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Abstract. Following its formation, a star’s metal content is one of the
few factors that can significantly alter its evolution. Measurements of
stellar metallicity ([Fe/H]) typically require a spectrum, but spectro-
scopic surveys are limited to a few×106 targets; photometric surveys,
on the other hand, have detected > 109 stars. I present a new machine-
learning method to predict [Fe/H] from photometric colors measured
by the Sloan Digital Sky Survey (SDSS). The training set consists of
∼120,000 stars with SDSS photometry and reliable [Fe/H] measurements
from the SEGUE Stellar Parameters Pipeline (SSPP). For bright stars
(g′ ≤ 18 mag), with 4500 K ≤ Teff ≤ 7000 K, corresponding to those with
the most reliable SSPP estimates, I find that the model predicts [Fe/H]
values with a root-mean-squared-error (RMSE) of ∼0.27 dex. The RMSE
from this machine-learning method is similar to the scatter in [Fe/H]
measurements from low-resolution spectra.

Keywords: photometric surveys, machine learning, random forest, stel-
lar metallicity.

1 Introduction

The Sloan Digital Sky Survey (SDSS, [13]) has cataloged more than one billion
photometric sources, while also obtaining nearly 2 million optical spectra [1].
Despite this unprecedented volume of spectra, existing and currently planned
instruments have no hope of observing each of the photometrically cataloged
stars found by SDSS. Within the next decade, the Large Survey Synoptic Tele-
scope (LSST; [7]) will dwarf SDSS, and other similar surveys, by detecting ∼20
billion photometric sources. The data volume from modern photometric surveys
is too large to be examined on a source by source basis. Instead, a prudent anal-
ysis of the full data set requires advanced algorithms, such that we can identify
the most interesting sources for spectroscopic observations, while also inferring
the properties of those for which spectra will never be obtained.
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Machine-learning methods provide a promising solution to this issue: machines
can readily identify patterns within the data, enabling a fast classification of
the billions of stars detected in modern imaging surveys. One reason machine-
learning methods are appealing is that they are data driven: the relationships
they derive between observables and the parameters of interest do not rely on
parametric physical models. Thus, in scenarios where we are partially ignorant
to the relevant stellar physics, the machines may still be able to infer the desired
stellar quantities.

Many studies have utilized machine-learning approaches to classify stellar
sources of variable brightness (e.g., [4,11,5]), but only recently have efforts been
made to infer fundamental physical properties via machine learning [10]. These
efforts build on a long history of methods designed to estimate stellar properties,
which are typically measured via spectra, from photometric observations. While
the effective temperature of a star, Teff , can be photometrically measured with
great accuracy [6], estimates of [Fe/H] prove far more challenging [3].

A star with enhanced metal content (i.e. large [Fe/H]) produces less flux in
the blue portion of its optical spectrum. Thus, imaging surveys with blue filters,
such as SDSS and LSST, can be used to estimate metallicity via the photometric
colors of a star. For samples restricted to F and G dwarf stars, broadband colors
are capable of producing a scatter ∼0.2 dex for [Fe/H] [6]. When no restrictions
are applied the best estimates from photometric methods produce a scatter of
∼0.3 dex [8].

Here, I present a new machine-learning method, which utilizes the random for-
est algorithm [2], that is capable of estimating [Fe/H] from the SDSS broadband
photometric filters (u′g′r′i′z′). I train the model using a sample of∼120,000 stars
that have reliable estimates of [Fe/H] from SDSS spectroscopic observations. The
final model enables a precise estimate of [Fe/H] with a low catastrophic error
rate.

2 Sample

The training set for the machine learning model is constructed from the sample of
stars with existing SDSS optical spectra. Every SDSS optical spectrum obtained
through the eighth data release was analyzed by the SEGUE Stellar Parameters
Pipeline (SSPP), a suite of algorithms optimized to estimate effective temper-
ature (Teff), surface gravity (log g), and metallicity ([Fe/H]) for stellar sources
[9]. Briefly, the SSPP provides estimates of these values using multiple methods
that are robustly combined to produce final adopted values of Teff , log g, and
[Fe/H], as well as their corresponding uncertainties. For high signal-to-noise ratio
(SNR) spectra with 4500 K ≤ Teff ≤ 7500 K and log g > 2, the SSPP measures
Teff , log g, and [Fe/H] with typical uncertainties of 157 K, 0.29 dex, and 0.24
dex, respectively [9]. The pipeline also flags spectra for which it cannot provide
reliable estimates of the stellar parameters.
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For the training sample, I include only stars that did not raise any flags during
SSPP processing. From this sample of 376,073 stars, I further reject sources with
flagged SDSS photometry, a single SSPP measurement of [Fe/H], Teff < 4500 K
or Teff > 7000 K, or g > 18 mag. Finally, I remove any duplicate spectroscopic
observations of the same star. These cuts are made to ensure that both the
photometric and spectroscopic uncertainties are small. I summarize the cuts, as
well as the number of stars remaining following each cut below:

