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Introduction

This book is designed for students, researchers and practitioners interested in the
analysis of real datasets with nonstationary behaviour. The mentioned nonstation-
arity can be expressed in different ways. One of the properties of the process which
is strongly related to nonstationarity is the cyclostationarity. In the past decades
cyclostationary processes have become very important from a practical point of
view and their theoretical analysis has become a challenge for many research
groups. For 7 years researchers from different centres are meeting in Gródek nad
Dunajcem to analyse various aspects of practical applications and theoretical
properties of nonstationary processes, especially with characteristics adequate to
cyclostationary systems.

The 7th Workshop on Cyclostationary Systems and Their Applications was
organized during 9–12 February 2014 in Grodek nad Dunajcem (Poland). As each
year, it gathered researches from Europe (France, Italy, Poland, Ukraine) and the
USA. The main idea of this meeting was to bring together pure and applied
researchers from different disciplines and start discussion on the possible cooper-
ation in the field of the analysis and applications of cyclostationary systems. The
main focus of the event was on the analysis of nonstationary signals with special
importance to cyclostationary systems and their possible applications in various
areas. The presentations covered recent theoretical developments for such systems
and their possible applications.

Periodically correlated (or cyclostationary) processes are random systems that
exhibit periodic behaviour but still they remain random. Therefore, they are mixed
of randomness and periodicity and are likely to have periodic or almost periodic
structure. Over the last 60 years, thousands of papers in this field have been pub-
lished and the class of processes which exhibits behaviour adequate to this phe-
nomenon is very rich and is growing rapidly. The growing interest of researchers
interested in this field is caused by a variety of different applications in many areas
like mechanics, vibroacoustics, economics, medicine … . Thus, understanding the
needs of practitioners and simultaneously present them the new theoretical results is
the aim of the meetings devoted to cyclostationary systems.
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The chapters of this book can be divided into two groups. In the first group we
can find various papers devoted to theoretical properties of cyclostationary models
and processes. Most of these papers are related to problems of estimation of systems
which exhibit cyclostationary properties. The reader can find the description of the
procedure of fitting proper PARMA (periodic ARMA) model, main time series used
to description of cyclostationary processes as well as the theoretical aspects of
parametric estimation for a time-periodic signal with a periodic noise. The PARMA
models (and their special case PAR) are also examined in the context of the limiting
distribution of the appropriate coefficients. There is also a chapter in which the
influence of different signal characteristics to PAR model stability is examined. In
the group of chapters related to the theoretical aspects of cyclostationary models
there is also a paper devoted to properties of estimators for main characteristics
of the annual and daily rhythmic parametric model. In two chapters, the reader can
find also various aspects of cyclostationary systems with heavy-tailed distributions.
In the recent years these systems more frequently appear in the literature and can be
regarded as an extension of the classical cyclostationary processes. The last paper
which can be assigned to the first group is devoted to the problem of estimation for
almost periodically (APC) time series. In all of the mentioned papers the theoretical
results related to various problems adequate to cyclostationary systems are sup-
ported by simulations or real data analysis. The second group of chapters is more
applicable oriented. The reader can find here applications of cyclostationary char-
acteristics for gearbox and bearing fault diagnosis as well as cyclostationary pro-
cesses for damage assessment of rolling element bearing. The last paper contains
the multidimensional analysis of ARMA models which are strongly related to the
mentioned PARMA systems. The multidimensional time series are applied to the
real data from the New Zealand electricity market.

viii Introduction



Simulation Study of Performance of MBB
in Overall Mean Estimation Problem
for APC Time Series

Anna E. Dudek and Jakub Uzar

1 Introduction

In this paper we focus on the class of nonstationary processes called almost
periodically correlated (APC). Time series {Xt , t ∈ Z } with finite second moments
is almost periodically correlated if it has an almost periodic mean and covariance
functions. The function f is called almost periodic if for every ε > 0, there exists a
number lε such that for any interval of length greater than lε, there exists a number
pε in this interval such that

sup
t∈Z

| f (t + pε) − f (t)| < ε.

Equivalently, almost periodic functions can be defined as uniform limits of trigono-
metric polynomials. For more details and some properties of almost periodic func-
tions we refer the reader to [2]. APC time series are frequently met in different
settings e.g. vibroacoustics, communications, mechanics, signal processing and eco-
nomics (see e.g. [1, 11, 14, 16]). However, modeling such data is not easy. The
asymptotic variance is very difficult to estimate and in practice construction of the
confidence intervals for the parameters of interest is almost impossible. In the recent
years an alternative approach based on the resampling techniques was proposed.
The general idea is to substitute the asymptotic quantiles by their bootstrap or sub-
sampling versions. Bootstrap was introduced by Efron in [9] and was designed for
iid data. Sampling with replacement observations from the original sample one gets
its bootstrap counterparts that are used to approximate the sampling distribution.
The most known modification of IID bootstrap for dependent data called the Mov-
ing Block Bootstrap (MBB) was proposed independently by Künsch in [12] and
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2 A.E. Dudek and J. Uzar

Liu and Singh in [15]. Instead of the single observations the block of observations
are sampled. Themethodwas first applied for the stationary time series (see e.g. [13])
but in the recent years it turned out that it can also be used for the APC time series.
Proving bootstrap consistency is very technical and simultaneously difficult task.
Moreover, MBB is the only block bootstrap technique, which validity was shown for
APC type data. Other methods like the Seasonal Block Bootstrap ([17]), the Peri-
odic Block Bootstrap ([3]) and the Generalized Seasonal Block Bootstrap ([8]) are
designed for periodic data. Thus, they can be used only for the subclass of the APC
time series, that is for periodically correlated time series.

The overall mean that we consider in this paper can be estimated directly in the
time domain or as the cyclic mean at the frequency 0. For the first case, which is
more natural, we have so far only one bootstrap consistency result that belongs to
Synowiecki, who in [18] obtained MBB validity for APC time series. For the latter
case the results presented in [7] (MBB for APC time series), [19] (subsampling for
APC time series), [5] (subsampling for continuous APC processes) and [4] (MBB
for continuous APC processes that are not observed continuously) can be applied.

Unfortunately, in any of the mentioned papers the authors did not propose any
method of the block length choice. This problem is indeed very difficult and so far
there is no approach that can provide any indication of reasonable choice. Thus, we
decided to perform a simulation study in which we look at the actual probabilities
curves. In this paper, we focus on the overall mean estimation problem.

Paper is organized as following. In Sect. 2 we recall the essential definitions and
theorems. In Sect. 3 the simulation study results together with some conclusions are
presented, while the final comments are in Sect. 4.

2 Theoretical Background

In this section we recall the MBB method and some consistency results from [18].
Let (X1, . . . , Xn) be a sample from anAPC time series {Xt , t ∈ Z }. Byμ and μ̂n

we denote respectively the overall mean (which is the mean value of the expectation
function E Xt ) and its estimator i.e. μ̂n = 1/n

∑n
i=1 Xi . Moreover, we assume that

Xt is α-mixing i.e. αX (k) → 0 as k → ∞, where

αX (k) = sup
t

sup
A∈FX (−∞,t)

B∈FX (t+k,∞)

|P(A ∩ B) − P(A)P(B)|

andFX (t1, t2) is a σ -algebra generated by {Xt : t1 ≤ t ≤ t2}. If αX (k) = 0 it means
that the observations that are at least k time units apart are independent (see [6]).

Moving Block Bootstrap algorithm

1. Choose block length b < n, b ∈ Z .
2. Let Bi := (Xi , . . . , Xi+b−1) be the block that starts in the observation Xi

and has the length b. Thus, the set of all possible blocks is of the form
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B = {B1, . . . , Bn−b+1}. Moreover, take l = �n/b�. To obtain the bootstrap
sample select randomly with replacement l +1 block from the setB. In each step
probability of choosing any block is always the same and equal to 1/(n − b + 1)
i.e.

P∗ (

B∗
i =Bk

)= 1

n − b + 1
, where i = 1, . . . , l+1 and k = 1, . . . , n−b+1.

By P∗ we denote the conditional probability given the sample (X1, . . . , Xn).
3. Join selected blocks (B∗

1 , . . . , B∗
l+1) and from the obtained sample take first n

observations (X∗
1, . . . , X∗

n) to get the bootstrap sample of the same length as the
original sample.

4. Repeat B times steps 2–3 .

Now we recall MBB consistency result (Corollary 3.2. from [18]) in the overall
mean estimation problem.

Theorem 1 Let {Xt , t ∈ Z } be an APC, α-mixing time series and let X∗
t be gener-

ated by the MBB procedure with b = o(n), but b → ∞. Assume that:

(i) the set Λ = {λ ∈ [0, 2π) : Mt (E(Xt e−iλt )) 
= 0} is finite;
(ii) supt∈Z E |Xt |4+2δ < ∞ for some δ > 0;

(iii)
∑∞

τ=1 τα
δ/(4+δ)
X (τ ) < ∞;

(iv) the CLT holds i.e.

√
n (μ̂n − μ)

d−→ N
(

0, σ 2
)

.

Then, the MBB procedure is consistent i.e.

sup
x∈R

∣

∣P
(√

n (μ̂n − μ) ≤ x
) − P∗ (√

n
(

μ̂∗
n − E∗ (

μ̂∗
n

)) ≤ x
)∣

∣

p−→ 0,

where by Mt we denote mean over the variable t and μ̂∗
n is a bootstrap counterpart

of μ̂n .
The asymptotic variance σ 2 is very difficult to estimate and hence in practi-

cal applications the asymptotic confidence intervals for μ are almost impossible to
obtain. However, the cited theorem enables the construction of the bootstrap confi-
dence intervals. Below we present shortly the idea of so called percentile bootstrap
confidence intervals. For more details we refer to he reader to [10]. Let

K BO OT (x) = P∗ (√
n

(

μ̂∗
n − E∗ (

μ̂∗
n

)) ≤ x
)

.

Then the equal-tailed 95% bootstrap confidence interval is of the form

(

μ̂n − K −1
BO OT (0.975)√

n
, μ̂n − K −1

BO OT (0.025)√
n

)

. (1)
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3 Simulation Study

In this section we present results of our simulation study. Our aim is to calculate the
actual coverage probabilities (ACPs) and to try to point out the optimal choices of
the block length b. We use the bootstrap algorithm described in Sect. 2. In our study
we consider five groups of time series:

TS1: Xt = A1 · (εt + 4εt−1/5) + A2 · cos (π t/8),
TS2: Xt = B1 · (εt + 3εt−1/7) + B2 · sin (

√
3t/4),

TS3: Xt = C1 · sin (3π
√

t/32) · Xt−1 + εt + C2,
TS4: Xt = D1 · cos (π t/16) · Xt−1 + εt + D2,
TS5: Xt = E1 · cos t · cos (

√
2t) · Xt−1 + E2 · sin t + εt ,

where X0 = ε0 and random variables ε0, ε1, . . . are iid from the standard normal
distribution. Taking different forms of parameters A1, A2, . . . , E1, E2, i.e. constants,
periodic or almost periodic functions,weget the time series that have themean and the
autocovariance functions periodic or almost periodic. Note that the first two models
(TS1, TS2) are the moving average type, while the TS3–TS5 are the autoregressive
type. Mentioned parameters help us to investigate closer some subgroups of APC
time series, like e.g. having null or purely periodic mean functions.

For each example of time series we consider two sample sizes n1 = 240 and n2 =
1200. Moreover, we take the block length b ∈ {1, 2, 4, 6, 10, 12, 15, 20, 24, 40,
60, 120} (for n1) and b ∈ {1, 2, 4, 6, 10, 12, 15, 20, 24, 40, 60, 120, 200, 300, 600}
(for n2). In each case we construct the equal-tailed 95% bootstrap confidence inter-
vals for the overall mean taking 500 bootstrap replications. The number of iteration
of algorithm is equal to 1000. The calculated ACPs are presented in Tables1, 2, 3, 4
and 5. In bold are indicated those ACPs that are the closest to the nominal coverage
probability level.

We introduced parameters A1, A2, . . . , E1, E2 not only to change the structure
of the data, but also to change the relation between the size of the mean function
and noise (i.e. signal to noise ratio). It turns out that this is a key factor influencing
the optimal choice of the block size. By optimal block length we mean such b for
which the obtained ACP is the closest to the nominal one. In the columns 2–4 of
Table 1 the constant A1 = 1, while A2 takes values 1/4, 1, 3. In the first case mean
function is strongly affected by noise and in the last one we observe a very strong
periodic mean component. The larger is the value of A2, the smaller is the optimal
block length, i.e. it is around 24, 20, 15 for n2 and A2 equal to 1/4, 1, 3, respectively.
For shorter sample the optimal b choices are around 4, 2, 15. For b < 15 and n1 TS1
with A1 = 1 and A2 = 3 has ACPs close to or equal to 1 (see Fig. 1). Moreover,
one may notice that independently on the sample size for each considered block
length the confidence intervals are getting wider when the mean component is more
significant.Good example illustrating this phenomena isTS2with B1 = 1/5, B2 = 1
(see Fig. 2), in which independently on the sample size for b ≤ 12 the coverage
probability is constantly equal to 1. Simultaneously, for most considered series when
we decrease the strength of the mean value component ACPs are usually too low for
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Fig. 1 TS1 model with A1 = 1 and A2 = 3: ACPs (solid line) together with nominal coverage
probability (dashed line) for n1 (left-hand side) and n2 (right-hand side)
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Fig. 2 TS2 model with B1 = 1
5 and B2 = 1: ACPs (solid line) together with nominal coverage

probability (dashed line) for n1 (left-hand side) and n2 (right-hand side)

small values of b. Moreover, one may note that for series TS3 with C1 = 1/3 and
C2 = 4 sin(

√
5π t/64) we almost always obtain ACP equal to 1. When we take C2

four times lower ACPs decrease for larger values of b. Finally, multiplying C2 by
the factor 1/20 provides ACPs too low for most b values (see Fig. 3).

One may note that ACP curves are quite flat for the moving average type models.
The contrary can be observed for the autoregressive type examples. The confidence
intervals are more affected by the choice of parameters and can be much too narrow
or much too wide for majority of the considered block lengths. For time series TS3
with C1 = 1 and C2 = 0 (see Fig. 4) the larger block lengths result in better ACPs.
On the other hand there are examples, like TS5 with E1 = 1/2 and E2 = 0, in which
the opposite situation can be observed, i.e. the small values of b are the best ones
(see Fig. 5). Notice that both mentioned series are mean zero and almost periodically
correlated. They differ in the form of the autocovariance function.

For majority of the considered models the lowest ACPs are around 70–80% for
most block lengths. The significant exception from this rule are TS3 and TS5 with
values of the first parameter much higher than the second one. If E1 = 4 and
E2 ∈ {0, 1/3, 1} for b ≤ 24 ACPs are equal to 1 for n1 and change from about
20% to 40–50% for n2. In this situation taking not optimal b, especially for the
larger sample size, brings dramatic consequences, because confidence intervals are
extremely narrow.
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Fig. 3 TS3 model with C1 = 1
3 and C2 = 1

5 sin
√
5π t
64 : ACPs (solid line) together with nominal

coverage probability (dashed line) for n1 (left-hand side) and n2 (right-hand side)
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Fig. 4 TS3 model with C1 = 1 and C2 = 0: ACPs (solid line) together with nominal coverage
probability (dashed line) for n1 (left-hand side) and n2 (right-hand side)
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Fig. 5 TS5 model with E1 = 1
2 and E2 = 0: ACPs (solid line) together with nominal coverage

probability (dashed line) for n1 (left-hand side) and n2 (right-hand side)

It seems that the main factor that we should consider in the future looking for a
method of the optimal block length choice is a signal to noise ratio. In the stationary
case choice of b was determined by the autocovariance function and value at 0 of the
spectral density function (see [13]). The nonstationary case that we study in this paper
is much more complicated. For APC processes we may expect the dependence on
more spectral density functions.Moreover, the autocovariance function for stationary
time series does not depend on time variable in contrary to APC case.
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4 Conclusions

In the paper we constructed the percentile equal-tailed MBB confidence interval for
the overall mean of an APC time series. We investigated the behaviour of the actual
coverage probability curves trying to find common patterns and hints that may help
in the future to find the method for the optimal block length choice. The considered
examples indicated the signal to noise ratio as very important factor influencing the
optimal block length.
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Parametric Estimation Problem for a Time
Periodic Signal in a Periodic Noise

Khalil El Waled

1 Introduction

Consider the following periodic signal plus periodic noise model

dζt = f (t, θ)dt + σ(t)dWt , (1)

where f (·, ·) : R × Θ �→ R , σ(·) : R �→ R are continuous functions and periodic
in t with the same period P , σ(·) is positive, θ ∈ Θ is an unknown parameter; Θ

is a compact of R, {Wt } is a Brownian motion defined over a complete probability
space (Ω,F ,P).

As an application, let {ξt , t ≥ 0} be the time-dependent geometric Brownian
motion which verifies the following linear stochastic differential equation

dξt = f (t)ξt dt + σ(t)ξt dWt . (2)

The connection between these processes is given by

dζt = dξt

ξt
.

Such types of processes appear in many domains, for instance, in finance [13]
(Black–Scholes–Merton model), mechanics ([8, 12]) and in biology [1, 9].

The problem of parameter estimation when the process is continuously observed
has been studied by many others (see for instance [15, 16]...). Ibragimov and
Has’minskil ([11], Sect. 5 in Chap. 3) have considered the general model

d Xε(t) = Sε(t, θ) + db(t).
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Although model (1) can be reduced to the well-known model Xε(t), we prefer
to deal with the first case and we are interested in its properties that are driven by
the periodicity of f (·, ·) and σ(·). These properties will enable us to establish the
convergence almost sure, to give an explicit expression of the Fisher information and
to prove simply the efficiency of the MLE.

Since in practice it is difficult to obtain a complete continuous time observation of
the sample path of a process. So the problem of discretization has to be considered.

Kasonga [14] has used the least square method to show the consistency of the
estimators based on the discrete schemas. The case of stationary diffusion models is
studied in [3, 5].

Using maximum contrast, and for small variance diffusion models [6], has shown
under some classical assumptions, asymptotic results. Harison [7] has used this
method to estimate the drift parameter for some one-dimensional nonstationary
Gaussian diffusion models.

This paper is organized as follows: First, in Sect. 2 we study the parametric esti-
mation problem of θ from a continuous time observation. We prove the existence of
an estimator that converges in probability. When f (t, θ) = θ f (t) we get the mean
square convergence, the asymptotic normality of this estimator and the asymptotic
efficiency.

In the Sect. 3we assume that the observations have been done at discretemoments.
We compute the likelihood function and we propose an estimator of the unknown
parameter θ then we establish its convergence in probability. When f (t, θ) = θ f (t)
we show themean square convergence and the asymptotic normality property as well
as the asymptotic efficiency.

For an easier reading of the paper proofs which are long are put in the appendix.

2 Drift Estimation from a Continuous Time Observation

2.1 Likelihood

In the continuous time observation context to estimate the unknown parameter θ

we can use the method of the maximum of likelihood. To compute the likelihood
function of this model we apply Theorem 7.18 in [16] and Corollary which follows
it to the next two processes (see also Theorem 6.10 in [10])

dζ θ
t = f (t, θ)dt + σ(t)dWt , (3)

dηt = σ(t)dWt . (4)

These twoprocesses satisfy the four conditions of Theorem7.18 in [16]. SoμT
θ ∼ νT ,

where

μT
θ := L (ζ θ

t , 0 ≤ t ≤ T ), νT := L (ηt , 0 ≤ t ≤ T ).
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In addition, the conditions of the corollary which follows this Theorem 7.18 are
satisfied and we have Pθ -a.s.

dμT
θ

dνT
(ζ θ ) = exp

(∫ T

0

ρ(s, θ)

σ (s)
dζ θ

s − 1

2

∫ T

0
ρ2(s, θ)ds

)

(5)

where ρ(s, θ) := f (s,θ)
σ (s) .Remark that σ(·) is positive continuous so inf t∈[0,P] σ(t) >

0 and ρ(·) is well defined and continuous.
To simplify the computation we take T = n P . Assuming that the real value of

the unknown parameter θ is θ0, the likelihood function is given by

Ln(θ) := exp

(∫ n P

0

ρ(s, θ)

σ (s)
dζ θ0

s − 1

2

∫ n P

0
ρ2(s, θ)ds

)

(6)

Thanks to the continuity of f (·, ·) and σ(·) and the compactness ofΘ there exists
θ̂n such that

θ̂n = arg sup
θ∈Θ

Ln(θ).

Maximizing Ln(θ) in θ is identical to maximizing the function Un(θ) given by

Un(θ) := 1

n P

∫ n P

0

ρ(s, θ)

σ (s)
dζ θ0

s − 1

2n P

∫ n P

0
ρ2(s, θ)ds. (7)

In the following we need the next separability condition:
(S) Assume that for each θ �= θ0 there exists an s such that f (s, θ) �= f (s, θ0).

2.2 Consistency of the Estimator

Here we prove the consistency of the MLE θ̂n . To establish this result we first check
that Un(·) is a contrast process in the sense of [2] (Definition 3.2.7).

Lemma 1 Under the continuity and the periodicity of f (·, ·) and σ(·) in addition
to the separability condition (S), Un(·) is a contrast process.

Proof We show that Un(θ) converges in Pθ0 to the nonrandom contrast function
K (θ, θ0) where

K (θ, θ0) := − 1

2P

∫ P

0
(ρ(s, θ0) − ρ(s, θ))2 ds + 1

2P

∫ P

0
ρ2(s, θ0)ds. (8)

Recall that

dζ θ0
s = f (s, θ0)ds + σ(s)dWs .
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So from the periodicity of f (·, ·) and σ(·) we have

Un(θ) = 1

P

∫ P

0
ρ(s, θ0)ρ(s, θ)ds − 1

2P

∫ P

0
ρ2(s, θ)ds

+ 1

n

n−1
∑

k=0

1

P

∫ P

0
ρ(s, θ)dW (kP)

s

= − 1

2P

∫ P

0
(ρ(s, θ0) − ρ(s, θ))2ds + 1

2P

∫ P

0
ρ2(s, θ0)ds

+ 1

n

n−1
∑

k=0

1

P

∫ P

0
ρ(s, θ)dW (kP)

s

where W (k P)
s = Ws+k P − Wk P .

Since the random variables 1
P

∫ P
0 ρ(s, θ)dW (kP)

s , {k = 0, . . . , n − 1} are iid then
thanks to the Strong Law of Large Numbers

lim
n→∞

1

n

n−1
∑

k=0

1

P

∫ P

0
ρ(s, θ)dW (kP)

s = 0 Pθ0 − a.s.

Therefore Un(θ) converges almost surely to K (θ, θ0), so in probability.
Thanks to the fact that for each θ �= θ0 there exists an s such that f (s, θ) �=

f (s, θ0) the function θ �→ K (θ, θ0) has a strict maximum when θ = θ0 and

K (θ0, θ0) = 1

2P

∫ P

0
ρ2(s, θ0)ds.

This achieves the proof of the lemma.

Theorem 1 Assume that f (·, ·) and σ(·) are continuous and periodic in t , f (·, ·) is
continuously differentiable in θ and the separability condition (S) is satisfied. Then
the MLE θ̂n is consistent.

θ̂n
Pθ0→ θ0.

2.3 Consistency and Efficiency When f (t, θ) = θ f (t)

The choice of the case f (t, θ) = θ f (t) is justified by its linearity which makes it
relevant. The modèle (1), in this case, is given as dζt = θ f (t)dt + σ(t)dWt . In
the continuous case, the non-parametric estimation of the function f (·) was studied
[4, 11]. For the parametric estimation, thanks to (6), the likelihood is defined as
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Ln(θ) = exp

(

θ

∫ nP

0

ρ(s)

σ (s)
dζ θ0

s − θ2

2

∫ nP

0
ρ2(s)ds

)

.

The score function is equal to

S(θ) := ∂ ln Ln(θ)

∂θ
=
∫ nP

0

ρ(s)

σ (s)
dζ θ0

s − θ

∫ nP

0
ρ2(s)ds.

This implies that the MLE θ̂n is equal to

θ̂n :=
∫ nP
0

ρ(s)
σ (s)dζ

θ0
s

∫ nP
0 ρ2(s)ds

=
∫ nP
0

ρ(s)
σ (s) (θ0 f (s)ds + σ(s)dWs)

∫ nP
0 ρ2(s)ds

.

So we can write θ̂n as:

θ̂n = θ0 + Vn

In
,

where

Vn :=
∫ nP

0
ρ(s)dWs, In :=

∫ nP

0
ρ2(s)ds.

Then θ̂n is unbiased. Moreover, we are going to state the almost sure convergence,
mean square convergence, the asymptotic normality and the asymptotic efficiency.

2.3.1 Almost Sure Convergence, Mean Square Convergence,
Asymptotic Normality

Theorem 2 θ̂n converges almost surely to θ0.

Remark 1 Noticing that In is the quadratic variation of the martingale Vn we can
directly deduce from the martingale convergence the strong convergence of θ̂n .

Since

L

(∫ nP

0
ρ(s)dWs

)

= N

(

0,
∫ nP

0
ρ2(s)ds

)

and θ̂n − θ0 =
∫ nP
0 ρ(s)dWs
∫ nP
0 ρ2(s)ds

,

we deduce that

L
(

θ̂n − θ0

)

= N
(

0, I −1
n

)

. (9)

So we obtain the mean square convergence as well as the asymptotic normality.
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Theorem 3 θ̂n converges in mean square to θ0, and θ̄n = √
n(θ̂n − θ0) is asymptot-

ically normal: θ̄n ∼ N
(

0, I −1
)

, where I = ∫ P
0 ρ2(s)ds is the Fisher information.

2.3.2 Asymptotic Efficiency of θ̂n

To justify the relevance of this estimator we are going to establish that it is asymptot-
ically efficient. For this purpose we use the Hájek-Le Cam inequality (see [15, 17]
for further details).

We show first that the family (P(n)
θ )θ∈Θ is locally asymptotically normal (see

Definition 1.2.1 in [15]).

Proposition 1 Using the notations of Definition 1.2.1 in [15] (P(n)
θ )θ∈Θ is locally

asymptotically normal at θ0 for any θ0.

Theorem 4 The estimator θ̂n is asymptotically efficient for the square error (see
Definition 1.2.2 in [15]).

Proof From (9)

E
[

In(θ̂n − θ0)
2
]

= 1.

Hence θ̂n is asymptotically efficient.

3 Drift Estimation from a Discrete Time Observation

In the second section we have assumed that the process is observed continuously
throughout the interval [0, T ], however it is difficult to record numerically a contin-
uous time process, and the observations generally take place at discrete moments.
Hence the motivation of this section.

Recall the model of signal plus noise type that we consider

dζt = f (t, θ)dt + σ(t)dWt t ∈ [0, T ]. (10)

The goal of this section is the estimation of the parameter θ .
Thanks to the simplicity of this model we are able to compute its likelihood.
Assume that the observations take place at the instants ti := iΔn , i ∈ 0 . . . n − 1

of the interval [0, T ], where Δn = T
n . Assume also that T = nΔn = Nn P and that

T = nΔn → ∞ and Δn → 0 when n → ∞. So Nn → ∞ when n → ∞.
To simplify the representation denote

Y θ
i :=

∫ ti+1

ti
ρ(s, θ)ds + Wti+1 − Wti . (11)
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Hence

Y θ
i ∼ N

(∫ ti+1

ti
ρ(s, θ)ds,Δn

)

. (12)

Therefore, the log-likelihood is given by

Λn(θ) :=
n−1
∑

i=0

(

− ln(
√

2πΔn) − 1

2Δn

(

Y θ0
i −

∫ ti+1

ti
ρ(s, θ)ds

)2
)

(13)

= −n

2
ln(2πΔn) − 1

2Δn

n−1
∑

i=0

(

Y θ0
i

2 − 2Y θ0
i

∫ ti+1

ti
ρ(s, θ)ds

)

− 1

2Δn

n−1
∑

i=0

(∫ ti+1

ti
ρ(s, θ)ds

)2

where θ0 is the true value of the unknown parameter θ . Thanks to the continuity of
f (·, ·) and σ(·) and the compactness of Θ there exists θ̂n such that

θ̂n = arg sup
θ∈Θ

Λn(θ).

Since θ does not depend on the observation Y θ0
i then

θ̂n = arg sup
θ∈Θ

Un(θ),

where

Un(θ) := 1

nΔ2
n

n−1
∑

i=0

Y θ0
i

∫ ti+1

ti
ρ(s, θ)ds − 1

2nΔ2
n

n−1
∑

i=0

(∫ ti+1

ti
ρ(s, θ)ds

)2

. (14)

3.1 Consistency of the Estimator

As in the continuous case, to prove the convergence in Pθ0 of θ̂n to the true value of the
parameter θ0 we check that Un(θ) is a contrast process in the sense of [2] (Definition
3.2.7) and then we apply a version of (Theorem 3.2.4, [2], see also Theorem 5.7 of
van der Vaart [17]).

Proposition 2 Under the continuity and the periodicity of f (·, ·) and σ(·) and under
the separability condition (S), Un(θ) is a contrast process.

Theorem 5 In addition to the conditions of Proposition 2 assume that ρ(s, θ) is
continuously differentiable, then θ̂n converges in probability to the real parameter θ0.
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3.2 Study of the Case f (t, θ) = θ f (t)

Now we consider the case f (t, θ) = θ f (t) where f (·) is a continuous and periodic
function with same period as σ(·) and θ is unknown parameter. In this case the
expression of the estimator θ̂n is explicit and we show that its estimator converges in
mean square and it is asymptotically normal.

From (13) the log-likelihood is given by

Λn(θ) := −n

2
ln(2πΔn) − 1

2Δn

n−1
∑

i=0

(

Y θ0
i − θ

∫ ti+1

ti
ρ(s)ds

)2

, (15)

where ρ(s) = f (s)
σ (s) , Y θ

i is given by (11). Hence the score function S(θ) is

S(θ) = 1

Δn

n−1
∑

i=0

∫ ti+1

ti
ρ(s)ds

(

Y θ0
i − θ

∫ ti+1

ti
ρ(s)ds

)

.

So we get the expression of the MLE

θ̂n =
∑n−1

i=0 Y θ0
i

∫ ti+1
ti

ρ(s)ds

∑n−1
i=0

(

∫ ti+1
ti

ρ(s)ds
)2 = θ0 +

∑n−1
i=0

∫ ti+1
ti

ρ(s)ds
(

Wti+1 − Wti

)

∑n−1
i=0

(

∫ ti+1
ti

ρ(s)ds
)2 .

Then θ̂n is unbiased estimator. Furthermore, we are going to show that it converges
in mean square and it is asymptotically normal.

3.2.1 Mean Square Convergence, Asymptotic Normality

Theorem 6 θ̂n converges in mean square to θ0, furthermore we have the rate of this
convergence

lim
n→∞Eθ0

[

∣

∣

∣

√

nΔn(θ̂n − θ0)

∣

∣

∣

2
]

=
(

1

P

∫ P

0
ρ2(s)ds

)−1

.

Since

√

nΔn(θ̂n − θ0) ∼ N

⎛

⎜

⎝
0,

nΔ2
n

∑n−1
i=0

(

∫ ti+1
ti

ρ(s)ds
)2

⎞

⎟

⎠
.
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We deduce that

lim
n→∞L

(
√

nΔn(θ̂n − θ0)
)

= N

(

0,

(

1

P

∫ P

0
ρ2(s)ds

)−1)

.

Therefore

Theorem 7
√

nΔn(θ̂n − θ0) is asymptotically normal.

3.2.2 Asymptotic Efficiency of θ̂n

Here as in the continuous case we show that the estimator θ̂n is asymptotically
efficient.We establish first that the family (P(n)

θ )θ∈Θ is locally asymptotically normal
(see Definition 1.2.1 in [15]).

Proposition 3 (P(n)
θ )θ∈Θ is locally asymptotically normal at θ0 for any θ0.

Theorem 8 The estimator θ̂n is also asymptotically efficient for the square error
(see Definition 1.2.2 in [15]).

Proof According to (26)

Eθ0

[

∣

∣

∣Φ
−1
n (θ̂n − θ0)

∣

∣

∣

2
]

= Φ−2
n Eθ0

⎡

⎢

⎣

∣

∣

∣

∣

∣

∣

∣

∑n−1
i=0

∫ ti+1
ti

ρ(s)ds(Wti+1 − Wti )

∑n−1
i=0

(

∫ ti+1
ti

ρ(s)ds
)2

∣

∣

∣

∣

∣

∣

∣

2⎤

⎥

⎦

= Φ−2
n

Δn

∑n−1
i=0

(

∫ ti+1
ti

ρ(s)ds
)2

= Φ−2
n Φ2

n

= 1.

Hence θ̂n is asymptotically efficient.

4 Simulation

As an example we illustrate this estimator θ̂n with different values of θ0, θ0 = 0 ,
θ1 = 1 and θ = −4.

Assume that the sample size T = nP = 1000, the period P = 1. First, we
consider the next model

dζt = θ cos(2π t) + dWt , i.e. f (t) = cos(2π t), σ (t) = 1,

and the discretization step δ .
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Fig. 1 Boxplot of the values of the estimator θ̂n from 100 repetitions
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Fig. 2 Boxplot of the values of the estimator θ̂n from 1000 repetitions

For θ0 = 0, δ = 10−2 in Figs. 1 and 2 we see that all the values are around 0 and
the interquartile range is less than 0.2.

For θ0 = 1, δ = 10−3 in Fig. 3 we see the importance of the step of discretization
δ, the median is equal to 1 and the interquartile range is equal to 0.1.

Now we illustrate this estimator with another model (Fig. 4):

f (t) = cos(2π t), σ (t) = 2 + sin(2π t), θ0 = −4, δ = 10−3.
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Fig. 3 Boxplot of the values of the estimator θ̂n from 1000 repetitions
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Fig. 4 Boxplot of the values of the estimator θ̂n from 1000 repetitions

As we can see the median of the 1000 values is −4 and the interquartile range is
around 0.1.

When f (t) = σ(t) = 1, θ = 1, Fig. 5 shows that all the values are next to 1.
In the previous cases although the dispersion around the median is not very big, the
degradation with respect to the case f (t) = σ(t) = 1 is due to the variations of f (t)
and σ(t).
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Fig. 5 Boxplot of the values of the estimator θ̂n from 1000 repetitions
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Fig. 6 Histogram θ̄n , θ0 = 0 from 1000 repetitions

Now we check the asymptotic normality property. From the Theorem3

θ̄n := √
n(θ̂n − θ0), lim

n→∞L
(√

n(θ̂n − θ0)
)

= N

(

0,
1

∫ P
0 ρ2(s)ds

)

.

In Figs. 6, 7 and 8 we note that the histograms obtained by the 1000 repetitions of
the simulations fit to the Gaussian distribution.
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Fig. 7 Histogram of θ̄n , θ0 = 1 from 1000 repetitions
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Fig. 8 Histogram of θ̄n , θ0 = −4 from 1000 repetitions
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5 Conclusion

We have considered a model of type signal plus noise given by

dζt = f (t, θ)dt + σ(t)dWt .

From a continuous time observation throughout the interval [0, T ] we have built
an estimator θ̂n of the unknown parameter θ , using the method of maximum like-
lihood. We have established that this estimator converges in probability. When
f (t, θ) = θ f (t), we have given the expression of θ̂n andwe have established itsmean
square convergence, almost sure convergence, asymptotic normality and asymptotic
efficiency. From a discrete time observation on [0, T ] we have computed the likeli-
hood function and we have shown the same convergences as in the continuous case
except the strong consistency convergence.

As a prospect I am going to consider model (1) but with σ(·) which can take the
value 0. I plan also to study the estimation of the parameters θi from the observations
of ζt following the model

dξt = (θ1 f1(t) + θ2 f2(t) . . . θn fn(t)) dt + σ(t)dWt .

Acknowledgments I would like to thank the region of Brittany for funding my Ph.D. scholarship.

Appendix

Proof Theorem 1
We apply (Theorem 3.2.4, [2]) which gives the convergence in probability of the

maximum of the contrast process Un(θ). See also (Theorem 5.7 of van der Vaart
2005). For this purpose we need to show the two following conditions:

(i) Θ is a compact ofR, the functions θ �→ Un(θ), θ �→ K (θ, θ0) are continuous.
(ii) for all ε > 0, there exists η > 0 such that

lim
n→∞Pθ

(

sup
|θ−θ ′|<η

∣

∣Un(θ) − Un(θ ′)
∣

∣ > ε

)

= 0.

The first condition is readily obtained from the hypothesis on f (·, ·), σ(·) and Θ ,
and from the definitions of Un(·) and K (·, ·).
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Below we prove the second condition

Un(θ) − Un(θ ′) = 1

2nP

∫ n P

0

(

ρ(s, θ) − ρ(s, θ ′)
) (

2ρ(s, θ0) − ρ(s, θ) − ρ(s, θ ′)
)

ds

+ 1

nP

∫ nP

0
(ρ(s, θ) − ρ(s, θ ′))dWs

= 1

2P

∫ P

0

(

ρ(s, θ) − ρ(s, θ ′)
) (

2ρ(s, θ0) − ρ(s, θ) − ρ(s, θ ′)
)

ds

+ 1

nP

∫ P

0
(ρ(s, θ) − ρ(s, θ ′))dWs

:= A1(θ, θ ′) + A2(θ, θ ′) (16)

where A1(θ, θ ′) is the nonrandom term of this equality and A2(θ, θ ′) is the random
term.

The absolute value of the nonrandom termof this equality is bounded by amultiple
of η where |θ − θ ′| ≤ η and the second term converges in mean to 0 when n →
∞. Indeed

As ρ(·, ·) is continuously differentiable then

ρ(s, θ) − ρ(s, θ ′) = (θ − θ ′)ρ′(s, θ1), θ1 ∈ [θ, θ ′],

where ρ′(·, ·) is the derivative of ρ(·, ·) with respect to θ. Denote

C0 := sup
θ∈Θ, s∈[0,P]

∣

∣ρ′(s, θ)
∣

∣ .

