Remarks

In this work we define the notion of undisturbed bits of an S-Box and give its
relation with other properties. S-Boxes which have undisturbed bits are shown
to be a special class of S-Boxes with linear structures. We also show that it
is possible to indicate whether an S-Box has undisturbed bits or not by using
DDT and LAT. Autocorrelation table of an S-Box can be used as a dedicated
tool to find nonzero input differences which have undisturbed bits in its output
differences. The last result of this paper is the existence of undisturbed bits for
balanced n × m S-Boxes with quadratic coordinate functions.

While the notion of undisturbed bits is related to the existence of nonzero
linear structures in the coordinate functions of an S-Box, we also showed that
other component functions of an S-Box may have nonzero linear structures. It
remains unknown whether this property in an S-Box could improve or lead to a
new approach in cryptanalysis of bit-oriented block ciphers.

7 Appendix

7.1 Proof of Lemma 3

Before proving the result in Lemma 3, the following two propositions are required.

Proposition 12 [4]. Let f be n-variable Boolean function. We have the follow-
ing relation

W2
f (0) =

∑

b∈F
n
2

WDbf (0)

Relating Undisturbed Bits to Other Properties of Substitution Boxes 123

Proof.

∑

b∈F
n
2

WDbf (0) =
∑

b∈F
n
2

⎡

⎣
∑

x∈F
n
2

(−1)Dbf(x)(−1)0·x

⎤

⎦ =
∑

b∈F
n
2

⎡

⎣
∑

x∈F
n
2

(−1)Dbf(x)

⎤

⎦

=
∑

b∈F
n
2

rf (b) =
∑

b∈F
n
2

rf (b)(−1)0·b = W2
f (0)

�
Proposition 13 [4]. If f is an n-variables Boolean function with deg(f) = 2
then

W2
f (0) = 2n

∑

b∈LSf

(−1)Dbf(0)

Proof. Since the degree of f is equal to 2, it follows from Proposition 6 that
for every b ∈ F

n
2 we have deg(Dbf) ≤ 1. Clearly Dbf is affine, hence from

Proposition 2 it is either balanced (for nonzero coefficient vector) or constant
function (for zero coefficient vector). Consequently, for the case where Dbf is
balanced, we have WDbf (0) = 0 from Proposition 3. Using the result from the
Proposition 12, then

W2
f (0) =

∑

b∈F
n
2

WDbf (0) =
∑

b∈LSf

WDbf (0) =
∑

b∈LSf

⎡

⎣
∑

x∈F
n
2

(−1)Dbf(x)

⎤

⎦

= 2n
∑

b∈LSf

(−1)Dbf(0)

�
Lemma 3 stated that if f is a balanced n-variable Boolean function with deg(f) =
2, then there exist a nonzero α ∈ F

n
2 such that Dαf(x) = f(x) ⊕ f(x ⊕ α) = 1

for all x ∈ F
n
2 . The proof is given below.

Proof. Let f be a balanced n-variable Boolean function with deg(f) = 2. Since
f is balanced, then Wf (0) = 0 and consequently W2

f (0) = 0. The result from
Proposition 13 implies that the sum

∑
b∈LSf

(−1)Dbf(0) must be equal to zero. We
know that the zero vector 0 ∈ F

n
2 is a trivial linear structure because D0f(x) = 0

for all x ∈ F
n
2 . Clearly 0 ∈ LSf . Using existence of zero vector in the set of

linear structure of f , then there must exist a vector α ∈ F
n
2 , α �= 0 such that

Dαf(x) = 1 for all x ∈ F
n
2 .
�

7.2 Linear Structures and Output Differences of an S-Box

Theorem 7. Let S be an n × m S-Box and Ωα = {β = (βm−1, . . . , β0) ∈ F
m
2 |

PrS [α → β] > 0} be the set of all possible output differences of S corresponding
to input difference α ∈ F

n
2 . The vector α is a linear structure of the component

function b · S(x) if and only if b · β remains equal for all β ∈ Ωα.

124 R.H. Makarim and C. Tezcan

Proof. Let hm−1, . . . , h0 be coordinate functions of the S-Box S. For the vector
b = (bm−1, . . . , b0) ∈ F

m
2 we can express the component function b · S(x) as a

linear combination of coordinate functions of S, i.e. b · S(x) = bm−1hm−1(x) ⊕
. . .⊕ b0h0(x). Since α ∈ F

n
2 is a linear structure of b ·S(x), we have the following

c = b · S(x) ⊕ b · S(x ⊕ α) ∀x ∈ F
n
2

c = (bm−1hm−1(x) ⊕ . . . ⊕ b0h0(x))⊕
(bm−1hm−1(x ⊕ α) ⊕ . . . ⊕ b0h0(x ⊕ α)) ∀x ∈ F

n
2

c = bm−1(hm−1(x) ⊕ hm−1(x ⊕ α)) ⊕ . . . ⊕ b0(h0(x) ⊕ h0(x ⊕ α)) ∀x ∈ F
n
2

c = b · (hm−1(x) ⊕ hm−1(x ⊕ α), . . . , h0(x) ⊕ h0(x ⊕ α)) ∀x ∈ F
n
2

c = b · β ∀β ∈ Ωα

The converse is obvious from above equations.
�

7.3 DDT of the S-Box of PRESENT

See Table 3.

Table 3. Difference distribution table of the S-Box of PRESENT.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0

2 0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0

3 0 2 0 2 2 0 4 2 0 0 2 2 0 0 0 0

4 0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0

5 0 2 0 0 2 0 0 0 0 2 2 2 4 2 0 0

6 0 0 2 0 0 0 2 0 2 0 0 4 2 0 0 4

7 0 4 2 0 0 0 2 0 2 0 0 0 2 0 0 4

8 0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4

9 0 0 2 0 4 0 2 0 2 0 0 0 2 0 4 0

10 0 0 2 2 0 4 0 0 2 0 2 0 0 2 2 0

11 0 2 0 0 2 0 0 0 4 2 2 2 0 2 0 0

12 0 0 2 0 0 4 0 2 2 2 2 0 0 0 2 0

13 0 2 4 2 2 0 0 2 0 0 2 2 0 0 0 0

14 0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0

15 0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4

Relating Undisturbed Bits to Other Properties of Substitution Boxes 125

References

1. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems.
J. Cryptol. 4(1), 3–72 (1991)

2. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A.,
Robshaw, M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block
cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727,
pp. 450–466. Springer, Heidelberg (2007)

3. Carlet, C.: Vectorial Boolean functions for cryptography. In: Crama, Y., Hammer,
P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and
Engineering, pp. 398–469. Cambridge University Press, Cambridge (2010)

4. Carlet, C.: Boolean functions for cryptography and error correcting codes.
In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathemat-
ics, Computer Science, and Engineering, pp. 257–397. Cambridge University Press,
Cambridge (2010)

5. Chaum, D., Evertse, J.-H.: Cryptanalysis of DES with a reduced number of rounds.
In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 192–211. Springer,
Heidelberg (1986)

6. Evertse, J.-H.: Linear structures in block ciphers. In: Price, W.L., Chaum, D. (eds.)
EUROCRYPT 1987. LNCS, vol. 304, pp. 249–266. Springer, Heidelberg (1988)

7. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel [13],
pp. 196–211

8. Lai, X.: Additive and linear structures of cryptographic functions. In: Preneel [13],
pp. 75–85

9. Lai, X., Maurer, U.: Higher order derivatives and differential cryptanalysis. In:
Blahut, R., Costello, D.J., Maurer, U., Mittelholzer, T. (eds.) Communications
and Cryptography. The Springer International Series in Engineering and Computer
Science, vol. 276, pp. 227–233. Springer, New York (1994)

10. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

11. Meier, W., Staffelbach, O.: Nonlinearity criteria for cryptographic functions.
In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434,
pp. 549–562. Springer, Heidelberg (1990)

12. Preneel, B.: Analysis and Design of cryptographic hash functions. Ph.D. the-
sis, Katholieke Universiteit Leuven (1993), rené Govaerts and Joos Vandewalle
(promotors)

13. Preneel, B. (ed.): FSE 1994. LNCS, vol. 1008. Springer, Heidelberg (1995)
14. Sarkar, P., Maitra, S.: Construction of nonlinear Boolean functions with important

cryptographic properties. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 485–506. Springer, Heidelberg (2000)

15. Sun, S., Hu, L., Wang, P.: Automatic security evaluation for bit-oriented block
ciphers in related-key model: application to PRESENT-80, LBlock, and others.
IACR Cryptology ePrint Archive 2013, 676 (2013)

16. Tezcan, C.: Improbable differential attacks on PRESENT using undisturbed bits.
J. Comput. Appl. Math. 259(Part B(0)), 503–511 (2014)

17. Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: RECTANGLE:
a bit-slice ultra-lightweight block cipher suitable for multiple platforms. IACR
Cryptology ePrint Archive 2014, 84 (2014)

18. Zhang, X.M., Zheng, Y., Imai, H.: Relating differential distribution tables to other
properties of substitution boxes. Des. Codes Cryptogr. 19(1), 45–63 (2000)

Differential Sieving for 2-Step Matching
Meet-in-the-Middle Attack with Application

to LBlock

Riham AlTawy and Amr M. Youssef(B)

Concordia Institute for Information Systems Engineering,
Concordia University, Montréal, QC, Canada

youssef@ciise.concordia.ca

Abstract. In this paper, we propose a modified approach for the basic
meet-in-the-middle attack which we call differential sieving for 2-step
matching. This technique improves the scope of the basic meet in
the middle attack by providing means to extend the matching point
for an extra round through differential matching and hence the over-
all number of the attacked rounds is extended. Our approach starts by
first reducing the candidate matching space through differential match-
ing, then the remaining candidates are further filtered by examining non
shared key bits for partial state matching. This 2-step matching reduces
the total matching probability and accordingly the number of remaining
candidate keys that need to be retested is minimized. We apply our tech-
nique to the light weight block cipher LBlock and present a two known
plaintexts attack on the fifteen round reduced cipher. Moreover, we com-
bine our technique with short restricted bicliques and present a chosen
plaintext attack on Lblock reduced to eighteen rounds.

Keywords: Cryptanalysis · Meet-in-the-middle · Differential sieving ·
LBlock · Short bicliques

1 Introduction

Meet in the middle (MitM) attacks have drawn a lot of attention since the
inception of the original attack which was first proposed in 1977 by Diffie and
Hellman [13] for the analysis of the Data Encryption Standard (DES). Soon after,
the attack became a generic approach to be used for the analysis of ciphers with
non complicated key schedules. For this class of ciphers, one can separate the
execution into two independent parts where each part can be computed without
guessing all the bits of the master key. The first execution part covers encryp-
tion rounds from the plaintext to some intermediate state and the other part
covers decryption rounds from the corresponding ciphertext to the same internal
state. At this point, the attacker has knowledge of the same intermediate state
from two independent executions where the right key guess produces match-
ing states. A typical MitM attack can be launched with as low as one known
c© Springer International Publishing Switzerland 2015
T. Eisenbarth and E. Öztürk (Eds.): LightSec 2014, LNCS 8898, pp. 126–139, 2015.
DOI: 10.1007/978-3-319-16363-5 8

Differential Sieving for 2-Step Matching Meet-in-the-Middle Attack 127

plaintext-ciphertext pair. Accordingly, with the recent growing interest in low
data complexity attacks [9], the MitM attack has witnessed various improve-
ments and has been widely adopted for the analysis of various cryptographic
primitives. The increasing motivation for adopting low data complexity attacks
for the analysis of ciphers is backed by the fact that security bounds are better
perceived in a realistic model. Particularly, in a real life scenario, security pro-
tocols impose restrictions on the amount of plaintext-ciphertext pairs that can
be eavesdropped and/or the number of queries permitted under the same key.

With the current popularity of lightweight devices such as RFID chips and
wireless sensor networks, the demand for efficient lightweight cryptography is
increasing. These devices offer convenient services on tiny resource constrained
environments with acceptable security and privacy guarantees. In particular,
the employed ciphers must obey the aggressive restrictions of the application
environment while maintaining acceptable security margins. As a result, the
designers of lightweight ciphers are often forced to make compromising decisions
to fulfil the required physical and economical constraints. Among the designs
that have been proposed to address these needs are PRESENT [7], KATAN and
KTANTAN [12], LED [15], Zorro [14], and LBlock [25]. All of these proposals
have received their fair share of cryptanalytic attacks targeting their weak prop-
erties [4,8,18,19,21]. Such unfavourable properties usually are the result of the
desire of the designers to conform to the resources constraints.

The success of the MitM attack depends of the speed of key diffusion. Com-
plex key schedules amount for quick diffusion and hence the knowledge of the
state after few rounds involves all the bits in the master key. Indeed, one can
say that the witnessed renewal of interest in MitM attacks is due to the emer-
gence of lightweight ciphers which often tend to employ simple key schedules
with relatively slow diffusion to meet the resources constraints.

In this work, we present differential sieving for 2-step matching, a technique
that improves the scope and the key retesting phase of the basic meet in the
middle attack. More precisely, our technique enables the attacker to cover at
least one extra round in an execution direction when all state knowledge is
not available. This extension is accomplished by matching possible differential
transitions through the Sbox layer instead of matching actual state values. After-
wards, the remaining candidate keys from both directions are used to evaluate
the state for only one round, which is further matched by the actual bit val-
ues. The proposed 2-step differential-value matching reduces the total matching
probability and accordingly the number of remaining key candidates that need
to be retested is minimized. We demonstrate our technique on the light weight
block cipher LBlock and present a two known plaintexts attack on the fifteen
round reduced cipher. Finally, we combine our approach with restricted short
bicliques and present an eighteen round attack with a data complexity of 217.

