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Abstract. The utmost requirement of any successful application in today’s en-
vironment is to extract the desired piece of information from its Big Data with a 
very high speed. When Big Data is managed via traditional approach of rela-
tional model, accessing speed is compromised. Moreover, relational data model 
is not flexible enough to handle big data use cases that contains a mixture of 
structured, semi-structured, and unstructured data. Thus, there is a requirement 
for organizing data beyond relational model in a manner which facilitates high 
availability of any type of data instantly. Current research is a step towards 
moving relational data storage (PostgreSQL) to decentralized structured storage 
system (Cassandra), for achieving high availability demand of users for any 
type of data (structured and unstructured) with zero fault tolerance. For reduc-
ing the migration cost, the research focuses on reducing the storage requirement 
by efficiently compressing the source database before moving it to Cassandra.  

Experiment has been conducted to explore the effectiveness of migration 
from PostgreSQL database to Cassandra. A sample data set varying from 5,000 
to 50,000 records has been considered for comparing time taken during selec-
tion, insertion, deletion, and searching of records in relational database and 
Cassandra. The current study found that Cassandra proves to be a better choice 
for select, insert, and delete operations. The queries involving the join operation 
in relational database are time consuming and costly. Cassandra proves to be 
search efficient in such cases, as it stores the nodes together in alphabetical or-
der, and uses split function. 

1 Introduction 

With growing technology, data and its users are growing exponentially. This expo-
nentially growing data is termed as Big Data. It analyses both structured and unstruc-
tured data. Big Data is as important to business and society as the Internet because of 
the fact that more data leads to more accurate analysis. Thus, data needs to be man-
aged carefully for getting efficient results. Big Data is so large that it is difficult to 
process using traditional database and software techniques. In most enterprise scenar-
ios, the data is big, moves very fast, and exceeds current processing capacity.  
Big Data is characterized by five parameters, namely, Volume, Variety, Velocity, 
Variability and Complexity. ‘Volume’ refers to the size of the data which determines 
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the value and potential of the data under consideration. ‘Variety’ signifies heterogene-
ity of Big Data. Big Data consists of not only structured data but also unstructured 
data. It may constitute images, text, notes, graphs, numbers and dates. ‘Velocity’ in 
the context refers to the speed of generation of data or how fast the data is generated 
and processed to meet the demands and the challenges which lie ahead in the path of 
growth and development. ‘Variability’ mentions the inconsistency which can be 
shown by the data at times, thus hampering the process of being able to handle and 
manage the data effectively. 

Data management becomes very complex process, especially when large volumes 
of data come from multiple sources. The data needs to be linked, connected and corre-
lated for capturing the information that is conveyed. This situation is termed as the 
‘Complexity’ of Big Data.  

The choice of traditional approach (relational model) is assumed to be most prom-
ising for storing data due to its power of querying database in an efficient manner 
rapidly. This assumption proves invalid as data grows in size. Relational databases are 
not adequate to support large-scale systems due to limitations in their architecture, 
data model, scalability and performance [1]. This laid down the need for another 
model which should fulfill the requirement of high availability of data rapidly.  

Companies such as Google and Amazon were pioneers to hit problems of scalabil-
ity and came up with solutions, namely, Big Table [2] and Dynamo [3] respectively. 
Big Table and Dynamo relax the guarantees provided by the relational data model to 
achieve higher scalability. Subsequently, a new class of storage systems was proposed 
named as ‘NoSQL’ systems. The name first meant ‘do not use SQL if you want to 
scale’ and later it was redefined to ‘not only SQL’ (which means there exist other 
solutions in addition to SQL-based solutions). NoSQL database named as Cassandra 
[4] has been proposed by Facebook using the properties of Big Table and Dynamo 
DB. Cassandra is an open source database and is used to store chats in Facebook [4].  

Current research focuses on Cassandra for improving the availability of Big Data. 
It started with the aim of migrating existing data in PostgreSQL to Cassandra to 
achieve the benefits of big data analytics. To mitigate overall cost of moving from 
relational to NoSQL, authors in the current research is performing compression  
of data before migration using a well-known compression technique, i.e., Snappy 
Algorithm.  

The paper is further divided into following sections. Section 2 highlights the moti-
vation behind the current research and related work. Section 3 proposes a framework 
for migrating EAV database to Cassandra and provides its implementation details. 
Section 4 gives the details about experiment performed. Results of the framework 
implementation are shown in Section 5. Section 6 finally concludes current research 
and throws a light on future aspects of the work done. 

