
Understanding Software Provisioning:

An Ontological View

Evgeny Pyshkin1, Andrey Kuznetsov2, and Vitaly Klyuev3

1 St. Petersburg State Polytechnic University
Institute of Computing and Control

21, Polytekhnicheskaya st., St. Petersburg 195251, Russia
pyshkin@icc.spbstu.ru

2 Motorola Solutions, Inc.
St. Petersburg Software Center

Business Centre T4, 12, Sedova st., St. Petersburg 192019, Russia
andrei.kuznetsov@motorolasolutions.com

3 University of Aizu
Software Engineering Lab.

Tsuruga, Ikki-Machi, Aizu-Wakamatsu 965-8580, Japan
vkluev@u-aizu.ac.jp

Abstract. In the areas involving data relatedness analysis and big data
processing (such as information retrieval and data mining) one of com-
mon ways to test developed algorithms is to deal with their software
implementations. Deploying software as services is one of possible ways
to support better access to research algorithms, test collections and third
party components as well as their easier distribution. While provision-
ing software to computing clouds researchers often face difficulties in
process of software deployment. Most research software programs utilize
different types of unified interface; among them there are many desktop
command-line console applications which are unsuitable for execution
in networked or distributed environments. This significantly complicates
the process of distributing research software via computing clouds. As
a part of knowledge driven approach to provisioning CLI software in
clouds we introduce a novel subject domain ontology which is purposed
to describe and support processes of software building, configuration and
execution. We pay special attention to the process of fixing recoverable
build and execution errors automatically. We study how ontologies tar-
geting specific build and runtime environments can be defined by using
the software provisioning ontology as a conceptual core. We examine how
the proposed ontology can be used in order to define knowledge base rules
for an expert system controlling the process of provisioning applications
to computing clouds and making them accessible as web services.

Keywords: Knowledge Engineering, Ontology Design, Service-Oriented
Architecture, Cloud Computing, Software Deployment Automation.

W. Chu et al. (Eds.): DNIS 2015, LNCS 8999, pp. 84–111, 2015.
c© Springer International Publishing Switzerland 2015

Understanding Software Provisioning: An Ontological View 85

1 Introduction

Service-oriented software and cloud computing significantly transformed the
ways we think about possibilities to provide access to numerous computational
resources. Currently there are many efforts about investigating possibilities to
use clouds in organizing research and collaborative work. Particularly, in the
domain of music information retrieval (MIR) researchers often develop software
programs implementing different algorithms. Many of such implementations still
remain desktop applications with command-line interface (CLI applications).
Originally they are not intended to be executed in networked or distributed en-
vironments. With respect to issues of facilitating access to such implementations
we have to mention the following problems:

1. A client local machine (where an application is assumed to be executed)
might not well suit long lasting resource consuming computations.

2. A local application is hardly accessible for other researchers that wish to use
the algorithm.

3. Client algorithms might require access to huge test collections which are
hard to download and to allocate on a desktop storage.

4. Some test collections (particularly, in music information retrieval (MIR))
might not be publicly available due to the copyright restrictions.

Research communities often complain that many software implementations
remain unpublished. Hence, it is often difficult to compare results achieved by
different researchers even if we have access to the test data they used. There is
another challenge: one researcher is often unable to reproduce results of others
(even if they are published).

In the domain of MIR the MIREX1 was organized to improve algorithms dis-
tribution and evaluation with using wide range of evaluation tasks [1]. However,
since the evaluation process is implemented in the form of an annual competi-
tion researchers are unable to experiment with MIREX tests at any time they
need. Researchers have very limited access to the solutions and test collections
of others.

First, let us take a look at the Vamp system2 [2]. Basically, the Vamp provides
a plugin based framework which makes the published MIR research software
accessible by the people outside the developer field. Properly speaking, the Vamp
defines an application programming interface forcing developers to unify the
application interface which has to conform the framework requirements. Despite
the Vamp became a popular mean of MIR algorithms distribution, the MIREX
still accepts CLI software implementations. Hence, the problem of CLI software
provisioning remains to be of current concern.

1 MIREX – Music Information Retrieval Evaluation eXchange:
http://www.music-ir.org/mirex/

2 http://www.vamp-plugins.org

http://www.music-ir.org/mirex/
http://www.vamp-plugins.org

86 E. Pyshkin, A. Kuznetsov, and V. Klyuev

Second, we have to mention the NEMA environment3 [3]. The NEMA creates
a distributed networked infrastructure providing access to the MIR software and
data sets over the Internet. The NEMA architecture supports publishing client
algorithms as services implementing the required web interface. The deployment
process is partially automated: it is based on using a set of preconfigured virtual
machine images. Each image provides a platform (e.g. Python, Java, etc.) which
is completely configured to be used by the NEMA flow service. Image modifica-
tions are manual, hence developers are expected to have specific knowledge in
order to deploy their solutions.

The MEDEA4 system [4] enables deploying an arbitrary CLI application on
an arbitrary cloud platform. Special attention is paid to such cloud services as
Google App Engine, EC2, Eucalyptus, and Microsoft Azure. The MEDEA uses
standard virtual machine images provided by a cloud and uploads a special
wrapper (a task worker, in MEDEA terms) to the running virtual machine. The
wrapper initializes the respective runtime environment (e.g. Python, Java, etc.)
and executes a client application. Unfortunately, execution and configuration
errors are not analyzed, there is no any automatic mechanism to handle build,
execution and configuration errors conditioned not by the client code bugs, but
by the deployment process faults.

What are advantages we expect in provisioning research software in clouds?
First, clients are able to get quicker access to remote resources, be it a network
storage, a virtual machine or an applied software. Second, server side computing
decreases requirements for the client side hardware. Third, a public API can be
defined for a deployed cloud application: publishing the application source code
is not required, neither distributing software binary code. Fourth, test collections
stored within a cloud are not necessary to be downloaded to client machines.
In turn, clients require no direct access to test collections: there are less prob-
lems conditioned by copyright restrictions. Furthermore, clients pay only for the
resources rent for short periods of time. Finally, application deployment and
installation issues have to be resolved only once.

Despite there are many research efforts aimed to facilitate using cloud ser-
vices for provisioning research software, there are still many open questions.
Let’s make closer inspection of the problem. There are applications developed
for clouds and there are tools automating the deployment process. However,
CLI applications are commonly not intended to be executed in clouds, hence
they require different automation tools. Existing tools usually proceed from the
assumption that a virtual platform (e.g. a PaaS or an IaaS service)5 is config-
ured properly. It means that all external dependencies (e.g. libraries, external
resources, compiler or library versions, etc.) are resolved, and the only problem
is to upload and to run the code in a cloud [4]. As a matter of actual practice,

3 NEMA – Networked Environment for Music Analysis:
www.music-ir.org/?q-nema/overview

4 MEDEA – Message, Enqueue, Dequeue, Execute, Access.
5 We refer both a PaaS (platform as a service) and an IaaS (infrastructure as a service)
computing node as a virtual platform if the difference between them is not important.

www.music-ir.org/?q-nema/overview

Understanding Software Provisioning: An Ontological View 87

Fig. 1. A web-interface proxy is required in order to deploy CLI applications as web
services

this assumption is rarely true, and deploying becomes very complicated: research
software developers (being experts in their subject domain) might not be expe-
rienced enough in programming and in system administration. They might have
no special knowledge on how to transfer their applications to a cloud, and how
to configure a cloud runtime environment so as the application works the same
way as it works on a local machine.

