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1 Introduction

Any second-order random process that is generated by the mixing (in the workings
of a system) of randomness and periodicity will likely have the structure of periodic
correlation. Precisely, a random sequence {Xt , t ∈ Z } with finite second moments
is called periodically correlated with period T (PC-T) if it has periodic mean and
covariance functions, e.g.

E (Xt ) = E (Xt+T ) and Cov (Xt , Xs) = Cov (Xt+T , Xs+T ) (1)

for each t, s ∈ Z . To avoid ambiguity, the period T is taken as the smallest positive
integer such that (1) holds.

The studies of PC sequences, which were initiated by [15], result in the appre-
ciable theory and some practical approaches as well. Many real data have periodic
structure, so they can be described by periodically correlated sequences. The cyclic
nature of environmental and social phenomena impart a seasonal mean and correla-
tion structure into many climatological [21, 26] as well as economical [11, 19, 20]
time series. Other examples of PC data could be found in e.g. [9, 16, 22]. Gardner
investigated perceptively the nature of cyclostationarity [12, 13]. Hurd and Miamee
[16] provide substantial study of PC issues with many motivating and illustrative
examples.
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In this paper we focus on identification and estimation of PC structure and on
PARMA (periodic autoregressive–moving-average) modelling introduced in [27,
28]. PARMA sequences are formed by introducing time-varying coefficients into
the ARMA set-up; under a mild restriction on the coefficients, the resulting PARMA
sequence is periodically correlated (PC) [28]. The periodically correlated processes
and PARMAmodelling are studied in [4, 5, 9] and lately also in [1]. Themethods pro-
posed by those authors, although based on statistical principles, are not well known
or available to a wide audience. Currently, difficulties connected with analysis of
periodic sequences arise from deficient knowledge about mathematical achievement
in this field. The intent of this work is to provide an accessible package for periodic
time series analysis in R. In this paper, we present an R package called perARMA
that is available from the Comprehensive R Archive Network (CRAN) (see online
supplementarymaterial and [10]). The package implements non-parametric analysis,
characterization and identification, PARMA model fitting and prediction. Missing
observations are allowed in some characterization procedures. The implemented pro-
cedures are loosely based on the Hurd’s Matlab functions available from his Web
page and introduced in [16]. As a result, the applied researcher obtains quite easy and
very intuitive tool that can be easily used in many applications. To our knowledge
there is no R package (under CRAN) for PARMA time series analysis although the
pear [3] and partsm [18] packages provide for PAR analysis.

The paper is organized in the followingway. In Sect. 2we provide some theoretical
background of PARMA time series. Section3 presents analysis of real dataset from
energy market. In Sect. 4 the estimation of full PARMA model for simulated dataset
is performed. Finally, Sect. 5 concludes our study.

2 PARMA Time Series Analysis

PARMA modelling arises from the introduction of periodic correlation of PC
sequences into a stationary ARMA model when the coefficients of the model are
allowed to vary periodically in time. Precisely, the random sequence Xt is called
PARMA(p,q) with period T if it satisfies

Xt =
p∑

j=1

φ j (t)Xt− j +
q∑

k=1

θk(t)ξt−k + σ(t)ξt , (2)

where φ j (t) = φ j (t + T ), θk(t) = θk(t + T ), σ(t) = σ(t + T ) for all j = 1, . . . , p,

k = 1, . . . , q are periodic coefficients, and ξt is mean zero white noise with variance
equal to one.

The PARMA systems are widely applied in modelling climatology [4, 5], mete-
orology [24], hydrology [2, 21, 26, 28] and economics data [7, 11].

PARMA time series analysis is performed in threemain processing steps: (1) iden-
tification, (2) parameter estimation and (3) diagnostic checking. The same general
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process is used in the stationary case, where the tools are simpler. In the following
sections, we describe the tools that are essential to achieve each of these three steps.
But first we focus on the ARMA(p,q) fitting process to remind the reader of the
general idea.

Identification in the stationary case refers to the determination of the model order
parameters p and q, which provide an adequate fit to the data. Initial guesses of p and
q are usually suggested from the identification tools,which are the sample covariance,
sample autocorrelation (ACF) and sample partial autocorrelation (PACF). Parameter
estimation refers to the process of estimating the values of the parameters in the
chosen representation. For AR models we can use the Yule–Walker equations. For
general ARMA we use maximum likelihood. Diagnostic checking in the stationary
case consists of determining if the residuals (based on some parameter estimates)
are consistent with white noise. If not, then modifications to p and q are made based
essentially on the application of the identification step to the residuals (determine
what structure is not yet explained) and estimation is rerun.

Belowwepresent how those ideas canbe transformed to the periodic nonstationary
case. In the subsequent we assume that {X1, X2, . . . , X N } is a mean zero PC time
series with period T . Moreover, we assume without loss of generality that the data
record contains d full cycles, e.g. N is an integer multiple of period T (N = dT ).

2.1 Identification of PC-T Structure

There are two processes that we include under the heading of identification: (1)
the determination of period T when it is unknown and some basic characterizing
quantities such as sample periodic mean m̂t,d , sample periodic deviation σ̂d (t) and
sample periodic covariance R̂d (t + τ, t); (2) the determination of p and q, the orders
of the PAR and PMA parts of a PARMA model.

