
Chapter I.2

Reconfigurable and Software-Defined Networks
of Connectors and Components�

Roberto Bruni1, Ugo Montanari1, and Matteo Sammartino1

Department of Computer Science, University of Pisa, Italy

Abstract. The diffusion of adaptive systems motivate the study of mod-
els of software entities whose interaction capabilities can evolve dynami-
cally. In this paper we overview the contributions in the ASCENS project
in the area of software defined networks and of reconfigurable connectors.
In particular we highlight: (i) the definition of the Network-conscious pi-
calculus and its use in the modeling and verification of the PASTRY
protocol, and (ii) the mutual correspondence between different frame-
works for defining networks of connectors together with two suitable
enhancements for addressing dynamically changing systems.

Keywords: Network-conscious pi-calculus, PASTRY, overlay networks, coal-
gebraic semantics, HD-automata, BIP, Petri nets with boundaries, algebras of
connectors, tile model, reconfigurable connectors, dynamic connectors

1 Introduction

One of the research strands of the ASCENS project is concerned with the study of
resource-aware infrastructures and networking middleware modeled in terms of
advanced components, glues and connectors which can support different levels of
guarantees, reliability, dynamics and integration to heterogeneous components.
The study includes the development of foundational models and architectures for
network-aware systems with a high degree of dynamism in the communication
topology between components. Formal models must allow a separation between
the detailed behavior of components and their overall coordination. This pa-
per surveys two approaches to coordination whose focus is on Software-Defined
networks and on component-based design, respectively:

– For the former, we have proposed a network-aware extension of classical π-
calculus [27], called NCPi, that allows for expressing the creation and the
activation of connections, and whose semantics deals with the possible rout-
ing paths. We show that NCPi looks more adequate than traditional pro-
cess calculi to describe Software-Defined and overlay networks, their routing

� This research was supported by the European project IP 257414 (ASCENS) and by
the Italian MIUR Project CINA (PRIN 2010/11).

M. Wirsing et al. (eds.): Collective Autonomic Systems, LNCS 8998, pp. 73–106, 2015.
c© Springer International Publishing Switzerland 2015

74 R. Bruni et al.

mechanisms, and to verify their properties. In particular, we show how NCPi
can support the formalization and verification of the PASTRY distributed
hash table system of cloud systems.

– For the latter, we have related some of the most notable theories for ex-
pressing network of connectors between components, by defining mutual em-
beddings that reduce the fragmentation in the body of knowledge and the
different notions and terminologies involving connectors, and then we have
proposed some enhancements to address reconfigurability and dynamism.

Structure of the paper. Section 2 introduces Software-Defined networks and the
PASTRY protocol. Section 3 presents the syntax and semantics of NCPi, includ-
ing an extension with features reflecting real-life routing protocols. Section 4
shows the formalization of the Pastry overlay networks, then used to prove that
each message eventually gets to its destination.

Section 5 explains the rationale for software architectures based on (networks
of) connectors and components, and surveys some approaches from the litera-
ture. Section 6 presents the connection between algebras of connectors and nets
with boundaries, a special flavor of Petri nets with interfaces. Section 7 recalls the
BIP component framework and relates it with the models in Section 6. Section 8
introduces two enhanced models that allow a higher degree of dynamism.

2 Software-Defined and Overlay Networks

The trend in networking is going towards more “open” architectures, where
the infrastructure can be manipulated in software. This trend started in the
nineties, when OpenSig [15] and Active Networks [39] were presented, but nei-
ther gained wide acceptance due to security and performance problems. More
recently, OpenFlow [26,32] or, more broadly, Software-Defined Networking has
become the leading approach, supported by Google, Facebook, Microsoft and
others. Software-Defined networks (SDNs) allow network administrators to con-
trol traffic via software installed on a centralized controller. This machine is
connected to all switches in the network, and instructs them to install or unin-
stall forwarding rules and report traffic statistics.

Another important example of programmable infrastructures are peer-to-peer
systems. They provide the networking substrate for the execution of distributed
applications, such as Distributed Hash Tables (DHTs). In peer-to-peer systems,
peers interact over an application-level overlay network, built on top of the phys-
ical one. An overlay network is highly dynamic, as peers can join and leave it at
any time, and this causes continuous reconfigurations of its topology.

In particular, we consider PASTRY [35], employed in the Science Cloud case-
study (see Chapter IV.3 [25]). PASTRY is a peer-to-peer architecture where peers
and keys have identifiers, regarded as arranged in clockwise order on a ring. The
main service provided by PASTRY is routing by key: given a key k, PASTRY
delivers the message to the peer which is responsible for k, i.e. the one whose
identifier is numerically closest to k than all other peers. Routing is implemented

Software-Defined Networks of Connectors and Components 75

.
1000

1010

1

1111

1011
1000

1
10

0
-

101

Routing Table

Leaf Set

1011

1100

1111

1000 1011

.

1

1100
111

0
-

10001
11

Routing Table

Leaf Set 1100

Fig. 1. PASTRY example system

as follows. Each peer with identifier id maintains two data structures: a routing
table and a leaf-set. The routing table contains peers that share a prefix with id.
The leaf-set contains peers (leaves) with numerically closest smaller and larger
identifiers, relative to id. Whenever id receives a message with target key k, it
checks whether k belongs to the leaf-set range. If so, the message is forwarded
to the leaf numerically closest to k (if it is not id itself). Otherwise, the routing
table is used: the next hop is the peer sharing the longest prefix with k.

Example 1. An example system is in Figure 1, where identifiers are binary
strings. Consider the peer with identifier 1010 and suppose 1100 is responsi-
ble for the key 1101. A message from 1010 with target key 1101 is routed as
follows. Since 1101 does not belong to the interval [1000, 1011] spanned by the
leaf-set of 1010, the routing table is used: the longest prefix shared by 1010 and
1101 is 1, so the message is forwarded to 1111, the peer in the cell (1, 1). Once
1111 receives the message, it discovers that 1101 is in its leaf-set range (the
leaf-set has 1111 itself as upper bound, as no peer has larger identifier), so it
forwards the message to the leaf closest to 1101, that is 1100.

3 Network Conscious π-Calculus (NCPi)

Traditional process calculi, such as π-calculus [27], seem inadequate to describe
Software-Defined and overlay networks, their routing mechanisms, and to ver-
ify their properties. In fact, they abstract away from network details. Complex
infrastructural elements, such as network links, could be described in terms of
processes, and routing protocols in terms of consecutive step-by-step forward-
ings. However, end-to-end routing behavior could not be observed in a single
transition, e.g. the path of a DHT lookup request through a peer-to-peer over-
lay. This information can be useful for the analysis of routing algorithms, e.g.,
to determine whether they are always able to construct a valid/optimal path for
given source and destination.

In order to model network architectures in a more explicit way, in [30,36,31]
we have introduced the Network Conscious π-calculus (NCPi), an extension of

76 R. Bruni et al.

Cloud
def= cl(x).cl(y).(lxy)(cllxy.Cloud)

V1
def= aa.ab.a(lab).(ac.V1

′ | L(lab))

V2
def= b(x).V2′

L(lxy) def= lxy.L(lxy)

S
def= V1 | Cloud | V2 | L(la cl) | L(l′cl a)

Fig. 2. Cloud example system

the π-calculus with a natural notion of network: nodes and links are regarded
as computational resources that can be created, passed and used to transmit, so
they are represented as names, following the π-calculus methodology.

3.1 Illustrative Example

To have a first look at the calculus, consider the system in Figure 2. It represents
the network level of a cloud system, made of (virtual) machines and (virtual)
links between them. Site names a, b, cl represent network interfaces; link names
la cl

and l′cl a represent directed links from a to cl and viceversa, respectively.
We have a cloud manager Cloud, capable of creating new links between virtual
machines and granting access to them, and two virtual machines V1 and V2. We
model a situation where the machine V1 wants to exchange data with V2, but no
links exists between a and b, so V1 will ask Cloud to create such link.

The formal definition says that Cloud can receive two sites x and y at cl,
create a new link between them and emit it at cl. The process V1 can send a and
b from a, wait for a link at a and then become the parallel composition of two
components: the first one can send c from a; the second one invokes the process
L to activate the link lab. This activation is expressed as the link prefix lxy.− in
the definition of L: when consumed, it spawns a transportation service over lxy,
which can be used to forward a datum from x to y. The link prefix expresses a
single activation of the link, as input/output prefixes in the π-calculus express
a single usage of their subject channel. The recursive definition of L is needed
to model a persistent connection. The process V2 simply waits for a datum at b.
Finally, the whole system S is the parallel composition of V1, V2, Cloud and two
processes modeling a bidirectional persistent connection between V1 and Cloud.

As in the π-calculus, we have observations representing inputs, output and
complete communications. However, since NCPi allows for remote communica-
tions, they all include the (possibly empty) sequence of links that are traversed
in the communication. For instance, the process V1 can emit a at a as follows

V1
•;aa−−−→ ab.a(lab).(ac.V1

′ | L(lab))

The label •; aa is a zero-length (i.e. with empty sequence of links) output path,
which can be seen as the π-calculus action aa. The symbol • is syntactic sugar,

Software-Defined Networks of Connectors and Components 77

indicating where the path starts. In general, there may be a list of links W
between • and aa: •; W ; aa means that a went through W before being emitted.
The syntax also include bound output paths of the form •; W ; a(b), representing
the publication of a previously bound name b (its extrusion).

Symmetrically, Cloud can receive a at cl

Cloud
cla;•−−−→ cl(y)(lay)cllay.Cloud

where cla; • is an input path, analogous to the early π-calculus input action cla.
Input paths always have length zero, as we only allow local receptions (this
restriction will be dropped for the concurrent version of NCPi).

Next we introduce service paths, which have no counterpart in the π-calculus.
A service path has the form a; W ; b, where W is a sequence of links. It represents
a transportation service that can be used to route a datum from a to b. For
instance a; la cl

; cl is a service path from a to cl over la cl
and we have

L(la cl
)

a;la cl
;cl−−−−−→ L(la cl

).

Finally, we have complete communication, denoted by a complete path •; W ; •.
Unlike the π-calculus τ -action, this observation is not silent, as the path W
of the transmitted datum is observed; the datum itself remains unobservable.
Another difference is that a complete path is usually produced by more than one
synchronization, each one concatenating a compatible pair of paths. For instance,
in order for V1 to communicate a to Cloud, there must be a first synchronization
between V1 and L(lab), causing •; aa and a; la cl

; cl to be concatenated

V1 | L(la cl
)

•;la cl
;cla−−−−−−→ . . .

Here the continuation is the parallel composition of those shown above, and
•; la cl

; cla is an output path where a is emitted at cl after traversing la cl
. A

complete path is produced by another, final synchronization:

V1 | L(la cl
) | Cloud

•;la cl
;•

−−−−−→ . . .

meaning that a complete communication over lacl
has happened.

Now we overview the steps the entire system S can perform:

1. V1 communicates to Cloud the endpoints a and b of the link to be
created: it is observed as two consecutive occurrences of •; lacl

; •. The state
of the system after these interactions is

a(lxy).(L(lxy) | ac.V1
′) | (lab)(cllab.Cloud) | V2 | L(la cl

) | L(l′cl a) .