A reasonable way to deliver a CLI application to a cloud is to define a wrapper
(or a proxy) providing a web interface to the application as Figure 1 shows. An
automation tool implements mechanisms of transferring a client module (cou-
pled with the related data) to a cloud service. The question is how to discover
and to handle software execution errors automatically, with special emphasis on
the errors conditioned by possible misconfiguration of a virtual platform. In [5]
we introduced an idea to use a knowledge driven approach based on an ontol-
ogy purposed to support processes of software building, its configuration and
execution and to describe build and execution errors and actions required to
fix recoverable errors automatically. In this work we describe this approach in
greater details with a particular focus on ontology design.

2 Introducing the Ontology Usage Domain

As is the case of software testing, there are two major approaches to discover
and handle configuration errors and client code external dependencies: source
and object modules static analysis and dynamic analysis (of the execution with
using some test data). Static analysis is used in such methods and algorithms as
ConfAnalyzer [6], ConfDiagnoser [7] and ConfDebugger [8]. Well-known exam-
ples of dynamic analysis tools are AutoBash [9] and ConfAid [10].

2.1 Sources

In order to formalize error description and the relationships between an error and
its resolution procedure, knowledge engineering formalisms are required. Despite
there isn’t any well-known ontology describing processes of software build, run
and runtime environment configuration, we have to cite some general-purpose
ontologies used in software engineering.

88 E. Pyshkin, A. Kuznetsov, and V. Klyuev

In [11] the authors describe 19 software engineering ontology types. They give
a coat to various aspects of software development, documenting, testing and
maintenance. Considering the most relevance to the paper issues, the following
ontologies have to be mentioned:

– Software process ontology [12];
– System behavior ontology [13];
– Software artifact ontology [14];
– System configuration ontology [15].

Each of the above listed formalisms operates with a subset of concepts related
to the software build, run and environment configuration, but none of these
covers the subject in a whole. Beyond subject domain ontologies there are well-
known meta-ontologies which potentially fit a wide variety of problems. The
process ontologies (like PSL [16], BPEL [17], BPMN [18]) or the general purpose
ontology (like Cyc [19]) can serve as examples of such formalisms. Unfortunately,
meta-ontologies do not contain any concept or relationship which would allow
us to describe a specific knowledge area and its specific problems.

In the following sections we define an ontology aimed to describe and resolve
problems of CLI software provisioning to a virtual platform. We examine how
to construct a production knowledge base used to support client application au-
tomatic deployment in clouds. Let us mention again that in this paper we are
focused on deployment problems in relation to the special software class – re-
search software implementing algorithms developed in MIR mostly. The authors
of such programs are usually able to implement an algorithm in the form of CLI
console application which transforms input data to the output according to the
data formats required by a certain algorithm evaluation system. However it is
common that they might not be experienced enough to resolve runtime environ-
ment failures or to guarantee that virtual platform requirements are satisfied.

2.2 Target Architecture

It seems impossible and probably useless to try to define an ontology “in the vac-
uum”. In this paper we briefly examine the architectural aspects closely related
to the ontology definition. We follow our work [20] where we introduced a target
architecture consisting of a virtual platform, a cloud broker and a deployment
manager (see Figure 2), the latter being responsible for successful deployment
of CLI client console applications on a virtual platform. However that paper
doesn’t contain any detailed explanation of the software provisioning ontology.

A knowledge base (KB), an inference engine and its working memory are com-
ponents of an expert system controlling the provisioning process. A pre-installed
deployment manager agent provides a web interface to a client application, gath-
ers information about the client application state and environment state. The
deployment manager agent uses the knowledge base to resolve deployment prob-
lems. The agent interacts with the configuration manager by using high-level
commands which describe required actions in order to reconfigure the platform.

Understanding Software Provisioning: An Ontological View 89

Fig. 2. Managing application deployment in the cloud: an architectural view

In turn, the configuration manager interacts with the cloud broker by using low-
level commands. In so doing, it controls the installation of required cartridges6

as well as the recreation of virtual machines if necessary. Figure 3 represents the
general deploying procedure where the expert system is used to resolve possible
configuration errors.

There are two major ways to upload a client module on a virtual platform:

– An executable module is uploaded by a client.
– An executable module is generated as a result of a server side building pro-

cess.

In the latter case the executable module may be considered as a derived
artifact of the source code building process. Furthermore, the building process
itself can be described by using the same ontology terms. Indeed, the building
process is a kind of execution where a compiler (or a building system like make,
ant or maven) is an executable entity while a source code is considered to be
the input data for a compiler.

3 Constructing a Software Provisioning Ontology

In order to be capable to describe typical scenarios of CLI software automatic
deployment we defined a subject domain ontology “Automated CLI application

6 Cartridges encapsulate application components, for example, language runtimes,
middleware, and databases, and expose them as services.

90 E. Pyshkin, A. Kuznetsov, and V. Klyuev

Fig. 3. Main stages of the deployment process

build and run with resolving runtime environment configuration errors” (for fur-
ther references we use an abridged name “Software provisioning ontology”).

3.1 Requirements That Compete: A Case Study

Following Gruber’s ontology definition where an ontology is considered as an
explicit specification of the conceptualization [21], there are five major ontology
design requirements [22]:

Understanding Software Provisioning: An Ontological View 91

1. Clarity: An ontology should operate with the intended meanings and with
complete (as possible) definitions of introduced terms.

2. Coherence: The defined axioms should be logically consistent and all the
assertions inferred from the axioms shouldnt contradict to informally given
definitions or examples.

3. Extendibility: An ontology should be designed so as to allow using shared
vocabularies and to support monotonic ontology extension or/and special-
ization (i.e. new terms might be introduced without revising existing defini-
tions).

4. Minimal Encoding Bias: The conceptualization should be specified at the
knowledge level without depending on a particular symbol-level encoding.

5. Minimal Ontological Commitment:An ontology should require the min-
imal ontological commitment sufficient to support the intended knowledge
sharing activities.

These requirements are competitive: they might contradict to each other. If
we consider using ontology term vocabularies in the domain of production knowl-
edge bases, the requirements (1), (3) and (5) are in opposition. If the ontology
terms are too common (term commonness being the easiest way to minimize on-
tological commitment), they are hardly usable to define production rules (since
they might produce too much ambiguity). To overcome term ambiguity we have
either to revise existing definitions (which contradicts the extendibility principle)
or to introduce new terms with complex semantics (which, in turn, contradicts
the clarity principle).

