

W. Chu et al. (Eds.): DNIS 2015, LNCS 8999, pp. 180–194, 2015.
© Springer International Publishing Switzerland 2015

Moving from Relational Data Storage to Decentralized
Structured Storage System

Upaang Saxena, Shelly Sachdeva, and Shivani Batra

Department of Computer Science Engineering
Jaypee Institute of Information Technology, Noida, India

{upaangsaxena,ms.shivani.batra}@gmail.com,
shelly.sachdeva@jiit.ac.in

Abstract. The utmost requirement of any successful application in today’s en-
vironment is to extract the desired piece of information from its Big Data with a
very high speed. When Big Data is managed via traditional approach of rela-
tional model, accessing speed is compromised. Moreover, relational data model
is not flexible enough to handle big data use cases that contains a mixture of
structured, semi-structured, and unstructured data. Thus, there is a requirement
for organizing data beyond relational model in a manner which facilitates high
availability of any type of data instantly. Current research is a step towards
moving relational data storage (PostgreSQL) to decentralized structured storage
system (Cassandra), for achieving high availability demand of users for any
type of data (structured and unstructured) with zero fault tolerance. For reduc-
ing the migration cost, the research focuses on reducing the storage requirement
by efficiently compressing the source database before moving it to Cassandra.

Experiment has been conducted to explore the effectiveness of migration
from PostgreSQL database to Cassandra. A sample data set varying from 5,000
to 50,000 records has been considered for comparing time taken during selec-
tion, insertion, deletion, and searching of records in relational database and
Cassandra. The current study found that Cassandra proves to be a better choice
for select, insert, and delete operations. The queries involving the join operation
in relational database are time consuming and costly. Cassandra proves to be
search efficient in such cases, as it stores the nodes together in alphabetical or-
der, and uses split function.

1 Introduction

With growing technology, data and its users are growing exponentially. This expo-
nentially growing data is termed as Big Data. It analyses both structured and unstruc-
tured data. Big Data is as important to business and society as the Internet because of
the fact that more data leads to more accurate analysis. Thus, data needs to be man-
aged carefully for getting efficient results. Big Data is so large that it is difficult to
process using traditional database and software techniques. In most enterprise scenar-
ios, the data is big, moves very fast, and exceeds current processing capacity.
Big Data is characterized by five parameters, namely, Volume, Variety, Velocity,
Variability and Complexity. ‘Volume’ refers to the size of the data which determines

 Moving from Relational Data Storage to Decentralized Structured Storage System 181

the value and potential of the data under consideration. ‘Variety’ signifies heterogene-
ity of Big Data. Big Data consists of not only structured data but also unstructured
data. It may constitute images, text, notes, graphs, numbers and dates. ‘Velocity’ in
the context refers to the speed of generation of data or how fast the data is generated
and processed to meet the demands and the challenges which lie ahead in the path of
growth and development. ‘Variability’ mentions the inconsistency which can be
shown by the data at times, thus hampering the process of being able to handle and
manage the data effectively.

Data management becomes very complex process, especially when large volumes
of data come from multiple sources. The data needs to be linked, connected and corre-
lated for capturing the information that is conveyed. This situation is termed as the
‘Complexity’ of Big Data.

The choice of traditional approach (relational model) is assumed to be most prom-
ising for storing data due to its power of querying database in an efficient manner
rapidly. This assumption proves invalid as data grows in size. Relational databases are
not adequate to support large-scale systems due to limitations in their architecture,
data model, scalability and performance [1]. This laid down the need for another
model which should fulfill the requirement of high availability of data rapidly.

Companies such as Google and Amazon were pioneers to hit problems of scalabil-
ity and came up with solutions, namely, Big Table [2] and Dynamo [3] respectively.
Big Table and Dynamo relax the guarantees provided by the relational data model to
achieve higher scalability. Subsequently, a new class of storage systems was proposed
named as ‘NoSQL’ systems. The name first meant ‘do not use SQL if you want to
scale’ and later it was redefined to ‘not only SQL’ (which means there exist other
solutions in addition to SQL-based solutions). NoSQL database named as Cassandra
[4] has been proposed by Facebook using the properties of Big Table and Dynamo
DB. Cassandra is an open source database and is used to store chats in Facebook [4].