2. cllab.Cloud communicates lab to a(lxy).(L(lxy) | ac.V1′): we first rearrange
the processes using structural congruence

(lab)(a(lxy).(L(lxy) | ac.V1
′) | cllab.Cloud | L(l′cl a)) | V2 | L(la cl

) .

78 R. Bruni et al.

Now the processes within the scope of lab can interact, and the resulting
observation is •; l′cl a; •, with continuation

(lab)(L(lab) | ac.V1
′ | Cloud | V2) | L(la cl

) | L(l′cl a) .

3. ac.V1′ communicates c to V2: in this case, despite lab is used for the trans-
mission, only •; • can be observed, because such link is restricted. This is
analogous to the π-calculus τ action. The continuation is

(lab)(L(lab) | V1′ | Cloud | V2′[c/x]) | L(la cl
) | L(l′cl a) .

3.2 Syntax and Semantics

We assume an enumerable set of site names S (or just sites) and an enumerable
set of link names L (or just links), equipped with two functions s, t : L → S,
telling source and target of each link. We denote by lab a link l such that s(l) = a
and t(l) = b. We write Lab for the set of links of the form lab and La for the
union of all Lab and Lba, for all b.

As shown in the previous section, the syntax of NCPi processes is an extension
of the π-calculus one: prefixes can also express input/output of links, and we have
a link prefix lab.p, meaning that this process can offer to the environment the
service of transporting a datum from a to b through l and then continue as p.

The free names fn(p) describe the network available to p, in the form of a
multigraph made of sites and links. They are defined as expected. For links,
if lab is not the argument of a top-level binder, then fn(p) includes {a, b, lab};
otherwise, for instance in a(lbc).p, only lbc is bound, whereas its endpoints are
free, namely fn(a(lbc).p) := {a, b, c} ∪ fn(p) � {lbc}. The interesting cases are:

fn(b(a).p) := {b} ∪ (fn(p) � ({a} ∪ La)) fn((a)p) := fn(p) � ({a} ∪ La)

where a free link in p having a as endpoint is considered bound in (a)p and
b(a).p. This intuitively means that a global link cannot have private endpoints.
Given a name r, we shall write r # p to indicate that r is fresh w.r.t. p, i.e.
r /∈ fn(p); N # p, with N a set of names, has the expected meaning.

Now we define renamings and their extensions to processes. Since names
describe graphs, we require renaming to respect their structure, i.e. to be graph
homomorphisms. In order to define the extension of renamings to processes, we
need a notion of α-conversion that establishes how to avoid captures. For reasons
that will become clear later, α-conversion can only be defined for processes where
bound links are bound explicitly, and not as a side-effect of binding a site. We call
such processes well-formed. For instance, a(b).lbc.p is not well-formed because lbc

is implicitly bound by a(b).

Definition 1 (Well-formed process). A NCPi process p is well-formed if for
every subterm q: (i) q = (a)p′ implies fn(q) = fn(p′) � {a}; (ii) q = b(a).p′

implies fn(q) = {b} ∪ fn(p′) � {a};

Software-Defined Networks of Connectors and Components 79

Table 1. Free names, bound names, objects and interaction sites of a path α

path α fn bn obj is

a; W ; b n(α) ∅ ∅ {a, b}
•; W ; • n(α) ∅ ∅ ∅

•; W ; ar n(α) ∅ n(r) {a}
•; W ; a(r) n(α) � {r} {r} n(r) � {r} {a}
ar; • n(α) ∅ n(r) {a}

Structural congruence axioms for well-formed processes contains the usual com-
mutative monoid laws for | and +, scope extension and unfolding for process
definitions. The interesting case is α-conversion:

(a)p ≡ (a′)p[a′
/a] b(a).p ≡ b(a′).p[a′

/a] a′ # (a)p
(lab)p ≡ (l′ab)p[l′ab/lab] c(lab).p ≡ c(l′ab).p[l′ab/lab] l′ab # (lab)p

When α-converting (a)p, [a′
/a] is never applied to a link lab, since such link cannot

be free in p by well-formedness. Indeed, [a′
/a] does not uniquely characterize a

renaming if lab is free; if it is bound, i.e. if (lab)p′ is a subprocess of p, then
we simply have inductively ((lab)p′)[a

′
/a] ≡ (l′a′b)p

′[l′a′b/lab][a
′
/a], for any l′a′b fresh

w.r.t. p. The axioms’ side conditions guarantee preservation of well-formedness.
We now introduce the operational semantics. As mentioned, observations

represent routing paths. We denote them by α. Table 1 introduces some notation
for paths: the interaction sites of α, written is(α), are those sites where the
interaction with another process may happen, similarly to subjects of the π-
calculus. We also have free names fn(), bound names bn() and objects obj() of
α. Given a list of links W , we write W/r for W after removing each occurrence
of r ∈ L, and α/r for α with /r applied to its list of links.

Definition 2 (NCPi transition system). The NCPi transition system is the
smallest transition system generated from the rules in Figure 3. We assume that
structurally congruent processes have the same transitions.

We briefly explain the rules. (out) and (in) infer a zero-length path representing,
respectively, the beginning and the end of a transmission. As in the early π-
calculus, a renaming must be applied to the continuation in the free input case;
if the input object is a site a, then we have a substitution between sites, which
can be turned into a proper renaming by well-formedness. (link) infers a service
path made of one link. (int) infers an internal action, represented as a complete
path where everything is unobservable. (res) computes the paths of a process
with an additional restriction (r) from those of the unrestricted process, provided
that r is not already bound and is not an object or an interaction site. This side
condition reflects that of the corresponding π-calculus rule. (open) treats the
case, excluded by (res), when r is the object of a free output path: such path is
turned into a bound output path, again rendering r unobservable when needed.
(sum) and (par) are as expected. (route), (comp) and (com) concatenate

80 R. Bruni et al.

(out) ar.p
•;ar−−−→ p (open)

p
•;W ;ar−−−−→ q

(r)p
•;W/r;a(r)−−−−−−−→ q

r �=a

(in) a(r).p
ar′;•−−−→ p[r′

/r] (par)

p1
α−→ q1

p1 | p2
α−→ q1 | p2

bn(α) # p2

(link) lab.p
a;lab;b−−−−→ p (route)

p1
•;W ;ax−−−−−→ q1 p2

a;W ′;b−−−−→ q2

p1 | p2
•;W ;W ′;bx−−−−−−−→ q1 | q2

bn(x)# p2

(int) τ.p
•;•−−→ p (comp)

p1
a;W ;b−−−−→ q1 p2

b;W ′;c−−−−→ q2

p1 | p2
a;W ;W ′;c−−−−−−→ q1 | q2

(sum)

p
α−→ p′

p + q
α−→ p′ (com)

p1
•;W ;ar−−−−→ q1 p2

ar;•−−−→ q2

p1 | p2
•;W ;•−−−−→ q1 | q2

(res)

p
α−→ q

(r)p
α/r−−→ (r)q

r/∈
bn(α)
∪ obj(α)
∪ is(α)

Fig. 3. NCPi SOS rules

paths that meet at an interaction site: (route) extends an output path, provided
that the transported name, whenever bound, is fresh w.r.t. the process that offers
the transportation service; (comp) composes two service paths; (com) completes
a communication. It is easy to see that the π-calculus is included in NCPi: we
have just to forbid links in processes. The notion of behavioral equivalence is the
following one, called network conscious bisimulation.

Definition 3 (Network conscious bisimulation). A binary, symmetric and
reflexive relation R is a network conscious bisimulation if (p, q) ∈ R and p

α−→ p′,
with bn(α)# q, implies that there is q′ such that q

α−→ q′ and (p′, q′) ∈ R. The
bisimilarity is the largest such relation and is denoted by ∼NC .

We have the following closure result for ∼NC .

Theorem 1. ∼NC is closed under all syntactic operators except input prefix and
parallel composition.

Closure under input prefix not holding is expected. Surprisingly, also the parallel
composition is problematic. This is because the semantics is transactional, in the
sense that paths can involve more than one synchronization. As in the π-calculus,
closure under input prefix is achieved by taking the greatest bisimulation closed
under all renamings. Closure under parallel composition is discussed in [31].

3.3 Concurrent NCPi(κNCPi)

We now present κNCPi, an extension of NCPi with features reflecting real-life
routing protocols. The most important one is that the semantics allows observing

Software-Defined Networks of Connectors and Components 81

simultaneous actions taking place in the network, in the form of multisets of
paths; this follows the intuition that processes should act in a truly distributed
manner, without a central coordinator that imposes an interleaving order to their
actions. The technical consequence is that bisimilarity becomes a congruence.
Examples of real-life protocols exploiting such features can be found in [31],
where the Border Gateway Protocol [41] is modeled, and in section 4.

The syntax of κNCPi processes is the same as NCPi, with the following excep-
tions. Arguments of binders, which we denote by s, can be sites or expressions
l(ab), meaning that lab is bound together with a and b. The intuitive meaning of
c(l(ab)).p is an atomic, polyadic version of c(a).c(b).c(lab).p. The output primitive
also specifies the destination site: abr.p can emit the datum r, having destination
b, at a and continue as p. The definition of fn(p) for the new constructs is

fn(abr.p) := {a, b}∪n(r)∪ fn(p) fn(a(l(bc)).p) := {a}∪ fn(p)� ({b, c}∪Lb ∪Lc)

Well-formed κNCPi processes have to satisfy the requirements of Definition 1
plus the following one: q = c(l(ab)).p′ implies fn(q) = {c} ∪ fn(p′) � {a, b, lab}.
Structural congruence is minimal: we only have α-conversion and unfolding;
other axioms are moved to observations or implemented through the rules.

Observations for the concurrent semantics, denoted by Λ, are multisets of
paths, called concurrent paths. For the purpose of describing a more realistic
network behavior, we equip paths α with some additional information:

– both input and output paths include a list of links; in the case of input paths,
they are the links that can be traversed in order to reach the destination;

– there is a bound input path ab(s); W ; •, representing the reception of a bound
name; this is needed because we introduce an explicit scope closure rule;

– paths always specify a destination site, namely b in •; W ; abr, abr; W ; • and
ab(s); W ; •.

We remove extrusion paths: extrusions will be represented by concurrent paths,
because we will allow many paths to extrude the same name simultaneously.
Concurrent paths can be of the following forms:

– the empty concurrent path 1 indicates that no activity is performed;
– the singleton concurrent path α is a concurrent path made of a single path;
– the union Λ1 | Λ2 means that the paths in Λ1 and Λ2 are being traversed at

the same time;
– the extrusion restriction (r)Λ indicates that r is being extruded through one

or more paths in Λ.

We impose some axioms on well-formed concurrent paths, telling that they are
indeed multisets and that extrusion restrictions can be swapped and grouped at
the outermost level.

