
High Utility Rare Itemset Mining

over Transaction Databases

Vikram Goyal1, Siddharth Dawar1, and Ashish Sureka2

1 Indraprastha Institute of Information Technology-Delhi (IIIT-D), India
{vikram,siddharthd}@iiitd.ac.in

2 Software Analytics Research Lab (SARL), India
ashish@iiitd.ac.in

Abstract. High-Utility Rare Itemset (HURI) mining finds itemsets from
a database which have their utility no less than a given minimum utility
threshold and have their support less than a given frequency threshold.
Identifying high-utility rare itemsets from a database can help in better
business decision making by highlighting the rare itemsets which give
high profits so that they can be marketed more to earn good profit.
Some two-phase algorithms have been proposed to mine high-utility rare
itemsets. The rare itemsets are generated in the first phase and the high-
utility rare itemsets are extracted from rare itemsets in the second phase.
However, a two-phase solution is inefficient as the number of rare item-
sets is enormous as they increase at a very fast rate with the increase in
the frequency threshold. In this paper, we propose an algorithm, namely
UP-Rare Growth, which uses UP-Tree data structure to find high-utility
rare itemsets from a transaction database. Instead of finding the rare
itemsets explicitly, our proposed algorithm works on both frequency and
utility of itemsets together. We also propose a couple of effective strate-
gies to avoid searching the non-useful branches of the tree. Extensive
experiments show that our proposed algorithm outperforms the state-of-
the-art algorithms in terms of number of candidates.

Keywords: Data Mining, Pattern Mining, Rare Itemset Mining, Rare
Utility Itemset, Utility Mining.

1 Introduction

High-Utility Rare Itemset mining finds those itemsets from the database which
are rare as well as of high utility. An itemset is defined as a high utility itemset
if its utility value is no less than a given minimum utility threshold. The utility
of an itemset is a function of its quantity and the profit value associated with
it. An itemset is rare if its support is no greater than a given maximum support
threshold. Mining high-utility rare itemsets (HURI) [1] from a database may be
interesting for business organizations. For example, identifying HURI in a retail
store will help the retail owner to focus on items that should be marketed well to
earn more profit. High utility rare itemset mining also finds its use in applications
of anomaly detection such as identifying fraudulent credit card transactions,

W. Chu et al. (Eds.): DNIS 2015, LNCS 8999, pp. 27–40, 2015.
c© Springer International Publishing Switzerland 2015

28 V. Goyal, S. Dawar, and A. Sureka

medicine [2], molecular biology [3] and security [4]. A lot of work has been done
in the areas of Frequent Itemset Mining (FIM) [5–7] and high-utility itemset
mining [8–11] separately. FIM mines those itemsets from the database which are
frequent without considering the profit value or quantity value associated with
the items. High utility itemset mining removes this limitation, but still does not
consider the frequency of itemsets into account. Itemsets which are interesting
in utility as well as frequency aspects may not be identified if only utility or
frequency objective is considered.

In this paper, we focus on mining high-utility rare itemsets from transaction
databases. Jyothi et al. [1] proposed a two-phase algorithm to find high utility
rare itemsets from transaction databases. The rare itemsets are mined in the
first phase and utility of rare itemsets are computed in the next phase to find
high utility rare itemsets. Jyothi et al. [12] proposed an approach similar to their
previous work [1] for finding profitable transactions along with high utility rare
itemsets from a transaction database. However, the two-phase approach to mine
high utility rare itemsets is not efficient as the amount of rare itemsets increase
rapidly with the increase in frequency threshold resulting in longer excecution
time.

We propose an algorithm called, UP-Rare Growth, which uses a UP-Tree data
structure [13] to find high utility rare itemsets. Our proposed algorithm works
on both utility and frequency dimensions together and generates candidate high
utility rare itemsets in the first phase which are then verified in the second phase.
Our approach for high-utility rare itemset mining is efficient because of following
reasons:

1. UP-Tree allows for a compressed representation of the database and allow
to develop an efficient algorithm which takes both frequency and utility
dimensions simultaneously into account,

2. Our approach is a pattern-growth approach which allows for the generation
of a significantly lesser number of candidates as compared to a level-wise
approaches like Apriori [5].

