
Martin Wirsing Matthias Hölzl
Nora Koch Philip Mayer (Eds.)

Software Engineering
for Collective
Autonomic Systems

St
at

e-
of

-th
e-

Ar
t

Su
rv

ey
LN

CS
 8

99
8

 123

The ASCENS Approach

Lecture Notes in Computer Science 8998
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Martin Wirsing Matthias Hölzl
Nora Koch Philip Mayer (Eds.)

Software Engineering
for Collective
Autonomic Systems

The ASCENS Approach

13

Volume Editors

Martin Wirsing
Matthias Hölzl
Nora Koch
Philip Mayer
Ludwig-Maximilians-Universität
Institut für Informatik
Oettingenstraße 67, 80538 München, Germany
E-mail: {wirsing, hoelzl, kochn, mayer}@pst.ifi.lmu.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-16309-3 e-ISBN 978-3-319-16310-9
DOI 10.1007/978-3-319-16310-9
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2015932507

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

A collective autonomic system consists of collaborating autonomic entities that
are able to adapt at runtime, adjusting to the state of the environment and
incorporating new knowledge into their behavior. These highly dynamic systems
are also known as ensembles. To ensure the correct behavior of ensembles it is
necessary to support their development through appropriate methods and tools
that can guarantee an autonomic system lives up to its intended purpose; this
includes respecting important constraints of the environment.

This book addresses the engineering of such systems by presenting the meth-
ods, tools, and theories developed within the ASCENS project. ASCENS1 was
an integrated project funded in the period 2010–2015 by the 7th Framework
Programme (FP7) of the European Commission as part of the Future Emerging
Technologies Proactive Initiative (FET Proactive). The ASCENS Consortium
consisted of 14 partners of seven countries and one third party, from which nine
are universities, three research organizations, and three companies (two SMEs).
The project was coordinated by the Ludwig-Maximilians-Universität München.
ASCENS participated in the coordination actions AWARENESS2 and FOCAS3.

The ASCENS approach is both formal and pragmatic. Formal means that
it provides a range of foundational theories and methods that support require-
ments engineering, modeling, programming, formal reasoning, validation and
verification, monitoring and dynamic adaptation of autonomic systems. As a
guide for performing these tasks, ASCENS has defined a process model for sys-
tems development called the Ensemble Development Life Cycle (EDLC). The
EDLC takes both the design and runtime of an autonomic system into account,
and includes mechanisms for enabling design changes based on the system’s and
environmental awareness obtained during runtime.

The pragmatic nature of the ASCENS approach manifests itself in three case
studies: autonomic robot swarms performing rescue operations, autonomic cloud
computing platforms transforming numerous small computers into a supercom-
puting environment, and autonomic e-mobility support that addresses decision
making in transportation systems.

This book is divided into four parts corresponding to the research areas of
the project and their concrete applications: (I) language and verification for
self-awareness and self-expression, (II) modeling and theory of self-aware and
adaptive systems, (III) engineering techniques for collective autonomic systems,
and, last but not least, (IV) challenges and feedback provided by the case studies
of the project in the areas of swarm robotics, cloud computing, and e-mobility.

1 http://www.ascens-ist.eu/
2 http://www.aware-project.eu/
3 http://focas.eu/

VI Preface

Many people contributed to the success of the ASCENS project. We extend
our sincere thanks to all of them. We are particularly grateful to the EC project
officers Wide Hogenhout, Dagmar Floeck, and Dalibor Grgec. We thank the re-
viewers Richard Anthony, Jim Davies, Paola Inverardi, Fernando Orejas, Ralf
Reussner, and Carles Sierra for their always constructive criticism and helpful
suggestions. We are also grateful to Springer for the assistance in producing this
book. Our sincere thanks go to all authors for the high quality of their scientific
contributions and to the reviewers of the book chapters for their careful reading
and suggestions for improvements. Finally, we thank all ASCENS members for
the excellent work, their inexhaustible effort and never-ending enthusiasm for
achieving the goals of the project and even going further in their research activ-
ities.

February 2015

Martin Wirsing
Matthias Hölzl

Nora Koch
Philip Mayer

Preface VII

Project Partners

Ludwig-Maximilians-Universität München, Germany
Università di Pisa, Italy
Università di Firenze, Italy
Fraunhofer Gesellschaft, Germany
Université Joseph Fourier Grenoble 1, Verimag Laboratory, France
Università di Modena e Reggio Emilia, Italy
Université Libre de Bruxelles, Belgium
Ecole Polytechnique Fédérale de Lausanne, Switzerland
Volkswagen AG, Germany
Zimory, Germany
University of Limerick, Ireland
IMT Lucca, Italy
Mobsya, Switzerland
Charles University, Czech Republic
Istituto di Scienza e Tecnologie della Informazione “A. Faedo”, Italy

Table of Contents

Part I: Language and Verification for Collective
Autonomic Systems
Introduction . 1

The SCEL Language: Design, Implementation, Verification 3
Rocco De Nicola, Diego Latella, Alberto Lluch Lafuente,
Michele Loreti, Andrea Margheri, Mieke Massink,
Andrea Morichetta, Rosario Pugliese, Francesco Tiezzi, and
Andrea Vandin
1 Introduction . 3
2 The Parametric Language SCEL . 6
3 Knowledge Management . 21
4 A Policy Language . 27
5 A Full-Fledged SCEL Instance . 35
6 A Runtime Environment for SCEL . 44
7 Quantitative Variants of SCEL . 50
8 Verification . 57
9 Concluding Remarks . 67

Reconfigurable and Software-Defined Networks of Connectors and
Components . 73

Roberto Bruni, Ugo Montanari, and Matteo Sammartino
1 Introduction . 73
2 Software-Defined and Overlay Networks . 74
3 Network Conscious π-Calculus (NCPi) . 75
4 Formal Definition and Properties of the PASTRY Distributed