Preliminary Identification

An important preliminary step in the identification process is the determination of
period T when it is not known. In this case, the periodogram and squared coherence
statistic can be used. The usual periodogram can detect additive frequency com-
ponents in the time series and this includes frequencies belonging to the additive
periodic mean. So if a periodic mean is present, the periodogram can illuminate its
frequencies and help in the determination of T . The value of T may also be inferred
from spacing of the support lines in the (harmonizable) spectral measure of a PC
process. These support lines are seen empirically in the images produced by the
magnitude-squared coherence statistic. Using both simultaneously gives a complete
picture.

To clarify the idea of the magnitude-squared coherence, we need to use some fea-
tures of the spectral measure of a PC sequence. The spectral measure of periodically
correlated sequence is determined on the two-dimensional set [0, 2π) × [0, 2π), so
we always deal with the pairs of frequencies (λp, λq) ∈ [0, 2π)2, and the support
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of the measure is contained in the subset of parallel lines λq = λp + 2 jπ/T for
j = −(T − 1), . . . ,−1, 0, 1, . . . , (T − 1). For more details see [14, 16].

The concept of determining the period length using the squared coherence statistic
directly corresponds to its features.WebeginwithDiscrete Fourier Transform (DFT),
X̃ N (λ j ), of the series {X1, X2, . . . , X N }, defined for the Fourier frequencies λ j =
2π j/N , j = 0, 1, . . . , N−1. The squared coherence statistic,

∣∣γ̂ (λp, λq , M)
∣∣2 =

∣∣∣
∑M−1

m=1 X̃ N (λp−M/2+m)X̃ N (λq−M/2+m)

∣∣∣
2

∑M−1
m=1

∣∣∣X̃ N (λp−M/2+m)

∣∣∣
2 ∑M−1

m=1

∣∣∣X̃ N (λq−M/2+m)

∣∣∣
2 (3)

is computed for a specified collection of pairs (λp, λq) ∈ [0, 2π)2; note it is the
sample correlation between two M-dimensional complex-valued vectors and satisfies
0 ≤ ∣∣γ̂ (λp, λq , M)

∣∣2 ≤ 1. Having computed (3) for (λp, λq) in some subset of
[0, 2π)2, one may determine frequency pairs indexed by (p, q) for which the sample
correlation is significant in the sense that threshold determined by the distribution
of

∣∣γ̂ (λp, λq , M)
∣∣2, under the null hypothesis of stationary white noise, is exceeded

[16, p. 310]. Plotting those points on the square [0, 2π)2, we can say something
about the nature of the analyzed time series, according to some general rules:

• if in the square only the main diagonal appears, then Xt is a stationary time series;
• if there are some significant values of statistic and they seem to lie along the parallel
equally spaced diagonal lines, then Xt is likely PC-T,where T is the “fundamental”
line spacing. Algebraically, T would be the gcd of the line spacings from the
diagonal; for a sequence to be PC-T, not all lines are required to be present;

• if there are some significant values of statistic but they occur in some non-regular
places, then Xt is a nonstationary time series in other than periodic sense; but note
there are many hypotheses being tested, so some threshold exceedances are to be
expected.

We need to comment also the choice of the parameter M that controls the length
of the smoothing window appearing in (3). Too small or too large values of M can
affect the results [16, p. 311]. Hurd and Miamee suggest to observe the results for a
collection of smoothing parameters; a suggested beginning choice is M = 8, 16, 32.
Under the null case the sample-squared coherence statistics has probability density

p
(
|γ |2

)
= (M − 1)

(
1 − |γ |2

)M−2
, 0 ≤ |γ |2 ≤ 1, (4)

because, for Xt a Gaussian white noise, X̃ N (λ j ) are complex Gaussian with uncor-
related real and imaginary parts for each j . As a result, to determine the squared
coherence α-threshold we use

|γ |2α = 1 − exp (log(α)/(M − 1)) . (5)

For more details we refer the reader to [14, 16].
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When the period length is known, the estimation of basic sequence statistics: peri-
odic mean, periodic deviation and periodic covariance is possible. Detailed descrip-
tion of all estimators presented below can be found in [16].

The sample periodic mean function is given by

m̂t,d = 1

d

d−1∑

k=0

Xt+kT . (6)

The sample periodic covariance function is defined for any lag τ as

R̂d (t + τ, t) = 1

d

d−1∑

k=0

(
Xt+kT +τ − m̂t+τ,d

) (
Xt+kT − m̂t,d

)
(7)

for t = 0, 1, . . . , T −1. The number of τ for which (7) is evaluated can be determined
(or estimated) from the usual (stationary) ACF. Then it is quite straightforward to
get the periodic sample deviation by putting

σ̂d (t) = R̂d (t, t) . (8)

The Fourier representation of the covariance function [15] for PC-T processes is
based on the periodicity Rd(t + τ, t) = Rd(t + τ + T, t + T ) and the Fourier series
representation

Rd(t + τ, t) =
T −1∑

k=0

Bk(τ ) exp(i2ktπ/T ), (9)

where Bk(τ ) (τ ∈ Z and k = 0, 1, . . . , T − 1) are the Fourier coefficients given by

Bk(τ ) = 1

T

T −1∑

t=0

exp(−i2ktπ/T )Rd(t + τ, t). (10)

The problem of computing the Fourier representation is thus reduced to the problem
of determining the coefficients Bk(τ ). Moreover, B0(τ ) is always non-negative def-
inite and hence is the covariance of stationary sequence. The Fourier coefficients of
the sample covariance, for k = 0, 1, . . . , T − 1 and τ ∈ set of lags, can be estimated

B̂k,dT (τ ) = 1

dT

∑

t∈IdT,τ

(
Xt+τ − m̂t+τ,d

) (
Xt − m̂t,d

)
e−i2πkt/T , (11)

where

IdT,τ =
{
[0, dT − τ − 1] for τ ≥ 0
[−τ, dT − 1] for τ < 0.
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Hurd and Miamee proposed a test with the null hypothesis Bk(τ ) = 0 for fixed
τ and k, which is based on the properties of the sample Fourier transform of
Yt,τ = (

Xt+τ − m̂t+τ,d
) (

Xt − m̂t,d
)
. The p values for the test of |Bk(τ )|2 = 0 are

based on the ratio of magnitude squares of amplitudes of a high resolution Fourier
decomposition. Magnitudes for the frequency corresponding to index k are com-
pared to the magnitudes of neighbouring frequencies (via the F distribution) [16, pp.
272–282, 288–292].

