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Abstract. Big Data provides an opportunity to interrogate some of the
deepest scientific mysteries, e.g., how the brain works and develop new
technologies, like driverless cars which, till very recently, were more in
the realm of science fiction than reality. However Big Data as an entity
in its own right creates several computational and statistical challenges
in algorithm, systems and machine learning design that need to be ad-
dressed. In this paper we survey the Big Data landscape and map out the
hurdles that must be overcome and opportunities that can be exploited
in this paradigm shifting phenomenon.

1 Introduction

Big data has emerged as one of the most promising technology paradigm in
the past few years. Availability of large data arises in numerous application
contexts: trillions of words in English and other languages, hundreds of billions
of text documents, a large number of translations of documents in one language
to other languages, billions of images and videos along with textual annotations
and summaries, thousands of hours of speech recordings, trillions of log records
capturing human activity, and the list goes on. During the past decade, careful
processing and analysis of different types of data has had transformative effect.
Many applications that were buried in the pages of science fiction have become
a reality, e.g., driverless cars, language agnostic conversation, automated image
understanding, and most recently deep learning [6] to simulate a human brain.

In the technology context, Big Data has resulted in significant research and
development challenges. From a systems perspective, scalable storage, retrieval,
processing, analysis, and management of data poses the biggest challenge. From
an application perspective, leveraging large amounts of data to develop models
of physical reality becomes a complex problem. The interesting dichotomy is
that the bigness of data in the system context makes some of the known data
processing solutions that were “acceptable” to “not acceptable.” For example,
standard algorithms for carrying out join processing may have to be revisited in
the Big Data context. In contrast, the bigness of data allows many applications to
move from being “not possible” to “possible.” For example real time, automated,
high quality and robust language translation seems entirely feasible. Thus, new
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approaches are warranted to develop scalable technologies for processing and
managing Big Data [7]. In the same vein, designing and developing robust models
for learning from big data remains a significant research challenge.

In this paper, we explore the Big Data problem both from the system perspec-
tive as well as from the application perspective. In the popular press, “bigness”
or the size of data is touted as a desirable property. Our goal is to clearly compre-
hend the underlying complexity that must be overcome with the increasing size
of data and clearly delineate the hurdles and opportunities in this fast developing
space.

The rest of the paper is structured as follows. In Section 2 we use the record
de-duplication application to delve into some of the intrinsic computational,
systems and statistical challenges when operating in a Big Data environment. In
Section 3 we use the classical clustering problem to highlight how simple machine
learning tasks can result in complex computational problems and the resulting
trade-offs in learning in a Big Data environment. We briefly review the dictionary
learning problem in Section 4 and its connects with deep and representational
learning. We conclude in Section 5 with a discussion and directions for future
work.

2 The Big Data Problem

To understand the “Big Data” problem consider a table S(r, c) whose rows (r)
and columns (c) can grow infinitely. Assume the growth rate of the table (in
terms of r and c) outstrips the corresponding increase in unit computational
processing power and storage capacity. We refer to this setting as the Big Data
Operating Paradigm (BDOP).

A task T on table S is an operation which maps S onto another entity E,
where E can be another table or the state of a mathematical model specified
as part of the task T. The Big Data problem is to understand the feasibility
of carrying out T both in terms of computational tractability and statistical
effectiveness in BDOP as S grows.
Example: Let S(r, c) be a merged table of customer records from two databases.
Let T be the task of record de-duplication, i.e., identify records in S which belong
to the same customer. The computational challenge arises because all pairs of
records (O(|r|2)) in S have to be compared. The statistical hardness comes into
fore because of the high dimensionality of the problem as the number of columns
(|c|) increases.

2.1 Distributed Computational Complexity

For concreteness consider the record de-duplication task [3] which can be speci-
fied as

T : S × S →d {0, 1}
Here, d is a “dis-similarity” function between two records which is either specified
by a domain expert or learnt separately from the data. As noted earlier, the
computational complexity of T is O(|r|2).
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In a BDOP setting it becomes necessary that S is stored in a distributed
environment and the task T carried out in parallel. However, if we assume that
in a given time window, data grows by an order of magnitude but unit processing
speed and storage capacity are constant, then for the O(|r|2) de-duplication task
T, the number of computation nodes required to maintain the same response time
grows at least quadratically! This might appear as a paradox as the resources
required to maintain the same quality of service is an order of magnitude greater
than the corresponding increase in data size. However, in practical real data
settings, even if |S × S| grows quadratically, the computational complexity of T
is governed by |S �� S| which grows at the rate O(α.|r|), where α is typically a
small fraction. Thus the task T becomes feasible as the corresponding bi-partite
graph is sparse. However, while α maybe small, the distribution of the degree of
the bi-partite graph is highly non-uniform (often Zipfian). Thus the processing
time in a distributed environment is lower bounded by the size of the largest
partition which can be large. Designing the appropriate trade-off between data
partitioning and task parallelism in a cloud environment becomes a major design
and research challenge.