Current research focuses on Cassandra for improving the availability of Big Data.
It started with the aim of migrating existing data in PostgreSQL to Cassandra to
achieve the benefits of big data analytics. To mitigate overall cost of moving from
relational to NoSQL, authors in the current research is performing compression
of data before migration using a well-known compression technique, i.e., Snappy
Algorithm.

The paper is further divided into following sections. Section 2 highlights the moti-
vation behind the current research and related work. Section 3 proposes a framework
for migrating EAV database to Cassandra and provides its implementation details.
Section 4 gives the details about experiment performed. Results of the framework
implementation are shown in Section 5. Section 6 finally concludes current research
and throws a light on future aspects of the work done.

2 Motivation and Related Work

The data is growing exponentially in the world, and we need a special database to
handle it. For reducing space, data must be compressed before storage. Many compa-
nies are facing the problem of growing data and various methods have been evolved

182 U. Saxena, S. Sachdeva, and S. Batra

and implemented to provide a commendable solution. Key motivations for the current
research are as follows:

• Location dependency due to master-slave behavior of traditional SQL systems.
• Manual intervention during failover and failback situations with generally replicat-

ed SQL systems.
• Presence of mixture of structured, semi-structured, and unstructured data.
• Latency and transactional response time issues due to dependence on synchronous

replication.
• Costly JOIN operations.
• Absence of method for obtaining sequential information in case of sorted data.
• Low fault tolerance of SQL databases.
• Dynamically allocation of variable length data in database.
• Unavailability of variable schema.

Due to master-slave behavior (centralized storage), availability of data is affected a
lot. For improving this, we should move towards distributed storage approach. Ensu-
ing distributed approach helps in various ways as discussed below:

• The use of distributed Database Management System (DBMS) guarantees ZERO
downtime (as same data is replicated over multiple nodes and failure of a single
node does not impact overall data availability). Whereas, in centralized DBMS,
failure of an instance may bring down all the dependent downstream applications.
The recovery of centralized DBMS is difficult task, especially when this downtime
is not planned.

• Distributed model of DBMS helps in better load balancing across different nodes.
Every node is responsible for providing/processing the request for a pre-defined
subset of data, which can be configured in central (or master) node, which decides
which node will be responsible for providing/ processing which set of data.
Whereas, in centralized database there is no secondary instance or replicas availa-
ble, all the requests need to be processed by central instance. Thus, on a busy day
user queries can overwhelm the centralized system, bringing down the responsive-
ness of the server drastically.

• One of the main advantages of using distributed database is scalability. For in-
creasing the size of database, simply adding one physical instance will work for
enhancing the capabilities of database. Whereas in centralized database, it is lim-
ited by memory or processing speed of the server where centralized database is
mounted on and it cannot be expanded after a certain limit.

• Disaster recovery is easy and reliable in distributed DBMS. Suppose an application
is relying on a database which has been mounted on four physical instances (i.e.,
data has been replicated on four nodes). If one of the nodes fails, recovery will
comprise of following steps: (i) Identifying the failure of a node, (ii) Letting the
master node (responsible for allocating requests among different nodes), (iii) Re-
moving the failed node from cluster, (iv) Bringing one fresh node / repaired node
to the cluster, and replicating the current data from other nodes to this node.

 Moving from Relational Data Storage to Decentralized Structured Storage System 183

All this happens without impacting applications and users that are sending requests
to database. There is no failure at any given point of time for users and external appli-
cations. This type of recovery mechanism is not possible in case of centralized
DBMS.