Hash Table System . 83
5 Networks of Connectors and Components . 85
6 Connector Algebras for Petri Nets . 87
7 From BI(P) to Petri Nets and Vice Versa . 91
8 Reconfigurable and Dynamic BIP . 94
9 Concluding Remarks . 104

Correctness of Service Components and Service Component Ensembles . . 107
Jacques Combaz, Saddek Bensalem, Francesco Tiezzi,
Andrea Margheri, Rosario Pugliese, and Jan Kofroň
1 Introduction . 107
2 Verification Techniques for BIP Models . 109
3 Alternative Approaches to Ensure System Correctness 135
4 Conclusion . 154

X Table of Contents

Part II: Modeling and Theory of Adaptive and
Self-aware Systems
Introduction . 161

Reconciling White-Box and Black-Box Perspectives on Behavioral
Self-adaptation . 163

Roberto Bruni, Andrea Corradini, Fabio Gadducci, Matthias Hölzl,
Alberto Lluch Lafuente, Andrea Vandin, and Martin Wirsing
1 Introduction . 163
2 A Robot Rescue Case Study . 165
3 Black-Box and White-Box Adaptation . 166
4 Reconciling Black-Box and White-Box Adaptation 173
5 Related Work . 181
6 Conclusion . 182

From Local to Global Knowledge and Back . 185
Nicklas Hoch, Giacoma Valentina Monreale, Ugo Montanari,
Matteo Sammartino, and Alain Tcheukam Siwe
1 Introduction . 186
2 Constraints Programming . 188
3 E-mobility Optimization Problems . 192
4 Smart GRIDS for Renewable Electrical Power

Production/Consumption . 203
5 Conclusion and Future Work . 217

Knowledge Representation for Adaptive and Self-aware Systems 221
Emil Vassev and Mike Hinchey
1 Introduction . 221
2 KnowLang – Language for Knowledge Representation of

Self-adaptive Systems . 222
3 KnowLang Reasoner . 234
4 Awareness in Software-Intensive Systems . 237
5 Related Work . 243
6 Conclusions . 244

Reasoning and Learning for Awareness and Adaptation 249
Matthias Hölzl and Thomas Gabor
1 Introduction . 249
2 Awareness and Self-expression . 252
3 Extended Behavior Trees . 257
4 Reinforcement Learning . 268
5 Passing Knowledge to Other Components: Teacher-Student

Learning . 282
6 Related Work . 285
7 Conclusions and Future Work . 286

Table of Contents XI

Supporting Performance Awareness in Autonomous Ensembles 291
Lubomı́r Bulej, Tomáš Bureš, Ilias Gerostathopoulos, Vojtěch Horký,
Jaroslav Keznikl, Lukáš Marek, Max Tschaikowski, Mirco Tribastone,
and Petr T̊uma

1 Introduction . 291
2 Instrumentation for Performance Monitoring 293
3 Expressing Performance Properties . 295
4 Coding for Performance Awareness . 303
5 Modeling Performance . 307
6 Performance Aware Ensembles . 311
7 Designing Performance-Based Adaptation . 315

Part III: Engineering Techniques for Collective
Autonomic Systems
Introduction . 323

The Ensemble Development Life Cycle and Best Practices for Collective
Autonomic Systems . 325

Matthias Hölzl, Nora Koch, Mariachiara Puviani, Martin Wirsing,
and Franco Zambonelli

1 Introduction . 325
2 Software Development Life Cycle for Ensembles 327
3 Engineering Feedback Control Loops . 328
4 A Pattern Language for Ensemble Development 339
5 Related Work . 348
6 Conclusions . 349

Methodological Guidelines for Engineering Self-organization and
Emergence . 355

Victor Noël and Franco Zambonelli

1 Introduction . 355
2 Emergence, Engineering and Decomposition . 357
3 Following the Problem Organisation . 362
4 Engineering a Swarm of Bots . 368
5 Related Works and Discussion . 372
6 Conclusion . 375

Engineering Requirements for Autonomy Features . 379
Emil Vassev and Mike Hinchey

1 Introduction . 379
2 ARE – Autonomy Requirements Engineering 380
3 Capturing Autonomy Requirements for Science Clouds 386
4 Related Work . 398
5 Conclusions . 400

XII Table of Contents

The Invariant Refinement Method . 405
Tomáš Bureš, Ilias Gerostathopoulos, Petr Hnetynka,
Jaroslav Keznikl, Michal Kit, and Frantisek Plasil

1 Introduction . 405
2 Running Example . 406
3 The Need for a Tailored Design Method for ACEs 409
4 Invariant Refinement Method . 411
5 IRM Abstraction Levels and Invariant Patterns 416
6 Conclusions . 426

Tools for Ensemble Design and Runtime . 429
Dhaminda B. Abeywickrama, Jacques Combaz, Vojtěch Horký,
Jaroslav Keznikl, Jan Kofroň, Alberto Lluch Lafuente,
Michele Loreti, Andrea Margheri, Philip Mayer, Valentina Monreale,
Ugo Montanari, Carlo Pinciroli, Petr T̊uma, Andrea Vandin, and
Emil Vassev

1 Introduction . 429
2 Design Cycle Tools . 431
3 Runtime Cycle Tools . 440
4 Summary . 444

Part IV: Case Studies: Challenges and Feedback
Introduction . 449

The ASCENS Case Studies: Results and Common Aspects 451
Nikola Šerbedžija

1 Introduction . 451
2 Application Challenges . 454
3 Common Approach . 458
4 Generic Set of Common Tools . 461
5 Application Deployments . 462
6 Conclusion . 466