Thus

sup
θ,θ ′∈Θ, s∈[0,P]

∣

∣2ρ(s, θ0) − ρ(s, θ) − ρ(s, θ ′)
∣

∣ = 2 sup
θ∈Θ, s∈[0,P]

|ρ(s, θ0) − ρ(s, θ)|

≤ C1 sup
θ∈Θ

|θ0 − θ |
≤ C

where C is positive constant because Θ is a compact. So for the nonrandom part

sup
|θ−θ ′|<η

∣

∣A1(θ, θ ′)
∣

∣ ≤ sup
|θ−θ ′|<η

|θ − θ ′|
2P

∫ P

0
Cds ≤ C

2
η (17)

Now show that the random part converges in mean to 0. First

A2(θ, θ ′) = 1

nP

∫ P

0
(ρ(s, θ) − ρ(s, θ ′))dWs =

∫ θ ′

θ

1

nP

∫ P

0
ρ′(s, u)dWs du.
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The set Θ being compact

Eθ0

[

sup
|θ−θ ′|<η

∣

∣A2(θ, θ ′)
∣

∣

]

≤ Eθ0

[

sup
|θ−θ ′|<η

∫ θ ′

θ

∣

∣

∣

∣

1

nP

∫ P

0
ρ′(s, u)dWs

∣

∣

∣

∣

du

]

≤ Eθ0

[∫

Θ

∣

∣

∣

∣

1

nP

∫ P

0
ρ′(s, u)dWs

∣

∣

∣

∣

du

]

≤
∫

Θ

Eθ0

[∣

∣

∣

∣

1

nP

∫ P

0
ρ′(s, u)dWs

∣

∣

∣

∣

]

du

≤
∫

Θ

(

Eθ0

[

∣

∣

∣

∣

1

nP

∫ P

0
ρ′(s, u)dWs

∣

∣

∣

∣

2])
1
2

du

=
∫

Θ

(

1

n2P2

∫ nP

0
ρ′2(s, u)ds

)
1
2

du

= 1√
nP

∫

Θ

(

1

P

∫ P

0
ρ′2(s, u)ds

)
1
2

du.

Then

lim
n→∞Eθ0

[

sup
|θ−θ ′|<η

∣

∣A2(θ, θ ′)
∣

∣

]

= 0. (18)

According to the equality (16) we have for all ε > 0

Pθ0

(

sup
|θ−θ ′|<η

∣

∣Un(θ) − Un(θ ′)
∣

∣ > ε

)

≤ Pθ0

(

sup
|θ−θ ′|<η

∣

∣A1(θ, θ ′)
∣

∣ >
ε

2

)

+ Pθ0

(

sup
|θ−θ ′|<η

∣

∣A2(θ, θ ′)
∣

∣ >
ε

2

)

Since

lim
n→∞Eθ0

[

sup
|θ−θ ′|<η

∣

∣A2(θ, θ ′)
∣

∣

]

= 0

then

lim
n→∞Pθ0

(

sup
|θ−θ ′|<η

∣

∣A2(θ, θ ′)
∣

∣ >
ε

2

)

= 0.
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Thanks to (17) is suffice, for all ε > 0, to take η = ε
2C to have

sup
|θ−θ ′|<η

∣

∣A1(θ, θ ′)
∣

∣ <
ε

2
.

So for all ε > 0, there exists η > 0 such that

lim
n→∞Pθ0

(

sup
|θ−θ ′|<η

∣

∣Un(θ) − Un(θ
′)
∣

∣ > ε

)

= 0.

Therefore, the second condition is fulfilled. So the MLE θ̂n is consistent.

Proof Theorem 2
Recall that f (·) and σ(·) are continuous and periodic with the same period P > 0.

On one hand

In =
∫ nP

0
ρ2(s)ds = n

∫ P

0
ρ2(s)ds.

So

lim
n→∞

In

n
=
∫ P

0
ρ2(s)ds.

On the other hand

Vn =
n−1
∑

k=0

∫ (k+1)P

kP
ρ(s)dWs =

n−1
∑

k=0

∫ P

0
ρ(s)dW(kP)

s .

As

lim
n→∞

1

n

n−1
∑

k=0

∫ P

0
ρ(s)dW(kP)

s = Eθ0

[∫ P

0
ρ(s)dW(k P)

s

]

= 0 Pθ0 − a.s.

we deduce that

lim
n �→∞ θ̂n − θ0 = lim

n �→∞ θ̂n − θ0 = lim
n �→∞

1
n Vn
1
n In

= 0 Pθ0 − a.s.

Proof Proposition 1
Denote

Φn := I
− 1

2
n =

(∫ nP

0
ρ2(s)ds

)− 1
2

,
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Δn(ζ
θ ) := I

− 1
2

n

∫ nP

0
ρ(s)dWs.

According to (6) we have

Zn(u) := Ln(θ0 + Φnu)

Ln(θ0)

= exp

(

Φnu
∫ nP

0

ρ(s)

σ (s)
dζ θ0

s − (θ0 + Φnu)2 − θ20

2
In

)

= exp

(

Φnu
∫ n P

0

ρ(s)

σ (s)
dζ θ0

s − Φ2
n u2

2
In − θ0Φnu In

)

.

Since

dζ
θ0
t = θ0 f (t)dt + σ(t)dWt

then we have

Zn(u) = exp

(

θ0uI
− 1

2
n In + uI

− 1
2

n

∫ nP

0
ρ(s)dWs + 1

2
u2 − θ0uI

1
2

n

)

= exp

(

uI
− 1

2
n

∫ nP

0
ρ(s)dWs − 1

2
u2
)

= exp

(

uΔn(ζ
θ ) − 1

2
u2
)

. (19)

As

L

(∫ nP

0
ρ(s)dWs

)

= N (0, In)

then we have

L
{

Δn(ζ θ )|Pθ0

} = N (0, 1) .

So from (19) the family (P(n)
θ )θ∈Θ is locally asymptotically normal at θ0 for every θ0.

Proof Proposition 2 We show that Un(θ) converges in Pθ0 to the contrast function
K (θ, θ0) defined by (8). To do this we use the next lemma

Lemma 2 For the continuous and periodic function ρ(·, ·) and Δn → 0 when
n → ∞ we have

lim
n→∞

1

2nΔ2
n

n−1
∑

i=0

(∫ ti+1

ti
ρ(s, θ) −

∫ ti+1

ti
ρ(s, θ0)

)2

ds = 1

2P

∫ P

0
(ρ(s, θ0) − ρ(s, θ))2 ds.
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lim
n→∞

1

2nΔ2
n

n−1
∑

i=0

(∫ ti+1

ti
ρ(s, θ0)ds

)2

= 1

2P

∫ P

0
ρ2(s, θ0)ds.

We continue the proof of Proposition 2, recall that

Y θ0
i =

∫ ti+1

ti
ρ(s, θ0)ds + Wti+1 − Wti .

So

Un(θ) := 1

nΔ2
n

n−1
∑

i=0

Y θ0
i

∫ ti+1

ti
ρ(s, θ)ds − 1

2nΔ2
n

n−1
∑

i=0

(∫ ti+1

ti
ρ(s, θ)ds

)2

= 1

nΔ2
n

n−1
∑

i=0

∫ ti+1

ti
ρ(s, θ)ds

∫ ti+1

ti
ρ(s, θ0)ds − 1

2nΔ2
n

n−1
∑

i=0

(∫ ti+1

ti
ρ(s, θ)ds

)2

+ 1

nΔ2
n

n−1
∑

i=0

∫ ti+1

ti
ρ(s, θ)ds(Wti+1 − Wti )

= − 1

2nΔ2
n

n−1
∑

i=0

(∫ ti+1

ti
ρ(s, θ) −

∫ ti+1

ti
ρ(s, θ0)

)2

ds (20)

+ 1

2nΔ2
n

n−1
∑

i=0

(∫ ti+1

ti
ρ(s, θ0)ds

)2

+ 1

nΔ2
n

n−1
∑

i=0

∫ ti+1

ti
ρ(s, θ)ds(Wti+1 − Wti ).

To complete the proof and thanks to Lemma2 it remains to establish the convergence
in Pθ0 probability of the last part of (20). For this purpose we show the convergence
in mean square.

From the independence of the increment of the Brownian motion Wti+1 − Wti we
can write

Eθ0

⎡

⎣

∣

∣

∣

∣

∣

1

nΔ2
n

n−1
∑

i=0

∫ ti+1

ti
ρ(s, θ)ds(Wti+1 − Wti )

∣

∣

∣

∣

∣

2⎤

⎦

= 1

n2Δ4
n

n−1
∑

i=0

Eθ0

[

∣

∣

∣

∣

∫ ti+1

ti
ρ(s, θ)ds(Wti+1 − Wti )

∣

∣

∣

∣

2
]

= 1

n2Δ3
n

n−1
∑

i=0

(∫ ti+1

ti
ρ(s, θ)ds)2

)

= 1

nΔn

1

nΔ2
n

n−1
∑

i=0

(∫ ti+1

ti
ρ(s, θ)ds

)2

.
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Thanks to (20) we deduce that

lim
n→∞Eθ0

⎡

⎣

∣

∣

∣

∣

∣

1

nΔ2
n

n−1
∑

i=0

∫ ti+1

ti
ρ(s, θ)ds(Wti+1 − Wti )

∣

∣

∣

∣

∣

2⎤

⎦ = 0.

So the contrast process Un(θ) converges in mean square to the contrast function
K (θ, θ0) which has a strict maximum when θ = θ0

K (θ0, θ0) = 1

2P

∫ P

0
ρ2(s, θ0)ds.

This achieves the proof of Proposition 2.

Proof Theorem 5
As in Theorem1 we apply (Theorem 3.2.4 in [2]). By their definitions, Un(θ) and

K (θ, θ0) satisfy the first condition
For the second condition

Un(θ) − Un(θ ′) (21)

= 1

nΔ2
n

n−1
∑

i=0

∫ ti+1

ti
ρ(s, θ0)ds

∫ ti+1

ti
(ρ(s, θ) − ρ(s, θ ′))ds − 1

2nΔ2
n

n−1
∑

i=0

(∫ ti+1

ti
ρ(s, θ)ds

)2

+ 1

2nΔ2
n

n−1
∑

i=0

(∫ ti+1

ti
ρ(s, θ ′)ds

)2

+ 1

nΔ2
n

n−1
∑

i=0

∫ ti+1

ti
(ρ(s, θ) − ρ(s, θ ′))ds(Wti+1 − Wti )

= 1

2nΔ2
n

n−1
∑

i=0

∫ ti+1

ti
(ρ(s, θ) − ρ(s, θ ′))ds

∫ ti+1

ti
(2ρ(s, θ0) − ρ(s, θ) − ρ(s, θ ′))ds

+ 1

nΔ2
n

n−1
∑

i=0

∫ ti+1

ti
(ρ(s, θ) − ρ(s, θ ′))ds(Wti+1 − Wti )

:= B1(θ, θ ′) + B2(θ, θ ′) (22)

As in the continuous case we can establish that the absolute value of the nonrandom
part B1(θ, θ ′) is bounded by a multiple of η and the random part B2(θ, θ ′) converges
in mean to 0. Hence we have the second condition.

So

θ̂n
Pθ0→ θ0.



Parametric Estimation Problem for a Time Periodic Signal in a Periodic Noise 39

Proof Theorem 6

Eθ0

[

∣

∣

∣

√

nΔn(θ̂n − θ0)

∣

∣

∣

2
]

= nΔnEθ0

⎡

⎢

⎣

∣

∣

∣

∣

∣

∣

∣

∑n−1
i=0

∫ ti+1
ti

ρ(s)ds
(

Wti+1 − Wti

)

∑n−1
i=0

(

∫ ti+1
ti

ρ(s)ds
)2

∣

∣

∣

∣

∣

∣

∣

2⎤

⎥

⎦

=
nΔnEθ0

[

∣

∣

∣

∑n−1
i=0

∫ ti+1
ti

ρ(s)ds
(

Wti+1 − Wti

)

∣

∣

∣

2
]

(

∑n−1
i=0

(

∫ ti+1
ti

ρ(s)ds
)2
)2

=
nΔ2

n
∑n−1

i=0

(

∫ ti+1
ti

ρ(s)ds
)2

(

∑n−1
i=0

(

∫ ti+1
ti

ρ(s)ds
)2
)2

= nΔ2
n

∑n−1
i=0

(

∫ ti+1
ti

ρ(s)ds
)2 .

From equality (20) with f (s, θ) = θ f (s) we have

lim
n→∞

1

nΔ2
n

n−1
∑

i=0

(∫ ti+1

ti
ρ(s)ds

)2

= 1

P

∫ P

0
ρ2(s)ds.

So

lim
n→∞Eθ0

[

∣

∣

∣

√

nΔn(θ̂n − θ0)

∣

∣

∣

2
]

=
(

1

P

∫ P

0
ρ2(s)ds

)−1

.

Proof Proposition 3
Denote

Φn := √

Δn

(

n−1
∑

i=0

(∫ ti+1

ti
ρ(s)ds

)2
)− 1

2

, (23)

Δn(ζ θ ) := Φn

Δn

n−1
∑

i=0

(∫ ti+1

ti
ρ(s)ds(Wti+1 − Wti )

)

. (24)
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According to (12) and (13) we have

Zn(u) := Ln(θ0 + Φnu)

Ln(θ0)

=
∏n−1

i=0
1√

2πΔn
exp

(

− 1
2Δn

(

Y θ0
i − (θ0 + Φnu)

∫ ti+1
ti

ρ(s)ds
)2
)

∏n−1
i=0

1√
2πΔn

exp

(

− 1
2Δn

(

Y θ0
i − θ0

∫ ti+1
ti

ρ(s)ds
)2
)

=
n−1
∏

i=0

exp

(

− 1

Δn

(

Y θ0
i Φnu

∫ ti+1

ti
ρ(s)ds − θ0Φnu

(∫ ti+1

ti
ρ(s)ds

)2
))

×
n−1
∏

i=0

exp

(

1

2Δn
Φ2

n u2
(∫ ti+1

ti
ρ(s)ds

)2
)

Since

Y θ0
i = θ0

∫ ti+1

ti
ρ(s)ds + Wti+1 − Wti ,

then thanks to (23) and (24) we have

Zn(u) =
n−1
∏

i=0

exp

(

uΦn

Δn

∫ ti+1

ti
ρ(s)ds(Wti+1 − Wti ) − u2Φ2

n
2Δn

(∫ ti+1

ti
ρ(s)ds

)2
)

= exp

⎛

⎝

uΦn

Δn

n−1
∑

i=0

∫ ti+1

ti
ρ(s)ds(Wti+1 − Wti ) − u2Φ2

n
2Δn

n−1
∑

i=0

(∫ ti+1

ti
ρ(s)ds

)2
⎞

⎠

= exp

(

uΔn(ζ θ ) − 1

2
u2
)

(25)

From the independence of the increments Wti+1 − Wti , i = 0, . . . , n − 1 and (23)

L

(

n−1
∑

i=0

∫ ti+1

ti
ρ(s)ds(Wti+1 − Wti )

)

= N

(

0,Δn

n−1
∑

i=0

(∫ ti+1

ti
ρ(s)ds

)2
)

= N
(

0, Φ−2
n Δ2

n

)

. (26)

So from (24)

L
{

Δn(ζ θ )|Pθ0

} = N (0, 1) .

Hence from (25) the family (P(n)
θ )θ∈Θ is locally asymptotically normal at θ0 for

every θ0.
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Damage Assessment of Rolling Element
Bearing Using Cyclostationary Processing
of AE Signals with Electromagnetic
Interference

David Quezada Acuña and Cristián Molina Vicuña

1 Introduction

Rolling element bearings are the most widespread machine component, present in
almost every rotating machine. The normal failure mode of rolling element bearings
is due to Hertzian contact fatigue [18]. The failure initiates typically as subsuperficial
microcracks that eventually reach the surface and create localized damaged zones.
This can occur in the inner race, outer race and/or rolling elements. The interaction
between the bearing parts and the damaged zone produce changes in some dynamic
variables, such as vibrations and acoustic emissions.

Traditionally, the most used methods for bearing diagnosis are those based on
the analysis of the Fourier magnitude spectrum of the vibration envelope signal.
Among several procedures leading to obtain the envelope signal, the most studied
has been the High Frequency Resonant Technique (HFRT) method ([11, 13]). other
similar methods—is the selection of the frequency band where the filter operation is
performed. The selected band must present the highest signal-to-noise ratio between
the signal component due to the bearing defect and the rest of the signal (noise).
The method is actually critically sensitive to the correct selection of the filter band.
Erroneous bearing failure assessment can be the result of the incorrect selection of
the filter’s frequency band. The hypothesis of linear behaviour of the bearing/bearing
housing system suggests that the optimal frequency band is around some resonant
frequency, which can be detected by means of impact tests or PSD-difference [17,
19]. However, the former needs additional measurements and the latter requires
historical data, which can be not available in some cases.
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In recent years, several signal processing tools have been developed in order to
automate the selection of the optimum frequency band for the filtering stage. In
principle, these methods are able to find defect signatures without the need of any
additional data than the signal itself. Among thesemethods are cyclostationary-based
signal processing tools, auto-regressive filter, Kurtogram, etc. [15].

Acoustic emission (AE) is another technique which is useful for bearing fault
analysis. AE are high-frequency, structure-borne elastic waves, transient in nature,
which travel from their sources in all directions within materials and/or on their sur-
faces. The fundamental theory of AE is that of elastic wave propagation in continuum
[1, 9]. Despite the fact that AE were introduced long ago for bearing monitoring [6],
the AE technique is not as popular as the vibration technique, even though it can
be advantageous in some situations, e.g. when shafts rotate at low speeds. The main
drawbacks of the AE technique are the requirements of a continuous path between
source and sensor, and difficulties for sensor mounting [10]. On the other hand, the
vibration technique is more flexible and does only require the sensor to be firmly
attached to the surface, e.g. by using a magnet mounting base.

2 Problem Description

Rolling element bearings are typically installedwith the inner ringfixed to the rotating
shaft. The outer ring is supported by the bearing housing. The AE sensor is placed
on the outer part of the bearing housing. A flat zone can be prepared on the housing,
so as to allow a better placement of the sensor. A viscous substance is included
between the housing surface and the sensing element of the sensor to improve the
AE transmission between them. This situation describes the typical measurement
procedure of AE in bearings. Even though much care is taken in the procedure of
sensor mounting on the bearing housing, there is still an important discontinuity
between the AE source (i.e. the damaged zone of the bearing) and the sensor, which
is the interface between the outer ring and the sensor housing. The contact between
both surfaces is dry and partially filled with air. Unfortunately, the AE technique
is highly sensitive to interfaces of this type, because most part of the AE waves
that reach the interface are reflected to the first medium (the outer ring), and only
a portion is refracted to the second medium (the bearing housing). That is, the AE
waves transmitted to the bearing housing, and from there to the sensor, have lost a
significant amount of energy and amplitude due to the interface. The high reflection
and low refraction coefficients are a result of the impedance difference between the
elements of the dry contact interface [12]. For this reason, some researchers have
measured AE with the sensor mounted directly on the outer race [8, 20], but this can
hardly be performed in practice.

On the other hand, AE sensors are in practice very prone to receive electro-
magnetic interference (EMI), with the result of signal contamination. Depending
on the intensity of the AE generated at its source, the attenuation due to the outer
ring/bearing housing interface, and the intrinsic attenuation due to wave propagation,
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this can result in transmitted AE waves whose amplitudes match, or are lower than
the amplitudes of the EMI contamination.

In the case presented in the next section, we are interested in studying the pos-
sibilities of using AE measured on the bearing housing to estimate the size of a
seeded defect on the outer race of one tapered roller bearing. For these purposes,
AE waveform analysis is performed. However, it is not possible to directly proceed
with waveform analysis, because the measured signal is strongly contaminated with
EMI. The EMI source in this case is the drive system, composed of an ACmotor and
a frequency converter. This is a typical source of EMI to which AE instrumentation
would usually be exposed to in practice.

3 Experimental Set-up

The test rig, shown in Fig. 1 (element description in Table1), has a 35mm diameter
shaft, mounted on two tapered roller bearings type 30207. Radial load is applied on
the shaft, in the mid-point between the supports, by using a scissor jack which was
calibrated to quantify the effective load applied to the shaft. An ACmotor controlled
by a frequency converter is connected to the shaft through flexible coupling.

AEweremeasured using a broadband piezoelectric transducer Piezotron 8152B2,
which is located on the free-side bearing housing, as shown in Fig. 2. As observed,
vibrations were measured parallel to AE, but we do not refer to them in this paper.
Also, it can be seen that a flat surface was milled on the bearing housing to allow for
better sensor mounting. Silicon grease was used to build a coupling film between the
sensing element and the bearing housing.

The seeded defect is located on the surface of the outer race of the free-side
bearing. It has the form of a line orthogonal to the rolling direction of the rolling
elements, and extends across the completewidth of the outer race (Fig. 3a). Thewidth
of the defect line is around 0.4–0.5mm. Details of the damaged zone can be seen in

(a) (b)

(c)

(d)

(e)

Fig. 1 Bearing test rig schematic
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Table 1 Description of test
rig components

Component (Fig. 1) Description

(a) Free-side bearing, 30207

(b) Motor-side bearing, 30207

(c) Calibrated scissor jack

(d) Flexible coupling

(e) Three-phase induction motor,
1.5 HP, controlled by a
frequency converter

Fig. 2 Sensor setup

Fig. 3 Seeded defect on the outer ring of the free-side bearing. Amplification factors of a 0.65X,
b 4.0X
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the figures obtained with a microscope presented in Fig. 3. According to the bearing
kinematics, the fault frequency for stationary outer race is 7.12 times the rotational
frequency of the inner race.

4 Results

In the measured signals, the EMI and the AE due to the defect have the same order
of magnitude. As explained before, this is because much of the energy of the AE
bursts generated by the interaction between the rolling elements and the defect is
not transmitted across the outer ring/bearing housing interface. Figure4 (top) shows
a portion of the AE measured with the faulty bearing, where the strong presence of
EMI is evidenced. The slightly different zone between 1.8 and 2.7 s corresponds to
the AE activity due to the defect. For comparison purposes, Fig. 4 (bottom) shows
the AE measured with a non-faulty bearing. Note that the AE portion shown has
a total length of 5ms. This portion was carefully chosen to present the EMI and
the AE due to the defect in a joint form. When observing a larger portion, the AE
due to the defect are not recognized, because the EMI are dominant. Actually, the

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
-3

-5

0

5

x 10
-3

V

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
-3
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Fig. 4 AE signal with defective bearing (top) and with non-faulty bearing (bottom), with strong
presence of EMI. In both cases the rotational speed is 8Hz and load is 300kg
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difference between faulty and non-faulty case is not observable when looking at a
larger portion.

The possibility of using a filter to increase the signal-to-noise ratio is evaluated.
The objective is to find the frequency range where the signal has to be filtered.
Inspection of the spectrum does not provide any hint, because the EMI pattern,
which has a fundamental frequency of 9kHz andmodulation at 100Hz andmultiples,
dominates the complete frequency range. There is not clear evidence of the defect
on the spectrum. However, with careful inspection is possible to observe symptoms
of the defect, in the form of scattered components in some frequency ranges, but
is difficult to define a filter based on this method. Therefore, other methods are
considered.

Thefirstmethodused to determine thefilter frequency range is thePSD-difference.
This method consists simply in subtracting the PSD of the non-faulty case from the
PSD of the faulty case. It points out the frequency band of the PSD which has
increased due to the bearing defect.

The second method used is Spectral Kurtosis (SK). This method shows the fre-
quency bands in which the impulsive-like features of the signal are located. Based
on the hypothesis that the impulsive activity is due to the defect and is more or less
homogeneous, this method has been used increasingly in recent years [4, 5].

The PSD-difference and SK methods are based on the energy and shape of the
signal, respectively, but none of them considers the fact that the AE bursts originated
by the defect occur in an approximately periodic manner. The last method studied,
which is the Cyclostationary Peak Ratio Distribution method, takes advantage of this
fundamental fact.

Traditionally, the Peak Ratio (PR) indicator is a descriptive scalar quantity which
is computed from the spectrum and is defined as

PR = N
∑K

k=1 Hk

K
∑N

n=1 An
(1)

where Hk is the kth harmonic, An is the nth spectral line, and K and N are the total
number of harmonics and spectral lines to consider, respectively. The so defined Peak
Ratio is used as an indicator of the degree of visibility of a certain group of harmonics
over a specific frequency range.

In consideration of the second-order cyclostationary characteristics of the AE
resulting from bearing defects, we consider the computation of the Peak Ratio based
on cyclostationary distributions, instead of on any spectrum representation. Accord-
ingly, we calculate one Peak Ratio along the α-axis for each frequency of the Spectral
Coherence map, that is,

CPR( f ) = N
∑K

k=1 γ kBPFO
xx ( f )

K
∑N

n=1 γ n�α
xx ( f )

(2)



Damage Assessment of Rolling Element Bearing Using Cyclostationary Processing … 49

0

50

100

150

200
4

6

8

10

12

14

x 10
4

0

0.5

1

Frequency f
Cyclic Frequency α

Fig. 5 Spectral coherence map of the AE from faulty bearing at 8Hz of shaft speed and 300kg of
radial load. Frequency and cyclic frequency axes are in Hz

The result is a Peak Ratio distribution along the frequency domain. Since the har-
monics considered for calculation are the harmonics of the expected fault frequency,
the obtained distribution highlights the frequency intervals in which the second-order
cyclostationary features of these harmonics is stronger.

The spectral coherence of the AE measured with the faulty bearing is shown in
Fig. 5. The bearing radial load is 300kg and the shaft speed is 8Hz. For this speed,
the fault frequency is 57Hz. The second-order cyclostationary activity produced by
the defect is evidenced in the discrete lines that appear at the cyclic frequencies that
match the fault frequency and its harmonics.

The results of the three methods applied to the contaminated AE signal from
Fig. 4 (top) are shown inFig. 6.As observed, only the result from theSpectralKurtosis
differs significantly. Differently, the result from the PSD-differencemethod and from
the Cyclostationary Peak Ratio Distribution (CPRD) method, they both point out the
same frequency range for filtering.

Next, the AE signal contaminated with EMI is filtered according to the results
obtained from the three methods (Fig. 7). As expected, the signal obtained when
filtering according to the result obtained from the SK method is highly different
from the rest, and does not enhance correctly the symptoms of the bearing defect.
The problem is not the SK method as such. The problem is that the hypothesis
in which its use is based—that the highest impulsiveness contained in the signal is
repetitive and with similar characteristics—is not correct. Although it is a reasonable
assumption, this example shows that it does not always hold in practice. In this case,
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Fig. 6 Results of the three methods for filter determination. a PSD-difference. b Spectral Kurtosis.
c Cyclostationary peak ratio distribution

a single burst produced by the defect for some reason was different from the rest
and excited a different frequency range. Incidentally, in this range the signal is much
more impulsive and therefore the SK focuses on this range. This situation is similar
to the case studied in [14]. Although they are not used in this work, it should be
considered that some variations of the SK method have been developed to improve
the band selection capabilities [7, 16, 21].

On the other hand, the signals filteredwith the PSD-difference andCPRDmethods
look almost the same. Both resultant signals are able to correctly reveal the AE
pattern produced by the bearing defect. However, it is important to keep in mind
that for the PSD-difference method an additional measurement under non-faulty
conditions is required. This is not the case for the CPRD method, being therefore
advantageous.Moreover, the selective features of the CPRDmethod—in terms of the
cyclic frequency harmonics that are selected for the calculation of CPR( f )—make it
more robust even under the presence of other possible second-order cyclostationary
AE sources.

Following, the signal filteredwith the CPRDmethod is further used to estimate the
size of the defect. The AE generated when a rolling element rolls over the damaged
zone is composed ofmultiple bursts resulting from the interaction between the rolling
element and the multiple irregularities which form the defect [3]. Typically, the
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Fig. 7 From top to bottom: unfiltered AE signal; AE filtered according to PSD-difference; AE
filtered according to Spectral Kurtosis; and AE filtered according to CPRD

entrance and exit of the rolling element to/from the damaged zone produce distinctive
bursts, but this can be different depending on the shape of the defect. In the case under
study, two bursts are dominant, as can be seen in the signal portions presented in
Fig. 8.

The damage size estimation is done first in terms of the arc of the outer race,
calculated by

s = Nc�t (3)

where Nc is the rotational frequency of the cage assembly in rad/s and �t is the
time period in seconds between the distinctive peaks inside the AE resulting from
the interaction between a single rolling element and the outer race. In consideration
of the diameter of the outer race, it is possible to calculate the defect size in mm.
Results, presented in Table2, are in agreement with the real defect size, as presented
in Fig. 3. It is noticed that at higher values of shaft speed the �t decreases, while the
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Fig. 8 Filtered AE according to CPRDmethod for shaft rotating frequencies of 6, 7, 8, 9 and 10Hz
(from top to bottom)

Table 2 Results of defect size estimation

Shaft speed (Hz) Estimated defect size Arc (rad) Width (mm)

6 0.0129 0.405

7 0.0108 0.339

8 0.0101 0.316

9 0.0119 0.375

10 0.00987 0.309

burst decay does not, which results in merging of the two bursts. Therefore, damage
assessment by this method is limited to low shaft rotational speeds. For higher speeds
other researchers have proposed to estimate the defect size on the basis of the duration
of the merged burst [2]. However, the duration of the merged burst can be difficult
to determine at higher rotational speeds, because the level of continuous AE activity
generated by the interaction between the rolling elements and the non-faulty zone of
the race increases with speed. So, even when at high speed the AE bursts have more
energy, the signal-to-noise ratio can be lower than for low speed.
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5 Conclusion

The problem of size estimation of localized bearing damage based on acoustic emis-
sion measurements on the bearing housing has been investigated. The problem is not
straightforward due to the strong presence of electromagnetic interference (EMI) in
the measured signals. Three methods are used for the definition of a filter aiming
to increase the signal-to-noise ratio; namely PSD-difference, Spectral Kurtosis and
Cyclostationary Peak Ratio Distribution (CPRD). Results obtained from Spectral
Kurtosis method are poor, because the hypothesis in which its use is based does not
hold in practice. On the other hand, results from PSD-difference and CPRDmethods
are similar, both resulting in signals which appropriately reveal the symptoms of the
defect. That is, both methods are able to significantly reduce the effect of the EMI,
and allow for defect size estimation. However, the CPRD method is advantageous
because (i) it does not require a measurement of the non-faulty case, as the PSD-
difference does; and (ii) because it allows selecting the cyclic frequencies of interest
(i.e. the fault frequency and harmonics), thus making the method apt for situations
when other second-order cyclostationary components are also contained in the sig-
nal. Finally, CPRDmethod is used for defect size estimation, obtaining results which
are in agreement with the dimension of the actual defect. Since at higher rotational
speed merging of AE bursts generated by the interaction between a single rolling
element and the damaged zone occurs, the presented method for size estimation is
restricted to low rotational speeds.
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The Stochastic Recurrence Structure
of Geophysical Phenomena

I. Javors’kyj, R. Yuzefovych, I. Matsko and I. Kravets

1 Introduction

Methods of oscillations analysis started to develop by using the ideas of harmonic
analysis for periodic and almost periodic functions, the methods of spectral cor-
relation analysis for stationary, periodically and almost periodically non-stationary
random processes. In the model in the form of periodic function it is assumed that
values of geophysical processes precisely repeat over the time interval, defined by
its period. Recurrence of oscillation properties within the stationary model are repre-
sented by power spectral density peaks, which is the outcome of covariance function
varying by time lag in oscillating form. Stochastic oscillation models in the form
of periodically non-stationary random processes (within the theory of second-order
periodically correlated random processes (PCRP)) and their generalizations [1–8]
represent recurrence of oscillation properties in the form of time-varying moment
functions of first and the second order, but requirements formulated for the covariance
function do not concern its behaviour by time lag.

Mean of PCRP m (t) = Eξ (t) and its covariance b (t, u) = E
◦
ξ (t)

◦
ξ (t + u),

◦
ξ (t) = ξ (t)−m (t) are periodical functions of time t : m (t) = m (t + T ), b (t, u) =
b (t + T, u). These characteristics can be represented in Fourier series form:

m (t) =
∑

k∈Z

mkeik 2π
T t = m0 +

∑

k∈N

(

mc
k cos k

2π

T
t + ms

k sin k
2π

T
t

)

,

I. Javors’kyj · R. Yuzefovych · I. Matsko (B) · I. Kravets
Karpenko Physico-Mechanical Institute of National Academy of Sciences of Ukraine,
Naukova Str. 5, L’viv 79060, Ukraine
e-mail: matskoivan@gmail.com

I. Javors’kyj
Institute of Telecommunication, University of Technology and Life Sciences,
Al. Prof. S. Kaliskiego 7, 85789 Bydgoszcz, Poland

© Springer International Publishing Switzerland 2015
F. Chaari et al. (eds.), Cyclostationarity: Theory and Methods - II,
Applied Condition Monitoring 3, DOI 10.1007/978-3-319-16330-7_4

55



56 I. Javors’kyj et al.

b (t, u) =
∑

k∈Z

Bk (u) eik 2π
T t = B0 (u)+

∑

k∈N

(

Bc
k (u) cos k

2π

T
t + Bs

k (u) sin k
2π

T
t

)

,

where

mk = 1

2
(mc − ims) , Bk (u) = 1

2

(

Bc
k (u) − i Bs

k (u)
)

for k �= 0.

The mean m (t) describes the deterministic periodical oscillations, the variance
b (t, 0) characterizes the periodicity of the power oscillations around this determin-
istic part and the covariance function describes the structure of periodical changes in
correlations between fluctuation values in different moment of time t separated on
lag u. The fluctuation properties in spectral domain are described by time-varying
spectral density

f (ω, t) = 1

2π

∫ ∞

−∞
b (t, u) e−iωudu,

which can be represented in Fourier series form

f (ω, t) =
∑

k∈Z

fk (ω) eik 2π
T t ,

where

fk (ω) = 1

2π

∫ ∞

−∞
Bk (u) e−iωudu.

The quantities Bk (u) and fk (ω) are called covariance and spectral components,
respectively [1]. Zeroth covariance component B0 (u) is a covariance function of sta-
tionary approximation of PCRP, and zeroth spectral component f0 (ω) the spectral
power density of this approximation. Using the mean, covariance function, time-
varying spectral density and their Fourier coefficients mk , Bk (u), fk (ω) gives us a
possibility to fully and qualitatively combine descriptions of recurrence and irreg-
ularity. They give us a possibility to develop physically meaningful and mathe-
matically strong theory of stochastic oscillations if some conditions are satisfied.
These models in a natural way develop deterministic and probabilistic approaches to
oscillation investigations, which contain as special cases the well-known literature
representations used for description of interaction between recurrence and irregu-
larity: polyharmonic, additive, multiplicative and quadrature models, and also their
combinations andmodifications. The possibility of jointly treating the different types
of stochastic recurrences on the basis of PCRP and their generalizations consists in
representations that take into consideration modulations of main harmonics and the
chosen probabilistic characteristics describe the regularity of such modulations.

PCRPmodels of oscillation and their generalizations can be verified only with the
experimental data with the use of the respective processing algorithms. The methods
of statistical analysis of the given class of non-stationary processes: coherent [9],
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component [10], linear filtration methods [11, 12], least square method [13] are the
theoretical bases for the given classes of non-stationary random processes. Being a
development of statistical methods for stationary signals, they allow us to pass to the
estimations of probability characteristic dependences on time of probable character-
istics and also quantities, which characterize these dependences. The examples of
PCRP statisticmethods used for investigations of annual and daily variations of phys-
ical phenomena are given in this paper and the specific properties of their spectral
correlation structure are analysed; also the estimation of obtained results reliability
is provided. This paper is prepared on the basis of the results obtained by the authors
and their colleagues.

2 Annual Variation of Geophysical Processes

The specific property of time variations of many physical processes in annual and
daily diapasons is almost recurring and irregular in their values. Recurrence of oscil-
lation properties of rhythmicity is caused by astrophysical factors related to the
rotation of the Earth around the Sun and the rotation of the Earth around its own axis.
Data on quantitative characteristics of annual and daily rhythmics are necessary for
elucidation of the processes of physical nature, developing calculation and predicting
methods, preparation of manual and security handbooks for the national economy.

In Fig. 1a–d is shown changes in monthly averaged data of temperature, sea water
saltiness, ozone content and angular velocity of the Earth’s rotation during the years
and in Fig. 1e, f—changes of hourly averaged data of air temperature and modulus of
the sea current. The most significant annual variation is represented by the changes
in ground, water and air temperatures. In the series of average monthly values, the
amounts of annual oscillations are so recurrent that there is an opinion that they are
periodically variable.

Ratio between powers of deterministic and fluctuation oscillations and amount of
annual variations can be estimated by analysing their experimental data within the
stationary model using the covariance function calculation formula

R̂ (u) = 1

K

K−1
∑

n=0

[

ξ (nh) − m̂
] [

ξ (nh + u) − m̂
]

, m̂ = 1

K

K−1
∑

n=0

ξ (nh),

and for calculation of power spectral density

f̂ (ω) = �u

2π

L
∑

n=−L

R̂ (n�u) k (n�u) e−iωn�u,

where k (n�u)—correlation window, h = θ/K—sampling step for time, θ—
realization length, �u = um/L—sampling step of covariance function for time lag,
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Fig. 1 Time series of geophysical processes: a average monthly values of water temperature; b
averagemonthly values of sea water saltiness; c average monthly values of ozone content; d average
monthly values of angular velocity of Earth rotation; e hourly values of water temperature; f hourly
values of modulus of sea current

K , L—natural numbers, um—point of correlogram cut-off. Graphs for estimators
R̂ (u) and f̂ (ω) calculated for average monthly data of air temperature, sea water
saltiness, sea level, river flows are presented in Fig. 2. Undamped tails of covariance
function estimators give evidence of the presence of deterministic periodical compo-
nents in annual variations of these amounts. Value of estimator R̂ (u) at zero defines
the common power of oscillations and the undamped tail amplitude gives informa-
tion about the power of deterministic part. Among the analysed amounts, as it can
be seen from Fig. 2, the largest powers of deterministic periodical parts of monthly
averaged data relate to water temperature and river flows and the least powers to
annual oscillations of sea level. Spectral density estimators, obtained using Hem-
ming window, have significant peaks at annual frequency and frequencies multiple
to it. On the basis of spectral density estimators we can evaluate the ratio between
powers of separate harmonics. As it can be seen, such ratios have the characteristic
property for each of the processes.