Let us consider the following situation: some software module M should be
executed triple times (in no particular order) with different arguments A1, A2,
A3. Suppose that in order to run the module M with the arguments A1 some
component K in version V1 is required (we use the name K1 for that). In order
to run the module M with the arguments A2 the same component K is required,
but in version V2 (the K2 component). In order to run the module M with the
arguments A3 the component K has not to be used at all. The K1 and K2
configurations are mutually exclusive (i.e the module can not be executed with
dependencies on both K1 and K2). At the beginning (e.g. when the module is
being loaded) all the mentioned dependencies are unknown.

Let us introduce facts NeedK1 and NeedK2 that declare correspondingly
that the component configuration K1 (for the fact NeedK1) or K2 (for the fact
NeedK2) is required in order to successfully execute the module M .

Suppose there are knowledge base rules R1 and R2 which define how to dis-
cover dependencies on K1 and K2 by analyzing existing installation or execu-
tion logs. As a result of executing the production rules R1 and R2, the facts
NeedK1 and NeedK2 are asserted into the inference engine working memory.
Suppose there is also a rule R controlling the module M execution depending on
the presence of the facts NeedK1 and NeedK2 with corresponding dependen-
cies K1 and K2. Suppose there is a rule R′ which is activated when there is no
NeedK1 nor NeedK2 (both facts are absent) in the working memory. Thuswise,

92 E. Pyshkin, A. Kuznetsov, and V. Klyuev

Log

A1

A2 A3

Need-
K

Need-
K1

Need-
K2

1

2

refers

refers

for-
module

for-
module

for-
module

refers

Hierarchical relations

Logical relations implemented
as term properties

KB rules based logical
relations

instance
Of

instance
Of

instance
Of

instance
Of

instance
Of

instance
Of

instance
Of

Fig. 4. Running a software module: first attempt to define an ontology

the rule R′ controls execution of the module M without dependencies related to
the component K.

In fact, such a formal model describes a usual problem of compiling and con-
figuring software projects built from a source code. The different build systems
(e.g. maven or ant) can serve as examples of the module M , target projects can
serve as examples of builder arguments A, while third party libraries instantiate
dependencies on some component K.

The simple ontology shown in Figure 4 describes the subject domain as follows:
there is an A class representing arguments. The ontology entities A1, A2 and A3
are instances of A. Class NeedK describes the fact that some component K is
required in order to execute the module M . Entities NeedK1 and NeedK2 are
instances of NeedK class containing references to the K1 and K2 instances of
K class. For the reason that the K instances are used with the module M , the
K class has an attribute containing a reference to M . The Log entity has two
attributes: the log text and a reference to the respective module.

Straightforwardly, Listing 1 demonstrates how to define possible knowledge
base rules to be used with this rather näıve ontology.

Listing 1. Knowledge base rules to run a software module (näıve approach)

R1:

if

Log(text contains ‘‘dependency K1 missed’’)

then

assert NeedK1()

end

Understanding Software Provisioning: An Ontological View 93

R2:

if

Log(text contains ‘‘dependency K2 missed’’)

then

assert NeedK2()

end

R:

if

$dependency: (NeedK1() or NeedK2())

$arguments: (A1 or A2 or A3)

then

run M with $dependency and $arguments

end

R’:

if

not NeedK1()

not NeedK2()

$arguments: (A1 or A2 or A3)

then

run M with $arguments

end

It is evident that the ontological model shown in Figure 4 is insufficient to
control correct configuration and execution of the module M . There are at least
two problems. First, after a sequence of unsuccessful runs (e.g. after an attempt
to run the module M with the arguments A1 and with no dependencies on
K followed by an attempt to run the module M with the arguments A2 and
with no dependencies on K) the working memory might contain both NeedK1
and NeedK2 facts. Formally, one can expect that the module shall run with
both dependencies (K1 and K2) which contradicts to the restriction that the
components K1 and K2 are mutually exclusive. Second, the given rules might
yield infinite recursion as Table 1 illustrates for one possible series of steps for
the subsequently inserted A1, A2 and A3 arguments (in Table 1 the recent items
asserted to the working memory being shown bold).

In table 1 rows 7.2 and 7.3 activating the rule R implies executing the module
(which has already been successfully run) with beforehand wrong dependencies.
Moreover, the step 7 produces recursive rule activation. In the following step 8
the rules R1 and R2 are inevitably activated again, they assert the facts NeedK1
and NeedK2, and therefore the rule R is activated four times for every combi-
nation of {A1, A2} an {NeedK1, NeedK2}, and then the rules R1 and R2 are
activated all over again.

The latter problem can be fixed by the following improvements of the rules
R1 and R2 (see Listing 2), but this modification doesn’t lead to avoiding the
unnecessary and irrelevant steps with wrong dependencies.

94 E. Pyshkin, A. Kuznetsov, and V. Klyuev

Table 1. Activating production rules: an issue of infinite recursion

Step Rule Facts and
Arguments

Working Memory

0 – – A1

1 R′ A1 A1, Log(“dependency K1 missed”)

2 R1 Log A1, Log(“dependency K1 missed”), NeedK1

3 R NeedK1, A1 A1, Log(“dependency K1 missed”), NeedK1,
Log(“success”)

4 – – A1, Log(“dependency K1 missed”), NeedK1, Log(“success”),
A2

5 R NeedK1, A2 Log(“dependency K1 missed”), NeedK1, Log(“success”), A2,
Log(“dependency K2 missed”)

6 R2 Log Log(“dependency K1 missed”), NeedK1, Log(“success”), A2,
Log(“dependency K2 missed”), NeedK2

7.1 R NeedK2, A2 Log(“dependency K1 missed”), NeedK1, Log(“success”), A2,
Log(“dependency K2 missed”), NeedK2, Log(“success”)

7.2 R NeedK1, A2 Log(“dependency K1 missed”), NeedK1, Log(“success”), A2,
Log(“dependency K2 missed”), NeedK2, Log(“success”),
Log(“dependency K2 missed”)

7.3 R NeedK2, A1 Log(“dependency K1 missed”), NeedK1, Log(“success”), A2,
Log(“dependency K2 missed”), NeedK2, Log(“success”),
Log(“dependency K2 missed”),
Log(“dependency K1 missed”)

Listing 2. Fixing the recursion issue

R1:

if

Log(text contains ‘‘dependency K1 missed’’)

not NeedK1()

then

assert NeedK1()

end

R2:

if

Log(text contains ‘‘dependency K2 missed’’)

not NeedK2()

then

assert NeedK2()

end

Furthermore, as Table 2 (steps 9.1 and 9.2) shows, due to the facts NeedK1
and NeedK2 the rule R′ responsible for executing the module M without any
external dependency (arguments A3) can not be activated. The problem can be
solved by adding new rules to the knowledge base in order to allow removing