Our novel research contributions can be summarized as follows:

1. We propose an efficient algorithm, UP-Rare growth, to find high-utility-rare
itemsets from a transaction database.

2. We propose effective pruning strategies which help in computation of results
faster by pruning the non-promising search space.

3. We conduct extensive experiments on Mushroom dataset to show that our
proposed algorithm outperforms state-of-the-art algorithms in terms of the
number of candidates.

2 Related Work

Frequent-itemset mining [5–7] has been studied extensively in the literature.
Agrawal et al. [5] proposed an algorithm named Apriori, for mining association

High Utility Rare Itemset Mining over Transaction Databases 29

rules from market-basket data. Their algorithm was based on the downward clo-
sure property [5]. The downward closure property states that every subset of a
frequent itemset is also frequent. Park et al. [14] proposed a hash based algorithm
for mining association rules which generates less number of candidates compared
to Apriori algorithm. Zaki et al. [15] proposed an algorithm, namely ECLAT,
for mining association rules which used itemset clustering to find the set of po-
tentially maximal frequent itemsets. Han et al. [6] proposed a pattern-growth
algorithm to find frequent itemsets by using FP-tree data structure. Other vari-
ants of itemset mining problem that have been proposed in the literature are
high utility itemset mining, high utility-frequent itemset mining and high-utility
rare itemset mining. However, frequent-itemset mining algorithms can’t be used
to find high utility itemsets as it is not necessarily true that a frequent itemset
is also a high utility itemset in the database. On the other hand, mining high-
utility patterns is challenging compared to the frequent-itemset mining, as there
is no downward closure property [5], like we have in frequent-itemset mining
scenario.

Several algorithms have also been proposed to find high utility itemsets. Liu
et al.[10] proposed a two-phase algorithm which generates candidate high utility
itemsets in the first phase and verification is done in the second phase. Ahmed
et al.[16] proposed another two-phase algorithm, which uses a data structure
named IHUP-Tree, to mine high utility patterns incrementally from dynamic
databases. The problem with the above mentioned algorithms is the generation
of a huge amount of candidates in the first phase which leads to longer execution
times. In order to reduce the number of candidates, Tseng et al.[13] proposed
a new data structure called UP-Tree and algorithms, namely UP-Growth [13]
and UP-Growth+ [9]. The authors proposed effective strategies like DGU, DGN,
DLU and DLN to compute better utility estimates.

Some work has also been done on high frequency-high utility [17] and high
utility-rare itemset [1], [12]. Yeh et al. [17] proposed a bottom-up and top-down
two phase algorithms to find frequent high utility itemsets. They introduced
the concept of quasi-utility-frequency which is upward closed with respect to
the lattice of all itemsets. The top-down algorithm finds quasi-utility-frequency
candidates in the first phase, which are verified in the second phase. The problem
of finding rare itemsets have been investigated by some authors [18], [19], [20].
Koh et al. [18] proposed an algorithm Apriori-Inverse for discovering sporadic
rules by discarding all the itemsets which have their support greater than the
maximum frequency threshold. Troiano et al. [20] proposed a top-down algorithm
which used power set lattice to find rare itemsets. Pillai et al. [1] proposed an
algorithm HURI for finding high utility rare itemsets. Their proposed algorithm
used the concept of Aprori-Inverse. Pillai et al. [12] proposed a modified HURI
algorithm to find profitable transactions which contained rare itemsets and the
share of such items in the overall profit of transactions. However, the above
mentioned algorithm generates rare itemsets in the first phase, which are verified
in the second phase.