We now introduce the transition system. Most of the rules are the expected
concurrent extensions of Figure 3. The main difference is the synchronization
mechanism. This is made of two steps:

82 R. Bruni et al.

(i) paths of parallel processes are collected through the following rule

(par)

p1
Λ1=⇒ q1 p2

Λ2=⇒ q2

p1 | p2
Λ1 |Λ2====⇒ q1 | q2

where bound names in each concurrent path are require to be fresh w.r.t.
the other process and its concurrent path;

(ii) other rules pick two compatible paths from the multiset produced by (i)
and replace them with their concatenation, without modifying the source
process; in other words, these rules synchronize two subprocesses of the
source process. For instance, an output path and a service path with a
common interaction site can be joined using the following rule, resulting in
an extended output path

(srv-out)

p
(R) (•;W ;abr | a;W ′;c |Θ)
================⇒ q

p
(R) (•;W ;W ′;cbr |Θ)
=============⇒ q

where (R) is a sequence of restrictions and Θ is a concurrent path without
extrusion restrictions (they have all been brought at the top level using
scope extension).

The behavioral equivalence for κNCPi processes is called concurrent network
conscious bisimilarity, denoted ∼NC

κ , and is an obvious extension of Definition 3:
we require that processes can do the same concurrent paths.

Theorem 2. ∼NC
κ is a congruence with respect to all κNCPi operators.

This result allows us to equip the π-calculus with a compositional semantics:
we can characterize π-calculus processes as κNCPi processes via a syntactic re-
striction where links are forbidden and emission and destination sites in output
prefixes coincide. SOS rules derive all possible paths, non-deterministically. In
order to control path construction, e.g. according to a specific routing strategy,
we can define a forwarding predicate

ϕ : L × S × Proc → {true, false}

and then use it as an additional side condition for rules achieving step (ii) de-
scribed above: ϕ(lab, c, p) tells when a path of p, with destination c, can be
extended with lab. In this way, for instance, we could exclude non-optimal links
according to some metric (cost, latency, distance, and others). See [31] for a
forwarding predicate modeling BGP.

3.4 Coalgebraic Semantics of NCPi

In [31] we have introduced a presheaf-based coalgebraic semantics for NCPi, in
the style of [20]. The basic idea is having a model where we distinguish: (a)

Software-Defined Networks of Connectors and Components 83

a domain of resources, (b) a domain of programs and a (c) domain of “maps”
between resources and programs. In NCPi, resources of a process are its free sites
and links, describing its communication network. Therefore, (a) is a category
G of suitable graphs, representing networks, equipped with endofunctors that
add new vertices and edges, modeling network resources allocation; (b) is Set,
where some objects are regarded as sets of NCPi processes; (c) is the category
of functors G → Set (presheaves on C), associating to each network the set of
NCPi processes with such network.

The operational semantics, then, is modeled as a coalgebra with states in a
presheaf, thus each state is decorated with its networks: this enables the explicit
representation of network resources allocation along transitions. Unfortunately,
we still have infinitely many states, because allocated resources may grow in-
definitely, even if only a finite portion of them is actually accessible, e.g., in
recursive processes performing extrusions. However, our presheaf of states is
“well-behaved”, so, according to [16], it is always possible to deallocate the un-
used resources and an equivalent History Dependent (HD) automaton [28] can
be derived from the NCPi coalgebra. HD-automata are automata with allocation
and deallocation along transitions. They admit minimal, possibly finite state,
representatives, where all bisimilar states are identified, which can be computed
as shown and implemented in [19].

4 Formal Definition and Properties of the PASTRY
Distributed Hash Table System

In this section we use κNCPi to model PASTRY overlay networks and DHTs.
We will prove the correctness of our model by checking the following property,
which says that each message eventually gets to its destination.

Property 1 (Routing convergence). The routing procedure always converges:
given a message with target key k and a peer id, either id is responsible for
k or it can forward the message to id′ numerically closest to k than id.

4.1 Peer Model

The key idea is modeling identifiers as sites, and the routing table and the leaf-set
of a peer as two collections of links LRT and LLS , forming the overlay network.
We denote by a � b a link to b in a’s routing table and by a� b a link to b in a’s
leaf-set. A peer with identifier a is modeled as the process

Peer(a, LRT , LLS) def= (ORT)(OLS) Control(a, ORT , OLS)
| RT(LRT , ORT) | LS(LLS , OLS)

Control(a, ORT , OLS) def= JoinH(a) + Route(ORT , OLS)

Processes RT and LS allow other processes to query and modify routing table and
leaf-set. These operations are called internally via the names in ORT and OLS .

84 R. Bruni et al.

1010

1011

1111

1000

1100

1101

Fig. 4. Routing path from 1010 for the key 1101 in the system of Figure 1

The process Control implements the control logic of a peer. JoinH executes
the distributed protocol for node joins: it updates the peer’s own routing data
structures and helps populating the joining peer’s ones. In [36, Theorem 6.3.1] we
show that the reconfiguration of the overlay network due to node joins preserves
Property 1. The process Route simply activates transportation services over the
peer’s links. A PASTRY system is modeled as the parallel composition of peer
processes. For the system in Figure 1 we have

Sys
def= Peer(1000) | Peer(1010) | Peer(1011) | Peer(1100) | Peer(1111)

4.2 DHT Model

Now we want to model routing behavior for a simple Distributed Hash Table,
where observations are routing paths of DHT lookups. In order to do this, we
introduce a new type of link: a � k means that the peer with identifier a is re-
sponsible for the key k. We can model a Distributed Hash Table over a PASTRY
system made of peers a1, . . . , an as follows. Suppose the DHT has m key-value
pairs 〈ki, vi〉, and let aki be the identifier of the peer responsible for ki, i.e. the
closest to ki among a1, . . . , an.

DHT
def= Peer(a1) | . . . | Peer(an) | H

H
def= Entry(k1, v1, ak1) | . . . | Entry(km, vm, akm)

Entry(k, v, a) def= a � k | k(b).abv.Entry(k, v, a)

Here H represents the DHT content as the parallel composition of processes that
handle the table’s entries. The idea is implementing a DHT lookup request for
a key k as a message with destination k, carrying the identifier b of the sender.
Upon receiving this message, the handler Entry(k, v, a) for 〈k, v〉 replies to b
with a message containing v.

In [36, Section 6.4] we provide an implementation of the the PASTRY routing
strategy via a forwarding predicate, and we show that it yields paths satisfying

Software-Defined Networks of Connectors and Components 85

BI(P)
[10]

Nets with
boundaries [38]

Petri
Calculus [10]

Tile
Model [9,11]

Reo

Fig. 5. Relation among the different models of connectors & buffers

Property 1. The consequence is that lookup requests always reach the correct
peer ([36, Theorem 6.4.2]). As an example, we show how to compute a routing
path in the system of Figure 1. For simplicity, let us consider a DHT with only
one key-value pair (1101, v) located at 1100:

H
def= 1100� 1101 | 1101(a).1100a v.H DHT

def= Sys | H

Consider the following process, representing a user application running at 1010

App
def= 1010 1101 1010.1010(v′).App′(v′) .

This sends a lookup request for the key 1101, receives the result and uses it for
some computations. The routing steps for this request are depicted in Figure 4,
and correspond to those of Example 1. The corresponding transition is

App | DHT •;1010�1111;1111�1100;1100�1101;•
=======================⇒ 1010(v′).App′(v′) | Sys | 11001010 v.H

showing the whole routing path from 1010 to 1100.

5 Networks of Connectors and Components

Component-based design is a modular engineering practice that relies on the sep-
aration of concerns between coordination and computation. Component-based
systems are built from loosely coupled computational entities, the components,
whose interfaces comprise the number, kind and peculiarities of communication
ports. The term connector denote entities that glue the interaction of compo-
nents [33], by imposing suitable constraints on the allowed communications. The
evolution of a network of components and connectors (just network for short) is
as if played in rounds: At each round, the components try to interact through
their ports and the connectors allow/disallow some of the interactions selectively.
A connector is called stateless when the interaction constraints it imposes are the
same at each round; stateful otherwise. To address composition and modularity
of a system, networks are often decorated with (input and output) interfaces: in
the simplest case, they consist of ports for network interaction.

Recent years have witnessed an increasing interest about a rigorous modeling
of networks. We survey below, following the chronological order in which they
were proposed, some formal approaches to the representation, composition and
analysis of networks. Although the approaches we shall consider are quite differ-
ent in spirit, the mutual correspondence results are summarized in Figure 5. All

86 R. Bruni et al.

above approaches deal with systems that have static structures, i.e., systems in
which the possible interactions among components are all defined at design time
and remain unchanged during runtime. Nevertheless, when shifting to connectors
for systems that adapt their behavior to changing environments, the situation is
less well-understood. In fact, a general and uniform theory for dynamic connec-
tors is still lacking. Some recent progresses are discussed in Section 8.

The algebra of connectors and the tile model. An algebra consisting of five kinds
of basic stateless connectors (plus their duals) is presented in [9]. The connectors
can be composed in series or in parallel. The operational, observational and
denotational semantics of connectors are first formalized separately and then
shown to coincide. Moreover, a complete normal-form axiomatization is defined.
The Petri calculus in Section 6.2 enriches the algebra in [9] with one-place buffers.

The Tile Model [21,8] offers an operational and abstract semantic framework
for concurrent systems [29,18,14] and also for suitable classes of connectors, of
which the algebra of stateless connectors is just a particular instance. A tile
T : s

α−→
β

t is a rewrite rule stating that the initial configuration s can evolve to

the final configuration t producing the effect β; but the step is allowed only if the
‘arguments’ of s can evolve by providing the trigger α. Triggers and effects are
called observations. Roughly, the semantics of component-based systems can be
expressed via tiles when components and connectors are equipped with sequential
composition s; t and with a monoidal tensor product s⊗t. Technically, we require
that configurations and observations form two monoidal categories [24] with the
same objects. Tiles express the reactive behaviour of connectors in terms of a
Labelled Transition System (LTS) whose labels are pairs 〈trigger, effect〉. In this
context, the usual notion of equivalence is called tile bisimilarity, which is a
congruence (w.r.t. ; and ⊗) when a suitable rule format is met [21].

The Reo coordination model. Reo [1] is an exogenous coordination model based
on channel-like connectors that mediate the flow of data among components. No-
tably, a small set of point-to-point primitive connectors is sufficient to express
a large variety of interesting interaction patterns, including several forms of
mutual exclusion, synchronization, alternation, and context-dependency. Com-
ponents and primitive connectors can be composed into larger Reo circuits by
disjoint union up-to the merging of shared nodes. The semantics of Reo has been
formalized in many ways, tile model included [2]. See [22] for a recent survey.

The BIP component framework. BIP [4] is a component framework for con-
structing systems by superposing three layers of modeling: 1) Behaviour, the
lower level, representing the sequential computation of individual components;
2) Interaction, the middle layer, defining the handshaking mechanisms between
these components; and 3) Priority, the top level, assigning a partial order of
privileges to the admissible synchronizations. The lower layer consists of a set of
atomic components with ports, modeled as automata whose arcs are labelled by
sets of ports. The second layer consists of connectors that define suitable rela-
tions between ports. We name BI(P) the fragment of BIP without priorities (see

Software-Defined Networks of Connectors and Components 87

Section 7). In absence of priorities, the interaction layer admits the algebraic
presentation given in [5]. One key feature of BIP is the so-called correctness
by construction, which allows the specification of architecture transformations
preserving certain properties of the underlying behaviour. For instance it is pos-
sible to provide (sufficient) conditions for compositionality and composability
which guarantee deadlock-freedom. The BIP component framework has been
implemented in a language and a tool-set (cf. Chapter I.3 [17]).