The rest of the paper is organized as follows. In the next section, we explain
our proposed technique and give a brief overview on the basic meet-in-the-middle
attack and the idea of short restricted bicliques. Afterwards, in Sect. 3, we give
the specification of the lightweight block cipher Lblock and provide detailed

128 R. AlTawy and A.M. Youssef

application of our attack on it. Specifically, we present a low-data complexity
attack on the fifteen round reduced cipher and a restricted biclique attack on
the cipher reduced to eighteen rounds. Finally, the paper is concluded in Sect. 4.

2 Differential Sieving for 2-Step Matching

Our approach is a modified approach of the basic meet-in-the-middle attack [13]
which was first proposed in 1977. Throughout the following years, the attack has
been used in the security analysis of a large number of primitives including block
ciphers, stream ciphers, and hash functions. The basic attack has undergone
major improvements to make it better suit the attacked primitive. In particu-
lar, the cut and splice technique [2] and the initial structure approach [20] are
successfully used in MitM preimage attacks on hash function [1,24]. Moreover,
partial matching [3] allows the matching point to cover more rounds through
matching only known parts of the state. Other examples of these techniques
include 3-subset MitM [8] and sieve-in-the-middle [10]. It is worth noting that
most MitM attacks are low data complexity attacks except when used with
bicliques [6], which represent a more formal description of the initial structure
and can be constructed from related key differentials.

2.1 Basic Meet-in-the-middle Attack

The basic MitM attack recovers the master key of a given cipher more efficiently
than by brute forcing it. As depicted in Fig. 1, the attack idea can be explained
as follows: let the attacked primitive be an r-round block cipher operating under
a fixed master key K. Let Ei,j(p) denote the partial encryption of the plaintext p
and Di,j(c) denote the partial decryption of the ciphertext c, where i and j are the
starting and ending rounds for the partial encryption/decryption, respectively.
If one can compute E1,j(p) using K1 and Dr,j(c) using K2 such that K1 and K2

do not share some key bits and each key guess does not involve the whole master
key, then the same state of the cipher can be computed independently from the
encryption and decryption sides. More precisely, each guess of K1 allows us to
compute a candidate E1,j(p) and each guess of K2 gives a candidate Dr,j(c).
Since the output of both executions is state j, then all the guessed (K1,K2)
pairs that result in E1,j(p) = Dr,j(c) are considered potentially right keys and
one of them must be the right key.

Fig. 1. Basic MitM attack

Differential Sieving for 2-Step Matching Meet-in-the-Middle Attack 129

Generally, given one plaintext-ciphertext pair, the number of potentially right
keys depends on the number of bits that are matched at state j. More formally,
given a b-bit state, a k-bit master key, and the knowledge of m bits at the
matching state, the number of potentially right keys is 2k−m, where 2−m is the
probability that the two states match at the available m bits. Partial matching
takes place if m < b and hence the 2k−m candidate keys need to be retested for
full state matching. In the case of m = b, only the relation between the key size
k and the state size b determines the number of potentially right keys. If b = k,
then only the right key remains and no further testing is required. However, in
some cipher, designers tend to use master keys that are larger than the state size
in order to provide a higher security margin in more constrained environments.
Accordingly, even if we are performing full state matching, we end up with 2k−b

potentially right keys. Consequently, more plaintext-ciphertext pairs are needed
to find the right key. Indeed, whether we are partially or fully matching the
states, if k > b, we get a set of 2k−b potentially right keys after retesting with
one plaintext-ciphertext pair. In this case, to recover the right key, the data
complexity of the MitM attack is n = �k

b � plaintext-ciphertext pairs.

2.2 Differential Sieving Approach

The time complexity of the MitM attack is divided into two main components:
the MitM part, where both forward and backward computations take place,
and the key retesting part where the remaining potentially right keys need to be
rechecked. More formally, let Ks = K1∩K2 be the set of bits shared between K1

and K2, Kf = K1\K1 ∩K2 be the set of bits in K1 only, and Kb = K2\K1 ∩K2

be the set of bits in K2 only. We also assume that the master key K = K1 ∪K2.
The time complexity of the MitM attack is given by:

2|Ks|(2|Kf | · cf + 2|Kb| · cb)︸ ︷︷ ︸
MitM

+ 2|K| × 2−ρs · ct︸ ︷︷ ︸
Key testing

,

where 2−ρs is the total matching probability, cf and cb denotes the costs of
partial computations in the forward and backward directions, and ct = cf + cb

is the total cost of computation. According to this equation, the MitM attack
recovers the right key more efficiently than exhaustively searching the master key
space if both Kf and Kb are non empty sets and the number of remaining keys
that need retesting is not too large. In other words, besides efficient separation
of executions, the key retesting part of the MitM attack should not be the
component dominating the attack time complexity. Evidently, the lower the total
matching probability 2−ρs is, the less keys remain for rechecking.

Our proposed differential sieving 2-step matching approach provides the
means to decrease the total matching probability by matching both the pos-
sible differential transitions through the Sbox layer and actual partial state bit
values. The technique also allows us to extend the basic MitM by at least one
more round when the key knowledge is not available anymore. Indeed, when
we have knowledge of parts of the state before the subkey mixing, we lose this

130 R. AlTawy and A.M. Youssef

state knowledge if the bits of this subkey are not in the guessed key set. How-
ever, if we are using two plaintext-ciphertext pairs, we know the difference after
the key mixing with certainty. To this end, we can extend our state difference
knowledge with one extra round and use it for matching possible input/output
differences through the following substitution layer. Our technique requires at
least two plaintext-ciphertext pairs which is fortunate for two reasons: first, we
match two different states variables thus we get lower total matching probability.
Second, when we analyze a light weight cipher whose key size is larger than the
block size (the case for LBlock), the MitM attack requires more than a single
plaintext-ciphertext pair to recover the right key anyway.

Fig. 2. Difference-value 2-step matching MitM attack

Figure 2 depicts the high level idea of the proposed 2-step matching approach
and shows how it differs from the basic approach shown in Fig. 1. The core idea
of the attack is to efficiently separate the execution such that we get the same
partial state knowledge (value or difference) from both the backward and forward
directions. Let Xf i

j and Xbi
j be the states at round j resulting from the forward

and backward executions using the ith plaintext and ciphertext, respectively. As
depicted in Fig. 2, the forward execution ends at round j where we are forced to
terminate the execution because the available knowledge about the m-bit partial
state Xf i

j will be lost after the key mixing in round j + 1. More precisely, let
Km be the set of bits in the master key that are Xored with the m-bit partial
state Xf i

j at round j + 1. If Km /∈ Kf then we lose the matching knowledge in
state Xf i

j+1. However, since the master key K = K1 ∪ K2, then with certainty
Km ∈ Kb. The procedure of our attacks is described as follows:

• For each guess ks of the 2|Ks| values of Ks

– For each guess kf of the 2|Kf | values, partially encrypt the two plaintexts
p0 and p1, and store the resulting m-bit partial states values (Xf0

j ,Xf1
j)

and difference dx = (Xf0
j ⊕ Xf1

j) in a table T

Differential Sieving for 2-Step Matching Meet-in-the-Middle Attack 131

– For each guess kb of the 2|Kb| values, partially decrypt the two corre-
sponding ciphertexts c0 and c1 to get the two m-bit partial states values
(Xb0j+1,Xb1j+1).
1. Step 1: check if the resulting difference dy = (Xb0j+1 ⊕ Xb1j+1) and any

of the dx entries in T is a possible differential transition through the
Sbox layer. If yes then go to Step 2, else guess another kb.

2. Step 2: get Km from kb and using the forward table T entry which
matched in step 1, compute Xf0

j+1 = Xf0
j ⊕ Km and Xf1

j+1 = Xf1
j ⊕

Km. Check if these two states are equal to Xb0j+1,Xb1j+1. If yes then add
the current master key candidate (ks ∪kf ∪kb) to a list Lp of potentially
right keys, else guess another kb.

– Exhaustively test if any of the candidate keys in Lp encrypts both plaintexts
p0 and p1 to their corresponding ciphertexts c0 and c1. If yes output it as
the correct master key, else guess another ks

Other than extending the matching point by one more round, the main gain
of the 2-step matching is reducing the total matching probability and hence the
false positive keys whose retesting may dominate the total attack complexity.
More formally, given an m-bit matching knowledge, let the probability of a
possible differential for a given Sbox be 2−α, then the total matching probability
in our approach is 2−ρs = 2−α ×2−m ×2−m. Assuming cf ≈ cb ≈ ct/2, the total
time complexity of the attack is given by:

2|Ks|(2|Kf | + 2|Kb|) · ct + 2|K|−α−2m · ct

The memory complexity is given by 2|Kf | + 2|Kf |+|Kb|−α−2m. This complexity
may be negligible as the sizes of both lists T and Lp are usually small. The data
complexity is equal to the unicity distance of the analyzed cipher.

2.3 Short Restricted Bicliques

Biclique cryptanalysis [6] was first used to present an accelerated exhaustive
search on the full round AES. The basic idea of bicliques is to increase the
number of rounds of the basic MitM attack. As depicted in Fig. 3, a biclique is
a structure of the 3-tuple {pu

j , s
u
i ,Kq} where Kq denotes the key bits used to

encrypt the plaintext p to an intermediate state s. Kq is partitioned into three
disjoint sets of key bits Kq = {K5,K3,K4} such that for a given u of the 2|K5|

values of K5, the states variables between p and s that are affected by a change
in the value of K3 are different than those affected by a change in the value
of K4. More formally, let Enc[u,i,j](p) and Dec[u,i,j](s) denote the encryption
and decryption of the plaintext p and intermediate state s using the u, i, and j
values of K5,K3, and K4, respectively. A biclique can be constructed if for all
u, i, and j of the 2|K5|, 2|K3|, and 2|K4| values, respectively, the computation of
su

i = Enc[u,i,0](p) does not share any active state variables with the computation
pu

j = Dec[u,0,j](s). Since both the forward and backward computations generate
two independent differential paths, one can deduce that su

i = Enc[u,i,j](pu
j).

132 R. AlTawy and A.M. Youssef

Fig. 3. Combining short restricted bicliques with basic MitM attack

In our attack we employ short restricted bicliques [10]. They are restricted
in the sense that we do not have the freedom in partitioning Kq as in the case
of conventional biclique cryptanalysis [6]. More precisely, we first separate the
forward and backward execution of the MitM attack to get K1 and K2. In
the sequel, the choice of K3,K4, and K5 must conform to some restrictions.
Particularly, K3 ∈ Kf , K4 ∈ Kb, and K5 ∈ Ks so that each choice of Ks,Kf ,
and Kb of the 2-step matching MitM attack gives a unique Kq = {K5,K3,K4}
candidate that can be used to construct the biclique. For a given u of the 2|K5|

values, a biclique is constructed as follows:

– Get the base states (pu
0 , s

u
0): choose the base plaintext pu

0 = 0 and set Kq =
{K5,K3,K4} = {u, 0, 0}. The base intermediate state su

0 = Enc[u,0,0](pu
0).

Note that pu
0 = 0 for all values of K5 which is not the case for su

0 as it depends
on the value of K5 used in Kq to partially encrypt pu

0 .
– Compute (pu

j , s
u
i): for each i of the 2|K3| values of K3, set su

i = Enc[u,i,0](pu
0)

and for each j of the 2|K4| values of K4, set pu
j = Dec[u,0,j](su

0).

To this end, we get su
i = Enc[u,i,j](pu

j) and an exhaustive search on K5 is per-
formed to construct the bicliques with time complexity of 2|K5|(2|K3| + 2|K4|).
Following [10], we include the biclique construction in the 2-step MitM and
hence its time complexity is incorporated with the overall complexity of the
MitM attack. Since we are using differential sieving, we need to build two base
bicliques with two different base plaintext p0

u
0 = 0, and p1

u
0 = 1. In what follows

we explain how we combine short restricted bicliques with differential sieving
2-step MitM attack as depicted in Fig. 4:

• For each guess ks of the 2|Ks| values, we get a guess u of the 2|K5| values of
K5

– For each guess kf of the 2|Kf | values of Kf , we get a guess i of the 2|K3|

values of K3:
1. Partially encrypt the two base plaintexts to get the corresponding

intermediate states of the biclique s0
u
i = Enc[u,i,0](p0

u
0) and s1

u
i =

Enc[u,i,0](p1
u
0). If i = 0, then save the base intermediate states s0

u
0

and s1
u
0

Differential Sieving for 2-Step Matching Meet-in-the-Middle Attack 133

2. Partially encrypt the two intermediate states s0
u
i and s1

u
i , and store the

resulting m-bit partial states values (Xf0
z ,Xf1

z) and difference dx =
(Xf0

z ⊕ Xf1
z) in a table T

– For each guess kb of the 2|Kb| values of Kb, we get a guess j of the 2|K4|

values of K4:
1. Partially decrypt the two base intermediate states to get the corre-

sponding plaintexts of the biclique p0
u
j = Dec[u,0,j](s0

u
0) and p1

u
j =

Dec[u,0,j](s1
u
0).