2 Motivation and Related Work 

The data is growing exponentially in the world, and we need a special database to 
handle it. For reducing space, data must be compressed before storage. Many compa-
nies are facing the problem of growing data and various methods have been evolved 
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and implemented to provide a commendable solution. Key motivations for the current 
research are as follows: 

• Location dependency due to master-slave behavior of traditional SQL systems. 
• Manual intervention during failover and failback situations with generally replicat-

ed SQL systems.  
• Presence of mixture of structured, semi-structured, and unstructured data. 
• Latency and transactional response time issues due to dependence on synchronous 

replication. 
• Costly JOIN operations. 
• Absence of method for obtaining sequential information in case of sorted data.  
• Low fault tolerance of SQL databases.  
• Dynamically allocation of variable length data in database. 
• Unavailability of variable schema.  

Due to master-slave behavior (centralized storage), availability of data is affected a 
lot. For improving this, we should move towards distributed storage approach. Ensu-
ing distributed approach helps in various ways as discussed below: 

• The use of distributed Database Management System (DBMS) guarantees ZERO 
downtime (as same data is replicated over multiple nodes and failure of a single 
node does not impact overall data availability). Whereas, in centralized DBMS, 
failure of an instance may bring down all the dependent downstream applications. 
The recovery of centralized DBMS is difficult task, especially when this downtime 
is not planned. 

• Distributed model of DBMS helps in better load balancing across different nodes. 
Every node is responsible for providing/processing the request for a pre-defined 
subset of data, which can be configured in central (or master) node, which decides 
which node will be responsible for providing/ processing which set of data. 
Whereas, in centralized database there is no secondary instance or replicas availa-
ble, all the requests need to be processed by central instance. Thus, on a busy day 
user queries can overwhelm the centralized system, bringing down the responsive-
ness of the server drastically.  

• One of the main advantages of using distributed database is scalability. For in-
creasing the size of database, simply adding one physical instance will work for 
enhancing the capabilities of database.  Whereas in centralized database, it is lim-
ited by memory or processing speed of the server where centralized database is 
mounted on and it cannot be expanded after a certain limit.  

• Disaster recovery is easy and reliable in distributed DBMS. Suppose an application 
is relying on a database which has been mounted on four physical instances (i.e., 
data has been replicated on four nodes). If one of the nodes fails, recovery will 
comprise of following steps: (i) Identifying the failure of a node, (ii) Letting the 
master node (responsible for allocating requests among different nodes), (iii) Re-
moving the failed node from cluster, (iv) Bringing one fresh node / repaired node 
to the cluster, and replicating the current data from other nodes to this node. 
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All this happens without impacting applications and users that are sending requests 
to database. There is no failure at any given point of time for users and external appli-
cations. This type of recovery mechanism is not possible in case of centralized 
DBMS. 

Wang G. et. al. reveals the secret of NoSQL in [5]. CAP theorem [6], BASE theo-
rem [7] and Eventual Consistency theorem [8] construct the foundation stone of 
NoSQL. It is often used to describe a class of non-relational databases that scale hori-
zontally to very large data sets, but in general do not make ACID guarantees. NoSQL 
data stores vary ideally in their offerings. Consistency means that all copies of data in 
the system appear same to the outside observer at all times. Availability means that 
the system as a whole continues to operate inspite of node failure [9]. For example, 
the hard drive in a server may fail. Partition-tolerance requires that the system contin-
ue to operate inspite of arbitrary message loss. Such an event may be caused by a 
crashed router or broken network link which prevents communication between groups 
of nodes. Depending on the intended usage, the user of Cassandra can opt for Availa-
bility + Partition tolerance or Consistency + Partition tolerance. 

To meet the needs of reliability and scalability as described above, Facebook has 
developed Cassandra [4]. It is one of NoSQL databases used by Twitter, and Face-
book. Cassandra is an open source database management system. It is a distributed 
storage system for managing very large amounts of structured data spread out across 
many commodity servers, while providing highly available service with no single 
point of failure [4]. It guarantees the availability of database with Zero downtime at 
the cost of data redundancy. It aims to run on the top of an infrastructure of hundreds 
of nodes (possibly spread across different data centers). At this scale, small and large 
components fail continuously. The way Cassandra manages the persistent state in the 
face of these failures drives the reliability and scalability of the software systems rely-
ing on this service. It resembles database in many ways and shares many design and 
implementation strategies. However, it does not support a full relational data model, 
but provides clients with a simple data model that supports dynamic control over data 
layout and format. 