Fig. 1. From a computational and systems perspective, a Big Data task reduces to pro-
cessing a table as a bi-partite graph in a distributed setting, where the edge similarity
is derived as a function of the columns of a table. In a BDOP setting, computational
is feasible only because the number of edges grow at constant rate as the number of
rows increase, i.e., the bi-partitite graph is sparse.

2.2 Statistical Effectiveness

From a statistical perspective, we focus on the columms of S. For the de-
duplication task the objective is to infer a function f : {C} → 2{C} on the
columns such that for any pair of records r1, r2

πf(C)(r1) = πf(C)(r2) → r1 ≡ r2

We can interpret f(C) as a subset of columms of S. Now, given the statistical na-
ture of data, every subset of columns has a small probability p of being selected
by the inference function f . However as |c| increases then the probability that an
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Fig. 2. Observational data tends to be highly redundant, i.e., there is a large degree
of correlation (possibly non-linear) between the different columns of table S. This is
often referred to as “data lives in a low-dimensional manifold.”

arbitrary subset of columns will be selected by f is given 1− (1− p)2
|c| → 1.

Thus from a statistical perspective, Big Data settings can lead to situations
where the danger of inferring spurious relationships becomes highly likely. How-
ever, in practice, observational data (i.e., data collected serendipitously and
not as part of an experimental design), tends to be highly redundant. High
redundancy implies that the number of degrees of freedom which govern data
generation is small. This is often referred to as “observational data lives in a
low-dimensional manifold.” The manifold structure of the data explains the
widespread use of dimensionality reduction techniques like PCA and NMF in
machine learning and data mining.

3 Machine Learning

Machine Learning tasks are often formulated as optimization problems. Even the
simplest of tasks can result in hard and intractable optimization formulations.
In BDOP, the constraint on the solution is often determined by a “time budget,”
i.e., obtain the best possible approximate solution of the optimization problem
within time T . We highlight the trade-off between large data and the quality of
the optimization solution using two examples: clustering and dictionary learning.
The latter in intimately tied to “deep learning.”
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3.1 Clustering

Consider a set of one dimensional data points: D = {x1, . . . , xn}. For example,
D could record the height of a group of n people. How do we summarize D ? One
obvious answer is the mean (average) of D, but lets cast the summarization task
as an optimization problem. Thus, the objective is to find a y which minimizes
the following objective function:

min
y ∈ R

n∑

i=1

(xi − y)2

If we denote F (y) as
∑n

i=1(xi − y)2, then a necessary condition to obtain y is to
set dF

dy = 0 and solve for y to obtain:

y∗ =
1

n

n∑

i=1

xi

Thus, as expected, the “optimal” summarization of D is to use average or mean
of the data set. Now suppose we would like to summarizeD with two data points,
y1 and y2. The motivation for this task is to possibly obtain a representative male
and female height in the group. Note, the data set D is not labeled, i.e.,we are
not given which data point records a male or female height. In this situation,
what might be an appropriate objective function? The first instinct is perhaps
to set up the optimization problem where the aim is to find y1 and y2 which
minimizes

G(y1, y2) =
n∑

i=1

2∑

j=1

(xi − yj)
2

However, an examination ofG reveals that it may not be an appropriate objective
function. For example, we do not want to take the difference between every pair
of xi and yj but only between xi and its most representative yj, which of course
is not known. Thus a more suitable objective is to minimize:

H(y1, y2) =
n∑

i=1

min
j∈{1,2}

(xi − yj)
2 (1)

The appearance of the min inside the summation, makes the objective non-
convex and is a typical optimization pattern in many machine learning problem
formulations. In Figure 3, the objective functions G and H are plotted which
clearly show that H (the relevant objective function) is non-convex.

3.2 Clustering in BDOP

Having specified a clustering objective function in Equation 1, the question re-
mains how to solve the resulting optimization problem and understand the im-
pact of Big Data on the solution. An important observation is that the clustering
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Fig. 3. The figure on the left is the shape of the objective function G(y1, y2). G is
convex but not appropriate for the clustering task. The figure on the right is the shape
of H(y1, y2) which is more suitable for clustering but non-convex.

problem is inherently imprecise. Even in the case where each data point repre-
sents a person’s height and the goal is to obtain separate clusters for males and
females, there are bound to be misclassified data points, i.e., males will be as-
signed to the female cluster and vice-versa. The availability of large amounts of
data will not mitigate the imprecision and thus a case can be made to design
an algorithm where the ability to trade-off between exactness of the solution
and the time to obtain the solution is transparent [2]. For example, instead of
optimizing H(y1, y2), perhaps a more reasonable objective is to optimize

Ex[H(y1, y2, x)] (2)

where the expecation is over different samples of x from the same underlying
(but unknown) distribution P (x). Bottou et. al. [2] have precisely investigated
the decomposition of Equation 2 in a general case which we customize for the
case of clustering.