Wang G. et. al. reveals the secret of NoSQL in [5]. CAP theorem [6], BASE theo-
rem [7] and Eventual Consistency theorem [8] construct the foundation stone of
NoSQL. It is often used to describe a class of non-relational databases that scale hori-
zontally to very large data sets, but in general do not make ACID guarantees. NoSQL
data stores vary ideally in their offerings. Consistency means that all copies of data in
the system appear same to the outside observer at all times. Availability means that
the system as a whole continues to operate inspite of node failure [9]. For example,
the hard drive in a server may fail. Partition-tolerance requires that the system contin-
ue to operate inspite of arbitrary message loss. Such an event may be caused by a
crashed router or broken network link which prevents communication between groups
of nodes. Depending on the intended usage, the user of Cassandra can opt for Availa-
bility + Partition tolerance or Consistency + Partition tolerance.

To meet the needs of reliability and scalability as described above, Facebook has
developed Cassandra [4]. It is one of NoSQL databases used by Twitter, and Face-
book. Cassandra is an open source database management system. It is a distributed
storage system for managing very large amounts of structured data spread out across
many commodity servers, while providing highly available service with no single
point of failure [4]. It guarantees the availability of database with Zero downtime at
the cost of data redundancy. It aims to run on the top of an infrastructure of hundreds
of nodes (possibly spread across different data centers). At this scale, small and large
components fail continuously. The way Cassandra manages the persistent state in the
face of these failures drives the reliability and scalability of the software systems rely-
ing on this service. It resembles database in many ways and shares many design and
implementation strategies. However, it does not support a full relational data model,
but provides clients with a simple data model that supports dynamic control over data
layout and format.

DataStax Corporation examines the why’s and how’s of migrating from Oracle’s
MySQL to Cassandra technology [1]. Database migrations in particular can be re-
source intensive. Thus, IT professionals should ensure that they are taking the right
decision before making such a move. Because of rapid expansion of big data applica-
tions, various IT organizations are migrating away from Oracle’s MySQL or planning
to do so. These companies either have existing systems transforming into big data
systems, or they are planning new applications that are big data in nature and need
something ‘more’ than MySQL for their database platform. To grasp the advantages
of distributed environment, authors in the current research aims at providing a frame-
work for transferring data stored in Relational data storage to Decentralized structured
storage system.

184 U. Saxena, S. Sachdeva, and S. Batra

3 Moving from Relational Data Storage to Decentralized
Structured Storage System

This section gives the details of architecture of decentralized structured storage sys-
tem (Cassandra), followed by its comparison with other Relational Database Man-
agement Systems (RDBMS). It discusses moving from relational data storage
(PostgreSQL database) to decentralized structured storage system (Cassandra).

3.1 Architecture of Cassandra

Cassandra is essentially a hybrid between a key-value and a column-oriented (or tabu-
lar) database. The main focus of Cassandra architecture is that the hardware failures
exist and data integrity/durability should be ensured at all given times. Cassandra uses
peer-to-peer distributed systems across homogenous nodes to replicate the data in all
nodes in a cluster. Whenever there is a data change, each node has a sequence of
commit log to execute for ensuring data consistency and all nodes have set of data at
all the time. Cassandra is a row-oriented database and allows only author-
ized/authenticated user to connect to any node in the cluster, it uses CQL [10] (Simi-
lar to SQL) for querying data from nodes. Whenever there is a read/write request to
any node, node acts as a master node for processing/executing that request and the
same node decides where this request should be processed (depending on the way
configuration is done for all nodes in cluster). Terminology used in Cassandra is as
follows.

1. Node: Where the data is stored, a node can be thought of as a single physical in-
stance where Cassandra database is mounted. It is the basic component of a dis-
tributed DBMS.

2. Data Centers: Data center is a collection of nodes, many nodes group together
based on the data they contain and form data center

3. Cluster: A cluster is a group of one or more data centers.
4. Table: Table is a collection of ordered columns fetched by row. A row consists of

columns and has a primary key. The remaining columns apart from primary key
can have separate indexes and tables can be dropped, modified or inserted without
impacting or interrupting updates. Example of the table formed in Cassandra is
shown in Table 1.