Nets with boundaries and the wire calculus. Nets with boundaries [38] takes
inspiration from the open nets of [3]. The idea is to extend Petri nets with
interfaces that can be used by transitions to synchronize their firings with the
environment. Nets with boundaries can be composed in series and in parallel
and come equipped with a labelled transition system operational semantics. The
correspondence between BI(P) and nets with boundaries is outlined in Section 7.

The wire calculus [37] shares strong similarities with the tile model, in the
sense that it has sequential and parallel compositions and exploits trigger-effect
pairs labels as observations. However, it is presented as a process algebra instead
of via monoidal categories and it exploits a slightly different kind of vertical
composition. Each process comes with an input/output arity typing, written
P : (n, m) for a process P with n input ports and m output ports. The usual
action prefixes a.P of process algebras are extended in the wire calculus by the
simultaneous input of a trigger a and output of an effect b, written a

b .P , where a
(resp. b) is a string of actions, one for each input port (resp. output port) of the
process. In [38,11] a dialect of the wire calculus, called Petri calculus, has been
used to give an exact characterization of a special class of (stateful) connectors
that can be expressed as nets with boundaries. This result is outlined next.

6 Connector Algebras for Petri Nets

In this section we follow the contribution in [38,13]. Roughly, nets with bound-
aries are first introduced, that come equipped with sequential and parallel com-
position and with a labelled transition system semantics. Then, the Petri calculus
is presented, that roughly models circuit diagrams with one-place buffers and in-
terfaces. The first result shows that a Petri calculus process can be defined for
each net such that the translation preserves and reflects operational semantics
(and thus bisimilarity). The second result provides the converse translation, from
Petri calculus to nets. The work in [38] has been recently improved in [11,13] by
considering different firing policies for nets and exploiting the tile model to deal
with Place/Transition Petri nets with boundaries.

6.1 Petri Nets with Boundaries

Petri nets [34] consist of places (i.e. resources types), which are repositories of
tokens (i.e., resource instances), and transitions that remove and produce tokens.

88 R. Bruni et al.

•

��

α ��

��
•

�������	•

��

�������	

��

•

��

β ��

��

•
(a) P : 2 → 2.

•

��

α ��

��
•

�������	

��

�������	•

��

•

��

β ��

��

•
(b) Q : 2 → 2.

•

		

�� γ ��•

δ ��•
(c) R : 1 → 2.

Fig. 6. Three nets with boundaries

Definition 4 (Net). A net N is a 4-tuple N = (S, T, ◦−, −◦) where S is the
(nonempty) set of places, T is the set of transitions, (with S ∩ T = ∅), and the
functions ◦−, −◦ : T → 2S assign finite sets of places, called respectively source
and target, to each transition.

Transitions t, u are independent when ◦t∩◦u = t◦∩u◦ = ∅. A set U of transitions
is independent when, for all t, u ∈ U , if t �= u then t and u are independent.
Given a set of transitions U , let ◦U = ∪u∈U

◦u and U◦ = ∪u∈Uu◦.

Definition 5 (Semantics). Let N = (S, T, ◦−, −◦) be a net, X, Y ⊆ S and
t ∈ T . Write: (N, X) →{t} (N, Y) def= ◦t ⊆ X ∧ t◦ ⊆ Y ∧ X\◦t = Y \t◦.

For U ⊆ T a set of independent transitions, write:

(N, X) →U (N, Y) def= ◦U ⊆ X ∧ U◦ ⊆ Y ∧ X\◦U = Y \U◦.

Note that, for any X ⊆ S, (N, X) →∅ (N, X). A pair (N, X) (or just X when N
is obvious from the context) is called a marking. Sometimes nets comes equipped
with an initial marking X0, representing the initial state of the system.

In the following, given n ∈ N, we let n
def= {0, 1, . . . , n − 1}.

Definition 6 (Nets with boundaries). Let m, n ∈ N. A net with boundaries
N : m → n is a tuple N = (S, T, ◦−, −◦, •−, −•) where (S, T, ◦−, −◦) is a net
and functions •− : T → 2m and −• : T → 2n assign transitions to the left and
right boundaries of N , respectively.

The notion of independence of transitions extends to nets with boundaries in
the obvious way: t, u ∈ T are said to be independent when

◦t ∩ ◦u = ∅ ∧ t◦ ∩ u◦ = ∅ ∧ •t ∩ •u = ∅ ∧ t• ∩ u• = ∅.

Example 2. Figure 6 shows three different nets with boundaries. Places are cir-
cles and a marking is represented by the presence or absence of tokens; rectan-
gles are transitions and arcs stand for pre- and post-set relations. The left (resp.,
right) interface is depicted by points situated on the left (resp., on the right).

Note that for any k ∈ N, there is a bijection � � : 2k → {0, 1}k with �U�i = 1
if i ∈ U and �U�i = 0 otherwise. This fact is exploited to define the semantics of
a net with boundaries N : m → n as a double-labelled transition system, where
transition labels are pairs of strings in {0, 1}m ×{0, 1}n, representing the tokens
requested on the left/right boundary by the firing.

Software-Defined Networks of Connectors and Components 89

Definition 7 (Semantics). Let N : n → n be a net and X, Y ⊆ S. We write
(N, X) α−→

β
(N, Y) iff there exists an independent U ⊆ T such that (N, X) →U

(N, Y), with α = �•U� and β = �U•�.

Given N : m → n and M : k → l, their tensor product is the net N ⊗ M :
m + k → n + l whose sets of places and transitions are the disjoint union of
the corresponding sets in N and M , whose maps ◦−, −◦, •−, −• are defined
according to the maps in N and M and whose initial marking is the disjoint
union of the initial markings of N and M .

The sequential composition N ; M : m → k of N : m → n and M : n → k is
slightly more involved and relies on the following notion of synchronization. A
synchronization is a pair (U, V) with U ⊆ TN and V ⊆ TM independent sets of
transitions such that: (1) U ∪ V �= ∅ and (2) U• = •V .

The set of synchronizations inherits an ordering from the subset relation, i.e.
(U, V) ⊆ (U ′, V ′) when U ⊆ U ′ and V ⊆ V ′. A synchronization is said to be
minimal when it is minimal with respect to this order.

The sequential composition N ; M : m → k is defined as the net with bound-
aries (SN � SM , TN ;M , ◦−N ;M , −◦

N ;M , •−N ;M , −•
N ;M), where:

– TN ;M
def= {(U, V)|U ⊆ TN , V ⊆ TM , (U, V) a minimal synchronisation},

– ◦(U, V)N ;M = ◦(U)N � ◦(V)M and (U, V)◦N ;M = (U)◦N � (V)◦M ,
– •(U, V)N ;M = •(U)N and (U, V)•N ;M = (V)•M .

Intuitively, transitions attached to the left or right boundaries can be seen as
transition fragments, that can be completed by attaching other complementary
fragments to that boundary. When two transition fragments in N share a bound-
ary node, then they are two mutually exclusive options for completing a fragment
of M attached to the same boundary node. Thus, the idea is to combine the tran-
sitions of N with that of M when they share a common boundary, as if their
firings were synchronized. Of course, only minimal synchronizations are selected.
The initial marking of N ; M is the disjoint union of X0N and X0M .

Example 3. Consider the nets P : 2 → 2 and R : 1 → 2 in Figure 6. Then, the
composed net P ; (R ⊗ R) : 2 → 4 is shown in Figure 7.

6.2 Petri Calculus

In this section we introduce an algebra of connectors that roughly enriches the
algebra of stateless connectors from [9] with one-place buffers along [2]. We call
it Petri calculus after [38]. The algebra of stateless connectors in [9] can be
regarded as a fragment of the Petri calculus where all tiles have identical initial
and final connectors, i.e. they are of the form s

a−→
b

s. In terms of the wire calculus,

this means that only recursive processes of the form recX.a
b .X are considered.

Terms of the Petri Calculus are defined by the grammar:

R ::= © | ©· | I | X | ∇ | ∇| ⊥ | � | ∧ | ∨ | ↓ | ↑ | R ⊗ R | R; R

90 R. Bruni et al.

•

�� γ ��•

δ ��•

•

�� γ ��•

δ ��•
(a)

αγ ��

		

•

αδ ��

��

•

•

��

�������	•

��

��

•

��

��

�������	

��

��

βγ ��

��

•

βδ ��

��

•
(b)

Fig. 7. Nets R ⊗ R (a) and P ; (R ⊗ R) (b)

© : (1, 1) ©· : (1, 1) I : (1, 1) X : (2, 2) ∇ : (1, 2)

∇

: (2, 1)

⊥ : (1, 0) � : (0, 1) ∧ : (1, 2) ∨ : (2, 1) ↓: (1, 0) ↑: (0, 1)

R1 : (k, l) R2 : (m, n)

R1 ⊗ R2 : (k + m, l + n)

R1 : (k, n) R2 : (n, l)

R1 ⊗ R2 : (k, l)

Fig. 8. Sort inference rules

© 1−→
0

©· ©· 0−→
1

© ©· 1−→
1

©· I 1−→
1

I ∇ 1−→
11

∇ ∇11−→
1

∇ ⊥ 1−→ ⊥ � −→
1

�

X
xy−→
yx

X ∧ 1−→
xx

∧ ∨ xx−→
1

∨

R1
α−→
σ

R2 R′
1

σ−→
β

R′
2

R1; R′
1

α−→
β

R2; R′
2

R1
α−→
β

R2 R′
1

ρ−→
σ

R′
2

R1 ⊗ R′
1

αρ−−→
βσ

R2 ⊗ R′
2

R : (m,n)

R
0m

−−→
0n

R

Fig. 9. Operational semantics for the Petri Calculus

It consists of the following constants plus parallel and sequential composition: the
empty place ©, the full place ©· , the identity wire I, the twist X, the duplicator
∇ and its dual

∇

, the mutex ∧ and its dual ∨, the hiding ⊥ and its dual �, the
inaction ↓ and its dual ↑. Any term R has a unique associated sort (k, l) with
k, l ∈ N, that fixes the size k of the left (input) interface and the size l of the
right (output) interface of P (see Fig. 8).

The operational semantics is defined by the rules in Fig. 9, where x, y ∈ {0, 1}
and we let x = 1 − x. The labels α, β, ρ, σ of transitions are binary strings, all
transitions are sort-preserving, and if R

α−→
β

R′ with R, R′ : (n, m), then |α| = n

and |β| = m. Notably, the induced bisimilarity is a congruence.

Example 4. For example, let R1
def= (∇ ⊗ ∇); (©· ⊗ X ⊗ ©); (

∇⊗ ∇

); X and R2
def=

(∇ ⊗ ∇); (© ⊗ X ⊗ ©·); (

∇⊗ ∇

); X. It is immediate to check that both R1 : (2, 2)

Software-Defined Networks of Connectors and Components 91

and R2 : (2, 2), in fact: ∇ ⊗ ∇ : (2, 4), ©· ⊗ X ⊗ © : (4, 4), © ⊗ X ⊗ ©· : (4, 4),

∇⊗ ∇

: (4, 2), and X : (2, 2). The only moves for R1 are R1
00−→
00

R1 and R1
01−→
10

R2

while for R2 are R2
00−→
00

R2 and R2
10−→
01

R1. It is immediate to note that R1 and
R2 are terms analogous to the nets in Fig. 6 and that R1 is bisimilar to X; R2; X.