Understanding Software Provisioning: An Ontological View 95

Table 2. Activating production rules: an issue of irrelevant steps

Step Rule Facts and
Arguments

Working Memory

8 – – Log(“dependency K1 missed”), NeedK1, Log(“success”),
A2, Log(“dependency K2 missed”), NeedK2,
Log(“success”), Log(“dependency K2 missed”),
Log(“dependency K1 missed”), A3

9.1 R NeedK1, A3 Log(“dependency K1 missed”), NeedK1, Log(“success”),
A2, Log(“dependency K2 missed”), NeedK2,
Log(“success”), Log(“dependency K2 missed”),
Log(“dependency K1 missed”), A3,
Log(“invalid dependency K1”)

9.2 R NeedK2, A3 Log(“dependency K1 missed”), NeedK1, Log(“success”),
A2, Log(“dependency K2 missed”), NeedK2,
Log(“success”), Log(“dependency K2 missed”),
Log(“dependency K1 missed”), A3,
Log(“invalid dependency K1”),
Log(“invalid dependency K2”)

the facts NeedK1 and NeedK2 from the working memory if necessary. Listing 3
fixes this problem.

Listing 3. Rules for running a module with no external dependencies

R11:

if

Log(text contains ‘‘invalid dependency K1’’)

$dependency: NeedK1()

then

remove $dependency

end

R12:

if

Log(text contains ‘‘invalid dependency K2’’)

$dependency: NeedK2()

then

remove $dependency

end

Nonetheless, because of new rules R11 and R12 appeared, improper rules acti-
vation sequences might produce an infinite cycle (consider the sequence R′(A1),
R1,R(A3, NeedK1),R11,R′(A1) for instance). Hence, while constructing a rule
for inserting facts we have to pay attention to the implementation of other rules.
Dependencies between different rules significantly complicate the knowledge base
design: rules become unevident and self-contradictory.

The question is how to struggle with this complexity?

96 E. Pyshkin, A. Kuznetsov, and V. Klyuev

for-
argument

for-
argument

for-
argument

Log

A1

A2 A3

Need-
K

Need-
K1

Need-
K2

1

2

refers

refers

for-
module

for-
module

refers

instance
Of

instance
Of

instance
Of

instance
Of

instance
Of

instance
Of

instance
Of

Fig. 5. Running a software module: the revised ontology

Let’s turn back to the beginning of the mentioned example and revise the
proposed ontology model. We defined the facts NeedK1 and NeedK2 (and then
used them in rules R1 and R2) as global scope facts. It means that they are in-
serted to the working memory regardless of their connections with the arguments.
In reality, the fact say NeedK1 has sense only for the concrete arguments. It
means that the fact NeedK1 should be interpreted not as “executing the module
M with K1 dependency” but as “executing the module M with K1 dependency
for arguments A1” or “executing M with K1 dependency for arguments A2”, etc.
Thus, these facts are context dependent and therefore an ontology should
provide concepts supporting the context representation. It means that
we should define an association between the arguments A and the facts NeedK
as well as between the Log and the class A. The revised sketch is shown in
Figure 5.

The rules corresponding to the just mentioned changes are shown in Listing 4.
The class A represents the context: every predicate within the production rule

scope refers to the same parameter $arguments. Semantics of the classes NeedK
and Log changed: now there is a relationship linking them to the class A.

Listing 4. Knowledge base rules for the revised ontology

R1:

if

$arguments: A()

Log($arguments, text contains ‘‘dependency K1 missed’’)

then

assert NeedK1($arguments)

end

Understanding Software Provisioning: An Ontological View 97

R2:

if

$arguments: A()

Log($arguments, text contains ‘‘dependency K2 missed’’)

then

assert NeedK2($arguments)

end

R:

if

$arguments: A()

$dependency: (NeedK1($arguments) or NeedK2($arguments))

then

run M with $dependency and $arguments

end

R’:

if

$arguments: A()

not NeedK1($arguments)

not NeedK2($arguments)

then

run M with $arguments

end

For the sake of compactness we skip here further analysis of the sample on-
tology design which allows us to discover the connection between the Log class
and the component K as well as the rule priority issues.

Nevertheless, even this simplified example implies an important consideration.
Paying attention to the competing principles mentioned in the beginning of
this section we have to admit that designing subject domain ontology (which
is targeted to be used in order to construct ontologies of specific tasks) is a
complex problem requiring both solid working experience and much intuition.
Indeed, for software engineering purposes one of the most important criteria
whether an ontology is successful or not depends on the question whether it is
consistent and flexible enough to be used to solve practical problems of software
configuration and execution (i.e. only minor extensions of a base ontology are
required in order to construct the derived ontologies of specific tasks).

3.2 Core Concepts: Activities, Requests and Related Facts

The software provisioning ontology major concepts are activities and activity
requests. These concepts might aggregate each other: a request might consist
of activities, and vice versa, an activity might aggregate requests (being subre-
quests, in a sense). An Activity is a sequence of actions provided by an expert
or by a user in order to achieve an activity goal, while a Request might be
considered as a new goal setting.

98 E. Pyshkin, A. Kuznetsov, and V. Klyuev

Request (Type 1)

Activity (Type 1) Activity (Type 1) . . . Activity (Type 1)

. . .

Request (Type 2) Request (Type 3) . . . Request (Type N)

Activity (Type 2) Activity (Type 3) Activity (Type 3) . . .

Fig. 6. A hierarchy of activities and requests

Formally, Activity/Request hierarchies can be represented by using trees (see
Figure 6).

In order to describe activity results, we introduce a concept of an Activity sta-
tus which is twofold: there is an Activity runtime status and there is an Activity
completion status. The Activity runtime status instances are an Activity being
executed and an Activity suspended. The Activity completion status instances
are an Activity succeeded and an Activity failed. Assume that an activity is com-
pleted successfully if the activity goal is reached (for example, for the activity
Unpacking the artifact has been successfully unpacked), otherwise the activity
is failed (for example, some file artifact has not been unpacked for the reason
that the required archiving utility has not been found).

The Request features a necessary and appropriate condition for starting the
activity. For each request instance the activity caused by this request should be
known.

Similar to an activity concept, a Request might also have its status which is
also twofold: there is a Request runtime status and there is a Request comple-
tion status. The Request runtime status instances are a Request being executed
and a Request suspended while the Request completion status instances are a
Request succeeded and a Request failed. If at least one activity for the request
is completed successfully, the request is considered to be completed successfully
too. By contrast, if all the activities associated with the given request failed, the
request is considered to be failed.

Since there might be many objects in the inference engine working memory
and these objects might activate many rules at once, assuring rules consistency is
a difficult problem. One of the possible ways to solve this problem is to design an
ontology in a way that big groups of rules are never activated at once, while all
the activated rules are easily computable. In order to support such an approach
we introduce the following concepts (see also Figure 7):

Understanding Software Provisioning: An Ontological View 99

Activity

kindOf

Request

kindOf

Request-
scoped-

knowledge

kindOf

Request-
status

kindOf

for-activity

for-request
for-request-

status

Activity-status

kindOf
for-activity-

status

Activity-
related-fact

Global-fact

Activity-status-
related-fact

Request-
status-related-

fact

Request-
related-fact

produces

attribute

kindOf
rule

Hierarchical relation.