Fig. 1 gives a snapshot of architecture of Cassandra. Architecture of Cassandra
constitutes of building components, which are described as follows:

Gossip
It is a peer-to-peer communication protocol that shares location and other details of
the node to other nodes in the cluster. This information is stored in each and every
node in the cluster which can be used whenever any node powers out.

 Moving from Relational Data Storage to Decentralized Structured Storage System 185

Table 1. Example of a table in Cassandra

Row key 1 Name Email Work phone Mobile phone

ABC abc@pqr.com 001-123-234 912345678
Row Key 2 Name Email Work Phone

DEF def@xyz.com 001-124-432
Row Key 3 Name Email

GHI ghi@pqr.com

Fig. 1. Architecture of Cassandra

Partitioner
Partitioning is the ‘heart’ of Cassandra’s architecture and used to partition the data
across different nodes. Each node is responsible for processing different subset of data
as assigned by partitioner. Partitioner is the hash function to compute the token of
partition key. It decides which node to look at or to direct any request to (as partition
key is the part of primary key in each row of data).

Replication Factor
It defines the number of replications each cluster will have. For example, replication
factor of ‘3’ means data will be replicated across nodes in the same cluster 3 times.

Replication Strategy
Replication factor determines number of copies each data will have, whereas, replica-
tion strategy determines the nodes where data has to be replicated to best suit the data
availability and fault-tolerance.

186 U. Saxena, S. Sachdeva, and S. Batra

Snitch
Snitch defines group of machines into data centers, which in turn is utilized by repli-
cation strategy to form the replicas and distribute them across clusters, snitch makes
use of a dynamic snitch layer which choose the best replicas based on performance
monitoring.

Considering Cassandra data model, data is placed in a two dimensional space with-
in each column family. To retrieve data in a column family, users need two keys: row
name and column name. In that sense, both the relational model and Cassandra are
similar, although there are several crucial differences (listed below).

1. Relational columns are homogeneous across all rows in the table. A clear vertical
relationship usually exists between data items; which is not the case with Cassan-
dra columns. This is the reason Cassandra stores the column name with each data
item (column).

2. In relational model 2D data space is complete. Each point in the 2D space should
have at least the null value stored there. This is not the case with Cassandra, and it
can have rows containing only a few items, while other rows can have millions of
items.

3. In relational model the schema is predefined and cannot be changed at runtime,
whereas in Cassandra users can change the schema at runtime.

4. Cassandra always stores data by sorting columns based on their names. This makes
it easier to search for data through a column using slice queries. However, it is
harder to search for data through a row unless we use an order-preserving parti-
tioner.

5. Another crucial difference is that column names in RDMBS represent metadata
about data, but never data. In Cassandra, the names of columns can include data.
Consequently, Cassandra rows can have millions of columns, while a relational
model usually has tens of columns.

6. Using a well-defined immutable schema, relational models support sophisticated
queries that include JOINs, and aggregations. In relational model, users can define
the schema without worrying about queries. Cassandra does not support JOINs and
most SQL search methods. Therefore, schema has to be catered to the queries re-
quired by the application.

After a rigorous survey, authors presents Table 2 which compares Cassandra data-
base, with various existing relational databases. These databases are differentiated on
various parameters, such as architecture, data model, structure of queries, enterprise
search, enterprise analytics, memory, security, data independence, usage and recov-
ery. The analysis highlights the importance of Cassandra. To gain the functionalities
provided by Cassandra, the current study experimented with sample data to migrate
from PostgreSQL database to Cassandra.