Results of analysis of geophysical processes of annual variations within the sta-
tionary model became a basis for the assumption that relatively small stochastic
changes may be described by stationary random process η (t). Then average monthly
series can be written in the form

ξ (t) = f (t) + η (t) (1)
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Fig. 2 Covariance function and spectral density estimators for stationary approximation ofmonthly
average series: a water temperature; b sea water saltiness; c sea level oscillation; d river flows

It seems that the additive model does not contradict the results of the obtained data
statistical processing. Powerful undamped oscillation with annual variation is proper
for covariance function estimators calculated in the stationary approximation; the
respective power spectral density estimators have peaks on the frequency of annual
variation and multiple to it (Fig. 2). After exception of regular annual variation from
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the analysed series (norm) correlations the character considerably changes: they
rapidly damp and any oscillation appears weak. Exactly this property of covariance
function estimators was the reason for conclusion drawn in the absence of periodic
second-order irregularity in the time series. However, researchers are skeptical about
the model correctness (1) usage. It was noted that at considerable nonlinearity of
processes appearing in the atmosphere and oceans, the validity of this representation
is problematic, since statistical characteristics of anomalies and the character of
their correlations in the different environments have pronounced seasonal character.
During verification of the observed data it was found that some separate harmonics of
norm f (t) vary in time or, more precisely, aremodulated by low- and high-frequency
processes. Because of this we cannot speak about existence of some “poured” annual
variation. Thus, an important problem of this change analysis appears. Such analysis
is possible on the basis of the more complete model representation [14–19] than
(1). The stochastic modulation of annual variation harmonics should be taken into
account in the model. So we arrive at the representation

ξ (t) =
∑

k∈Z

ξk (t) eik 2π
T t , (2)

i.e. to the class of PCRP. Inmean functionm(t), variance b(t, 0), covariance function
b(t, u) of PCRP, which periodically varies in time (in the given case period is 12
months), the character features of geophysical phenomena represent time variety.

It follows from expression (2) that coefficients mk are means of modulating
processes ξk (t), i.e.mk = Eξk (t), and covariance components Bk (u) are defined by

their cross-covariance functions Rlk (u) = E
◦
ξl (t)

◦
ξk (t + u),

◦
ξk (t) = ξk (t) − mk ,

i.e.
Bk (u) =

∑

l∈Z

Rl−k,l (u) eil 2πT u . (3)

As it can be seen from the representation (2), the PCRP model covers var-
ious simpler models of rhythmic variations [1, 3], including the additive model
(1), multiplicative model ξ (t) = η (t) f (t), additive–multiplicative model ξ (t) =
g (t)+η (t) f (t), where g (t) is a periodic function and others. Obviously, the prob-
abilistic structure of concrete phenomenon can be investigated only on the basis of
experimental data using methods of statistical analysis of PCRP [9–13]. The fea-
ture of these methods is what information is required about period value T for use.
Calculation of this value can be provided using functionals that look like statistics
used in coherent or component methods and also least squares method, but they con-
tain some test value τ instead of period value T . Period calculation in this case has
led to searching of such values of test period, which responds to extremes of those
functionals. Using the coherent method, functional of mean has the form

m̂ (t, τ ) = 1

2M + 1

M
∑

n=−M

ξ (t + nτ), (4)
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and functionals of correlation and covariance functions, respectively,

k̂ (t, u, τ ) = 1

2M + 1

M
∑

n=−M

ξ (t + nτ) ξ (t + u + nτ), (5)

b̂(t, u, τ )= 1

2M + 1

M
∑

n=−M

[

ξ(t + nτ)−m̂ (t + nτ)
][

ξ(t + u + nτ)−m̂(t + u + nτ)
]

,

(6)

where M is integer number. Such period estimation is a generalization of the well-
known Buys-Ballot scheme [20], which is used for calculation of periodic function
period [3, 21] for the case of PCRP. Period of oscillation deterministic part can be
estimated using functional (4) and the period of covariance function time variety
with the help of functional (6). If periodicity in time is proper for the mean and
the covariance function, then using functional (5) allows to enhance the estimation
efficiency.

Note that analysing annual and daily variations period values [22] may be consid-
ered as known. Functionals (4)–(6) in this case can be used for proving the assumption
of periodicity of time variety of moments as both the first and the second orders. On
the basis of the processing results the correctness of the PCRP approach for annual or
daily variation analysis of given processes can be grounded.Dependences of coherent
functionals of mean m̂ (t, τ ), covariance function b̂ (t, u, τ ), and correlation function
k̂ (t, u, τ ) on test period τ computed, as an example, for air temperature series are
shown in Fig. 3. As we can see, in all cases functionals have pronounced extremes at
point τ = T = 12months. Processing realizations of other processes obtain similar
results. This proves that observed data has properties of irregularity of both first and
second orders.

For annual variation analysis, traditionally the method of interval averaging
(month) of initial data is used.This procedure equals filtration of high-frequency com-
ponents, which characterizes inside daily and synoptic varieties. After such averaging
realizations, obviously, we have a view of stochastically changed annual oscillations
observed against the slowly changed line. If the processed realization length does not
allow to obtain reliable data about the low-frequency changes (it is too short), they
should be excepted using acceptable filtration methods. In the simplest case trend
removal is achieved using centring of averagemonthly series values on the respective
average annual values.

Monthly average data can be processed using both coherent and component esti-
mation methods [9, 10], but since the last one requires a priori data about the number
of harmonics in Fourier series of computing characteristics, so in the first stage we
should use the coherent method and further estimator values can be improved by
using the component method.
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Fig. 3 Coherent functionals of mean m̂ (t, τ ) (a–b), covariance function b̂ (t, 0, τ ) (c–d) and cor-
relation k̂ (t, 0, τ ) (e–f) of air temperature in dependence on test period τ for the moments of time
close to extremes of respective characteristic estimators

Coherent estimators for the mean and covariance function are written as:

m̂ (lh) = 1

N

N−1
∑

n=0

ξ (lh + nT ),

b̂ (lh, k�u) = 1

N

N−1
∑

n=0

ξ (lh + nT ) ξ (lh + k�u + nT ) − m̂ (lh) m̂ (lh + k�u),

where N is the number of periods averaged, h = T/P—sampling interval for time,
�u—sampling interval for lag, P—natural number. Estimators of mean Fourier
components and covariance components can be calculated using formulae
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m0 = 1

P

P−1
∑

l=0

m̂ (lh), mc
k = 1

P

P−1
∑

l=0

m̂ (lh) cos k
2π

P
l, ms

k = 1

P

P−1
∑

l=0

m̂ (lh) sin k
2π

P
l,

B0 (u) = 1

P

P−1
∑

l=0

b̂ (lh, k�u), Bc
k (u) = 1

P

P−1
∑

l=0

b̂ (lh, k�u) cos k
2π

P
l,

Bs
k (u) = 1

P

P−1
∑

l=0

b̂ (lh, k�u) sin k
2π

P
l.

Values
∣

∣m̂k
∣
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√

(

m̂c
k

)2 + (

m̂s
k

)2, ϕ = arctg
m̂s

k
m̂c

k
define amplitude an phase spec-

tra of mean estimator and the values
∣

∣

∣B̂k (0)
∣

∣

∣ =
√

(

B̂c
k (0)

)2 +
(

B̂s
k (0)

)2
, ϕ =

arctg
B̂s

k (0)

B̂c
k (0)

—amplitude an phase spectra of variance estimator.

Processing results show that the pronounced regular variation described by PCRP
are present in the annual variation of all analysed processes (Figs. 4 and5). The variety
of its forms can be easily explained on the basis of physical factors under whose
influence every process occurs, quantitatively characterized by amplitude estimators
|ml | (Table1). The largest is the amplitude of the first harmonic. Correlation between
harmonics amplitudes and phases defines the typical features of regular variation
forms: location of its maxima and minima, appearance of extremes, sharp vertices
or cavities or their widening.

Estimators of process variances, which characterize the power of average peren-
nial scattering of values in their realization relatively to the standard have also a
pronounced annual periodicity (Figs. 4 and 5). This property of variance is the main
argument that forces us to reject the additive model (1) since its variance is constant.
Variance estimators in most cases have more harmonics than mean function estima-
tor, which leads to non-coherence of these characteristic time variations. Estimators
of variances for temperature series have two maxima at the points which coincide
with points of the fastest increase and the fastest decrease in temperature.

The presented examples show that time variety ranges of variance estimator are
very significant and for someconcretemonths their values can exceedby several times
the average power N f

av defined by value of zeroth covariance component estimator at
zero N f

av = B0 (0) variance of stationary approximation of PCRP (in the figures these
values are marked by dashed line). Consider also the values that define the average

power of deterministic oscillations N d
av = 1

2

∑N2
l=1

[

(

mc
l

)2 + (

ms
l

)2
]

and vibrational

power of fluctuations N f
osc = ∑N2

l=1

[

[

Bc
l (0)

]2 + [

Bs
l (0)

]2
]

. Estimators of absolute

and relative values of these quantities obtained in processing of temperature series,
saltiness, sea level, rivers flows, South ocean ice cover (ocean square covered by
ice) are given in Table2. Comparing them we can see that temperature changes
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Fig. 4 Estimators of mean
function m̂ (t), variance
d̂ (t) = b̂ (t, 0) (–�–�) and
their Fourier coefficients: a
water temperature; b level
oscillation; c sea water
saltiness; d ice amount in
South ocean

are the most regular processes: average power of deterministic oscillations exceeds
by many times the average power of fluctuations. For river flows, as the result of
different processing realizations, this value changes within a rather wide range (from
0.15 till 3.0). The regular (deterministic oscillations) variations of saltiness and sea
level are comparatively low powered and in this case the ratio N d

av/N f
av for different

realizations changes insignificantly. Hence, the high noise level of deterministic
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Fig. 5 Estimators of mean function m̂ (t), variance d̂ (t) = b̂ (t, 0) and their Fourier coefficients:
a ozone concentration; b angular velocity of Earth rotation

Table 1 Magnitudes of harmonic components of mean function
∣

∣m̂l
∣

∣ and variance
∣

∣

∣B̂l (0)
∣

∣

∣

Number of harmonic 1 2 3 4 5

Water temperature (◦C)
∣

∣m̂l
∣

∣ 9.6 2.5 0.8 0.4 0.3

P
∣

∣

∣B̂l (0)
∣

∣

∣ 1.3 0.8 0.7 0.2 0.2

Saltiness (%)
∣

∣m̂l
∣

∣ 0.18 0.12 0.05 0.02 0.01
∣

∣

∣B̂l (0)
∣

∣

∣ 0.30 0.20 0.10 0.06 0.02

Sea level (sm)
∣

∣m̂l
∣

∣ 8 5 1 1 2
∣

∣

∣B̂l (0)
∣

∣

∣ 210 46 34 12 35

River flows (sm3/s)
∣

∣m̂l
∣

∣ 324 352 234 165 125
∣

∣

∣B̂l (0)
∣

∣

∣ 6.9
×104

8.3
×104

4 ×104 3 ×104 1 ×104

Ice cover (km2)
∣

∣m̂l
∣

∣ 229 43 32 11 4
∣

∣

∣B̂l (0)
∣

∣

∣ 3580 1496 640 1281 338

periodic oscillations does not mean that annual rhythmic weakly appears in the
background of the common processes variety. It is proved by comparing the average
power of fluctuations N̂ f

av and their vibration power N̂ f
osc. Quantity N̂ f

osc can be used
as a measure of process periodical irregularity by variance. If N̂ f

osc = 0 , the variance
is constant and in this case rhythmic appears only in deterministic changes (in this
case model (1) can be used for its description). The ratio N f

osc/N f
av can be used as

a relative measure of the second-order irregularity. This ratio, as it can be seen, is
rather large for the saltiness, temperature and flows. Annual changes in variances
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Table 2 Estimators of power components and their ratios

Quantities Water
temperature

Saltiness Sea level River flows Ice cover

N̂ (d)
av 50 0.02 40 1.64 × 105 2.76 ×104

N̂ ( f )
av 1.3 0.29 270 8.28 × 104 4.55 ×103

N̂ ( f )
k /N̂ ( f )

av 2.4 2.3 1.3 2.8 1.6

N̂ (d)
av /N̂ ( f )

av 38.2 0.08 0.15 2 6.1

N̂ ( f )
k /N̂ (d)

av 0.1 27.9 8.3 1.4 0.3

for oscillation of sea level and square of ice are observed in the background of
higher average level, however, the contribution of annual periodic changes for these
processes is significant.

Comparing quantities N̂ f
av and N̂ f

osc for different processes (Table2) we conclude
that if the main power of periodic annual variations is proper to regular oscillations
of temperature and ice square, then for other series annual rhythmic appears in most
cases in periodical changes of fluctuation power.

The examples of geophysical process analysis obtained by PCRP methods show
(Table2) that annual rhythmic is represented by variation of each of them in different
ways. At the same time in the properties of mean function and variance these specific
features of time variety are represented, which are typical for separate regions of the
Earth or the world’s oceans.

Using coherent method for mean function and variance estimators computation,
such forms of annual variation of the maximal number of harmonic components are
taken into account. Magnitudes of higher harmonics are very small in comparison
with the first ones, while relative error of their values is large. It is clear that these
harmonics should not be taken into account for obtaining themore reliable estimators
of annual curves forms. Because of this decision is made about the actuality of use
of the component method for characteristics estimation, which allows choosing a
number of harmonics to be estimated.Obviously,making a choice,we should proceed
from the requirement of description of needed details of the annual curve forms and
confidence level of harmonics amplitude estimators, which are neglected.

Properties of variance estimators of analysed series, as it was noted, force us to
decline the additive model and lead to the conclusion about their periodical second-
order irregularity. Obviously, the analysis of series correlation structure is the next
step in investigations. As processing results show (Figs. 6 and 7) correlations between
fluctuation values at the moments of time t and t + u change during a year. The
main correlogram feature is its relatively rapid damping as u increases. Even if
some oscillations are present in the correlogram, they are of low power. So, series
centring on mean function estimator significantly changes the processes correlation
structure, and it appears that powerful oscillations of covariance function estimators
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Fig. 6 Dependences of covariance function estimators on time lag for different months of the year:
a air temperature; b sea level oscillations

Fig. 7 Covariance function estimators and their cross sections: a angular velocity of Earth rotation;
b ozone concentration
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in stationary approximation with period T = 12months are caused by the presence
of regular changes. This is where the formal character of the stationary model is used
for geophysical process investigation: correlations between process values cannot
exist for many years. Because of this the change to PCRP model is natural, it gives
the possibility to separate deterministic and stochastic parts of oscillations and on
the basis of dependence of stochastic parts covariance function estimator on time
and bias to make a decision about the properties of these correlations.

If PCRP covariance function estimator as a function of two variables represents
information about process in the formofmatrix, then covariance components analysis
gives us a possibility to pass this information into the area of one variable function:
knowledge of the number of covariance components and their dependences on time
lag completely defines changes in covariance function in time and lag. The zeroth
covariance component is a covariance function of stationary approximation of PCRP
and defines time-averaged correlations of the fluctuation part.

As it follows from expression

B0 (u) =
∑

l∈Z

Rll (u) eilω0u, (7)

this quantity is defined by autocovariance functions of all stationary components
that form this process. In formula (7) autocovariance functions of all stationary
components, except the zeroth, are entered with oscillation products. Graphs of esti-
mators B0 (u), shown in Figs. 8 and 9, do not contain any pronounced oscillations

Fig. 8 Estimator of the zeroth covariance components: a water temperature; b saltiness of sea
water; c sea level oscillation; d ice square; e river flow
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Fig. 9 Estimators of the most significant sine and cosine covariance components: a water temper-
ature; b saltiness of sea water

of the year’s period and its overtones (multiples). It allows us to assume that for the
analysed processes every correlation is weak in comparison with R00 (u) or all of
them rapidly damp with time lag growth and because of it oscillations cannot appear.

Higher covariance components, on one hand, define a time variety form of covari-
ance function dependence for some lag: for given u they are coefficients of Fourier
series of b (t, u). Their knowledge allows the quantitative characterizing of such a
shape. On the other hand, on the basis of relationship (3) they define correlations
between stationary components of PCRP. Here, lth covariance component is deter-
mined by the covariance functions of the components whose numbers differ by l.
If such correlations are insignificant the covariance components of the respective
numbers will be small. Inequality to zero of the covariance components estimators,
besides the zeroth, is explained by existing correlations between the stationary com-
ponents of PCRP.Actually, the consequence of such correlations is a rhythmic, which
appears in periodicity of moment functions of the second order. In the case there are
no correlations between the stationary components, neither variance nor covariance
function will vary in time, i.e. power of fluctuations and correlations between them
during a year will be constant. But if we find the second-order periodicities during
processing, the processes that modulate harmonics of annual variation are correlated.
Covariance component estimators allow the analysis of such correlations. For exam-
ple, for two covariance components accounting for two components in harmonic
decomposition (2) on the basis of (3) we obtain

B1 (u) = R−1,−2 (u) e−iω0u + R−1,0 (u) + R0,1 (u) eiω0u + R1,2 (u) e2iω0u,

B2 (u) = R−2,0 (u) + R−1,1 (u) eiω0u + R0,2 (u) e2iω0u .
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If covariance functions R0,1 (u), R1,2 (u), R−1,1 (u), R0,2 (u) are slowly damped
functions, then oscillations with annual and semiannual periods will appear in the
graphs of covariance component estimators and at R1,2 (u) ≈ 0 and R0,2 (u) ≈ 0
only of the annual period. Consider now the processing results. Graphs of the most
significant first and second covariance component estimators of air temperature and
sea water saltiness are given in Fig. 9. As it can be seen in these cases the covariance
component estimators do not have any oscillation properties. So we can suggest that
correlations between processes ξ1 (t), ξ2 (t) and the zeroth random process ξ0 (t)
contain powerful rapidly damping components, against the background of which the
correlations’ oscillated changes are slightly visible. Note that the speed of higher
component estimators damping is, as a rule, higher than the zeroth component esti-
mators. It is difficult to draw a conclusion about the prevailing correlations between
covariance components on the perspective of the base of correlogram even if their
appearance does not contradict the fact that such correlations exist between the zeroth
and higher stationary components.

Note that taking into account the character of covariance components depen-
dence on lag we can choose such components that are significant for description
of the process correlation structure. Neglecting the components which have a view
of low-powered chaotic oscillations and using the component method of estimation
we can considerably improve the estimator accuracy of covariance function time
variety form.

The analysis of estimator for time-varying spectral density of PCRP and its com-
ponents allows to carry out frequency properties of the annual variation processes.
Time-varying spectral density is a complex function. Its real part describes distri-
bution of process power on the area (ω, t) and the imagine part gives a frequency
characteristic of relative speed of correlation changes on time and lag [1].

The estimators of time-varying spectral density f̂ (ω, t) and spectral components
f̂k (ω) can be computed using Blackman-Tukey method, i.e. on the basis of statistics

f̂ (ω, lh) = �u

2π

L
∑

n=−L

b̂ (n�u, lh) k (n�u) e−iωn�u,

f̂k (ω) = �u

2π

L
∑

n=−L

B̂k (n�u) k (n�u) e−iωn�u,

where k (u) is the Hemming correlation window. Since the process correlations
rapidly damp, the lag value, which corresponds to point of correlogram cut-off,
is chosen small. Calculations show that estimator values decrease with the fre-
quency growths (Fig. 10). Characteristic peaks are represented weakly on graphs.
Estimators of Re f̂ (ω, t) significantly change during a year and it concerns both
their value and the speed of damping with the frequency increases. Annual rhyth-
mic appears within the wide range of frequencies from inter-annual to within-year
variety. Form of annual oscillations Re f̂ (ω, t) changes insignificantly by frequency
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Fig. 10 Estimators of spectral characteristics for sea water saltiness in different months
(−Re f̂ (ω, t); −Im f̂ (ω, t))

Fig. 11 Estimators of dependences on time of Re f̂ (ω, t) for water temperature at different fre-
quencies: a −ω1 = 0.05 rad/months; b −ω2 = 0.5 rad/months; c −ω3 = 1 rad/months; (–values of

f̂0 (ω0))

and practically repeats variance form (Fig. 11). Values ofRe f̂ (ω, t) for somemonths
may be greater or less than the values calculated within stationary approximation of
PCRP, i.e. values of f̂0 (ω) (the last counted are presented in graphs by dashed-and-
dotted lines). Annual changes of estimators Im f̂ (ω, t) occur near zero. Their maxi-
mal absolute values are significantly lower than the maximal deflection of Re f̂ (ω, t)
from f̂0 (ω) and it is natural, since in the time interval equal to the correlation inter-
val the covariance function changes relatively slowly. Since practically for all (ω, t)
estimators of Re f̂ (ω, t) are greater than zero, so in the first approximation we can
accept that in many cases annual variation can be described by locally stationary
PCRP and the quantity f̂ (ω) ≈ Re f̂ (ω, t) can be interpreted as an instantaneous
power spectral density.

Estimators of the zeroth spectral component f̂0 (ω), contrary to spectral den-
sity estimators of series obtained in stationary approximation, do not contain any
pronounced peaks at annual frequency and frequencies multiple to it (Fig. 12). So,
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Fig. 12 Estimators of the zeroth spectral component for sea water saltiness (a), water temperature
(b) and sea level oscillation (c)

considerable power concentrated at these frequencies is caused by regular annual
changes. Values of f̂0 (ω) decrease as frequency increases, that is, the evidence of
slow decrease of the modulated stationary components spectral densities with fre-
quency growth.

Analysis of Re f̂ (ω, t) and Im f̂ (ω, t) estimators proves that change in annual
variation has a wideband character. Estimator values gradually decrease with fre-
quency growth, although for some processes some frequency ranges can be separated
where the intensity of time variety of annual, semiannual, etc., periods increase or
decrease a little.

Hence, the model of annual variation of geophysical processes in the form of
PCRP gives us a possibility to analyse the following probabilistic characteristics:
mean functionm (t) and variance b (t, 0) during an annual period, their amplitude and
phase spectra, covariance function b (t, u), covariance components Bn (u), spectral
density f (ω, t), spectral components fk (ω). The variety of chosen characteristics
opens new possibilities for a detailed analysis of annual rhythmic regularities. Such
an approach, by considering periodicity and stochasticity from not alternative but
common positions, allows to detect and to describe these properties that result from
the interaction between these important components of annual variation and cannot
be investigated using harmonic analysis or stationary random process methods.

3 Daily Variation

Daily variations, like annual ones, are clearly seen in the realizations of many geo-
physical processes (Figs. 1 and 13a). Estimators of their covariance functions have
undamped tails (Fig. 13b) and the estimators of spectral density peak at the daily
frequency and multiple to it (Fig. 13c). During the PCRP analysis of daily variation
it is accepted that T = 24h and it is, as a rule, carried out using hourly values
[3, 19, 23]. Choosing the realization length we should account that daily and annual
variations interact and the form of the first one changes during a year. Usually, daily
variation is analysed on the basis of data observed for a month. Since in this inter-
val the valid results of the influence estimation of synoptic ranges components on
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Fig. 13 Changes of critical frequency f0F2 in time (a), covariance function estimator (b) and
spectral density (c) of its stationary approximation

the daily variation cannot be obtained they should not be considered. The accepted
filtration methods are used for this procedure [3, 14, 18].

Variety of daily variation properties appear in the relationships between pow-
ers of deterministic and fluctuation parts of the processes and also between ampli-
tudes and phases of characteristics harmonic components, which describe them
(Figs. 14 and 15).

Harmonic composition of the daily regular part, as it can be seen from the obtained
results, is not wide. Only the first 2–3 harmonics have significant values. For air
temperature (Fig. 16) the amplitude of the first harmonic significantly exceeds the
amplitudes of others.
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Fig. 14 Estimators of mean function (a) and variance (b) and absolute value of their Fourier
coefficients for critical frequency f0F2

Fig. 15 Estimators of mean function (a) and variance (b) and absolute value of their Fourier
coefficients for vertical component of the Earth magnetic field Hz

Fig. 16 Estimators of mean function (0), variance (1) and covariance function (2) dependences on
time of air temperature daily variety in August for Krasnodar Territory: (2) u = 24h; (3) u = 48h;
(4) u = 12h; (5) u = 36h; (6) u = 60h

Variance estimators have the wider harmonic composition and their form is spe-
cific both for every process and for the season when the observations were carried
out. In the given case for vertical component of the Earth’s magnetic field Hz and for
the critical frequency f0F2 they have one maximum and for the first quantity it is
close to the point of maximum of the regular part and for the second, to the interval
of its growth. Variance estimator of air temperature has two maxima close to the
points of extremes of regular variation.
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Fig. 17 Dependences of air temperature covariance function estimator on lag for different moments
of time during the day: a t1 = 6h; b t2 = 14h; c t3 = 22h

Contrary to estimators of annual variation covariance functions in the case of daily
variation these estimators have a dumping-oscillating character. This can clearly
be seen from the graphs of covariance functions estimators and their covariance
components (Figs. 17, 18, 19 and 20). Values of spectral characteristics estimators for
positive frequencies are concentrated in the area of daily frequency (Figs. 21 and 22),
thus proving that modulation of main harmonic of PCRP model is of low frequency.
Changes of Re f̂ (ω, t) in time are significant and occur practically synchronously
with variance changes in time. Range of Im f̂ (ω, t) is significant too and it is a
consequence of correlations of slow damping as lag increases in comparison with its
changes in time.
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Fig. 18 Estimators of dependences on time for critical frequency f0F2 covariance function for
different lags (u ∈ [0; 24]) and estimators of its covariance components
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Fig. 19 Dependence of covariance function estimator for vertical component of the Earth’s mag-
netic field Hz on time for different lags (u ∈ [0; 24] ) and estimators of its covariance components
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Fig. 20 Estimators of the zeroth (a) and the second covariance components (b) for air temperature

Fig. 21 Spectral characteristic estimators for air temperature daily variety (–Re f̂ (ω, t),–
Im f̂ (ω, t))

Fig. 22 Estimators of
spectral components
computed for air temperature
daily variety (–Re f̂2 (ω),
–Im f̂2 (ω))
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The detected properties of correlation and spectral characteristic estimators allow
us to conclude that the structure of daily variation PCRP model is formed generally
by the first covariance components in representation (2), i.e.

ξ (t) = ξ−1 (t) e−iω0t + ξ1 (t) eiω0t = ξc (t) cosω0t + ξs (t) sinω0t,

where ξ1 (t) = 1
2 [ξc (t) − iξs (t)] and ξ−1 (t) = ξ1 (t). Autocovariance functions of

quadrature components

Rc (u) = E
◦
ξc (t)

◦
ξc (t + u) ,

◦
ξc (t) = ξc (t) − mc,

Rs (u) = E
◦
ξs (t)

◦
ξs (t + u) ,

◦
ξs (t) = ξs (t) − ms

and their cross-covariance functions slowly damp as lag increases.
Daily variation properties, as mentioned above, depend on the annual seasons. In

Fig. 23 graphs of mean function and variance estimators for air and water tempera-
tures in the Saint Petersburg recreation zone for separate months are shown. Regular
daily oscillations in November–December are small, they have the highest ampli-
tude in summer. The first harmonic is the main for all months. In the month with
small regular oscillations variance changes are also small. The greatest amplitude of
daily variation variance is in March–April. For the air temperature variance estima-
tors b̂ (t, 0) have maxima at the minima of m̂ (t) in winter, in spring these maxima
shift left to m̂ (t) maxima and in summer time changes of b̂ (t, 0) and m̂ (t) occur
practically in one phase. In autumnmaxima of variances estimators pass ahead of the
arrival of average temperature maxima. For the water temperature changes in time
of b̂ (t, 0) and m̂ (t) occur more synchronously but it can be seen that the point of
variance maximum from spring to winter moves in the reverse direction.

The above results of temperature series processing clearly show that annual
and daily variations of the processes cannot be considered separately. The changes
occurring in the probabilistic structure of daily rhythmic during the year cannot be
explained by interference of annual and daily variations. Modulation effects appear
here significantly. It allows us to choose for description of the model of annual
and daily rhythmics not in the form of two PCRP sum but in the form of bi-PCRP
(BPCRP), which also characterizes modulation interaction between two rhythmics.
Mean and covariance function of BPCRP can be represented in the form [3]

m (t) =
∑

l,n∈Z

ml,ne
i
(

l 2πT1
+n 2π

T2

)

t
,

b (t, u) =
∑

l,n∈Z

Bl,n (u) e
i
(

l 2πT1
+n 2π

T2

)

t
,
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Fig. 23 Characteristic estimators for annual and daily variations of air (ta) and water (tw) temper-
atures in the Saint Petersburg recreation zone (–b̂ (t, 0), –�–� m̂ (t))

where T1 and T2 periods of annual and daily rhythmics. The modulation interaction
is quantitatively characterized by mutual components of mean function ml,n and
covariance function Bl,n (u). The estimators of these characteristics were computed
on the basis of 14-year series of air temperature in Saint Petersburg using the formulae

m̂l,n = 1

K

K−1
∑

l=0

ξ (lh) e
i
(

l 2πT1
+n 2π

T2

)

lh
,
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Table 3 Estimators of combinational components amplitudes for mean function and variance

Characteristics Components
∣

∣m̂lπ
∣

∣

∣

∣

∣B̂lπ (0)
∣

∣

∣

n

l 0 1 2 3 0 1 2 3

Air temperature 0 4.8 12.8 0.5 0.9 23.2 15.0 10.2 8.0

1 1.8 0.9 0.1 0.1 0.5 2.3 0. 7 1.1

2 0.3 0.1 0.1 0 0.2 0.7 0.5 0.5

Water temperature 0 7.7 10.1 2.1 0.8 4.0 3.4 2.8 1.2

1 0.7 0.5 0.1 0.1 0.7 0.5 0.3 0.1

B̂l,n (u) = 1

K

K−1
∑

l=0

[

ξ (lh) − m̂ (lh)
] [

ξ (lh + u) − m̂ (lh + u)
]

e
i
(

l 2πT1
+n 2π

T2

)

,

where

m̂ (lh) =
N1
∑

l=−N1

N2
∑

l=−N2

m̂l,ne
i
(

l 2πT1
+n 2π

T2

)

lh

and Nl are the number of mean harmonics taken into account at estimation (Nl < 5).
Estimation results are given in Table3. First, daily and annual components are the
most significant. Relative contribution of respective harmonic components to daily
oscillations are the highest and especially concerns the variance estimator. These facts
are the features of strong nonlinearity of daily and annual variations interaction.

Properties of BPCRP model characteristics estimators demonstrate that synoptic
processes have considerable influence on the variety of daily and annual variations.
Such influence leads to the appearance of additional maxima in the additive annual
part of variance estimator and the powerful oscillations of daily period in its changes.
The main feature of time variety of bi-rhythmic characteristics is the fact that neither
the maximum nor the minimum ranges of daily oscillations of mean function and
variance estimators coincide with moments of the highest and the least values of the
additive annual parts of these characteristics.

4 The Properties of Annual and Daily Characteristic
Estimators

The found properties of daily and annual rhythmics became a basis for passing to the
parametric description of probabilistic characteristic, which represents some general
views of the structure of these types of recurrence. A typical feature of geophysical
processes’ annual rhythmic is that estimators of harmonic component amplitudes for
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mean and covariance function of their PCRP model rapidly damp as their number
grows. It gives us a possibility to use finite sums in the representation of PCRP in
terms of stationary components

ξ (t) =
L

∑

k=−L

ξk (t) eikω0t ,

and from here we have

Bn (u) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

L
∑

l=n−L
Rl−n,l (u) eilω0u, n ≥ 0,

n+L
∑

l=−L
Rl−n,l (u) eilω0u, n ≤ 0.

Covariance components structure of every concrete process is determined by
auto- and cross-covariance functions of the covariance components forming it. If
cross-covariance functions of components whose numbers differing by number n are
insignificant, the covariance components with number n will be small. If estimator of
any covariance component is not zero, it is a consequence of correlation dependence
between some stationary components of PCRP (except of the zeroth covariance
components defined by their autocovariance functions).

Note that even if the number of components in representation (3) is not large
the choice of approximation expression for covariance components is not an easy
task because of the large number of functions Rl−n,l (u). It is equal to 2L − n + 1
for every covariance component. Because of it the analysis of processing results
for detection of these components, correlations between which are the strongest,
becomes very important. Such an analysis should be done with the use of covariance
component estimators and their Fourier transformation spectral components. PCRP
spectral components are defined by spectral and cross-spectral densities shifted by
values multiple to the main frequency ω0.

Analysis of correlation and spectral characteristics estimators of annual variation
of many geophysical processes shows that all stationary components except of the
zeroth are random processes with rapidly damping covariance functions and their
spectral densities are significantly less than the spectral density of the zeroth com-
ponent. So, correlations between other stationary components and the zeroth one are
more significant than autocovariations. Views of graphs of covariance and spectral
components estimators (Figs. 8, 9 and 12) do not contradict it. So, for the annual
rhythmic we can assume that

B0 (u) = R00 (u) +
L

∑

l=L

[

1

2

[

Rc
ll (u) + Rs

ll (u)
]

cos lω0u + N cs
ll (u) sin lω0u

]

, (8)

Bc
n (u) = Rc

n0 (u) + Rc
n0 (u) cos nω0u + Rs

0n (u) sin nω0u, (9)
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Bs
n (u) = Rs

n0 (u) + Rs
n0 (u) cos nω0u − Rc

0n (u) sin nω0u. (10)

As it can be seen, the expression for the zeroth covariance component (8) contains
oscillated components with period T /l. If in the graphs of this quantity estimators
the oscillations with such periods do not appear, we can suppose what covariances
Rcs

ll (u) and N cs
ll (u) are insignificant and can be neglected:

B0 (u) = R00 (u) .

Formulae (9)–(10) do not contain monotonous components, so if graphs of higher
covariance component estimator oscillations with annual, semiannual, etc., periods
are absent, we can assume that they damp before reaching the zeroth level. In this
case functions can be represented as

Rc,s
n0 (u) = Dc,s

n e−α
c,s
n |u|.

Similar approximation may be assumed for estimators B̂0 (u) if they monotonously
damp. If correlograms B̂0 (u) have the oscillated character (periods of oscillations are
not equal to annual one or to the values multiple to it) the approximation expressions
for the zeroth covariance component can be written in the form

B0 (u) =
M

∑

p=0

Dpe−βp |u| cosωpu.

Such oscillations should be taken into account for approximations of higher covari-
ance components, assuming that

Rc,s
n0 (u) =

M
∑

p=0

Dc,s
pn

e−β
c,s
pn |u| cosωpu.

Damping decrements βpn are the parameters describing the speed of correlations
damping by lag. Calculation of damping decrements using respective dependences
of covariance components estimators for many geophysical processes shows that
their values vary with a small deviation about unity.

Having an analytical expression for annual variation covariance function in the
form

b (t, u) = R00 (u) +
L

∑

n=1

[

Rc
n0 (u) cos nω0t + Rc

n0 (u) cos nω0 (t + u)+
+Rs

n0 (u) sin nω0t + Rs
n0 (u) cos nω0 (t + u)

]

(11)
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we can analyse estimator accuracy of the probabilistic characteristics that describe
it. Coherent estimator of mean function is unbiased and its variance is obtained by
substituting into expression

D
[

m̂ (t)
] = 1

N

[

b (t, 0) + 2
N−1
∑

k=1

(

1 − k

N

)

b (t, kT )

]

ratio (11). Since covariance functions (11) rapidly damp as lag increases, the sum in
the last formula can be neglected. Computation results also prove this. Then

D
[

m̂ (t)
] ≈ b (t, 0)

N
.

Periodic change in time ofmean estimator variance, as it can be seen, occurs synchro-
nously with the change in variance that describes the given series. Since the last one
significantly varies in time, the estimator variance changes during ayear. For example,
quantity D

[

m̂ (t)
]

for water temperature in the Saint Petersburg recreation zone has

the maximum in June. If b̂ (t, 0) = 3.62 ◦C and at N = 26 then D
[

m̂ (t)
] = 0.14 ◦C

and the mean square root error σ
[

m̂ (t)
] =

√

D
[

m̂ (t)
] = 0.37 ◦C. So, the aver-

aged many-year value temperature in June, which equals to 15.4 ◦C, was found
with an error±0.37 ◦C. Relative mean square root error determined by quantity γ =
σ

[

m̂ (t)
]

/m̂ (t) is equal to 0.024. In July, when the average annual water temperature
is the maximum and equals 18.3 ◦C, a mean square root error σ

[

m̂ (t)
] = 0.28 ◦C,

γ = 0.015. The minimum average annual water temperature in February (0.011 ◦C)
is calculated with a mean square root error σ

[

m̂ (t)
] = 0.015 ◦C., i.e. absolute error

is greater than the value of temperature for this month.
Thus, processing the realizations of given length estimators of regular annual

variation—so-called norm (standard)—will considerably differ in validity for differ-
ent months. For characteristic of estimators quality for the whole year the average
estimator variance DT

[

m̂ (t)
]

can be used, which in coherent estimation is deter-
mined by the zeroth covariance component DT

[

m̂ (t)
] = B0 (0)/N . Relation of the

square root and regular oscillations range σT
[

m̂ (t)
]

/�m is also a very informative
characteristic. For the above-mentioned temperature series σT

[

m̂ (t)
] = 0.22 ◦C

and σT
[

m̂ (t)
]

/�m = 0.01.
Absolute value of covariance function estimator bias

ε
[

b̂ (t, u)
]

= − 1

N

N
∑

n=−N

(

1 − |n|
N

)

b (t, u + nT )

at u = 0 has the same properties as variance of mean function estimator and the
relative value at this point with positive accuracy defined quantity inverse to number
of periods N . Increasing lag to value um ≥ 6 months bias absolute value decreases
but after it increases to the value, which is a little smaller than the initial one. Relative
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bias
∣

∣

∣ε
[

b̂ (t, u)
]∣

∣

∣/|b (t, u)| for given u varies in time slightly and for the values of lag

within the interval [0, 6 months] has an order O
(

N−1
)

. Further, it rapidly increases.
Increasing lag to point um ≥ 6 months estimator variances decrease

D
[

b̂ (t, u)
]

= 1

N

N−1
∑

k=−N+1

(

1 − |k|
N

)

[b (t, kT ) b (t + u, kT )

+ b (t, u + kT ) b (t, u − kT )] .

However, increase of a relativemean square root error γ =
[

D
[

b̂ (t, u)
]] 1

2
/|b (t, u)|

starts immediately after moving from point u = 0. It can be explained that damping

of function D
[

b̂ (t, u)
]

by lag is slower than b (t, u). To calculate estimator variances

at the zeroth lag the approximated formula can be used

D
[

b̂ (t, u)
]

≈ 2b2 (t, 0)

N
,

and respectively γ = √
2/N . So, a relative mean square root error of variance

estimators is determined by the realization length.
Note that the dependence of coherent estimators statistical characteristics on

damping decrements at their values greater than 0.3month−1 can be neglected but no
account of the value correlations when analysing the validity of component estima-
tors can lead to considerable errors. As calculations show, value of D

[

m̂ (t)
]

during
component estimation, for example for damping decrements 0.3month−1 is less than
the respective variance of coherent estimator by 25%. Increasing decrement values’
difference between variances of coherent and component estimators for probabilistic
characteristics increases and for the real data may exceed 50%.