DataStax Corporation examines the why’s and how’s of migrating from Oracle’s 
MySQL to Cassandra technology [1]. Database migrations in particular can be re-
source intensive. Thus, IT professionals should ensure that they are taking the right 
decision before making such a move. Because of rapid expansion of big data applica-
tions, various IT organizations are migrating away from Oracle’s MySQL or planning 
to do so. These companies either have existing systems transforming into big data 
systems, or they are planning new applications that are big data in nature and need 
something ‘more’ than MySQL for their database platform. To grasp the advantages 
of distributed environment, authors in the current research aims at providing a frame-
work for transferring data stored in Relational data storage to Decentralized structured 
storage system. 
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3 Moving from Relational Data Storage to Decentralized 
Structured Storage System  

This section gives the details of architecture of decentralized structured storage sys-
tem (Cassandra), followed by its comparison with other Relational Database Man-
agement Systems (RDBMS). It discusses moving from relational data storage 
(PostgreSQL database) to decentralized structured storage system (Cassandra). 

3.1 Architecture of Cassandra 

Cassandra is essentially a hybrid between a key-value and a column-oriented (or tabu-
lar) database. The main focus of Cassandra architecture is that the hardware failures 
exist and data integrity/durability should be ensured at all given times. Cassandra uses 
peer-to-peer distributed systems across homogenous nodes to replicate the data in all 
nodes in a cluster. Whenever there is a data change, each node has a sequence of 
commit log to execute for ensuring data consistency and all nodes have set of data at 
all the time. Cassandra is a row-oriented database and allows only author-
ized/authenticated user to connect to any node in the cluster, it uses CQL [10] (Simi-
lar to SQL) for querying data from nodes. Whenever there is a read/write request to 
any node, node acts as a master node for processing/executing that request and the 
same node decides where this request should be processed (depending on the way 
configuration is done for all nodes in cluster). Terminology used in Cassandra is as 
follows. 

1. Node: Where the data is stored, a node can be thought of as a single physical in-
stance where Cassandra database is mounted. It is the basic component of a dis-
tributed DBMS. 

2. Data Centers: Data center is a collection of nodes, many nodes group together 
based on the data they contain and form data center 

3. Cluster: A cluster is a group of one or more data centers. 
4. Table: Table is a collection of ordered columns fetched by row. A row consists of 

columns and has a primary key. The remaining columns apart from primary key 
can have separate indexes and tables can be dropped, modified or inserted without 
impacting or interrupting updates. Example of the table formed in Cassandra is 
shown in Table 1. 

Fig. 1 gives a snapshot of architecture of Cassandra. Architecture of Cassandra 
constitutes of building components, which are described as follows: 

Gossip 
It is a peer-to-peer communication protocol that shares location and other details of 
the node to other nodes in the cluster. This information is stored in each and every 
node in the cluster which can be used whenever any node powers out.  
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Table 1. Example of a table in Cassandra 

Row key 1 Name Email Work phone Mobile phone 

ABC abc@pqr.com 001-123-234 912345678 
Row Key 2 Name Email Work Phone  

DEF def@xyz.com 001-124-432  
Row Key 3 Name Email   

GHI ghi@pqr.com   

 

Fig. 1. Architecture of Cassandra 

Partitioner 
Partitioning is the ‘heart’ of Cassandra’s architecture and used to partition the data 
across different nodes. Each node is responsible for processing different subset of data 
as assigned by partitioner. Partitioner is the hash function to compute the token of 
partition key. It decides which node to look at or to direct any request to (as partition 
key is the part of primary key in each row of data). 

Replication Factor 
It defines the number of replications each cluster will have. For example, replication 
factor of ‘3’ means data will be replicated across nodes in the same cluster 3 times. 

Replication Strategy 
Replication factor determines number of copies each data will have, whereas, replica-
tion strategy determines the nodes where data has to be replicated to best suit the data 
availability and fault-tolerance. 
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Snitch 
Snitch defines group of machines into data centers, which in turn is utilized by repli-
cation strategy to form the replicas and distribute them across clusters, snitch makes 
use of a dynamic snitch layer which choose the best replicas based on performance 
monitoring. 

Considering Cassandra data model, data is placed in a two dimensional space with-
in each column family. To retrieve data in a column family, users need two keys: row 
name and column name. In that sense, both the relational model and Cassandra are 
similar, although there are several crucial differences (listed below). 