 Moving from Relational Data Storage to Decentralized Structured Storage System 187

Table 2. Comparison of Cassandra with relational database management systems

Product
Capability

DataStax Enterprise
Cassandra Oracle RDBMS Oracle MySQL

Microsoft SQL
Server

Core Archi-
tecture

Masterless (no single
point of failure)

Master-slave (single
points of failure)

Master-slave (single
points of failure)

Master-slave (single
points of failure)

High Availa-
bility

Always-on continu-
ous availability

General replication
with master-slave

General read-only
scale out replication;
simple master-master

SQL Server replica-
tion, clustering and
mirroring

Data Model
Dynamic; structured
and unstructured data

Legacy RDBMS;
Structured data

Legacy RDBMS;
Structured data

Legacy RDBMS;
Structured data

Scalability
Model

Big data/Linear scale
performance

Oracle RAC or
Exadata

Manual sharding
with MySQL

Manual sharding,
general partitioning

Multi-Data
Center Sup-
port

Multi-directional,
multi-cloud availabil-
ity

Nothing specific Nothing specific Nothing specific

Security Full security support Full security support Full security support Full security support

Enterprise
Search

Full Solr integration
Handled via Oracle
search

Full-text indexes
only

Full-text indexes only

Enterprise
Analytics

Integrated analytics
with workload isola-
tion with MapReduce,
and Hive

Analytic functions
in Oracle RDBMS
via SQL
MapReduce

Some analytic func-
tions, no Hadoop
support

Basic analytic func-
tions

Database
Option

Built-in in-memory
option

Columnar in-memory
option

MySQL cluster
Coming in-memory
option

Enterprise
Management
& Monitor-
ing

DataStax OpsCenter
& automated man-
agement services

Oracle Enterprise
Manager

MySQL Enterprise
Monitor

SQL Server Enterprise
Studio

Operations

No join operation, but
use various other
methods to show
results similar to join

Performs search and
insert operation (as
well as various other
costly operations
like join)

Performs all the
operations

Various operations
are performed

Data Inde-
pendence

Data on different data
centers are independ-
ent and separable

Data depends on
data types defined in
the schema

Data depends on
data types defined
in the schema

Data depends on data
types defined in the
schema

Usage

Users using very
large database (where
not possible to store
data on a SQL data-
base)

Users of medium
scale business

General users
(where numbers of
users are less)

General users (where
numbers of users are
less)

Recovery and
atomicity

Remembers deletes,
but full recovery is
manual- using node
tool

Doesn’t remember
delete and no chance
of recovery

No provision of data
recovery is present

Data can only be
recovered, when log
file is maintained

188 U. Saxena, S. Sachdeva, and S. Batra

3.2 Moving from Relational Data Storage to Decentralized Structured Storage

Current study proposes a solution to the problem of managing growing data on
various applications by migrating PostgreSQL database (centralized approach) to
Cassandra (distributed approach). The whole process of migrating PostgreSQL data-
base to Cassandra is divided in three layers as shown in Fig. 2. Firstly, authors are
applying Google Snappy algorithm on the data to reduce the size of data stored in the
database which directly impacts the cost of migration. After the size is reduced,
an intermediate database (MySQL) is used to transfer whole database on a NoSQL
database (Cassandra).

Fig. 2. Migrating from Relational data storage to Decentralized structured storage

 Moving from Relational Data Storage to Decentralized Structured Storage System 189

3.3 Compressing Database

Snappy (previously known as Zippy) is a fast data compression and decompression
library written in C++ by Google based on ideas from LZ77 [1, 11]. It does not aim
for maximum compression, or compatibility with any other compression library; in-
stead, it aims for very high speeds and reasonable compression. Compression speed is
250 MB/s and decompression speed is 500 MB/s using a single core of a Core i7 pro-
cessor running in 64-bit mode. The compression ratio is 20–100% lower than gzip
[12]. Snappy is widely used in Google projects like BigTable, MapReduce and in
compression data in Google's internal RPCsystems. It can be used in open-source
projects like Cassandra, Hadoop, LevelDB, RocksDB, Lucene[9]. Decompression is
tested to detect any errors in the compressed stream. Snappy does not use inline as-
sembler and is portable [13]. Fig. 3 describes the complete Google Snappy algorithm
working and is delivering a final product – Snappy test file, which will take a data-
base as an input and will compress the data to almost 80% of original data and will
deliver a final product as a compressed database. For the implementation of Snappy
algorithm, we need to include this ‘snappyfile.h’ file in our program, and it will com-
press the data, which is the input in the code. Snappy test file is the file used for test-
ing of Snappy algorithm, and we need it to check, whether the compressing algorithm
is working fine or not. For delivering the end product, we need to include snappy
public file in the code, which defines all the functions necessary to compress the data.
Apart from this, we also need ‘snappy.h’ file and ‘snappy.cc’ file, which is the header
file of Snappy algorithm, and is provided open source by Google. Fig. 2(a) defines the
complete process of application of Google Snappy algorithm on data.