Determination of p and q

Before fitting a periodic model (PARMA(p,q)) to data, the orders of maximum lag
p and/or q are required. Similarly to the stationary ARMA, we need to look at the
sample autocovariance (ACF) and the sample partial autocovariance (PACF). Of
course, their periodic versions are essential in that case. Below we present formulas
for both of them.

Sample periodic ACF for t = 0, 1, . . . , T − 1 is defined as

ρ̂d (t + τ, t) = R̂d (t + τ, t)

σ̂d (t + τ) σ̂d (t)
, (12)

where τ is a lag. To calculate confidence bands for ρ̂d (t + τ, t) the Fisher transfor-
mation

Z = 1

2
log

1 + ρ̂

1 − ρ̂
(13)

is used, producing Z that are approximately normal N
(
μZ , σ 2

Z

)
, where μZ ≈ ζ +

(1/2d)ρ, ζ is the Fisher transformation of ρ and σ 2
Z = 1/(d − 3). The confidence

limits for ρ can be calculated using those for Z with the assumption that the term
(1/2d)ρ can be ignored.

Two useful tests may be additionally constructed. First, a test for null hypothesis
ρ(t + τ, t) ≡ ρ(τ), where ρ(τ) is some unknown constant, (no time variation at lag
τ ) is based on statistic

S2
ρ (τ ) =

(
Zt − Ẑt

)2

1/ (d − 3)
, (14)

which under the null hypothesis is approximately χ2(T − 1). The second, a test for
null hypothesis ρ(t + τ, t) ≡ 0 for some specific τ , (no correlation at this lag τ )
is equivalent to the test for μZ = 0. For more details about those tests we refer the
reader to [8, p. 399] and [16, p. 285].

The sample periodic PACF, for t = 0, 1, . . . , T − 1 and n ∈ set of orders is
defined as

π̂n+1(t) = R̂d(t + 1, t − n) − r̂′
t−n,t :t−n+1α̂

(t+1)
n

σ̂n(t + 1)σ̂n(t − n)
, (15)

where
σ̂ 2

n (t + 1) = R̂d(t + 1, t + 1) − r̂′
t+1,t :t−n+1α̂

(t+1)
n ,
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σ̂ 2
n (t − n) = R̂d(t − n, t − n) − r̂′

t−n,t :t−n+1β̂
(t−n)

n

and

α̂
(t+1)
n = r̂−1(t, n)r̂t+1,t :t−n+1,

β̂
(t−n)

n = r̂−1(t, n)r̂t−n,t :t−n+1.

The confidence bands are based on the asymptotic normality assumption [6, Chap. 3].

2.2 Estimation of PARMA Parameters

Parameter estimation refers to the process of estimating the values of the parameters
in the chosen representation. The full PARMA model has T parameters for each
autoregressive order, for each moving average order and for σ(t) = θ0(t), t =
0, 1, . . . , T −1, and thus a total of T (p+q +1) parameters, so the cost of computing
all of them could be quite high. Therefore, it is recommended first trying to fit simple
models, which explain the data with the fewest possible parameters.

Two useful methods for estimation of periodic models coefficients are imple-
mented in perARMA package: the Yule–Walker moment estimators for the gen-
eral PAR model and approximate maximum likelihood estimation for the general
PARMA. It is easy to show that for PAR models both techniques are equivalent, e.g.
for PAR(1) model provide following estimators of coefficients:

φ̂(t) = γ̂t (1)

γ̂t−1(0)
, σ̂ 2(t) = γ̂t (0) − φ̂(t)γ̂t (1), t = 0, 1, . . . , T − 1, (16)

where γ̂t ( j) = 1
d

∑d−1
n=0 XnT +t− j XnT +t and d = N/T is number of cycles.

The Yule–Walker estimation is a simple method, but whenever PMA terms are
present, it will be inadequate. In these cases maximum likelihood estimation is used.
But whenever there are a large number of parameters, the optimization has difficulty
due to presence of local maxima and due to slowness caused by the approximation
of derivatives.

Rather than searching over the entire Φ,Θ parameter space, the dimension of the
search space can often be substantially reduced by transforming Φ,Θ to the Fourier
coefficients A, B appearing in the DFT representation introduced in [17]:

φ j (t) = a j,1 +
�T/2	∑

n=1

a j,2n cos(2πnt/T ) +
�T/2	∑

n=1

a j,2n+1 sin(2πnt/T ), (17)

θk(t) = bk,1 +
�T/2	∑

n=1

bk,2n cos(2πnt/T ) +
�T/2	∑

n=1

bk,2n+1 sin(2πnt/T ) (18)
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for j = 1, . . . , p, k = 0, . . . , q and t = 0, 1, . . . , T −1.Reduction of the parameter
search to subspaces of A, B can be easily accomplished by constraining some (or
evenmost) frequencies to have zero amplitude. Often this can be justified by physical
considerations that correspond to smoothness in the time dependence. Since the
mapping (DFT) from Φ,Θ to A, B is linear and invertible, a linear subspace of A, B
transforms back to a linear subspace ofΦ,Θ , although our methods make no explicit
use of this fact. In our experience, reduction of the search space in this manner not
only reduces computation time, but tends to produce unique solutions, whereas the
likelihood often has many local extremes in the entire space Φ,Θ .