A close correspondence between nets with boundaries and Petri calculus terms
is established in [13], by providing mutual encodings with tight semantics cor-
respondence. First, it is shown that any net N : m → n with initial marking
X can be associated with a term RN,X : (m, n) that preserves and reflects the
semantics of N . Conversely, for any term R : (m, n) of the Petri calculus there
exists a bisimilar net NR : m → n. We refer the interested reader to [13].

7 From BI(P) to Petri Nets and Vice Versa

This section surveys the correspondence between BI(P) systems and nets (and
with the Petri calculus, by transitivity) as studied in [10]. First, a composition
operation for BI(P) systems is introduced that enables the structured definition
of larger systems. Intuitively, the places of the net are in one-to-one correspon-
dence with the states of the components, while the transitions of the net rep-
resent the synchronized execution of the transitions of the components. Then,
this compositional version of BI(P) systems is used to define a compositional
mapping of BI(P) systems to bisimilar nets with boundaries (see Section 7.2).
Finally, it is shown that any net with boundaries with vacuous left interface can
be encoded as a BI(P) system (see Section 7.3).

7.1 BI(P): BIP Without Priorities

This section reports on the formal definition of BIP as presented in [6]. Since we
disregard priorities, we call BI(P) the framework presented here.

Given a set of ports P , an interaction over P is a non-empty subset a ⊆ P . We
write an interaction {p1, p2, . . . , pn} as p1p2 . . . pn and a ↓Pi for the projection of
an interaction a ⊆ P over the set of ports Pi ⊆ P , i.e., a ↓Pi= a ∩Pi. Projection
extends to sets of interactions by γ ↓P = {a ↓P | a ∈ γ ∧ a ↓P �= ∅}.

Definition 8 (Component). A component B = (Q, P, →) is a triple where Q
is a set of states, P is a set of ports, and →⊆ Q×2P ×Q is the set of transitions.

As usual, we write q
a−→ q′ to denote the transition (q, a, q′) ∈→. We let q a q′

be the name of the transition q
a−→ q′. Given a transition t = q a q′, we let ◦t,

t◦ and λ(t) denote respectively its source q, its target q′ and its label a. An
interaction a is enabled in q, denoted q

a−→, iff there exists q′ s.t. q
a−→ q′. By

abusing notation, we will also write q
∅−→ q for any q.

Definition 9 (BI(P) system). A BI(P) system BS = γ(B1, . . . , Bn) is the
composition of a finite set {Bi}n

i=1 of transitions systems Bi = (Qi, Pi, →i)

92 R. Bruni et al.

such that their sets of ports are pairwise disjoint, i.e., Pi ∩ Pj = ∅ for i �= j
parameterized by a set γ ⊂ 2P of interactions over the set of ports P =

⊎n
i=1 Pi.

We call P the underlying set of ports of BS, written ι(BS).

The semantics of a BI(P) system γ(B1, . . . , Bn) is given by the transition system
(Q, P, →γ), where Q = ΠiQi, P =

⊎n
i=1 Pi and →γ⊆ Q× 2P ×Q is the least set

of transitions satisfying the following inference rule

a ∈ γ ∀i ∈ 1..n : qi

a↓Pi−−−→ q′i

(q1, . . . , qn) a−→γ (q′1, . . . , q
′
n)

Definition 10 (Coherent interaction extension). A set of interactions γ′

is a coherent extension of γ over the set of ports P , written γ �P γ′, iff γ′ ↓P ⊆ γ.

The idea underlying coherent extension is that the extended set of interactions
γ′ does not allow more interactions (in P) than those specified by γ.

Definition 11 (cBI(P) system). A composite BI(P) system C, cBI(P) for
short, is either a BI(P) system γ(B1, . . . , Bn) or a composition γ(C1, . . . , Cn)
where {Ci = γi(Ci,1, . . . , Ci,ni)}n

i=1 is a family of cBI(P) systems such that their
sets of underlying ports are pairwise disjoint, i.e., ι(Ci) ∩ ι(Cj) = ∅ for i �= j,
and γ a set of interactions over �n

i=1ι(Ci) s.t. γi �ι(Ci) γ.

The semantics of cBI(P) systems is defined analogously to that of BI(P) systems
by viewing each subsystem as a component. Next result states that any BI(P)
system can be seen as a cBI(P) system of exactly two components. We will use
this property when defining the compositional encoding of BI(P) systems.

Lemma 1. Let BS = γ(B1, . . . , Bn) be a BI(P) system. Then, for any i < n,
BS is bisimilar to the cBI(P) system C = γ(γ ↓P1..i (B1, . . . , Bi), γ ↓P\P1..i

(Bi+1, . . . , Bn)) where P = ι(BS) and P1..i = �j≤iι(Bj).

7.2 Structural Mapping from BI(P) to Nets with Boundaries

Given a finite set S with k = |S|, we use wS to denote an injective function
wS : S → k that orders elements of S. By abuse of notation, we write also wS

to denote its extension wS : 2S → 2k.

Definition 12. Let B = (Q, P, →) be a transition system. The corresponding
net with boundaries [[B]] : 0 → |P | is [[B]] = (Q, T, ◦−, −◦, •−, −•) where:

– T = {q a q′ | q
a−→ q′}.

– ◦(q a q′) = {q} and (q a q′)◦ = {q′}.
– •(q a q′) = ∅ and (q a q′)• = wP (a).

Lemma 2. Let B = (Q, P, →) be a transition system. Then, q
a−→ q′ if and only

if ([[B]], {q}) −−−−−→
�wP (a)�

([[B]], {q′}).

Software-Defined Networks of Connectors and Components 93

• ��
a

ac ��

��

��

•
a

•
��

b

������•

��

		

•
b

•

��

c
bd

��

��

•
c

•

��

d
•
d

(a) [[{ac, bd}]]{a,b,c,d}.

��������q1

��

[[B1]]

• ��

a
a ��

��

[[γ ↓{a,b}]]{a,b}

•
��

a

[[γ]]{a,b,c,d}

•
a

q1 ab q′
1

��

 �������

����
���

��

������•

!!

""

ac

##

��

��

������ !q′
1 • ��

b
b ��

$$

•
%%

b

������•

��

&&

•
b

��������q2

��

• ��

c
c ��

��

•

��

c
bd

��

��

��

•
c

q2 cd q′
2

��
����

���
��

 �������

������•

''

""
������ !q′

2

[[B2]]

• ��
d

d ��

$$

[[γ ↓{c,d}]]{c,d}

•

��

d
•

d

(b) [[γ(B1, B2)]] with γ = {ac, bd}.

Fig. 10. Compositional encoding

Next definition introduces the encoding of a set of synchronizations glueing com-
ponents as a marked net with boundaries.

Definition 13. Let γ be a set of synchronizations over P . The corresponding
marked net with boundaries [[γ]]P : |P | → |P | is ({Pγ}, γ, ◦−, −◦, •−, −•, {Pγ})
with: ◦a = a◦ = {Pγ} and •a = a• = wP (a).

Note that the place Pγ guarantees that all interactions are mutually exclusive.

Example 5. Consider the set of interactions γ = {ac, bd} and assume w{a,b,c,d}
coincides with alphabetical order. The corresponding net is shown in Fig. 10(a).

Lemma 3. [[γ]]P
�wP (a)�−−−−−→
�wP (a)�

[[γ]]P iff a ∈ γ.

Next definition introduces the compositional encoding of BI(P) systems.

Definition 14. Let C = γ(C1, . . . , Cn) be a cBI(P) system. The net with bound-
aries [[C]] : 0 → |P | with P = ι(C) is recursively defined as

[[γ(C1)]] = [[C1]]; [[γ]]P
[[γ(C1, . . . , Cn)]] = (γ ↓ι(C1) [[C1]] ⊗ [[γ ↓P\ι(C1) (C2, . . . , Cn)]]); [[γ]]P

Example 6. Consider the BI(P) system {ac, bd}(B1, B2) where B1 has just one
transition q1

ab−→ q′1 and B2 has only q2
cd−→ q′2. The encoded net is in Figure 10(b).

Note the necessity of considering all transitions in the encoding of {ac, bd} to
be mutual exclusive. Otherwise, the encoded form will also allow behaviors like
([[B]], {q1, q2}) −−−−→

�abcd�
([[B]], {q′1, q

′
2}), where abcd �∈ {ac, bd}.

94 R. Bruni et al.

{{s1, c1}, {s2, c2}, {e1, d1}, {e2, d2}, {a, b1}, {a, b2}}

•
a

•
s1

•
e1

•
s2

•
e2

������a
((

e1

C1S

������

s2
��

s1
))

DS

������ a
**

e2

++

C2S

•
b1

•
c1

•
d1

������

c1
��

DC1

������ b1**

d1

++

CC1

•
b2

•
c2

•
d2

������

c2
��

DC2

������ b2**

d2

++

CC2

Cloud VM1 VM2

Fig. 11. A simple BI(P) system

Theorem 3. Let C = γ(C1, . . . , Cn) be a cBI(P) system. Then, (q1, . . . , qn) a−→γ

(q′1, . . . , q
′
n) iff ([[C]], {q1, . . . , qn}) −−−−−→

�wP (a)�
([[C]], {q′1, . . . , q

′
n}) with P = ι(C).

7.3 Encoding Nets with Boundaries into BI(P)

This section shows that any net with boundaries without left interface can be
seen as a BI(P) system consisting on just one component. The correspondence is
stated by showing that there exists a straightforward encoding that maps states
and transitions of the net to states and transitions of the unique component.

Definition 15. Let N : 0 → n with N = (S, T, ◦−, −◦, •−, −•) be a net with
boundaries. Then, the corresponding BI(P) system BSN = γ(B) is defined as
follows: γ = 2n and B = (2S , 2n, →) with →= {X

a−→ Y | (N, X) −−→
�a�

(N, Y)}.

Note that N : 0 → n corresponds to a component that has 2n ports, i.e., one
port for any possible combination of the ports on the interface.

8 Reconfigurable and Dynamic BIP

In order to contribute to the development of a general theory for dynamic con-
nectors, in this section we present two other extensions of the BI(P) framework
with different degrees of “dynamism” that allow enhanced conciseness, modu-
larity and expressiveness. A reconfigurable BI(P) system allows for the dynamic
modification of interactions among components. A dynamic BI(P) system sup-
ports the runtime creation / elimination of ports and components.

Example 7. Consider the BI(P) system shown in Fig. 11, which contains a cloud
manager component Cloud that interacts with two virtual machines VM1 and
VM2. The Cloud starts a connection with VMi via the interaction sici. After
the session is started, the manager and the clients can interact on abi. The
session ends when eidi is performed. Note that the manager has dedicated ports
(si, ei) for handling the connections of different machines. Next, we introduce
two enhancements that allows for a more compact description of this system.