3.4 PostgreSQL to Cassandra

The data stored in PostgreSQL database is converted into its dump files. The idea
behind this dump method is to generate a text file with SQL commands. Consequent-
ly, this is fed back to the server, which will recreate the database in the same state as
it was at the time of the dump. Authors used ‘pg_dump’ command to create the dump
file of the existing database (in PostgreSQL), which we need to convert. This dump
file is converted to a MySQL dump file, which can further be loaded into SQL data-
base. This converts PostgreSQL Database to MySQL database. Fig. 2(b) describes the
process of conversion of data from a PostgreSQL Database to MySQL database, con-
sidering that we should not get any loss of data during transfer.

Cassandra is a database with variable schema. It is column oriented, and gives us
the flexibility to store data of different types on a same database. This gives us an
advantage of storing data together. Thus, we considered moving this MySQL database
to NoSQL database (Cassandra). Our work is implementation of the architecture de-
scribed by Phani Krishna in [14]. To move the database from a relational model to
Cassandra, authors are using ETL tools. They firstly extract the data, and transform
the data by cleansing and enriching it to a processed data. Then, the data is further
parsed and converted to JSON objects. Then with the help of JSON files [15], it con-
verts the database to Cassandra. Fig. 2(c) shows the way data is moved from MySQL

190 U. Saxena, S. Sachdeva, and S. Batra

database to Cassandra database after parsing the queries and obtaining the JSON ob-
jects from the SQL query. Fig. 4 presents a snapshot of JSON object creator from
MySQL database. These JSON objects are further converted to Cassandra and we get
our desired result.

Fig. 3. File map of GOOGLE Snappy Algorithm

Fig. 4. JSON objects Creator from a MySQL database

 Moving from Relational Data Storage to Decentralized Structured Storage System 191

4 Experiments

For experimentation authors are using datasets of standardized Electronic Healthcare
Records (EHRs) database [16-17]. Speedy access of information is highly demanded
by the users now a days. There are millions of health organizations and billions of
users. In such scenario, data must be stored in such a way which guarantees instant
access. Availability is very critical for healthcare domain as unavailability of right
information at right time may even result in loss of patient life. Other than availabil-
ity; standardization, sparseness and volatility are also very critical for EHRs [18].
Several standard development organizations (openEHR, CEN, ISO and HL7) [19-23]
are working to provide a standard which can be adopted by every heath organization
to achieve globalization. To deal with sparseness and volatility Entity Attribute Value
(EAV) model is preferred over relational model [18]. For implementing the frame-
work proposed in previous section, we considered the database, which contains stand-
ardized EHRs data. EHRs data was synthesized by the authors using a clinical appli-
cation named Opereffa [24]. Opereffa stands for openEHR REFerence Framework
and Application. We explored Opereffa for our research purpose and found that it
stores EHR data in a standard format (openEHR) in a single generic table (based on
EAV model) using PostgreSQL. Fig. 5 provides a snapshot of the data collected
through Opereffa by the authors. Database shown in Fig. 5 follows EAV model ap-
proach where “context_id” specifies the entity, “archetype path” resemble attribute
column of EAV model and “value_string”, ”value_int” and “value_double” are ana-
logical to the value part of EAV model. As EAV approach is followed in Opereffa,
the stored dataset will be free from sparse entries. The dataset stored through Opereffa
is available at a single computer where Opereffa is running. Everyone who wants to
access the data needs to communicate to the single point of contact. Due to this cen-
tralized storage, availability is affected a lot. To improve on availability, we should
move towards the distributed storage approach (Cassandra) by implementing the
framework proposed in previous section. Sample datasets varying from 5000 to
50,000 have been used for conducting experiments for this study.