30 V. Goyal, S. Dawar, and A. Sureka

Table 1. ExampleDatabase

TID Transaction TU

T1 (C : 5) (D : 20) 70

T2 (C : 1) (F : 40) 42

T3 (A : 1) (B : 1) (C : 2) (G : 10) 20

T4 (A : 1) (B : 1) (C : 2) 10

T5 (A : 5) (C : 10) 45

T6 (B : 1) (C : 1) (E : 1) 5

T7 (B : 1) (C : 1) (E : 1) (G : 10) 15

T8 (B : 1) (C : 1) (E : 1) (H : 1) 6

T9 (C : 10) (E : 10) 40

T10 (A : 1) (B : 1) (C : 1) 8

Table 2. Profit Table

Item A B C D E F G H

Profit 5 1 2 3 2 1 1 1

3 Background

In this section, we present some definitions given in the earlier works and describe
the problem statement formally. We also discuss the UP-Tree data structure
briefly.

3.1 Preliminary

We have a set of m distinct items I = {i1, i2, ..., im}, where each item has a
profit pr(ip) (external utility) associated with it. An itemset X of length k is
a set of k items X = {i1, i2, ..., ik}, where for j ∈ 1.....k, ij ∈ I. A transaction
database D = {T1, T2,, Tn} consists of a set of n transactions, where every
transaction has a subset of items belonging to I. Every item Ip in a transaction
Td has a quantity q(ip, Td) associated with it.

Definition 1. The utility of an item Ip in a transaction Td is the product of the
profit of the item and its quantity in the transaction i.e. u(ip, Td) = q(ip, Td) ∗
pr(ip).

Definition 2. The utility of an itemset X in a transaction Td is denoted as
u(X,Td) and defined as

∑
X⊆Td∧ip∈X u(ip, Td).

Definition 3. The utility of a transaction Td is denoted as TU(Td) and defined
as

∑
ip∈Td

u(ip, Td).

Let us consider the example database shown in Table 1 and the profit values
in Table 2. The utility of item {A} in T3 = 1× 5 = 5 and the utility of itemset
{A,B} in T3 denoted by u({A,B}, T3) = u(A, T3) + u(B, T3) = 5 + 1 = 6.

Definition 4. The utility of an itemset X in database D is denoted as u(X)
and defined as

∑
X⊆Td∧Td∈D u(X,Td).

High Utility Rare Itemset Mining over Transaction Databases 31

For example, u(A,B) = u({A,B}, T3) + u({A,B}, T4) + u({A,B}, T10) =
7 + 7 + 7 = 21.

Definition 5. An itemset is called a high utility itemset if its utility is no less
than a user-specified minimum threshold denoted by min util.

For example, u(A,C) = u({A,C}, T3) + u({A,C}, T4) + u({A,C}, T5) +
u({A,C}, T10) = 9 + 9 + 45 + 7 = 70. If min util = 30, then {A,C} is a high
utility itemset. However, if min util = 75, then {A,C} is a low utility itemset.

Table 3. Rare ItemsetTable

Itemsets List of rare itemsets

1-itemset { D }, { F }, { H }
2-itemset { AG }, { BH }, { CD }, { CF }, { CH }, { EG }, { EH }
3-itemset { ABG }, { ACG }, { BCH },{ BEH }, { BEG }, { CEG }, { CEH }
4-itemset { ABCG }, { BCEG }, { BCEH }

Definition 6. The support of an itemset X denoted by sup(X) is the number
of transactions in database D which contain itemset X.

For example, the sup({A,C}) = 4.

Definition 7. An itemset X is called a rare itemset, if sup(X) < max sup
threshold.

Let max sup threshold = 2. The rare itemsets are shown in Table 3.

Table 4. RareHighUtility ItemsetTable

Itemsets List of high utility rare itemsets

1-itemset {D}, { F }
2-itemset { CD }, { CF }
3-itemset {∅}
4-itemset {∅}

Problem Statement. Given a transaction database D, a minimum utility
threshold min util and maximum support threshold max sup threshold , the
aim is to find all the itemsets which are rare as well as of high utility, i.e.
itemsets which have utility no less than min util and support value less than
max sup threshold.

32 V. Goyal, S. Dawar, and A. Sureka

Table 5. MIU Table

Item A B C D E F G H

MIU 5 2 2 60 2 40 10 1

Let min util = 30 and max sup threshold = 2. The set of high utility rare
itemsets are shown in Table 4.

We will now describe the concept of transaction utility and transaction
weighted downward closure(TWDC)[8].