Adaptation and Awareness in Robot Ensembles: Scenarios and Algorithms 471
Carlo Pinciroli, Michael Bonani, Francesco Mondada, and
Marco Dorigo

1 Introduction . 471
2 Scenario: Disaster Recovery . 473
3 The Robotics Scenario and the EDLC . 479
4 Implementation and Demonstration . 482
5 Conclusions . 492

Table of Contents XIII

The Autonomic Cloud . 495
Philip Mayer, José Velasco, Annabelle Klarl, Rolf Hennicker,
Mariachiara Puviani, Francesco Tiezzi, Rosario Pugliese,
Jaroslav Keznikl, and Tomáš Bureš
1 Introduction . 495
2 Influencing Areas of Computing . 496
3 Handling Awareness and Adaptation . 498
4 Implementation . 506
5 Evaluation and Demonstrator . 508
6 Summary . 510

The E-mobility Case Study . 513
Nicklas Hoch, Henry-Paul Bensler, Dhaminda Abeywickrama,
Tomáš Bureš, and Ugo Montanari
1 Introduction . 514
2 System Design . 515
3 Goal-Oriented Requirements Engineering for Self-adaptive

Autonomic Systems . 519
4 Implementation and Deployment . 526
5 Runtime Simulation . 528
6 Summary . 531

Author Index . 535

Part I:
Language and Verification for Collective

Autonomic Systems

The first chapters of this book explore foundations for reliable and trustworthy
ensembles: languages and verification techniques for individual components, for
systems consisting of many individual components, and for the networks and
connectors with which components communicate.

The first chapter introduces the SCEL language, a formal language for mod-
eling and programming systems consisting of interacting autonomic components.
Each SCEL component contains processes operating on a knowledge repository
and is equipped with an interface consisting of attributes that describe the fea-
tures of the component. Components can dynamically form ensembles based
on predicates over interface attributes. Behaviors and interactions in SCEL can
be controlled by policies. FACPL is a language for expressing hierarchically-
structured, high-level policies. jRESP is a framework that allows Java programs
to use the linguistic constructs of SCEL.

The second chapter focuses on foundational aspects of the infrastructure for
adaptive systems: networks and reconfigurable connectors. The authors define
the Network-Conscious Pi-calculus (NCPi), an extension of the pi-calculus in
which network nodes and links are explicitly represented. NCPi can serve as
framework for modeling and and verifying systems with programmable network
infrastructure, such as peer-to-peer networks. The NCPi calculus is applied to
various modeling and verification tasks, e.g., for the PASTRY protocol. The
second part of the chapter introduces BIP, the main language for verifying com-
ponents and ensembles of ASCENS. It also establishes a correspondance between
BIP and Petri nets and presents two extensions, reconfigurable and dynamic BIP.

Verification of system properties is an important goal of the ASCENS project,
and the third chapter presents various techniques and tools that were developed
as part of ASCENS. The techniques comprise qualitative methods that verify
Boolean properties, as well as quantitative methods that evaluate a system’s
performance according to a metric. It is well known that many verification tech-
niques suffer from state explosion: the time or memory to verify a system grows
rapidly in the size of its state space. To address this, the chapter stresses the
use of compositional verification techniques, in which properties of a system are
established based on independent verification of properties of its subsystems.
Security aspects are verified using a framework for information-flow analysis
that is particularly well suited to checking non-interference and therefore the
preservation of information confidentiality.

M. Wirsing et al. (eds.): Collective Autonomic Systems, LNCS 8998, p. 1, 2015.
c© Springer International Publishing Switzerland 2015

Chapter I.1

The SCEL Language:
Design, Implementation, Verification�

Rocco De Nicola1, Diego Latella2, Alberto Lluch Lafuente1,3, Michele Loreti4,
Andrea Margheri4, Mieke Massink2, Andrea Morichetta1, Rosario Pugliese4,

Francesco Tiezzi1, and Andrea Vandin1,5

1 IMT Institute for Advanced Studies Lucca, Italy
2 Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’, CNR, Italy

3 DTU Compute, The Technical University of Denmark, Denmark
4 Università degli Studi di Firenze, Italy

5 University of Southampton, UK

Abstract. SCEL (Service Component Ensemble Language) is a new
language specifically designed to rigorously model and program auto-
nomic components and their interaction, while supporting formal rea-
soning on their behaviors. SCEL brings together various programming
abstractions that allow one to directly represent aggregations, behaviors
and knowledge according to specific policies. It also naturally supports
programming interaction, self-awareness, context-awareness, and adap-
tation. The solid semantic grounds of the language is exploited for de-
veloping logics, tools and methodologies for formal reasoning on system
behavior to establish qualitative and quantitative properties of both the
individual components and the overall systems.

Keywords: Autonomic computing, Programming languages, Adaptation poli-
cies, Formal methods, Verification

1 Introduction

Nowadays much attention is devoted to software-intensive cyber-physical sys-
tems. These are systems possibly made of a massive numbers of components,
featuring complex intercommunications and interactions both with humans and
other systems and operating in open and unpredictable environments. It is there-
fore necessary that such systems dynamically adapt to new requirements, tech-
nologies and contextual conditions. Such classes of systems include the so-called
ensembles [44]. Sometimes ensembles are explicitly created by design, while some
other other times they are assembled from systems that are independently con-
trolled and managed, while their interaction “mood” may be cooperative or
� This research was supported by the European project IP 257414 (ASCENS) and by

the Italian PRIN 2010LHT4KM CINA.