3.3 Error Decomposition for Big Data Learning

Notice that the objective function H(y1, y2, x) is highly specialized as we have
used (xi− yj)

2 term inside the summation. In a high-dimensional setting, this is
equivalent to enforcing the resulting clusters to be spherical. Thus if the original
clusters were elliptical then the choice of the objective function already results
in an error which is independent of the size of the data ! This is known as the
approximation error. Now because our objective is to minimize Ex[H(y1, y2, x)]
but we only have access to finite number of samples from P (x), the solution of
any algorithm will result in value Hn such that Hn ≤ Ex[H(y1, y2, x)] + ρ. The
discrepancy (bounded by ρ) is known as the estimation error. In a Big Data
environment, where a given time budget may force us to stop the optimization
task before all the samples are processed will lead to an objective value of Ĥn,
which is an approximation of Hn. This is known as the computation error.
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3.4 Stochastic Gradient Descent

A simple but extremely versatile optimization algorithm where the trade-off
between the estimation and computation error can be controlled is the Stochastic
Gradient Descent Algorithm (SGDA). Recall that in order to optimize

min
y

f(x, y)

the gradient descent algorithm iterates on the following step till an approximate
fixed point is obtained

yt+1 = yt − γ∇f(yt, x).

Now since in many machine learning formulations, f(x, y) is of the form f(x, y) =∑n
i g(xi, y), the cost of the gradient step is O(n). However, in stochastic gra-

dient a random sample xr from the training set is selected in each iteration to
approximate the gradient

∇̂f(y) ≈ ∇g(xr, y)

The above approximation reduces the computation cost of the gradient com-
putation from O(n) to O(1) and it has been shown that as n → ∞, yt+1 =
yt − γ∇g(xr, y) approaches the optimal solution of miny Ex[f(x, y)].

The SGDA algorithm can easily be adapted to solve the clustering problem
with objective function H(y1, y2) as given in Equation 1. Here are the steps [1]:

1. Initialize y1 and y2 and set n1, n2 = 0.
2. Randomly permute D to obtain {xi1 , . . . xin}
3. For j = 1 : n

(a) Choose yk closest to xij :

k∗ = arg min k(xij − yk)
2

(b) Increment the count associated with yk∗

nk∗ ← nk∗ + 1

(c) Update yk∗ (the gradient descent step):

yk∗ ← yk∗ +
1

nk∗
(xij − yk∗)

4. End For

Notice that SGDA is especially suitable in a Big Data setting compared to the
traditional batch k-means algorithm as it is online and can start emitting results
incrementally.
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4 Dictionary Learning

Some of the most promising applications of Big Data include language transla-
tion, speech recognition, image search and cross-modality querying, i.e., given
an image automatically generate a textual description of the image and given
a piece of text find the most appropriate image. Deep learning (aka neural net-
works) have been re-emerged as the algorithm of choice for these applications.
However, the fundamental reason for success in these applications is because of
the ability for algorithms to learn the appropriate representation in the presence
of Big Data. The learning of an appropriate representation is often called the
Dictionary Learning or sparse coding problem. We briefly describe the dictionary
learning problem and note its similarity with the clustering problem described
above. While we will not provide the algorithm, it should become clear that
SGDA can be used to solve the dictionary learning problem.

We again start with a data set D = {x1,x2, . . . ,xn}, where each xi ∈ R
m.

For example the set D may be a collection of images and xi is a vector of pixel
values. In signal and image processing, data is often represented as a linear
combination of pre-defined basis functions using Fourier or Wavelet transforms.
In dictionary learning (also called sparse coding), the objective is to find a set
of data-dependent basis functions E ∈ R

m×k, and a set of k−dimensional sparse
vectors {αi}ni=1,such that

xi ≈ Eαi ∀i = 1, . . . , n

The columns of E are the basis function and α’s are the weights. Note that the
columns of E are not restricted to be orthogonal and this provides a degree of
flexibility that is not available in the case of Fourier or Wavelet transform or an
SVD decomposition.

In order to infer both E and α, we can setup an objective function which has
to be minimized

gn(E,x) =

n∑

i=1

min
αi

‖xi − Eαi‖22 + λ‖αi‖1 (3)

Notice the similarity between the clustering objective in Equation 1 and the
dictionary learning objective in Equation 3. Both objectives have a min inside the
sum function and in the case of dictionary learning there is a coupling (product)
between the two unknowns (E and α) which makes the objective non-convex.
More details about dictionary and represenational learning can be found in [9,5].