Software-Defined Networks of Connectors and Components 95

∅

•
a

������

ab1+,ab2+
��

DS

������ a
**

ab1−,ab2−

++

CS

•
b1

������

ab1+
��

DC1

������ b1**

ab1−

++

CC1

•
b2

������

ab2+
��

DC2

������ b2**

ab2−

++

CC2

Cloud VM1 VM2

Fig. 12. A simple reconfigurable BI(P) system

8.1 Reconfigurable BI(P)

Our first extension is concerned with the possibility of enabling and disabling
specific interactions dynamically. An interaction a can be enabled / disabled
when all components involved in the interaction a agree to do so. After a is
enabled, it can be used as an ordinary interaction until it gets disabled.

Our first result proves that any reconfigurable BI(P) system is equivalent
to an ordinary BI(P) system where a “controller” component is introduced for
each interaction that can be added or removed at run-time. Thus, reconfigurable
BI(P) only provides a more compact representation of ordinary systems, while
ordinary BI(P) representations may require an exponential blow up in the num-
ber of controllers (interactions are subsets of ports). The crux of the proof is the
fact that the set of controller components can be defined statically.

Transitions in a reconfigurable BI(P) component have a decoration ρ that
can be either (i) ε for ordinary interactions, (ii) + to add a new interaction, and
(iii) − to remove an interaction.

Definition 16 (Reconfigurable component). Let P be a set of ports. A re-
configurable component R = (Q, P, −�) is a transition system where Q is a set of
states, P ⊂ P is a finite set of ports, and −�⊆ Q×2P ×{+, −, ε}×Q is the set of
labelled transitions such that (q, a, ε, q′) ∈−� implies a ∈ 2P and (q, a, ρ, q′) ∈−�
with ρ ∈ {+, −} implies a ∩ P �= ∅.

We write q
aρ
−−� q′ for (q, a, ρ, q′) ∈−�. We say that a is enabled in q, denoted

q
a
−�, iff there exists q′ s.t. q

aε
−� q′. We assume that for all q, q′ it holds q

∅ε
−−� q′

iff q = q′. Given a set of ports P , we write a#P if a ∩ P = ∅.

Definition 17 (Reconfigurable BI(P) system). A reconfigurable BI(P) sys-
tem RS = γ(R1, . . . , Rn) is the composition of a finite set {Ri}n

i=1 of reconfig-
urable components Ri = (Qi, Pi, −�i) such that their sets of ports are pairwise
disjoint, i.e., Pi ∩ Pj = ∅ for i �= j, parametrized by a set γ ⊂ 2P . We call
P =

⊎n
i=1 Pi the underlying set of ports of RS, written ι(RS).

Example 8. The scenario in Example 7 can be modeled as the reconfigurable
BI(P) system in Fig. 12, where for simplicity we represented multiple transitions

96 R. Bruni et al.

a ∈ γ ∀i ∈ 1..n : qi

a↓Pi
ε

−−−−� q′
i

γ(q1, . . . , qn)
a
−� γ(q′

1, . . . , q
′
n)

[int]

a ∈ 2P
� γ ¬(a#Pi) =⇒ qi

a+
−−� q′

i (a#Pi) =⇒ q′
i = qi γ′ = γ ∪ {a}

γ(q1, . . . , qn)
a
−� γ′(q′

1, . . . , q
′
n)

[add]

a ∈ γ ¬(a#Pi) =⇒ qi
a−
−−� q′

i (a#Pi) =⇒ q′
i = qi γ′ = γ � {a}

γ(q1, . . . , qn)
a
−� γ′(q′

1, . . . , q
′
n)

[del]

Fig. 13. Operational semantics of reconfigurable BI(P) systems

with the same source and target (but different labels) with a single arc with mul-
tiple labels (e.g., ab1+, ab2+). Now, the transitions abi+ and abi− respectively
allow for the dynamic enabling / disabling of the interaction abi.

The semantics of a reconfigurable BI(P) system RS = γ(R1, . . . , Rn) with
ι(RS) = P and γ ⊆ 2P is given by the transition system (Q, −�) where

– Q = 2P × ΠiQi (we write γ(q1, . . . , qn) for 〈γ, 〈q1, . . . , qn〉〉 ∈ Q), and
– −�⊆ Q × 2P × Q is the least set of transitions given by the rules in Fig. 13.

Each state of the transition system keeps, not only the states of all components
but also, the set γ of all enabled interactions. Rule [int] stands for ordinary
interactions. Rule [add] accounts for the addition of a new global interaction
a to the set of enabled interactions γ. Rule [del] specifies the removal of an
enabled interaction and is analogous to [add].

Example 9. Consider the reconfigurable BI(P) system in Example 8. The ini-
tial state in which no connection has been established is given by the term
∅(DS, DC1 , DC2). In this state, the system can start a session between the Cloud
and either VM1 or VM2. Assuming that a session with VM1 is established, then the
system can move as follows (where s = {ab1}(CS , CC1, DC2)):

∅(DS, DC1 , DC2)
ab1+−−−� s

ab1−−� . . .
ab1−−� s

ab1−−−−� ∅(DS, DC1 , DC2)

Let R(R) = {a | (q, a, ρ, q′) ∈−� and ρ �= ε} be the set of reconfigurable in-
teractions of a reconfigurable component R = (Q, P, −�). For any a ∈ R(R)
we add two additional ports ãR+ and ãR− in the encoded component, where
ãR = (a∩P)∪{p̃ | p ∈ a�P} (decorations .̃ are needed to guarantee uniqueness

of ports in different components). We let ˜R(R) = {ãR | a ∈ R(R)}. For example,
˜R(Cloud) = {ab̃1 , ab̃2}. The function R(·) is extended to reconfigurable BI(P)

systems RS = γ(R1, . . . , Rn) by letting R(RS) =
⋃

1≤i≤n R(Ri).

Software-Defined Networks of Connectors and Components 97

•
a

•
a ˜b1+ •

a ˜b2+ •
a ˜b1−

•
a ˜b2−

������

a˜b1+,a˜b2+
��

DS

������ a
**

a ˜b1−,a ˜b2−

++

CS

(a) Component Cloud

•
a

•
a+

•
a−

������

a+
��

disa

������ a
**

a−

++

ena

(b) Controller Ca

Fig. 14. Encoding reconfigurable BI(P) in BI(P)

Definition 18. Let R = (Q, P, −�) be a reconfigurable component. The corre-

sponding BI(P) component [[R]] is (Q, P ∪(˜R(R)×{+, −}), −→) with (q, a, q′) ∈−→
iff (q, a, ε, q′) ∈−� or (q, a′, ρ, q′) ∈−�, ρ �= ε and a = (ã′R, ρ).

Figure 14(a) shows the BI(P) component corresponding to the reconfigurable
component Cloud depicted in Fig. 12.

Next, we associate any reconfigurable interaction a with a new BI(P) com-
ponent Ca = (QCa , PCa , −→), called controller : it models the dynamic enabling /
disabling of a (see Fig. 14(b)).

Definition 19. Let RS = γ(R1, . . . , Rn) be a reconfigurable BI(P) system with
R(RS) = {a0, . . . , aj}. The corresponding BI(P) system is defined by

[[γ(R1, . . . , Rn)]] = [[γ]]([[R1]], . . . , [[Rn]], Ca0 , . . . , Caj)

where [[γ]] = (γ � R(RS)) ∪ (
⋃

a∈R(RS),ρ∈{ε,+,−}{[[a]]ρ}) with

[[a]]ρ =
{

{aρ} ∪ {ãRiρ | 1 ≤ i ≤ n and a ∈ R(Ri)} if ρ ∈ {+, −}
{a} ∪ {p | 1 ≤ i ≤ n and p ∈ a ↓Pi} if ρ = ε

Finally, any state γ(q1, . . . , qn) of RS is associated with a state [[γ(q1, . . . , qn)]] =
(q1, . . . , qn, s0, . . . , sj) of [[RS]] where si = enai if ai ∈ γ, and si = disai if ai �∈ γ.

Example 10. The reconfigurable system introduced in Example 8 is encoded as
the BI(P) system shown in Fig. 15.

Theorem 4. Given RS=γ(R1, . . . , Rn), we have γ(q1, . . . , qn)
a
−�γ′(q′1, . . . , q

′
n)

iff ∃b ∈ {a, γa, γa+, γa−} s.t. [[γ(q1, . . . , qn)]] b−→[[γ]] [[γ′(q′1, . . . , q
′
n)]].

8.2 Dynamic BI(P)

In this section we further extend BI(P) by allowing the dynamic replication
of components. In the case of dynamic BI(P) we can define systems that are
possibly infinite state and more expressive than ordinary BI(P) systems. We
take as an inspiring example the notion of correlation sets in web services [40,23].
In these cases, when a service call is made, then an instance of the session is
initialized with suitable correlation data (e.g., specific message fields) gathered

98 R. Bruni et al.

γ = {{ab1, a, b1}, {ab1+, a ˜b1+, ãb1+}, {ab1−, a˜b1−, ãb1−}
{ab2, a, b2}, {ab2+, a ˜b2+, ãb2+}, {ab2−,a ˜b2−, ãb2−}}

•
a

•
a ˜b1+ •

a˜b2+ •
a ˜b1−

•
a˜b2−

������

a ˜b1+,a˜b2+
��

DS

������ a
**

a˜b1−,a˜b2−

++

CS

•
b1

•
ãb1+

•
ãb1−

������

ãb1+
��

DC1

������ b1**

ãb1−

++

CC1

•
b2

•
ãb2+

•
ãb2−

������

ãb2+
��

DC2

������ b2**

ãb2−

++

CC2

Cloud VM1 VM2

•
ab1

•
ab1+

•
ab1−

������

ab1+
��

ab1dis

������ ab1**

ab1−

++

ab1en

•
ab2

•
ab2+

•
ab2−

������

ab2+
��

ab2dis

������ ab2**

ab2−

++

ab2en

Cab1 Cab2

Fig. 15. A simple reconfigurable BI(P) system encoded in ordinary BI(P)

for the partner. To this aim we exploit colored tokens, where the colors are freshly
created session identifiers. This way, we do not need to replicate the ports and
structure of components, instead we keep all the coloured tokens within the same
instance of the component, then it can happen that two or more coloured tokens
mark the same state at the same time. An interaction is possible only when
all the involved components carry correlated colors, i.e., identifiers for the same
session. In fact, while session identifiers are created locally to each component
(e.g., s1 in a first component and s2 in a second component), a new interaction is
also created that correlates them (e.g., s1s2). Possibly many sessions are opened
with the same partners involved. In subsequent interactions, correlation tokens
are then exploited to identify the session that interaction is part of. When the
session ends, the correlation tokens are discarded. At the beginning, when the
system is initialized, we assume that all components carry correlated tokens, i.e.,
that they are all part of the same session. Notably, reachability is decidable for
dynamic BI(P). This is achieved by tracing a correspondence between dynamic
BI(P) systems and Place/Transition (P/T) Petri nets.

We assume an infinite set of port names P ranged over by a, b, . . ., an infinite
set of port variable names X ranged over by x, y, . . ., and an infinite set of state
names Q ranged over by p, q, . . ., such that P , Q and X pairwise disjoint. As
in general an interaction is related to a specific session, we sometimes decorate
ports and interactions with specific correlation tokens as their subscripts. For
example, for a = ab we write ac for acbc.