This parameterization was first used in [28] in the context of maximum likelihood
parameter estimation and in [23] where are developed expressions for the harmoniz-
able spectral density in terms of the parameters A, B.

Computation speed of PARMA maximum likelihood estimation can be fur-
ther improved by the use of Ansley’s transformation, first applied to PARMA(p,q)
sequences in [27, 28]. This method focuses on the conditional version which ignores
the first m = max(p; q) samples in order to avoid the cumbersome calculation of
the full covariance.

2.3 Goodness of Fit and Model Selection

To confirm that fittedmodel is appropriate the residuals should be examined to ensure
independence (whiteness) and normality, but this does not differ from stationary case.
However, in the periodic case we do permit the residuals to be periodic white noise,
this can be easily converted to white noise by scaling out the empirical periodic
variance.

Sometimes there are several sets of model parameters that give reasonable fits.
Then to choose the simplest model that explains data the best the penalized like-
lihoods could be computed. The AIC and BIC methods compute penalties for the
number of parameters used and thus encourage the simplicity (or parsimony) of the
selected fit. The parameter set that minimizes the penalized likelihoods is considered
to the best fit. To calculate AIC and BIC values we use following (k is the total num-
ber of parameters in the parameter set Φ,Θ or A, B in the Fourier parametrization
and N is the number of linearly independent samples):

AIC(k) = −2 ln L
(
Φ̂, Θ̂

) + 2k,

BIC(k) = −2 ln L
(
Φ̂, Θ̂

) + 2k log N .
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3 Real Data Example

In this section identification of PC-T structure, PAR modelling and forecasting pro-
cedure is developed for a non-volatile segment of real time series contained hourly
observations from volumes of energy traded on the Nord Pool Spot exchange. The
Nord Pool Spot runs the largest market for electrical energy in the world, measured
in volume traded (TWh) and in market share. The data were found on the Nord Pool
Spot Exchange Web page http://www.npspot.com.

3.1 Data

Analyzed data aggregates volume in MWh bought and sold by participants in each
bidding area of this market. Thus, this data reflects the demand on the energy on the
daily basis. In Fig. 1 there is presented volumes_2010 time series that contains
all hourly observations within 2010 year with non-volatile segment identified. This
segment (after removing weekends records) as volumes time series is analyzed in
our study. It contains hourly observations of the volumes of energy traded from 6
July to 31 August of 2010 (N = 984 records). We decided to omit the weekends, as
including them would increase the complexity of the model with unknown benefit.
So for simplicity and clarity, we focus on understanding the dynamics within the
trading part of the week and leave the weekend effects for a future study.

Fig. 1 Volumes of energy traded hourly on the Nord Pool Spot Exchange in 2010 with the non-
volatile segment of volumes data (from 6 July 2010 to 31 August 2010)

http://www.npspot.com
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3.2 Non-parametric Spectral Analysis

As one may expect for volumes time series presented in Fig. 1, the daily periodic
structure is observed. Even though the period length T = 24 is rather obvious in this
case, in some cases it may need to be estimated, as the dominant frequencies of the
process may not be known at the beginning of analysis. Therefore in our example,
we confirm that the period length was properly chosen.

In the perARMA package two procedures, based on the spectral analysis, are
useful for estimating the period: pgram() and scoh(). Function pgram() plots
periodogram of the series and provides test to find candidate for the period length
assuming that the period of the second-order structure is the same as the period
of the first order structure (i.e. in the instantaneous mean E{X (t)} of the series
itself). Recall that the FFT index j (where a big peak occurs) corresponds to the
number of cycles in the FFT window, so the period corresponding to the index
j = 41 where the first highly significant peak occurs can be easily computed as
T = 984/41 = 24 (see Fig. 2). The function scoh(), which computes and plots
the magnitude-squared coherence, can be used to confirm the presence of the PC
structure, to estimate the period of the PC structure and to determine the strength of
the PC structure on the different support lines. Specifically, the magnitude-squared
coherence |γ̂ (λp, λq , M)|2 is computed in a specified square set of (λp, λq) and
using a specified smoothing window, M . The perception of this empirical spectral
coherence is aided by plotting the coherence values only at points where threshold is
exceeded. To ensure that periodic structure seen in the spectral coherence image is not
a consequence of an additive periodicmean, it is recommended that the periodicmean
should be first removed from the series. In Fig. 2 there are presented periodogram
plot and magnitude-squared coherence values. In the right, the first significant

Fig. 2 Periodogram of ‘volumes’ in the logarithmic scale (solid line) with threshold line (dashed)
for α = 0.05 computed from F(2, 2 ∗ M) statistic with M = 4. Peaks at j = 41, 82, . . . (left-hand
side). Squared coherence statistic, values exceeding an α = 0.05 threshold, applied to the ‘volumes’
series after removing periodic mean with M = 16 (right-hand side)
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off-diagonal is at |p − q| = 41 which verifies the first significant peak at j = 41 in
the periodogram plot on the left. This shows that there is a second-order PC structure
with period T = 494/41 = 24 in the data.