1. Relational columns are homogeneous across all rows in the table. A clear vertical 
relationship usually exists between data items; which is not the case with Cassan-
dra columns. This is the reason Cassandra stores the column name with each data 
item (column).  

2. In relational model 2D data space is complete. Each point in the 2D space should 
have at least the null value stored there. This is not the case with Cassandra, and it 
can have rows containing only a few items, while other rows can have millions of 
items.  

3. In relational model the schema is predefined and cannot be changed at runtime, 
whereas in Cassandra users can change the schema at runtime.  

4. Cassandra always stores data by sorting columns based on their names. This makes 
it easier to search for data through a column using slice queries. However, it is 
harder to search for data through a row unless we use an order-preserving parti-
tioner.  

5. Another crucial difference is that column names in RDMBS represent metadata 
about data, but never data. In Cassandra, the names of columns can include data. 
Consequently, Cassandra rows can have millions of columns, while a relational 
model usually has tens of columns.  

6. Using a well-defined immutable schema, relational models support sophisticated 
queries that include JOINs, and aggregations. In relational model, users can define 
the schema without worrying about queries. Cassandra does not support JOINs and 
most SQL search methods. Therefore, schema has to be catered to the queries re-
quired by the application.  

After a rigorous survey, authors presents Table 2 which compares Cassandra data-
base, with various existing relational databases. These databases are differentiated on 
various parameters, such as architecture, data model, structure of queries, enterprise 
search, enterprise analytics, memory, security, data independence, usage and recov-
ery. The analysis highlights the importance of Cassandra. To gain the functionalities 
provided by Cassandra, the current study experimented with sample data to migrate 
from PostgreSQL database to Cassandra. 
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Table 2. Comparison of Cassandra with relational database management systems 

Product 
Capability  

DataStax Enterprise 
Cassandra  Oracle RDBMS  Oracle MySQL  

Microsoft SQL 
Server  

Core Archi-
tecture  

Masterless (no single 
point of failure)  

Master-slave (single 
points of failure)  

Master-slave (single 
points of failure)  

Master-slave (single 
points of failure)  

High Availa-
bility  

Always-on continu-
ous availability  

General replication 
with master-slave  

General read-only 
scale out replication; 
simple master-master 

SQL Server replica-
tion, clustering and 
mirroring  

Data Model  
Dynamic; structured 
and unstructured data  

Legacy RDBMS;  
Structured data  

Legacy RDBMS;  
Structured data  

Legacy RDBMS;  
Structured data  

Scalability 
Model  

Big data/Linear scale 
performance  

Oracle RAC or  
Exadata  

Manual sharding  
with MySQL  

Manual sharding,  
general partitioning 

Multi-Data 
Center Sup-
port  

Multi-directional, 
multi-cloud availabil-
ity  

Nothing specific  Nothing specific  Nothing specific  

Security  Full security support  Full security support Full security support Full security support  

Enterprise 
Search  

Full Solr integration  
Handled via Oracle 
search  

Full-text indexes  
only  

Full-text indexes only  

Enterprise 
Analytics  

Integrated analytics 
with workload isola-
tion with MapReduce, 
and Hive 

Analytic functions 
in Oracle RDBMS 
via SQL  
MapReduce  

Some analytic func-
tions, no Hadoop 
support  

Basic analytic func-
tions  

Database 
Option  

Built-in in-memory 
option  

Columnar in-memory 
option  

MySQL cluster  
Coming in-memory  
option  

Enterprise 
Management 
& Monitor-
ing  

DataStax OpsCenter 
& automated man-
agement services  

Oracle Enterprise  
Manager  

MySQL Enterprise  
Monitor  

SQL Server Enterprise 
Studio  

Operations  

No join operation, but 
use various other  
methods to show  
results similar to join 

Performs search and 
insert operation (as 
well as various other 
costly operations 
like join)  

Performs all the  
operations  

Various operations  
are performed  

Data Inde-
pendence  

Data on different data 
centers are independ-
ent and separable  

Data depends on 
data types defined in 
the schema  

Data depends on  
data types defined  
in the schema  

Data depends on data 
types defined in the 
schema  

Usage  

Users using very 
large database (where 
not possible to store 
data on a SQL data-
base)  

Users of medium  
scale business  

General users  
(where numbers of  
users are less) 

General users (where 
numbers of users are 
less)  