Fig. 5. Snapshot of PostgreSQL database

5 Results

Authors have implemented Google Snappy algorithm, and have tested the data com-
pression rate of the end product to figure out the compression rate of the algorithm.

192 U. Saxena, S. Sachdeva, and S. Batra

The results obtained are shown in Table 3. To test the difference in time execution
different queries have been executed by authors on standard based clinical database
and the corresponding Cassandra database. To account for scalability, varying size of
datasets has been considered to collect comparative results. Queries are executed
considering four main parameters of any query application (insert, delete, search and
select). The corresponding times taken by various queries are shown graphically in
Fig. 6.

Table 3. Compression results after applying Google Snappy Algorithm

Original Data Compressed Data
149 KB 121 KB
872 KB 536 KB
1.3 MB 807 KB

Fig. 6. Comparison of time taken in Cassandra and MySQL

Results obtained in Fig. 6 shows the benefits achieved in terms of time taken for
executing queries on MySQL database and Cassandra. Time is calculated in MySQL,
using time() function and in Cassandra, using TRACE ON command [25], which ena-
bles user to trace the amount of time an operation needs, in all its steps.

 Moving from Relational Data Storage to Decentralized Structured Storage System 193

6 Conclusions and Future Scope

To account for the scalability, there is need of shifting to an approach different from
relational model which can guarantee high availability with zero fault tolerance, one
such model is Cassandra. Current research is a step towards providing an integrated
solution for migrating data from relational data storage to decentralized structured
storage system. The study implements a framework migrating from PostgreSQL to
Cassandra. To minimize the cost of migration, authors in the current research imple-
ments Google snappy algorithm before migration. Table 2 is presented to give a clear
differentiation of Cassandra from various existing RDBMS. An experimental com-
parative analysis is done to account for the benefits achieved after migrating to Cas-
sandra from PostgreSQL in terms of time taken to execute a query (insert/ delete/
search/ select). Experiments are performed on different sizes of datasets (considering
the scalability of data) ranging from 1 instance to 50,000 instances of standardized
EHRs (based on openEHR standard).

In future, work can be done for providing security to all the data nodes and to pro-
vide Gossip Protocol complete information of all the nodes. A tool can also be built to
change a PostgreSQL data directly to Cassandra, so that we can remove the use of
MySQL database, and can get the desired result. This work is in an initial effort to
move standard based clinical data to Cassandra. The researchers may apply more
NoSQL databases such as MongoDB and Redis to perform a comparative analysis of
all the databases. Current research can benefit other arenas related to Big Data such as
meteorology, genomics, connectomics, complex physics simulations, biological and
environmental research, internet search, finance and business informatics.

References

1. DataStax Corporation, White paper: Why Migrate from MySQl database to Cassandra and
How? International Journal of Computer Trends and Technology 3(2) (2012)

2. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra,
T., Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for structured data. In:
Proceedings of the 7th Conference on USENIX Symposium on Operating Systems Design
and Implementation, vol. 7, pp. 205–218 (2006)

3. Candia, G.D., Hastorun, D., Jampani, M., Kakulapati, G., Pilchin, A., Sivasubramanian, S.,
Vosshall, P., Vogels, W.: Dynamo: amazonOs highly available key-value store. In:
Proceedings of twenty first ACM SIGOPS symposium on Operating systems principles,
pp. 205–220 (2007)