Logical relation supported
with term properties.

Logical relation supported
by knowledge base rules.

Ontology non-root class.
Can be extended.

Ontology instance. Can
not be extended.

Ontology root class: root
of taxonomy in concept

classification tree.

Fig. 7. Activities and requests are major ontology concepts

– An Activity related fact (ARF) is a base concept for every fact corre-
sponding to a certain activity. This class has a reference ARF.activity to
an activity instance. Within the context of executing some activity Ac only
those facts should be considered which are either global scope facts or the
facts related directly to the activity Ac (i.e. ARF.activity = Ac).

– A Request related fact (RRF) is a base concept for every fact corre-
sponding to a certain request. This class has a reference RRF.request to
a request instance. Within the context of executing some request Rq only
those facts should be considered which are either global scope facts or the
facts related directly to the request Rq (i.e. RRF.request = Rq).

– An Activity status related fact(ASRF) is similar to an ARF but related
to the activity status.

– A Request status related fact (RSRF) is similar to an RRF but related
to the request status.

– An Activity life cycle state (ALCS) is a base class required to describe
the activity life cycle states.

– A Request life cycle state (RLCS) is a base class required to describe
the request life cycle states.

Let us explain the reasons why the activity and request life cycle stages con-
cepts are required. The first reason is production rules simplification. In most
cases in order to define rules for the specific tasks (e.g. building with maven,
running Java application, etc.) only rules for stages ALC-W and ALC-A (in-
troduced in Table 3) have to be defined. For other stages the default behavior

100 E. Pyshkin, A. Kuznetsov, and V. Klyuev

provided by the axioms (see Section 3.4) is sufficient. The second one is the
correspondence between the life cycle stages and the steps experts usually do
while solving technical problems as Table 3 and Table 4 shows.

Table 3. Activity life cycle (ALC) stages and corresponding actions

Code Stage Description

ALC-P Preparation Copying facts from the request to the activity

ALC-W Work Actions aimed to reach the activity goal (e.g. deploy the
package).

ALC-A Analysis Final classification of activity results (success or error).
Taking actions to configure host platform in the case of
activity failure.

ALC-ASP Activity
status prepa-
ration

Generating ASRFs to be transferred to the level of activ-
ity requests. Normally the transferred facts should con-
tain activity execution results and failure recovery infor-
mation

ALC-C Completed Activity is completed (successfully or with errors). No
more actions required for this activity

Table 4. Request life cycle (RLC) stages and corresponding actions

Code Stage Description

RLC-P Preparation Copying facts from the parent activity to its subrequest

RLC-M Main Performing actions aimed to achieve the request goals:
performing an activity and activity status analysis. In
case of recoverable errors (which are fixed during ALC-A
phase) – re-executing the activity

RLC-RSP Request
status prepa-
ration

Generating RSRFs to be transferred to the level of the
parent activity. Normally the transferred facts should
contain successful request results

RLC-C Completed Request is completed. The goal is achieved (probably as a
result of several attempts to perform an activity) or not
(the request failed). No more actions required for this
request

3.3 Aliases, References, and Request Scoped Knowledge

Different activity instances might be (and often should be) isolated from each
other: analysis of an activity instance doesn’t depend on whether other activity
instances (of the same or of different types) exist. An activity instance scope
is supported by Activity related facts : only those facts which are related to this
instance should be regarded. Such facts grouping allows the Activity to represent
a fact interpretation context. Nonetheless, there are cases when neither grouping
is acceptable, nor isolation. Quite the reverse, it might be required that the facts

Understanding Software Provisioning: An Ontological View 101

Request-
scoped-

knowledge

kindOf

Alias

kindOf
kindOf

Reference

kindOf

referencing

referencing

Upstream-
alias

Instance
Of

Global-fact-in-
use

kindOf

for-global-
fact

kindOf

kindOf

Downstream-
alias

Instance
Of

Activity-status-
related-fact

Activity-
related-fact

Request-
status-related-

fact

Request-
related-fact

Global-fact

Feature

kindOf

Fig. 8. Aliases, references, and request scoped knowledge representation

are allowed to be transferred from one activity to another. We introduce two
ways of such a transfer: vertical and horizontal transfer (according to the Ac-
tivity/Request graph layout shown in Figure 6). There are four types of vertical
facts transfer:

– Transferring facts from the parent request to the child activity (RA-down-
transfer): transferring input arguments from the request to the activity.

– Transferring facts from the child activity to the parent request (AR-up-
transfer): transferring activity execution results to the parent request.

– Transferring facts from the parent activity to the child request (AR-down-
transfer): transferring input arguments from the activity to the request.

– Transferring facts from the child request to the parent activity (RA-up-
transfer): transferring (sub)request results to the parent activity.

The horizontal transfer is possible only between the activities within the re-
quest scope and implemented by combination of AR-up-transfer and RA-down-
transfer.

To support fact transfers the following concepts are introduced (see also Fig-
ure 8):

– Alias: A (fact) alias is an object containing a reference to an activity related
fact which, in turn, is either a request related fact or an activity related fact
or a request status related fact or an activity status related fact. Hence, if
an activity needs the fact to be up-transferred, this activity should create
an Upstream alias for this fact and “attach” the alias to an activity status.
If an activity needs the fact to be down-transferred (to the subrequest), a

102 E. Pyshkin, A. Kuznetsov, and V. Klyuev

Downstream alias should be created and “attached” to the activity request.
The similar thing is valid for requests and request statuses.

– Reference: A reference is a connection to an activity related fact. At the
same time a reference is an activity related fact itself. It provides a way
for facts labeling for any purposes. Since the Reference itself constitutes
an activity related fact, it is possible to transfer the label vertically and
horizontally.

– Request Scoped Knowledge: A request scoped knowledge is an informa-
tion obtained as an activity execution result. It has sense only within the
context of the parent request and should be available for all the child ac-
tivities. The Request scoped knowledge class extends the Activity related fact
class without adding any new attributes or relationships.

– UseGlobalFact provides capability to bind a global fact to an activity
context

The fact transfer is a standard procedure controlled by the rules introduced
in Section 3.4.

3.4 Ontology Axioms

For the introduced concept model we defined the following axiomatic rules:

1. Activity Life Cycle Axioms
(a) For any activity there is always only one fact describing the activity life

cycle from the set {ALC-P,ALC-W,ALC-A,ALC-ASP,ALC-C}.
(b) For any activity its life cycle stages follow the only allowed sequence:

ALC-P, ALC-W, ALC-A, ALC-ASP, ALC-C. The transitions are pos-
sible only in the moments when there is no active knowledge base rules,
and no other operation on action facts is performed and no incomplete
subrequests (i.e. subrequests with a status different from RLC-C).