M. Wirsing et al. (eds.): Collective Autonomic Systems, LNCS 8998, pp. 3–71, 2015.
c© Springer International Publishing Switzerland 2015

4 R. De Nicola et al.

competitive; then one has to deal with systems coalitions, also called systems
of systems. Due to their inherent complexity, today’s engineering methods and
tools do not scale well to ensembles and new engineering techniques are needed
to address the challenges of developing, integrating, and deploying them [53].
The design of such systems, their implementation and the verification that they
meet the expectations of their users pose big challenges to language designers
and software engineers. It is of paramount importance to devise appropriate ab-
stractions and linguistic primitives to deal with the large dimension of systems,
to guarantee adaptation to (possibly unpredicted) changes of the working envi-
ronment, to take into account evolving requirements, and to control the emergent
behaviors resulting from complex interactions.

It is thus important to look for methodologies and linguistic constructs that
can be used to build ensembles while combining traditional software engineer-
ing approaches, techniques from autonomic, adaptive, knowledge-based and self-
aware systems, and formal methods, in order to guarantee compositionality, ex-
pressiveness and verifiability. It has to be said that most of the basic proper-
ties of the class of systems we have outlined above are already guaranteed by
current service-oriented architectures; the novelties come from the need of self-
awareness and context-awareness. Indeed, self-management is a key challenge of
modern distributed IT infrastructures spanning almost to all levels of comput-
ing. Self-managing systems are designed to continuously monitor their behaviors
in order to select the optimal meaningful operations to match the current status
of affairs. After [30], the term autonomic computing has been used to identify
the self-managing features of computing systems. A variety of inter-disciplinary
proposals has been launched to deal with autonomic computing. We refer to [47]
for a detailed survey.

In this chapter, we propose facing the challenge of engineering autonomic
systems by taking as starting point the notions of autonomic components (ACs)
and autonomic-component ensembles (ACEs) and defining programming ab-
stractions to model their evolutions and their interactions. Building on these
notions, we define SCEL (Software Component Ensemble Language). This is a
kernel language that takes a holistic approach to model and program autonomic
computing systems. SCEL aims at providing programmers with an appropri-
ate set of linguistic abstractions for programming the behavior of ACs and the
formation of ACEs, and for controlling the interaction among different ACs.

SCEL permits governing the complexity of such systems by providing flexible
abstractions, by enabling transparent monitoring of the involved entities and by
supporting the implementation of self-* mechanisms such as self-adaptation. The
key concepts of the language are those of Behaviors, Knowledge, Aggregations
and Policies that have proved fruitful in modelling autonomic systems from
different application domains such as, e.g., collective robotic systems, cloud-
computing, and cooperative e-vehicles.

One of the distinguishing features of SCEL is the use of flexible, group-
oriented, communication primitives that allows one to implicitly select the set of
components (the ensemble) to communicate with, by evaluating a given predicate

The SCEL Language: Design, Implementation, Verification 5

P used as the target. When a communication action has predicate P as a target,
it will involve all components that satisfy P . For example, if a system contains
elements that export attributes such as serviceProvided and QoS and one would
like to program a component willing to interact with the ensemble of all the
components that provide a service s and offer a QoS above q, (s)he can use the
predicate serviceProvided = s ∧ QoS > q to select the component’s partners.

We would like to add that SCEL is, somehow, minimal; its syntax fully spec-
ifies only constructs for modeling Behaviors and Aggregations and is parametric
with respect to Knowledge and Policies. This choice permits integrating different
approaches to policies specifications or to knowledge handling within our lan-
guage and to easily superimpose ACEs on top of heterogeneous ACs. Indeed, we
see SCEL as a kernel language based on which different full-blown languages can
be designed. Afterwards, we will present a simple, yet expressive, SCEL’s dialect
that is equipped with a specific language for defining access control policies and
that relies on knowledge repositories implemented as distributed tuple spaces.
The small set of basic constructs and their solid semantic grounds permits us
to develop logics, tools and methodologies for formal reasoning on systems be-
havior in order to establish qualitative and quantitative properties of both the
individual components and the ensembles.

In this chapter, we will present most of the work that has been done within the
ASCENS project on the SCEL language. We shall introduce the main linguistic
abstractions for components specification and interaction together with different
alternatives for modeling knowledge and for the operations for knowledge han-
dling (we refer to Chapter II.3 [54]for more sophisticated forms of knowledge and
to Chapter II.4 [27]for other knowledge-based reasoning techniques). We shall
also discuss different possibilities for describing interaction and authorization
policies. We shall describe a Java runtime environment, to be used for develop-
ing autonomic and adaptive systems according to the SCEL paradigm and thus
for the deployment of SCEL specifications (we refer to Chapter III.5 [1]for other
software tools for supporting the development of this class of systems). Finally,
we shall introduce tools and methodologies for the verification of qualitative and
quantitative properties of SCEL programs (we refer to Chapter I.3 [17]for other
verification techniques and tools).

The main features of SCEL will be presented in a step-by-step fashion by
using, in most of the following sections, a running example from the swarm
robotics domain described below (we refer to Chapter IV.2 [42]for a comprehen-
sive presentation of the swarm robotics case study). A complete account of the
specification of this scenario is given in Section 5.2.

A Swarm Robotics Scenario. We consider a scenario where a swarm of robots
spreads throughout a given area where some kind of disaster has happened. The
goal of the robots is to locate and rescue possible victims. As common in swarm
robotics, all robots playing the same role execute the same code. According to
the separation of concerns principle fostered by SCEL, this code consists of two
parts: (i) a process, defining the functional behaviour; and (ii) a collection of
policies, regulating the interactions among robots and with their environment

6 R. De Nicola et al.

and generating the (adaptation) actions necessary to react to specific (internal
or environmental) conditions. This combination permits a convenient design and
enacts a collaborative swarm behaviour aiming at achieving the goal of rescuing
the victims.