3.3 Preliminary Identification and Conditioning

Knowing the period length enables one to compute the basic periodic characteristics
of the series: periodic mean and periodic standard deviations, which are computed
and plotted by procedures permest() and persigest(), respectively. Both
are plotted as a function of season with 1 − α confidence intervals based on all
non-missing values present for each particular season. For periodic mean confidence
intervals are based on the t distribution, whereas for periodic standard deviations
the chi-square distribution was used. Figure3 presents plots of the periodic sample
mean and periodic sample deviation, along with 95% confidence intervals, for the
volumes data with T = 24; it is clearly indicated that the samplemean and periodic
sample deviation are not constant and thus the data are non-stationary. The p value
for a one-way ANOVA test for equality of seasonal means and p value for Barttlet’s
test for homogeneity of variance σ(t) ≡ σ are also computed; by σ(t) ≡ σ wemean
σ(t) = σ, t = 0, 1, . . . , T − 1. These tests resulted in p value = 9.74 ∗ 10−60 for
the ANOVA test and p value = 0 for Barttlet’s test. Rejection of homogeneity based
on the p value indicates a properly periodic variance, but leaves open whether or
not series is simply the result of a stationary process subjected to amplitude-scale
modulation. To resolve this, R(t + τ, t) for some set of τ values with τ �= 0 needs to
be calculated. If we cannot reject ‘R(t, t + τ) is properly periodic’ for some τ �= 0
then the series is an amplitude-modulated stationary sequence.

Fig. 3 Estimated periodic mean (left-hand side) and periodic standard deviations (right-hand side),
with 1 − α confidence intervals for α = 0.05, for ‘volumes’ series. Number of samples per season
= number of periods = 41
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3.4 Identification

In this section the determination of p and/or q orders will be carried out. Therefore,
periodic version of ACF and PACF functions for volumes data will be computed.

3.4.1 Autocovariance Function of PC Processes

At the identification step the covariance function R(t + τ, t) (see (7)) and/or corre-
lation coefficients ρ(t + τ, t) for each particular season t = 0, 1, . . . , T −1 and lags
τ should be computed. The essential calculation could be performed in two different
ways: direct and indirect.

• Direct method: tests directly on ρ(t + τ, t)
We first compute correlation coefficients ρ(t + τ, t) (formula (12)), where t =
0, 1, . . . , T −1 are seasons and τ is lag (procedure peracf()). For each possible
pair of t and τ confidence limits for these coefficients are also computed using
Fisher transformation, see Fig. 4. Two important tests are also performed:

(a) ρ(t + τ, t) ≡ 0 meaning ρ(t + τ, t) = 0, t = 0, 1, . . . , T − 1 the rejection for
any τ �= 0 indicates that the sequence is not PC white noise.

(b) ρ(t +τ, t) ≡ ρ(τ)meaning ρ(t +τ, t) = ρ(τ), t = 0, 1, . . . , T −1, rejection
for any τ �= 0 indicates that series is properly PC and is not just an amplitude-
modulated stationary sequence. That is, there exist lags τ for which ρ(t, τ ) is
properly periodic in variable t .

An issue is the number of lags that need to be tested. A quick estimate can be
obtained from examining the usual ACF applied to the data and using the largest
lag producing significant non-zero correlation.

Fig. 4 Correlation coefficients of ‘volumes’ series: ρ̂(t, 1) versus t and ρ̂(t, 2) versus t with 1−α

confidence intervals for α = 0.05
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Table 1 Constancy of correlation coefficients for ‘volumes’ data: for each fixed τ we give the
p values for tests of constancy in correlations for τ = 1, 2, . . . , 12

τ (a) : ρt (τ ) ≡ 0 (b) : ρt (τ ) = const

1 0.00 0.00

2 0.00 4.86623 × 10−9

3 0.00 2.30767 × 10−4

4 0.00 0.02262

5 0.00 0.15584

6 0.00 0.41075

7 0.00 0.48365

8 0.00 0.25407

9 0.00 0.038110

10 0.00 0.00770

11 0.00 0.00846

12 0.00 0.00202

Tests are (a) if the coefficients are zero for all t : ρt (τ ) ≡ 0 and (b) if they are constant: ρt (τ ) ≡ ρ(τ)

We note that if ρ(t + τ, t) ≡ 0 is rejected for some τ �= 0 then also ρ(t + τ, t) ≡
ρ(τ) is rejected for that τ . This follows also because if a process is PC white
noise, then it is also an amplitude-modulated stationary sequence. Table1 presents
results for both tests when lags τ = 1, 2, . . . , T were considered.
Conclusions from direct tests:

1. test (a): hypothesis ρt (τ ) ≡ 0 for all analyzed lags is rejected. It means that
the process exhibits non-zero correlation at non-zero lags, meaning it is not PC
neither stationary white noise;

2. test (b): hypothesis ρt (τ ) ≡ ρ(τ) is rejected for lags τ = 1, 2, 3, weakly
rejected for τ = 10, 11, 12 and not rejected for other lags. Significant values at
lag τ = 1, 2, 3 show that there is periodicity in correlations even when periodic
variance is scaled out.