2. Ask the encryption oracle for the ciphertexts c0uj and c1uj corresponding
to the plaintexts acquired in the previous step.

3. Partially decrypt the two ciphertexts c0uj and c1uj to get the two m-bit
partial states values (Xb0z+1,Xb1z+1).

4. Perform the 2-step matching procedure described in the previous section.
– Exhaustively test if any of the candidate keys in Lp encrypts any two plain-

texts p0
u
j and p1

u
j to their corresponding ciphertexts c0uj and c1uj . If yes

output it as the correct master key, else guess another ks

Fig. 4. Combining short restricted bicliques with differential sieving 2-step matching
MitM attack

The total time complexity is composed of three parts: biclique construction,
MitM, and key retesting. More formally, let cq be the cost of biclique computa-
tion, the total time complexity of the attack is given by:

2 × 2|K5|(2|K3| + 2|K4|) · cq + 2|Ks|(2|Kf | + 2|Kb|) · ct + 2|K|−α−2m · ct.

Thememorycomplexity is givenby2|Kf |+2|Kf |+|Kb|−α−2m+2(# of active bits in p)+1

where the third term denotes the memory needed to store the chosen plaintext-
ciphertext pairs for all the j and u values of K3 and K5 for two bicliques. Regard-
less of the value of K3 and K5, we only get a small number of plaintexts since they
always differ in only few places. The data complexity is 2(# of active bits in p)+1

chosen plaintexts to get the corresponding ciphertexts of the plaintexts produced
by the two bicliques.

134 R. AlTawy and A.M. Youssef

3 Application to LBlock

In this section we demonstrate our technique on the lightweight block cipher
LBlock [25]. LBlock requires about 1320 GE on 0.18 µm technology, which sat-
isfies the required limitation of 2000 GE in RFID applications. LBlock has been
analyzed with respect to various types of attacks [5,22] including: impossible dif-
ferential [16,17], integral [21], boomerang [11], and biclique [23] cryptanalysis.
Note that the attack presented in [23] is a typical high data complexity biclique
cryptanalysis where the whole key space is exhaustively searched. More pre-
cisely, similar to the biclique attack on AES [6], in [23], the authors presented
an attack with a time complexity ≈279, almost equal to that of the average
exhaustive search. The factor of 2 gain is due to counting the number of Sboxes
which are affected by the difference only and not evaluating the whole state. In
addition, the attack has a data complexity of 252.

3.1 Notation

Besides the notations used in describing our technique in Sect. 2, the notation
used in applying our attack on LBlock is as follows:

– K: The master key.
– Ski: ith round sub key.
– Xi: The eight 4-bit nibble state at round i.
– Xi[j]: jth nibble of the ith round state.
– K[i,j]: ith and jth bits of master key K.

3.2 Specifications of LBlock

LBlock [25] is a 64-bit lightweight cipher with an 80-bit master key. It employs
a 32-round Feistel structure variant. Its internal state is composed of eight 4-bit
nibbles. As depicted in Fig. 5, the round function adopts three nibble oriented
transformations: subkey mixing, 4-bit Sboxes, and nibble permutation. The
80-bit master key K is stored in a key register denoted by k = k79k78k77.......k1k0.
The leftmost 32 bits of the register k are used as ith round subkey Ski. The key
register is updated after the extraction of each Ski as follows:

1. k <<< 29.
2. [k79k78k77k76] = S9[k79k78k77k76].
3. [k75k74k73k72] = S8[k75k74k73k72].
4. [k50k49k48k47k46] ⊕ [i]2,

where S8 and S9 are two 4-bit Sboxes. For further details, the reader is referred
to [25].

Differential Sieving for 2-Step Matching Meet-in-the-Middle Attack 135

Fig. 5. LBock round function

3.3 Low Data-Complexity Attack on LBlock

In this section, we present the first low data complexity attack on reduced round
LBlock. The attack exploits the weak diffusion of the key schedule. This fact
enables us to find some nibbles in states at higher rounds whose values do not
involve all the bits from the master key. Using symbolic evaluation of the cipher,
we have found an execution separation for the first fifteen rounds of LBlock.
The knowledge of the first nibble of the 8th round state requires guessing 73 and
72 bits of the master key when evaluating it from the forward and backward
executions, respectively. More precisely, given a known plaintext-cipher text
pair, the forward execution requires guessing K −K[0,1,14,15,16,17,35] to compute
Xf8[0] and the backward execution requires guessing K −K[55,62,63,64,65,66,67,68]

to compute Xb8[0]. For this separation, we can use a basic MitM attack since
we have the knowledge of one nibble from both directions at the same round.
To recover the right key, we have to try � 80

64� = 2 plaintext-ciphertext pairs.
Accordingly, the total matching probability 2−4×2. Following the notation used
in Sect. 2, |Ks| = 65, |Kf | = 8, and |Kb| = 7. Hence, the time complexity of this
2 known plaintext attack is given by 265(28 + 27) + 280−8 = 273 and a memory
complexity of 28.

While the previous attack was an application of the basic MitM attack, Fig. 6
shows an execution separation for fifteen rounds of Lblock starting from round
four. We opted for demonstrating the 2-step matching approach on these specific
rounds because in the following section, we will add a short restricted biclique in
the first three rounds. Our attack requires the knowledge of nibbles Xf11[1] and
Xf10[6] in the forward computation and nibble Xb12[0] in the backward compu-
tation. The adopted execution separation is depicted in Fig. 6, where the red and
blue colours denote known state nibbles in consecutive rounds in the forward and
backward executions, respectively. The yellow colour denotes key nibbles that
are guessed in each direction and the white colour represents unknown nibbles.
We have found that the knowledge of Xf11[1] and Xf10[6] involves 76 bits from
the master key, namely K1 = K −K[2,1,0,79]. In the backward direction, Xb12[0]
requires guessing 73 bits, specifically K2 = K−K[26,27,27,29,30,31,32]. Accordingly,
|Ks| = 69, |Kf | = 7, and |Kb| = 4.

136 R. AlTawy and A.M. Youssef

Fig. 6. Fifteen rounds execution separation for our 2-step matching MitM attack (Color
figure online)

We assume that states Xf3 and Xf4 are loaded with the known plaintexts,
while states Xb18 and Xb19 are loaded with their corresponding ciphertexts. The
attack follows exactly the procedure defined in Sect. 2.2. However, due to the fact
that LBlock employs a Feistel structure, the matching process involves two differ-
ent states from the forward direction. Particularly, for the two known plaintexts
p0 and p1, we store in table T nibbles (Xf0

11[1],Xf1
11[1]) and (Xf0

10[6],Xf1
10[6])

along with the guessed K1. For each guess of K2 in the backward execution using
the two corresponding ciphertexts c0 and c1, we compute Xb012[0] and Xb112[0],
and we apply the 2-step matching as follows:

1. Set dx = Xf0
11[1] ⊕Xf1

11[1] and dy = P−1((Xb012[0] ⊕Xb112[0]) ⊕ ((Xf0
10[6] ⊕

Xf1
10[6]))), where P−1 is the inverse permutation of the round function. Check

if (dx, dy) is a possible differential pair from the differential distribution table
(DDT) of Sbox S1.

2. From the current Kb knowledge, one can get a candidate value for Sk11[1]
which is unknown in the forward direction and consequently a candidate
(Xf0

12[0],Xf1
12[0]). Match these two candidate nibbles with Xb012[0] and

Xb112[0].

If a (K1,K2) pair passed the 2-step matching then it is considered for retest-
ing. The probability of possible differentials of the Sbox S1 is ≈ 2−1.4, and we
match two different nibbles, hence the total matching probability is 2−1.4−4−4.
This two known plaintext-ciphertext attack has a time complexity of 269(27 +
24) + 280−9.4 ≈ 276, and a memory complexity of 27.

Differential Sieving for 2-Step Matching Meet-in-the-Middle Attack 137

3.4 Three More Rounds with Restricted Bicliques

The previous fifteen round attack is extended to eighteen rounds by appending
three round restricted biclique. As depicted in Fig. 7, if K3 = K[27,28,29,30] and
K4 = K[0,1,79], the differential paths in the first three rounds are independent.
More precisely, a change in K3 affects Sk2[2] which consecutively propagates
the effect to the red nibbles in the forward direction. In the backward direc-
tion, changing K4 involves Sk1[7] and Sk3[2], their effect is denoted by the blue
nibbles in the states. Since K3 	= Kf and K4 	= Kb, we have to consider bits
K[2,26,31,32] as shared bits, i.e., Ks = Ks + K[2,26,31,32] and thus |K5| = 73.
The attack follows the procedure presented in Sect. 2.3, and the 2-step matching
is performed exactly as in the fifteen round attack. Since cq ≈ ct/4, following
the time complexity equation in Sect. 2.3, this chosen plaintext attack has a time
complexity of 273−1(24+23)+273(24+23)+280−9.4 ≈ 278. The memory and data
complexities are determined by the number of active bits in the plaintexts of the
bicliques. Since we have four active nibbles in the plaintexts of both bicliques,
this attack has a memory and data complexities of 217.

Fig. 7. First three rounds restricted biclique (Color figure online)

4 Conclusion

We have presented a modified approach to decrease the total matching prob-
ability of the MitM attack. This approach extends the attack by one more
round and incorporates differential and value matching to reduce the number
of false positive keys. We have shown how to combine our approach with short
restricted bicliques and demonstrated the approach on the light weight block
cipher LBlock. Particularly, we have presented a two known plaintexts 2-step
matching MitM attack on fifteen rounds with time complexity of 276 and mem-
ory complexity of 27. Finally, we have combined the fifteen rounds execution
with 3-round restricted bicliques and an eighteen round chosen plaintext attack
is presented with time, memory, and data complexities of 278, 217, and 217,
respectively.

Acknowledgment. The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions that helped improve the quality of the paper.

138 R. AlTawy and A.M. Youssef

This work is supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC) and Le Fonds de Recherche du Québec - Nature et Technologies
(FRQNT).

References

1. AlTawy, R., Youssef, A.M.: Preimage attacks on reduced-round stribog. In:
Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT. LNCS, vol. 8469, pp. 109–
125. Springer, Heidelberg (2014)

2. Aoki, K., Sasaki, Y.: Meet-in-the-middle preimage attacks against reduced SHA-0
and SHA-1. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 70–89.
Springer, Heidelberg (2009)

3. Aoki, K., Sasaki, Y.: Preimage attacks on one-block MD4, 63-step MD5 and more.
In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp.
103–119. Springer, Heidelberg (2009)

4. Bar-On, A., Dinur, I., Dunkelman, O., Lallemand, V., Tsaban, B.: Improved analy-
sis of zorro-like ciphers. Cryptology ePrint Archive, Report 2014/228 (2014)

5. Bogdanov, A., Boura, C., Rijmen, V., Wang, M., Wen, L., Zhao, J.: Key difference
invariant bias in block ciphers. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013,
Part I. LNCS, vol. 8269, pp. 357–376. Springer, Heidelberg (2013)

6. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
344–371. Springer, Heidelberg (2011)

7. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

8. Bogdanov, A., Rechberger, C.: A 3-subset meet-in-the-middle attack: cryptanalysis
of the lightweight block cipher KTANTAN. In: Biryukov, A., Gong, G., Stinson,
D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 229–240. Springer, Heidelberg (2011)

9. Bouillaguet, C., Derbez, P., Dunkelman, O., Fouque, P.-A., Keller, N., Rijmen, V.:
Low-data complexity attacks on AES. IEEE Trans. Inf. Theory 58(11), 7002–7017
(2012)

10. Canteaut, A., Naya-Plasencia, M., Vayssière, B.: Sieve-in-the-middle: improved
MITM attacks. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 222–240. Springer, Heidelberg (2013)

11. Chen, J., Miyaji, A.: Differential cryptanalysis and boomerang cryptanalysis of
LBlock. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-
ARES Workshops 2013. LNCS, vol. 8128, pp. 1–15. Springer, Heidelberg (2013)

12. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a
family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

13. Diffie, W., Hellman, M.: Exhaustive cryptanalysis of the NBS data encryption
standard. Computer 10(6), 74–84 (1977)

14. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that
are easier to mask: how far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013)

15. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

Differential Sieving for 2-Step Matching Meet-in-the-Middle Attack 139

16. Karakoç, F., Demirci, H., Harmancı, A.E.: Impossible differential cryptanalysis of
reduced-round LBlock. In: Askoxylakis, I., Pöhls, H.C., Posegga, J. (eds.) WISTP
2012. LNCS, vol. 7322, pp. 179–188. Springer, Heidelberg (2012)

17. Liu, Y., Gu, D., Liu, Z., Li, W.: Impossible differential attacks on reduced-round
LBlock. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232,
pp. 97–108. Springer, Heidelberg (2012)

18. Rijmen, V., Toz, D., Mendel, F., Varici, K.: Differential analysis of the LED block
cipher. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
190–207. Springer, Heidelberg (2012)

19. Nakahara Jr., J., Sepehrdad, P., Zhang, B., Wang, M.: Linear (Hull) and algebraic
cryptanalysis of the block cipher PRESENT. In: Garay, J.A., Miyaji, A., Otsuka,
A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 58–75. Springer, Heidelberg (2009)

20. Sasaki, Y.: Meet-in-the-middle preimage attacks on AES hashing modes and an
application to Whirlpool. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 378–
396. Springer, Heidelberg (2011)

21. Sasaki, Y., Wang, L.: Meet-in-the-middle technique for integral attacks against
feistel ciphers. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp.
234–251. Springer, Heidelberg (2013)

22. Wang, Y., Wu, W.: Improved multidimensional zero-correlation linear cryptanaly-
sis and applications to LBlock and TWINE. In: Susilo, W., Mu, Y. (eds.) ACISP
2014. LNCS, vol. 8544, pp. 1–16. Springer, Heidelberg (2014)

23. Wang, Y., Wu, W., Yu, X., Zhang, L.: Security on LBlock against biclique crypt-
analysis. In: Lee, D.H., Yung, M. (eds.) WISA 2012. LNCS, vol. 7690, pp. 1–14.
Springer, Heidelberg (2012)

24. Wu, S., Feng, D., Wu, W., Guo, J., Dong, L., Zou, J.: (Pseudo) preimage attack on
round-reduced Grøstl hash function and others. In: Canteaut, A. (ed.) FSE 2012.
LNCS, vol. 7549, pp. 127–145. Springer, Heidelberg (2012)

25. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

Match Box Meet-in-the-Middle Attacks
on the SIMON Family of Block Ciphers

Ling Song1,2,3(B), Lei Hu1,2, Bingke Ma1,2,3, and Danping Shi1,2,3

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China
2 Data Assurance and Communication Security Research Center,

Chinese Academy of Sciences, Beijing 100093, China
3 University of Chinese Academy of Sciences, Beijing 100049, China

{lsong,hu,bkma,dpsh}@is.ac.cn

Abstract. SIMON is a family of lightweight block ciphers designed by
the U.S National Security Agency in 2013. In this paper, we analyze the
resistance of the SIMON family of block ciphers against the recent match
box meet-in-the-middle attack which was proposed in FSE 2014. Our
attack particularly exploits the weaknesses of the linear key schedules
of SIMON. Since the data available to the adversary is rather limited
in many concrete applications, it is worthwhile to assess the security of
SIMON against such low-data attacks.