Calculating estimators of characteristics Fourier components with usage of aver-
age monthly data the overlapping errors will be practically absent for the sampling
step values h ≥ 1month. Thus, it follows that a number of harmonic components that
should be taken into account in Fourier series for respective characteristics estimators
in most case is less than five. This means that the use of the average monthly data
for components estimation does not lead to visible systematic errors of processing.

Increasing variances of components discrete estimators at h = 1month in relation
to variance of continuous estimators is less than 10%. Variances of continuous and
discrete component estimators differ similarly.

The mathematical model of daily rhythmic in the first approximation can be
chosen in the formof quadrature components.Modulatedprocesses are correlated and
have different covariance functions. Damping decrements values for auto- and cross-
covariances are within the interval

[

0.01 h−1, 0.1 h−1
]

. The properties of coherent
and component estimators for the quadrature model were investigated in this chapter
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and also in Chap.3. Obviously, the results of such investigations are easily extended
for this concrete case.

As mentioned above, the parameters of daily variation changed during a year
and because of it in real data processing we should choose such averaging intervals
for which a systematic error will be small. Calculations show that the use of the
averagemonthly series gives relative bias of sliding characteristics of PCRP to annual
harmonic is about 1%, second harmonic—5%, third—10%. Within 10% constitute
the values of relative errors for correlation characteristics estimators calculated with
the use of these series. Statistic errors ofmean function and its components estimators
are less by an order.

Changing sampling step within [1h, 4h] the validity of daily variation estimators
changes a little. So, sampling step value 4h provides acceptable estimator accu-
racy. The component method [24] should be used for obtaining temporary values of
estimators.

Difference between the accuracy of coherent and component estimators for daily
rhythmic, opposed to annual, is not significant. An important feature of the latter is
their dependence on the correlation damping speed.

5 Conclusions

Since the main idea of stochastic oscillations model in the form of PCRP and their
generalizations consist of the properties of time variation of their probability charac-
teristics, the first task for experimental data analysis is the determination of the time
variety regularity using statistical methods for given classes of random processes.
Obtained results of time series processing are the basis for model verification. Sea-
sonal rhythmic of geophysical processes is accepted by many researchers but more
detailed investigation of its regularity is possible only with the use of PCRPmethods.
It is not reduced to the additive model. Combination of recurrence and stochasticity
features of each process is different because it depends on the conditions in which
processes are formed. Specific features of seasonal variation of separate quantities
are represented in amplitude and phase spectra of probabilistic characteristics, and
also in behaviour of correlation characteristics by lag and spectral ones by frequency.
They are represented in the degree of the process periodic non-stationarity, in the
relations between time-averaged power of regular oscillations, on one hand, and
average power of fluctuations with their oscillated power, on the other. Features of
daily rhythmic are lower power of regular part and oscillated behaviour of correla-
tions damping. Probabilistic structure of daily rhythmic significantly changes during
a year, because of this we should analyse it together with seasonal. Regularities of
such analysis are described by characteristics of BPCRP. The constructed parametric
models of seasonal and daily rhythmics are the basis for description of regional fea-
tures of processes variety, formation of databases, building of physico-mathematical
models for the processes and their prediction.

http://dx.doi.org/10.1007/978-3-319-16330-7_3
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Influence of Different Signal Characteristics
on PAR Model Stability

Agnieszka Wylomanska, Jakub Obuchowski, Radosław Zimroz
and Harry Hurd

1 Introduction

The periodic autoregressive model (PAR) is an extension of the autoregressive (AR)
time series [2]. This extension is based on time-varying periodic coefficients of PAR
time series (instead of fixed coefficients in AR model); therefore, it can be used to
describe real signals from machines operating under time-varying conditions. The
problem of examining such vibration signals is difficult due to the fact that most
of their characteristics (like statistical properties, signal to noise ratio) are time-
varying; therefore, the classical models seems to be inappropriate in this case, [1, 8,
19]. The examples of signals acquired from complex mechanical systems for which
the classical methods cannot be used are helicopters, wind turbines and mining
machines [1, 15, 17].

The PAR model was considered for many different real phenomena. We only
mention here two examples: The electricity data [4] and vibration signal ofmultistage
gearbox used in drive unit for driving bucket wheel [19]. In the last mentioned
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example, the PAR model was used not only to describe the real data, but also as
the method of local damage detection for machine operating under nonstationary
conditions.

One of the most popular methods for estimation of periodic autoregressive model
is based on solving of so-called Yule-Walker equations. This method is especially
useful for signals with Gaussian noise. However, many real signals exhibit behavior
not appropriate toGaussian distribution, [21, 22]; therefore, there is a need to consider
if the most commonly used estimation method for PAR coefficients can be used
also for signals with different from Gaussian behavior and what is the influence of
the noise distribution for PAR model stability. The PAR model with non-Gaussian
distribution was also examined in [13]. In this paper, we consider Pareto distribution
of noise [5] that was originally used to describe claim sizes in car insurances. The
Pareto distribution found later another interesting applications; for example, it was
used for modeling of distributions of diagnostic features in condition monitoring of
miningmachines [16]. The distribution is considered as a heavy-tailed one; therefore,
it can be used for data with large probability of extremely high claims.

The second problem that may appear in the real signal analysis is variable peri-
odicity and small number of period replications. For many data, we observe those
properties similar as for non-Gaussian noise; and also in this case, the PAR model
stability and the efficiency of estimation method should be checked. We motivate
our analysis by a signal that represents vibration acceleration of rotating machinery
which operate in an open-pit mine. The results obtained in this paper allow to answer
the question whether the PAR model might be applicable to industrial signals and
how far the signal might be from the ideal case.

The paper is structured as follows: In Sect. 2 we introduce the PAR time series
with Gaussian and non-Gaussian behavior and point our attention to the Pareto dis-
tribution of the noise. Next, we motivate our analysis by examining the real signal of
rotatingmachinery operating in an open-pitmine forwhichwe observe non-Gaussian
behavior. In Sect. 4, we introduce the method of checking of the PARmodel stability
for different distributions of the noise. Here we analyze simulated signals corre-
sponding to vibration acceleration of a planetary gearbox used in a bucket wheel
excavator. The proposed method is based on the analysis of amplitude of frequency
response of examined simulated signals based on the appropriate estimated PAR
model. Next, in Sect. 5, we propose the method of checking PAR model stability for
different number of period repetitions. This method is based on the behavior of fitted
PAR model coefficients. Similar as in Sect. 4, the results are presented for simulated
signals corresponding to bucket wheel excavator. Last section contains conclusions.

2 Periodic Autoregressive (PAR) Model

Definition 1 ([11]) The periodic autoregressive time series of order p is defined as
follows:
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X (t) −
p

∑

i=1

ai (t)X (t − i) = b(t)Z(t), (1)

where {Z(t)} is a white noise time series, i.e. time series of uncorrelated random
variables with mean zero and the same variance and the coefficients {ai (t)} i =
1, 2, . . . , p, {b(t)}are periodic with the same period T .

The periodic autoregressive time series (PAR) is a special case of PARMA
sequence (periodic autoregressive moving average), i.e. time series which is
defined as:

X (t) −
p

∑

i=1

ai (t)X (t − i) = b0(t)Z(t) +
q

∑

j=1

b j (t)Z(t − i). (2)

In the above equation, the sequences of coefficients are also periodic with the
same period T. Let us mention, the process {X(t)} defined in (2) is unique under the
conditions specified in [20], where also the form of the unique solution is presented.

The PARMAsequence is one of themain time serieswhich can be used to describe
periodically correlated (or cyclostationary) processes. We only mention here, that
periodically correlated (PC) random processes of second order are random systems
for which the mean as well as the covariance (or correlation) functions are periodic
with the same period, [12].

Due to their interesting properties, periodically correlated time series, especially
PARMA systems have received much attention in the literature and turned out to
be an alternative to the conventional stationary time series like classical ARMA
(autoregressive moving average) systems. Some applications one can find in [3, 4,
10, 14, 18].

The estimation procedure of PAR model based on the so-called Yule-Walker
equations is described in [19]. Further in this paper, we use the same method.

2.1 Non-Gaussian Noise

In the classical definition of PARmodel, the white noise time series {Z(t)} is consid-
ered as a sequence of Gaussian-distributed random variables. We only mention here
that the one-dimensional Gaussian distribution is characterized by the probability
density function (PDF) which has the following form

f (x) = 1√
2πσ 2

exp

(

− (x − μ)2

2σ 2

)

, x ∈ R.

In the above equation, the μ and σ parameters are mean and standard deviation
of the Gaussian-distributed random variable, respectively.
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In this paper, we consider not only the classical PARmodel for which the sequence
{Z(t)} comes fromGaussian distribution but also white noise time series fromEq. (1)
with distribution different than Gaussian. In the experimental and simulation part of
the paper, we consider the rich class of distribution called Pareto one (known also as
double Pareto). Let us mention the one-sided Pareto distributed random variable X
has the PDF which has following form [5]:

f (x) = αλα

(λ + x)α+1 , x > 0 . (3)

Moreover the cumulative distribution function (CDF) is given by:

F(x) = 1 −
(

λ

λ + x

)α

, x > 0 . (4)

In Fig. 1 we present the PDF and CDF of Pareto distribution for λ = 1 and two
different values of α parameter, namely 3.6 and 1.5.

In Eqs. (3) and (4), the shape parameter α and the scale parameter λ are both
positive. The one-sided Pareto distribution is very useful in actuarial mathematics,

Fig. 1 The PDF (top panel) and CDF (bottom panel) of Pareto distribution with the parameter
λ = 1 and two different values of α parameter, namely α = 3.6 and α = 1.5
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e.g. to model claim sizes, due to the fact that the heavy tail of the Pareto distribution
follows large probability of extremely high claims. Its main drawback lies in its lack
of mathematical tractability in some situations [5]. This distribution was also used in
the field of heavy-dutymachinerymaintenancemanagement, i.e. tomodel diagnostic
data [16] as an alternative (instead of Gaussian) distribution of diagnostic features.
The main property of Pareto distribution is the asymptotic behavior of the tail (i.e.
1-F(x)), which exhibits so-called power-law behavior, namely for Pareto distribution
we have

1 − F(x) ≈ x−α. (5)

We should mention that for the Gaussian distribution, the tail behaves like an expo-
nential function.

The second important property of thePareto distribution is the existence of theoret-
ical moments, namely theoretical moment of order k of one-sided Pareto distributed
random variable exists only when k < α. This important remark will be used in the
simulation part of the paper.

In this paper, we consider an extension of the one-sided Pareto distribution, i.e. the
double Pareto (called later as Pareto). Let us mention the Pareto distributed random
variable Y is defined as follows:

Y = X − Z ,

where X and Z have one-sided Pareto distribution with the same shape and scale
parameters, moreover they are independent. And similar to the one-sided Pareto
distribution, also for the double Pareto, the kth moment exists if k < a and the
theoretical tail behaves like a power function given in (5).

3 Motivation

Themotivation of our research is the fact that a lot of considered real vibration signals
does not always follow the Gaussian distribution. Moreover, for different signals we
can observe different numbers of period repetitions. Therefore, there is need to con-
sider how such facts influence the stability of the PAR model estimation procedure.

Belowwe present an exemplary signal for whichwe observe non-Gaussian behav-
ior. The signal represents vibration acceleration of a bearing from a belt conveyor
driving system from an open-pit mine.

The signal was acquired in horizontal direction using an accelerometer. Duration
of the signal is 5 s and sampling frequency is 19,200Hz. Since the gearbox operates
in industrial conditions, the signal contains not only high-energy contamination from
a gearbox located nearby, but also accidental impulses as well.
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Fig. 2 Real data (top panel) and corresponding spectrogram (bottom panel)

Thus, the signal might be considered as the motivation of the analysis performed
in this paper. In Fig. 2, we present the examined signal and the corresponding spectro-
gram. Because the non-flat spectrum of the signal can influence the distribution, then
we prewhitened the examined signal before the further analysis. The result is pre-
sented in Fig. 3, where we show the obtained data and its corresponding spectrogram.

In order to confirm the signal cannot be modeled by using Gaussian distribution
in Fig. 3 we present the visual test for gaussianity, namely the QQ plot on which we
compare the empirical quantiles of examined signal (in our case after the prewhiten-
ing) and quantiles of appropriate Gaussian distribution (Fig. 4).mention, the QQ plot
is a visual test on the basis of which we can conclude if given vector of observa-
tions can be modeled by a given theoretical distribution. If the empirical quantiles
calculated for real data are compatible with theoretical ones, then we can suspect the
empirical and theoretical distributions are the same [7]. As we observe, the empirical
quantiles do not correspond to Gaussian theoretical quantiles. In order to show the
Pareto distribution is more appropriate in the considered case, in Fig. 5, we show the
empirical tail of prewhitened signal and the tail corresponding to Pareto distribution
(i.e. the fitted power function (5)). As we observe, the function adequate to Pareto
tail has similar behavior as the empirical one based on the prewhitened signal.
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Fig. 3 Prewhitened real data (top panel) and corresponding spectrogram (bottom panel)

Fig. 4 The QQ plot for
prewhitened real data. The
visual test indicate the signal
cannot be considered as the
Gaussian-distributed one
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Fig. 5 The empirical tail of
prewhitened signal and fitted
tail corresponding to Pareto
distribution. We observe the
Pareto distribution
corresponds to considered
signal

4 Influence of Non-Gaussian Noise to PAR Estimation

4.1 Methodology

The signals analyzed in this section represent vibration acceleration of a planetary
gearbox used in a bucket wheel excavator [9]. Such vibration signal might be simu-
lated as a sum of several sinusoidal components with frequencies that meet the gear
mesh frequency and its harmonics and a white noise. Due to the cyclic regime in
which the excavator operates, the sinusoidal components are frequency and ampli-
tude modulated with the period corresponding to the period of the bucket wheel
operation [6]. Due to industrial environment, we decided to analyze white noises
that follow the double Pareto distribution with parameters α1 = 1.5 (denoted later
as Pareto 1.5) and α2 = 3.6 (denoted as Pareto 3.6) and compare result with the
Gaussian case. Let us point out α2, the examined Pareto distribution have finite sec-
ond moment while for α1 the second moment does not exists. This fact has important
influence for the results.

Influence of non-Gaussian noise to PAR estimation is performed using the fol-
lowing algorithm. At first, a lot of signals related to each type of noise are simulated
to preserve reliability of results. Energy of each noise sequence is normalized, i.e.
time series are divided by its standard deviation to preserve fair comparison. Sec-
ondly, parameters of the PARmodels are estimated for each signal. The procedure of
estimation is based on the Yule-Walker method and is described in [19]. Order of the
PAR model is chosen as 15 for every signal. This choice is motivated by the number
of sinusoidal components and the fact, that the residual time series are satisfactory
[19]. After that, we analyze amplitude response of the models at each 1 ≤ t ≤ T ,
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namely a surface of amplitude response. It is a natural extension of the amplitude
response of an autoregressive model. The autoregressive model (AR) of order p and
parameters a = (ai )i=1,...,p is defined as follows:

X (t) −
p

∑

i=1

ai X (t − i) = Z(t),

where similar as in (1), the sequence {Z(t)} is a white noise time series.
Amplitude response of an autoregressive model with coefficients a = (ai )i=1,...,p

is defined as follows:

S ( f ) =
∣

∣

∣

∣

1

FT (a)

∣

∣

∣

∣

,

where FT (a) is the discrete Fourier transform (DFT) of a = (ai )i=1,...,p. The
amplitude response of an autoregressive model is a tool used for interpretation of
its coefficients. It illustrates how the model applied to an input signal increases
amplitudes of input’s spectral components. For an autoregressive model with time-
varying coefficients, a natural extension of the amplitude response is a surface of
amplitude response. Therefore, it depends not only on the frequency f , but also on
the time instance t , as well. Thus, the surface of amplitude response is defined as

S (t, f ) =
∣

∣

∣

∣

1

FT (a (t))

∣

∣

∣

∣

. (6)

Interpretation of the surface of amplitude response is similar to the classical, one-
dimensional amplitude response, i.e. S (t, f ) describes how the model applied to
an input signal increases amplitudes of input’s spectral components at the time
instance t .

In order to examine influence of the considered distribution to PAR model esti-
mation, we calculate the mean square error (MSE) between estimated amplitude
response and so-called “perfect surface”, described in Sect. 4.2. To preserve fair
results, every surface (estimated and “perfect”) is normalized by its average value,
i.e. arithmetic mean of the whole surface is subtracted from the surface. Higher MSE
means that the procedure gives worse results in the considered case.
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4.2 Simulation Results

The results are obtained using 50 simulated signals for one noise distribution each, i.e.
150 signals overall. Length of each signal is 4 s and sampling frequency is 8192Hz.
Each signal is consisted of 4 sine waves of frequencies 900, 1800, 2700 and 3600Hz,
respectively. Frequency modulation type is a saw-tooth, modulation depth—15%
and modulation frequency is 6Hz. Figure6 presents fragment of time series of the
noiseless signal, i.e. noise consisted of a signal equal to 0 at every time t (top panel),
fragment of the spectrogram of this signal containing only one period (bottom, left
panel) and amplitude response surface of the fitted PARmodel of order 15 (so-called
“perfect surface”), see bottom right panel. The term “perfect surface” is related to
the specific signal consisted of frequency modulated sine waves only, i.e. amplitude
of the noise is 0 at every time t . Noiseless signal is treated as an ideal (“perfect”) one.

Fig. 6 Noiseless signal (time series, spectrogram, frequency response of fitted PAR filter)
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Fig. 7 Exemplary frequency responses (surfaces) for noiseless (top left), Gaussian (top right),
Pareto 3.6 (bottom left), Pareto 1.5 (bottom right)

In Fig. 7 one can compare the “perfect surface” and exemplary estimated surfaces
obtained for three considered distributions of noise (two Pareto with different shape
parameters and Gaussian). It can be seen that the Gaussian noise seems to provide
the surface which is the closest one to the “perfect” one. The property of heavy tails
of the Pareto distribution might be seen in Fig. 8 (top panels). It is easy to verify that
the Pareto distribution with the shape parameter 1.5 gives the highest amplitudes of
noise, whereas energy of each signal is the same.

In Fig. 9 we present the boxplots of MSE for three considered distributions of
noise. More precisely, in each case, we simulated 50 signals and for each of them we
calculate the MSE of frequency responses. The boxplots are calculated on the basis
of obtained measures. Boxplots in Fig. 9 clearly presents, that the MSE related to
Gaussian noise is the lowest and MSE related to the Pareto distribution with α = 1.5
is the highest. This result means that the heavier tail of the noise the worse results of
PAR model estimation. Thus heavy tail of the noise distribution has a huge impact
on the estimation procedure.
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Fig. 8 Exemplary noise (3 cases), MSE of frequency responses (3 cases). Not so large differences,
probably because of normalization by standard deviation (energy)

Fig. 9 Boxplots of MSE
from bottom panel of Fig. 7.
Even for noises normalized
by energy there is a visible
difference
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5 Influence to PAR Estimation for Different Number
of Period Repetitions

5.1 Methodology

In this section, we analyze influence of the number of period repetitions on PAR
parameters estimation procedure. Such analysis is motivated by the question how
long the data acquisition should be to ensure appropriate results using the PAR
model. In order to examine the influence of different number of period replications,
we analyze MSE between PAR parameters {ai (t)}i=1,...,p,t=1,...,T estimated from
the noiseless signals and corresponding noisy signals of different numbers of period
repetitions. The minimum number of period repetitions is set to 3 and the maximum
to 18.We compare boxplots and medians to clearly see how the estimation procedure
is influenced by the number of period repetitions.

5.2 Simulations

In order to be consistent with Sect. 4, we analyze here the signal of the same kind, i.e.
sum of 4 frequency modulated (saw tooth modulation type) sine waves with modu-
lation frequency 6Hz and modulation depth 15% and noise. We consider two differ-
ent kinds of noise—a white Gaussian noise and an amplitude modulated Gaussian
noise, i.e. a white noisemultiplied by a periodic impulsive functionwhich reproduces
impulses that might appear while the investigated machine is damaged.

Figure10 presents boxplots of MSE mentioned in Sect. 5.1 in log scale. Each
boxplot is obtained using 1000 signals of the given length. One can see, that results
obtained for signals consisted of 3 whole periods are significantly worse than other.
Boxplots for period repetitions from 4 to 16 are similar, thus it is circumstantiated
to see median of these values separately. Signals consisted of 17 and 18 period
repetitions lead to the best results, i.e. the smallest MSE. Amplitude modulation of
the noise does not introduce significant gain in MSE.

Medians of MSE between PAR parameters for the noiseless signal and PAR
parameters for noisy signals of different lengths are presented in Fig. 11. One can
clearly see general decreasing trend of the medians while the number of period
repetitions gains. This result is consistent with dispersion illustrated by boxplots
in Fig. 10.
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Fig. 10 Boxplots of MSE for PAR parameters in case of healthy machine (top panel) and damaged
one (bottom panel)

Fig. 11 Medians of MSE for PAR parameters in case of healthy machine (top panel) and damaged
one (bottom panel)

6 Conclusions

In this paper, we have considered the problem of PAR model stability in case of the
non-Gaussian noise and different number of period repetitions. We have introduced
twomethods that can be helpful in the considered problems. First of them, especially
useful in case on non-Gaussian distribution of the noise, is based on the analysis of
amplitude of frequency response of given signal by using fitted PAR model. The
second method, applied in the problem of different number of period repetitions, is
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concentrated on the analysis of fitted PARmodel coefficients. The paper is motivated
by analysis of the real signal from a belt conveyor driving system from an open-pit
mine for which we observe non-Gaussian distribution. The results obtained in the
paper allow to answer the question whether the PAR model might be applicable to
industrial signals for which Gaussian distribution is not observable and the number
of period replications is not very large.
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16. Stefaniak, P., Wyłomańska, A., Obuchowski, J., & Zimroz, R. (2015). In C. Niemann-Delius
(Ed.), Procedures for decision thresholds finding in maintenance management of belt conveyor
system—statistical modeling of diagnostic data. Lecture Notes in Production Engineering (pp.
391–402).

17. Urbanek, J., Barszcz, T.,&Antoni, J. (2013). Time-frequency approach to extraction of selected
second-order cyclostationary vibration components for varying operational conditions. Mea-
surement, 46, 1454–1463.

18. Vecchia, A.V. (1985). Periodic autoregressive-moving average (PARMA)modelingwith appli-
cations to water resources. Water Resources Bulletin, 21, 721–730.



104 A. Wylomanska et al.
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20. Wyłomańska, A. (2008). Spectral measures of PARMA sequences. Journal of Time Series
Analysis, 29(1), 1–13.

21. Yu, G., Li, Ch., & Zhang, J. (2013). A new statistical modeling and detection method for
rolling element bearings faults based on alpha-stable distribution. Mechanical Systems and
Signal Processing, 41, 155–175.
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Limiting Distributions for Explosive PAR(1)
Time Series with Strongly Mixing Innovation

Dominique Dehay

1 Introduction

Many man-made signals and data, even natural ones, exhibit periodicities. The non-
stationary and seasonal behaviour is quite common for many random phenomena
as rotating machinery in mechanics (see [8]), seasonal data in econometrics and
climatology, but also signals in communication theory, biology to name a few (see
e.g. [11, 15, 16, 19, 21, 22, 30] and references therein). Periodic autoregressive
(PAR) models are one of the simplest linear models with a periodic structure. After
more than 50 years of study, these models and their generalizations (periodic ARMA
(PARMA), etc.) remain a subject of investigations of great interest as they can be
applied in modeling periodic phenomena for which seasonal ARIMAmodels do not
fit adequately (see e.g. [1, 10, 20, 26]).

It is well known that such linear models can be represented as vectorial autore-
gressive (VAR) models. However the general results known for VAR models do not
take into account the whole periodic structure of the PARMA models [9, 32] in
particular the fact that the innovation can be periodically distributed. Thus specific
methods have been developed for PAR and PARMA models.

There is a large amount of publications on the estimation problem for the coeffi-
cients of PARMA models essentially whenever the model is stable, that is periodic
stationary also called cyclostationary (see e.g. [1, 6, 9, 20, 27, 32–34]). The unstable
case has been also studied when some autoregressive coefficients are in the bound-
ary of the periodic stationary domain (see e.g. [2, 3, 5, 12, 13, 23] and references
therein).

There are few results concerning explosive PAR model. Aknouche [4] studies
the case of explosive PAR models driven by a periodically distributed independent
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innovation. However the independence of the innovation is too stringent in practice
(see e.g. [6, 20] and references therein).

In this work, we relax the independence condition, and for simplicity of presenta-
tion, we consider periodic autoregressive of order 1 time series that is PAR(1)models.
To state the convergence in distribution of the estimators (Theorems 1 and 2), we
impose that the periodically distributed innovation is strongly mixing (see e.g. [14]).
Thus it can be correlated and it satisfies some asymptotic independence between its
past and its future (see condition (M) in Sect. 4). However, there is no condition on
the rate of the asymptotic independence. This is similar to what [28] showed for the
autoregressive time series with a unit root and constant coefficients.

Here we study the least squares estimators (LSE) of the PAR(1) coefficients, and
the limiting distributions stated in Theorem 1 below generalize the results obtained
in [25] for explosive AR models with independent Gaussian innovation (see also [7,
31]) and in [4] for explosive PAR models with independent innovation. The rate of
convergence of the estimators depends on the product of the periodic coefficients of
the PAR(1) model (Theorem 1). Actually this product determines whether the model
is stable, unstable or explosive. Thus it is subject of great interest and we tackle
the problem of its estimation. For this purpose, we consider two estimators : the
product of the LSE of the PAR(1) coefficients (see [4] for independent innovation)
and a least squares estimator (Theorem 2). By simulation, we detect no specific
distinction between these estimators for the explosivePAR(1)models. The theoretical
comparison of the limiting distributions of the two estimators is out of the scope of
the paper and will be subject to another work.

The paper is organized as follows: In Sect. 2 the model under study is defined
as well as the notations. Then the asymptotic behaviour as n → ∞ of the scaled
vector-valued time series

(

φ−n Xn P+r : r = 1, . . . , P
)

is stated in Sect. 3 where φ

is the product of the periodic coefficients ar of the explosive PAR(1) model, thus
|φ| > 1. The period is P > 0. Section4 deals with the consistency of the least
squares estimators âr of the PAR coefficients ar , r = 1, . . . , P , as well as the
limiting distributions of the scaled errors φn (̂ar − ar ), as n → ∞. Next in Sect. 5
we consider the problem of estimation of the product φ. The asymptotic behaviour
of the estimators introduced in this paper is illustrated by simulation in Sect. 6. For
an easier reading and understanding of the statements of the paper, the proofs of the
results are presented in Appendix.

2 Background : PAR(1) Time Series

Consider the following PAR(1) model

Xk = ak Xk−1 + uk, k = 1, 2, . . . , (1)

where {ak} is a periodic sequence of real numbers and {uk} is a real-valued periodi-
cally distributed sequence of centred random variables defined on some underlying
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probability space (Ω,F ,P). We assume that the periods of {ak} and of {uk} have the
same value P > 0. Thus aP+r = ar andL [u P+s, . . . , u P+r ] = L [us, . . . , ur ] for
all integers s and r . To be short, in the sequel the sequence {uk} is called innovation
of the model although it is not necessarily uncorrelated. Denote

As−1
s := 1, Ar

s :=
r
∏

j=s

a j for 1 ≤ s ≤ r, and Ar
s := 0 otherwise

and let φ := AP
1 = ∏P

r=1 ar . Since {ak} is periodic with period P > 0, we have
An P+r
1 = Ar

1φ
n and we obtain the decomposition

Xn P+r = Ar
1Xn P + U (r)

n = Ar
1φ

n(X0 + Zn−1
)+ U (r)

n (2)

where

U (r)
n :=

r
∑

s=1

Ar
s+1un P+s,

Z−1 := 0 and for n ≥ 1

Zn :=
n
∑

l=0

φ−l−1
P
∑

s=1

AP
s+1ul P+s =

n
∑

l=0

φ−l−1U (P)
l .

Note that the sequence
{(

U (1)
n , . . . , U (P)

n
) : n ∈ Z

}

is strictly stationary (stationarily
distributed).

If |φ| < 1, the model is stable and Xn P+r converges in distribution to some
random variable ζ (r) as n → ∞. If |φ| = 1, the model is unstable: its behaviour is
similar to a random walk; indeed for each r , the time series {Xn P+r } is a random
walk when the innovation {uk : k > n P + r} is independent with respect to the
random variable Xn P+r .

Henceforth, we assume that the time series {Xk} satisfies the PAR(1) equation (1)
with |φ| > 1.We also assume that the initial random variable X0 is square integrable.
Moreover, the innovation {uk} is centred periodically distributed with second-order
moments. Thus {uk} is periodically correlated (see [24]) and we have E[U (r)

n ] = 0
as well as

cov
[

U (r1)
n1 , U (r2)

n2

]

=
r1
∑

s1=1

r2
∑

s2=1

Ar1
s1+1Ar2

s2+1cov
[

us1 , u(n2−n1)P+s2

]

for all integers n, n1 ≤ n2, and r, r1, r2 = 1, . . . , P . Denote σr := √
var[ur ] and

K (r)
n := cov

[

U (r)
l , U (r)

l+n

]

.
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3 Explosive Asymptotic Behaviour of the Model

In the forthcoming proposition, we study the asymptotic behaviour of the time series
{Xk}. Recall that we assume that |φ| > 1.

Proposition 1 For any r = 1, . . . , P

lim
n→∞ φ−n Xn P+r = Ar

1 (X0 + ζ ) a.s. and in q.m.

where

ζ := lim
n→∞ Zn = lim

n→∞

n
∑

l=0

φ−l−1U (P)
l a.s. and in q.m.

Moreover

lim
n→∞L

[

Xn P+r − φn Ar
1 (X0 + ζ ) : r = 1, . . . , P

] = L
[

U (r)
0 − Ar

1ζ : r = 1, . . . , P
]

.

Remark

(1) Assume that Pr[X0 + ζ �= 0] �= 0, then conditionally that X0 + ζ �= 0, the
sequence {|Xk |} converges to infinity almost surely as k → ∞. Thus condition-
ally that X0 + ζ �= 0, the paths of the time series {Xk} are explosive.

(2) When X0 = −ζ almost surely, the time series {Xk} which follows the PAR(1)
model with |φ| > 1, is periodically distributed and satisfies the following stable
PAR(1) equation

Xk = a−1
k Xk−1 + u∗

k

where {u∗
k} is some periodically distributed time series. The estimation problem

of the coefficients of such a PAR equation is now well known (see e.g. [6, 9, 20]
and references therein).

(3) To state the convergence in quadraticmean in Proposition 1we can easily replace
the assumption that the innovation {uk} is periodically distributed by the less
stringent one that the innovation is periodically correlated.

(4) When the innovation {uk} is uncorrelated and periodically distributed we obtain
that

E
[

(Zn − ζ )2
]

= φ−2n K (P)
0

φ2 − 1
and var [ζ ] = K (P)

0

φ2 − 1
,

with K (P)
0 =∑P

s=1(AP
s+1)

2σs .
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4 Least Squares Estimation of the Coefficients

Now we deal with the estimation problem of the coefficients ar , r = 1, . . . , P, from
the observation Xk , k = 0, . . . , n P , as n → ∞. For that purpose, we determine the
periodic sequence {bk} that minimizes the sum of the squared errors

n P
∑

k=1

(

Xk − bk Xk−1
)2 =

P
∑

r=1

n−1
∑

j=0

(

X j P+r − br X j P+r−1
)2

.

Since X j P+r = ar X j P+r−1 + u j P+r , for j = 0, . . . , n − 1, and r = 1, . . . , P , the
least squares estimator (LSE) of ar is defined by

âr :=

n−1
∑

j=0

X j P+r−1X j P+r

n−1
∑

j=0

(X j P+r−1)
2

= ar +

n−1
∑

j=0

X j P+r−1 u j P+r

n−1
∑

j=0

(X j P+r−1)
2

= ar + C (r)
n

B(r)
n

,

where from expression (2) we can write

B(r)
n :=

n−1
∑

j=0

(

X j P+r−1
)2 =

n−1
∑

j=0

(

Ar−1
1 φ j (X0 + Z j−1) + U (r−1)

j

)2 (3)

and

C (r)
n :=

n−1
∑

j=0

X j P+r−1u j P+r = Ar−1
1

n−1
∑

j=0

φ j (X0+ Z j−1)u j P+r +
n−1
∑

j=0

U (r−1)
j u j P+r .

(4)
Here U (0)

j := 0.
Note that under Gaussian and independence assumptions on the periodically dis-

tributed innovation {uk}, the LSE âr coincides with the maximum likelihood estima-
tor of ar .

To prove the convergence in distribution of the scaled errors in the following
results, we use the next strong mixing condition. The notion of strong mixing, also
called α-mixing, was introduced in [29] and it is largely used for modeling the
asymptotic independence in time series. The condition could be weakened using
the notion of weak dependence, but this is out of the scope of the paper. For more
information about mixing time series and weak dependence (see e.g. [14, 17, 18]
and references therein).
(M) lim

n→∞ α(n) = 0 where α(n) = sup
∣

∣P[A∩ B]−P[A]P[B]∣∣, the supremum

being taken over all k ∈ N and all sets A ∈ F k , and B ∈ Fk+n . Here the σ -fields
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F k and Fk+n are defined by F k := F (X0, u j : j ≤ k) and Fk+n := F (u j : j ≥
k + n).

Furthermore, in the following, we assume that the underlying probability space
(Ω,F ,P) is sufficiently large so that there is a sequence of real-valued random
variables {u∗

k} which is independent with respect to X0 and the innovation {uk}, and
such that L

[

u∗
0, . . . , u∗

n P−1

] = L [un P , . . . , u1] for any integer n > 1. This is
always possible at least by enlarging the probability space.

Now we state the strong consistency of the LSE âr of ar , as well as the
asymptotic limiting distribution of the scaled error φn

(

âr − ar
)

for the explosive
PAR(1) model (1).

Theorem 1 Conditionally that X0+ζ �= 0, the least squares estimator âr converges
to ar almost surely as n → ∞, for r = 1, . . . , P. Furthermore assume that P[X0 +
ζ = 0] = 0 and the mixing condition (M) is fulfilled, then the random vector of the
scaled errors

{

φn
(

âr − ar
) : r = 1, . . . , P

}

converges in distribution to

{

(φ2 − 1)ζ ∗
r

Ar−1
1 (X0 + ζ )

: r = 1, . . . , P

}

as n → ∞. The random variable ζ is defined in Proposition 1, the random vector
(

ζ ∗
1 , . . . , ζ ∗

P

)

is independent with respect to (X0, ζ ), and its distribution is defined by

L
[

ζ ∗
r : r = 1 . . . , P

] = L

⎡

⎣

∞
∑

j=1

φ− j u∗
j P−r : r = 1, . . . , P

⎤

⎦

where the sequence {u∗
k} is independent with respect to X0 and {uk}, and such that

L
[

u∗
0, . . . , u∗

n P−1

] = L [un P , . . . , u1] for any integer n > 1.

Note that in general the limiting distribution of φn (̂ar − ar ) is not parameter free,
that is, it depends on the parameters we are estimating. Under Gaussian assumption
on the periodically distributed innovation {uk}, the random variables ζ and ζ ∗

r are
Gaussian and independent, so the distribution of ratio ζ ∗

r /ζ is a Cauchy distribution
(see also [4]). In fact, the limiting distributions in Theorem 1 have heavy tails.

5 Estimation of φ

To estimate φ, the product of the coefficients ar , r = 1, . . . , P , we can consider the
product of the estimators âr :

˜φ =
P
∏

r=1

âr .
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Then from Theorem 1, the estimator ˜φ converges almost surely to φ conditionally
that X0 + ζ �= 0. Thanks to the Delta method (Theorem 3.1 in [35]), we readily
deduce the asymptotic law of the normalized error φn

(

˜φ − φ
)

.

lim
n→∞L

[

φn(
˜φ − φ

)] = L

[

φ2 − 1

X0 + ζ
×

P
∑

r=1

AP
r+1ζ

∗
r

]

when we assume that P[X0 + ζ = 0] = 0 and the mixing condition (M) is fulfilled.
See [4] for independent innovation.

Besides, we can define a least squares estimator of φ. For that purpose, note that
from relation (1) and the periodicity of the coefficients, we obtain for all j ∈ N

∗ and
r = 1, . . . , P , that X j P+r = φX( j−1)P+r + V (r)

j where

V (r)
j =

P−1
∑

k=0

Ar
r−k+1u j P+r−k .

Since the innovation {uk} is periodically distributed with the same period P , the
sequence

{(

V (1)
j , . . . , V (P)

j

) : j ∈ Z
}

is stationarily distributed (strictly stationary).
Then minimizing the sum of the squared errors

n P
∑

k=P+1

(

Xk − bXk−P
)2 =

n−1
∑

j=1

P
∑

r=1

(

X j P+r − bX( j−1)P+r
)2

,

we define the least squares estimator ̂φ as

̂φ = φ + Cn

Bn

where

Cn =
n−1
∑

j=1

P
∑

r=1

X( j−1)P+r V (r)
j and Bn =

n P
∑

k=P+1

(Xk−P )2 =
n−1
∑

j=1

P
∑

r=1

(

X( j−1)P+r
)2

.

Then following the same arguments as for the LSE âr , we can state the forthcoming
result.

Theorem 2 Conditionally that X0+ζ �= 0, the least squares estimator̂φ converges
to φ almost surely. Assume that P[X0 + ζ = 0] = 0 and the mixing condition (M)
is fulfilled, then the scaled error φn

(

̂φ − φ
)

converges in distribution

lim
n→∞L

[

φn(
̂φ − φ

)] = L

[

(φ2 − 1)ζ ∗
∑P

r=1

(

AP
r+1

)−2
(X0 + ζ )

]

(5)
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conditionally that X0+ζ �= 0, as n → ∞. Here ζ ∗ is a random variable independent
with respect to X0 and ζ . The distribution of ζ ∗ coincides with the distribution of

P
∑

r=1

P−1
∑

k=0

AP
r+1Ar

r−k+1

∞
∑

j=1

φ− j u∗
j P−r+k .