Definition 20 (Dynamic component). A dynamic component is a tuple D =
(Q, P, →) where Q ⊂ Q is a set of places, P ⊂ P is a set of ports, and → is a
finite set of transitions, each having one of the following shapes:

Software-Defined Networks of Connectors and Components 99

q(x) α−→ q′(x) a ∈ δ(P) α ∈ {ax, x}

〈P, q(a) ⊕ f〉 α[x/a]−−−→ 〈P, q′(a) ⊕ f〉
[Cint]

q(x)
axy+−−−→ q′(x) ⊕ q′′(y) a ∈ δ(P) b �∈ P

〈P, q(a) ⊕ f〉 aab+−−−→ 〈P ∪ {b} ∪ Pb, q
′(a) ⊕ q′′(b) ⊕ f〉

[Copen]

q(x) x−−−→ ∅ a ∈ δ(P)

〈P, q(a) ⊕ f〉 a−−−→ 〈P � ({a} ∪ Pa), f〉
[Cclose]

Fig. 16. Operational semantics of dynamic components

– q(x) ax−→ q′(x), i.e., (a coloured version of) a BI(P) transition;
– q(x)

axy+−−−→ q′(x) ⊕ q′′(y), i.e., a port creation;
– q(x) x−−−→ ∅, i.e., a port removal;
– q(x) x−→ q′(x), i.e., an interaction over a dynamically created port.

Ports that appear in labels of the form ax are parametric to the correlation token
and are called static ports; the other ports are called dynamic. We assume static
ports cannot be used as correlation tokens. In the following we denote by Px the
set of static ports of P , by Pa the set of static ports in P parametrized by the
token a and by δ(P) the set of dynamic ports. For example, if P = {a, b} with a
static and b dynamic, then Pc = {ac}. Note that if all transitions have the form
q(x) ax−→ q′(x) then D is essentially an ordinary BI(P) component.

The current state of a dynamic component D = (Q, P, →) takes the form
〈P, f〉 with P ⊂ P defining the current ports of the component (that includes
opened sessions) and f : Q → 2P such that f(q1) ∩ f(q2) = ∅ for q1 �= q2.
The function f represents the current internal state of the component replicas.
For example, if f(q) = {a, b} then there are two replicas of the component,
one involved in session a and one in b both with current state q. The condition
f(q1) ∩ f(q2) = ∅ for q1 �= q2 guarantees that each replica is associated with a
different session and that to each session corresponds exactly one state.

As a matter of notation we denote f ⊕ p(a) the function defined as

(f ⊕ p(a))(q) =
{

f(q) if q �= p
f(q) ∪ {a} if q = p

Remark 1. Initially there is only one session opened for each component. To
shorten the notation but without loss of generality, we shall assume that such
initial session identifier is void, i.e. f(p) = {•} and omit the corresponding port
• from the drawing of components (in the initial and subsequent states).

The operational semantics of components is given by the three rules in Fig. 16.
The first rule ([Cint]) deals with both: i) the case of an ordinary interaction aa
(here coloured by the token a); and ii) the case of a dynamic interaction over
the session associated with a. The rule ([Copen]) is the most complex one, as

100 R. Bruni et al.

cnty+
x

,,

y
��

•
cnt

�������	

x
--

accept

�������	

x
..

x
��

open x
x

//

x−

(a) Cloud

reqy+

y
��

x
,,

•
req

�������	

x
--

start

�������	

x
��

x
��

run x
x

//

x−

(b) VM

Fig. 17. Two dynamic components

it deals with component spawning and port creation. Here the freshly created
session identifier is b, which is then used as a fresh dynamic port, together with
suitable instances Pb of the static ports of the component. The spawned instance
of the component has initial state q′′(b). Ports in Pb will allow the spawned
instance of the component to interact on static ports with some other spawned
components that are part of the same session. Moreover, the spawned instance
of the component will be able to interact on the port b by synchronizing with
all the other spawned components that are part of the same session. Note that
although the token b has been created within the session a, such information is
not maintained in the state, i.e., sessions a and b will run independently. Finally,
the rule ([Cclose]) deals with session closure, where the token a and all the
ports {a} ∪ Pa associated with the closed session a are discarded.

Example 11. Consider a cloud manager that interacts with a possibly unbounded
number of clients. This behaviour can be modeled as the component depicted in
Fig. 17(a), where arcs are decorated with the colors of the involved tokens. (The
analogous client is in Fig. 17(b).) The component in Fig. 17(a) has one static
port cnt, two places accept and open with the following three transitions:

– t0 = accept(x)
cntx y+−−−−−→ accept(x) ⊕ open(y): the action cnt opens a new

session (whose id is stored in place open).
– t1 = open(x) x−→ open(x): for any open session, an action on the correspond-

ing dynamic port can be repeatedly performed.
– t2 = open(x) x−−−→ ∅: An already opened session x is closed by synchronizing

all participants to that session on the interaction x−.

Definition 21 (Dynamic BI(P) system). A dynamic BI(P) system DS =
γ(D1, . . . , Dn) is the composition of a finite set {Di}n

i=1 of dynamic BI(P) com-
ponents Di = (Qi, Pi, →i) such that their sets of ports are pairwise disjoint,
parametrized by a set γ ⊂ 2P of interactions over the set of ports P =

⊎n
i=1 Pi.

Without loss of generality, we assume that for any a ∈ γ it is either the case
that a contains static ports only and we call it static or it contains no static port

Software-Defined Networks of Connectors and Components 101

a ∈ γ ∀i.si

a↓Pi−−−→ s′
i

γ(s1, . . . , sn) a−→ γ(s′
1, . . . , s

′
n)

[Sint]

a ∈ γ i ∈ I(a) =⇒ si

a↓Pi
bi+−−−−−→ s′

i bi fresh σ = [idsi(a)/bi]i∈I(a)

i ∈ I(a) =⇒ s′
i = si b = {bi}i∈I(a)

γ(s1, . . . , sn) a−→ (γ ∪ {b} ∪ γσ)(s′
1, . . . , s

′
n)

[Sopen]

a ∈ γ i ∈ I(a) =⇒ si

a↓Pi
−

−−−−→ s′
i i ∈ I(a) =⇒ s′

i = si

γ(s1, . . . , sn) a−→ (γ � a)(s′
1, . . . , s

′
n)

[Sclose]

Fig. 18. Operational semantics of dynamic BI(P) systems

at all and we call it dynamic. Moreover, if a ↓Pi is made of static ports, then
a ↓Pi= a′

ai
for some a′ and ai ∈ Pi, i.e., all static ports in a ↓Pi are parametrized

by the same session identifier ai. In such case, we let idsi(a) denote ai We write
I(a) to denote the set of indices {i | ¬(a#Pi)} of the components involved in a
and I(a) to denote its complement [1, n] � I(a) = {i | a#Pi}. If a is static, we
denote by ids(a) the set {idsi(a) | i ∈ I(a)}, otherwise we let ids(a) = ∅.

Given a substitution σ = [ai/bi]i∈I and a static interaction a ∈ γ such that
ids(a) ⊆ {ai}i∈I we write aσ for the interaction obtained by replacing in a each
parameter ai by the corresponding parameter bi. Moreover, we write γσ for the
set of renamed static interactions {aσ | a ∈ γ ∧ ids(a) ⊆ {ai}i∈I}. Finally, given
a dynamic interaction a we let γ � a = {a′ ∈ γ | a′ ∩ a = ∅ ∧ ids(a′) ∩ a = ∅}
be the set of interactions in γ where the ports in a do not appear.

Let si range over 2Pi ×PQi

i representing a generic state of the component Di.
The semantics of a dynamic BI(P) system γ(D1, . . . , Dn) is defined by the three
rules in Fig. 18. Rule [Sint] deals with the usual synchronization. Rule [Sopen]

represents the opening of a session: local fresh session identifiers bi are created
(that are used in s′i) and the set of interactions is enriched with the new ses-
sion synchronization b = {bi}i∈I(a) and a renamed instance γσ of the static
interactions in γ (for the new session). Finally, rule [Sclose] deals with the
synchronized closing of a session: note that the set of interactions is updated by
removing the interactions concerned with the closed session.

Example 12. Consider the dynamic BI(P) components introduced in Example 11.
We illustrate one possible run of the server with two clients in Fig. 19. Roughly,
it corresponds to the series of transitions in Fig. 20, where γ, γ′, γ′′ are the ones
indicated in Fig. 19. Note that suitable replicas cntv, cntw, req1m, req2n of the
static ports cnt, req1, req2 have been created locally to each component, and
that the set of interactions has been enriched with suitable replicas cntv req1m
and cntw req2n of the static interactions cnt req1 and cnt req2 together with
freshly created dynamic interactions v m and w n. Let s denote the last state
reached. Then, the server can interact with the clients by performing the inter-

102 R. Bruni et al.

γ = { cnt req1 , cnt req2 }

cnty+
x

,,

y

��

•cnt

�������	•
x

--

accept

�������	

x
..

x

��

open x
x

//

x−

req1y+

y

��

x
,,

•
req1

�������	•
x

--

start1

�������	

x
��

x

��

run1 x
x

//

x−

req2y+

y

��

x
,,

•
req2

�������	•
x

--

start2

�������	

x
��

x

��

run2 x
x

//

x−

Cloud VM1 VM2
(a) Initial State

γ′ = { cnt req1 , cnt req2 , v m , cntv req1m }

cnty+
x

,,

y

��

•cnt •cntv •v

�������	•
x

--

accept

�������	

x
..

x

��

open v x
x

//

x−

req1y+

y

��

x
,,

•
req1 •

req1m •m

�������	•
x

--

start1

�������	

x
��

x

��

run1 m x
x

//

x−

req2y+

y

��

x
,,

•
req2

�������	•
x

--

start2

�������	

x
��

x

��

run2 x
x

//

x−

Cloud VM1 VM2
(b) First Synchronisation

γ′′ = { cnt req1 , cnt req2 , v m , cntv req1m , w n , cntw req2n }

cnty+
x

,,

y

��

•cnt •cntv •v •cntw •w

�������	•
x

--

accept

�������	

x
..

x

��

open v
w x

x

//

x−

req1y+

y

��

x
,,

•
req1 •

req1m •m

�������	•
x

--

start1

�������	

x
��

x

��

run1 m x
x

//

x−

req2y+

y

��

x
,,

•
req2 •

req2n •n

�������	•
x

--

start2

�������	

x
��

x

��

run2 n x
x

//

x−

Cloud VM1 VM2
(c) Second Synchronisation

Fig. 19. A run of the server with two clients

Software-Defined Networks of Connectors and Components 103

γ

⎛

⎝

〈{cnt}, accept(•)〉 ,
〈{req1}, start1(•)〉 ,
〈{req2}, start2(•)〉

⎞

⎠

cnt req1−−−−−→ γ′

⎛

⎝

〈{cnt, cntv, v}, accept(•) ⊕ open(v)〉 ,
〈{req1, req1m, m}, start1(•) ⊕ run1(m)〉 ,
〈{req2}, start2(•)〉

⎞

⎠

cnt req2−−−−−→ γ′′

⎛

⎝

〈{cnt, cntv, v, cntw, w}, accept(•) ⊕ open(v) ⊕ open(w)〉 ,
〈{req1, req1m, m}, start1(•) ⊕ run1(m)〉 ,
〈{req2, req2n, n}, start2(•) ⊕ run2(n)〉

⎞

⎠

Fig. 20. Transitions representing a run of the server with two clients

actions v m and w n as many times as needed, with the system remaining in the
same state s: s

v m−→ s
w n−→ s · · · Finally, we illustrate the case when the session

between the server and the second client is closed:

s
w n−→ γ′

⎛

⎝
〈{cnt, cntv, v}, accept(•) ⊕ open(v)〉 ,
〈{req1, req1m, m}, start1(•) ⊕ run1(m)〉 ,
〈{req2}, start2(•)〉

⎞

⎠

The above transition is obtained by combining a closing transitions of the server
(label w−) with a closing transition of the second client (label n−).