Definition 8. The transaction utility of a transaction Td is denoted by TU(Td)
and defined as u(Td, Td).

For example, the transaction utility of every transaction is shown in Table 1.

Definition 9. Transaction-weighted utility of an itemset X is the sum of the
transaction utilities of all the transactions containing X, which is denoted as
TWU(X) and defined as

∑
X⊆Td∧Td∈D TU(Td).

Definition 10. An itemset X is called a high-transaction-weighted utility item-
set (HTWUI), if TWU(X) is no less than min util.

Property 1 (Transaction-weighted downward closure). For any itemset
X , if X is not a (HTWUI), any superset of X is not a HTWUI.
For example, TU(T1) = u({CD}, T1) = 70;TWU({A}) = TU(T3) + TU(T4) +
TU(T5) + TU(T10) = 83. If min util = 80, {A} is a HTWUI. However, if
min util = 100, {A} and any of its supersets are not HTWUIs.

We will now describe the concepts [9] for computing ovestimated utility of an
item.

Definition 11. Minimum item utility of item ip in database D, denoted as
miu(ip) is i′ps utility in transaction Td if there does not exist a transaction T ′

d

such that u(ip, T
′
d) < u(ip, Td).

The minimum item utility of the items in database D is shown in the Table 5

Definition 12. Assume that Nx is the node which records the item x in the
path p in a UP-Tree and Nx is composed of items x from the set of transactions
TIDSET (TX). The minimum node utility of x in p is denoted as mnu(x, p) and
defined as min∀T∈TIDSET (TX)(u(x, T)).

3.2 UP-Tree

Each node N in UP-Tree [13] consists of a name N.item, overestimated utility
N.nu, support count N.count, a pointer to the parent node N.parent and a
pointer N.hlink to the node which has the same name as N.name. The root of

High Utility Rare Itemset Mining over Transaction Databases 33

Item LinkTWU

D

B

C

A

E

F

G

261

83

70

66

64

42

35

F

A

B

G

C

E

B

G

D

{R}

(261,10)

(70,1)

(42,1)

(28,3)

(20,1)

(70,4)

(15,1)

(52,4)

(15,3)

Fig. 1. Global UP-Tree

the tree is a special empty node which points to its child nodes. The support
count of a node N along a path is the number of transactions contained in that
path that have the item N.item. N.nu is the overestimated utility of an itemset
along the path from node N to the root. In order to facilitate efficient traversal, a
header table is also maintained. The header table has three columns, Item, TWU
and Link. The nodes in a UP-Tree along a path are maintained in descending
order of their TWU values. All nodes with the same label are stored in a linked
list and the link pointer in the header table points to the head of the list.

4 Mining High Utility Rare Itemsets

In this section, we will describe our algorithm UP-Rare Growth for mining high
utility rare itemsets. We will illustrate the working of our algorithm with an
example and will formally prove its correctness.

4.1 Construction of a Global UP-Tree

In this subsection, we will discuss how to construct the global UP-Tree from the
database D. The global UP-Tree is constructed in two scans of the database. In
the first scan, the TWU value of every item is computed. The unpromising items
are removed from the transaction database and transactions are reorganized in
decreasing order of their TWU values. Unpromising items are the items which
have their TWU value less than the minimum utility threshold. The removal of

34 V. Goyal, S. Dawar, and A. Sureka

unpromising items from the database is called Discarding Global Unpromising
items (DGU).

For example, consider the example database as shown in the Table 1 and the
profit value associated with each item in Table 2. Let the minimum utility thresh-
old be 30 and maximum frequency threshold be 2. Item {H} is an unpromising
item as TWU({H}) is 6 which is less than the minimum utility threshold. The
reorganized transactions are shown in Table 6.