Recovery and 
atomicity  

Remembers deletes, 
but full recovery is 
manual- using node 
tool  

Doesn’t remember 
delete and no chance 
of recovery 

No provision of data 
recovery is present 

Data can only be  
recovered, when log 
file is maintained 
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3.2 Moving from Relational Data Storage to Decentralized Structured Storage 

Current study proposes a solution to the problem of managing growing data on  
various applications by migrating PostgreSQL database (centralized approach) to 
Cassandra (distributed approach). The whole process of migrating PostgreSQL data-
base to Cassandra is divided in three layers as shown in Fig. 2. Firstly, authors are 
applying Google Snappy algorithm on the data to reduce the size of data stored in the 
database which directly impacts the cost of migration. After the size is reduced,  
an intermediate database (MySQL) is used to transfer whole database on a NoSQL 
database (Cassandra). 
 

 

Fig. 2. Migrating from Relational data storage to Decentralized structured storage 
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3.3 Compressing Database 

Snappy (previously known as Zippy) is a fast data compression and decompression 
library written in C++ by Google based on ideas from LZ77 [1, 11]. It does not aim 
for maximum compression, or compatibility with any other compression library; in-
stead, it aims for very high speeds and reasonable compression. Compression speed is 
250 MB/s and decompression speed is 500 MB/s using a single core of a Core i7 pro-
cessor running in 64-bit mode. The compression ratio is 20–100% lower than gzip 
[12]. Snappy is widely used in Google projects like BigTable, MapReduce and in 
compression data in Google's internal RPCsystems. It can be used in open-source 
projects like Cassandra, Hadoop, LevelDB, RocksDB, Lucene[9]. Decompression is 
tested to detect any errors in the compressed stream. Snappy does not use inline as-
sembler and is portable [13]. Fig. 3 describes the complete Google Snappy algorithm 
working and is delivering a final product – Snappy test file, which will take a data-
base as an input and will compress the data to almost 80% of original data and will 
deliver a final product as a compressed database. For the implementation of Snappy 
algorithm, we need to include this ‘snappyfile.h’ file in our program, and it will com-
press the data, which is the input in the code. Snappy test file is the file used for test-
ing of Snappy algorithm, and we need it to check, whether the compressing algorithm 
is working fine or not. For delivering the end product, we need to include snappy 
public file in the code, which defines all the functions necessary to compress the data. 
Apart from this, we also need ‘snappy.h’ file and ‘snappy.cc’ file, which is the header 
file of Snappy algorithm, and is provided open source by Google. Fig. 2(a) defines the 
complete process of application of Google Snappy algorithm on data. 

3.4 PostgreSQL to Cassandra 

The data stored in PostgreSQL database is converted into its dump files. The idea 
behind this dump method is to generate a text file with SQL commands. Consequent-
ly, this is fed back to the server, which will recreate the database in the same state as 
it was at the time of the dump.  Authors used ‘pg_dump’ command to create the dump 
file of the existing database (in PostgreSQL), which we need to convert. This dump 
file is converted to a MySQL dump file, which can further be loaded into SQL data-
base. This converts PostgreSQL Database to MySQL database. Fig. 2(b) describes the 
process of conversion of data from a PostgreSQL Database to MySQL database, con-
sidering that we should not get any loss of data during transfer.  

Cassandra is a database with variable schema. It is column oriented, and gives us 
the flexibility to store data of different types on a same database. This gives us an 
advantage of storing data together. Thus, we considered moving this MySQL database 
to NoSQL database (Cassandra). Our work is implementation of the architecture de-
scribed by Phani Krishna in [14]. To move the database from a relational model to 
Cassandra, authors are using ETL tools. They firstly extract the data, and transform 
the data by cleansing and enriching it to a processed data. Then, the data is further 
parsed and converted to JSON objects. Then with the help of JSON files [15], it con-
verts the database to Cassandra. Fig. 2(c) shows the way data is moved from MySQL 
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database to Cassandra database after parsing the queries and obtaining the JSON ob-
jects from the SQL query. Fig. 4 presents a snapshot of JSON object creator from 
MySQL database. These JSON objects are further converted to Cassandra and we get 
our desired result. 