4.1 Distributed Stochastic Gradient Descent

Many machine learning problems are formulated as optimization problems with
a very specific form. For example a typical optimization pattern will be of the
form

n∑

i=1

	(xi,w) +Ω(w) (4)
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Here, 	(x,w) is the loss function which accounts for the mismatch between the
data and the model. The regularization term Ω(w) is often used to prevent
overfitting of the model to the data. An important observation is that the loss
function is applied pointwise to each data point and this can be used to design
efficient distributed implementations.

A common distributed computation design pattern for machine learning is the
parameter server pattern which consists of the following components: (i) data
is partitioned (horizontally) and distributed across computational nodes, (ii) a
parameter server node maintains the global state of the variable w, (iii) each
computation node i applies (stochastic) gradient descent to its data partition
and computes a gradient ∇i(w), (iv) the parameter server periodically polls the
compute nodes and pulls ∇i from each node. It then carries out a global ‘sync’
operation and pushes the updated w vector to the nodes [4,8].

The nature of machine learning problems tasks i that they can afford to tol-
erate a level of imprecision which is not available in other application domains
(e.g., airplane engine simulation). Together with specific optimization pattern
that emerges in many machine learning provides an opportunity for creating
“near embarrassingly parallel” implementations.

5 Discussion and Conclusion

The availability of Big Data across many application domains has led to the
promise of designing new applications which hitherto were considered out of
reach. For example, Big Data has been instrumental in designing algorithms for
real time language translation, high quality speech recognition and image and
video search. Large amount of FMRI and MEG brain data collected while people
are carrying out routine tasks holds the promise of understanding the working
of the brains.

To fully utilize the promise of Big Data several hurdles in the computational,
systems and algorithmic aspects of data processing have to be overcome. In the
Big Data Operating Paradigm (BDOP) the growth rate of data is higher than the
corresponding increase in computational processing speed and storage capacity.
This necessarily leads to an environment where data has to be processed in
a distributed manner. Since many algorithm for data processing and machine
learning are super-linear, increase in data size results in a much higher increase
in infrastructure resources - if quality of service constraints have to be met.
From a computational perspective many data analytic tasks can be abstracted
as the processing of a bipartite graph where the nodes are rows of a table and
the edges are determined by a similarity function based on the columns. If the
edges of the graph were uniformly distributed then processing in BDOP would be
impossible. However bipartite graphs of real data tends to be highly sparse and
skewed. Sparsity provides an opportunity to process data efficiently in BDOP
but skewness results in a lower bound on the computation. The interplay between
sparsity and skewness is a major systems challenge that is currently addressed
on a case by case basis.
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From a statistical perspective, availability of Big Data does not necessarily
result in better quality or stable results. In fact the danger of deriving spurious
relationships are greater in a high-dimensional than a low-dimensional setting.
For real data it has been observed that even though the ambient dimension of the
data may be high, its intrinsic dimension is low. This is often referred to as “data
living in a low dimensional manifold.” The low intrinsic dimensionality explains
the widespread use of dimensionality reduction techniques like SVD and NMF.
Most dimensionality reduction techniques have high computational complexity
(often O(n3)). Sometimes the use of random projection in conjunction with
dimensionality reduction can lead to improved efficiency without substantial loss
in accuracy as machine learning task output can afford a degree of imprecision
which is greater than in many other domains (like aircraft engine design or
exactness of OLTP query result).

Machine Learning tasks are often cast as optimization problems. Even the
simplest of tasks, like data summarization, can result in complex optimization
formulations. The intrinsic coupling between the approximation, estimation and
computational error while solving the optimization task has several implications
including the ability to use simple first order algorithms like stochastic gradient
descent which trade-off between estimation and computational error in a trans-
parent manner. For example, the typical cost of solving the k-means algorithm
on a data set of size n is O(nI) where I is the number of iterations. In BDOP
the standard k-means algorithms is near impossible to use as it requires multiple
passes over the data. However, SGDA can start producing reasonably accurate
clusters within one pass and time budget can be used to settle on the quality
of the result. Furthermore the form of a typical optimization objective function
and tolerance of a certain amount of imprecision makes machine learning tasks
amenable to highly efficient distributed and parallel implementations.

In the last five years there has been a resurgence of interest in deep learn-
ing. While deep learning is synonymous with neural networks, the key insight is
to infer a representation of raw data specific for the task at hand. This is often
referred to as dictionary learning or sparse coding. The dictionary learning prob-
lem can be cast as optimization problem where the objective has a similar form
like the clustering problem. SGDA algorithms have been successfully employed
for dictionary learning which attest to their versatility.

A grand challenge in the Big Data landscape continues to be a lack of a system
which has the robustness and scalability of a traditional relational database
management system while offering the expressive power to model a large and
customizable class of machine learning problems.
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