Each transaction is now processed and inserted to form the global UP-Tree as
shown in the Figure 1. Let us consider the insertion of the reorganized transac-
tion T ′

1 in the global tree. The global UP-Tree is initially empty. The item {C} is
processed and a new node NC is created with NC .item = C and NC .count = 1.
The utility value of each node in the UP-Tree is reduced further by applying
Discarding Global Node Utilities (DGN) strategy. DGN strategy is that the
node utility of a node in the global tree can be reduced further by removing
the node utilities of the descendant nodes. The rationale behind removing the
node utilities of descendant nodes from the utility of a node N is that the local
tree of N will not include its descendants as the transactions are ordered ac-
cording to TWU values. The utility of node NC is computed by subtracting the
utilities of its descendants, i.e. the items after C in the reorganized transaction.
In our example, NC .nu=RTU(T ′

1) − u({D}, T ′
1)=70-60=10. Next, item {D} is

processed. A new node ND is created with ND.item = D and ND.count = 1.
Since, there is no item after {D} in the transaction T ′

1, its utility is equal to
RTU(T ′

1) i.e. 70. If the node of the item to be inserted in the tree is already
present along that path, the support count and node utilities are simply incre-
mented. Similarly, other reorganized transactions are inserted to construct the
global UP-Tree. The strategies DLU and DLN are similar to DGU and DGN,
but are applied to the local UP-Tree. Since, exact utilities are not stored in the
global UP-Tree, utilities of unpromising items are estimated using the minimum
item utility and minimum node utility as per Definition 11 and 12.

Table 6. ReorganizedTransactions

TID Reorganized Transaction RTU

T ′
1 (C : 5) (D : 20) 70

T ′
2 (C : 1) (F : 40) 42

T ′
3 (C : 2) (A : 1) (B : 1) (G : 10) 20

T ′
4 (C : 2) (A : 1) (B : 1) 10

T ′
5 (C : 10) (A : 5) 45

T ′
6 (C : 1) (E : 1) (B : 1) 5

T ′
7 (C : 1) (E : 1) (B : 1) (G : 10) 15

T ′
8 (C : 1) (E : 1) (B : 1) 5

T ′
9 (C : 10) (E : 10) 40

T ′
10 (C : 1) (A : 1) (B : 1) 8

High Utility Rare Itemset Mining over Transaction Databases 35

4.2 UP-Rare Growth

The algorithm UP-Rare Growth takes as input a UP-Tree, a header table, an
itemset, a minimum utility threshold, a maximum support threshold and returns
the candidate rare high utility itemsets. The steps of the algorithm are shown
in Algorithm 1. The algorithm starts with an empty prefix and extends the
prefix with item ik of the header table. In this process of extension (growth),
a conditional pattern base(CPB) is constructed from the prefix. The CPB of
the prefix extended with item ik consists of all the paths through which ik is
reachable from the root of the tree. A local UP-Tree is constructed and strategies
DLU and DLN are applied. We apply the following strategies while processing
for a prefix X just extended with item ik to prune the search space:

1. If X has low TWU i.e. estimated utility of any itemset containing X is less
than the minimum utility threshold, X prefix is not processed further and
the algorithm proceeds with the next alternative of the header table. Else,
X is processed further.

2. If the support count of every leaf node of the UP-Tree is greater than the
given support threshold, it is guaranteed that no rare itemset can be found
using item ik as a prefix. In this case, prefix ik is not processed further.

Algorithm 1. UP-Rare Growth(Tx, Hx, X)

Input: A UP-Hist tree T x, a header table H x for T x, an itemset X, a minimum
utility threshold min util and maximum support threshold max supthreshold.
Output: All candidate rare High Utility Itemsets in T x.

1: for entry i k in H x do
2: Traverse the linked list associated with i k and accumlate sum of node utilities

nu sum(i k).
3: if nu sum(X) ≥ min util then
4: if (then sup(i k) < max sup threshold))
5: Consider Y = X ∪ i k as a candidate and construct CPB of Y .
6: else
7: Construct the CPB of Y .
8: end if
9: Put local promising items in Y −CPB into H Y and apply DLU to reduce

path utilities.
10: Insert every reorganized path into T Y after applying DLN.
11: if TY �= null then
12: if support of every leaf node of T Y > max sup threshold then
13: continue
14: else
15: Call UP-Rare Growth(T Y ,H Y ,Y)
16: end if
17: end if
18: end if
19: end for