2. Request Life Cycle Axioms
(a) For any request there is always only one fact describing the request life

cycle from the set {RLC-P,RLC-M,RLC-RSP,RLC-C}.
(b) For any request its life cycle stages follow the only allowed sequence:

RLC-P, RLC-M, RLC-RSP, RLC-C. The transitions are possible only
in the moments when there is no active knowledge base rules, and no
other operation on action facts is performed and no incomplete child
activities (i.e. child activities with a status different from ALC-C).

3. Vertical Fact Transfer Axioms
(a) RA-Down-Transfer Axiom. For any request being in the stage RLC-

M and any child activity being in the stage ALC-P the following is
required: for any Downstream alias “attached” to the request the object
that this alias refers to should be copied and “attached” to the activity.

(b) AR-Up-Transfer Axiom. For any request being in the stage RLC-
M and any child activity being in the stage ALC-ASP the following is
required: for any Upstream alias “attached” to the activity status this
alias should be copied and “attached” to the request status.

Understanding Software Provisioning: An Ontological View 103

(c) AR-Down-Transfer Axiom. For any activity being in the stage ALC-
W or ALC-A and any child request being in the stage RLC-P the fol-
lowing is possible: for any fact “attached” to the activity a Downstream
alias can be created and “attached” to the request.

(d) RA-Up-Transfer Axiom. For any activity being in the stage ALC-
W or ALC-A and any child request being in the stage RLC-RSP the
following is required: for any Upstream alias “attached” to the request
status the object that this alias refers to should be copied and “attached”
to the activity.

4. Horizontal Fact Transfer Axiom: For any request being in the stage
RLC-M and any child activity being in the stage ALC-ASP the following
is required: for any request scoped knowledge fact created in the activity
stages ALC-W or ALC-A and “attached” to the activity the Downstream
alias should be created and attached to the request. Note that in contrast
to the AR-up-transfer axiom, the alias is “attached” to the request itself,
not to the request status. With using the RA-down-transfer axiom, it means
that the request scoped knowledge is transferred to all new activities.

5. Axiom about Creating an Activity in Response to the Request:
For any request if there is no child activity at all or if all the existing child
activities are in the stage ALC-C and all the child activities are completed
with error, and for every child activity at least one ErrorFixed fact exists,
then a new activity should be created and “attached” to the current request.

6. Request Status Axioms
(a) Successful Request Axiom: For any request if all the child activities

are in the stage ALC-C and there is at least one child activity with sta-
tus activity succeeded, then the request is completed with status request
succeeded.

(b) Failed Request Axiom: For any request if all the child activities are
in the stage ALC-C, there is no any child activity with status activity
succeeded, and conditions of the axiom (5) are not met, the request is
completed with status request error.

The ontology axioms define rules of transferring facts between requests and
activities. The axioms guarantee that an activity is re-performed (within the
context of the same request) until either the activity goal is reached or all known
error resolving procedures are examined.

3.5 Actions, Common Facts and Global Facts

The action facts are used to arrange indirect communications between a knowl-
edge base and an execution environment. The environment executes the required
actions and asserts the action status facts back into the working memory.

The important point is that action fact definitions allow retaining the declar-
ative (non-imperative) form of the knowledge base rules. For example, if it is
required to execute an application, the knowledge base simply asserts an ExecAc-
tion fact to be performed by the executor (instead of running the application

104 E. Pyshkin, A. Kuznetsov, and V. Klyuev

by itself). However, asserting facts into the inference engine working memory
does affect neither an environment nor an expert system except the case that
new rules might be activated in the knowledge base. In the earlier described
target architecture (see Figure 2) there is a special component aimed to process
action facts – the executor. The implementation of how the executor interacts
with the expert system can affect the implementation of the knowledge base
rules. For our implementation we consider a model of deferred action execution
(where action facts are executed if and only if there is no more any active rule
left in the inference engine schedule). In the moment when there is no more any
rule scheduled for the inference engine, the executor takes control. The executor
checks whether there are the action facts in the working memory. As soon as the
action is executed, the new facts representing execution results are asserted into
the working memory. The processed facts are then removed from the working
memory.

We introduced several common actions as Figure 9 shows. Major action facts
in the software provisioning ontology are the following:

1. ExecAction: This fact represents a shell command to be executed. The
execution result is asserted into the working memory in the form of an Ex-
ecStatus fact.

2. AddFeatureAction: This fact means that the execution environment needs
to be changed (some external components should be added or deleted). The
AddFeatureAction is an abstract entity. Its subclasses should be defined (for
example, a subclass AddJDK7) in order to communicate properly with the
configuration manager.

3. UserAction: This fact represents a requirement that some action has to be
performed by a user

Common facts (see also Figure 9) are interpreted within the context of some
activity or some request (i.e. common facts are related fact instances). In con-
trast, global facts are context independent. Major common facts are represented
by the Artifact, ExecCommand and UserInfo classes. Here is the explanations
of major common facts:

1. Artifact is an artifact in the local file system, e.g. a file (FileArtifact) or
a folder (FolderArtifact).

2. ArtifactRef is an artifact (specified by a URL) in the remote file system.
3. ExecCommand describes a command line interpreter command. The com-

mand format includes a program name and positional and key/value argu-
ments. The command is executed under control of the deployment manager
agent in response to the action fact ExecAction.

4. UserInfo is an arbitrary information to be shown to a user.
5. FileArtifactList represents a list of FileArtifact facts.

We assume that within the ontologies of specific tasks new common fact types
may be added similar to the example as we demonstrate in section 4.

Understanding Software Provisioning: An Ontological View 105

Artifact

kindOf

File-
artifact

kindOf

Text-file-
artifact

kindOf

Executable-
file-artifact

kindOf

Folder-
artifact

kindOf

Data-dir-
root

InstanceOf

Tmp-dir-
root

InstanceOf

Artifact-
ref

kindOf

File-artifact-
list

kindOf

User-info

kindOf

Generic-
user-info-file-

artifact

InstanceOf

Generic-user-
info-folder-

artifact

InstanceOf

Generic-
user-info-file-

artifact-list

InstanceOf

Generic-user-
info-message

InstanceOf

list-element

file-list

file

folder

Action

kindOf

Action-
status

kindOf

for-action

Add-feature-
action

Add-
feature-
status

kindOf

kindOf

Download-
action

kindOf

Download-
status

kindOf

Exec-action kindOf

Exec-
status

kindOf

User-action

kindOf

User-action-
status

kindOf
Exec-

command

kindOf

executes-
command

Cmd-line-
argument

kindOf

used-in-
command

Activity-
related-fact

Fig. 9. Actions, artifacts and user information facts

4 Designing an Ontology of Specific Tasks

Subject domain ontologies are rarely used in expert systems directly. The reason
is that such formalisms are usually too common to describe the subject domain
related specific tasks. However, we are able to define an ontology of specific tasks
by extending base entities of the core ontology.