 

 
Fig. 3. File map of GOOGLE Snappy Algorithm 

 

Fig. 4. JSON objects Creator from a MySQL database 
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4 Experiments 

For experimentation authors are using datasets of standardized Electronic Healthcare 
Records (EHRs) database [16-17]. Speedy access of information is highly demanded 
by the users now a days. There are millions of health organizations and billions of 
users. In such scenario, data must be stored in such a way which guarantees instant 
access. Availability is very critical for healthcare domain as unavailability of right 
information at right time may even result in loss of patient life. Other than availabil-
ity; standardization, sparseness and volatility are also very critical for EHRs [18]. 
Several standard development organizations (openEHR, CEN, ISO and HL7) [19-23] 
are working to provide a standard which can be adopted by every heath organization 
to achieve globalization. To deal with sparseness and volatility Entity Attribute Value 
(EAV) model is preferred over relational model [18]. For implementing the frame-
work proposed in previous section, we considered the database, which contains stand-
ardized EHRs data. EHRs data was synthesized by the authors using a clinical appli-
cation named Opereffa [24].  Opereffa stands for openEHR REFerence Framework 
and Application. We explored Opereffa for our research purpose and found that it 
stores EHR data in a standard format (openEHR) in a single generic table (based on 
EAV model) using PostgreSQL. Fig. 5 provides a snapshot of the data collected 
through Opereffa by the authors. Database shown in Fig. 5 follows EAV model ap-
proach where “context_id” specifies the entity, “archetype path” resemble attribute 
column of EAV model and “value_string”, ”value_int” and “value_double” are ana-
logical to the value part of EAV model. As EAV approach is followed in Opereffa, 
the stored dataset will be free from sparse entries. The dataset stored through Opereffa 
is available at a single computer where Opereffa is running. Everyone who wants to 
access the data needs to communicate to the single point of contact. Due to this cen-
tralized storage, availability is affected a lot. To improve on availability, we should 
move towards the distributed storage approach (Cassandra) by implementing the 
framework proposed in previous section. Sample datasets varying from 5000 to 
50,000 have been used for conducting experiments for this study. 

 

Fig. 5. Snapshot of PostgreSQL database 

5 Results 

Authors have implemented Google Snappy algorithm, and have tested the data com-
pression rate of the end product to figure out the compression rate of the algorithm. 
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The results obtained are shown in Table 3. To test the difference in time execution 
different queries have been executed by authors on standard based clinical database 
and the corresponding Cassandra database. To account for scalability, varying size of 
datasets has been considered to collect comparative results. Queries are executed 
considering four main parameters of any query application (insert, delete, search and 
select). The corresponding times taken by various queries are shown graphically in 
Fig. 6. 

Table 3. Compression results after applying Google Snappy Algorithm 

Original Data Compressed Data 
149 KB 121 KB 
872 KB 536 KB 
1.3 MB 807 KB 

 

Fig. 6. Comparison of time taken in Cassandra and MySQL 

Results obtained in Fig. 6 shows the benefits achieved in terms of time taken for 
executing queries on MySQL database and Cassandra. Time is calculated in MySQL, 
using time() function and in Cassandra, using TRACE ON command [25], which ena-
bles user to trace the amount of time an operation needs, in all its steps. 
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6 Conclusions and Future Scope 

To account for the scalability, there is need of shifting to an approach different from 
relational model which can guarantee high availability with zero fault tolerance, one 
such model is Cassandra. Current research is a step towards providing an integrated 
solution for migrating data from relational data storage to decentralized structured 
storage system. The study implements a framework migrating from PostgreSQL to 
Cassandra. To minimize the cost of migration, authors in the current research imple-
ments Google snappy algorithm before migration. Table 2 is presented to give a clear 
differentiation of Cassandra from various existing RDBMS. An experimental com-
parative analysis is done to account for the benefits achieved after migrating to Cas-
sandra from PostgreSQL in terms of time taken to execute a query (insert/ delete/ 
search/ select). Experiments are performed on different sizes of datasets (considering 
the scalability of data) ranging from 1 instance to 50,000 instances of standardized 
EHRs (based on openEHR standard).  

In future, work can be done for providing security to all the data nodes and to pro-
vide Gossip Protocol complete information of all the nodes. A tool can also be built to 
change a PostgreSQL data directly to Cassandra, so that we can remove the use of 
MySQL database, and can get the desired result. This work is in an initial effort to 
move standard based clinical data to Cassandra. The researchers may apply more 
NoSQL databases such as MongoDB and Redis to perform a comparative analysis of 
all the databases. Current research can benefit other arenas related to Big Data such as 
meteorology, genomics, connectomics, complex physics simulations, biological and 
environmental research, internet search, finance and business informatics. 
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