Unlike reconfigurable BI(P) systems, dynamic BI(P) systems are strictly more
expressive than ordinary BI(P) systems. This can be immediately seen by noting
that BI(P) systems are finite state, while this is not the case for dynamic BI(P)
systems (see, e.g., Example 12).

In [12] we have defined a correspondence between dynamic BI(P) systems
and Place/Transition Petri nets. This is interesting because: i) it shows that
properties like reachability remains decidable and ii) it draws a nice analogy
with the correspondence between ordinary BI(P) systems and Petri nets in [10].

Roughly, given a dynamic BI(P) system DS = γ(D1, ..., Dn) we define a P/T
Petri net N(DS) whose places are tuples of states from components D1, ..., Dn

and whose transitions represent the possible interactions. Note that N(DS) is
determined statically and although it may contain more places and transitions
than those strictly necessary, it is finite.

Another dynamic extension of BIP is Dy-BIP [7]. With respect to Dy-BIP,
we think dynamic BI(P) has some advantages. While Dy-BIP imposes ad hoc
restrictions (e.g., transitions of atomic components are labelled with only one
single local port instead of a set of local ports) and extensions (e.g. transitions
of atomic components are decorated with non-local architecture constraints that
may involve port names of other components, thus compromising the modularity
of the specification and moreover history variables are introduced to store the
identity of interacting components), this is not necessary for dynamic BI(P).
Furthermore, the number of component instances cannot change in Dy-BIP,
contrary to dynamic BI(P). Finally, the definition of Dy-BIP systems can be
error-prone or lead to incomplete specifications unless the design methodology
outlined in [7] is adopted.

104 R. Bruni et al.

9 Concluding Remarks

One of the main limitations of the state-of-the-art theories of component-based
system is the lack of a reference paradigm for describing and analyzing their
highly dynamic interactions. In this paper we have overviewed some recent pro-
posals for addressing this limitation that emerged within the ASCENS project,
i.e., the Network-Conscious pi-calculus and possible BI(P) enhancements.

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. in Comp. Sci. 14(3), 329–366 (2004)

2. Arbab, F., Bruni, R., Clarke, D., Lanese, I., Montanari, U.: Tiles for reo. In:
Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 37–55.
Springer, Heidelberg (2009)

3. Baldan, P., Corradini, A., Ehrig, H., Heckel, R.: Compositional semantics for open
Petri nets based on deterministic processes. Mathematical Structures in Computer
Science 15(1), 1–35 (2005)

4. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: SEFM’06, pp. 3–12. IEEE Computer Society Press, Los Alamitos (2006)

5. Bliudze, S., Sifakis, J.: The algebra of connectors - structuring interaction in BIP.
IEEE Trans. Computers 57(10), 1315–1330 (2008)

6. Bliudze, S., Sifakis, J.: Causal semantics for the algebra of connectors. Formal
Methods in System Design 36(2), 167–194 (2010)

7. Bozga, M., Jaber, M., Maris, N., Sifakis, J.: Modeling dynamic architectures using
Dy-BIP. In: Gschwind, T., De Paoli, F., Gruhn, V., Book, M. (eds.) SC 2012.
LNCS, vol. 7306, pp. 1–16. Springer, Heidelberg (2012)

8. Bruni, R.: Tile Logic for Synchronized Rewriting of Concurrent Systems. Ph.D.
thesis, Computer Science Department, University of Pisa (1999)

9. Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors.
Theor. Comput. Sci. 366(1-2), 98–120 (2006)

10. Bruni, R., Melgratti, H., Montanari, U.: Connector algebras, Petri nets, and BIP.
In: Clarke, E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162,
pp. 19–38. Springer, Heidelberg (2012)

11. Bruni, R., Melgratti, H., Montanari, U.: A connector algebra for P/T nets inter-
actions. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011 – Concurrency Theory.
LNCS, vol. 6901, pp. 312–326. Springer, Heidelberg (2011)

12. Bruni, R., Melgratti, H.C., Montanari, U.: Behaviour, interaction and dynamics.
In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Software.
LNCS, vol. 8373, pp. 382–401. Springer, Heidelberg (2014)

13. Bruni, R., Melgratti, H.C., Montanari, U., Sobocinski, P.: Connector algebras
for C/E and P/T nets’ interactions. Logical Methods in Computer Science 9(3)
(2013)

14. Bruni, R., Montanari, U.: Dynamic connectors for concurrency. Theor. Comput.
Sci. 281(1-2), 131–176 (2002)

15. Campbell, A.T., Katzela, I., Miki, K., Vicente, J.B.: Open signaling for ATM,
internet and mobile networks (OPENSIG’98). Computer Communication Review
29(1), 97–108 (1999)

Software-Defined Networks of Connectors and Components 105

16. Ciancia, V., Kurz, A., Montanari, U.: Families of symmetries as efficient models
of resource binding. ENTCS 264(2), 63–81 (2010)

17. Combaz, J., Bensalem, S., Tiezzi, F., Margheri, A., Pugliese, R., Kofron, J.: Cor-
rectness of Service Components and Service Component Ensembles. In: Wirsing,
M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective
Autonomic Systems. LNCS, vol. 8998, pp. 107–159. Springer, Heidelberg (2015)

18. Ferrari, G.L., Montanari, U.: Tile formats for located and mobile systems. Inf.
Comput. 156(1-2), 173–235 (2000)

19. Ferrari, G.L., Montanari, U., Tuosto, E.: Coalgebraic minimization of HD-
automata for the pi-calculus using polymorphic types. Theor. Comput. Sci. 331(2-
3), 325–365 (2005)

20. Fiore, M.P., Turi, D.: Semantics of name and value passing. In: LICS 2001, pp.
93–104. IEEE Computer Society Press, Los Alamitos (2001)

21. Gadducci, F., Montanari, U.: The tile model. In: Proof, Language, and Interaction,
pp. 133–166. MIT Press, Cambridge (2000)

22. Jongmans, S.-S.T.Q., Arbab, F.: Overview of thirty semantic formalisms
for Reo. Scientific Annals of Computer Science 22(1), 201–251 (2012),
doi:10.7561/SACS.2012.1.201

23. Lapadula, A., Pugliese, R., Tiezzi, F.: A formal account of WS-BPEL. In: Lea,
D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 199–215.
Springer, Heidelberg (2008)

24. MacLane, S.: Categories for the Working Mathematician. Springer, Heidelberg
(1971)

25. Mayer, P., Velasco, J., Klarl, A., Hennicker, R., Puviani, M., Tiezzi, F., Pugliese,
R., Keznikl, J., Bureš, T.: The Autonomic Cloud. In: Wirsing, M., Hölzl, M.,
Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Sys-
tems. LNCS, vol. 8998, pp. 495–512. Springer, Heidelberg (2015)

26. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G.M., Peterson, L.L.,
Rexford, J., Shenker, S., Turner, J.S.: Openflow: enabling innovation in campus
networks. Comput. Commun. Rev. 38(2), 69–74 (2008)

27. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I–II. Inf. Com-
put. 100(1), 1–77 (1992)

28. Montanari, U., Pistore, M.: Structured coalgebras and minimal hd-automata for
the π-calculus. Theor. Comput. Sci. 340(3), 539–576 (2005)

29. Montanari, U., Rossi, F.: Graph rewriting, constraint solving and tiles for coordi-
nating distributed systems. Applied Categorical Structures 7(4), 333–370 (1999)

30. Montanari, U., Sammartino, M.: Network conscious π-calculus: A concurrent se-
mantics. ENTCS 286, 291–306 (2012)

31. Montanari, U., Sammartino, M.: A network-conscious π-calculus and its coal-
gebraic semantics. Theor. Comput. Sci. 546(0), 188–224 (2014), doi:10.1016/
j.tcs.2014.03.009

32. Openflow foundation website, http://www.openflow.org/
33. Perry, D.E., Wolf, E.L.: Foundations for the study of software architecture. ACM

SIGSOFT Software Engineering Notes 17, 40–52 (1992)
34. Petri, C.: Kommunikation mit Automaten. Ph.D. thesis, Institut für Instru-

mentelle Mathematik, Bonn (1962)
35. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location,

and routing for large-scale peer-to-peer systems. In: Middleware, pp. 329–350
(2001)

36. Sammartino, M.: A Network-Aware Process Calculus for Global Computing and
its Categorical Framework. Ph.D. thesis, University of Pisa (2013)

http://www.openflow.org/

106 R. Bruni et al.

37. Sobocinski, P.: A non-interleaving process calculus for multi-party synchronisa-
tion. In: ICE’09. EPTCS, vol. 12, pp. 87–98 (2009)

38. Sobociński, P.: Representations of Petri net interactions. In: Gastin, P.,
Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 554–568. Springer,
Heidelberg (2010)

39. Tennenhouse, D.L., Wetherall, D.J.: Towards an active network architecture.
Comput. Commun. Rev. 26, 5–18 (1996)

40. Viroli, M.: A core calculus for correlation in orchestration languages. J. Log.
Algebr. Program. 70(1), 74–95 (2007)

41. Rekhter, Y.: A border gateway protocol 4 (bgp-4). (March 1995),
http://www.ietf.org/rfc/rfc1771.txt

http://www.ietf.org/rfc/rfc1771.txt

	Reconfigurable and Software-Defined Networks of Connectors and Components
	1Introduction
	2 Software-Defined and Overlay Networks
	3Network Conscious -Calculus (NCPi)
	3.1 Illustrative Example
	3.2 Syntax and Semantics
	3.3 Concurrent NCPi(κNCPi)
	3.4 Coalgebraic Semantics of NCPi

	4Formal Definition and Properties of the PASTRY Distributed Hash Table System
	4.1 Peer Model
	4.2 DHT Model

	5Networks of Connectors and Components
	6Connector Algebras for Petri Nets
	6.1 Petri Nets with Boundaries
	6.2 Petri Calculus

	7From BI(P) to Petri Nets and Vice Versa
	7.1 BI(P): BIP Without Priorities
	7.2 Structural Mapping from BI(P) to Nets with Boundaries
	7.3 Encoding Nets with Boundaries into BI(P)

	8Reconfigurable and Dynamic BIP
	8.1 Reconfigurable BI(P)
	8.2 Dynamic BI(P)

	9Concluding Remarks
	References