Keywords: Lightweight block cipher · SIMON · Meet-in-the-middle
attack · Match box

1 Introduction

Recent years have witnessed the rapid development of lightweight cryptography.
In order to meet the uprising security demands in resource restrained environ-
ment such as RFID tags and wireless sensor networks, many lightweight block
ciphers have been proposed as the fundamental cryptographic primitives, includ-
ing PRESENT [6], KATAN & KTANTAN [9], PRINTcipher [14], LBlock [19],
Piccolo [16], LED [11], SIMON & SPECK [3], to name but a few. In order
to design a cipher satisfying resource constraints, the inner components should
be simple and easy to implement, especially the key schedules. For example,
KATAN, PRINCE and SIMON have linear key schedules and LED uses the
master key directly without any key schedule.

These new design styles give rise to new cryptanalytic techniques. In particu-
lar, meet-in-the-middle attacks have developed a lot in the analysis of lightweight
block ciphers [7,8]. New techniques, such as indirect matching, all-subkey recov-
ery [17], bicliques [13], sieve-in-the-middle [8] and match box [10] have been
proposed and make meet-in-the-middle attacks more powerful in cryptanalysis.

Meet-in-the-middle attacks normally can apply to ciphers with simple key
schedules. As a unique instance, the recently proposed match box technique [10]
aims particularly at block ciphers with linear key schedules.
c© Springer International Publishing Switzerland 2015
T. Eisenbarth and E. Öztürk (Eds.): LightSec 2014, LNCS 8898, pp. 140–151, 2015.
DOI: 10.1007/978-3-319-16363-5 9

Match Box Meet-in-the-Middle Attacks on the SIMON Family 141

SIMON is a family of lightweight block ciphers designed by the U.S National
Security Agency in 2013. It attracts many researchers since there is no internal
security analysis of the cipher included in the specification document. In the
literature, analyses of SIMON focus on differential cryptanalysis [4] and linear
cryptanalysis [15]. Typical examples are [1,2,5,18] which belong to the sort of
statistical cryptanalysis and thus require a great data complexity. However, in
this paper we only concentrate on attacks with low data complexity.

Our contributions. In this paper, we analyze the resistance of the SIMON
family of block ciphers against the match box meet-in-the-middle attack. Com-
pared with classical statistical attacks such as differential and linear attacks
[4,15], the match box meet-in-the-middle attack on SIMON requires much less
and more reasonable amount of data. To the best of our knowledge, this is the
first meet-in-the-middle type of attack on SIMON, which is both meaningful
and attractive for many concrete protocols and applications, where only a small
amount of plaintext/ciphertext pairs can be eavesdropped by the adversary. Our
work enriches the analytical results on SIMON in the literature.

The remainder of this paper is organized as follows. The notations used in
this paper are defined in Sect. 2; we recall the match box meet-in-the-middle
attack in Sect. 3; Sect. 4 briefly describes the family of block ciphers SIMON,
elaborates the match box meet-in-the-middle attack against the smallest version
of SIMON and summarizes the results of other SIMON versions; we conclude
the paper in the last section.

2 Notations

The following notations will be used throughout this paper:

P,C : plaintext and ciphertext.
E0−R(K,P) : encryption of P from round 0 to round R with the secret key K.
DR−R1(K,C) : decryption of C from round R to round R1 with the secret key K.

Xi : the i-th state word.
Xi

j : the j-th bit of the word Xi.
|K| : the bit size of K or the dimension of the linear space

generated by K.

3 Match Box Meet-in-the-Middle Attack

In this section, we recall the details of the match box meet-in-the-middle attack
[10] and some related techniques.

3.1 Basic Meet-in-the-Middle Attack

As depicted in Fig. 1, the basic meet-in-the-middle attack assumes that a fraction
of the internal state v could be computed from a plaintext P with a portion K1

of the master key K, and that v could also be computed from the corresponding
ciphertext C with a portion K2 of K.

142 L. Song et al.

Fig. 1. Basic meet-in-the-middle attack

Assume K1∪K2 = K, K1∩K2 = K∩, K ′
1 = K1−K∩ and K ′

2 = K2−K∩. The
basic meet-in-the-middle attack proceeds in two stages: a key filtering stage which
sieves out the key candidates, followed by a verification stage that tests each can-
didate to derive the right key. The first stage with one pair of plaintex/ciphertext
is as follows:

– For each k∩ ∈ K∩:
1. For each k′

1 ∈ K ′
1, v is computed, and store the corresponding pair (v, k′

1)
in a table indexed by v.

2. For each k′
2 ∈ K ′

2, v is computed. From the previous table, retrieve the
k′
1s by matching v. The combination of k′

1, k
′
2 and k∩ forms a candidate

master key.

The right key is necessarily among the candidate keys, since it must lead to a
match at any internal state. After the key filtering stage described above, the
key space is reduced to 2|K|−|v|.

In the verification stage, each candidate key is tested. To find the right key,
N = � |K|

n � pairs of plaintext/ciphertext are needed, where n is the block size.
In total, the time complexity is:

T = TFiltering + TVerifying

= 2K∩ ·
(

2|K′
1| · R1

R
+ 2|K′

2| · R2

R

)
+

N−1∑

i=0

2|K|−|v|−i∗n

encryptions, where R1 and R2 are the number of rounds in forward computa-
tion and backward computation respectively, and R = R1 + R2 is the number
of rounds attacked. The memory complexity is min{2|K′

1|, 2|K′
2|}, and the data

complexity is N known plaintext/ciphertext pairs.
A simple tweak can be utilized to reduce the complexity. Suppose t pairs of

plaintext/ciphertext are used in the first stage. Then the complexity of the first
stage rises t times, while in the second stage only 2|K|−t·|v| candidate keys need
to be tested.

The indirect matching technique, which neglects the round key bits which
have a linear impact on the matching point, can also be exploited to decrease
the complexity. Suppose v = E0−R1(K1, P) = DR−R1(K2, C) and L(K1), L(K2)

Match Box Meet-in-the-Middle Attacks on the SIMON Family 143

are the bits of K1,K2 that have a linear impact on v. Then this equation can
be rewritten as

v = E0−R1(K1 − L(K1), P) ⊕ L(K1) = DR−R1(K2 − L(K2), C) ⊕ L(K2),

which is equivalent to

E0−R1(K1 − L(K1), P) ⊕ DR−R1(K2 − L(K2), C) = L(K1) ⊕ L(K2). (1)

A correct guess of K1 −L(K1),K2 −L(K2) makes Eq. (1) hold for different pairs
of plaintext/ciphertext, say (P1, C1) and (P2, C2), that is,

E0−R1(K1 − L(K1), P1) ⊕ DR−R1(K2 − L(K2), C1)
=E0−R1(K1 − L(K1), P2) ⊕ DR−R1(K2 − L(K2), C2).

In this way, if multiple pairs of plaintext/ciphertext are used, key bits in L(K1),
L(K2) can be excluded and thus less bits need to be considered from both direc-
tions of computation in the first stage. Consequently, the complexity decreases
accordingly.

3.2 Match Box Meet-in-the-Middle Attack

The match box technique was proposed in [10] which fits in the general sieve-in-
the-middle framework [8]. As shown in Fig. 2, l is computed from a plaintext P
with k1 ∈ K1 and r is computed from the corresponding ciphertext C with k2 ∈
K2. The match box is a precomputed table that stores all compatible (l, r)s under
control of k3 ∈ K3, which has a small size. The simplest case is that K3 ∩ K1 =
K3 ∩ K2 = ∅. In this case, once l and r are computed, the match box returns
whether l and r are compatible. If so, the corresponding (k1, k2, k3) is a candidate
key. In more practical cases, K3 may involve bits from both K1 and K2, which
makes it difficult to construct a match box with a reasonable complexity.

In [10], the authors proposed a method to construct match boxes for block
ciphers with linear key schedules. Following the previous notations, K1 ∩ K2 =
K∩,K ′

1 = K1 −K∩ and K1 ∪K2 = K. K3 is related to both K1 and K2. Let f be
the key schedule function. Since K = K ′

1 + K2, then f(K) = f(K ′
1) ⊕ f(K2). On

the right side of the match box, r and k2 are known (which means f(K2) is also
known) and considered as a whole �r = (r, f(K2)). On the left side of the match
box, (l, k′

1) are known. l depends on k′
1 and there are 2l·|K′

1| mappings of g : k′
1 �→ l.

Fig. 2. Match box meet-in-the-middle attack

144 L. Song et al.

Given a mapping g, for each value of �r we can precompute a list of k′
1s (at most

2|K′
1|) leading to l such that (l, k′

1) and �r are compatible. There are 2|�r| values of
�r, and as a result 2|K′

1|+|�r| computations should be stored for each mapping g.
Enumerating all possible mappings, the match box is supposed to have

2|l|·2|K′
1|+|K′

1|+|�r| (2)

entries in total1.
During the attack, l is computed using k1 in the forward computation and

the mapping g is thus determined; in the backward computation, �r is computed.
To verify the compatibility between (l, k′

1) and �r, we search for the list of k′
1s

using �r among the items of the match box which is indexed by the mapping g,
and check whether the k′

1 used in forward computation is in that list.
The main limitation of this technique is the size of the match box table. More

precisely, as specified in Eq. (2), the table becomes too large if |K ′
1| is not small

enough.

On the key separations. Following the idea in [10], the master key can be
regarded as a vector in (Z/2Z)|K|. The value of the master key corresponds to
the coordinates of this vector along the canonical basis. Each round key is a
linear combination of the master key bits, and then |K1| (resp. |K2|) can be
regarded as the dimension of the linear space generated by K1 (resp. K2). In
this way, it becomes much easier to find independent separations of the round
key bits, which results in more efficient meet-in-the-middle attacks for KATAN
in [10]. This strategy is very likely to be applicable to other block ciphers with
linear key schedules.

4 Match Box Meet-in-the-Middle Attack on SIMON

4.1 The SIMON Family of Block Ciphers

SIMON is a family of lightweight block ciphers designed by NSA which aims to
provide an optimal hardware implementation performance [3]. SIMON supports
a variety of word sizes n = 16, 24, 32, 48 and 64 bits. SIMON2n with m n-bit
key words is denoted by SIMON2n/mn. Table 1 makes explicit the parameter
choices for all versions of SIMON.

The design of SIMON follows a classical Feistel structure, operating on two n-
bit halves in each round. The round function makes use of three n-bit operations:
XOR (⊕), AND (&) and circular shift (≪). Given a round key k it is defined
on two inputs x and y as

Rk(x, y) = (y ⊕ f(x) ⊕ k, x),

where f(x) = ((x ≪ 1)&(x ≪ 8)) ⊕ (x ≪ 2). In this paper, (X0,X1) denotes
the plaintext and (Xi,Xi+1) denotes the state after i rounds of encryption.

1 We have confirmed from the authors of [10] that the complexity is not 2|l||K′
1|+|K′

1|+|�r|

as their paper describes, but 2|l|·2|K′
1|+|K′

1|+|�r|.

Match Box Meet-in-the-Middle Attacks on the SIMON Family 145

Table 1. SIMON parameters.

Block Key Word Key Rounds

size 2n size mn size n words m T

32 64 16 4 32

48 72 24 3 36

48 96 24 4 36

64 96 32 3 42

64 128 32 4 44

96 96 48 2 52

96 144 48 3 54

128 128 64 2 68

128 192 64 3 69

128 256 64 4 72

The key schedules of SIMON are linear transformations, as depicted in Fig. 4.
The m master key words are used as the first m round keys. Also, they are the
inputs for the first iteration of the key schedules. Note that, the i-th round key is
denoted as Ki. The key schedule differs slightly for different m. The constant c
is 2n −4 and zjs are 1-bit constant sequences. For more specifications of SIMON,
please refer to [3] Fig. 3.