In the next section, we see by simulation that the distributions of φ̃ and of ̂φ seem to
be similar when |φ| > 1. The theoretical comparison of these distributions is out of
the scope of the paper.

6 Simulation

Here we present the simulations of some explosive PAR(1) time series, and we illus-
trate the behaviour of the LSE âr , ̂φ and of φ̃ for different values of the coefficients
ar , r = 1, . . . , P and for different types of innovation. For that purpose, we consider
the PAR(1) model (1) with period P = 6. The periodic coefficients ar s are given in
Table1.
Thuswe simulate the cases |φ| > 1, |φ| close to 1,φ = 1 and |φ| < 1. The innovation
is defined by

uk = cos
(πk

3

)

vk where vk = 1√
m + 1

m
∑

i=0

εk+i ,

the random variables εk , k ∈ N, are independent and identically distributed, and
m ∈ {0 , 2000}. When m = 0, we have vk = εk , k ∈ N, and the random variables uk

are periodically distributed and independent. When m = 2000, the random variables
uk are periodically distributed and correlated. Actually they are m-dependent, thus
strongly mixing. We consider two distributions for the εks : the standard normal
distribution N (0, 1), and the uniform distribution U [−1000, 1000]. Hence in the
last case the distribution of the εks is spread out.

To sum up, for each family of coefficients, we obtain four PAR(1) time series that
we simulate with different lengths T = n P = 6n. In each case we perform 100

Table 1 PAR(1) coefficients

a1 a2 a3 a4 a5 a6 φ

Family 1 0.8 1.2 1 1.5 1.1 0.9 1.4256

Family 2 0.8 1.1 1 1.5 1.1 0.7 1.0164

Family 3 0.5 1 1 2.5 1.6 0.5 1

Family 4 0.5 1 1.5 1.62 1.6 0.5 0.972
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replications. The algorithm of the simulation is implemented in ‘R’ software code.
Below we present some of the tables and histograms that we obtain to compare the
results.

In each table, we write down the mean and the median of the values of each
estimator that we have obtained from the 100 replications, as well as some box plot
characteristics of the errors : extreme of upper whishers, upper hinge (3rd quarter),
lower hinge (1rt quarter) and extreme of the lower whishers. We also give the 95%
percentiles of the absolute values of the errors.

First we note that the rates of convergence of the estimates decrease with |φ|
(see Tables2, 3, 4, 7 and 8). Actually, from the theoretical point of view, the rate of
convergence is |φ|n when |φ| > 1 (Theorems 1 and 2 above). It is n when |φ| = 1
(see [12]) and n1/2 when |φ| < 1 (see [9]). Thus we produce the histograms of scaled
errors, the scale factor being φ−n when |φ| > 1, n−1 when φ = 1 and n−1/2 when
|φ| < 1.

We observe when φ = 1.4256 and when φ = 1.0164 in Figs. 1, 2, 3, 4 and 5, that
the histograms of the scaled errors have long tails. In Tables2, 3, 4, 5 and 6, we note
that the ratios of the hinges (upper hinge, lower hinge) to the sigmas of the errors
are of order of magnitude 10−1 or less. It is the same for the ratios of the hinges to
the whiskers. These phenomena correspond to the fact that the limiting distributions
have heavy tails. See [4] for independent innovation.

When φ = 1, in Fig. 6 and in Table7 we observe the distributions for some
estimates (̂a1, â3, â6, ̂φ) have also relatively long tails. But the phenomenon is very
less apparent than previously. See [28] for the autoregressive model with a unit root.

When φ = 0.972, in Fig. 7 the tails of the histograms are shorter than for the
others values of φ. In Table8 the hinges and the whishers are often with the same

Table 2 |φ| = 1.4256 and uncorrelated Gaussian innovation: L [εk ] = N (0, 1), m = 0, n = 20

Parameter 0.8 1.2 1 1.5 1.1 0.9 1.4256

Estimate â1 â2 â3 â4 â5 â6 ̂φ ˜φ

Mean 0.8001 1.1999 0.9999 1.4999 1.0999 0.9000 1.4257 1.4256

Median 0.8000 1.1999 1.0000 1.4999 1.0999 0.9000 1.4256 1.4255

Error

Mean 2e-04 -4e-05 -2e-06 -8e-05 -1e-05 7e-06 2e-04 9e-05

Sigma 2e-03 4e-04 8e-06 8e-04 9e-05 9e-05 3e-03 2e-03

Boxplot

u. whisker 8e-04 2e-04 8e-07 4e-04 6e-05 6e-05 9e-04 8e-04

u. hinge 3e-04 5e-05 3e-07 9e-05 2e-05 2e-05 3e-04 3e-04

l. hinge -2e-04 -7e-05 -4e-07 -2e-04 -2e-05 -2e-05 -2e-04 -2e-04

l. whisker -8e-04 -2e-04 -9e-07 -5e-04 -6e-05 -5e-05 -7e-04 -8e-04

Percentile

abs 0.95 4e-03 1e-03 7e-06 2e-03 3e-04 3e-04 4e-03 4e-03
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Table 3 |φ| = 1.0164 and uncorrelated Gaussian innovation:L [εk ] = N (0, 1), m = 0, n = 200

Parameter 0.8 1.1 1 1.5 1.1 0.7 1.0164

Estimate â1 â2 â3 â4 â5 â6 ̂φ ˜φ

Mean 0.7965 1.0996 0.9999 1.4986 1.0999 0.7000 1.0131 1.0107

Median 0.7994 1.0999 1.0000 1.4999 1.1000 0.6999 1.0158 1.0154

Error

Mean -4e-03 -4e-04 -3e-05 -2e-03 -4e-05 4e-05 -4e-03 -6e-03

Sigma 1e-02 2e-03 2e-04 7e-03 5e-04 1e-03 9e-03 3e-02

Boxplot

u. whisker 4e-03 4e-04 2e-05 2e-03 3e-04 9e-04 4e-03 3e-03

u. hinge 2e-04 5e-05 5e-06 4e-04 8e-05 3e-04 2e-04 -5e-05

l. hinge -3e-03 -3e-04 -4e-06 -1e-03 -9e-05 -3e-04 -3e-03 -2e-03

l. whisker -5e-03 -6e-04 -2e-05 -3e-03 -4e-04 -8e-04 -5e-04 -7e-03

Percentile

abs 0.95 3e-02 3e-03 4e-04 9e-03 7e-04 2e-03 3e-02 5e-02

Table 4 |φ| = 1.0164 and uncorrelated Gaussian innovation:L [εk ] = N (0, 1), m = 0, n = 400

Parameter 0.8 1.1 1 1.5 1.1 0.7 1.0164

Estimate â1 â2 â3 â4 â5 â6 ̂φ ˜φ

Mean 0.7999 1.1000 1.0000 1.5000 1.1000 0.6999 1.0163 1.0163

Median 0.8000 1.0999 1.0000 1.4999 1.0999 0.7000 1.0164 1.0164

Error

Mean -8e-05 4e-07 4e-07 5e-06 2e-06 -8e-06 -7e-05 -1e-04

Sigma 7e-04 5e-05 3e-06 3e-04 4e-05 1e-04 7e-04 9e-04

Boxplot

u. whisker 2e-04 2e-05 2e-08 8e-05 2e-05 3e-05 2e-04 2e-04

u. hinge 5e-05 3e-06 5e-09 2e-05 2e-06 2e-05 5e-05 5e-05

l. hinge -4e-05 -8e-06 -6e-09 -4e-05 -4e-06 -6e-06 -4e-05 -5e-05

l. whisker -2e-04 -2e-05 -2e-08 -7e-05 -2e-05 -3e-05 -2e-04 -2e-04

Percentile

abs 0.95 7e-04 8e-05 2e-06 4e-04 5e-05 2e-04 7e-04 8e-04

order of magnitude or larger than the sigmas. This fits to the theoretical result, the
limiting distribution being Gaussian (see [9]).

When the innovation {uk} is correlated with m = 2000 for φ = 1.0162, in Table5
we observe few change in the performances of the estimates with respect to the case
when the innovation is independent (Table4). The confidence intervals are smaller for
a3 = 1, and larger for a4 = 1.5. However in Fig. 4 with φ = 1.0164 and m = 2000,
the tails of the histograms are farther from 0 than in Fig. 3 when m = 0.
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Table 5 |φ| = 1.0164 and correlatedGaussian innovation:L [εk ] = N (0, 1),m = 2000, n = 400

Parameter 0.8 1.1 1 1.5 1.1 0.7 1.0164

Estimate â1 â2 â3 â4 â5 â6 ̂φ ˜φ

Mean 0.7999 1.1000 1.0000 1.5000 1.1000 0.6999 1.0163 1.0163

Median 0.7999 1.1000 1.0000 1.5000 1.1000 0.6999 1.0163 1.0163

Error

Mean -8e-05 9e-06 -3e-10 5e-05 6e-06 -2e-05 -8e-05 -8e-05

Sigma 7e-04 9e-05 2e-09 4e-04 5e-05 2e-04 7e-04 7e-04

Boxplot

u. whisker 2e-04 3e-05 5e-12 2e-04 2e-05 5e-05 2e-04 2e-04

u. hinge 5e-05 9e-06 -2e-12 4e-05 6e-06 2e-05 5e-05 5e-05

l. hinge -7e-05 -7e-06 -2e-11 -3e-05 -4e-06 -2e-05 -7e-05 -7e-05

l. whisker -2e-04 -3e-05 -4e-11 -2e-04 -2e-05 -5e-05 -3e-04 -3e-04

Percentile

abs 0.95 9e-04 2e-04 5e-10 5e-04 7e-05 2e-04 9e-04 9e-04

Table 6 |φ| = 1.0164 and uncorrelated uniformly distributed innovation: L [εr ] =
U [−1000, 1000], m = 0, n = 400

Parameter 0.8 1.1 1 1.5 1.1 0.7 1.0164

Estimate â1 â2 â3 â4 â5 â6 ̂φ ˜φ

Mean 0.7991 1.0998 1.0000 1.4996 1.0999 0.7000 1.0156 1.0150

Median 0.7999 1.1000 1.0000 1.5000 1.1000 0.7000 1.0163 1.0163

Error

Mean -9e-04 -2e-04 1e-06 -4e-04 -2e-05 2e-05 -8e-04 -2e-03

Sigma 6e-03 8e-04 2e-05 3e-03 1e-04 2e-04 6e-03 1e-02

Boxplot

u. whisker 2e-04 3e-05 4e-08 2e-04 2e-05 4e-05 2e-04 2e-04

u. hinge 4e-05 8e-06 1e-08 4e-05 5e-06 9e-06 4e-05 4e-05

l. hinge -8e-05 -6e-06 -4e-10 -3e-05 -4e-06 -2e-05 -8e-05 -8e-05

l. whisker -3e-04 -3e-05 -4e-05 -2e-04 -2e-05 -4e-05 -3e-04 -3e-04

Percentile

abs 0.95 6e-04 1e-04 7e-06 4e-04 6e-05 2e-04 6e-04 7e-04

Finally, comparing the statistics of the errors of the two estimateŝφ and˜φ in each
table, we find out that they have globally the same order of magnitude whenever
|φ| > 1 and the histograms are quite similar. However when |φ| ≤ 1 it seems that
̂φ gives better results than φ̃. The comparison of these two estimators needs more
investigation to determine whether one of them is better than the other.
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Table 7 |φ| = 1 and uncorrelated Gaussian innovation: L [εr ] = N (0, 1), m = 0, n = 400

Parameter 0.5 1 1 2.5 1.6 0.5 1

Estimates â1 â2 â3 â4 â5 â6 ̂φ ˜φ

Mean 0.4948 1.0000 1.0000 2.4372 1.5972 0.5004 0.9944 0.9644

Median 0.4973 1.0000 1.0000 2.4566 1.5978 0.5002 0.9972 0.9765

Errors

Mean -5e-03 -2e-06 1e-05 -6e-02 -2e-03 4e-03 -6e-03 4e-02

Sigma 9e-03 2e-04 4e-04 6e-02 3e-03 6e-04 9e-03 4e-02

Boxplot

u. whisker 4e-03 8e-05 4e-04 -8e-03 -4e-04 2e-03 5e-03 2e-03

u. hinge -4e-04 2e-05 8e-05 -3e-02 -2e-03 8e-04 -5e-04 -2e-02

l. hinge -9e-03 -2e-05 -9e-05 -8e-02 -4e-03 4e-05 -1e-02 -5e-02

l. whisker -2e-02 -8e-05 -4e-04 -2e-01 -7e-03 -1e-03 -3e-02 -1e-01

Percentiles

abs 0.95 3e-03 5e-04 9e-04 3e-01 8e-03 2e-03 3e-02 2e-01

Table 8 |φ| = 0.972 and uncorrelated Gaussian innovation: L [εr ] = N (0, 1), m = 0, n = 400

Parameter 0.5 1 1.5 1.62 1.6 0.5 0.972

Estimate â1 â2 â3 â4 â5 â6 ̂φ ˜φ

Mean 0.4938 1.0000 1.3983 1.5579 1.5765 0.5071 0.9662 0.8612

Median 0.4971 1.0000 1.4055 1.5624 1.5777 0.5072 0.9693 0.8745

Error

Mean -7e-03 5e-06 -2e-01 -7e-02 -3e-02 8e-03 -6e-03 -2e-01

Sigma 2e-02 5e-04 3e-02 2e-02 4e-03 1e-03 2e-02 6e-02

Boxplot

u. whisker 2e-02 5e-04 -6e-02 -4e-02 -2e-02 9e-03 2e-02 -3e-02

u. hinge 3e-03 2e-04 -9e-02 -6e-02 -3e-02 8e-03 4e-03 -8e-02

l. hinge -2e-02 -2e-04 -2e-01 -8e-02 -3e-02 7e-03 -2e-02 -2e-01

l. whisker -4e-02 -5e-04 -2e-01 -1e-01 -4e-02 7e-03 -3e-02 -2e-01

Percentile

abs 0.95 3e-02 2e-03 2e-01 1e-01 4e-02 9e-03 3e-02 2e-01

Conclusion
In this paper we have studied the least squares estimators of the coefficients of explo-
sive PAR(1) time series under relatively weak dependence assumptions. It is quite
interesting to see how heavy-tailed distributions enter in this context. We have also
constructed two estimators of the product of these coefficients, which characterizes
the explosive behaviour of themodel. It would beworth to investigate the comparison
of these estimators and also to consider more general PAR and PARMA models.
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Fig. 1 Histograms of the scaled errors: φ = 1.4256, L [εr ] = N (0, 1), m = 0, n = 20

Appendix

Proof of Proposition 1

Let r = 1, . . . , P be fixed. We know that φ−n Xn P+r = Ar
1(X0 + Zn−1)+φ−nU (r)

n .

Since the sequence {U (r)
n } is stationarywithfinite second-ordermoments and |φ| > 1,

we can readily establish that

lim
n→∞ φ−nU (r)

n = 0 a.e and in q.m..
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Fig. 2 Histograms of the scaled errors: φ = 1.0164, L [εr ] = N (0, 1), m = 0, n = 200

Now we show that Zn converges almost surely and in quadratique mean. First we
have

var

⎡

⎣

k
∑

l= j

φ−l−1U (P)
l

⎤

⎦

=
k
∑

l= j

φ−2l−2var
[

U (P)
l

]

+ 2
k−1
∑

l1= j

k
∑

l2=l1+1

φ−l1−l2−2cov
[

U (P)
l1

, U (P)
l2

]

≤ φ−2 j K (P)
0

φ2 − 1
+ 2

φ−2 j K (P)
0

(φ2 − 1)(|φ| − 1)
= φ−2 j K (P)

0

(|φ| − 1)2
. (6)

Then the sequence {Zn} is a Cauchy sequence in the Hilbert space L2(P), thus this
sequence converges to some random variable ζ in quadratic mean. Moreover

E
[

(Zn − ζ )2
]

≤ φ−2n K (P)
0

(|φ| − 1)2
.
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Fig. 3 Histograms of the scaled errors: φ = 1.0164, L [εr ] = N (0, 1), m = 0, n = 400

From the exponential decreasing to 0 of the right-hand side of the last inequality, we
can readily deduce the convergence almost sure following the usual method applying
Borel Cantelli lemma.

As for the second part of the proposition, note that

Xn P+r − φn Ar
1 (X0 + ζ ) = U (r)

n + φn Ar
1 (Zn−1 − ζ )

and

φn (Zn−1 − ζ ) = −
∞
∑

l=n

φn−l−1U (P)
l = −

∞
∑

l=0

φ−l−1U (P)
n+l .

Since the sequence of random vectors {(U 1
n , . . . , U (P)

n ) : n ∈ Z} is stationarily
distributed, we deduce that

L

[(

U (r)
n ,

∞
∑

l=0

φ−l−1U (r)
n+l

)

: r = 1, . . . , P

]

= L

[(

U (r)
0 ,

∞
∑

l=0

φ−l−1U (r)
l

)

: r = 1, . . . , P

]

.
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Fig. 4 Histograms of the scaled errors: φ = 1.0164, L [εr ] = N (0, 1), m = 2000, n = 400

Then from the definition of ζ , we readily achieve the proof of Proposition 1. �

Proof of Theorem 1

First in the two following lemmas, we study the asymptotic behaviours of B(r)
n

and C (r)
n .

Lemma 1

lim
n→∞ φ−2n B(r)

n =
(

Ar−1
1

)2

φ2 − 1
(X0 + ζ )2 a.s. and in L1(P).

Proof We have seen that that φ−n Xn P+r−1 converges to Ar−1
1 (X0 + ζ ) almost

surely and in quadratic mean. Then Toeplitz lemma on series convergence gives the
result. �
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Fig. 5 Histograms of the scaled errors: φ = 1.0164, L [εr ] = U [−1000, 1000], m = 0, n = 400

Lemma 2
lim

n→∞ φ−2nC (r)
n = 0 a.s. and in L1(P)

for any r = 1, . . . , P. Moreover, under the mixing hypothesis (M) we have

lim
n→∞L

[

φ−nC (r)
n : r = 1, . . . , P

]

= L
[

Ar−1
1 (X0 + ζ )ζ ∗

r : r = 1, . . . , P
]

.

Proof To prove the lemma, we study the left-hand side of equality (4).
(1) For the last term of equality (4), Cauchy Schwarz inequality entails

E

⎡

⎣

∣

∣

∣

∣

∣

∣

n−1
∑

j=0

U (r−1)
j u j P+r

∣

∣

∣

∣

∣

∣

⎤

⎦ ≤
n−1
∑

j=0

E

[

∣

∣

∣U
(r−1)
j

∣

∣

∣

2
]1/2

E
[

∣

∣u j P+r
∣

∣

2
]1/2

.

As the sequences {u j P+r } and {U (r−1)
j } are stationary, we have
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Fig. 6 Histograms of the scaled errors: φ = 1, L [εr ] = N (0, 1), m = 0, n = 400

E

⎡

⎣

∣

∣

∣

∣

∣

∣

n−1
∑

j=0

U (r−1)
j u j P+r

∣

∣

∣

∣

∣

∣

⎤

⎦ = n
√

K (r−1)
0 σr .

Thus

lim
n→∞ φ−n

n−1
∑

j=0

U (r−1)
j u j P+r = 0 in L1(P).

Furthermore, thanks to the exponential decreasing rate of convergence to 0 in L1(P),
applying Borel Cantelli lemma, we easily establish the almost sure convergence

lim
n→∞ φ−n

n−1
∑

j=0

U (r−1)
j u j P+r = 0 a.s.

(2) To study the first term of left-hand side of equality (4), the idea is first to isolate
the sums of Z j−1 and of u j P+r . Then define blocks that separate the first and the last
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Fig. 7 Histograms of the scaled errors: φ = 0.972, L [εr ] = N (0, 1), m = 0, n = 400

terms of the time series in order to be able to use the asymptotic independence which
is given by the strong mixing condition on the innovation. Thus assume without lost
of generality that n is a multiple of 4 and let n1 = n/4, and n2 = n/2. Then we can
write

n−1
∑

j=0

φ j (X0 + Z j−1)u j P+r =
n−1
∑

j=0

φ j (Z j−1 − Zn1)u j P+r

+
n2−1
∑

j=0

φ j (X0 + Zn1)u j P+r +
n−1
∑

j=n2

φ j (X0 + Zn1)u j P+r . (7)

(i) Thanks to inequality (6), we have
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E

⎡

⎣

∣

∣

∣

∣

∣

∣

n−1
∑

j=0

φ j (Z j−1 − Zn1)u j P+r

∣

∣

∣

∣

∣

∣

⎤

⎦ ≤
n−1
∑

j=0

|φ| jE
[|Z j−1 − Zn1 |2

]1/2E
[|u j P+r |2

]1/2

≤
n1
∑

j=0

|φ| jE
[|Z j−1 − Zn1 |2

]1/2
σr +

n−1
∑

j=n1+1

|φ| jE
[|Z j−1 − Zn1 |2

]1/2
σr

≤ n1 + 1 + |φ|n−n1

|φ| − 1

√

K (P)
0 σr .

Hence

lim
n→∞ φ−n

n−1
∑

j=0

φ j (Z j−1 − Zn1)u j P+r = 0 in L1(P).

Using Borel Cantelli lemma, the exponential decreasing rate of convergence permits
to prove the almost sure convergence.
(ii) Besides, the second term of the right-hand side of equality (7) can be estimated
as follows

E

⎡

⎣

∣

∣

∣

∣

∣

∣

(X0 + Zn1)

n2−1
∑

j=0

φ j u j P+r

∣

∣

∣

∣

∣

∣

⎤

⎦ ≤ E
[|X0 + Zn1 |2

]1/2
n2−1
∑

j=0

|φ| jE
[|u j P+r |2

]1/2

≤
⎛

⎝E
[|X0|2

]1/2 +
n1−1
∑

j=0

|φ|−l−1E
[|U (P)

l |2]1/2
⎞

⎠

⎛

⎝

n2−1
∑

j=0

|φ| jE
[

(u j P+r )
2]1/2

⎞

⎠

≤
(

E
[|X0|2

]1/2
(|φ| − 1) +

√

K (P)
0

)

σr |φ|n2
(|φ| − 1)2

.

Thus

lim
n→∞ φ−n(X0 + Zn1)

n2−1
∑

j=0

φ j u j P+r = 0 in L1(P).

As in part (i), we obtain the almost sure convergence.
(iii) It remains to study the asymptotic behaviour of (X0 + Zn1)Ψ

n,r
n2 where

Ψ n,r
n2 := φ−n

n−1
∑

j=n2

φ j u j P+r =
n−1
∑

j=n2

φ j−nu j P+r =
n−n2
∑

j=1

φ− j u(n− j)P+r . (8)

We know that X0 + Zn1 converges to X0 + ζ almost surely and in quadratic mean.
(Proposition 1). Since

E
[|Ψ n,r

n2 |2]1/2 ≤
n−n2
∑

j=1

|φ|− jE
[|u(n− j)P+r |2

]1/2 ≤ σr

|φ| − 1
,
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φ−nΨ
n,r
n2 converges to 0 in quadratic mean and also almost surely. Hence φ−n(X0 +

Zn1)Ψ
n,r
n2 converges to 0 in L1(P) and almost surely.

(iv) Now we establish the convergence in distribution of (X0 + Zn1)Ψ
n,r
n2 . Note

that (X0 + Zn1) can be expressed with X0, u1, u2, . . . , u(n1+1)P while Ψ
n,r
n2 can be

expressed with un2P , . . . , un P . Hence, as n1 = n2/2 = n/4, the mixing property
entails that
∣

∣

∣P
[

X0 + Zn1 ∈ A, Ψ n,r
n2 ∈ B

]− P
[

X0 + Zn1 ∈ A
]

P
[

Ψ n,r
n2 ∈ B

]

∣

∣

∣ ≤ α
(

(n/4 − 1)P
)

for all Borel subsets A and B of R, where α(·) is the strong mixing coefficient. The
mixing hypothesis entails that α

(

(n/4 − 1)P)
)

tends to 0 as n goes to ∞, thus

lim
n→∞

(

P
[

X0 + Zn1 ∈ A, Ψ n,r
n2 ∈ B

]− P
[

X0 + Zn1 ∈ A
]× P

[

Ψ n,r
n2 ∈ B

]

)

= 0.

for all Borel subsets A and B. So X0+ Zn1 andΨ
n,r
n2 are asymptotically independent.

We know that X0 + Zn1 converges in quadratic mean so in distribution to X0 + ζ

(Proposition 1). Now it remains to study the behaviour of Ψ
n,r
n2 .

(v) Since the time series {uk} is periodically distributed, the time series {u∗
k} is also

periodically distributed. Denoting

Ψ ∗(r)
n :=

n
∑

j=1

φ− j u∗
j P−r ,

we have L [Ψ ∗(r)
n−n2 ] = L [Ψ n,r

n2 ], and the sequence {Ψ ∗(r)
n } converges almost surely

and in quadratic mean to some random variable ζ ∗
r . Then Ψ

n,r
n2 converge in distrib-

ution to ζ ∗
r as n − n2 = n/2 → ∞. Consequently, (X0 + Zn1)Ψ

n,r
n2 converges in

distribution to (X0 + ζ )ζ ∗(r) where X0 + ζ and ζ ∗(r) are independent random vari-
ables. Furthermore from definition (8), we easily deduce the distribution of the ζ ∗

r s.
Following the same lines with Cramér device, we can establish the multidimen-

sional convergence. �

Proof of Theorem 1 The almost sure convergence is a direct consequence of Lem-
mas 1 and 2. To prove the convergence in distribution, we first apply Cramér device
to prove the convergence in distribution of

(

φ−2n B(1)
n , . . . , φ−2n B(P)

n , φ−nC (1)
n , . . . ,

φ−nC (P)
n
)

. For this purpose, let α1, . . . , αP , β1, . . . , βP ∈ R and establish the con-
vergence in distribution of

Sn :=
P
∑

r=1

αrφ
−2n B(r)

n +
P
∑

r=1

βrφ
−nC (r)

n .

Following the same method as in the proof of Lemma 2 we define blocks to separate
the terms B(r)

n andC (r)
n , as well as to apply the asymptotic independence given by the
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strong mixing condition. Denote n1 = n2/2 = n/4. Then Sn can be decomposed as

Sn =
P
∑

r=1

αr
(

φ−2n B(r)
n − φ−2n1 B(r)

n1

)+ φ−2n1
P
∑

r=1

αr B(r)
n1 + φ−n

P
∑

r=1

βr C (r)
n .

Thanks to Lemma 1, φ−2n B(r)
n − φ−2n1 B(r)

n1 converges to 0 almost surely. More-
over thanks to the parts 1, 2(i) and 2(ii) of the proof of Lemma 2, it remains to
study

n
∑

r=1

αrφ
−2n1 B(r)

n1 +
n
∑

r=1

βr (X0 + Zn1)Ψ
n,r
n2 .

Then from the strongmixing condition,
(

B(1)
n1 , . . . , B(P)

n1 , X0+Zn1

)

is asymptotically

independent with respect to
(

Ψ
n,1
n2 , . . . , Ψ

n,P
n2

)

, and following the same lines as in
the part 2(v) of the proof of Lemma 2 we deduce the convergence in distribution of
Sn as n → ∞.

Finally, the application of the continuous mapping theorem for convergence in
distribution completes the proof of the theorem. �

Proof of Theorem 2

Theorem 2 is a direct consequence of the following lemma about the asymptotic
behaviours of Bn and Cn .

Lemma 3

lim
n→∞ φ−2n Bn =

P
∑

r=1

(

AP
r+1

)−2 (X0 + ζ )2

φ2 − 1
a.s. and in L1(P); (9)

lim
n→∞ φ−2nCn = 0 a.s. and in L1(P);

and
lim

n→∞L
[

φ−nCn
] = L

[

(X0 + ζ )ζ ∗]. (10)

Proof (1) First note that Bn can be expressed as follows

Bn =
P
∑

r=2

B(r)
n−1 + B(P)

n − (X0)
2.
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Then thanks to Lemma 1

lim
n→∞ φ−2n Bn =

(

1 + φ−2
P
∑

r=2

(

Ar−1
1

)2

)

(X0 + ζ )2

φ2 − 1
a.s. and in L1(P).

Using the fact that φ−1Ar−1
1 = (AP

r

)−1, we deduce limit (9).
(2) The convergence almost sure and in L1(P) of φ−2nCn to 0, can be easily

obtained following the lines of the proof of the convergence almost sure and in
L1(P) of φ−2nC (r)

n in Lemma 2. Thus the proof is left to the reader.
(3) From its definition, Cn can be expressed by

Cn =
P
∑

r=1

Ar
1

n−2
∑

j=0

φ j (X0 + Z j−1
)

V (r)
j+1 +

P
∑

r=1

n−2
∑

j=0

U (r)
j V (r)

j+1. (11)

(i) Thanks to the stationarity of the sequences
{(

U (1)
j , . . . , U (P)

j

) : j ∈ Z
}

and
{(

V (1)
j , . . . , V (P)

j

) : j ∈ Z
}

, the second term of expression (11) is of order of
magnitude n in probability. Indeed

E

⎡

⎣

∣

∣

∣

∣

∣

∣

P
∑

r=1

n−2
∑

j=0

U (r)
j V (r)

j+1

∣

∣

∣

∣

∣

∣

⎤

⎦ ≤ (n − 1)
P
∑

r=1

E
[

(

U (r)
0

)2
]1/2

E
[

(

V (r)
0

)2
]1/2

.

(ii) Following the same lines as in the proof of Lemma 2, and using the stationarity
of
{(

V (1)
j , . . . , V (P)

j

) : j ∈ Z
}

we can readily prove that

φ−n
P
∑

r=1

Ar
1

n−2
∑

j=0

φ j (X0 + Z j−1
)

V (r)
j+1 = (X0 + Zn1

)

Ψ n
n2 + oP(1)

where n1 = n2/2 = n/4 and

Ψ n
n2 :=

P
∑

r=1

Ar
1

n−2
∑

j=n2

φ j−n V (r)
j+1 =

P
∑

r=1

Ar
1

n−n2
∑

j=2

φ− j V (r)
n− j+1. (12)

The mixing hypothesis (M) entails that X0 + Zn1 and Ψ n
n2 are asymptotically inde-

pendent. Besides the distribution of

Ψ n
n2 =

P
∑

r=1

P−1
∑

k=0

Ar
1Ar

r−k+1

n−n2
∑

j=2

φ− j u(n− j+1)P+r−k .
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coincides with the distribution of Ψ ∗
n−n2 where

Ψ ∗
n :=

P
∑

r=1

P−1
∑

k=0

Ar
1Ar

r−k+1

n
∑

j=2

φ− j u∗
j P−r+k

and the sequence {u∗
k} is defined in part 2(v) of the proof of Lemma 2. The sequence

{u∗
k} is independent with respect to X0 and {uk}, thus the sequence {Ψn} is also inde-

pendent with respect to X0 and {uk}. Since the sequence {u∗
k} is centred periodically

distributed with second-order moments, the sequence {Ψ ∗
n } converges almost surely

and in quadratic mean to some random variable ζ ∗. Thanks to the definition (12)
of Ψ n

n2 and the periodicity of the distribution of the innovation {uk}, we deduce the
distribution of ζ ∗. Then limit (10) is proved. �
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Anna E. Dudek, Harry Hurd and Wioletta Wójtowicz

1 Introduction

Any second-order random process that is generated by the mixing (in the workings
of a system) of randomness and periodicity will likely have the structure of periodic
correlation. Precisely, a random sequence {Xt , t ∈ Z } with finite second moments
is called periodically correlated with period T (PC-T) if it has periodic mean and
covariance functions, e.g.

E (Xt ) = E (Xt+T ) and Cov (Xt , Xs) = Cov (Xt+T , Xs+T ) (1)

for each t, s ∈ Z . To avoid ambiguity, the period T is taken as the smallest positive
integer such that (1) holds.

The studies of PC sequences, which were initiated by [15], result in the appre-
ciable theory and some practical approaches as well. Many real data have periodic
structure, so they can be described by periodically correlated sequences. The cyclic
nature of environmental and social phenomena impart a seasonal mean and correla-
tion structure into many climatological [21, 26] as well as economical [11, 19, 20]
time series. Other examples of PC data could be found in e.g. [9, 16, 22]. Gardner
investigated perceptively the nature of cyclostationarity [12, 13]. Hurd and Miamee
[16] provide substantial study of PC issues with many motivating and illustrative
examples.
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In this paper we focus on identification and estimation of PC structure and on
PARMA (periodic autoregressive–moving-average) modelling introduced in [27,
28]. PARMA sequences are formed by introducing time-varying coefficients into
the ARMA set-up; under a mild restriction on the coefficients, the resulting PARMA
sequence is periodically correlated (PC) [28]. The periodically correlated processes
and PARMAmodelling are studied in [4, 5, 9] and lately also in [1]. Themethods pro-
posed by those authors, although based on statistical principles, are not well known
or available to a wide audience. Currently, difficulties connected with analysis of
periodic sequences arise from deficient knowledge about mathematical achievement
in this field. The intent of this work is to provide an accessible package for periodic
time series analysis in R. In this paper, we present an R package called perARMA
that is available from the Comprehensive R Archive Network (CRAN) (see online
supplementarymaterial and [10]). The package implements non-parametric analysis,
characterization and identification, PARMA model fitting and prediction. Missing
observations are allowed in some characterization procedures. The implemented pro-
cedures are loosely based on the Hurd’s Matlab functions available from his Web
page and introduced in [16]. As a result, the applied researcher obtains quite easy and
very intuitive tool that can be easily used in many applications. To our knowledge
there is no R package (under CRAN) for PARMA time series analysis although the
pear [3] and partsm [18] packages provide for PAR analysis.

The paper is organized in the followingway. In Sect. 2we provide some theoretical
background of PARMA time series. Section3 presents analysis of real dataset from
energy market. In Sect. 4 the estimation of full PARMA model for simulated dataset
is performed. Finally, Sect. 5 concludes our study.

2 PARMA Time Series Analysis

PARMA modelling arises from the introduction of periodic correlation of PC
sequences into a stationary ARMA model when the coefficients of the model are
allowed to vary periodically in time. Precisely, the random sequence Xt is called
PARMA(p,q) with period T if it satisfies

Xt =
p

∑

j=1

φ j (t)Xt− j +
q

∑

k=1

θk(t)ξt−k + σ(t)ξt , (2)

where φ j (t) = φ j (t + T ), θk(t) = θk(t + T ), σ(t) = σ(t + T ) for all j = 1, . . . , p,

k = 1, . . . , q are periodic coefficients, and ξt is mean zero white noise with variance
equal to one.

The PARMA systems are widely applied in modelling climatology [4, 5], mete-
orology [24], hydrology [2, 21, 26, 28] and economics data [7, 11].

PARMA time series analysis is performed in threemain processing steps: (1) iden-
tification, (2) parameter estimation and (3) diagnostic checking. The same general
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process is used in the stationary case, where the tools are simpler. In the following
sections, we describe the tools that are essential to achieve each of these three steps.
But first we focus on the ARMA(p,q) fitting process to remind the reader of the
general idea.

Identification in the stationary case refers to the determination of the model order
parameters p and q, which provide an adequate fit to the data. Initial guesses of p and
q are usually suggested from the identification tools,which are the sample covariance,
sample autocorrelation (ACF) and sample partial autocorrelation (PACF). Parameter
estimation refers to the process of estimating the values of the parameters in the
chosen representation. For AR models we can use the Yule–Walker equations. For
general ARMA we use maximum likelihood. Diagnostic checking in the stationary
case consists of determining if the residuals (based on some parameter estimates)
are consistent with white noise. If not, then modifications to p and q are made based
essentially on the application of the identification step to the residuals (determine
what structure is not yet explained) and estimation is rerun.

Belowwepresent how those ideas canbe transformed to the periodic nonstationary
case. In the subsequent we assume that {X1, X2, . . . , X N } is a mean zero PC time
series with period T . Moreover, we assume without loss of generality that the data
record contains d full cycles, e.g. N is an integer multiple of period T (N = dT ).

2.1 Identification of PC-T Structure

There are two processes that we include under the heading of identification: (1)
the determination of period T when it is unknown and some basic characterizing
quantities such as sample periodic mean m̂t,d , sample periodic deviation σ̂d (t) and
sample periodic covariance ̂Rd (t + τ, t); (2) the determination of p and q, the orders
of the PAR and PMA parts of a PARMA model.

Preliminary Identification

An important preliminary step in the identification process is the determination of
period T when it is not known. In this case, the periodogram and squared coherence
statistic can be used. The usual periodogram can detect additive frequency com-
ponents in the time series and this includes frequencies belonging to the additive
periodic mean. So if a periodic mean is present, the periodogram can illuminate its
frequencies and help in the determination of T . The value of T may also be inferred
from spacing of the support lines in the (harmonizable) spectral measure of a PC
process. These support lines are seen empirically in the images produced by the
magnitude-squared coherence statistic. Using both simultaneously gives a complete
picture.

To clarify the idea of the magnitude-squared coherence, we need to use some fea-
tures of the spectral measure of a PC sequence. The spectral measure of periodically
correlated sequence is determined on the two-dimensional set [0, 2π) × [0, 2π), so
we always deal with the pairs of frequencies (λp, λq) ∈ [0, 2π)2, and the support
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of the measure is contained in the subset of parallel lines λq = λp + 2 jπ/T for
j = −(T − 1), . . . ,−1, 0, 1, . . . , (T − 1). For more details see [14, 16].