36 V. Goyal, S. Dawar, and A. Sureka

Now, we will illustrate the working of our algorithm with an example. Consider
the global UP-Tree shown in the Figure 1. Let the minimum utility threshold
be 30 and maximum frequency support be 2. The algorithm picks the lowest
entry from the header table i.e. G and accumulates its node utility. Since the
accumulated node utility nusum(G) i.e. 35 is greater than the maximum utility
threshold, item {G} will be processed further. However, {G} is not added to the
set of candidate itemsets as the sup(G) is not less than the maximum frequency
threshold. The conditional pattern base of {G} is constructed as shown in the
Table 7. The TWU values of the items in the CPB of {G} are computed and the

Table 7. {G} − CPB after applyingDGU DGN andDLN

Retrieved Path:
Path utility

Reorganized Path: Path
utility (after DLU)

Support

< CAB >: 20 < CB >: 15 1

< CEB >: 15 < CB >: 13 1

unpromising items are removed to get the reorganized paths. In the CPB of {G},
Item {A} and {E} are unpromising as TWU({A}) = 20 and TWU({E}) = 15
is less than the minimum utility threshold. The reorganized path utilities are
computed using minimum node utilities similar to UP-Growth+ i.e.,
pu(< CAB >, {G} − CPB) = 20 - A.mnu× < CAB > .support=20-5×1=15.
pu(< CEB >, {G} − CPB) = 15 - E.mnu× < CEB > .support=15-2×1=13.
The algorithm is called recusively for the itemset {GC}, {GB} and {GCB}.
However, all the itemsets which have G as a prefix are low utility itemsets as
their TWU value is less than the minimum utility threshold. Similarly, the next
item {F} is processed from the header table.

Table 8. {B} − CPB after applying DGU DGN andDLN

Retrieved Path:
Path utility

Reorganized Path: Path
utility (after DLU)

Support

< CA >: 28 < CA >: 28 3

< CE >: 15 < CE >: 15 3

We will now focus on the processing of item {B} in the global header table.
The linked list associated with B is traversed from the header table and the
sum of node utilities is accumulated. Since the TWU of {B} is greater than the
minimum utility threshold, it is processed further. However, {B} is not added
to the candidates as sup(B) is 6 which is greater than the maximum frequency
threshold. The conditional pattern base of {B} is constructed as shown in the
Table 8. There are no unpromising items in the CPB of {B} and a local UP-
Tree is constructed as shown in the Figure 2. However, there is no rare itemset
containing {B} as the support of every leaf node in the local UP-Tree is greater

High Utility Rare Itemset Mining over Transaction Databases 37

than the maximum frequency threshold. After processing the remaining items
in the global header table, the complete set of candidate high utility rare item-
sets are generated. The candidate itemsets obtained from UP-Rare Growth are
{F}, {CF}, {D} and {CD}. The generated candidates are verified by scanning
the original database again and computing the exact utilities of the candidate
itemsets.

C

E

A

{R}

(108,6)

(15,3)

(28,3)

Item Link

C 129

A 84

E 45

PU

Fig. 2. Local UP-Tree

Claim 1. Algorithm UP-Rare Growth does not generate any false negatives.

Proof. The algorithm UP-Rare Growth prunes an itemset and its supersets on
the basis of two rules: (1) If the overestimated utility of an itemset is less than
the minimum utility threshold, (2) the support count of all leaf nodes in the
tree constructed from the CPB of the itemset, is greater than the maximum
support threshold. We know that the TWU value associated with every itemset
is an upper bound on the exact utility value and satisfies the downward closure
property. Therefore, if an itemset is marked off as low utility, it is guaranteed that
this itemset and its supersets will be of low utility. So, rule 1 will not generate
any false negatives. The algorithm also prunes the supersets of an itemset if all
the leaf nodes have their support count greater than the maximum frequency
threshold. Since the transactions are reorganized in the decreasing order of TWU
values, the leaf nodes have the least support value compared to its ancestors in
the tree. Therefore, if the support of all the leaf nodes of the UP-Tree constructed
from the conditional pattern base of an itemset is greater than the maximum
support threshold, it is guaranteed that there can’t be any superset of that
itemset which is rare. This proves the claim.