• Indirect method: tests on Fourier coefficients Bk(τ )

In the second approach computation of the complex estimators B̂k(τ ) (see (10)) for
particular lags τ and k = 0, 1, . . . , T − 1 is performed (procedure Bcoeff()).
Moreover, p values for the test of Bk(τ ) = 0 for all τ and k are returned. Addition-
ally, note that testing if Rd(t, t) = σ 2

t ≡ σ 2 is equivalent to testing if Bk(0) = 0
for k = 1, . . . , T − 1.
Computations are made for each specified τ , the values of B̂k(τ ) only for k =
0, 1, . . . , �(T − 1)/2	 because Bk(τ ) = BT −k(τ ). In addition, the p values for
the test if Bk(τ ) = 0 are presented in Table2. These p values should be treated
with caution because the requisite assumptions may not be met (see [16]). In the
first two columns we have results for τ = 0, 1 for the original series volumes,
whereas in the next columns there are results for τ = 1, 2 for the normalized
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Table 2 The results of testing the nullity of Fourier coefficients Bk(τ ) and ρk(τ )

k Bk(0) Bk(1) ρk(1) ρk(2)

0 0.00 0.00 0.00 0.00

1 1.48 × 10−1 8.68 × 10−2 7.09 × 10−1 5.36 × 10−1

2 1.11 × 10−16 2.30 × 10−12 8.25 × 10−1 8.04 × 10−1

3 8.02 × 10−5 4.35 × 10−3 5.51 × 10−1 4.13 × 10−1

4 1.43 × 10−3 3.76 × 10−3 7.62 × 10−1 7.43 × 10−1

5 4.98 × 10−5 1.16 × 10−3 8.17 × 10−1 7.54 × 10−1

6 5.06 × 10−1 6.46 × 10−1 9.43 × 10−1 8.39 × 10−1

7 3.46 × 10−3 4.25 × 10−2 9.14 × 10−1 9.23 × 10−1

8 4.66 × 10−1 6.54 × 10−1 8.99 × 10−1 8.54 × 10−1

9 3.05 × 10−1 6.12 × 10−1 9.57 × 10−1 9.37 × 10−1

10 5.75 × 10−1 7.44 × 10−1 1.00 9.63 × 10−1

11 7.54 × 10−1 9.65 × 10−1 9.76 × 10−1 9.49 × 10−1

12 7.55 × 10−1 7.49 × 10−1 9.84 × 10−1 9.99 × 10−1

Significant values of Bk(τ ) occurs for k = 0, 1 and of ρk(τ ) for k = 0

series (volumes normalized by the sample variance σ̂ 2(t)). If the series is the
result of an amplitude-scale modulation of a stationary series, then we expect that
ρk(τ ) = 0 will be rejected only for k = 0 and τ = 0 and possibly some other τ

and it will never be rejected for any other k ≥ 1 and lag τ .
Conclusions from indirect tests:

1. Rejection for τ = 0 of hypothesis B0(0) = 0 was expected because B0(0) is
the average variance of the sequence and therefore is non-zero for nontrivial
sequences;

2. The strong rejection of that B2(τ ) = 0 for τ = 0 indicates the periodicity in
the variance (result is consistent with the persigest() function output);

3. Hypothesis that B0(1) = 0 and B2(1) = 0 are strongly rejected, showing very
significant periodic variation in correlation. It also indicates that covariance
function R(t + τ, t) is periodic for lags τ with frequency λ = 4π/T ;

4. Hypothesis ρk(τ ) = 0 is strongly rejected for k = 0 and τ = 1, 2, whichmeans
that there exist high correlation coefficients in the normalizedvolumes series,
so it is not white noise;

5. Hypothesis that ρk(τ ) = 0 is never rejected for k > 0 and τ = 1, 2, so using
this method we cannot reject the hypothesis that the correlation coefficients for
lag τ are constant (again consistent with normalized series being stationary,
not necessarily white noise).

Note that indirect method of covariance function estimation provides the opposite
conclusion in comparison to the direct method. In this case we cannot reject the pos-
sibility that analyzed series is a result of amplitude modulation of stationary series
(the hypothesis about correlation coefficients equal to zero was not rejected). Sur-
prisingly, it can happen because direct method examines the sample time-dependent
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correlations in the period, whereas indirect method returns estimators for Fourier
coefficients. It is argued that usually we can reject ρ(t + 1, t) ≡ ρ1 better in time
domain than in the frequency domain [16, pp. 228–292].

3.4.2 Partial Autocovariance of PC-T Processes

Computation of periodic sample correlation coefficients π̂n+1(t) = π̂(n + 1, t) (see
(15)) is provided by the perpacf() function, see Fig. 5. Also ppfcoeffab()
procedure is applied to represent π(n, t) by its Fourier coefficients. If the variation in
time of π(n, t) is sufficiently smooth over the period T , then looking at these Fourier
coefficients may be a more sensitive detector of linear dependence of xt+1 on the
preceding n samples (n is fixed here) than looking at π(n, t) for individual times.
Two additional hypothesis tests are also provided:

Fig. 5 Partial correlation coefficients π̂(n + 1, t) of the ‘volumes’ series for specified number
of samples n = 1, . . . , 12 and seasons t = 1, . . . , 9 with 1 − α confidence intervals, α = 0.05;
inner lines are confidence intervals for the null hypothesis of π(n + 1; t) = 0 and are based on the
asymptotic null distribution; the outer lines are based on the same test but with Bonferroni correction
for the number of n; coefficients values are presented on separate plots for particular t = 1, . . . , T
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(a) if π(n0 + 1, t) = 0 for t = 0, 1, . . . , T − 1 and each fixed n0 for n0 =
1, 2, . . . , nmax ,

(b) if π(n + 1, t) = 0 for t = 0, 1, . . . , T − 1 and n0 ≤ n ≤ nmax .