A robot initially plays the explorer role in order to look in the environment
for the victims’ positions. When a robot finds a victim, it changes to the rescuer
role starting the victim rescuing and indicating the victim’s position to the other
robots. As soon as another robot receives the victim’s position, it changes to the
helpRescuer role going to help other rescuers. During the exploration, in case
of critical battery level, a robot changes to the lowBattery role to activate the
battery charging. Notably, the role changes according to the sensors and data
values, e.g. when the robot is close to a victim that needs help.
Outline of the Chapter. The rest of this chapter is structured as follows.
Section 2 introduces the key principles underlying the design of SCEL together
with the syntax and the operational semantics of the language. Section 3 presents
two different knowledge handling mechanisms, i.e. tuple spaces and constraint
stores, and illustrates how components can exploit external reasoners for taking
decisions. Section 4 introduces a language for defining access control, resource
usage and adaptation policies. Section 5 presents a full instantiation of SCEL: it
uses tuple spaces as knowledge handling mechanism and the language presented
in Section 4 as policy language. Section 6 describes a Java runtime environment
that provides an API for using SCEL’s linguistic constructs in Java programs.
Section 7 deals with the issue of enriching SCEL with information about action
duration, by providing a stochastic semantics for the language. Section 8 deals
with verification of qualitative and quantitative properties of SCEL specifica-
tions via the analysis tools provided by the runtime environment illustrated in
Section 6, the Maude framework [16], and the SPIN model checker [28]. Sec-
tion 9 concludes by also touching upon directions for future work.

This chapter collects a large body of work around SCEL developed along
many different research directions. The reader interested in further details on
the presented ideas and their relationship with the relevant literature is thus
referred to our published papers cited in this contribution.

2 The Parametric Language SCEL

In this section we first introduce the key principles underlying the design of the
SCEL language. Then, we formally present its syntax and operational semantics.

2.1 Design Principles

Autonomic Components (ACs) and Autonomic-Component Ensembles (ACEs)
are our means to structure systems into well-understood, independent and dis-
tributed building blocks that may interact and adapt.

ACs are entities with dedicated knowledge units and resources; awareness is
guaranteed by providing them with information about their state and behavior

The SCEL Language: Design, Implementation, Verification 7

via their knowledge repositories. These repositories can be also used to store and
retrieve information about ACs working environment, and thus can be exploited
to adapt their behavior to the perceived changes. Each AC is equipped with an
interface, consisting of a collection of attributes, describing component’s features
such as identity, functionalities, spatial coordinates, group memberships, trust
level, response time, etc.

Attributes are used by the ACs to dynamically organize themselves into
ACEs. Indeed, one of the main novelties of our approach is the way groups
of partners are selected for interaction and thus how ensembles are formed.
Individual ACs can single out communication partners by using their identities,
but partners can also be selected by taking advantage of the attributes exposed
in the interfaces. Predicates over such attributes are used to specify the targets of
communication actions, thus permitting a sort of attribute-based communication.
In this way, the formation rule of ACEs is endogenous to ACs: members of
an ensemble are connected by the interdependency relations defined through
predicates. An ACE is therefore not a rigid fixed network but rather a highly
flexible structure where ACs’ linkages are dynamically established.

We have identified some linguistic abstractions for uniformly programming
the evolution and the interactions of ACs and the architecture of ACEs. These
abstractions permit describing autonomic systems in terms of Behaviors, Knowl-
edge and Aggregations, according to specific Policies.

– Behaviors describe how computations may progress and are modeled as pro-
cesses executing actions, in the style of process calculi.

– Knowledge repositories provide the high-level primitives to manage pieces
of information coming from different sources. Each knowledge repository is
equipped with operations for adding, retrieving, and withdrawing knowledge
items.

– Aggregations describe how different entities are brought together to form
ACs and to construct the software architecture of ACEs. Composition and
interaction are implemented by exploiting the attributes exposed in ACs’
interfaces.

– Policies control and adapt the actions of the different ACs for guaranteeing
accomplishment of specific tasks or satisfaction of specific properties.

By accessing and manipulating their own knowledge repository or the reposi-
tories of other ACs, components acquire information about their status (self-
awareness) and their environment (context-awareness) and can perform self-
adaptation, initiate self-healing actions to deal with system malfunctions, or
install self-optimizing behaviors. All these self-* properties, as well as self-
configuration, can be naturally expressed by exploiting SCEL’s higher-order
features, namely the capability to store/retrieve (the code of) processes in/from
the knowledge repositories and to dynamically trigger execution of new processes.
Moreover, by implementing appropriate security policies, e.g. limiting informa-
tion flow or external actions, components can set up self-protection mechanisms
against different threats, such as unauthorised access or denial-of-service attacks.

8 R. De Nicola et al.

Our aim is to provide a common semantic framework for describing meaning
and interplay of the abstractions above, while minimizing overlaps and incom-
patibilities. In the subsection below we introduce the constructs of SCEL, while
their precise semantics will be presented in the next one.

2.2 Syntax

We present here the syntax of SCEL. We would like to stress that we have taken
a minimal approach and SCEL syntax specifies only constructs for modeling
Behaviors and Aggregations and is parametric with respect to Knowledge and
Policies.

Knowledge

K
Processes

P

I Interface

Π
Policies

Fig. 1. SCEL component

Concretely, an AC in SCEL is ren-
dered as the term I[K, Π, P]. This is
graphically illustrated in Figure 1 and
consists of:

– An interface I publishing and mak-
ing available information about the
component itself in the form of at-
tributes, i.e. names acting as refer-
ences to information stored in the
component’s knowledge repository. Among them, attribute id is mandatory
and is bound to the name of the component. Component names are not
required to be unique; this allows us to easily model replicated service com-
ponents.

– A knowledge repository K managing both application data and awareness
data, together with the specific handling mechanism. Application data are
used for enabling the progress of ACs’ computations, while awareness data
provide information about the environment in which the ACs are running
(e.g. monitored data from sensors) or about the status of an AC (e.g. its
current location). The knowledge repository of a component stores also the
information associated to its interface, which therefore can be dynamically
manipulated by means of the operations provided by the knowledge reposi-
tories’ handling mechanisms.