4.1 Running a Module Example Revisited

With respect to the introduced concepts of the core ontology, the ontology of
specific tasks for the above mentioned example of running some software module
M can be revised as Figure 10 shows.

106 E. Pyshkin, A. Kuznetsov, and V. Klyuev

Activity

A_M1

Activity-
related-fact

property

Log

kindOf

kindOf

Request-
related-fact

kindOf
Request

kindOf

property

R_M1

kindOf

produces

K

Need-K

property

kindOf

Request-
scoped-

knowledgekindOf

K1

kindOf

K2

kindOf

A

kindOf

A1 A3A2

kindOfkindOf kindOf

Activity-
analytics-

info

Activity-
error

kindOf

kindOf

Err-Invalid-
K

kindOf

Global-fact

kindOf

Need-
K1

Need-
K2

instance
Of instance

Of

refers

refers

Fig. 10. Ontology of specific tasks (example)

The corresponding rules can be rewritten with the use of the redefined ontol-
ogy (see Appendix).

4.2 Example of maven Build and Java Programs Execution

Figure 11 and Figure 12 demonstrate how to use the software provisioning on-
tology to describe the task of building an application with using maven build
system and the task of executing a Java application

As you can see, the core ontology concepts are descriptive enough to serve
as a foundation for definition of relatively complex derived specific ontologies
without introducing many new terms and without revision of existing concepts.
Let us note that for the sake of paper readability we skip the further detailed
demonstration on how to construct the knowledge base production rules in order
to manage processes of client application building and execution with detecting
respective errors while using some building tool (e.g. maven) as a kind of specific
building system.

Understanding Software Provisioning: An Ontological View 107

Global-
fact

Feature

kindOf

Maven-
feature

Activity

kindOf
Request

kindOf

Activity-
related-

fact

Request-
related-

fact

Request-
mvn-build

instanceOf

instanceOf

Mvn-
build-

activity

instanceOf

Request-
scoped-

knowledge

kindOf

Incompatible-
mvn-version

instanceOf

Activity-
analitycs-

info

kindOf

Activity-
error

Goldin-
copy-plugin-

error-01

instanceOf

kindOf

instanceOf

...

...

instanceOf

produces

Global-fact-
in-use

for-global-fact

kindOf

Maven-
feature-in-

use

instanceOf

Artifact kindOf

File-
artifact

kindOf

Text-file-
artifact

kindOfFolder-
artifact

kindOf

Maven-
project-dir

instanceOf

Maven-
target-dir

instanceOf

Use-
encoding

instanceOf

Src-
encoding

instanceOf

Build-file

instanceOf instanceOf

Fig. 11. An ontology of specific tasks: building applications with using maven

Activity-
related-

factArtifact
kindOf

File-
artifact

kindOf

Executable-
file-artifact

kindOf

Run-type-
Java

instanceOf

Java-
executable-
file-artifact

instanceOf

Run-app-
options-
ready

instanceOf

Folder-
artifact

kindOf

Exec-
working-

dir

instanceOf

Activity

kindOf
Request

kindOf

Request-
related-

fact

Request-
run

instanceOf

Run-
activity

instanceOf

produces

Activity-
analitycs-

info

kindOf

Activity-
error

Need-X-
Server

instanceOf

kindOf

...

instanceOf

Global-
fact

Feature

kindOf

Java-
feature

instanceOf

Global-fact-
in-use

for-global-fact

kindOf

Java-
feature-in-

use

instanceOf

instanceOf

instanceOf

Run-Java-
options-
Ready

Fig. 12. An ontology of specific tasks: executing Java applications

5 Conclusion

In this work we defined an ontology which provides a conceptual core for build-
ing a networked environment for provisioning software applications to computing
clouds and for resolving execution environment configuration errors automati-
cally. We introduced an architecture for application deployment automation in
computing clouds. By using a series of examples related to the software en-
gineering practices and with respect to the requirements of research software
we examined a question why designing an ontology is a complex problem and
analyzed major iterations in the process of ontology construction.

Since the proposed general-purpose ontology can’t be used directly to define ex-
pert system knowledge base rules, we demonstrated how the ontologies of specific
tasks can be designed within the subject domain of building software projects with
maven and their execution in the Java runtime environment. The general schema

108 E. Pyshkin, A. Kuznetsov, and V. Klyuev

is applicable to different target languages, building systems and execution environ-
ments.Unlikemost of existing ontologymodels used in software engineering (which
are focused on process description), the software provisioning ontology is focused
on process execution (e.g. software build, run and environment configuration) from
the perspective of a command line interpreter. It allows using the proposed ontol-
ogy as a conceptual model for software execution automation.

The above mentioned ontologies of specific tasks have been formally defined7

by using Java language constructions and used as a subject domain model for
developing an expert system controlling the process of CLI applications auto-
matic deployment. We developed the expert system which uses the knowledge
base containing information about possible deployment errors and error resolu-
tion rules. Using the software provisioning ontology as a core model we defined
the production rule templates describing typical tasks to be solved in order to
execute the required software and to identify possible execution and configura-
tion errors. It is important that the approach allows further modifications of the
knowledge base by an expert with taking new situations discovered during the
deployment stage into consideration. After adding new rules to the knowledge
base such newly detected errors can be resolved automatically.

On the base of the core ontology we implemented a method for CLI software
automatic deployment in PaaS and IaaS clouds. Unlike to traditional scenarios,
our approach doesn’t require platform pre-configuration nor platform configura-
tion description (by using descriptor files or scripts), but allows installing neces-
sary modules automatically or guided by a user in interactive mode (i.e. a user is
able to choose one of several possible actions suggested by the deployment system).

We tested the approach in a prototype deployment system by using series of
model examples and two research projects [23,24] which proved suitability of our
approach to support automatic CLI-based software provisioning to computing
clouds. In further works we plan to describe the prototype system architecture
and a deployment manager implementation in more details, as well as to arrange
a series of experiments with a selection of MIR research projects.