Fig. 3. The round function of SIMON

Fig. 4. The key schedules for m = 4, 3, 2. Sj operation denotes left circular shift by
j bits.

146 L. Song et al.

4.2 Application of Match Box Meet-in-the-Middle Attack to
SIMON32/64

SIMON32/64 is the version of SIMON with 16-bit words and 64-bit keys (n =
16,m = 4). As depicted in Fig. 5, we need to guarantee that |K1| < 64 in the
forward computation, such that the attack is faster than the brute-force attack.
Following the algorithm in [10] that determines key dependencies by marking
the key bits that enter the state bits and propagating the dependencies along
the cipher, we also write a program to observe the dependency between internal
state bits and key bits. According to our computation, after seven rounds of
encryption each state bit are influenced by 63 round key bits, among which 61
bits have a nonlinear impact on the state bit. These 61 round key bits form a
linear space of dimension 61.

Fig. 5. Match box meet-in-the-middle attack on SIMON32/64

Similarly in the backward computation, 61 round key bits have a nonlinear
impact on each state bit after seven rounds of decryption, which also form a
linear space of dimension 61.

Setting any bit of state X8 as the matching point, we are able to mount a basic
meet-in-the-middle attack on 15-round SIMON32/64 using 3 plaintext/ciphertext
pairs. The complexity is

3 ·
(

261 · 7
15

+ 261 · 7
15

)
+

2∑

i=0

261−i∗32 = 262.93.

Extend the Basic Attack to More Rounds. Suppose the matching point is
X8

0 , i.e. the least significant bit of X8. According to the round function,

X8
0 = X9

15 · X9
8 ⊕ X9

14 ⊕ X10
0 ⊕ K8

0 . (3)

By decomposing X9
15 in Eq. (3), we get

X8
0 = (X10

14 · X10
7 ⊕ X10

13 ⊕ X11
15 ⊕ K9

15) · X9
8 ⊕ X9

14 ⊕ X10
0 ⊕ K8

0 .

Here we neglect the round key bits which have a linear impact on X8
0 , so

K8
0 is neglected. Besides K8

0 , several other round key bits may be neglected as

Match Box Meet-in-the-Middle Attacks on the SIMON Family 147

long as they impact on X8
0 linearly. From the decryption side, to get the value

of X8
0 , we just need to calculate the values of X11

15 ,X10
0 ,X10

7 ,X10
13 ,X10

14 ,X9
8 and

X9
14. Thus, the round key bit K9

15 is isolated from the backward computation,
and will be processed in the match box. As can be seen, more round key bits of
K2 will be isolated from the backward computation if the decomposition goes
further, leading a reduction on the dimension of K2. To keep K2 = 61, more
round key bits after the 15-th round can be added. In this way the number of
rounds attacked may increase.

From the above analysis, we can derive the following principle: we can move
the backward computation beyond the 15-th round by isolating more round key
bits in the middle; however we need to keep the dimension of K2 to be 61. In
other words, the load of the backward computation keeps the same, but the
overall number of rounds attacked may increase since more middle rounds can
be covered with the match box.

In fact, the number of round key bits that can be isolated is determined
by the construction of the match box. The round key bits in the middle involve
information form both K1 and K2, and they can not be computed independently
in any direction. Since SIMON adopts linear key schedules and K = K ′

1 + K2,
each round key bit can be split into two parts: Ki

j = rki
j ⊕ lki

j , where rki
j denotes

the part generated by K2 and lki
j denotes the part generated by K ′

1.
In this case, |K ′

1| = 3 and |l| = 3 if three plaintext/ciphertext pairs are
used; �r consists of the state bits and rki

js, which is absorbed from the decom-
posed expression of X8

0 . According to Eq. (2), the match box requires a memory
complexity of M = 227+|�r|.

Compression table. Normally, |�r| should be smaller than 37 to guarantee
M < 264. In order to cover as many middle rounds with the match box as
possible, we utilize the so-called compression table technique of [8] to shorten
�r when |K ′

1| is small. This technique comes from the fact that the decomposed
expression of X8

0 can be expressed as a boolean polynomial in the bits of K ′
1. It

is obvious that the boolean polynomial in the bits of K ′
1 has no more than 2|K′

1|

coefficients, to which all bits in �r can be mapped. Therefore, if 2|K′
1| < 2|�r|, |�r|

bits from the right side of the match box can be equivalently expressed as at
most 2|K′

1| coefficients. Consequently, the memory complexity of the match box
gets reduced.

However, the cost of building a compression table that transforms bits of �r
into coefficients of bits in K ′

1 cannot be neglected. Since the coefficients can be
computed with 2|K′

1| partial encryptions for each �r, the whole compression table
is built with time complexity 2|�r|+|K′

1| and memory complexity 2|�r|.
The decomposition shows X0

8 can be represented with 27 state bits and 32
rki

js, and the attack can now be extended to 17 rounds. We have |K ′
1| = 3, |�r| =

27 + 32 = 55 > 23 and a compression table of size 255 will be built with time
complexity of 258.

If we match three plaintext/ciphertext pairs simultaneously, the three corre-
sponding 55-bit �r are shorten to 8 × 3 = 24 bits using the compression table.
This yields a match box of size 227+24 = 251.

148 L. Song et al.

Total complexity. We attack 17 rounds of SIMON32/64, and the overall time
complexity is

TTotal = TCompression + TMatchBox + TFiltering + TV erifying

= 258 + 251 + 3 · (261 · 7
17

+ 261 · 4
17

) +
3−1∑

i=0

261−32∗i ≈ 262.57.

The round key bits in K1,K2 and �r are provided in the Appendix. For all
versions of SIMON, since the last round key is added to the state linearly,
which means no overlapped nonlinear component, we can extend one round
with bicliques [13] at the end of the cipher with no additional time complexity
but 2N chosen plaintext/ciphertext pairs, where N is 3 or 4. Finally, 18 rounds
of SIMON32/64 can be attacked.

4.3 Application to Other Versions

For other versions of SIMON, similar attacks can be mounted. Table 2 summa-
rizes the results of eight versions. We omit the results of the other two versions
for m = 2, i.e. SIMON96/96 and SIMON128/128, because the match box meet-
in-the-middle attack does not outperform the basic meet-in-the-middle attack
which can attack 17 and 19 rounds of SIMON96/96 and SIMON128/128 respec-
tively. The reason why the match box meet-in-the-middle attack does not work
well for these two versions is due to the fact that any match box for them cover-
ing one round in the middle becomes too large. Note that, for the cases m = 2,
the key size is as large as the block size, which makes it difficult to construct
a match box with a reasonable complexity. For larger m, which means the key
size is larger than block size, the match box meet-in-the-middle attack has been
proved to be more efficient.

Table 2. Results for eight versions of SIMON

Version: Rounds Data Time |K1| |K2| Match Compression

2n/mn Total Attacked box table

32/64 32 18 23 262.57 61 61 251 255

48/72 36 17 23 271.65 70 71 218 247

48/96 36 19 23 295.26 94 94 218 272

64/96 42 17 23 294.05 93 93 235 265

64/128 44 19 23 2126.01 125 125 235 276

96/144 54 21 24 2141.27 140 140 2132 296

128/192 69 25 23 2190.60 189 190 251 297

128/256 72 25 23 2253.94 253 253 235 2116

Match Box Meet-in-the-Middle Attacks on the SIMON Family 149

5 Conclusion

In this paper, we analyzed eight versions of the SIMON family of block ciphers
with the match box meet-in-the-middle attack. These eight versions share a com-
mon feature that the key size is larger than the block size. Our work exploits
the weaknesses of the linear key schedules of SIMON. Compared to the exist-
ing attacks based on statistical methods, our attack requires much less data,
which is meaningful for many concrete situations where the data available to
the adversary is rather limited.

Acknowledgement. The authors would like to thank anonymous reviewers for their
helpful comments and suggestions. The work of this paper was supported by the
National Key Basic Research Program of China (2013CB834203), the National Nat-
ural Science Foundation of China (Grants 61070172), the Strategic Priority Research
Program of Chinese Academy of Sciences under Grant XDA06010702, and the State
Key Laboratory of Information Security, Chinese Academy of Sciences.

A Details for the Attack on SIMON32/64

– K1 involves 61 round key bits (dimension 61) as follows:
K0

0 ,K0
1 ,K0

2 ,K0
3 ,K0

4 ,K0
5 ,K0

6 ,K0
7 ,K0

8 ,K0
9 ,K0

10,K
0
11,K

0
12,K

0
13,K

0
14,K

0
15,

K1
0 ,K1

1 ,K1
2 ,K1

3 ,K1
4 ,K1

5 ,K1
6 ,K1

7 ,K1
8 ,K1

9 ,K1
10,K

1
11,K

1
12,K

1
13,K

1
14,K

1
15,

K2
0 ,K2

2 ,K2
3 ,K2

4 ,K2
5 ,K2

6 ,K2
7 ,K2

9 ,K2
10,K

2
11,K

2
12,K

2
13,K

2
14,

K3
4 ,K3

5 ,K3
6 ,K3

8 ,K3
11,K

3
12,K

3
13,K

3
14,K

3
15,

K4
0 ,K4

6 ,K4
7 ,K4

13,K
4
14,

K5
8 ,K5

15.
– The match box involves 29 round keys generated by K2:

rk9
8, rk

9
15, rk

10
0 , rk10

6 , rk10
7 , rk10

13 , rk
10
14 , rk

11
4 , rk11

5 , rk11
6 , rk11

8 , rk11
11 , rk

11
12 ,

rk11
13 , rk

11
14 , rk

11
15 , rk

12
0 , rk12

5 , rk12
6 , rk12

7 , rk12
11 , rk

12
12 , rk

12
13 , rk

12
14 , rk

13
8 , rk13

13 ,
rk13

15 , rk
13
14 , rk

14
0 .

– K2 involves 67 round key bits (dimension 61) as follows:
K12

2 ,K12
3 ,K12

4 ,K12
6 ,K12

7 ,K12
10 ,

K13
0 ,K13

1 ,K13
2 ,K13

3 ,K13
4 ,K13

5 ,K13
6 ,K13

7 ,K13
8 ,K13

9 ,K13
10 ,K13

11 ,K13
12 ,

K14
0 ,K14

1 ,K14
2 ,K14

3 ,K14
4 ,K14

5 ,K14
6 ,K14

7 ,K14
8 ,K14

9 ,K14
10 ,K14

11 ,K14
12 ,K14

13 ,
K14

14 ,K14
15 ,

K15
0 ,K15

1 ,K15
2 ,K15

3 ,K15
4 ,K15

5 ,K15
6 ,K15

7 ,K15
8 ,K15

9 ,K15
10 ,K15

11 ,K15
12 ,K15

13 ,
K15

14 ,K15
15 ,

K16
0 ,K16

1 ,K16
2 ,K16

3 ,K16
4 ,K16

5 ,K16
6 ,K16

7 ,K16
8 ,K16

9 ,K16
10 ,K16

11 ,K16
12 ,K16

13 ,
K16

14 ,K16
15 .

150 L. Song et al.

References

1. Abed, F., List, E., Wenzel, J., Lucks, S.: Differential cryptanalysis of round-reduced
simon and speck. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS. Springer
(2014, to appear)

2. Alizadeh, J., Alkhzaimi, H.A., Aref, M.R., Bagheri, N., Gauravaram, P., Kumar,
A., Lauridsen, M.M., Sanadhya, S.K.: Cryptanalysis of SIMON variants with con-
nections. In: Sadeghi, A.-R., Saxena, N. (eds.) RFIDSec 2014. LNCS, vol. 8651,
pp. 90–107. Springer, Heidelberg (2014)

3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013). http://eprint.iacr.org/

4. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

5. Biryukov, A., Roy, A., Velichkov, V.: Differential analyis of block cipher SIMON
and SPECK. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS. Springer (2014,
to appear)

6. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

7. Bogdanov, A., Rechberger, C.: A 3-subset meet-in-the-middle attack: cryptanalysis
of the lightweight block cipher KTANTAN. In: Biryukov, A., Gong, G., Stinson,
D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 229–240. Springer, Heidelberg (2011)

8. Canteaut, A., Naya-Plasencia, M., Vayssière, B.: Sieve-in-the-middle: improved
MITM attacks. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 222–240. Springer, Heidelberg (2013)

9. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a
family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

10. Fuhr, T., Minaud, B.: Match box meet-in-the-middle attack against KATAN. In:
FSE 2014. Springer (2014, to appear)

11. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

12. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçın, T.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012)

13. Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for preimages: attacks
on Skein-512 and the SHA-2 family. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol.
7549, pp. 244–263. Springer, Heidelberg (2012)

14. Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: a
block cipher for IC-printing. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 16–32. Springer, Heidelberg (2010)

15. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

http://eprint.iacr.org/

Match Box Meet-in-the-Middle Attacks on the SIMON Family 151

16. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)

17. Isobe, T., Shibutani, K.: All subkeys recovery attack on block ciphers: extending
meet-in-the-middle approach. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS,
vol. 7707, pp. 202–221. Springer, Heidelberg (2013)

18. Wang, N., Wang, X., Jia, K., Zhao, J.: Improved Differential Attacks on Reduced
SIMON Versions. http://eprint.iacr.org/2014/448

19. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

http://eprint.iacr.org/2014/448

Protocols

A Provably Secure Offline RFID Yoking-Proof
Protocol with Anonymity

Daisuke Moriyama(B)

National Institute of Information and Communications Technology, Tokyo, Japan
dmoriyam@nict.go.jp

Abstract. Yoking-proof in a Radio Frequency Identification (RFID)
system provides the evidence that two RFID tags are simultaneously
scanned by the RFID reader. Though there are numerous yoking-proof
protocols, vulnerabilities related to security and privacy are found in
many prior works. We introduce a new security definition that covers
the man-in-the-middle (MIM) attack, and a privacy definition based on
an indistinguishability framework. We also provide a simple construction
of a provably secure offline yoking-proof protocol based on the pseudo-
random function.