– A set of policies Π regulating the interaction between the different parts
of a single component and the interaction between components. Interaction
policies and Service Level Agreement policies provide two standard examples
of policy abstractions. Other examples are security policies, such as access
control and reputation.

– A process P , together with a set of process definitions that can be dynami-
cally activated. Some of the (sub)processes in P execute local computations,
while others may coordinate interaction with the knowledge repository or
perform adaptation and reconfiguration. Interaction is obtained by allowing
ACs to access knowledge in the repositories of other ACs.

SCEL syntax is reported in Table 1. Its basic category is the one defining Pro-

cesses that are used to build up Components that in turn are used to define

The SCEL Language: Design, Implementation, Verification 9

Table 1. SCEL syntax (Knowledge K, Policies Π , Templates T , and Items t are
parameters of the language)

Systems: S ::= C | S1 ‖ S2 | (νn)S

Components:C ::= I[K, Π, P]

Processes: P ::= nil | a.P | P1 + P2 | P1 | P2 | X | A(p̄)

Actions: a ::= get(T)@c | qry(T)@c | put(t)@c | fresh(n) | new(I, K, Π,P)

Targets: c ::= n | x | self | P | p

Systems. Processes specify the flow of the Actions that can be performed.
Actions can have a Target to determine the other components that are in-
volved in that action. As stated in the Introduction, SCEL is parametric with re-
spect to some syntactic categories, namely Knowledge, Policies, Templates

and Items (with the last two determining the part of Knowledge to be re-
trieved/removed or added, respectively).
Systems and Components. Systems aggregate components through the
composition operator ‖ . It is also possible to restrict the scope of a name,
say n, by using the name restriction operator (νn) . In a system of the form
S1 ‖ (νn)S2, the effect of the operator is to make name n invisible from within
S1. Essentially, this operator plays a role similar to that of a begin . . . end block
in sequential programming and limits visibility of specific names. Additionally,
restricted names can be exchanged in communications thus enabling the receiv-
ing components to use those “private” names.

Running example (step 1/7) The robotics scenario can be expressed in SCEL

as a system S defined as follows

S � Robot1 ‖ . . . ‖ Robotn

Each robot is rendered as a SCEL component Roboti, which has the form
IRi [KRi , ΠR, PR]. These components concurrently execute and interact. Each
interface IRi specifies the attribute role, which can assume values explorer ,
rescuer , etc. according to the current role played by the robot. ��

Processes. Processes are the active computational units. Each process is built
up from the inert process nil via action prefixing (a.P), nondeterministic choice
(P1 + P2), controlled composition (P1 | P2), process variable (X), and param-
eterized process invocation (A(p̄)). The construct P1 | P2 abstracts the various
forms of parallel composition commonly used in process calculi. Process vari-
ables support higher-order communication, namely the capability to exchange
(the code of) a process and possibly execute it. This is realized by first adding an
item containing the process to a knowledge repository and then retrieving/with-
drawing this item while binding the process to a process variable. We assume

10 R. De Nicola et al.

that A ranges over a set of parameterized process identifiers that are used in
recursive process definitions. We also assume that each process identifier A has
a single definition of the form A(f̄) � P . Lists of actual and formal parameters
are denoted by p̄ and f̄ , respectively.

Running example (step 2/7) The process PR running on a robot has the form
(a1. P1 + a2. P2) | P3 meaning that it is a parallel composition of two sub-
processes, where the one on the left-hand side of the controlled composition
can either execute the action a1 and thereafter continue as P1, or execute the
action a2 and thereafter continue as P2. ��

Actions and Targets. Processes can perform five different kinds of actions.
Actions get(T)@c, qry(T)@c and put(t)@c are used to manage shared knowl-
edge repositories by withdrawing/retrieving/adding information items from/to
the knowledge repository identified by c. These actions exploit templates T as
patterns to select knowledge items t in the repositories. They heavily rely on the
used knowledge repository and are implemented by invoking the handling oper-
ations it provides. Action fresh(n) introduces a scope restriction for the name
n so that this name is guaranteed to be fresh, i.e. different from any other name
previously used. Action new(I, K, Π, P) creates a new component I[K, Π, P].

Action get may cause the process executing it to wait for the expected ele-
ment if it is not (yet) available in the knowledge repository. Action qry, exactly
like get, may suspend the process executing it if the knowledge repository does
not (yet) contain or cannot ‘produce’ the expected element. The two actions dif-
fer for the fact that get removes the found item from the knowledge repository
while qry leaves the target repository unchanged. Actions put, fresh and new
are instead immediately executed (provided that their execution is allowed by
the policies in force).

Different entities may be used as the target c of an action. Component names
are denoted by n, n′, . . . , while variables for names are denoted by x, x′, The
distinguished variable self can be used by processes to refer to the name of the
component hosting them. The possible targets could, however, be also singled
out via predicates expressed as boolean-valued expressions obtained by logically
combining the evaluation of relations between attributes and expressions. Thus
targets could also be an explicit predicate P or the name p of a predicate that is
exposed as an attribute of a component interface whose value may dynamically
change. We adopt the following conventions about attribute names within pred-
icates. If an attribute name occurs in a predicate without specifying (via prefix
notation) the corresponding interface, it is assumed that this name refers to an
attribute within the interface of the object component (i.e., a component that is
a target of the communication action). Instead, if an attribute name occurring
in a predicate is prefixed by the keyword this, then it is assumed that this name
refers to an attribute within the interface of the subject component (i.e., the
component hosting the process that performs the communication action). Thus,
for example, the predicate this.status = “sending” ∧ status = “receiving” is

The SCEL Language: Design, Implementation, Verification 11

satisfied when the status of the subject component is sending and that of the
object is receiving.