The concept of determining the period length using the squared coherence statistic
directly corresponds to its features.WebeginwithDiscrete Fourier Transform (DFT),
X̃ N (λ j ), of the series {X1, X2, . . . , X N }, defined for the Fourier frequencies λ j =
2π j/N , j = 0, 1, . . . , N−1. The squared coherence statistic,

∣

∣γ̂ (λp, λq , M)
∣

∣

2 =
∣

∣

∣

∑M−1
m=1 X̃ N (λp−M/2+m)X̃ N (λq−M/2+m)

∣

∣

∣

2
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∣

∣

∣X̃ N (λp−M/2+m)
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∣
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∣

∣
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∣

∣
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2 (3)

is computed for a specified collection of pairs (λp, λq) ∈ [0, 2π)2; note it is the
sample correlation between two M-dimensional complex-valued vectors and satisfies
0 ≤ ∣

∣γ̂ (λp, λq , M)
∣

∣

2 ≤ 1. Having computed (3) for (λp, λq) in some subset of
[0, 2π)2, one may determine frequency pairs indexed by (p, q) for which the sample
correlation is significant in the sense that threshold determined by the distribution
of

∣

∣γ̂ (λp, λq , M)
∣

∣

2, under the null hypothesis of stationary white noise, is exceeded
[16, p. 310]. Plotting those points on the square [0, 2π)2, we can say something
about the nature of the analyzed time series, according to some general rules:

• if in the square only the main diagonal appears, then Xt is a stationary time series;
• if there are some significant values of statistic and they seem to lie along the parallel
equally spaced diagonal lines, then Xt is likely PC-T,where T is the “fundamental”
line spacing. Algebraically, T would be the gcd of the line spacings from the
diagonal; for a sequence to be PC-T, not all lines are required to be present;

• if there are some significant values of statistic but they occur in some non-regular
places, then Xt is a nonstationary time series in other than periodic sense; but note
there are many hypotheses being tested, so some threshold exceedances are to be
expected.

We need to comment also the choice of the parameter M that controls the length
of the smoothing window appearing in (3). Too small or too large values of M can
affect the results [16, p. 311]. Hurd and Miamee suggest to observe the results for a
collection of smoothing parameters; a suggested beginning choice is M = 8, 16, 32.
Under the null case the sample-squared coherence statistics has probability density

p
(

|γ |2
)

= (M − 1)
(

1 − |γ |2
)M−2

, 0 ≤ |γ |2 ≤ 1, (4)

because, for Xt a Gaussian white noise, ˜X N (λ j ) are complex Gaussian with uncor-
related real and imaginary parts for each j . As a result, to determine the squared
coherence α-threshold we use

|γ |2α = 1 − exp (log(α)/(M − 1)) . (5)

For more details we refer the reader to [14, 16].
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When the period length is known, the estimation of basic sequence statistics: peri-
odic mean, periodic deviation and periodic covariance is possible. Detailed descrip-
tion of all estimators presented below can be found in [16].

The sample periodic mean function is given by

m̂t,d = 1

d

d−1
∑

k=0

Xt+kT . (6)

The sample periodic covariance function is defined for any lag τ as

̂Rd (t + τ, t) = 1

d

d−1
∑

k=0

(

Xt+kT +τ − m̂t+τ,d
) (

Xt+kT − m̂t,d
)

(7)

for t = 0, 1, . . . , T −1. The number of τ for which (7) is evaluated can be determined
(or estimated) from the usual (stationary) ACF. Then it is quite straightforward to
get the periodic sample deviation by putting

σ̂d (t) = ̂Rd (t, t) . (8)

The Fourier representation of the covariance function [15] for PC-T processes is
based on the periodicity Rd(t + τ, t) = Rd(t + τ + T, t + T ) and the Fourier series
representation

Rd(t + τ, t) =
T −1
∑

k=0

Bk(τ ) exp(i2ktπ/T ), (9)

where Bk(τ ) (τ ∈ Z and k = 0, 1, . . . , T − 1) are the Fourier coefficients given by

Bk(τ ) = 1

T

T −1
∑

t=0

exp(−i2ktπ/T )Rd(t + τ, t). (10)

The problem of computing the Fourier representation is thus reduced to the problem
of determining the coefficients Bk(τ ). Moreover, B0(τ ) is always non-negative def-
inite and hence is the covariance of stationary sequence. The Fourier coefficients of
the sample covariance, for k = 0, 1, . . . , T − 1 and τ ∈ set of lags, can be estimated

̂Bk,dT (τ ) = 1

dT

∑

t∈IdT,τ

(

Xt+τ − m̂t+τ,d
) (

Xt − m̂t,d
)

e−i2πkt/T , (11)

where

IdT,τ =
{

[0, dT − τ − 1] for τ ≥ 0
[−τ, dT − 1] for τ < 0.
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Hurd and Miamee proposed a test with the null hypothesis Bk(τ ) = 0 for fixed
τ and k, which is based on the properties of the sample Fourier transform of
Yt,τ = (

Xt+τ − m̂t+τ,d
) (

Xt − m̂t,d
)

. The p values for the test of |Bk(τ )|2 = 0 are
based on the ratio of magnitude squares of amplitudes of a high resolution Fourier
decomposition. Magnitudes for the frequency corresponding to index k are com-
pared to the magnitudes of neighbouring frequencies (via the F distribution) [16, pp.
272–282, 288–292].

Determination of p and q

Before fitting a periodic model (PARMA(p,q)) to data, the orders of maximum lag
p and/or q are required. Similarly to the stationary ARMA, we need to look at the
sample autocovariance (ACF) and the sample partial autocovariance (PACF). Of
course, their periodic versions are essential in that case. Below we present formulas
for both of them.

Sample periodic ACF for t = 0, 1, . . . , T − 1 is defined as

ρ̂d (t + τ, t) = ̂Rd (t + τ, t)

σ̂d (t + τ) σ̂d (t)
, (12)

where τ is a lag. To calculate confidence bands for ρ̂d (t + τ, t) the Fisher transfor-
mation

Z = 1

2
log

1 + ρ̂

1 − ρ̂
(13)

is used, producing Z that are approximately normal N
(

μZ , σ 2
Z

)

, where μZ ≈ ζ +
(1/2d)ρ, ζ is the Fisher transformation of ρ and σ 2

Z = 1/(d − 3). The confidence
limits for ρ can be calculated using those for Z with the assumption that the term
(1/2d)ρ can be ignored.

Two useful tests may be additionally constructed. First, a test for null hypothesis
ρ(t + τ, t) ≡ ρ(τ), where ρ(τ) is some unknown constant, (no time variation at lag
τ ) is based on statistic

S2
ρ (τ ) =

(

Zt − ̂Zt
)2

1/ (d − 3)
, (14)

which under the null hypothesis is approximately χ2(T − 1). The second, a test for
null hypothesis ρ(t + τ, t) ≡ 0 for some specific τ , (no correlation at this lag τ )
is equivalent to the test for μZ = 0. For more details about those tests we refer the
reader to [8, p. 399] and [16, p. 285].

The sample periodic PACF, for t = 0, 1, . . . , T − 1 and n ∈ set of orders is
defined as

π̂n+1(t) = R̂d(t + 1, t − n) − r̂′
t−n,t :t−n+1α̂

(t+1)
n

σ̂n(t + 1)σ̂n(t − n)
, (15)

where
σ̂ 2

n (t + 1) = R̂d(t + 1, t + 1) − r̂′
t+1,t :t−n+1α̂

(t+1)
n ,
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σ̂ 2
n (t − n) = R̂d(t − n, t − n) − r̂′

t−n,t :t−n+1β̂
(t−n)

n

and

α̂
(t+1)
n = r̂−1(t, n)r̂t+1,t :t−n+1,

β̂
(t−n)

n = r̂−1(t, n)r̂t−n,t :t−n+1.

The confidence bands are based on the asymptotic normality assumption [6, Chap. 3].

2.2 Estimation of PARMA Parameters

Parameter estimation refers to the process of estimating the values of the parameters
in the chosen representation. The full PARMA model has T parameters for each
autoregressive order, for each moving average order and for σ(t) = θ0(t), t =
0, 1, . . . , T −1, and thus a total of T (p+q +1) parameters, so the cost of computing
all of them could be quite high. Therefore, it is recommended first trying to fit simple
models, which explain the data with the fewest possible parameters.

Two useful methods for estimation of periodic models coefficients are imple-
mented in perARMA package: the Yule–Walker moment estimators for the gen-
eral PAR model and approximate maximum likelihood estimation for the general
PARMA. It is easy to show that for PAR models both techniques are equivalent, e.g.
for PAR(1) model provide following estimators of coefficients:

φ̂(t) = γ̂t (1)

γ̂t−1(0)
, σ̂ 2(t) = γ̂t (0) − φ̂(t)γ̂t (1), t = 0, 1, . . . , T − 1, (16)

where γ̂t ( j) = 1
d

∑d−1
n=0 XnT +t− j XnT +t and d = N/T is number of cycles.

The Yule–Walker estimation is a simple method, but whenever PMA terms are
present, it will be inadequate. In these cases maximum likelihood estimation is used.
But whenever there are a large number of parameters, the optimization has difficulty
due to presence of local maxima and due to slowness caused by the approximation
of derivatives.

Rather than searching over the entire Φ,Θ parameter space, the dimension of the
search space can often be substantially reduced by transforming Φ,Θ to the Fourier
coefficients A, B appearing in the DFT representation introduced in [17]:

φ j (t) = a j,1 +
�T/2	
∑

n=1

a j,2n cos(2πnt/T ) +
�T/2	
∑

n=1

a j,2n+1 sin(2πnt/T ), (17)

θk(t) = bk,1 +
�T/2	
∑

n=1

bk,2n cos(2πnt/T ) +
�T/2	
∑

n=1

bk,2n+1 sin(2πnt/T ) (18)
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for j = 1, . . . , p, k = 0, . . . , q and t = 0, 1, . . . , T −1.Reduction of the parameter
search to subspaces of A, B can be easily accomplished by constraining some (or
evenmost) frequencies to have zero amplitude. Often this can be justified by physical
considerations that correspond to smoothness in the time dependence. Since the
mapping (DFT) from Φ,Θ to A, B is linear and invertible, a linear subspace of A, B
transforms back to a linear subspace ofΦ,Θ , although our methods make no explicit
use of this fact. In our experience, reduction of the search space in this manner not
only reduces computation time, but tends to produce unique solutions, whereas the
likelihood often has many local extremes in the entire space Φ,Θ .

This parameterization was first used in [28] in the context of maximum likelihood
parameter estimation and in [23] where are developed expressions for the harmoniz-
able spectral density in terms of the parameters A, B.

Computation speed of PARMA maximum likelihood estimation can be fur-
ther improved by the use of Ansley’s transformation, first applied to PARMA(p,q)
sequences in [27, 28]. This method focuses on the conditional version which ignores
the first m = max(p; q) samples in order to avoid the cumbersome calculation of
the full covariance.

2.3 Goodness of Fit and Model Selection

To confirm that fittedmodel is appropriate the residuals should be examined to ensure
independence (whiteness) and normality, but this does not differ from stationary case.
However, in the periodic case we do permit the residuals to be periodic white noise,
this can be easily converted to white noise by scaling out the empirical periodic
variance.

Sometimes there are several sets of model parameters that give reasonable fits.
Then to choose the simplest model that explains data the best the penalized like-
lihoods could be computed. The AIC and BIC methods compute penalties for the
number of parameters used and thus encourage the simplicity (or parsimony) of the
selected fit. The parameter set that minimizes the penalized likelihoods is considered
to the best fit. To calculate AIC and BIC values we use following (k is the total num-
ber of parameters in the parameter set Φ,Θ or A, B in the Fourier parametrization
and N is the number of linearly independent samples):

AIC(k) = −2 ln L
(

̂Φ, ̂Θ
) + 2k,

BIC(k) = −2 ln L
(

̂Φ, ̂Θ
) + 2k log N .
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3 Real Data Example

In this section identification of PC-T structure, PAR modelling and forecasting pro-
cedure is developed for a non-volatile segment of real time series contained hourly
observations from volumes of energy traded on the Nord Pool Spot exchange. The
Nord Pool Spot runs the largest market for electrical energy in the world, measured
in volume traded (TWh) and in market share. The data were found on the Nord Pool
Spot Exchange Web page http://www.npspot.com.

3.1 Data

Analyzed data aggregates volume in MWh bought and sold by participants in each
bidding area of this market. Thus, this data reflects the demand on the energy on the
daily basis. In Fig. 1 there is presented volumes_2010 time series that contains
all hourly observations within 2010 year with non-volatile segment identified. This
segment (after removing weekends records) as volumes time series is analyzed in
our study. It contains hourly observations of the volumes of energy traded from 6
July to 31 August of 2010 (N = 984 records). We decided to omit the weekends, as
including them would increase the complexity of the model with unknown benefit.
So for simplicity and clarity, we focus on understanding the dynamics within the
trading part of the week and leave the weekend effects for a future study.

Fig. 1 Volumes of energy traded hourly on the Nord Pool Spot Exchange in 2010 with the non-
volatile segment of volumes data (from 6 July 2010 to 31 August 2010)

http://www.npspot.com
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3.2 Non-parametric Spectral Analysis

As one may expect for volumes time series presented in Fig. 1, the daily periodic
structure is observed. Even though the period length T = 24 is rather obvious in this
case, in some cases it may need to be estimated, as the dominant frequencies of the
process may not be known at the beginning of analysis. Therefore in our example,
we confirm that the period length was properly chosen.

In the perARMA package two procedures, based on the spectral analysis, are
useful for estimating the period: pgram() and scoh(). Function pgram() plots
periodogram of the series and provides test to find candidate for the period length
assuming that the period of the second-order structure is the same as the period
of the first order structure (i.e. in the instantaneous mean E{X (t)} of the series
itself). Recall that the FFT index j (where a big peak occurs) corresponds to the
number of cycles in the FFT window, so the period corresponding to the index
j = 41 where the first highly significant peak occurs can be easily computed as
T = 984/41 = 24 (see Fig. 2). The function scoh(), which computes and plots
the magnitude-squared coherence, can be used to confirm the presence of the PC
structure, to estimate the period of the PC structure and to determine the strength of
the PC structure on the different support lines. Specifically, the magnitude-squared
coherence |γ̂ (λp, λq , M)|2 is computed in a specified square set of (λp, λq) and
using a specified smoothing window, M . The perception of this empirical spectral
coherence is aided by plotting the coherence values only at points where threshold is
exceeded. To ensure that periodic structure seen in the spectral coherence image is not
a consequence of an additive periodicmean, it is recommended that the periodicmean
should be first removed from the series. In Fig. 2 there are presented periodogram
plot and magnitude-squared coherence values. In the right, the first significant

Fig. 2 Periodogram of ‘volumes’ in the logarithmic scale (solid line) with threshold line (dashed)
for α = 0.05 computed from F(2, 2 ∗ M) statistic with M = 4. Peaks at j = 41, 82, . . . (left-hand
side). Squared coherence statistic, values exceeding an α = 0.05 threshold, applied to the ‘volumes’
series after removing periodic mean with M = 16 (right-hand side)
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off-diagonal is at |p − q| = 41 which verifies the first significant peak at j = 41 in
the periodogram plot on the left. This shows that there is a second-order PC structure
with period T = 494/41 = 24 in the data.

3.3 Preliminary Identification and Conditioning

Knowing the period length enables one to compute the basic periodic characteristics
of the series: periodic mean and periodic standard deviations, which are computed
and plotted by procedures permest() and persigest(), respectively. Both
are plotted as a function of season with 1 − α confidence intervals based on all
non-missing values present for each particular season. For periodic mean confidence
intervals are based on the t distribution, whereas for periodic standard deviations
the chi-square distribution was used. Figure3 presents plots of the periodic sample
mean and periodic sample deviation, along with 95% confidence intervals, for the
volumes data with T = 24; it is clearly indicated that the samplemean and periodic
sample deviation are not constant and thus the data are non-stationary. The p value
for a one-way ANOVA test for equality of seasonal means and p value for Barttlet’s
test for homogeneity of variance σ(t) ≡ σ are also computed; by σ(t) ≡ σ wemean
σ(t) = σ, t = 0, 1, . . . , T − 1. These tests resulted in p value = 9.74 ∗ 10−60 for
the ANOVA test and p value = 0 for Barttlet’s test. Rejection of homogeneity based
on the p value indicates a properly periodic variance, but leaves open whether or
not series is simply the result of a stationary process subjected to amplitude-scale
modulation. To resolve this, R(t + τ, t) for some set of τ values with τ �= 0 needs to
be calculated. If we cannot reject ‘R(t, t + τ) is properly periodic’ for some τ �= 0
then the series is an amplitude-modulated stationary sequence.

Fig. 3 Estimated periodic mean (left-hand side) and periodic standard deviations (right-hand side),
with 1 − α confidence intervals for α = 0.05, for ‘volumes’ series. Number of samples per season
= number of periods = 41
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3.4 Identification

In this section the determination of p and/or q orders will be carried out. Therefore,
periodic version of ACF and PACF functions for volumes data will be computed.

3.4.1 Autocovariance Function of PC Processes

At the identification step the covariance function R(t + τ, t) (see (7)) and/or corre-
lation coefficients ρ(t + τ, t) for each particular season t = 0, 1, . . . , T −1 and lags
τ should be computed. The essential calculation could be performed in two different
ways: direct and indirect.

• Direct method: tests directly on ρ(t + τ, t)
We first compute correlation coefficients ρ(t + τ, t) (formula (12)), where t =
0, 1, . . . , T −1 are seasons and τ is lag (procedure peracf()). For each possible
pair of t and τ confidence limits for these coefficients are also computed using
Fisher transformation, see Fig. 4. Two important tests are also performed:

(a) ρ(t + τ, t) ≡ 0 meaning ρ(t + τ, t) = 0, t = 0, 1, . . . , T − 1 the rejection for
any τ �= 0 indicates that the sequence is not PC white noise.

(b) ρ(t +τ, t) ≡ ρ(τ)meaning ρ(t +τ, t) = ρ(τ), t = 0, 1, . . . , T −1, rejection
for any τ �= 0 indicates that series is properly PC and is not just an amplitude-
modulated stationary sequence. That is, there exist lags τ for which ρ(t, τ ) is
properly periodic in variable t .

An issue is the number of lags that need to be tested. A quick estimate can be
obtained from examining the usual ACF applied to the data and using the largest
lag producing significant non-zero correlation.

Fig. 4 Correlation coefficients of ‘volumes’ series: ρ̂(t, 1) versus t and ρ̂(t, 2) versus t with 1−α

confidence intervals for α = 0.05
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Table 1 Constancy of correlation coefficients for ‘volumes’ data: for each fixed τ we give the
p values for tests of constancy in correlations for τ = 1, 2, . . . , 12

τ (a) : ρt (τ ) ≡ 0 (b) : ρt (τ ) = const

1 0.00 0.00

2 0.00 4.86623 × 10−9

3 0.00 2.30767 × 10−4

4 0.00 0.02262

5 0.00 0.15584

6 0.00 0.41075

7 0.00 0.48365

8 0.00 0.25407

9 0.00 0.038110

10 0.00 0.00770

11 0.00 0.00846

12 0.00 0.00202

Tests are (a) if the coefficients are zero for all t : ρt (τ ) ≡ 0 and (b) if they are constant: ρt (τ ) ≡ ρ(τ)

We note that if ρ(t + τ, t) ≡ 0 is rejected for some τ �= 0 then also ρ(t + τ, t) ≡
ρ(τ) is rejected for that τ . This follows also because if a process is PC white
noise, then it is also an amplitude-modulated stationary sequence. Table1 presents
results for both tests when lags τ = 1, 2, . . . , T were considered.
Conclusions from direct tests:

1. test (a): hypothesis ρt (τ ) ≡ 0 for all analyzed lags is rejected. It means that
the process exhibits non-zero correlation at non-zero lags, meaning it is not PC
neither stationary white noise;

2. test (b): hypothesis ρt (τ ) ≡ ρ(τ) is rejected for lags τ = 1, 2, 3, weakly
rejected for τ = 10, 11, 12 and not rejected for other lags. Significant values at
lag τ = 1, 2, 3 show that there is periodicity in correlations even when periodic
variance is scaled out.

• Indirect method: tests on Fourier coefficients Bk(τ )

In the second approach computation of the complex estimators B̂k(τ ) (see (10)) for
particular lags τ and k = 0, 1, . . . , T − 1 is performed (procedure Bcoeff()).
Moreover, p values for the test of Bk(τ ) = 0 for all τ and k are returned. Addition-
ally, note that testing if Rd(t, t) = σ 2

t ≡ σ 2 is equivalent to testing if Bk(0) = 0
for k = 1, . . . , T − 1.
Computations are made for each specified τ , the values of B̂k(τ ) only for k =
0, 1, . . . , �(T − 1)/2	 because Bk(τ ) = BT −k(τ ). In addition, the p values for
the test if Bk(τ ) = 0 are presented in Table2. These p values should be treated
with caution because the requisite assumptions may not be met (see [16]). In the
first two columns we have results for τ = 0, 1 for the original series volumes,
whereas in the next columns there are results for τ = 1, 2 for the normalized
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Table 2 The results of testing the nullity of Fourier coefficients Bk(τ ) and ρk(τ )

k Bk(0) Bk(1) ρk(1) ρk(2)

0 0.00 0.00 0.00 0.00

1 1.48 × 10−1 8.68 × 10−2 7.09 × 10−1 5.36 × 10−1

2 1.11 × 10−16 2.30 × 10−12 8.25 × 10−1 8.04 × 10−1

3 8.02 × 10−5 4.35 × 10−3 5.51 × 10−1 4.13 × 10−1

4 1.43 × 10−3 3.76 × 10−3 7.62 × 10−1 7.43 × 10−1

5 4.98 × 10−5 1.16 × 10−3 8.17 × 10−1 7.54 × 10−1

6 5.06 × 10−1 6.46 × 10−1 9.43 × 10−1 8.39 × 10−1

7 3.46 × 10−3 4.25 × 10−2 9.14 × 10−1 9.23 × 10−1

8 4.66 × 10−1 6.54 × 10−1 8.99 × 10−1 8.54 × 10−1

9 3.05 × 10−1 6.12 × 10−1 9.57 × 10−1 9.37 × 10−1

10 5.75 × 10−1 7.44 × 10−1 1.00 9.63 × 10−1

11 7.54 × 10−1 9.65 × 10−1 9.76 × 10−1 9.49 × 10−1

12 7.55 × 10−1 7.49 × 10−1 9.84 × 10−1 9.99 × 10−1

Significant values of Bk(τ ) occurs for k = 0, 1 and of ρk(τ ) for k = 0

series (volumes normalized by the sample variance σ̂ 2(t)). If the series is the
result of an amplitude-scale modulation of a stationary series, then we expect that
ρk(τ ) = 0 will be rejected only for k = 0 and τ = 0 and possibly some other τ

and it will never be rejected for any other k ≥ 1 and lag τ .
Conclusions from indirect tests:

1. Rejection for τ = 0 of hypothesis B0(0) = 0 was expected because B0(0) is
the average variance of the sequence and therefore is non-zero for nontrivial
sequences;

2. The strong rejection of that B2(τ ) = 0 for τ = 0 indicates the periodicity in
the variance (result is consistent with the persigest() function output);

3. Hypothesis that B0(1) = 0 and B2(1) = 0 are strongly rejected, showing very
significant periodic variation in correlation. It also indicates that covariance
function R(t + τ, t) is periodic for lags τ with frequency λ = 4π/T ;

4. Hypothesis ρk(τ ) = 0 is strongly rejected for k = 0 and τ = 1, 2, whichmeans
that there exist high correlation coefficients in the normalizedvolumes series,
so it is not white noise;

5. Hypothesis that ρk(τ ) = 0 is never rejected for k > 0 and τ = 1, 2, so using
this method we cannot reject the hypothesis that the correlation coefficients for
lag τ are constant (again consistent with normalized series being stationary,
not necessarily white noise).

Note that indirect method of covariance function estimation provides the opposite
conclusion in comparison to the direct method. In this case we cannot reject the pos-
sibility that analyzed series is a result of amplitude modulation of stationary series
(the hypothesis about correlation coefficients equal to zero was not rejected). Sur-
prisingly, it can happen because direct method examines the sample time-dependent
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correlations in the period, whereas indirect method returns estimators for Fourier
coefficients. It is argued that usually we can reject ρ(t + 1, t) ≡ ρ1 better in time
domain than in the frequency domain [16, pp. 228–292].

3.4.2 Partial Autocovariance of PC-T Processes

Computation of periodic sample correlation coefficients π̂n+1(t) = π̂(n + 1, t) (see
(15)) is provided by the perpacf() function, see Fig. 5. Also ppfcoeffab()
procedure is applied to represent π(n, t) by its Fourier coefficients. If the variation in
time of π(n, t) is sufficiently smooth over the period T , then looking at these Fourier
coefficients may be a more sensitive detector of linear dependence of xt+1 on the
preceding n samples (n is fixed here) than looking at π(n, t) for individual times.
Two additional hypothesis tests are also provided:

Fig. 5 Partial correlation coefficients π̂(n + 1, t) of the ‘volumes’ series for specified number
of samples n = 1, . . . , 12 and seasons t = 1, . . . , 9 with 1 − α confidence intervals, α = 0.05;
inner lines are confidence intervals for the null hypothesis of π(n + 1; t) = 0 and are based on the
asymptotic null distribution; the outer lines are based on the same test but with Bonferroni correction
for the number of n; coefficients values are presented on separate plots for particular t = 1, . . . , T
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(a) if π(n0 + 1, t) = 0 for t = 0, 1, . . . , T − 1 and each fixed n0 for n0 =
1, 2, . . . , nmax ,

(b) if π(n + 1, t) = 0 for t = 0, 1, . . . , T − 1 and n0 ≤ n ≤ nmax .

For volumes data only for n = 0, 2 null hypothesis are rejected. Thus, only
π(1, t) �= 0 and π(3, t) �= 0 for some values of t . For n = 1 and n > 2 and
all t we can assume that π(n + 1, t) = 0. The obtained results suggest fitting a
PAR(3) model to the data.

3.4.3 Usual ACF and PACF

Finally, to check the strength of dependence between the variables usual (meaning
not periodic) ACF and PACF functions are plotted. It happens that for PC time series
the usual ACF and PACF are still useful in the identification of model orders and in
some cases can be more sensitive than the periodic versions. When subjected to a
truly PC sequence, the usual ACF and PACF produce an average (of sorts; the exact
relationship is an open question) of the instantaneous (time indexed) values produced
by periodic ACF and periodic PACF. Depending therefore on correlations between
these averaged quantities, the usualACF and PACFmay bemore or less sensitive than
the instantaneous ones. Function acfpacf() plots values of usual ACF and PACF
functions with confidence intervals. It is possible to run this procedure on original
data which include the periodic mean as a deterministic component. But typically
the periodic mean can distort our understanding (or view) of the random fluctuations,
thus using data after removing periodic mean is recommended as well (see Fig. 6).
As a result of identification stage the orders of lags p and/or q for model of PARMA
type: PARMA(p,q), PAR(p) or PMA(q), should be determined. For volumes data,
periodic ACF values point to significant periodic correlations to many lags, which is
consistent with PAR model with large coefficients. One can observe the significant
periodic PACF values at n = 0 and maybe n = 1, which suggests starting with

Fig. 6 Usual ACF and
PACF values of ‘volumes’
series together with 95%
confidence intervals (top and
bottom plot, respectively);
think inner dotted line is
95% CI for null hypothesis
of π̂(n + 1) = 0 and outer is
same but Bonferonni
corrected for the number of n
plotted (i.e. 24)
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PAR(1) model and increasing the order of lags if it will be necessary. Significant
values of the usual ACF and PACF are consistent with the periodic ones (strong
autocorrelation values on ACF plot for all specified lags and significant values of
PACF for some n, i.e. n = 0, 2, mainly for n = 0, p value equal to 0). This indicates
a strong average lag 1 correlation and a weaker lag 3 (lag = n + 1) correlation
suggesting a PAR(3) with a high average φ1(t) and a low average φ3(t).

3.5 Model Fitting

The PARMA(p,q) model has in total T (p + q + 1) coefficients, thus, especially
for long period length, the problem of estimation is computationally burdensome.
Therefore, at least at the beginning, to reduce the number of parameters, it is recom-
mended to fit models which explain that data with the fewest possible parameters.
Then, only if proposed model is not sufficient, the order of lags should be increased.
In the perARMA package, the Yule–Walker moment estimates for the general PAR
model (procedure perYW()) and the approximate maximum likelihood parameter
estimates for the general PARMA model (procedure parmaf()) are implemented.
To illustrate the functionality of these procedures we apply them to the volumes
data, after removing periodic mean, elaborating identification clues. First, we fit the
simplest possible model, i.e. PAR(1)

Xt − φ(t)Xt−1 = σ(t)ξt ,

where ξt is white noise with zero mean and variance equal to 1. The total number
of parameters in this model is equal to 2T . As it is shown in Figs. 7 and 8 the

Fig. 7 PAR(1) model residuals evaluation: Usual ACF and PACF values together with 95% con-
fidence intervals (top and bottom plot, respectively); think inner dotted line is 95% CI for null
hypothesis of π̂(n + 1) = 0 and outer is same but Bonferonni corrected for the number of n plot-
ted (i.e. 12) (left-hand side). Correlation coefficients ρ̂(t, 1) versus t with confidence intervals for
α = 0.05 (right-hand side)
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Fig. 8 Partial correlation coefficients π̂(n + 1, t) of PAR(1) model residuals for specified number
of samples n = 1, . . . , 12 and seasons t = 1, . . . , 9 with 1 − α confidence intervals, α = 0.05;
inner lines are confidence intervals for the null hypothesis of π(n + 1, t) = 0 and are based on the
asymptotic null distribution; the outer lines are based on the same test but with Bonferroni correction
for the number of n; coefficients values are presented on separate plots for particular t = 1, . . . , 12

residuals are not consistent with periodic white noise ones. Even if correlations
significantly decreased, for τ = 1 test for equality still rejects the null hypothesis
with p value equal to 1.54E −7. Then we fit another model with the increased order
of autoregression p, i.e. PAR(2)

Xt − φ̂1(t)Xt−1 − φ̂2(t)Xt−2(t) = σ̂ (t)ξt ,

where ξt is white noise with zero mean and variance equal to 1. The total number
of parameters is equal to 3T. We repeat the whole procedure of examining residuals
and checking if residuals are consistent with periodic white noise. In Fig. 9 one can
observe that significant periodic correlations in the residuals are completely absent
in residuals of PAR(2) model. For lag τ = 1 both null hypothesis (provided by
peracf() procedure) were not rejected with p values equal to 0.99 and 0.81. Also
usual ACF and PACF functions for residuals are consistent with periodic white noise
ones. In Fig. 10 there are presented coefficients π̂(n + 1, t) for PAR(2) residuals
(n = 1, . . . , 8 and t = 1, . . . , 12) together with confidence intervals for α = 0.05:
inner for π(n + 1, t) = 0 and outer for Bonferroni correction. There are finally
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Fig. 9 PAR(2) model residuals evaluation: Usual ACF and PACF values together with 95% con-
fidence intervals (top and bottom plot, respectively); think inner dotted line is 95% CI for null
hypothesis of π̂(n + 1) = 0 and outer is same but Bonferonni corrected for the number of n plot-
ted (i.e. 12) (left-hand side). Correlation coefficients ρ̂(t, 1) versus t with confidence intervals for
α = 0.05 (right-hand side)

Fig. 10 Partial correlation coefficients π̂(n +1, t) of PAR(2) model residuals for specified number
of samples n = 1, . . . , 12 and seasons t = 1, . . . , 9 with 1 − α confidence intervals, α = 0.05;
inner lines are confidence intervals for the null hypothesis of π(n + 1, t) = 0 and are based on
the asymptotic null distribution; the outer lines are based on the same test but with Bonferroni
correction for the number of n; coefficients values are presented on separate plots for particular
t = 1, . . . , 12)
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no values which exceed the outer threshold. For periodic white noise we expect
π(n + 1, t) = 0, for all t and n and in this case this hypothesis is definitely not
rejected (p value = 0.27).

Additionally, the penalized likelihoods for both PARmodelswere computed using
loglikec() procedure.AICvalueswere equal to 6873.231 and 6821.9 for PAR(1)
and PAR(2) models, respectively. BIC values were equal to 6883.012 and 6836.569
for PAR(1) and PAR(2) models, respectively. Both criteria prefers PAR(2) model and
analysis of residuals confirms PAR(2) model as a better fit. Furthermore, as residuals
of PAR(2) model are consistent with periodic white noise, it seems that volumes
data did not require a full PARMA model.

3.6 Short Time Prediction for PAR Models

In this section a diagnostic checking is carried out by comparing predicted values
of volumes series (based on PAR models coefficients) with the corresponding real
values of this series on 1 and2September 2010. First procedurepredictperYW(),

Fig. 11 Prediction errors (i.e. difference between predicted and true values of the series) on 1 and
2 September 2010 for various ways of predicting: PAR(1) (dashed line), PAR(2) (solid line) and
sample periodic mean (dotted line)
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based on the Yule–Walker estimators, is applied to demeaned volumes series to
forecast values for the next 2 days (48 observations). Then sample periodic mean
is added to obtained predictors and results are compared with the real (observed)
values of the series. Instead of analyzing particular observations values the prediction
error, i.e. observed values minus predicted values is considered. In Fig. 11 there are
presented prediction errors for both PAR(1) and PAR(2) models and just sample
periodic mean used as a predictor as well. Taking these results into account, it seems
that the forecast based on PAR(2) model approximates the real values the best.

4 Simulated Data Example

In the previous section PAR(2) model was the optimal choice and Yule–Walker esti-
mators were sufficient but not always this needs to be the case. Therefore, in this
section, to complete our considerations about PARMA modelling, we illustrate full
PARMA model estimation method, based on maximization of log-likelihood func-
tion. We use simulated dataset to test the performance of the estimation procedures
for the PARMA(p,q) model.

We decided to consider the simulated datasets to check the performance of our
procedures for full PARMAmodel estimation. In the example below, a PARMA(2,1)
sequence is generatedwith period length T = 12 and series length equal to N = 480.
Knowing the orders of the original PARMA sequence we can compare them with
obtained output from estimation procedures presented in the next section.

For general PARMA we use non-linear optimization methods to obtain
maximum logarithm of likelihood function. In perARMA package procedure
parmaf() enables to estimate the values of the PARMA(p,q) model. This method
of computation of log-likelihood function is based on the representation of the peri-
odically varying parameters by Fourier series (see (17)). Inside the procedure the
negative logarithm of likelihood function from the PARMA sequence for matrices
of coefficients in their Fourier representation is computed. This alternative parame-
trization of PARMA system, introduced by [17], can sometimes substantially reduce
the number of parameters required to represent a PARMA system. This permits
estimation of the values of the chosen representation of PARMA(p,q) model using
non-linear optimization methods. Initial values of parameters are computed using
Yule–Walker equations.

To illustrate functionality of these procedure we try to fit PARMA-type model
to the series generated as PARMA(2,1). We consider three PARMA-type models:
PARMA(0,1), PARMA(2,0) and PARMA(2,1) and compare the result with reality.
According to log-likelihood, AIC and BIC values presented in Table3, PARMA(2,1)
is considered to be the best fitted. It is consistent with our expectations as analyzed
series y was generated using orders p = 2, q = 1.
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Table 3 The information
criteria for validation of
PARMA models fits when
true model was PARMA(2,1)

model negloglik AIC BIC

PARMA(0,1) 969.05 977.05 993.74

PARMA(2,0) 748.98 762.98 792.17

PARMA(2,1) 653.38 673.38 715.07

5 Conclusions

In the present study we showed that PARMA model approach works for real data
with periodic structure. We follow all steps of standard model fitting procedure in
regard to PARMA models through non-parametric spectral analysis, model identifi-
cation, parameter estimation, diagnostic checking (model verification). Additionally,
we perform test for period length detection, prediction for PAR models and estima-
tion of full PARMA for simulated data. The results presented here illustrate how
PARMA approach can be applied to model periodic structure of energy market data
and confirm the considerable value of this method in forecasting short-term energy
demand.

To our knowledge perARMA package is the only existing tool in statistical soft-
ware programs that provide PARMA time series analysis and allow to follow all
steps of standard model fitting procedure. Additionally, it deals with missing data,
provides period length detection tools and prediction for PAR models. Moreover,
perARMA package permits simulation of PARMA time series.
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and modeling periodic correlation in financial data. Physica A, 336, 196–205.

8. Cramér, H. (1961). Methods of mathematical statistics. New York: Princeton University Press.

http://cran.r-project.org/web/packages/pear/
http://cran.r-project.org/web/packages/pear/


PARMA Models with Applications in R 153

9. Dehay, D., & Hurd, H. L. (1994). Representation and estimation for periodically and almost
periodically correlated random processes. In W. A. Gardner (Ed.), Cyclostationarity in com-
munications and signal processing. New York: IEEE Press.

10. Dudek, A. E., Hurd, H., &Wójtowicz,W. perARMA: Package for periodic time series analysis.
R package version 1.5, http://cran.r-project.org/web/packages/perARMA/.

11. Franses, P. H. (1996).Periodicity and stochastic trends in economic time series. Oxford: Oxford
Press.

12. Gardner, W. A. (1994). Cyclostationarity in communications and and signal processing. New
York: IEEE Press.

13. Gardner, W. A., Napolitano, A., & Paura, L. (2006). Cyclostationarity: Half a century of
research. Signal Processing, 86, 639–697.

14. Gerr, N. L., & Hurd, H. L. (1991). Graphical methods for determining the presence of periodic
correlation in time series. Journal of Time Series Analysis, 12, 337–350.

15. Gladyshev, E. G. (1961). Periodically correlated random sequences. Soviet Mathematics, 2,
385–388.

16. Hurd, H. L., & Miamee, A. G. (2007). Periodically correlated random sequences: Spectral
theory and practice. Hoboken: Wiley.

17. Jones, R.,&Brelsford,W. (1967). Time serieswith periodic structure.Biometrika, 54, 403–408.
18. López-de-Lacalle, J. (2012). partsm: Periodic autoregressive time series models. R package

version 1.1, http://cran.r-project.org/web/packages/partsm/.
19. Pagano, M. (1978). On periodic and multiple autoregressions. Annals of Statistics, 6(6), 1310–

1317.
20. Parzen, E., & Pagano, M. (1979). An approach to modelling seasonally stationary time series.

Journal of Econometrics, 9(1–2), 137–153.
21. Rasmussen, P. F., Salas, J., Fagherazzi, L., Rassam, J. C., & Bobée, B. (1996). Estimation and

validation of contemporaneous PARMA models for streamflow simulation. Water Resources
Research, 32(10), 3151–3160.

22. Sabri, K., Badaoui, M., Guillet, F., Belli, A., Millet, G., &Morin, J. B. (2010). Cyclostationary
modelling of ground reaction force signals. Signal Processing, 90, 1146–1152.

23. Sakai, H. (1991). On the spectral density matrix of a periodic ARMA process. Journal of Time
Series Analysis, 12(2), 73–82.

24. Smadi, A. A. (2009). Periodic auto-regression modeling of the temperature data of Jordan.
Pakistan Journal of Statistics, 25(3), 323–332.

25. Swider, D. J., &Weber, C. (2007). Extended ARMAmodels for estimating price developments
on day-ahead electricity markets. Electric Power Research, 77, 583–593.