Keywords: RFID · Authentication · Yoking proof · Provable security

1 Introduction

Radio Frequency Identification (RFID) technology enables identification of
objects with wireless communication. When a passive RFID tag is attached
to the object and electricity is supplied from the RFID reader, a communica-
tion channel between the tag and reader is established and they can exchange
messages. Since RFID tags are widely used in various commercial activities
(e.g., logistics, transportation, product management), tracking of RFID tags
by an authorized manager is a fundamental issue of concern. Notably, Juels
introduced an RFID yoking-proof protocol in which two RFID tags are simul-
taneously scanned by the reader and coexistence of the tags is provided by the
communication through the reader [13]. When the yoking-proof protocol is gen-
eralized so that a group of tags is communicated via the reader and generates
a proof by which they all engage in the protocol, it is called a “grouping-proof
protocol” [4,22].

Afterwards, various yoking-proof and grouping-proof protocols have been
proposed, but almost all of them were broken. Though Juels proposed two yoking-
proof protocols, both are vulnerable to replay attacks in which an adversary com-
bines flows from different sessions [4,22]. Piramuthu showed that the grouping
proof protocol proposed in [22] is still vulnerable to a replay attack [19]. Subse-
quently, Peris-Lopez et al. introduced a multi-proof session replay attack in [20]
and provided an attack against the Piramuthu’s protocol [19]. Burmester et al.
proposed a provably secure yoking-proof protocol [3], but Peris et al. pointed out
c© Springer International Publishing Switzerland 2015
T. Eisenbarth and E. Öztürk (Eds.): LightSec 2014, LNCS 8898, pp. 155–167, 2015.
DOI: 10.1007/978-3-319-16363-5 10

156 D. Moriyama

that their protocol is vulnerable to multiple impersonation attacks [21]. They also
mentioned that the yoking-proof protocol proposed by Chien and Liu [6] has a pri-
vacy problem and the grouping proof protocol proposed by Huang and Ku [10] is
not secure against impersonation attacks. Though Peris-Lopez et al. gave a guide-
line for constructing secure yoking-proof and grouping-proof protocols and pro-
posed a new yoking-proof protocol, recently Bagheri and Safkhani showed that
the tag’s secret key can be calculated from the communication message in their
protocol [5]. Batina et al. proposed a grouping-proof protocol based on public key
cryptography [2], and Hermans and Peeters showed that an impersonation attack
and man-in-the-middle (MIM) attack could be launched against it [11].

Our Contributions. In this paper we focus on a provably secure offline RFID
yoking-proof protocol. Our contributions are twofold. First, we investigate a rig-
orous security model for yoking-proof protocols based on the security and privacy
definition for canonical RFID authentication protocols [7,15,17]. Though [3] pro-
posed a security model based on the universal composability (UC) framework,
it is widely known that it is difficult to provide a security proof in the UC
framework. Hermans and Peeters provided another security model in [11] that
is based on the existing security model for the canonical RFID authentication
protocols [12], but this definition only captures the impersonation attack on
security and the adversary cannot learn whether the resulting yoking proof
is valid. Different from the above prior security models, our security model
covers general MIM attacks in the security definition so that a malicious adver-
sary can interact with all RFID tags at any time and modify the communica-
tion. An indistinguishability-based privacy definition is also proposed to provide
anonymity for the RFID tags.

Next, we show an example of a yoking-proof protocol that satisfies the pro-
posed security model. Notably, our protocol is robust against an MIM attack that
includes all attacks described in previous works [4,11,19,21,22], and satisfies the
requirement of anonymity such that no information about the tag is leaked from
the communication message. Compared to the existing offline yoking-proof pro-
tocol proposed by Hermans and Peeters [11], which has provable security, our
protocol does not require public key cryptography and its main building block is
a secure pseudorandom function. Thus, our protocol is quite efficient and easier
to implement in low-cost RFID tags.

2 Security Model for RFID Yoking-Proof Protocols

Though there are many yoking-proof and grouping-proof protocols, there is no
widely known security model and this area is still under development. In this
paper, we formalize two basic requirements for yoking-proof protocols, correctness
and security. In addition, we also consider the privacy issue as an additional prop-
erty. Our security model for yoking-proof protocols is motivated by the security
model for basic RFID authentication protocols [15]. However, we do not intention-
ally cover the tag corruption in the following definition because almost all previous
works does not satisfy a classical man-in-the-middle attack nor privacy.

A Provably Secure Offline RFID 157

2.1 Execution Model

A yoking-proof protocol in an RFID system is executed among the verifier V,
RFID reader R and multiple RFID tags in T := {t0, t1, . . . , tn}. The yoking-
proof protocol consists of three phases: setup, generation and verification. In the
setup phase, the verifier runs a setup algorithm with security parameter k and
obtains public parameter and secret keys. If the protocol is based on symmetric-
key cryptography, the verifier shares the secret key with the RFID tags. In
the generation phase, two RFID tags generate a yoking-proof via the reader.
Then, two RFID tags in the same group execute an interactive protocol and
finally the reader outputs a proof. The verifier checks the validity of the proof
in the verification phase. If the verification is accepted, the verifier outputs 1
(acceptance); otherwise, it outputs 0 (rejection) as the verification result. In the
following, we concentrate on the offline yoking-proof protocol wherein the verifier
does not participate in the generation phase.

We consider that each session of the party (RFID reader and individual
tags) is identified by a session identifier sid, that contains the collected of the
input/output messages of the party. A session is called finished when the party
outputs the final message in the session. We say that a party A has a matching
session with the other party B if all communication messages between the two
are honestly transferred. The correctness of the yoking-proof protocol is that the
verifier always accepts the yoking proof if it is generated by the session wherein
two tags in the same group have a matching session with the peer.

We note that the role of the reader is different from the canonical RFID
authentication protocol in which the RFID reader authenticates the RFID tag
and outputs the authentication result. Therefore, the RFID reader actively par-
ticipates in the protocol. On the other hand, the reader in the yoking-proof and
grouping-proof protocols does not authenticate tags1 and its task is to transfer
the message among tags and obtain the yoking proof from the communication
message. Instead, a verifier checks the validity of the yoking proof after a session
is finished and the reader submits the yoking proof. Thus it is trivial that an
adversary impersonates a reader and this is not a security issue in yoking-proof
and grouping-proof protocols. Therefore, the protocol procedure is quite differ-
ent and the existing security model for typical RFID authentication protocols is
not directly applicable to the yoking-proof protocols.

2.2 Security

Intuitively, the security of the yoking-proof protocol requires that the verifier
always rejects the yoking proof if it is not available in one honest protocol exe-
cution between the RFID tags. When there is an active adversary that can inter-
fere, delay, interleave and modify the communication message, we can consider
there are two security levels: resistance against the impersonation attack and
1 Tag authentication by the reader can be one application, but it is not a necessary

issue in yoking-proof protocols.

158 D. Moriyama

MIM attack. Hermans and Peeters [11] introduced a formal security model for
the RFID yoking-proof protocol that captures the impersonation attack. In their
security definition, the adversary can communicate with all tags in the learning
phase. After that, the adversary cannot interact with one of the uncorrupted
tags and the goal of the adversary is to impersonate the tag and output a valid
yoking proof. Though the above impersonation resistance is also widely known
as an active attack, it does not imply security against an MIM attack. Notably,
several lightweight authentication protocols [1,8,14] are provably secure against
an active adversary but vulnerable to a (general) MIM attack [8,9,18]. In this
paper, we formalize security against a general MIM attack in RFID yoking-proof
protocols.

When a general MIM attack is launched, the adversary can interact with all
tags at any time. The adversary’s goal is to output a valid yoking proof that is
not generated in the sessions wherein the tag has a matching session to the other
tag. We note that the above condition does not mean that the reader has no
matching session to one of the RFID tags. Whereas the reader always transmits
the communication messages between the RFID tags, the adversary can directly
deliver the tag’s output to the other tag. Even when the adversary sends an
arbitrary random message to the reader in the session and the reader does not
have a matching session, the adversary can obtain a valid yoking proof derived
from the tags.

More formally, we provide the following general security experimentExpSecΠ,A(k)
between a challenger and adversary A against an RFID yoking-proof protocol Π.

Setup. The challenger runs the setup algorithm and provides a public parameter
to the adversary.

Learning. Then A can then adaptively issue the following queries to interact
with the reader, tags and verifier:
– Launch(1k): Launch the reader to start a new session.
– SendReader(m): Send an arbitrary message m to the reader.
– SendTag(t,m): Send an arbitrary message m to the tag t ∈ T .
– Result(σ): Output whether the verifier accepts the yoking-proof σ.

Guess. When the adversary finishes the interaction A outputs (t∗0, t
∗
1, σ

∗) where
(t∗0, t

∗
1) ⊆ T . The challenger outputs 1 if Result(σ∗) = 1 and σ∗ is not derived

from the session in which t∗0 has the matching session to t∗1. Otherwise, the
challenger outputs 0.

The probability that the adversary wins the above security game is denoted by
AdvSecΠ,A(k) := Pr[ExpSecΠ,A(k) → 1].

Definition 1. An RFID yoking-proof protocol Π is secure against general MIM
attacks if for any probabilistic polynomial time adversary A, AdvSecΠ,A(k) is neg-
ligible in k.

We note that a general MIM attack covers all previous attacks against previous
works [4,11,19,21,22]. One typical approach of replay attacks is that a mali-
cious adversary captures the past communication messages and reuses them in

A Provably Secure Offline RFID 159

the target session. In the impersonation attack the adversary sends adversarial
messages to the tag and obtains a meaningful information. Our security defini-
tion does not restrict any strategy from the view point of the adversary and only
gives one exception wherein σ∗ honestly generated by two tags in one session
cannot be submitted since it is trivial in terms of the correctness property.

Different from the existing security definition for RFID authentication proto-
cols, the final goal of the adversary is not to submit an acceptable message to the
reader but to output a forged yoking proof to the offline verifier. We therefore
define the above experiment as the security definition against digital signature
or message authentication code schemes.

2.3 Privacy

One application of the RFID yoking-proof protocol is to cover anonymity. Though
the yoking-proof system is useful to prove when the tag interacts with the reader
from the view point of the honest verifier, it is not desirable that a malicious
adversary can trace the tag. Even if the adversary cannot verify the yoking proof
two tags generate, several previous works specify that the tag explicitly outputs
its identity to the reader, so the adversary can learn which tag tries to generate a
yoking proof. Since the tag’s anonymity is a critical issue in RFID authentication
protocols, it is useful to consider privacy in the related topics.

In this paper we formalize the privacy definition for RFID yoking-proof pro-
tocols based on indistinguishability-based privacy for canonical RFID authenti-
cation protocols [7,15,17]. Consider the following privacy experiment against an
RFID yoking-proof protocol Π between a challenger and adversary A := (A1,A2):

Setup. The challenger runs the setup algorithm to initialize the verifier, reader
and tag. The adversary obtains public parameter pp and the identities of the
reader and tag (R, T).

Phase 1. The adversary A1 can issue O:={Launch,SendReader,SendTag,Result}
to communicate with the reader and tag and check the validity of the yoking
proof as a security game.

Challenge. A sends two sets of tags T ∗
0 and T ∗

1 (T ∗
0 �= T ∗

1 ∧ |T ∗
0 | = |T ∗

1 | = 2)
to the challenger and outputs state information st. The challenger flips a coin
b

U← {0, 1} and sets T ′:=T \ {T ∗
0 , T ∗

1 }.
Phase 2. The adversary A2 receives st and continues to interact with R and T ′

as Phase 1. If the adversary wants to send message m to a tag in the group
T ∗

b , he issues SendTag((I, i),m) with an intermediate algorithm I. I relays
the communication between A2 and the i-th member of T ∗

b to prevent the
adversary from directly interacting with the target tag.

Guess. Finally, the adversary A2 outputs b′.

The adversary wins the above game if b′ = b holds and two tags in T ∗
0 /T ∗

1

belong to the same group. Depending on the flipped coin b, we define the above
experiment as ExpIND

Π,Ab(k). Then the advantage of the adversary is defined by

AdvIND
Π,A(k) =

∣∣Pr[ExpIND-0
Π,A (k) → 1] − Pr[ExpIND-1

Π,A (k) → 1]
∣∣ .

160 D. Moriyama

Definition 2. An RFID yoking-proof protocol Π satisfies IND-privacy if for
any PPT adversary A, AdvIND

Π,A(k) is negligible in k.