5 Experiments and Results

In this section, we compare the performance of our proposed algorithm UP-
Rare Growth against the state-of-the-art algorithm HURI [1]. We implemented
all the algorithms in Java on Eclipse 3.5.2 platform with JDK 1.6.0 24. The
experiments were performed on an Intel Xeon(R) CPU=26500@2.00 GHz with
64 GB RAM. We ran our experiments on the Mushroom dataset which was
obtained from FIMI repository [21]. The quantity and external utility for the
Mushroom datasets was generated using log-normal distribution.

38 V. Goyal, S. Dawar, and A. Sureka

2 2.5 3 3.5 4 4.5 5

0

10

20

30

Maximum Support Threshold

N
u
m
b
er

o
f
C
a
n
d
id
a
te
s(
lo
g
2
sc
a
le
)

(a)Effect of parameter max sup threshold

HURI

UP-Rare Growth

0.28 0.3 0.32 0.34 0.36 0.38 0.4

10

15

20

25

30

Minimum Utility Threshold%

N
u
m
b
er

o
f
C
a
n
d
id
a
te
s(
lo
g
2
sc
a
le
)

(b)Effect of parameter min util

HURI

UP-Rare Growth

Fig. 3. Performance Evaluation on Mushroom dataset

High Utility Rare Itemset Mining over Transaction Databases 39

We studied the impact of the parameters, maximum support threshold and
minimum utility threshold on the performance of the algorithms. We observed
that there were no high-utility itemsets in our Mushroom database for the util-
ity threshold 2,50,00,000. Therefore, we set this value as the maximum utility
threshold and represent the different values of min util as percent with respect
to this value. We compare the performance of the algorithms in terms of the
number of candidates generated after the first phase. The number of candidates
is represented on a log scale with base 2. In order to study the effect of the max-
imum support threshold, we fixed min util = 0.32% and the results are shown
in Figure 3(a).

We expect the number of rare itemsets to increase exponentially with varying
support threshold and the results meet our expectation. The results show that
our algorithm generates a significantly lesser number of candidates compared
to HURI and the verification time taken by HURI will be very large as the
verification time depends upon the number of candidates. In order to study the
effect of minimum utility threshold, we fixed the maximum support threshold to
3 and the results are shown in Figure 3(b). The number of candidates generated
by HURI remains constant with the varying minimum utility threshold as the
algorithm doesn’t take the utility dimension into account while computing the
number of candidates. We also observe that the number of candidates generated
by our algorithm decrease with an increase in the minimum utility threshold.
The results clearly demonstrate the importance of taking the utility dimension
into account when computing the candidate high-utility rare itemsets.

6 Conclusion and Future Work

In this paper, we proposed a novel algorithm UP-Rare Growth, for mining high-
utility rare itemsets. Our algorithm considers both utility and frequency dimen-
sions simultaneously and uses effective strategies to reduce the search space.
Experimental results show that our proposed algorithm outperforms the state-
of-the-art algorithm in terms of number of candidates.

References

1. Pillai, J., Vyas, O.P., Muyeba, M.: Huri–a novel algorithm for mining high utility
rare itemsets. In: Advances in Computing and Information Technology, pp. 531–540.
Springer, Heidelberg (2013)

2. Medici, F., Hawa, M.I., Giorgini, A.N.G.E.L.A., Panelo, A.R.A.C.E.L.I., Solfelix,
C.M., Leslie, R.D., Pozzilli, P.: Antibodies to gad65 and a tyrosine phosphatase-like
molecule ia-2ic in filipino type 1 diabetic patients. Diabetes Care 22(9), 1458–1461
(1999)

3. Shi, W., Ngok, F.K., Zusman, D.R.: Cell density regulates cellular reversal fre-
quency in myxococcus xanthus. Proceedings of the National Academy of Sci-
ences 93(9), 4142–4146 (1996)

4. Saha, B., Lazarescu, M., Venkatesh, S.: Infrequent item mining in multiple data
streams. In: Seventh IEEE International Conference on Data Mining Workshops,
ICDM Workshops 2007, pp. 569–574 (2007)