In actions using a predicate P to indicate the target (directly or via p), the
predicate acts as a ‘guard’ specifying all components that may be affected by the
execution of the action, i.e. a component must satisfy P to be the target of the
action. Thus, actions put(t)@n and put(t)@P give rise to two different primitive
forms of communication: the former is a point-to-point communication, while
the latter is a sort of group-oriented communication. The set of components
satisfying a given predicate P used as the target of a communication action
are considered as the ensemble with which the process performing the action
intends to interact. Indeed, in spite of the stress we put on ensembles, SCEL

does not have any specific syntactic category or operator for forming ACEs. For
example, the names of the components that can be members of an ensemble
can be fixed via the predicate id ∈ {n, m, o}. When an action has this predicate
as target, it will act on all components named n, m or o, if any. Instead, to
dynamically characterize the members of an ensemble according to the role they
are currently playing in the system, by assuming that attribute role belongs to
the interface of any component willing to be part of the ensemble, one can write
role=“rescuer” ∨ role=“helpRescuer” to refer to the ensemble of components
playing either the role rescuer or helpRescuer .

It is worth noticing that the group-oriented variant of action put is used
to insert a knowledge item in the repositories of all components belonging to
the ensemble identified by the target predicate. Differently, group-oriented ac-
tions get and qry withdraw and retrieve, respectively, an item from one of the
components satisfying the target predicate, non-deterministically selected.

Running example (step 3/7) By specifying actions a1 and a2 as a qry and a get
action, respectively, the process PR becomes

(qry(“victimPerceived”, true)@self. P1
+ get(“victim”, ?x, ?y, ?c)@(role=“rescuer” ∨ role=“helpRescuer”). P2) | P3

The sub-process on the left-hand side of the controlled composition allows the
robot to recognise the presence of a victim, by means of the qry action, or to
help other robots to rescue a victim, by means of the get action. In the latter
case, the action binds the victim’s coordinates to variables x and y, and the
number of other robots needed for rescuing the victim to variable c. ��

2.3 Operational Semantics

The operational semantics of SCEL is defined in two steps. First, the semantics
of processes specifies commitments, i.e. the actions that processes can initially
perform and the continuation process obtained after each such action; issues like
process allocation, available data, regulating policies are ignored at this level.
Then, by taking process commitments and system configuration into account,
the semantics of systems provides a full description of systems behavior.

12 R. De Nicola et al.

Table 2. Semantics of processes

a.P ↓a P P ↓◦ P

P ↓α P ′

P + Q ↓α P ′
Q ↓α Q′

P + Q ↓α Q′
P{p̄/f̄} ↓α P ′

A(p̄) ↓α P ′ A(f̄) � P

P ↓α P ′ Q ↓β Q′

P | Q ↓α[β] P ′ | Q′ bv(α) ∩ bv(β) = ∅ P ′ ↓α P ′′

P ↓α P ′′ P ≡α P ′

Semantics of Processes. Process commitments are generated by the following
production rule

α, β ::= a | ◦ | α[β]

meaning that a commitment is either an action a as defined in Table 1, or the
symbol ◦, denoting inaction, or the composition α[β] of the two commitments α
and β. We write P ↓α Q to mean that “P can commit to perform α and become
Q after doing so”.

The relation ↓ defining the semantics of processes is the least relation induced
by the inference rules in Table 2.

The first rule says that a process of the form a.P is committed to do a
and then to continue as process P . The second rule allows any process to stay
idle. The third and fourth rules state that P + Q non-deterministically behaves
as P or Q. The fifth rule says that a process invocation A(p̄) behaves as the
invoked process P , where the formal parameters f̄ have been replaced by the
actual parameters p̄. The sixth rule, defining the semantics of P | Q, states
that a commitment α[β] is exhibited when P commits to α and Q commits
to β. However, P and Q are not forced to actually commit to a meaningful
action. Indeed, thanks to the second rule, which allows any process to commit
to ◦, α and/or β may always be ◦. The semantics of P | Q at the level of
processes is indeed very permissive and generates all possible compositions of
the commitments of P and Q. This semantics is then specialized at the level of
systems by means of interaction predicates that take also policies into account.
Notice that, in general, commutative. Condition bv(α) ∩ bv(β) = ∅ ensures that
the variables used by the two processes P and Q are different, to avoid improper
variable captures. In fact, bv(α) denotes the sets of bound variables occurring in
α, with get and qry being the only binding constructs for variables. Similarly,
the action fresh is a binding construct for names. The last rule states that alpha-
equivalent (≡α) processes, i.e. processes differing only for bound variables and
names, can guarantee the same commitments.

Running example (step 4/7) The process PR running on the robots, apart for
the trivial case PR ↓◦[◦] PR and the commitments of P3 (not specified here),
produces the following meaningful commitments

The SCEL Language: Design, Implementation, Verification 13

PR ↓qry(“victimPerceived”,true)@self[◦] (P1 | P3)

PR ↓get(“victim”,?x,?y,?c)@(role=“rescuer”∨role=“helpRescuer”)[◦] (P2 | P3)

��

Semantics of systems. The operational semantics of systems is defined in two
steps. First, the possible behaviors of systems without occurrences of the name
restriction operator are defined. This is done in the SOS style [43] by relying
on the notion of Labeled Transition System (LTS). Then, by exploiting this
LTS, the semantics of generic systems is provided by means of a (unlabelled)
Transition System (TS) only accounting for systems’ computation steps. This
approach allows us to avoid the notational intricacies arising when dealing with
name mobility in computations (e.g. when opening and closing the scopes of
name restrictions).