Recall that T contains identities of all RFID tags. Since there are many groups
in T , the adversary may want to distinguish between the group of RFID tags.
Consider that there are two groups A ⊂ T and B ⊂ T . If T ∗

0 ⊆ A and T ∗
1 ⊆ B,

the above definition claims that the adversary cannot distinguish between two
groups even when it obtains the communication messages anonymously. On the
other hand, if T ∗

0 ⊂ A and T ∗
1 ⊂ A for a group A, this means that the adversary

tries to distinguish the tag frin among the members in A; thus, no information
related to the group’s or tag’s identity should be leaked from the communication
messages to satisfy the requirement of IND-privacy.

In this paper we do not formalize the forward secrecy so that a malicious
adversary corrupts the RFID tag and obtains the internal secret. Since we focus
on the offline yoking-proof protocol, it is not trivial for RFID tags to securely
update the secret key with the offline verifier. The key updating mechanism
is certainly an additional issue, and we leave this issue as an open problem.
Since almost all the previous symmetric-key based protocols are broken and the
security level of the existing provably secure yoking-proof protocol [11] is only an
impersonation attack, the first task is to show a yoking-proof protocol provably
secure against a general MIM attack.

3 Proposed Yoking-Proof Protocol

We present a new RFID yoking-proof protocol, provably secure against a general
MIM attack and satisfies IND-privacy. It is based on the previous yoking-proof
protocol proposed by Bermester et al. [3] and supports group authentication
during yoking-proof generation. Assume that a secure pseudorandom function
PRF : {0, 1}k ×{0, 1}∗ → {0, 1}k is implemented in all RFID tags. The proposed
protocol proceeds as follows:

Setup Phase. The verifier V randomly selects group secret key kX
U← {0, 1}k

for each group and individual secret key ki
U← {0, 1}k for each tag. Tag ti receives

(kX , ki) from the verifier. Reader R selects a maximum delay time δ that denotes
the upper bound of the execution for each session.

Generation Phase. For simplicity, we consider that tag t1 and t2 communicate
with each other to generate the yoking proof.

1. Reader R sends time stamp ts and random nonce r
U← {0, 1}k to tag t1. R

also starts an internal time clock.
2. Upon receiving (ts, r) from R, t1 randomly chooses r1

U← {0, 1}k and computes
u1 :=PRF(kX , (ts, r, r1)). t1 sends (r, r1, u1) to R.

3. R sends (ts, r, r1, u1) to t2.
4. Upon receiving (ts, r, r1, u1) from R, t2 verifies u1 = PRF(kX , (ts, r, r1)).

If this verification holds, t2 randomly chooses r2
U← {0, 1}k and computes

A Provably Secure Offline RFID 161

u2 :=PRF(kX , (ts, r, r1, r2)) and v2 :=PRF(k2, (ts, r, r1, r2)). Otherwise, t2

randomly selects (r2, u2, v2)
U← {0, 1}3k. t2 sends (r, r2, u2, v2) to R.

5. R sends (r1, r2, u2) to t1.
6. Upon receiving (r1, r2, u2) from R, t1 checks that there is an unfinished session

where t1 outputs r1 in the first round and verifies u2 :=PRF(kX , (ts, r, r1, r2)).
If this verification holds, t1 computes v1 :=PRF(k1, (ts, r, r1, r2)). Otherwise,
t1 selects v1

U← {0, 1}k. t1 sends (r, v1) to R.
7. R outputs σ := (ts, r, r1, r2, u2, v1, v2) as a yoking proof if the above execution

is finished within δ. Otherwise, R aborts the session.

Verification Phase. The verifier checks u2 = PRF(kX , (ts, r, r1, r2)) for a group
secret key kX . If this verification holds, V checks v1 = PRF(k1, (ts, r, r1, r2)) and
v2 = PRF(k2, (ts, r, r1, r2)) for some individual secret keys k1 and k2 sent to
the group member. If these verifications hold, V accepts the yoking proof and
outputs 1. If one of the three verifications fails, V outputs 0.

The main building block of our protocol is the pseudorandom function.
Because it is natural for the existing RFID authentication protocols that the
RFID tag can compute symmetric key cryptography, we do not restrict here
that the computational resource of RFID tags must be EPC-compliant. In par-
ticular, it is quite hard to provide a security proof for EPC-compliant protocols
because such tags can only execute basic operations such as AND, OR, XOR, or
cyclic-shift. Though we extend a protocol in [3] that is vulnerable to the multiple
impersonation attacks [21], our protocol specifies that (u2, v1, v2) is computed
with fresh nonces selected by each tag and an impersonation attack always fails.
One of the two nonces is always selected by itself and the other nonce restricts
the peer of the session; so our protocol is secure against a general MIM attack
(see more detailed discussion in the next section).

If the tag’s identity is also input to PRF, each tag can verify which member
of the group executes the yoking-proof protocol. However, it is inefficient for the
tag to run an exhaustive search to check the actual peer in the group when the
group member is quite large (such as for the role of the reader in the canonical
RFID authentication protocol). Even when the tag’s identity is not included,
each tag can check whether a valid tag in the same group tries to execute the
yoking proof in our protocol.

In the above protocol, time stamp ts and nonce r are always input to the
pseudorandom function. The role of the time stamp is to specify when the reader
invokes the session and the verifier learns it, while the time stamp is useless for
the communicating RFID tags. On the other hand, r is used to ensure the
concurrent execution of the session. Especially, Lin et al. [16] considered the
situation in which the tag communicates with multiple readers and executes
many sessions concurrently. When some readers start different sessions at the
same time, the time stamp may be recorded. However, the random nonce r is
also chosen at random and is unique for each reader (the collision probability
is at most 2−k). Therefore, the communication message output from each tag
contains r to distinguish between multiple readers. Similarly, t1 receives r1 from
R even after r1 is sent to R. Different from tag t2, t1 starts a new session

162 D. Moriyama

whenever it receives (ts, r) and must keep sessions until the reader gives the
response from t2 to t1. If we omit r1 from (r1, r2, u2) transmitted from R, t1
cannot learn which session should be verified in the concurrent execution, so
some extra information to distinguish multiple sessions is needed to transfer
messages. Since (r, r1) is chosen randomly for each session and can be used as
unique identifier, these nonces are contained in the communication message to
support concurrent execution.

We note that the validity of v1 and v2 cannot be checked by the tags in our
protocol and one may think that there is a chance for a malicious adversary to
change these variables. Actually, the tags cannot detect the man-in-the-middle
attack. But v1 and v2 are used to check by the (legitimate) verifier and these
values are strictly determined by the time stamp and nonces related to the
session. Since the goal of the adversary is to violate the security or privacy as
explained in the previous section, no critical problem occurs in our protocol.

4 Security Proof

We prove that our protocol satisfies the security model described in Sect. 2. It
is clear that the proposed protocol described in the previous section satisfies
correctness.

Theorem 1. Our yoking-proof protocol is secure against a general MIM attack
if PRF is a secure pseudorandom function.

Proof. We show that if an adversary A wins the security game described in
Sect. 2, there is an algorithm B that breaks the security of pseudorandom func-
tion PRF. B can issue oracle queries to the function that is actual pseudorandom
function PRF(k1, ·) or a truly random function, and the goal of B is to distinguish
between them. Consider that the adversary outputs a set of the tag’s identi-
ties (t∗1, t

∗
2) and yoking proof σ∗ := (r∗, r∗

1 , r
∗
2 , u

∗
2, v

∗
1 , v

∗
2). To satisfy Result(σ∗) =

1, all verifications must be passed so that u∗
2 = PRF(kX , (r∗, r∗

1 , r
∗
2)), v∗

1 =
PRF(k∗

1 , (r
∗, r∗

1 , r
∗
2)) and v∗

2 = PRF(k∗
2 , (r

∗, r∗
1 , r

∗
2)) where (k∗

1 , k
∗
2) is a secret key

of (t∗1, t
∗
2), respectively. On the other hand, t∗1 does not have matching session to

t∗2 in the related session and the adversary cannot simply forward the commu-
nication message between these tags. The strategy of the adversary is divided
into two cases:

Case 1: A outputs a valid v∗
1 while v∗

1 does not appear in the t∗1’s output.
Case 2: A outputs v∗

1 derived from t∗1.

When Case 1 occurs, we can construct an algorithm B that breaks the security of
pseudorandom function PRF(k1, ·). B internally runs A and simulates the above
protocol. B selects all group secret keys and individual secret keys except for
t∗1’s secret key. B honestly simulates all communication messages except the case
that t∗1 is activated and it outputs a final message in the session. When A issues
SendTag(t∗1, (r1, r2, u2)), B checks u2 = PRF(kX , (r, r1, r2)) and sends (r, r1, r2)

A Provably Secure Offline RFID 163

to the challenger of the pseudorandom function. When B receives the response v1
from the challenger, B transfers (r, v1) to A. When A outputs a forged yoking-
proof σ∗, B issues (r∗, r∗

1 , r
∗
2) to the challenger and obtains v∗. If v∗ = v∗

1 , B
outputs 1 and halts the simulation. Otherwise, B outputs 0.

If B interacts with the actual pseudorandom function PRF(k∗
1 , ·), the prob-

ability v∗ = v∗
1 holds is non-negligible since we assume that A outputs a valid

yoking proof. Thus B outputs 1 with non-negligible probability. On the other
hand, if the challenger selects a truly random function, it is impossible to guess
the valid output and B outputs 1 with negligible probability 1/2−k. Therefore
B can break the security of the pseudorandom function.

We note that the same argument can be applied to v∗
2 . If v∗

2 is not hon-
estly generated by t∗2, the adversary cannot output a valid yoking-proof based
on the security of the pseudorandom function. On the other hand, t∗2 outputs
v∗
2 = PRF(kX , (ts∗, r∗, r∗

1 , r
∗
2)) if and only if t∗2 receives (ts∗, r∗, r∗

1 , u
∗
1) and selects

r∗
2 . Since (u∗

2, v
∗
1 , v

∗
2) is checked with the same input (ts∗, r∗, r∗

1 , r
∗
2) and deter-

ministically defined, the adversary cannot output forged yoking-proof that is not
output by (t∗1, t

∗
2). 	

One may think that the verification check by t2 in Fig. 1 can be passed even when
the adversary issues another tag t3 in the same group and transfers the message
(r, r1, u1). However, (u2, v2) is computed with random nonces r1, r2 that specify
that only the party that generates r1 accepts the session with verification check
of u2. t1 clearly rejects the session when the adversary sends (r1, r2, u2) to t1,
so u2 binds the participants of the session. Similarly, while t1 also accepts any
messages generated by the same group, the output v1 for each session rigorously

Fig. 1. The proposed yoking-proof protocol

164 D. Moriyama

restricts that the peer honestly receives r1 (generated by t1 itself) and validity
check by the verifier is accepted only if (u2, v2) and v1 are computed by the same
input. Therefore, even if the adversary transfers the communication message used
in a different session, the verifier always rejects the yoking proof.

Theorem 2. Our protocol satisfies IND-privacy if PRF is a secure pseudoran-
dom function.

Proof. Intuitively, communication messages derived from the tag in our protocol
consist of only random nonces and outputs from the pseudorandom function. In
addition, fresh nonces are selected for each individual session and the adversary
cannot find any correlation between the sessions (e.g., whether the same tag
executes the two sessions). We show the formal security proof of our protocol
with the game transformation technique. Recall that n denotes the number of
RFID tags in the system. We consider that the number of group in the yoking-
proof protocol is denoted as n′.

Game 0. This is the original privacy experiment between a challenger and
adversary A.

Game 1-j. For each 1 ≤ i ≤ j, the challenger assigns random variables
(u1, u2)

U← {0, 1}k instead of PRF(kX , ·) that i-th group member computes
for any session.

Game 2-j. For each 1 ≤ i ≤ j, the challenger assigns random variable
vi

U← {0, 1}k instead of the ti’s computation PRF(ki, ·).
Let Si be a probability that the adversary wins the privacy experiment in Game i.

Lemma 1. We have |S1-(j−1) − S1-j | ≤ AdvPRFB (k).

If the final output of the adversary A is different between Game 1-(j − 1) and
Game 1-j, there is an algorithm B that breaks the security of the pseudorandom
function. B generates all secret keys except kX and internally runs A. If an
activated tag belongs to the i-th group where i < j, B always selects random
variables (u1, u2)

U← {0, 1}k instead of computing pseudorandom function and
proceeds with the simulation. If an activated tag belongs to the i-th group where
i > j, B honestly computes (u1, u2) with an actual pseudorandom function
PRF(kX′ , ·) where KX′ is a group secret key of the i-th group. When one of the
members of j-th group is activated with input r, B proceeds as follows. B selects
r1

U← {0, 1}k and sends (ts, r, r1) to the challenger. Upon receiving u1 from the
challenger, B sets (r, r1, u1) as the tag’s output. When A sends (ts, r, r1, u) to
a member of the i-th group, B issues (ts, r, r1) to the challenger and compares
its response with u. If it holds, B selects r2

U← {0, 1}k, issues (ts, r, r1, r2) to the
challenger and obtains u2. v2 can be computed since B chooses an individual
secret key by itself and (r, r2, u2, v2) is assigned as the output from the tag.
When A sends (r′

1, r
′
2, u

′
2) to a member of the i-th group, B checks whether the

tag previously outputs r′
1. If so, B finds the corresponding nonce r and issues

(r, r′
1, r

′
2) to the oracle to compare the response with u′

2. B proceeds with the

A Provably Secure Offline RFID 165

above simulation regardless of the choice of the two sets of tags A sends in the
challenge phase. When A outputs a bit b, B stops the simulation and outputs
the same bit.