4. Lakhsman, A., Malik., P.: Cassandra - A Decentralized Structured Storage System. In: In-
ternational Conference on Computing, Engineering and Information (2012)

5. Wang, G., Tang, J.: The NoSQL Principles and Basic Application of Cassandra Model. In:
International Conference on Computer Science & Service System, China (2012)

6. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, available, par-
tition-tolerant web services. In: vol. 33(2), pp. 51–59. Massachusetts Institute of Technol-
ogy,ACM SIGACT News Homepage archiv, Cambridge (2002)

7. Theorem, B.: Practical Partition-Based Theorem Proving for Large Knowledge Bases. In:
MacCartney, B., McIlraith, S., Amir, E., Uribe, T.E. (eds.) 18th Int’l Joint Conference on
Artificial Intelligence, IJCAI 2003 (2003)

194 U. Saxena, S. Sachdeva, and S. Batra

8. Bailis, P., Ghodsi, A.: Eventual Consistency, ‘Eventual Consistency Today: Limitations,
Extensions, and Beyond. ACM, UC Berkeley (2013), doi:1542-7730/13/0300

9. Featherston, D.: Cassandra: Principles and Application. In: International Conference on
Computing, Engineering and Information, University of Illinois at Urbana-Champaign

10. CQL, https://cassandra.apache.org/doc/cql/CQL.html
11. PostgreSQL White Paper: How to increase performance, scalability and security within a

Session Management architecture- (2005)
12. Network Defense- White Paper: Current open issues in NoSql database
13. Google Code, https://code.google.com/
14. Phani Krishna Kollapur Gandla, Migration of Relational Data structure to Cassandra

(No SQL) Data structure, http://www.codeproject.com/Articles/279947/
Migration-of-Relational-Data-structure-to-Cassandr

15. What is JSON, http://www.json.org
16. Beale, T., Heard, S.: The openEHR architecture: Architecture overview. In: The openEHR

release 1.0.2, openEHR Foundation (2008)
17. Duftschmid, G., Wrba, T., Rinner, C.: Extraction of standardized archetyped data from

Electronic Health Record Systems based on the Entity-Attribute-Value Model. Interna-
tional Journal of Medical Informatics 79(8), 585–597 (2010)

18. Batra, S., Sachdeva, S., Mehndiratta, P., Parashar, H.J.: Mining standardized semantic in-
teroperable electronic healthcare records. In: Pham, T.D., Ichikawa, K., Oyama-Higa, M.,
Coomans, D., Jiang, X. (eds.) ACBIT 2013. CCIS, vol. 404, pp. 179–193. Springer,
Heidelberg (2014)

19. OpenEHR Community (accessed 10, 2013), http://www.openehr.org/
20. CEN - European Committee for Standardization: Standards (accessed May, 09),

http://www.cen.eu/CEN/Sectors/TechnicalCommitteesWorkshops/
CENTechnicalCommittees/Pages/Standards.aspx?param=6232&
title=CEN/TC+251

21. : ISO 13606-1.: Health informatics: Electronic health record communication. Part 1: RM,
1st edn (2008)

22. ISO 13606-2.: Health informatics: Electronic health record communication. Part 2: Arche-
type interchange specification, vol. 1 (2008)

23. HL7. Health level 7 (First accessed 10/13), http://www.hl7.org
24. Opereffa, http://opereffa.chime.ucl.ac.uk/introduction.jsf
25. Cassandra, Tracing on Feature, http://www.datastax.com/documentation/

cql/3.0/cql/cql_reference/tracing_r.html

	Moving from Relational Data Storage to Decentralized Structured Storage System
	1 Introduction
	2 Motivation and Related Work
	3 Moving from Relational Data Storage to Decentralized Structured Storage System
	3.1 Architecture of Cassandra
	3.2 Moving from Relational Data Storage to Decentralized Structured Storage
	3.3 Compressing Database
	3.4 PostgreSQL to Cassandra

	4 Experiments
	5 Results
	6 Conclusions and Future Scope
	References