For volumes data only for n = 0, 2 null hypothesis are rejected. Thus, only
π(1, t) �= 0 and π(3, t) �= 0 for some values of t . For n = 1 and n > 2 and
all t we can assume that π(n + 1, t) = 0. The obtained results suggest fitting a
PAR(3) model to the data.

3.4.3 Usual ACF and PACF

Finally, to check the strength of dependence between the variables usual (meaning
not periodic) ACF and PACF functions are plotted. It happens that for PC time series
the usual ACF and PACF are still useful in the identification of model orders and in
some cases can be more sensitive than the periodic versions. When subjected to a
truly PC sequence, the usual ACF and PACF produce an average (of sorts; the exact
relationship is an open question) of the instantaneous (time indexed) values produced
by periodic ACF and periodic PACF. Depending therefore on correlations between
these averaged quantities, the usualACF and PACFmay bemore or less sensitive than
the instantaneous ones. Function acfpacf() plots values of usual ACF and PACF
functions with confidence intervals. It is possible to run this procedure on original
data which include the periodic mean as a deterministic component. But typically
the periodic mean can distort our understanding (or view) of the random fluctuations,
thus using data after removing periodic mean is recommended as well (see Fig. 6).
As a result of identification stage the orders of lags p and/or q for model of PARMA
type: PARMA(p,q), PAR(p) or PMA(q), should be determined. For volumes data,
periodic ACF values point to significant periodic correlations to many lags, which is
consistent with PAR model with large coefficients. One can observe the significant
periodic PACF values at n = 0 and maybe n = 1, which suggests starting with

Fig. 6 Usual ACF and
PACF values of ‘volumes’
series together with 95%
confidence intervals (top and
bottom plot, respectively);
think inner dotted line is
95% CI for null hypothesis
of π̂(n + 1) = 0 and outer is
same but Bonferonni
corrected for the number of n
plotted (i.e. 24)



PARMA Models with Applications in R 147

PAR(1) model and increasing the order of lags if it will be necessary. Significant
values of the usual ACF and PACF are consistent with the periodic ones (strong
autocorrelation values on ACF plot for all specified lags and significant values of
PACF for some n, i.e. n = 0, 2, mainly for n = 0, p value equal to 0). This indicates
a strong average lag 1 correlation and a weaker lag 3 (lag = n + 1) correlation
suggesting a PAR(3) with a high average φ1(t) and a low average φ3(t).

3.5 Model Fitting

The PARMA(p,q) model has in total T (p + q + 1) coefficients, thus, especially
for long period length, the problem of estimation is computationally burdensome.
Therefore, at least at the beginning, to reduce the number of parameters, it is recom-
mended to fit models which explain that data with the fewest possible parameters.
Then, only if proposed model is not sufficient, the order of lags should be increased.
In the perARMA package, the Yule–Walker moment estimates for the general PAR
model (procedure perYW()) and the approximate maximum likelihood parameter
estimates for the general PARMA model (procedure parmaf()) are implemented.
To illustrate the functionality of these procedures we apply them to the volumes
data, after removing periodic mean, elaborating identification clues. First, we fit the
simplest possible model, i.e. PAR(1)

Xt − φ(t)Xt−1 = σ(t)ξt ,

where ξt is white noise with zero mean and variance equal to 1. The total number
of parameters in this model is equal to 2T . As it is shown in Figs. 7 and 8 the

Fig. 7 PAR(1) model residuals evaluation: Usual ACF and PACF values together with 95% con-
fidence intervals (top and bottom plot, respectively); think inner dotted line is 95% CI for null
hypothesis of π̂(n + 1) = 0 and outer is same but Bonferonni corrected for the number of n plot-
ted (i.e. 12) (left-hand side). Correlation coefficients ρ̂(t, 1) versus t with confidence intervals for
α = 0.05 (right-hand side)
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Fig. 8 Partial correlation coefficients π̂(n + 1, t) of PAR(1) model residuals for specified number
of samples n = 1, . . . , 12 and seasons t = 1, . . . , 9 with 1 − α confidence intervals, α = 0.05;
inner lines are confidence intervals for the null hypothesis of π(n + 1, t) = 0 and are based on the
asymptotic null distribution; the outer lines are based on the same test but with Bonferroni correction
for the number of n; coefficients values are presented on separate plots for particular t = 1, . . . , 12

residuals are not consistent with periodic white noise ones. Even if correlations
significantly decreased, for τ = 1 test for equality still rejects the null hypothesis
with p value equal to 1.54E −7. Then we fit another model with the increased order
of autoregression p, i.e. PAR(2)

Xt − φ̂1(t)Xt−1 − φ̂2(t)Xt−2(t) = σ̂ (t)ξt ,

where ξt is white noise with zero mean and variance equal to 1. The total number
of parameters is equal to 3T. We repeat the whole procedure of examining residuals
and checking if residuals are consistent with periodic white noise. In Fig. 9 one can
observe that significant periodic correlations in the residuals are completely absent
in residuals of PAR(2) model. For lag τ = 1 both null hypothesis (provided by
peracf() procedure) were not rejected with p values equal to 0.99 and 0.81. Also
usual ACF and PACF functions for residuals are consistent with periodic white noise
ones. In Fig. 10 there are presented coefficients π̂(n + 1, t) for PAR(2) residuals
(n = 1, . . . , 8 and t = 1, . . . , 12) together with confidence intervals for α = 0.05:
inner for π(n + 1, t) = 0 and outer for Bonferroni correction. There are finally
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Fig. 9 PAR(2) model residuals evaluation: Usual ACF and PACF values together with 95% con-
fidence intervals (top and bottom plot, respectively); think inner dotted line is 95% CI for null
hypothesis of π̂(n + 1) = 0 and outer is same but Bonferonni corrected for the number of n plot-
ted (i.e. 12) (left-hand side). Correlation coefficients ρ̂(t, 1) versus t with confidence intervals for
α = 0.05 (right-hand side)