(1) SSPP flag = nnnnn (376,073)
(2) No SDSS photometric flags (217,274)
(3) 4500 K ≤ Teff ≤ 7500 K (188,716)
(4) ≥2 SSPP [Fe/H] measurements (182,408)
(5) g′ ≤ 18 mag (139,176)
(6) Remove duplicates (119,596).

In sum, there are ∼120,000 stars with reliable photometry and spectroscopic
measurements of [Fe/H] that are included in the model training set.

3 Model and Results

There are four features to be utilized by the machine learning model, the SDSS
photometric colors (u′− g′, g′− r′, r′ − i′, i′− z′), which will enable the predic-
tion of [Fe/H], as measured from the SDSS spectra. To perform this supervised
machine-learning regression between photometric colors and [Fe/H], I adopt the
random forest algorithm [2]. In short, random forest regression aggregates the
results of multiple decision trees built from randomized bootstrap samples of
the training set. At each node of the individual trees, the splitting parameter is
selected from a random subset of the four features in the model to minimize the
root-mean-squared-error (RMSE) in the resulting branches from the node. After
the forest has been fully constructed, the output from each tree is averaged to
provide a robust estimate of [Fe/H].

To optimize the model, the sample of ∼120,000 sources is split into a train-
ing set containing a random subset of 80,000 stars, while the remaining 39,596
sources provide a test set. Tuning parameters for the random forest are adopted
following a grid search and 10-fold cross-validation on the training set. The cross-
validated RMSE on the training set is 0.269 dex. The results from applying the
optimized model to the test set are shown in Figure 1. The RMSE for the test set
is 0.273 dex, and the catastrophic error rate (CER), defined as the percentage
of predictions that are incorrect by more than 0.75 dex, is 2.3%. As seen in Fig-
ure 1, the model shows a tight scatter around the one-to-one regression line. As
noted above, the SSPP produces estimates of [Fe/H] with a typical uncertainty
of ∼0.24 dex. Thus, this machine learning method produces a scatter similar to
that from a low-resolution spectrum. However, with > 109 SDSS photometrically
observed sources and ∼3 orders of magnitude fewer spectroscopically observed
sources, the machine learning method can be applied to a significantly larger
swath of stars.
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Fig. 1. Final results from the optimized random forest regression model to determine
[Fe/H] from SDSS photometric colors. The spectroscopically measured values of [Fe/H]
are shown on the abscissa, while the cross-validated random forest predictions are
shown on the ordinate. Individual points show the density of sources in a given pixel, as
color-coded according to the legend on the right. The overall performance of the model
is good, with a cross-validated root-mean-square-error of ∼0.273 dex. The catastrophic
error rate is small, with only 2.4% of sources having a predicted metallicity that differs
from the spectroscopically measured value by more than 0.75 dex. The solid red line
shows the location of a perfect one-to-one regression, while the dashed grey lines show
the boundaries for catastrophic prediction errors.

4 Conclusions

Metallicity is a fundamental parameter of all stars. I have demonstrated that for
stars with 4500 K ≤ Teff ≤ 7000 K and reliable u′g′r′i′z′ photometry it is possible
to measure [Fe/H] with a typical scatter of ∼0.27 dex. In addition to being
reliable, this method is fast and can readily be applied to billions of stars. Thus,
it is possible to provide metallicity measurements for a few orders of magnitude
more stars than current spectroscopic surveys. The potential applications of the
method are numerous, including: the search for stellar structures in the Milky
Way halo (e.g., [6]) or the discovery of the rare class of extremely metal poor stars
(e.g., [12]). As additional wide-field photometric surveys come online, machine-
learning techniques, such as the one described here, promise to shed light on
several mysteries concerning the formation of the Milky Way.
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