References

1. Mirex home, http://www.music-ir.org/mirex/wiki/mirex_home
2. Cannam, C., Benetos, E., Mauch, M., Davies, M.E., Dixon, S., Landone, C., Noland,

K., Stowell, D.: Mirex 2014: Vamp plugins from the centre for digital music
3. West, K., Kumar, A., Shirk, A., Zhu, G., Downie, J., Ehmann, A., Bay, M.: The

networked environment for music analysis (nema). In: 2010 6th World Congress on
Services (SERVICES-1), pp. 314–317 (July 2010)

4. Bunch, C.: Automated Configuration and Deployment of Applications in Hetero-
geneous Cloud Environments. PhD thesis, Santa Barbara, CA, USA, AAI3553710
(2012)

5. Kuznetsov, A., Pyshkin, E.: An ontology of software building, execution and en-
vironment configuration and its application for software deployment in computing
clouds. St. Petersburg State Polytechnical University Journal. Computer Science.
Telecommunications and Control Systems 2(193), 110–125 (2014)

7 https://github.com/andrei-kuznetsov/fpf4mir/tree/master/fpf4mir-core

http://www.music-ir.org/mirex/wiki/mirex_home
https://github.com/andrei-kuznetsov/fpf4mir/tree/master/fpf4mir-core

Understanding Software Provisioning: An Ontological View 109

6. Rabkin, A., Katz, R.: Precomputing possible configuration error diagnoses. In: 2011
26th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 193–202 (November 2011)

7. Zhang, S.: Confdiagnoser: An automated configuration error diagnosis tool for
java software. In: Proceedings of the 2013 International Conference on Software
Engineering, ICSE 2013, pp. 1438–1440. IEEE Press, Piscataway (2013)

8. Dong, Z., Ghanavati, M., Andrzejak, A.: Automated diagnosis of software misconfig-
urations based on static analysis. In: 2013 IEEE International Symposium on Soft-
ware Reliability Engineering Workshops (ISSREW), pp. 162–168 (November 2013)

9. Ya-Yunn, S., Attariyan, M., Flinn, J.: Autobash: Improving configuration manage-
ment with operating system causality analysis. In: Proceedings of the 21st ACM
Symposium on Operating Systems Principles, pp. 237–250. Stevenson (2007)

10. Attariyan, M., Flinn, J.: Automating configuration troubleshooting with dynamic
information flow analysis. In: Proceedings of the 9th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI 2010, pp. 1–11. USENIX As-
sociation, Berkeley (2010)

11. Zhao, Y., Dong, J., Peng, T.: Ontology classification for semantic-web-based soft-
ware engineering. IEEE Trans. Serv. Comput. 2(4), 303–317 (2009)

12. Liao, L., Qu, Y., Leung, H.: A software process ontology and its application. In:
First Intl. Workshop on Semantic Web Enabled Software Eng. (November 2005)

13. Caralt, J., Kim, J.W.: Ontology driven requirements query. In: 40th Annual Hawaii
International Conference on System Sciences, HICSS 2007, pp. 197c–197c (January
2007)

14. Ambrosio, A., de Santos, D., de Lucena, F., da Silva, J.: Software engineering
documentation: an ontology-based approach. In: Proceedings of the WebMedia
and LA-Web, pp. 38–40 (October 2004)

15. Shahri, H.H., Hendler, J.A., Porter, A.A.: Software configuration management us-
ing ontologies (2007)

16. Psl core, http://www.mel.nist.gov/psl/psl-ontology/psl_core.html

17. Web services business process execution language version 2.0 (oasis standard April
11, 2007), http://docs.oasis-open.org/wsbpel/2.0/os/wsbpel-v2.0-os.html

18. Business process model and notation version 2.0 (bpmn 2.0) (omg standard January
02, 2011), http://www.omg.org/spec/bpmn/2.0/pdf/

19. Aitken, S.: Process representation and planning in cyc: From scripts and scenes to
constraints (2001)

20. Pyshkin, E., Kuznetsov, A.: A provisioning service for automatic command line ap-
plications deployment in computing clouds. In: IEEE Proceedings of the 16th IEEE
Conference on High-Performance Computing and Communications, pp. 526–529
(2014)

21. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl.
Acquis. 5(2), 199–220 (1993)

22. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge
sharing. Int. J. Hum.-Comput. Stud. 43(5-6), 907–928 (1995)

23. Glazyrin, N.: Audio chord estimation using chroma reduced spectrogram and
self-similarity. In: Proceedings of the Music Information Retrieval Evaluation Ex-
change, MIREX (2012)

24. Khadkevich,M., Omologo, M.: Large-scale cover song identification using chord pro-
files. In: de Souza Britto Jr., A., Gouyon, F., Dixon, S. (eds.) ISMIR, pp. 233–238
(2013)

http://www.mel.nist.gov/psl/psl-ontology/psl_core.html
http://docs.oasis-open.org/wsbpel/2.0/os/wsbpel-v2.0-os.html
http://www.omg.org/spec/bpmn/2.0/pdf/

110 E. Pyshkin, A. Kuznetsov, and V. Klyuev

Appendix: Knowledge Base Rules Revised According to
the Edited Ontology of Specific Tasks

EI:

if // Error identification

$activity : A_M1()

ALCWork(activity == $activity)

Log(activity == $activity, text contains ‘‘dependency K[0-9] missed’’)

then

assert ErrInvalidK($activity)

assert ActivityFailed($activity)

logger.print(‘‘Activity failed because of missed component K’’)

end

SI:

if // Success identification

$activity : A_M1()

ALCWork(activity == $activity)

Log(activity == $activity, text contains ‘‘success’’)

then

assert ActivitySucceeded($activity)

logger.print(‘‘Activity succeeded’’)

end

R1:

if // need K1

$activity : A_M1()

ALCAnalyze(activity == $activity)

$err : ErrInvalidK(activity == $activity)

Log(activity == $activity, text contains ‘‘dependency K1 missed’’)

then

assert NeedK1($activity)

assert ActivityErrorFixed($activity, $err)

logger.print(‘‘Problem fixed - using K1 next time’’)

end

R2:

if // need K2

$activity : A_M1()

ALCAnalyze(activity == $activity)

$err : ErrInvalidK(activity == $activity)

Log(activity == $activity, text contains ‘‘dependency K2 missed’’)

then

assert NeedK2($activity)

assert ActivityErrorFixed($activity, $err)

Understanding Software Provisioning: An Ontological View 111

logger.print(‘‘Problem fixed - using K2 next time’’)

end

R’:

if // run with no dependencies

$activity : A_M1()

ALCWork(activity == $activity)

$a : A(activity == $activity)

not NeedK(activity == $activity)

then

//run M with $arguments

$cmd := ExecCommand($activity, M, $arguments)

assert ExecAction($activity, $cmd)

end

R:

if // run with dependencies

$activity : A_M1()

ALCWork(activity == $activity)

$a : A(activity == $activity)

$dependency: NeedK(activity == $activity)

then

//run M with $dependency and $arguments

$cmd := ExecCommand($activity, M, $dependency, $arguments)

assert ExecAction($activity, $cmd)

end

	Understanding Software Provisioning: An Ontological View
	1 Introduction
	2 Introducing the Ontology Usage Domain
	2.1 Sources
	2.2 Target Architecture

	3 Constructing a Software Provisioning Ontology
	3.1 Requirements That Compete: A Case Study
	3.2 Core Concepts: Activities, Requests and Related Facts
	3.3 Aliases, References, and Request Scoped Knowledge
	3.4 Ontology Axioms
	3.5 Actions, Common Facts and Global Facts

	4 Designing an Ontology of Specific Tasks
	4.1 Running a Module Example Revisited
	4.2 Example of maven Build and Java Programs Execution

	5 Conclusion
	References