Fig. 10 Partial correlation coefficients π̂(n +1, t) of PAR(2) model residuals for specified number
of samples n = 1, . . . , 12 and seasons t = 1, . . . , 9 with 1 − α confidence intervals, α = 0.05;
inner lines are confidence intervals for the null hypothesis of π(n + 1, t) = 0 and are based on
the asymptotic null distribution; the outer lines are based on the same test but with Bonferroni
correction for the number of n; coefficients values are presented on separate plots for particular
t = 1, . . . , 12)
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no values which exceed the outer threshold. For periodic white noise we expect
π(n + 1, t) = 0, for all t and n and in this case this hypothesis is definitely not
rejected (p value = 0.27).

Additionally, the penalized likelihoods for both PARmodelswere computed using
loglikec() procedure.AICvalueswere equal to 6873.231 and 6821.9 for PAR(1)
and PAR(2) models, respectively. BIC values were equal to 6883.012 and 6836.569
for PAR(1) and PAR(2) models, respectively. Both criteria prefers PAR(2) model and
analysis of residuals confirms PAR(2) model as a better fit. Furthermore, as residuals
of PAR(2) model are consistent with periodic white noise, it seems that volumes
data did not require a full PARMA model.

3.6 Short Time Prediction for PAR Models

In this section a diagnostic checking is carried out by comparing predicted values
of volumes series (based on PAR models coefficients) with the corresponding real
values of this series on 1 and2September 2010. First procedurepredictperYW(),

Fig. 11 Prediction errors (i.e. difference between predicted and true values of the series) on 1 and
2 September 2010 for various ways of predicting: PAR(1) (dashed line), PAR(2) (solid line) and
sample periodic mean (dotted line)
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based on the Yule–Walker estimators, is applied to demeaned volumes series to
forecast values for the next 2 days (48 observations). Then sample periodic mean
is added to obtained predictors and results are compared with the real (observed)
values of the series. Instead of analyzing particular observations values the prediction
error, i.e. observed values minus predicted values is considered. In Fig. 11 there are
presented prediction errors for both PAR(1) and PAR(2) models and just sample
periodic mean used as a predictor as well. Taking these results into account, it seems
that the forecast based on PAR(2) model approximates the real values the best.

4 Simulated Data Example

In the previous section PAR(2) model was the optimal choice and Yule–Walker esti-
mators were sufficient but not always this needs to be the case. Therefore, in this
section, to complete our considerations about PARMA modelling, we illustrate full
PARMA model estimation method, based on maximization of log-likelihood func-
tion. We use simulated dataset to test the performance of the estimation procedures
for the PARMA(p,q) model.

We decided to consider the simulated datasets to check the performance of our
procedures for full PARMAmodel estimation. In the example below, a PARMA(2,1)
sequence is generatedwith period length T = 12 and series length equal to N = 480.
Knowing the orders of the original PARMA sequence we can compare them with
obtained output from estimation procedures presented in the next section.

For general PARMA we use non-linear optimization methods to obtain
maximum logarithm of likelihood function. In perARMA package procedure
parmaf() enables to estimate the values of the PARMA(p,q) model. This method
of computation of log-likelihood function is based on the representation of the peri-
odically varying parameters by Fourier series (see (17)). Inside the procedure the
negative logarithm of likelihood function from the PARMA sequence for matrices
of coefficients in their Fourier representation is computed. This alternative parame-
trization of PARMA system, introduced by [17], can sometimes substantially reduce
the number of parameters required to represent a PARMA system. This permits
estimation of the values of the chosen representation of PARMA(p,q) model using
non-linear optimization methods. Initial values of parameters are computed using
Yule–Walker equations.

To illustrate functionality of these procedure we try to fit PARMA-type model
to the series generated as PARMA(2,1). We consider three PARMA-type models:
PARMA(0,1), PARMA(2,0) and PARMA(2,1) and compare the result with reality.
According to log-likelihood, AIC and BIC values presented in Table3, PARMA(2,1)
is considered to be the best fitted. It is consistent with our expectations as analyzed
series y was generated using orders p = 2, q = 1.



152 A.E. Dudek et al.

Table 3 The information
criteria for validation of
PARMA models fits when
true model was PARMA(2,1)

model negloglik AIC BIC

PARMA(0,1) 969.05 977.05 993.74

PARMA(2,0) 748.98 762.98 792.17

PARMA(2,1) 653.38 673.38 715.07

5 Conclusions

In the present study we showed that PARMA model approach works for real data
with periodic structure. We follow all steps of standard model fitting procedure in
regard to PARMA models through non-parametric spectral analysis, model identifi-
cation, parameter estimation, diagnostic checking (model verification). Additionally,
we perform test for period length detection, prediction for PAR models and estima-
tion of full PARMA for simulated data. The results presented here illustrate how
PARMA approach can be applied to model periodic structure of energy market data
and confirm the considerable value of this method in forecasting short-term energy
demand.

To our knowledge perARMA package is the only existing tool in statistical soft-
ware programs that provide PARMA time series analysis and allow to follow all
steps of standard model fitting procedure. Additionally, it deals with missing data,
provides period length detection tools and prediction for PAR models. Moreover,
perARMA package permits simulation of PARMA time series.
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