26. Tesfaye, Y., Meerschaert, M. M., & Anderson, P. L. (2006). Identification of periodic autore-
gressive moving average models and their application to the modeling of river flows. Water
Resources Research, 42, W01419.

27. Vecchia, A. V. (1985). Maximum likelihood estimation for periodic autoregressive moving
average models. Technometrics, 27, 375–384.

28. Vecchia, A. V. (1985). Periodic autoregressive moving average (PARMA)modeling with appli-
cations to water resources. Water Resources Bulletin, 21, 721–730.

http://cran.r-project.org/web/packages/perARMA/
http://cran.r-project.org/web/packages/partsm/


Multidimensional Analysis of New Zealand
Electricity Prices

Matylda Jabłońska-Sabuka and Agnieszka Wylomanska

1 Introduction

Electricity prices have become some of the most challenging time series to be
modelled mathematically. This is due to electricity market deregulation, which has
by now been carried out in many countries across the world. Its aim was to allow
fair competition in the market and thus open it to more participants. Indeed, the
goal of reducing average price level through competition has been achieved, how-
ever, electricity prices have also become more volatile and less predictable than ever
before.

An important factor which contributes to high volatility in most of the markets
is the large variations in demand and supply of electricity, both of which are very
uncertain in deregulated markets [5]. For instance, temperature strongly affects the
demand; in total, the demand varies between 50 and 100%. Thus, as some say,
forecasting demand is almost equivalent to forecasting weather [21]. Next to any
climatic factors, hydrological balance, demand and base load supply [31] can be
considered with equal importance as the key spot price drivers.

Electricity prices can be studied both in their inter- and intraday format (hourly
or half-hourly, depending on the market). Substantial research effort has so far been
focused on investigating spot price interdependencies. For instance, the NewZealand
spot prices can be divided into five intraday groups: overnight off-peak, morning
peak, day-time off-peak, evening peak and evening off-peak. Then it appears that
prices within these groups are a lot more correlated than between these groups along
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different trading periods [10]. Another work analysed a group of models classified
as Markov regime-switching (MRS) [13]. There, the focus was on the performance
of different models in terms of statistical goodness-of-fit and the results showed that
the best one was an independent spike 3-regime model with time-varying transition
probabilities, heteroscedastic diffusion-type base regime dynamics and shifted spike
regime distributions.

Thorough understanding of intraday price structure makes day-ahead forecasting
these days possible up to a significant level of accuracy. However, also long-term
predictions are equally important for risk management. It is known that electricity
price trend and cyclic structure comes in big part from the influence of some well-
recognized factors. Among those one should list hydrological storage (for heav-
ily hydro-dependent markets, like Nord Pool ad New Zealand) and thus rainfall,
weather and demand [11, 17, 24, 32]. A stochastic model using a number of explana-
tory variables has been proposed, for instance, for the California electricity market
[14], among others. For the case of New Zealand prices, there is lack of modelling
approaches that would be able to thoroughly explain the behaviour of prices. Only
some works have just identified that the nature of prices has changed after market
deregulation in various ways [34]. Some other researches have used discrete wavelet
transforms to investigate the demand-price relationship [22] and market volatility in
New Zealand with the use of GARCH models [26].

The main contribution of this study is twofold. First, it exploits the significant
interdependencies between the prices in different trading nodes, as well as external
factors influencing them, like hydro storage, rainfall, air temperature and demand.
This is done throughmultivariate autoregressivemodelswhich provide a lot of advan-
tages over classical regression analysis. Secondly, both proposed models consider
non-Gaussian noise with α-stable structure, which allows to capture statistically the
occurrence of price spikes. This is a novelty when compared to the classical ARMA-
GARCH methodology. Results show that both models provide accurate day-ahead
forecasts for the period of a year ahead. Therefore, we demonstrate that a novel
combination of VAR models with non-Gaussian noise provides a powerful tool for
analysis and day-ahead forecasting of electricity spot prices, including a new way of
coping with simulation of price spikes.

This article is structured as follows. Section2 describes the data set used in the
study together with themain statistical features of the data. In Sect. 3, themultivariate
autoregressive model with non-Gaussian structure is introduced. Section4 applies
the model to the real data and collects fit and forecast results. Section5 concludes
the results.
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2 Main Features of New Zealand Electricity Prices

2.1 New Zealand Electricity Market

The New Zealand electricity market is a very interesting case study for spot prices
analysis from many points of view. Its electricity sector is principally (70%) based
on renewable energy sources such as hydropower, geothermal power and a steadily
increasing wind energy, which makes New Zealand one of the most sustainable
countries in the world when it comes to energy generation. On the other hand, its
electricity demand has been significantly growing in the past by an average of 2.4%
per year since 1974 and by 1.7% over 1997–2007.

New Zealand is characterized by a geographically unbalanced demand–supply
relation. The highest electric power production takes place on the South Island,
whereas the highest demand comes from themore populated and industrializedNorth
Island. Moreover, the electricity market in New Zealand is not pooled. The main

Fig. 1 Location of the 11
nodes in the New Zealand
grid used in the analysis
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Fig. 2 The examined 11 data sets corresponding to electricity prices in New Zealand in the exam-
ined period

participants are seven generators/retailers who trade at over 200 nodes across the
transmission grid.

NewZealandmarket data is available free of charge from the Electricity Authority
(formerElectricityCommission) in the formofCentralizedDataset. The data consists
of half-hourly information on nodal prices, bids and offers, metre data and binding
constraints, as well as additional daily hydrology and network configuration data.
The authors utilized price data from a number of nodes, as well as the centralized
demand and hydrological storage values. Moreover, additional data on rainfall and
temperatures in each of the considered nodes was used.

The analysis presented in this paper considers 11 trading nodes spread across both
South and North Island, as presented in Fig. 1. Six of them are located near power
plants. In particular, Benmore, Tuai andWhakamaru that represent hydropower gen-
eration, while Huntly, Otahuhu and Stratford are based on geothermal generation.
The remaining five nodes are only splitting substations. The data covers a period
from 1 January 1999 to 31 July 2009. Data are quoted daily.

The choice of the trading nodes was deliberate to properly represent the most
important power generators as well as the key splitting substations. For instance,
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Fig. 3 The ACFs of electricity prices in New Zealand in the examined period

Haywards is the key node splitting power delivered through High Voltage Direct
Current (HVDC) connection between the South Island (originating in Benmore) and
North Island. Numerous times, price spikes can occur in that node due to electricity
transmission constraints. Also, fair balance between the South and North Island was
needed as, for instance, prices in the South used to be on average lower than in the
North until an additional fee was imposed on the generators for using the HVDC
connector to transmit power.

Let us note that the 11 nodes create just a small representative subset of the total
of over 200 nodes across the country. Theoretically, it is of course possible to work
with all the grid nodes in one model. However, this would, in our opinion, make
the system over-represented and, certainly, computationally heavy when it comes to
parameter estimation (there would be many more parameters to be estimated that
data points available).
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2.2 Relationship Between Respective Price Data
Corresponding to Analysed Nodes

The first approach proposed in this study is based on relationships between price data
for the 11 considered nodes. The analysed data sets, which correspond to 11 vectors
of electricity prices in chosen nodes in New Zealand during the examined period,
exhibit similar behaviour. In Fig. 2,we present the analysed prices.Moreover, the data
sets have also similar statistical properties. The first property that we observe here
is the non-stationarity of each vector. This non-stationarity can be easily proven by
observing the autocorrelation functions (ACFs) of appropriate data sets. Moreover,
in the ACFs we can also see the seasonal behaviour of all the considered vectors of
observations. The corresponding ACFs are presented in Fig. 3.

The second statistical property that is observable for all considered data sets is
the weekly seasonality. This kind of seasonality can be seen in ACFs of differenced
series. In Fig. 4 we present the autocorrelation functions for 11 electricity price
vectors, where the weekly seasonality is easily observable for lags that are multiples
of seven.
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Fig. 4 The ACFs of differenced series. The larger values of autocorrelations at lags being multiples
of seven indicate at week seasonality
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Fig. 5 The five examined data sets corresponding to electricity price N1, rainfall, hydro stor-
age, electricity demand and temperature. The rainfall and temperature are measured in the region
corresponding to node 1

The last property that should be emphasized here is a strong relation between
the analysed data sets. The correlation coefficients are large and the test for its
significance indicates at non-zero correlation between analysed prices. That is, all
the p-values (for testing the hypothesis of no correlation against the alternative that
there is a non-zero correlation) are very close to zero. In particular, all correlation
coefficients among the 11 price series themselves exceed 0.9. High correlations
could raise a multicollinearity concern, however, this is problematic with classical
regression models, whereas it has not been proven such in the case of autoregressive
models. The idea of multivariate autoregressive models used in this study is that all
the variables are equally important and we do not distinguish between dependent
and independent variables. Therefore, there is no need to remove any of the highly
correlated components.
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Fig. 6 The ACFs of examined 5 data sets corresponding to electricity price N1, rainfall, hydro
storage, electricity demand and temperature

2.3 Relationship Between Price Data and Deterministic
Factors

The second proposed approach is based on the relationship between price in one
node and other variables that can have influence on the price. Along with the nodal
spot price, the deterministic factors considered here are: rainfall in the analysed node,
country’s hydro storage, electricity demand and temperature in the region.

The choice of the variables was deliberate with respect to their level of correla-
tion with the prices, as well as the ability to represent both local and country-level
situation. Therefore, some of them are considered as measurements from the par-
ticular node location, and some are aggregated for the whole country. First, as we
mentioned before, the New Zealand electricity market is heavily hydro-dependent
and the information about country’s hydrological information is of key importance
to price modelling [30]. Therefore, we include two variables which can account for
this feature. The amount of rainfall is measured regionally in millimetres per square
metre. This variable tells a lot about whether a given season/year is dry or not in
the region. On the other hand, we know that prices in all nodes depend on the entire
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Fig. 7 ACFs of the five differenced data sets corresponding to electricity price N1, rainfall, hydro
storage, electricity demand and temperature

country’s hydro reservoir levels, with correlations between the spot price and the
hydro information ranging between −0.39 and −0.49 in various nodes. Namely,
when the overall reserves drop, this triggers the prices to rise. Therefore, we add
another variable which is the New Zealand’s total hydro storage, since the study
considers trading nodes that representing not only hydropower plants but also other
plants and purely splitting substations. In the same manner we include two demand-
related variables, as it is known that when the consumption significantly increases,
it may cause the prices to go the same way. One of them is regionally measured air
temperature, and another is the total demand calculated for the entire country.

In Fig. 5 we present the five analysed data sets. As we observe, there is a strong
relation between the studied variables, which is especially visible in the seasonal
behaviour of all data series.

Similarly, as in the first approach, here we should also emphasize the non-
stationarity of the data. This non-stationarity can be proved by using ACFs, where
we can observe a strong relation between the analysed processes, see Fig. 6. The only
exception is rainfall, not showing non-stationarity.
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It is worth mentioning that some of the analysed vectors of observations exhibit
also weekly seasonal behaviour. We observe this especially for electricity price data
and electricity demand. In Fig. 7, we present ACFs of the differenced series, where
weekly seasonality is visible for price and demand data.

The last property is a strong relation between the analysed data sets that can be
proved not only by visualization but also a strong statistical test. The correlation
coefficients are large and the test for its significance indicates at non-zero correlation
between analysed variables. All p-values for testing the hypothesis of no correlation
against the alternative that there is a non-zero correlation are very close to zero,
which indicates the correlations are significantly different from zero. In particular,
the correlation coefficients between the price and other variables vary between−0.54
and 0.2. Only one exception is the correlation between rainfall and temperature. For
those variables the p-value of the test for no-correlation is equal to 0.6954, which
means the correlation is at zero level.

3 Multivariate Autoregressive Model with Non-Gaussian
Structure

Anm-dimensional process {Xt } = {X1
t , . . . Xm

t } is anm-variate autoregressive mov-
ing average (ARMA) of order (p, q) if it is stationary and if for every t it satisfies
the following equation [4]:

Xt − Φ1Xt−1 − · · · − ΦpXt−p = εt + Θ1εt−1 + · · · + Θqεt−q , (1)

where {εt } is an m-variate white noise of mean vector 0 and covariance matrix
Γ (t, t + h) that is independent of t and has the following form:

Γ (t, t + h) = Γ (h)

⎧

⎨

⎩

Σ for h = 0

0 otherwise
(2)

Let us recall that the covariancematrix form-dimensional vector is thematrixΓ (t, t+
h) defined as follows:

Γ (t, t + h) =
⎡

⎣

γ11(t, t + h) . . . γ1m(t, t + h)

. . . . . . . . .

γm1(t, t + h) . . . γmm(t, t + h)

⎤

⎦ (3)

In the above definition γi j (t, t + h) = Cov(Xi
t , X j

t+h). Let us recall that the Φi

i = 1, 2, . . . , p and Θi , i = 1, 2, . . . , q parameters in Eq. (1) are matrices. In
further analysis we denote {εt } ∼ W N (0,Σ) (white noise). The process {Xt } is
called ARMA(p, q) with mean μ if {Xt } − μ is an ARMA(p, q) system.
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The multivariate ARMA processes are very useful in practice. They found many
applications, especially, because of their simple form. They are extensions of known
one-dimensional ARMA models extremely popular in different fields. Some inter-
esting applications of multivariate ARMA models can be found in [8, 23, 27, 29].

In the classical approach, the residual series {εt } is assumed to be an m-variate
Gaussian distributed random variable, i.e. random variable of the following proba-
bility density function:

f (x) = (2π)−m/2|Σ |−1/2 exp

{

−1

2
(x − μ)′Σ−1(x − μ)

}

, (4)

where x = (x1, . . . , xm) and μ = (μ1, . . . , μm) is the mean vector. Let us mention
that if the randomvariable hasm-dimensionalGaussian distribution, each component
has one-dimensional Gaussian distribution of appropriate parameters.

For simplicity, in further analysis we concentrate only on multivariate autoregres-
sive (AR) models that we denote as VAR (vector AR). In this case, the procedure of
estimating the parameters is based on the method of moments and is an extension of
the popular Yule-Walker method applied to one-dimensional AR systems [4]. The
method applied tomultidimensional AR systems is called theWhittle algorithm [33].
If we multiply the causal VAR process:

Xt = Φ1Xt−1 + . . . ΦpXt−p + εt (5)

by X′
t− j for j = 0, 1, . . . , p and take expectations of both sides, then we obtain the

following equations:

Σ = Γ (0) −
p

∑

j=1

Φ jΓ ( j), Γ (i) =
p

∑

j=1

Γ (i − j), j = 1, 2, . . . p

Now, taking the empirical equivalences of matrices Γ (0), . . . , Γ (p), we can esti-
mate the matricesΦ1, . . . , Φp andΣ . Let us recall that a natural estimator of covari-
ance matrix is the sample covariance, which for the vector X = (X1, . . . , Xm) (each
component of n elements) is given by:

Γ̂ (h) =
⎧

⎨

⎩

n−1 ∑n−h
j=1(Xt+h − μ̂)(Xt − μ̂) for 0 ≤ h ≤ n − 1

Γ̂ ′(−h) for −n + 1 ≤ h < 0
(6)

In the above formula, μ̂ denotes the sample mean vector.
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3.1 The VAR Model with Non-Gaussian Structure

Because many real data series exhibit behaviour not adequate for Gaussian systems,
in this paper we extend the classical VAR model presented above by replacing the
m-dimensionalGaussian distributionwithmore general class of distributions, namely
α-stable (called also stable), which belong to the family of the so-called heavy-tailed
distributions. The α-stable distribution is flexible for data modelling and includes
Gaussian distribution as a special case. The importance of this class of distributions
is strongly supported by the limit theorems which indicate that the stable distribution
is the only possible limiting distribution for the normed sum of independent and
identically distributed random variables. The interesting applications of a class of
α-stable distributions can be found, for instance, in [9, 18, 28]. See also [19, 20].

We start by introducing a one-dimensional α-stable random variable. A random
variable S has one-dimensional stable distribution if, for any numbers A, B > 0,
there exist numbers C > 0 and D ∈ R such that

AS1 + BS2
d= CS + D, (7)

where S1 and S2 are two independent copies of S [25]. For each stable random
variable S there exists a number α ∈ (0, 2] such that the constant C in Eq. (7)
satisfies the following relation:

Cα = Aα + Bα.

The second equivalent definition is based on the characteristic function of random
variable S.

The random variable S has α-stable distribution if there exist parameters α ∈
(0, 2], σ > 0, −1 ≤ β ≤ 1 and μ ∈ R such that the characteristic function of S
takes the form:

Eeix S =
⎧

⎨

⎩

exp {−σα|x |α(1 − iβsign(x)tan(πα/2)) + iμx} for α �= 1

exp {−σ |x |(1 + iβ(2/π)sign(x) log(|x |)) + iμx} for α = 1.
(8)

Stability index α, scale parameter σ , skewness parameter β and shift parameter μ in
a unique way define the distribution of a random variable S. In further analysis, we
denote S ∼ S(α, σ, β, μ). The probability density function for most α-stable distri-
butions has no explicit form. However, there are three exceptions, namely Gaussian
(for α = 2), Cauchy (for α = 1 and β = 1) and Lévy (for α = 0.5 and β = 1).

The extension of a univariate stable distribution is the multivariate one. A char-
acteristic function of an m-dimensional random vector S = (S1, . . . , Sm) is defined
as follows:

Φ(x) = Eei
∑m

k=1 xk Sk .
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The m-dimensional vector S is α-stable in Rm if and only if there exists a finite-
dimensional measure G on the unit sphere Sm and the vector μ such that:

Φ(x) = e−I (x)+i
∑m

k=1 xkμ
k
,

where I (x) = ∫

Sm
ψ(

∑m
k=1 si xi )G(ds1, . . . , dsm) and

ψ(u) =
⎧

⎨

⎩

|u|α (1 − isign(u)tan(πα/2)) , for α �= 1

|u| (1 + i 2
π

sign(u) log(|u|)) , otherwise

Moreover, (G, μ) is unique. It is worthmentioning that the stability index α, measure
G (called spectral measure), and the shift vector μ in a unique way define the m-
dimensional stable distribution denoted as Sm(α, G, μ). If S has m-dimensional
stable distribution, then each component has one-dimensional stable distribution
with appropriate parameters.

The multidimensional AR model with α-stable structure is the system defined
in (1) for which the residual series {εt } comes from an m-dimensional α-stable
distribution.

4 Real Data Analysis

4.1 Model 1

In the first proposed model, we use the relationship between prices corresponding
to 11 nodes. In the first step of our analysis we remove the seasonal behaviour
from the original data sets, which is related to the annual seasonality observable in
electricity prices. In order to do this, we fit to all 11 vectors the sum of sinusoidal
functions by using the least squaresmethod. After removing the sinusoidal functions,
we differentiate the data. For each vector a different function is fitted (we choose
the best fitting) but results after the transformations are similar. This is especially
observable in the autocorrelation functions where only weekly seasonality is visible.
As an example, we present the vector N1 after mentioned transformation (see Fig. 8
top panel) and its autocorrelation function (see Fig. 8 bottom panel).

Because the autoregressivemodels can be used only on stationary series, beforewe
fit the VARmodel, we have to removeweekly seasonality from the data. The simplest
method is to remove the seasonal mean which is calculated by using the data cor-
responding to each season. More precisely, from the analysed data set X1, . . . , XnT

(T is the observed season) we remove function w which is calculated as follows:

w(t) = 1

n

n−1
∑

k=0

XkT +t , t = 0, 1, 2, . . . (9)
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Fig. 8 The exemplary differenced vector N1 after removing the sum of sinusoidal functions (top
panel) and its autocorrelation function (bottom panel). The ACF indicates the existence of weekly
seasonality in the data set

After removing the seasonal behaviour from the original data sets, we can fit the best
VARmodel. In order to find the best order p we use the Schwartz-Bayesian criterion
(BIC) which, for the vector X1, . . . , Xm (each of n observations), is defined as
follows:

BIC(p) = log(|Σ(p)|) + log(m)

m
pn2, (10)

whereΣ(p) = 1
m

∑m
t=1 εtε

′
t is the residual covariancematrix from aVAR(p) model.

The general approach is to fit a VAR(p) model with order p = 0, . . . , pmax and
choose the value of p which minimizes the selection criterion. In Fig. 9, we present
the BIC statistic for order p taking values between 1 and 15. The plot clearly indicates
that the best model is VAR(4).

After selecting an appropriate order p, we can estimate the parameters. As men-
tioned earlier, here we use the Whittle algorithm which is based on the method of
moments [4]. The model contains 11 × 11 × 4 = 5324 parameters, therefore, we
do not present the estimated values. In the next step of the analysis, we examine
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Fig. 9 The BIC statistic for selection of the best model that takes into consideration electricity
prices relation. For considered data the best model is VAR(4)

the residual series. Since we consider the multidimensional model, the series is also
multidimensional. We test the distribution of the residual series for each vector sep-
arately. For all vectors the residuals exhibit non-Gaussian behaviour. This can be
proved by using the Jacque-Bera test for normality. The statistic of JB test for the
vector ε1, . . . , εn is defined as follows [6, 12]:

JB = n

6

(

S2 + K − 3)2

4

)

, (11)

where S and K are the sample skewness and kurtosis, respectively, namely:

S = 1/n
∑n

i=1(εi − ε̄)3

(√

1/n
∑n

i=1(εi − ε̄)
)2 ,

K = 1/n
∑n

i=1(εi − ε̄)4

(√

1/n
∑n

i=1(εi − ε̄)
)2 .

The value of the JB statistic given by (11) forms a randomvariablewhich converges to
zero if the underlying distribution has skewness zero and kurtosis 3 (e.g., Gaussian).
Anydeviation of skewness fromzero and deviation of kurtosis from3 increases the JB
statistic. For distributions with infinite kurtosis (like α-stable with α < 2) it diverges
to infinity. The test is quite standard and implemented in various numerical packages,
for example, R orMATLAB. Similar as for all statistical tests, the calculated p-value
indicates whether the zero hypothesis can be accepted at the given significance level.
If p-value is small, the hypothesis (here of Gaussian distribution) should be rejected.
For the analysed residuals from VAR(4) model the obtained p-values are at the level
of 0.001 which indicates non-Gaussian distribution. In order to show the analysed
residual series comes from an α-stable distribution, we use two goodness-of-fit-test
statistics, namely Kolmogorov-Smirnov and Anderson-Darling.
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The most well-known supremum statistic is the Kolmogorov-Smirnov (KS)
statistic. It is just the supremum of the set of distances:

KS = supx |ECDF(x) − F(x)| , (12)

where F is the cumulative distribution function of the testing distribution and
ECDF(x) is the empirical cumulative distribution function, which for the series
ε1, . . . , εn is calculated as follows:

ECDF(x) = 1

n

n
∑

i=1

1 {εi ≤ x} (13)

In the above definition 1{A} denotes the indicator of a set A.
TheAnderson-Darling statistic belongs to theCramer-von-Misses family of statis-

tics, which incorporate the idea of quadratic norm. The Cramer-von-Misses statistic
for vector ε1, . . . , εn is defined by [6]

Q = n
∫ ∞

−∞
(ECDF (x) − F (x))2 φ (x) dx (14)

where φ (x) is a suitable function which puts weights to the squared difference
(ECDF (x) − F (x))2. When φ(x) = 1, Q is called the Cramer-von-Misses statistic.
If φ (x) = [F (x) (1 − F (x))]−1, the above definition yields the Anderson-Darling
(AD) statistic. Similar as for the JB test, there exists a statistical test that allows to
test the proper distribution of examined data. More details can be found in [1, 2, 7].

In Table1 we present the values of the KS and AD statistics and correspond-
ing p-values of tests for α-stable distribution for the 11 analysed data sets. For
the α-stable distribution the cumulative distribution function is not given explicitly,

Table 1 The values of KS and AD statistics and corresponding p-values of goodness-of-fit tests

Vector KS p-value (KS) AD p-value (AD)

N1 0.55 0.60 0.29 0.68

N2 0.43 0.95 0.16 0.95

N3 0.54 0.60 0.61 0.48

N4 0.72 0.27 0.46 0.54

N5 0.52 0.65 0.23 0.86

N6 0.37 0.97 0.18 0.89

N7 0.53 0.67 0.35 0.75

N8 0.52 0.63 0.24 0.73

N9 0.74 0.18 0.61 0.40

N10 0.44 0.88 0.29 0.74

N11 0.72 0.23 0.54 0.48
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thus to obtain the corresponding p-values we use the Monte Carlo method with
1000 repetitions. As we observe, the obtained p-values significantly exceed the
significance level 0.05, therefore we cannot reject the hypothesis of α-stable distri-
bution of residual series.

Next we estimate the parameters of α-stable distribution for all residual series.
We use here the regression method [15, 16]. The method is based on the form of the
characteristic function of an α-stable random variable S(α, σ, β, μ) given in (8). For
a random sample ε1, . . . , εn from theα-stable distribution, we calculate the empirical
characteristic function:

ECHF(x) = 1

n

n
∑

j=1

eixε j . (15)

In the regression method, the empirical characteristic function is compared to the
theoretical one and by using least squares method one can estimate the parameters.
For details see [3]. In Table2, we present the estimated parameters for all 11 vectors
of residuals. As we observe, the estimated α parameters of the residual series are on
the level 1.3 − 1.4, so tails of distributions of data related to the considered nodes
are very similar. Moreover, the σ parameter in all considered cases is approximately
500, so the scaling in all cases is the same. The β parameters indicate the data are
symmetric (β close to zero). Only the shift parameterμ indicates differences between
the distribution of residuals.

By using the fitted model, we can simulate the VAR(4) system with α-stable
residuals. In Fig. 10 we present the exemplary vector N1 together with the quantile
lines on the 10, . . . , 90% levels from the simulated samples. The quantile lines are
constructed usingMonteCarlomethodswith 1000 repetitions. Note that the observed
price does not exceed the bounds given by the 10 and 90% quantile lines.

Table 2 The estimated parameters of α-stable distribution for the residual series from Model 1

Vector α σ β μ

N1 1.39 463.73 −0.02 −9.42

N2 1.42 483.86 −0.04 −9.23

N3 1.28 523.45 0.03 21.50

N4 1.28 536.31 0.04 17.81

N5 1.40 488.23 −0.03 −12.53

N6 1.38 513.43 −0.04 −21.46

N7 1.28 559.92 0.02 −3.09

N8 1.38 540.24 −0.03 −13.56

N9 1.27 513.06 0.05 37.71

N10 1.28 553.97 −0.03 −42.38

N11 1.28 530.19 0.06 36.20
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Fig. 10 Quantile lines of level 10, 20, . . . , 90% and the measured price N1 (thick blue line)

4.2 Model 2

In the second approach we propose to use the relationship between the electricity
price corresponding to node 1 and other variables such as rainfall, hydro storage,
electricity demand and temperature. Let us recall that the rainfall and temperature
were measured for the region related to node 1, whereas the storage and demand
have been aggregated for the entire country (that is the original format in which the
data have been provided by Electricity Commission).

Similar to the first approach, in the first step of the analysis we remove the non-
stationarity of the data by fitting the sum of sinusoidal functions for all considered
vectors of observations. Only one exception is the rainfall where the non-stationarity
is not visible, see Fig. 6. Next, we differentiate the data after removing the fitted
functions. In the second step, for the data with weekly seasonal behaviour (price and
electricity demand), we calculate the periodic mean and remove it. The formula for
periodic mean is presented in (9).

Next, a proper order p should be calculated. Similar to the previous approach,
here we use the BIC criterion defined in (10). In Fig. 11 we present the plot of BIC
statistic for order p varied between 1 and 15.

After the proper model has been fitted, we can analyse the residuals. First, we
check if they constitute samples from Gaussian distribution. Similar to Model 1, we
use the JB statistic defined in (11) and test based on it. In Table3 we present the
p-values of the test for gaussianity. Let us recall, the small p-value (less than signif-
icance level 0.05) indicates non-Gaussian behaviour of underlying random sample.
As we observe, only the residuals related to temperature can be treated as a sample
from Gaussian distribution. The estimated parameters of Gaussian distribution for
temperature residuals are μ = 0.0034 and σ = 2.45.

Next, we check if the residuals related to price, rainfall, hydro storage and demand
constitute samples from α-stable distribution. In order to do this, we use the KS and
AD goodness-of-fit tests presented above. In Table4 we present the values of the
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Fig. 11 TheBIC statistic for selection of the bestmodel that takes into consideration the relationship
between electricity price N1 and rainfall, hydro storage, electricity demand and temperature. For
considered data the best model is VAR(4)

Table 3 The p-values of the JB test for gaussianity

Price Rainfall Hydro storage Demand Temperature

0.001 0.001 0.001 0.001 0.1786

Table 4 The values of KS and AD statistics and corresponding p-values of goodness-of-fit tests

Vector KS p-value (KS) AD p-value (AD)

Price 0.64 0.39 0.31 0.72

Rainfall 49.37 0 01.26 0.56

Hydro storage 49.55 0 1.71 0.82

Demand 1.02 0 2.5 0.13

statistics and the corresponding p-values calculated on the basis of 1000 Monte
Carlo simulations.

As we observe, the KS test indicates that only the price comes from an α-stable
distribution. This can be seen from the prominent values of the statistic. But the AD
test indicates the residuals of mentioned in Table4 variables can be treated as from
the α-stable family. Therefore, we estimate the parameters of this distribution. In
Table5, we present the estimated parameters by using the regression method. Here
the situation is different from that in Model 1. There is a difference in α parameters
so the tail behavior is different for the considered variables. The other parameters
are also different for different variables.

By using the fittedmodelwe can simulate theVAR(4) systemwith residualswhich
come from the fitted distributions. In Fig. 12 we present the price vector N1 together
with the quantile lines on the level 10, . . . , 90% from the simulated samples. The
quantile lines are constructed using Monte Carlo methods with 1000 repetitions.
Note that the observed price does not exceed the bounds given by the 10 and 90%
quantile lines.
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Table 5 The estimated parameters of α-stable distribution for the residual series from Model 2

Vector α σ β μ

Price 1.4 457.49 0.07 26.60

Rainfall 1.10 1.11 −0.18 108.96

Hydro storage 1.19 7.46 0.56 751.87

Demand 1.58 1.390 0.19 237.75

0 500 1000 1500 2000 2500
−5

0

5

10
x 10

4

number of observations

Electricity price N1

Fig. 12 Quantile lines of level 10, 20, . . . , 90% and the electricity price N1 (blue thick line)

Finally, in order to illustrate how beneficial the obtained models might be for the
problem of electricity price description, we calculate the price prediction for the next
year. The obtained predicted values are then validated by comparing them to the
actual values. To this end, we fit the model to the first 2091 observations and then
based on the obtained estimates we calculate the prediction for the next 360. The
obtained values are plotted in Fig. 13. As can be observed in the figure, the predicted
values visually resemble the actual values for both considered models.

In order to check which model gives better prediction results, we calculate three
measures:mean squared error (MSE),mean absolute error (MAE) andmean absolute
percentage error (MAPE) of the forecast for the next year. The measures are defined
as:

MSE = 1

k

k
∑

t=1

(Xt − X̂t )
2, MAE = 1

k

k
∑

t=1

|Xt − X̂t |, MAPE = 1

k

k
∑

t=1

|Xt − X̂t |
Xt

,

where k is the number of predicted values, Xt is the measured observation at point
t and X̂t its prediction. The obtained values of mentioned measures are given in
Table6.
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Fig. 13 Values of electricity prices N1 together with the prediction for the next year. The predicted
values were calculated using Model 1 (top panel) and Model 2 (bottom panel)

5 Conclusions

In this work two multivariate autoregressive models with non-Gaussian noise struc-
ture for forecasting day-ahead electricity prices in New Zealand have been proposed.
The approaches have clear advantages over classical ARMA-GARCH type mod-
elling. First, they do not rely only on the historical values of the price itself, but
account for other data series as well. In one of the models we have referred one of
the nodal prices to ten other nodes. This is explained by the fact that prices through-
out the country are interconnected and strongly correlated. The choice of nodes (11
out of over 200) has been carefully designed to pick representative nodes, but not to
make the model too big.

Table 6 Mean square error (MSE), mean absolute error (MAE) and mean absolute percentage
error (MAPE) of the prediction for the next year

MSE MAE MAPE(%)

Model 1 7.48 × 106 1.73 × 103 17

Model 2 4.99 × 106 1.59 × 103 19
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The second approachmodelled one of the nodal priceswith the use of the regressed
price itself together with some deterministic factors having significant influence on
price dynamics. These were country’s hydrological storage, centralized demand,
node’s rainfall and air temperature from the studied region. This model proved better
for forecasting due to two main reasons. First, the forecasting skill was higher than
forModel 1. Secondly, themodel had less parameters than the first one, whichmade it
more appropriate frommodelling and parameter estimation point of view. Finally, the
secondmodel has better results in comparison toModel 1 showing that incorporation
of deterministic factors in price modelling is of key importance for high forecasting
accuracy.

The robustness of our results was confirmed by the fact that both applied models
were optimal with the same order, namely VAR(4). Moreover, the models had non-
Gaussian noise included which allowed us to capture statically the non-Gaussian
distribution of prices themselves. One could argue that more trading nodes should be
included in the analysis. However, we argue that this would unnecessarily complicate
parameter estimation without much added value.

Our work provides a sound basis for risk analysis for electricity market traders
in New Zealand. Further steps should include the use of Markov Chain Monte
Carlo Methods in parameter estimation, to allow proper understanding of price noise
structure.
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Imputation of Missing Observations
for Heavy Tailed Cyclostationary
Time Series

Christiana Drake, Jacek Leskow and Aldo M. Garay

1 Introduction

Periodically correlated (or cyclostationary) time series have many applications in
engineering, environmental sciences, and economics (see [4]). However, in many
practical situations data that can be modelled with such time series is incomplete. An
algorithm addressing imputation when some observations are missing at random has
been developed in [2], where a version of the EM method had been employed. The
mentioned algorithm was developed for AR(p) times series with Gaussian errors. In
this paper we propose four algorithms for a K-dependent time series that come from
the multivariate t-distribution.

We assume that a zero-mean second-order cyclostationary time series {Yt , t ∈ Z}
is observed. Thismeans that if BY (t, τ ) = Cov (Yt , Yt+τ ) denotes the autocovariance
function of {Yt }, then this function is periodic in t for each τ . Our sample size is T
and we assume that T is an integer multiple of the period H and also T is an integer
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multiple of K , the size of the dependence. We assume that the period H is known.
Following [2], the model is defined as

Yt = Xt · ct , (1)

where we make the following assumptions:

(AS1) The deterministic sequence ct > 0, ∀t ∈ {1, . . . , T } is periodic with
period H .
(AS2)We assume that the stationary time series {Xt ; 1 ≤ t ≤ T } comes frommul-
tivariate t-distribution tK+ν (0, �, ν). In the sequel, we will assume that V (Xt ) =

ν
ν−2 . Therefore, the matrix � can be considered as a correlation matrix for
{Xt ; 1 ≤ t ≤ T }.
The assumption of K-dependence implies the following factorization of �:

� =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

A C 0 . . . . . . 0
B A C . . . . . . 0
0 B A C 0 0
...

. . .
. . .

. . .
. . .

...

0 . . . . . . B A C
0 . . . . . . 0 B A

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(2)

where

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 ρ1 ρ2 . . . . . . ρK−1
ρ1 1 ρ1 . . . . . . ρK−2
ρ2 ρ1 1 ρ1 . . . ρK−3
...

. . .
. . .

. . .
...

ρK−2
. . . . . . ρ1 1 ρ1

ρK−1 . . . . . . ρ2 ρ1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

B =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 ρK−1 ρK−2 . . . ρ1
0 0 ρK−1 . . . ρ2
...

...
. . .

. . .
...

0 0
. . .

. . . ρK−1
0 0 . . . 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and
C = B�.

Assumption AS1 assures that the distribution of Yt is not degenerate at zero.
In our study, we assume that the times series Xt (thus Yt ) is K dependent. This

means that Xt , Xt+s are dependent only when −(K − 1) ≤ s ≤ (K − 1).
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The periodic behavior of the observed process Yt is entirely determined by the ct

and the correlation structure of Xt . We denote the period by H . The dimension of
the parameter vector (c1, . . . , cH ) is H and the variance of Yt is given by

V (Yt ) = c2t × V (Xt ) = c2t × ν

ν − 2
for t = 1, . . . , H. (3)

We will need to estimate c1, . . . , cH , and the parameters of the correlation matrix
ρ1, . . . , ρK−1 for the K-dependent process Xt . Let θ = (ρ1, . . . ρK−1, c1, . . . cH )T

be the vector of all unknown parameters and suppose that we have T observations
from this model. We will make use of the structure of our process in developing an
iterative process for estimation of the model parameters.

We assume that K is much smaller than H . Furthermore, we will also assume that
the length of the time series T = L × H is a multiple of the period H and therefore
is much larger than K .

Note that the correlation matrix of the Xt process, which is unobserved, equals
the correlation matrix of the Yt process, which is observed.

2 Estimation of the Model Parameters

Assume that the period H is known. Then ct = ct+H = · · · = ct+l H for
t = 1, . . . , H and l = 1, . . . , L − 1. The parameters c1, . . . , cH determine
the variance of the process Yt . Since we assume that Xt is K-dependent Xt , Xu

are independent if |t − u| ≥ K for each t and u. Therefore, the sequence
Yt , Yt+H , Yt+2H , . . . , Yt+(L−1)H consists of independent and identically distributed
random variables for t = 1, . . . , H . These sequences provide us with a simple
method to estimate ct . Furthermore, when data are missing completely at random
we can use the remaining data which constitute a random subsample of the complete
data to estimate ct without bias. We assume ν is fixed and known (2 < ν ≤ 6). Its
value determines the kurtosis of the Xt . We will treat this parameter as known and
investigate the dependence of our estimates on the value we choose for ν.

We also need to determine K . For this we will use the multivariate asymptotic
normality of the sample autocovariance function [7]. We propose to proceed as
follows:

1. Extract the sequence of iid random variables Yh = (Yh, Yh+H , . . . , Yh+L H ) for
h = 1, . . . , H.

2. Estimate the values of ĉh for h = 1, . . . , H.

3. Calculate X̃h = (X̃h, X̃h+H , . . . , X̃h+L H ) =
(

Yh
ĉh

,
Yh+H

ĉh
, . . . ,

Yh+L H
ĉh

)

.
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4. Compute the sample correlation function from the data

ρ̂τ (T ) = T −1
T −τ
∑

t=1

(

X̃t+τ − ¯̃X
) (

X̃t − ¯̃X
)

.