40 V. Goyal, S. Dawar, and A. Sureka

5. Agrawal, R., Ramakrishnan, Srikant, o.: Fast algorithms for mining association
rules. In: Proc. 20th int. conf. very large data bases, VLDB, vol. 1215, pp. 487–499
(1994)

6. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In: ACM SIGMOD, vol. 29, pp. 1–12. ACM (2000)

7. Leung, C.K.-S., Khan, Q.I., Li, Z., Hoque, T.: Cantree: a canonical-order tree for
incremental frequent-pattern mining. Knowledge and Information Systems 11(3),
287–311 (2007)

8. Liu, Y., Liao, W.-k., Choudhary, A.: A fast high utility itemsets mining algorithm.
In: International Workshop on Utility-Based Data Mining, pp. 90–99. ACM (2005)

9. Tseng, V.S., Shie, B.-E., Wu, C.-W., Yu, P.S.: Efficient algorithms for mining high
utility itemsets from transactional databases. IEEE Transactions on Knowledge
and Data Engineering 25(8), 1772–1786 (2013)

10. Liu, Y., Liao, W.-k., Choudhary, A.K.: A two-phase algorithm for fast discovery
of high utility itemsets. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005.
LNCS (LNAI), vol. 3518, pp. 689–695. Springer, Heidelberg (2005)

11. Shie, B.-E., Tseng, V.S., Yu, P.S.: Online mining of temporal maximal util-
ity itemsets from data streams. In: ACM Symposium on Applied Computing,
pp. 1622–1626. ACM (2010)

12. Pillai, J., Vyas, O.P.: Transaction profitability using huri algorithm [tphuri]. Inter-
national Journal of Business Information Systems 2(1) (2013)

13. Tseng, V.S., Wu, C.-W., Shie, B.-E., Yu, P.S.: Up-growth: an efficient algorithm
for high utility itemset mining. In: ACM SIGKDD, pp. 253–262. ACM (2010)

14. Park, J.S., Chen, M.-S., Yu, P.S.: An effective hash-based algorithm for mining
association rules, vol. 24. ACM (1995)

15. Zaki, M.J., Parthasarathy, S., Ogihara, M., Wei, Li, o.: New algorithms for fast
discovery of association rules. In: KDD, vol. 97, pp. 283–286 (1997)

16. Ahmed, C.F., Tanbeer, S.K., Jeong, B.-S., Lee, Y.-K.: Efficient tree structures
for high utility pattern mining in incremental databases. IEEE Transactions on
Knowledge and Data Engineering 21(12), 1708–1721 (2009)

17. Yeh, J.-S., Li, Y.-C., Chang, C.-C.: Two-Phase Algorithms for a Novel Utility-
Frequent Mining Model. In: Washio, T., Zhou, Z.-H., Huang, J.Z., Hu, X., Li,
J., Xie, C., He, J., Zou, D., Li, K.-C., Freire, M.M. (eds.) PAKDD 2007. LNCS
(LNAI), vol. 4819, pp. 433–444. Springer, Heidelberg (2007)

18. Koh, Y.S., Rountree, N.: Finding sporadic rules using apriori-inverse. In: Ho, T.-
B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 97–106.
Springer, Heidelberg (2005)

19. Szathmary, L., Napoli, A., Valtchev, P.: Towards rare itemset mining. In: 19th
IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2007,
vol. 1, pp. 305–312. IEEE (2007)

20. Troiano, L., Scibelli, G., Birtolo, C.: A fast algorithm for mining rare itemsets.
ISDA 9, 1149–1155 (2009)

21. Goethals, B., Zaki, M.J.: The fimi repository (2012)

	High Utility Rare Itemset Mining over Transaction Databases
	1
Introduction
	2
Related Work
	3
Background
	3.1
Preliminary
	3.2
UP-Tree

	4
Mining High Utility Rare Itemsets
	4.1
Construction of a Global UP-Tree
	4.2
UP-Rare Growth

	5
Experiments and Results
	6
Conclusion and Future Work
	References