If the challenger gives actual pseudorandom function PRF(kX , ·) to B, the
above simulation is equivalent to Game 1-(j − 1). Otherwise, if B interacts with
truly random function, the outputs of the j-th member are coming from the
random function and it is equivalent to Game 1-j. Therefore, if A distinguishes
the difference between Game 1-(j − 1) and Game 1-j, B can break the security
of the pseudorandom function PRF.

Lemma 2. We have |S2-(j−1) − S2-j | ≤ AdvPRFB (k).

The proof strategy of Lemma 2 is analogous to the proof of Lemma 1 so we omit
the details. When tag tj is activated we replace the communication message
derived from the pseudorandom function to random strings. If an adversary
finds a gap between these games, the security of the pseudorandom function can
be broken.

Since Game 0 and Game 1-n′ can be considered as Game 1-0 and Game
2-0 respectively, we can transform Game 0 to Game 2-n based on the security
of the pseudorandom function. When we proceed with Game 2-n, there is no
chance for the adversary to distinguish between the RFID tags. In this game,
all communication messages generated by the tags in T consist of nonces freshly
chosen per session and random strings derived from a truly random function,
so no information about the tag’s identity is observed in the communication
message (including anonymous interaction). We can therefore say that S2-n = 0.

Eventually, we have AdvIND
Π,A(k) ≤ (n′ + n) · AdvPRFB (k). 	

5 Conclusions and Future Work

In this paper, we introduced a new security model for an RFID yoking-proof
protocol. Our model formalizes the security against a general MIM attack that
covers all previous attacks for yoking-proof protocols. The indisinguishability-
based privacy is also defined, which captures the RFID tags’s anonymity. The
example protocol given in this paper does not require public key cryptography
and is simply described with a secure pseudorandom function.

Since we focus on the basic provably secure offline yoking-proof protocol
based on the symmetric key primitive, the possibility of the key exposure problem
of the RFID tag is ignored in this paper. Since the verifier is offline and cannot
participate in the yoking-proof generation, updating the shared secret with the
RFID tag to satisfy the requirement of forward secrecy is an open problem.
Another problem tag corruption causes will be an impersonation attack by the
corrupted tag in the same group.

166 D. Moriyama

References

1. Bringer, J., Chabanne, H., Dottax, E.: HB++: a lightweight authentication proto-
col secure against some attacks. In: SecPerU 2006, pp. 28–33 (2006)

2. Batina, L., Lee, Y.K., Seys, S., Singelée, D., Verbauwhede, I.: Extending ECC-
based RFID authentication protocols to privacy-preserving multi-party grouping
proofs. J. Pers. Ubiquit. Comput. 16(3), 323–335 (2012). Springer, Heidelberg

3. Burmester, M., de Medeiros, B., Motta, R.: Provably secure grouping-proofs for
RFID tags. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol.
5189, pp. 176–190. Springer, Heidelberg (2008)

4. Bolotnyy, L., Robins, G.: Generalized “yoking-proofs” for a groupe of RFID tags.
In: Mobiquitous 2006, pp. 1–4. IEEE (2006)

5. Bagheri, N., Safkhani, M.: Securet disclosure attack on Kazahaya, a yoking-proof
for low-cost RFID tags. Cryptology ePrint Archive, Report 2013/453

6. Chien, H.-Y., Liu, S.-B.: Tree-based RFID yoking proof. In: NSWCTC 2009, pp.
550–553. IEEE (2009)

7. Deng, R.H., Li, Y., Yung, M., Zhao, Y.: A new framework for RFID privacy.
In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol.
6345, pp. 1–18. Springer, Heidelberg (2010)

8. Gilbert, H., Robshaw, M., Sibert, H.: An active attack against HB+ - a provably
secure lightweight authentication protocol. IEEE Electron. Lett. 41(21), 1169–1170
(2005). IEEE

9. Gilbert, H., Robshaw, M., Seurin, Y.: Good variants of HB+ are hard to find.
In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 156–170. Springer, Heidelberg
(2008)

10. Huang, H.-H., Ku, C.-Y.: A RFID grouping proof protocol for medication sefety
of inpatient. J. Med. Syst. 33(6), 467–474 (2009). Springer, Heidelberg

11. Hermans, J., Peeters, R.: Private yoking proofs: attacks, models and new provable
constructions. In: Hoepman, J.-H., Verbauwhede, I. (eds.) RFIDSec 2012. LNCS,
vol. 7739, pp. 96–108. Springer, Heidelberg (2013)

12. Hermans, J., Pashalidis, A., Vercauteren, F., Preneel, B.: A new RFID privacy
model. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 568–
587. Springer, Heidelberg (2011)

13. Juels, A.: “Yoking-proofs” for RFID tags. In: PerSec 2004, pp. 138–143. IEEE
(2004)

14. Juels, A., Weis, S.A.: Authenticating pervasive devices with human protocols.
In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer,
Heidelberg (2005)

15. Juels, A., Weis, S.A.: Defining strong privacy for RFID. ACM TISSEC 13(1), 7
(2009). ACM

16. Lin, C.-C., Lai, Y.-C., Tygar, J.D., Yang, C.-K., Chiang, C.-L.: Coexistence proof
using chain of timestamps for multiple RFID tags. In: Chang, K.C.-C., Wang, W.,
Chen, L., Ellis, C.A., Hsu, C.-H., Tsoi, A.C., Wang, H. (eds.) APWeb/WAIM 2007
Ws. LNCS, vol. 4537, pp. 634–643. Springer, Heidelberg (2007)

17. Moriyama, D., Matsuo, S., Ohkubo, M.: Relations among notions of privacy for
RFID authentication protocols. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 661–678. Springer, Heidelberg (2012)

18. Ouafi, K., Overbeck, R., Vaudenay, S.: On the security of HB# against a man-in-
the-middle attack. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
108–124. Springer, Heidelberg (2008)

A Provably Secure Offline RFID 167

19. Piramuthu, S.: On existence proofs for multiple RFID tags. In: PerSecU 2006, pp.
317–328. IEEE (2006)

20. Peris-Lopez, P., Hernandez-Castro, J.C., Estevez-Tapiador, J.M., Ribagorda, A.:
Solving the simulutaneous scanning proglem anonymously: clumping proofs for
RFID tags. In: SecPerU 2007, pp. 55–60. IEEE (2007)

21. Peris-Lopez, P., Orfila, A., Hernandez-Castro, J.C., Lubbe, J.C.A.: Flaws on RFID
grouping-proofs. guidelines for future sound protocols. J. Netw. Comput. Appl.
34(3), 833–845 (2011). Academic Press

22. Saito, J., Sakurai, K.: Grouping proof for RIFD tags. In: AINA 2005, vol. 2. pp.
621–624. IEEE (2005)

Author Index

AlTawy, Riham 126
Aysu, Aydin 34

Beaulieu, Ray 3

De Santis, Fabrizio 85

Guillen, Oscar M. 85
Gulcan, Ege 34

Hu, Lei 140

Ma, Bingke 140
Makarim, Rusydi H. 109
Matsui, Mitsuru 51
Moriyama, Daisuke 155
Murakami, Yumiko 51

Özbudak, Ferruh 69

Peralta, René 21

Sakic, Ermin 85
Schaumont, Patrick 34
Shi, Danping 140
Shors, Douglas 3
Sigl, Georg 85
Smith, Jason 3
Song, Ling 140

Tezcan, Cihangir 69, 109
Treatman-Clark, Stefan 3
Turan Sönmez, Meltem 21

Weeks, Bryan 3
Wingers, Louis 3

Youssef, Amr M. 126

	Preface
	Organization
	Invited Talks
	Contents
	Efficient Implementationsand Designs
	The SIMON and SPECK Block Ciphers on AVR 8-Bit Microcontrollers
	1 Introduction
	2 The SIMON and SPECK Block Ciphers
	3 AVR Implementations of SIMON and SPECK
	4 SIMON AVR Implementations
	4.1 A Minimal RAM Implementation of SIMON
	4.2 A High-Throughput/Low-Energy Implementation of SIMON
	4.3 A Minimal Flash Implementation of SIMON

	5 SPECK AVR Implementations
	5.1 A Low-RAM SPECK Implementation
	5.2 A Faster Low-RAM SPECK Implementation
	5.3 A High-Throughput/Low-Energy SPECK Implementation
	5.4 A Small Flash SPECK Implementation

	6 Cipher Comparisons
	A Simon and Speck AVR Performance
	B Comparison Data and Methodology
	References

	The Multiplicative Complexity of Boolean Functions on Four and Five Variables
	1 Introduction
	2 Preliminaries
	2.1 Boolean Functions
	2.2 Affine Equivalence
	2.3 Multiplicative Complexity

	3 Multiplicative Complexity of Boolean Functions
	3.1 n=4
	3.2 n=5

	4 Conclusion
	References

	A Flexible and Compact Hardware Architecture for the SIMON Block Cipher
	1 Introduction
	1.1 Motivation
	1.2 Organization

	2 SIMON Block Cipher
	2.1 Round Function
	2.2 Key Expansion

	3 Hardware Implementation
	3.1 Bit-Serial
	3.2 Round Function
	3.3 Key Expansion

	4 Implementation Results
	4.1 Area
	4.2 Performance vs. Risk Trade-off
	4.3 Flexibility vs. Performance Trade-off

	5 Conclusion and Future Work
	References

	AES Smaller Than S-Box
	1 Introduction
	2 How to Minimize AES in Software
	2.1 SubBytes and InvSubBytes
	2.2 AddRoundKey+ShiftRows+SubBytes
	2.3 Sharing MixColumns with InvMixColumns

	3 Implementation on RL78 and ATtiny
	3.1 RL78 and ATtiny Microcontrollers
	3.2 Interface and Metrics
	3.3 Implementation Results
	3.4 Variations

	4 Minimalism from Hardware Viewpoints
	5 Concluding Remarks
	References

	Attacks
	Differential Factors: Improved Attacks on SERPENT
	1 Introduction
	2 S-Box Evaluation
	3 Differential Factors
	3.1 Differential Factors and Cryptanalysis
	3.2 Relating Differential Factors to Other Properties of S-Boxes

	4 Improved Differential-Linear Attacks on SERPENT
	4.1 SERPENT
	4.2 Differential-Linear Cryptanalysis
	4.3 Differential-Linear Attacks on SERPENT
	4.4 Improved Differential-Linear Attacks Using Differential Factors

	5 Conclusion
	A Equivalent Definitions with only One Variable
	B 3-Round Differentials with Higher Probability
	References

	Ciphertext-Only Fault Attacks on PRESENT
	1 Introduction
	2 Background and Notation
	2.1 The PRESENT Block Cipher
	2.2 Notation

	3 Faulty Ciphertext-Only Attacks
	3.1 Statistical Distinguishers
	3.2 Fault Models

	4 Faulty Ciphertext-Only Attacks on PRESENT
	4.1 Fault Attacks on PRESENT-80
	4.2 Fault Attacks on PRESENT-128

	5 Simulation Analysis
	6 Conclusion
	A Fault Propagation in the Datapath of PRESENT
	B Probability Distributions of Faulty Intermediate Nibbles
	References

	Relating Undisturbed Bits to Other Properties of Substitution Boxes
	1 Introduction
	2 Notations and Preliminaries
	2.1 Boolean Functions
	2.2 Substitution Boxes

	3 Undisturbed Bits and Linear Structures
	4 Autocorrelation Table
	5 S-Boxes with Undisturbed Bits
	6 Conclusion and Further Remarks
	7 Appendix
	7.1 Proof of Lemma3
	7.2 Linear Structures and Output Differences of an S-Box
	7.3 DDT of the S-Box of PRESENT

	References

	Differential Sieving for 2-Step Matching Meet-in-the-Middle Attack with Application to LBlock
	1 Introduction
	2 Differential Sieving for 2-Step Matching
	2.1 Basic Meet-in-the-middle Attack
	2.2 Differential Sieving Approach
	2.3 Short Restricted Bicliques

	3 Application to LBlock
	3.1 Notation
	3.2 Specifications of LBlock
	3.3 Low Data-Complexity Attack on LBlock
	3.4 Three More Rounds with Restricted Bicliques

	4 Conclusion
	References

	Match Box Meet-in-the-Middle Attacks on the SIMON Family of Block Ciphers
	1 Introduction
	2 Notations
	3 Match Box Meet-in-the-Middle Attack
	3.1 Basic Meet-in-the-Middle Attack
	3.2 Match Box Meet-in-the-Middle Attack

	4 Match Box Meet-in-the-Middle Attack on SIMON
	4.1 The SIMON Family of Block Ciphers
	4.2 Application of Match Box Meet-in-the-Middle Attack to SIMON32/64
	4.3 Application to Other Versions

	5 Conclusion
	A Details for the Attack on SIMON32/64
	References

	Protocols
	A Provably Secure Offline RFID Yoking-Proof Protocol with Anonymity
	1 Introduction
	2 Security Model for RFID Yoking-Proof Protocols
	2.1 Execution Model
	2.2 Security
	2.3 Privacy

	3 Proposed Yoking-Proof Protocol
	4 Security Proof
	5 Conclusions and Future Work
	References

	Author Index