5. Based on the asymptotic normality of ρ̂τ (T ) for τ1, . . . , τH we will determine
K � H to establish the value K of the dependence structure. For details, see
Shumway and Stoffer [7].

6. After the value of K has been established we will estimate R̂, the correlation
matrix by methods of moments. For this we will use the correlations ρ̂τ (T ) for
τ = 0, . . . , K − 1 calculated in Step 4.

7. Once we have determined the correlation structure and estimated the correlation
matrix we will perform multiple imputation to fill in any gaps in our data as
follows. For example if Yt is missing we will impute this value based on

E[Xt | Xt−K+1, . . . , Xt−1, Xt+1, . . . Xt+K−1],
E[X2

t | Xt−K+1, . . . , Xt−1, Xt+1, . . . Xt+K−1],

and obtain the variance

V (Xt | Xt−K+1, . . . , Xt−1, Xt+1, . . . Xt+K−1).

3 Simulation Study

In order to study the performance of our method, we present this simulation study for
the cyclostationary time series described in Sect. 1. In this study we will benefit from
the main properties of the Multivariate Student t distribution developed by Arellano-
Valle and Bolfarine [1], Matos et al. [5] and more recently by Garay et al. [3]. Thus,
for this purpose, we proceeded as follows:

Step 1: Data Generation

• Simulate T + 2 different dependent processes of order k = 2p + 1, using
moving averages of independent and identically distributed random variables
from a Student t distribution, denoted by ui for i = 1, . . . , T + 2.

• Generate the process Xt as follows:

Xt = 1

k

t+p
∑

i=t−p

ui , where ui
iid∼ t (0, 1; ν) and t = 1, . . . , T .
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• We furthermore generate a set of periodic functions ct with period H 	 K
as follows:

c j = sin

(

2π j

H

)

+ 1.1, for j = 1, . . . , H.

The constant 1.1 is added to obtain c j > 0.
• Generate the cyclostationary time series yt , as defined in (1), for t = 1, . . . , T .

Step 2: Estimation of c j

• The estimator ĉ j of c j is obtained by

ĉ j = S j
√
3

(

ν

ν − 2

)− 1
2

, for j = 1, . . . , H. (4)

where

S j = 1

H − 1

√

(
∑

[yh̃ − ȳh̃]2
)

and y j. = 1

H

H
∑

i=1

y(i−1)H+ j .

The estimator (4) is obtained by the method of moments.

Step 3: Imputation of Yt

• After the data have been generated (see step 1), wewill estimate the parameters
c j , as defined before, from the complete data. Then we proceed to generate
a times series Yt with the number I of missing observations. We will assume
that observations are missing completely at random MCAR [6].

• We know that every linear combination of independent univariate Student t
distribution is again Student t distribution, i.e., the t-distribution is closed
under addition. We will also use the marginal-conditional decomposition of
a Student-t random vector developed in the Proposition in the Appendix. We
propose the estimation and four schemes of imputation of process. The impute
values will be denoted by ˜Yi , for i = 1, . . . , I
– Backward

˜YFi = E
[

Yi |Yi+1, Yi+2, . . . , min(Yi+2(k−1), YT )
]

,

where min(a, b) represents the minimum value between a and b.
– Forward

˜YBi = E
[

Yi |Yi−1, Yi−2, . . . , max(Yi−2(k−1), Y1)
]

,

where max(a, b) represents the maximum value between a and b.
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– Average

˜YMi = 1

2

(

˜YFi + ˜YBi
)

.

– Generalized In this case ˜YGi is obtained via sampling

π(Yi |Yi−1, Yi−2, . . . , max(Yi−2(k−1), Y1), Yi+1, Yi+2,

. . . , min(Yi+2(k−1))),

which is a Multivariate-t Distribution.

Step 4: Evaluation

• In order to compare the performance of four different strategies defined before,
we use two empirical discrepancy measures called the mean absolute error
(MAE) and mean square error (MSE), see Wang et al. [9], Wang [8] and
Garay et al. [3]. They are defined as

MAE = 1

I

I
∑

i=1

∣

∣Yi − ˜Yi
∣

∣ and MSE = 1

I

I
∑

i=1

(

Yi − ˜Yi
)2

, (5)

where Yi is the original simulated value and ˜Yi is the impute value, for i =
1, . . . , I .

Step 5: Results of simulation study.

Ct

3 4 5 6 7 8 9 10 12 14

0.
5

1.
0

1.
5

2.
0

Real
Estimated

Ct

3 4 5 6 7 8 9 10 12 14

0.
5

1.
0

1.
5

2.
0

Real
Estimated

Fig. 1 Simulated data. Comparison between the real and estimated values of ct for two different
samples
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Table 1 Simulated data

Schemes of imputation process

Imput % Backward Forward

MAE MSE MAE MSE

1 0.42962 0.43228 0.34861 0.41287

3 0.45266 0.45154 0.37053 0.42639

5 0.47523 0.47637 0.39064 0.44320

10 0.53847 0.53928 0.44673 0.47981

Imput % Average Generalized

MAE MSE MAE MSE

1 0.50903 0.48155 0.30626 0.41415

3 0.53261 0.53681 0.33438 0.44637

5 0.60392 0.61190 0.37528 0.48658

10 0.82201 0.81727 0.49780 0.57421

Arithmetics means of the MAE and MSE over M = 100 datasets
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Fig. 2 Simulated data. Arithmetic means of the MAE and MSE over M = 100 datasets

We generated M = 100 different dependent processes, each of them with length
T = 15,000 and order of dependence k = 3 and H = 15. Each process is consid-
ered with proportions of imputation, γ = 1, 3, 5 and 10%. It is important to note
that the goal here is to compare the four schemes of imputation process.

Figure1 shows the comparison between the real and estimated value of the c j for
two random samples, considering the methodology described in Step 2. We observe
that these values are very similar.

Arithmetic means ofMSE andMAE over the 100 datasets are displayed in Table1
and Fig. 2. We can see that in all cases, the scheme average has the smallest MSE
and MAE.
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4 Conclusions

In our paper, we have provided the methodology and a working algorithm to perform
data imputation for cyclostationary times series. The times series under study was
heavy tailed and this property was reflected by choosing the multivariate t-student
distribution, with a small number of degree of freedom. Four different imputation
algorithms were considered. The algorithm calculating the average of the backward
and forward turned out to be the best in the MSE sense.

The future work of the authors will be focused on other heavy tailed models and
the corresponding imputation algorithms.
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Appendix

The following Proposition provided by Arellano-Valle and Bolfarine [1] and worked
by Garay et al. [3] is used in this paper for implementation of the simulation study
and represents themarginal-conditional decomposition of a Student-t random vector.

Proposition Let Y ∼ tp(μ,�, ν) and Y be partitioned as Y� = (Y�
1 , Y�

2 )�, with

dim(Y1) = p1, dim(Y2) = p2, p1 + p2 = p, and where � =
(

�11 �12
�21 �22

)

and

μ = (μ�
1 ,μ�

2 )�, are the corresponding partitions of � and μ. Then, we have

(i) Y1 ∼ tp1(μ1,�11, ν); and
(ii) the conditional cdf of Y2|Y1 = y1 is given by

P(Y2 ≤ y2|Y1 = y1) = Tp2

(

y2|μ2.1, ˜�22.1, ν + p1
)

,

where ˜�22.1 =
(

ν + δ1

ν + p1

)

�22.1, δ1 = (y1 − μ1)
��−1

11 (y1 − μ1), �22.1 =
�22 − �21�

−1
11 �12, μ2.1 = μ2 + �21�

−1
11 (y1 − μ1), and Tr (.| . . .) represents

a cdf of the Student-t random vector of order r .



Imputation of Missing Observations for Heavy Tailed Cyclostationary Time Series 187

References

1. Arellano-Valle, R., & Bolfarine, H. (1995). On some characterizations of the t-distribution.
Statistics & Probability Letters, 25, 79–85.
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The Dependence Structure for Symmetric
α-stable CARMA(p,q) Processes

Agnieszka Wylomanska

1 Introduction

In modern mathematical finance, continuous time models play a crucial role because
they allow handling unequally spaced data and even high frequency data, which
are realistic for many real time series. Probably, the most famous example is the
Black-Scholes model, which is build out of Brownian motion and models the log-
arithm of an asset price by the solution to the arithmetic Brownian motion, see
[7]. The asset pricing model implies that the aggregate returns are normal and inde-
pendly distributed. But the assumption is unsatisfactory for many observed data. One
approach is to replace the Brownian motion in Black-Scholes model by a heavier
tailed Lévy process. This will allow tomodel returns by heavy-tailed and skewed dis-
tribution and take into account jumps. However, the returns will be independent and
stationary, since every Lévy process has stationary independent increments. This
approach was proposed by Brockwell and Marquardt in [3], where second-order
Lévy-driven CARMA (continuous time ARMA) processes are reviewed. Gaussian
CARMA processes are special cases in which the driving Lévy process is Brownian
motion. The use ofmore general Lévy processes permits the specification ofCARMA
processes with a wide variety of marginal distributions which may be asymmetric
and heavier tailed than Gaussian. Non-negative CARMA processes are of special
interest, partly because of the introduction by Barndorff-Nielsen and Shepardt [1] of
non-negative Ornstein-Uhlenbeck process as model for stochastic volatility [3].

Because many studies have shown that heavy-tailed distributions allow for mod-
elling different kinds of phenomena when the assumption of normality for the obser-
vations seems not to be reasonable [9, 24, 35]; we extend the definition of the second-
order Lévy-driven CARMA processes considered in [3]. We propose to replace the
second-order process with the symmetric α-stable Lévy motion. The role that α-
stable Lévy motion plays among stable processes is similar to the role that Brownian
motion plays among Gaussian processes. Moreover, the α-stable (stable) distribu-
tions have found many practical applications, for instance in finance [18], physics

A. Wylomanska (B)
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[10], electrical engineering [27] and in the vibro-diagnostics [35]. The importance of
this class of distributions is strongly supported by the limit theorems which indicate
that the stable distribution is the only possible limiting distribution for the normed
sum of independent and identically distributed random variables [21].

On one hand, theα-stableCARMAprocesses are extension of second-order Lévy-
driven CARMA models; on the other hand, they are extension of the ARMA time
series models with α-stable innovations described in [19]. The mentioned time series
models found practical applications, see [34, 35]. The discrete ARMA models with
innovations from the stable distributions are a special case of considered in [20]
PARMA models with α-stable innovations as well as ARMA models with time-
varying coefficients and α-stable innovations presented in [21]. We should mention,
the PARMA models are main discrete time series used to description of cyclosta-
tionary processes and appear to be useful in applications to vibration time series for
machines that operate in time-varying conditions [33] as well as for electricity data
[4]. The CARMA processes with periodic coefficients (which are extension of pre-
sented CARMA models with fixed coefficients) can be also examined in the context
of cyclostationary processes. Therefore, the presented results, can be a starting point
to analysis of a continuous time model adequate for cyclostationary processes.

The structure of dependence is one of the most important characteristic of the
process. One of the most common function that allows to analyze the dependence
inside the examined process is the covariance function. Unfortunately, for the con-
sidered stable models, the covariance function is not defined and therefore other
measures of dependence have to be used. In this paper, we consider the codiffer-
ence and the covariation—the most popular measures of dependence defined for
symmetric α-stable random variables [26, 31] . We prove the codifference and the
covariation are asymptotically proportional with the coefficient of proportionality
equal to α. Let us mention, the similar asymptotic behaviour we observe for cor-
responding discrete models. We also consider the alternative measure defined for
infinitely divisible stochastic processes called the Lévy correlation cascade.

The rest of the paper is organized as follows: In Sect. 2, we introduce the gen-
eral class of continuous-time autoregressive moving average time series (CARMA)
driven by symmetric α-stable Lévy process. Next, in Sect. 3, we define the mea-
sures of dependence adequate for processes with infinite variance for which the
covariance can be a tool describing the structure of dependence. In Sect. 4, we
study the asymptotic behaviour of mentioned measures of dependence for sym-
metric α-stable CARMA processes and indicate the asymptotic behaviour of covari-
ation (CV) and codifference (CD)—the most popular measures adequate for stable
processes. The main result, namely the asymptotic behaviour of the ratio C D/CV
obtained for examined processes is similar to that obtained for discrete version of
CARMA process, namely ARMA one. In Sect. 5, we concentrate on the special
case of CARMA process, namely CAR(1), known in the literature as the Ornstein-
Uhlenbeck process. We show the explicit form of the solution of such system and
formulas for considered measures of dependence. Similarly, as in general case, we
indicate the asymptotic behaviour of the ratio C D/CV . In order to illustrate the
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theoretical results, in Sect. 6, we examine the real financial dataset by using exam-
ined processes. Last section contains conclusions.

2 CARMA Processes

In this paper, we use the definition proposed in [2] that is an extension of second-order
Lévy-driven continuous ARMA(p,q) process given in [3] and study the CARMA
process with symmetric α-stable Lévy motion indexed by R, i.e. the processes sat-
isfying following equation:

a(D)Y (t) = b(D)DL∗(t), t ∈ R, (1)

in which D denotes differentiation with respect to t , {L∗(t), t ∈ R} is a two-sided
symmetric α-stable Lévy process defined as:

L∗(t) =
{

L(t), when t ≥ 0,
L(−t), otherwise

(2)

and {L(t) t ≥ 0} is an α-stable Lévy process called also α-stable Lévy motion [32].
Let us mention, the α-stable Lévy motion is the process {L(t), t ≥ 0}, with inde-
pendent stationary increments possessing α-stable distribution, i.e. in general case
for each t the random variable L(t) has the stable distribution with index of stability
0 < α ≤ 2, scale parameter t1/ασ > 0, skewness −1 ≤ β ≤ 1 and shift parameter
μ = 0, i.e. with the characteristic function defined as:

ΦL(t)(k) = E exp(ikL(t))

=
{

exp
{−tσα|k|α (

1 − iβsgn(k) tan πα
2

)}

if α �= 1,
exp

{−tσ |k| (1 − iβ 2
π

sgn(k) ln |k|)} if α = 1.
(3)

The α-stable Lévymotion is called symmetric α-stable if β = 0. In the further analy-
sis, we consider only the symmetric case with σ = 1. Moreover, the polynomials in
(1) are defined by

a(z) = z p + a1z p−1 + · · · + ap,

b(z) = b0 + b1z + · · · bp−1z p−1.

In the further analysis, we assume p > q and take the bq �= 0 and b j = 0 for
q < j < p. Equation (1) can be written in the equivalent form [2]:

Y (t) = b
′
X(t), (4)

where the process {X(t), t ∈ R} satisfies the following stochastic differential equa-
tion with respect to the process {L∗(t), t ∈ R}:
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dX(t) − AX(t)dt = edL∗(t), (5)

for

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−ap −ap−1 −ap−2 . . . −a1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, e =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
0
...

0
1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, b =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

b0
b1
...

bp−2
bp−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (6)

The solution of (5) is given by:

X(t) = eA(t−s)X(s) +
∫ t

s
eA(t−u)edL∗(u), (7)

for s < t and the process {Y (t), t ∈ R} defined as

Y (t) =
∫ t

−∞
g(t − u)dL∗(u), (8)

where

g(x) = b
′
eAx eI{(0,∞)}(x) (9)

satisfies Eq. (1). Let us mention, process given in (8) is called moving-average
symmtric α-stable process [26].

Lemma 1 If the following condition

∫ ∞

0
|b′

eAx e|αdx < ∞ (10)

is satisfied, then the stochastic process {Y (t), t ∈ R} given in (8) is stationary.

Proof The proof follows directly from the form of the solution of Eq. (1), namely
(8) and Example 3.6.2 in [26]. �

Remark 1 By the assumption all eigenvalues of A have negative real parts, condition
(10) is satisfied, see [2].

Remark 2 Using Proposition 1.11 in [15] we obtain that there exist x0 ≥ 0 and
constants c, C > 0 and c̃, C̃ > 0 such that

|g(x)| ≤ Ce−cx , x ∈ R

|g(x)| ≥ C̃e−c̃x , x ≥ x0,
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where g(x) : R → R is given in (9). Moreover the above conditions give the
following limit

lim
x→∞ g(x) = 0.

3 Measures of Dependence of α-stable Random Processes

Let X and Y be jointly symmetric α-stable random variables (SαS for short) and let
Γ be the spectral measure of the random vector (X, Y ) (see for instance [26]). We
say that random variables X and Y are jointly SαS if the vector (X, Y ) is SαS inR2.
If α < 2 then the covariance is not defined and thus other measures of dependence
have to be used. The most popular measures are the covariation CV (X, Y ) and the
codifference C D(X, Y ) given in Definitions 1 and 2, respectively.

Definition 1 Let X and Y be jointly SαS. The covariation CV (X, Y ) of X on Y
defined for 1 < α ≤ 2 is the real number [26]:

CV (X, Y ) =
∫

S2
s1s<α−1>

2 Γ (ds), (11)

where Γ is the spectral measure of the random vector (X, Y ), s = (s1, s2) and the
signed power z<p> is given by z<p> = |z|p−1 z̄.

Definition 2 Let X and Y be jointly SαS. The codifference CD(X, Y ) of X on Y
defined for 0 < α ≤ 2 is defined as [26, 32]:

C D(X, Y ) = lnE exp{i(X − Y )} − lnE exp{i X} − lnE exp{−iY }. (12)

Properties of the considered measures of dependence one can find in [26, 32].
Let us only mention here that, in contrast to the codifference, the covariation is not
symmetric in its arguments. Moreover, when α = 2 both measures reduce to the
covariance, namely

Cov(X, Y ) = 2CV (X, Y ) = C D(X, Y ). (13)

If α > 1, then the covariation induces a norm ||.||α on the linear space Sα of
jointly SαS random variables.

Definition 3 The covariation norm of X ∈ Sα , α > 1, is defined as

||X ||α = (CV (X, X))1/α. (14)

The covariation norm of a SαS random variable X is equal to the scale parameter of
this variable, see [26]. For 1 < α ≤ 2 the codifference of SαS random variables X
and Y can be rewritten in the form:
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C D(X, Y ) = ||X ||αα + ||Y ||αα − ||X − Y ||αα. (15)

We should mention here the properties of codifference confirm that the measure is
an appropriate mathematical tool for measuring the dependence between α-stable
randomvariables aswell as randomvariables frommore general class of distributions
(e.g., infinitely divisible). Moreover in contrast to covariation, which is of limited
practical importance, according to the definition of codifference (12), it is easy to
evaluate the empirical codifference which is based on the empirical characteristic
function of the analyzed data [22, 23, 32].
The alternative measure of dependence is defined for independently divisible sto-
chastic process {Y (t), t ∈ R} with the following integral representation

Y (t) =
∫

X
K (t, x)M(dx),

where M is an independly scattered infinitely divisible random measure on some
measurable space S with control measure m, such that for every m-finite set A ⊆ S
(Lévy-Khinchin formula for infinitely divisible random measure):

E exp[iθ M(A)] = exp

[

m(A)

{

iθμ − 1

2
σ 2θ2

+
∫

R
(eiθx − 1 − iθx I (|x | < 1))M(dx)

}]

.

The measure was introduced in [6] as a new concept of correlation cascades, which
is a promising tool for exploiting the properties of the Poissonian part of Y (t) and the
dependence structure of this stochastic process. Eliazar and Klafter in [6] proceed
in the following way—first, define a Poissonian tail-rate function Λ of the Lévy
measure Q as:

Λ(l) =
∫

|x |>l
Q(dx), l > 0,

next, for t1, t2, . . . , tn ∈ R and l > 0 introduce a family of functions

Cl(t1, t2, . . . , tn) =
∫

X
Λ

(

l

min{K (t1, x), . . . , K (tn, x)}
)

m(dx),

called the Lévy correlation cascade, see also [14]. In the special symmetric α-stable
case the tail function takes the simple form:

Λ(l) = 2

α
· l−α (16)

and for the symmetric α-stable moving-average process {Y (t), t ∈ R} with the
integral representation
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Y (t) =
∫ t

−∞
f (t − x)M(dx)

the function Cl(t, s), s, t ∈ R has the form:

Cl(t, s) = 2

α
· l−α

∫

|t−s|
| f (x)|αm(dx). (17)

Many significant properties and results related to the Lévy correlation cascade for
infinitely divisible processes are presented in [6, 14]. We only mention here the
function Cl(t1, t2, . . . , tn) tells us, how dependant the coordinates of the vector
(Y (t1), Y (t2), . . . , Y (tn)) are. Therefore, Cl(t1, t2, . . . , tn) can be considered as an
appropriate measure of dependence for the Poissonian part of the infinitely divisible
process. In particular, the functionCl(t, s) can serve as an analogue of the covariance
and the function

rl(t, s)
Cl(t, s)√
Cl(t)Cl(s)

(18)

can play a role of the correlation coefficient. Note that in the α-stable case the right-
hand side of (18) does not depend on the l parameter, [14, 31].

4 Asymptotic Behaviour of the Measures of Dependence
for Symmetric α-stable CARMA(p,q) Processes

Proposition 1 Let {Y (t), t ∈ R} be the stationary solution of (1) given by (8). More-
over, we assume the condition (10) is satisfied. Then for 1 < α ≤ 2 the covariation
of Y (t + h) on Y (t) for t ∈ R and h > 0 has the following form

CV (h) = CV (Y (t + h), Y (t)) =
∫ ∞

0
g(h + x)g(x)<α−1>dx,

where the function g(x) is defined in (9).

Proof The result follows from the form of the stationary solution of Eq. (1) and
Proposition3.5.2 in [26].

�

Proposition 2 If {Y (t), t ∈ R} is the stationary solution of (1) given in (8) and
condition (10) is satisfied, then for 1 < α ≤ 2 the codifference of Y (t + h) on Y (t)
(t ∈ R, h > 0) has the following form:



196 A. Wylomanska

C D(h) = C D(Y (t + h), Y (t))

=
∫ ∞

0

(|g(h + x)|α + |g(x)|α − |g(h + x) − g(x)|α)

dx .

Proof The proof follows from the relation between the covariation and codifference
given in Eq. (15) as well as from Proposition1. �

Lemma 2 Let {Y (t), t ∈ R} be the stationary solution of (1) given in (8). Moreover,
let us assume when condition (10) is satisfied, then there exist constants c, D1 > 0
such that for each h ∈ R we have

|CV (h)| ≤ e−ch D1.

Proof Using Proposition1 and Remark2 we obtain

|CV (h)| =
∣

∣

∣

∣

∫ ∞

0
g(x + h)g(x)<α−1>dx

∣

∣

∣

∣

≤
∫ ∞

0

∣

∣

∣g(x + h)g(x)<α−1>
∣

∣

∣ dx

≤ Ce−ch
∫ ∞

0
e−cx

∣

∣

∣g(x)<α−1>
∣

∣

∣ dx

= Ce−ch
∫ ∞

0
e−cx |g(x)|α−2

∣

∣

∣g(x)

∣

∣

∣ dx

= Ce−ch
∫ ∞

0
e−cx |g(x)|α−1 dx

≤ C2
∫ ∞

0
e−cαx = D1e−ch,

where D1 = C2

cα > 0. �

Lemma 3 Let {Y (t), t ∈ R} be the stationary solution of (1) given in (8). Moreover
let us assume condition (10) is satisfied. Then the following holds:

CD(h) −→ α

∫ ∞

0

g(h + x)

g(x)
|g(x)|αdx as h −→ ∞. (19)

Proof Using Proposition 2, we have
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C D(h) =
∫ ∞

0

(|g(h + x)|α + |g(x)|α − |g(h + x) − g(x)|α)

dx

=
∫ ∞

0
|g(x)|α

(∣

∣

∣

∣

g(h + x)

g(x)

∣

∣

∣

∣

α

+ 1 −
∣

∣

∣

∣

g(h + x)

g(x)
− 1

∣

∣

∣

∣

α)

dx

=
∫ ∞

0

g(h + x)

g(x)
|g(x)|α

∣

∣

∣

g(h+x)
g(x)

∣

∣

∣

α + 1 −
∣

∣

∣

g(h+x)
g(x)

− 1
∣

∣

∣

α

g(h+x)
g(x)

dx.

Taking into consideration Proposition 1.11 in [15], we obtain there exist constants
C, c > 0 such that

∣

∣

∣

∣

g(h + x)

g(x)

∣

∣

∣

∣

≤ Ce−c(h−x)

g(x)
,

which for each x ∈ R gives:

g(h + x)

g(x)
−→ 0, as h −→ ∞.

Since for 1 < α ≤ 2 we have limx→0
1−|1−x |α

x = α, limx→0
|x |α

x = 0, then we
obtain the result. �

Theorem 1 If {Y (t), t ∈ R} is the stationary solution of Eq. (1) given in (8) and
condition (10) is satisfied, then for 1 < α ≤ 2 the following holds

lim
h→∞

CD(h)

CV(h)
= α. (20)

Proof Applying Proposition 1 and Lemma 3 for 1 < α ≤ 2 we get formulas for the
covariation and the asymptotic behaviour of codifference:

CV(h) =
∫ ∞

0

g(h + x)

g(x)
|g(x)|α, h > 0

CD(h) −→ α

∫ ∞

0

g(h + x)

g(x)
|g(x)|α as h −→ ∞.

Therefore for 1 < α ≤ 2 we obtain

lim
h→∞

CD(h)

CV(h)
= α.

�

Result similar to this obtained in (20), we also obtain for discrete ARMA models
with symmetric α-stable innovations, see [19] as well as for periodic ARMAmodels
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(PARMA) with stable structure reviewed in [20]. The special cases of considered
stable CARMA(p,q) processes and the asymptotic behaviour of their measures of
dependence are presented in [32].

Lemma 4 Let {Y (t), t ∈ R} be the stationary solution of (1) given in (8). Moreover,
let us assume condition (10) is satisfied. Then there exist constants c, D2 > 0 such
that for each h ∈ R we have

|Cl(h, 0)| ≤ l−αe−ch D2.

Proof Using the form of the solution of Eq. (1) given in (8) and formula (17) we
obtain

Cl(h, 0) = 2

α
l−α

∫ ∞

h
|g(x)|αdx,

where the function g(x) is defined in (9). Moreover using Remark 2 we have

|Cl(h, 0)| ≤ 2C

α
l−α

∫ ∞

h
e−cxαdx = l−αe−ch D2,

where D2 = 2C
cα . �

The results presented in this section can be useful in analysis of real time series.
As it is known, the measures of dependence are main tools useful in the problem
of finding of the proper model for real data. By comparing the theoretical measure
of dependence and its empirical equivalent, we can easily conclude the model that
describes the data as well as estimate the parameters of the model. This issue is also
discussed in [32] where the codifference is examined as a practical tool to measure
interdependence of given process.

5 Symmetric α-stable CAR(1) Process

As an example, we consider the symmetric α-stable CAR(1) (CARMA(1,0)) process
given by the following formula:

DY(t) + λY (t) = DL∗(t), (21)

where {L∗(t), t ∈ R} is a two-sided symmetric α-stable Lévy motion.
The stationary solution of Eq. (1) is therefore given by

Y (t) =
∫ t

−∞
e−λ(t−u)d L∗(u), (22)



The Dependence Structure for Symmetric α-stable CARMA(p,q) Processes 199

Let us mention, the general CAR(1) process is known in the literature as the
Ornstein-Uhlenbeck process [29]. When {L∗(t) t ∈ R} in Eq. (21) is Gaussian, then
the system is called the classical Ornstein-Uhlenbeck process. It is one of the famous
examples of continuous time models and was originally introduced by Uhlenbeck
and Ornstein [29] as a suitable model for the velocity process in the Brownian dif-
fusion. The Ornstein-Uhlenbeck process has been of fundamental importance for
theoretical studies in physics and mathematics, but it has also been used in many
applications including financial data such as interest rates, currency exchange rates
and commodity prices. In finance, it is best known in connection with the Vasiček
interest rate model [30], which was one of the earliest stochastic models of the term
structure. The model exhibits mean reversion, which means that if the interest rate
is above the long run mean, then the drift becomes negative so that the rate will be
pushed down to be closer to the mean level. Likewise, if the rate is below the long run
mean, then the drift remains positive so that the rate will be pushed up to the mean
level. Such mean reversion feature complies with the economic phenomenon that in
the long-time period interest rates appear to be pulled back to some average value
[9]. There are many extensions of the classical Ornstein-Uhlenbeck process. One of
them is to replace the Gaussian process by other Lévy processes, for example α-
stable one. The subordinated Ornstein-Uhlenbeck process with symmetric α-stable
structure was used in [9] to description of interest rates data. Moreover, the Ornstein-
Uhlenbeck process with other than α-stable distributions was considered in [24, 31].
We should also mention, the discrete version of symmetric α-stable CAR(1) process
is an AR(1) time series with α-stable innovations considered in [21]. In the next
propositions, we give the form of considered measures of dependence for symmetric
α-stable CAR(1) defined by the Eq. (21).

Proposition 3 Let {Y (t), t ∈ R} be the stationary solution of (21) and λ > 0, then
for 1 < α ≤ 2 the covariation of Y (t) on Y (s) for s, t ∈ R has the following form:

CV (Y (t), Y (s)) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

e−λ(t−s)

λα
for s < t,

eλ(α−1)(t−s)

λα
, for s ≥ t.

Proof The process {Y (t), t ∈ R} is given by (22), thus to obtain the covariation of
Y (t) on Y (s) (t, s ∈ R) we use Proposition 3.5.2 in [26] and obtain:

CV(Y (t), Y (s)) =
∫ ∞

−∞
f (t − x) f (s − x)<α−1>dx,

where

f (x) = e−λx I[0,∞)(x) (23)
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Therefore we have

CV (Y (t), Y (s)) =
∫ min(s,t)

−∞
e−λ(t−x)e−λ(α−1)(s−x)dx

= e−λt−λ(α−1)s
∫ min(s,t)

−∞
eλαx dx

= exp{−λt − λ(α − 1)s + λαmin(s, t)}
λα

,

which for s < t gives

CV (Y (t), Y (s)) = e−λ(t−s)

λα
.

For s ≥ t we have

CV (Y (t), Y (s)) = eλ(α−1)(t−s)

λα
.

�

Proposition 4 If {Y (t), t ∈ R} is the stationary solution of equation (21) and λ > 0,
then for 1 < α ≤ 2 the codifference of Y (t) on Y (s) (s, t ∈ R) has the following
form:

CD(Y (t), Y (s)) = 1 + e−λα|t−s| − |1 − e−λ|t−s||α
λα

. (24)

Proof The calculations one can find in [32], see also [26]. �

Theorem 2 If {Y (t), t ∈ R} is the stationary solution of Eq. (21) and λ > 0, then:

(a) for 1 < α ≤ 2 the following formula holds:

lim
h→∞

CD(h)

CV(h)
= α, (25)

(b) for 1 < α < 2 the following formula holds:

lim
h→∞

CD(−h)

CV(−h)
= 0. (26)

Proof (a) The proof of this part follows directly from Theorem 1).
(b) Applying Propositions 1 and 2 for 1 < α ≤ 2, t ∈ R and h > 0 we have the
following formulas:
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CV(Y (t − h), Y (t)) = CV(Y (t), Y (t + h)) = e−λ(α−1)h

λα
,

CD(Y (t − h), Y (t)) = CD(Y (t), Y (t + h)) = 1 + e−λαh − |1 − e−λh |α
λα

.

Therefore for 1 < α ≤ 2, t ∈ R and h > 0 one has:

CD(Y (t − h), Y (t))

CV(Y (t − h), Y (t))
= 1 + e−λαh − |1 − e−λh |α

e−λ(α−1)h
.

Since for 1 < α < 2 we have:

lim
x→0

1 + |x |α − |1 − x |α
xα−1 = lim

x→0
x2−α

(

1 + |x |α − |1 − x |α
x

)

= 0,

then for 1 < α < 2 and t ∈ R we obtain:

lim
h→∞

CD(−h)

CV(−h)
= lim

h→∞
CD(Y (t − h), Y (t))

CV(Y (t − h), Y (t))
= 0.

�

Proposition 5 If {Y (t), t ∈ R} is the stationary solution of symmetric α-stable
CAR(1) process given in (22) and λ > 0, then for 0 < α ≤ 2 the Lévy correlation
cascade of Y (t) on Y (s) (s, t ∈ R) is given by:

Cl(t, s) = 2

λα2lα
e−λα|t−s|, l > 0. (27)

The correlation coefficient rl(t, s) defined in (18) has the following form:

rl(t, s) = e−λα|t−s|. (28)

Proof The proof follows directly from the form of the solution of equation (21) as
well as from (17) and the fact that for symmetric α-stable processes Λ(l) = 2

α
l−α .

The form of the rl(t, s) function follows directly from relation (18). �

In Fig. 1 we present exemplary trajectories of symmetric α-stable CAR(1) process
with λ = 0.0018 and three values of α parameter α = 1.3, α = 1.46 and α = 1.9.
Moreover in Fig. 2 we show the ratio CV (h)/C D(h) for three considered cases of
α parameter and h ∈ [2000, 12000].
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Fig. 1 The exemplary trajectories of symmetricα-stableOrnstein-Uhlenbeckprocesswithα = 1.2,
α = 1.46 and α = 1.9
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Fig. 2 The ratio CV (h)/C D(h) (top panel) and CV (−h)/C D(−h) (bottom panel) for symmetric
α-stable CAR(1) process (21) for λ = 0.0018 and three considered cases of α parameter
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6 Applications

In this section, we use the consideredmodels to describe the real financial data. In the
analysis, we use the estimation procedure consisted in the estimation of embedding
in CARMA systems the discrete ARMA models. In our calculations we consider
the estimator for parameters of ARMA models with infinite variance innovations
proposed in [17], which is based on the Whittle method. For the simplicity we
consider only the autoregressive models (i.e. without the MA part).

As an example, we consider the United Kingdom interbank rates LIBID/LIBOR
for 12 months quoted daily from the period 02.01.1995–03.07.2006. In Fig. 3 we
present the examined dataset after removing the sample mean. Because the Gaussian
CAR(1) was originally used by Vasiček for the analysis of interest rates, we propose
to describe the examined vector of observations by using this process. However, in
the dataset we observe significant jumps that may suggest the α-stable distribution.
As it was mentioned, first we estimate the parameters corresponding to considered
model by using the Whittle estimation method based on the sample periodogram.
We apply the method to the original dataset after removing its sample mean. As a
result, we obtain the following model:

DY (t) + 0.0018Y (t) = DL∗(t),

where {L∗(t), t ∈ R} is a two-sided symmetric α-stable Lévy motion. As it was
mention, the discrete version of symmetricα-stable CAR(1) process is anAR(1) time
series with symmetric α-stable innovations, [9]. After fitting the appropriate model,
we calculate the model residuals, see Fig. 4. Our assumption od α-stable distribution
we confirm by using Jacque-Bera test for Gaussian distribution [5, 8, 25] and the
Anderson-Darling test for stable behaviour of examined dataset [5]. Namely, we test
if the residuals can be considered as Gaussian sample (by Jacque-Bera test). As a
result, we obtain p-value equal to 0.001 which means, on the confidence level 0.05
we can not assume the Gaussian distribution. Then we test the α-stable distribution
by Anderson-Darling test for stable behaviour. As a result, we obtain p-value equal

0 500 1000 1500 2000 2500 3000
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0

1

2

3

number of samples

Fig. 3 The real dataset (after removing the sample mean) corresponding to the United Kingdom
interbank rates LIBID/LIBOR for 12 months quoted daily from the period 02.01.1995–03.07.2006
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Fig. 4 The residuals of fitted symmetric α-stable CAR(1) models to dataset corresponding to the
United Kingdom interbank rates LIBID/LIBOR from the period 02.01.1995–03.07.2006
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Fig. 5 The quantile lines of levels 10, 20…, 90% obtained using 1000 simulated trajectories of
fitted symmetric α-stable CAR(1) process and the analyzed dataset (black thick lines)

to 0.35 which means, on the 0.05 confidence level we can not reject the hypothesis
of the stable distribution. Finally, we estimate the stability parameter α by using the
McCulloch method [12]. We obtain α̂ = 1.46. Next, we calculate the quantile lines,
i.e. the curves describing the values that with a given probability will not be exceeded
by the corresponding process [11]. The quantile lines of levels 10, 20, 90% obtained
using 1000 simulated trajectories are presented in Fig. 5. Additionally, in the same
figure we plot the analyzed dataset. Observe that the observed interest rates doe not
exceed the bounds given by the 10 and 90% quantile lines [13].
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7 Conclusions

In this paper,we have analyzed the symmetricα-stableCARMAprocesses and exam-
ined their structure of dependence. Because for the consideredmodels the covariance
function is not defined, then the dependence is expressed by using the alternative
measures. We have studied the codifference and the covariation—the most popular
measures of dependence defined for symmetric α-stable random variables. We have
proved, similar as for the discrete counterparts of examined processes, the codif-
ference and the covariation are asymptotically proportional with the coefficient of
proportionality equal to the stability parameter of themodel.We have also considered
the alternative measure defined for infinitely divisible stochastic processes, namely
the Lévy correlation cascade. As a special case, we have considered the symmetric
α-stable CAR(1) process, known in the literature as the Ornstein-Uhlenbeck process.
The theoretical results are illustrated by real dataset that describes the interest rates
from the United Kingdom market. We believe the presented results can be a base to
obtain the alternative methods of estimation of unknown parameters of symmetric
α-stable CARMA processes.

References

1. Barndorff-Nielsen, O., & Shepardt, N. (2001). Non-Gaussian Ornstein-Uhlenbeck-based mod-
els and some of their uses in financial economics. Journal of the Royal Statistical Society, Series
B, 63, 1–42.
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32. Wyłomańska, A., Chechkin, A., Sokolov, I., & Gajda, J. (2015). Codifference as a practical
tool to measure interdependence. Physica A, 421, 412–429.

33. Wyłomańska, A., Obuchowski, J., Zimroz, R., Hurd, H. (2014). Periodic autoregressive model-
ing of vibration time series from planetary gearbox used in bucket wheel excavator, In Fakher
Chaari et al. (Eds.), Cyclostationarity: Theory and methods. Lecture Notes in Mechanical
Engineering, (pp. 171–186).

34. Yu, G., & Li, Ch. (2013). A new statistical modeling and detection method for rolling element
bearings faults based on alpha-stable distribution. Mechanical Systems and Signal Processing,
41, 155–175.
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