The labeled transition relation of the LTS defining the semantics of systems
without restricted names is induced by the inference rules in Tables 4, 5 and 6. We
write S λ−→ S′ to mean that “S can perform a transition labeled λ and become
S′ in doing so”. Transition labels are generated by the following production rule

λ ::= τ | I : fresh(n) | I : new(J , K, Π, P)

| I : t � γ | I : t � γ | I : t
 γ | I : t �̄J | I : t �̄J | I : t
̄ J

where γ is either the name n of a component or a predicate P indicating a set
of components, and I and J range over interfaces6. The meaning of labels is
as follows: τ denotes an internal computation step; I : fresh(n) denotes the
willingness of component I to restrict visibility of name n; I : new(J , K, Π, P)
denotes the willingness of component I to create the new component J [K, Π, P];
I : t � γ (resp. I : t � γ) denotes the intention of component I to withdraw
(resp. retrieve) item t from the repositories at γ; I : t
 γ denotes the intention
of component I to add item t to the repositories at γ; I : t �̄J (resp. I : t �̄J)
denotes that component I is allowed to withdraw (resp. retrieve) item t from
the repository of component J ; I : t
̄ J denotes that component I is allowed
to add item t to the repository of component J . Moreover, in the rules, we
use I.π to denote the policy in force at the component I, I[Π/I.π] to denote
the update of the policy of the component I with the policy Π , • to denote a
placeholder for the policy of a component and S[Π/•] to denote the replacement
of the placeholder • with a policy Π in a system S.

The labeled transition is parameterised with respect to the following two
predicates:
6 The names of the attributes of a component are pointers to the real values contained

in the knowledge repository associated to the component. This amounts to saying
that in terms of the form I[K, Π,P], I only includes the names of the attributes,
as their corresponding values can be retrieved from K. However, when I is used in
isolation (e.g., within a label), we assume that it also includes the attributes’ values;
we then use, for example, I.id to denote the value associated to the attribute id in
the corresponding repository.

14 R. De Nicola et al.

– The interaction predicate, Π, I : α � λ, σ, Π ′, means that under policy Π
and interface I, process commitment α yields system label λ, substitution σ
(i.e., a partial function from variables to values) and, possibly new, policy
Π ′. Intuitively, λ identifies the effect of α at the level of components, while
σ associates values to the variables occurring in α and is used to capture the
changes induced by communication. The generated system label λ must be
one among τ , I : fresh(n), I : new(J , K, Π, P), I : t � γ, I : t � γ and
I : t
 γ. Π ′ is the policy in force after the transition; in principle it may
differ from the one in force before the transition. This predicate is used to
determine the effect of the simultaneous execution of actions by processes
concurrently running within a component that, e.g., exhibit commitments of
the form α[β].

– The authorization predicate, Π � λ, Π ′, means that under policy Π , the
action generating the system label λ (which can be thought of as an autho-
rization request) is allowed and the policy Π ′ is produced. Labels λ taken
as argument by the authorization predicate are system labels of the form
I : fresh(n), I : new(J , K, Π, P), I : t �̄ J , I : t �̄J , or I : t
̄J . This
predicate is used to determine the actions allowed by specific policies, and
the (possibly new) policy to be enforced. The authorization to perform an
action is checked when a computation step can potentially take place, i.e.
when it becomes known which is the component target of the action.

Many different interaction predicates can be defined to capture well-known pro-
cess computation and interaction patterns such as interleaving, monitoring, asyn-
chronous communication, synchronous communication, full synchrony, broad-
casting, etc. In fact, depending on the considered class of systems, one can prefer
a communication model with respect to the others.

A specific interaction predicate is given in Table 3; it is obtained by inter-
preting controlled composition as the interleaved parallel composition of the two
involved processes. Notably, this simple predicate does never modify the pol-
icy currently in force. Notice also that process commitments corresponding to
inaction (◦, ◦[◦], etc.) are disallowed. In the table, function [[·]]I denotes the
evaluation of terms with respect to interface I with attributes occurring therein
being replaced by the corresponding value in I. Moreover, match(T, t) denotes
a partial function performing matching between a template T and an item t;
when they do match, the function returns a substitution σ for the variables in
T (we use {} to denote the empty substitution), and is otherwise undefined.
We have a rule for each different kind of process action; for example, the third
rule states that, once the target γ of the action and an item t matching the
template T ′ through a substitution σ have been determined (by also exploiting
the interface I for evaluating c and T), an action qry at the level of processes
corresponds to a proper transition label at the level of systems semantics. The
last two rules ensure that in case of controlled composition of multiple processes
only one process at a time can perform an action (the other stays still).

Like the interaction predicate, many different reasonable authorization pred-
icates can be defined, possibly resorting to specific policy languages. One of such

The SCEL Language: Design, Implementation, Verification 15

Table 3. The interleaving interaction predicate

Π,I : fresh(n) � I : fresh(n), {}, Π

[[T]]I = T ′ [[c]]I = γ match(T ′, t) = σ

Π,I : get(T)@c � I : t � γ, σ, Π

[[T]]I = T ′ [[c]]I = γ match(T ′, t) = σ

Π, I : qry(T)@c � I : t � γ, σ, Π

[[t]]I = t′ [[c]]I = γ

Π,I : put(t)@c � I : t′ 	 γ, {}, Π

Π, I : new(J , K, Π,P) � I : new(J , K, Π, [[P]]I), {}, Π

Π,I : α � λ, σ, Π

Π,I : α[◦] � λ, σ, Π

Π,I : α � λ, σ, Π

Π, I : ◦[α] � λ, σ, Π

languages inspired by, but simpler than, the OASIS standard for policy-based
access control XACML [39], will be presented in Section 4. There, we will stress
also how the actual semantics of this policy language is intertwined and inte-
grated with SCEL semantics.

The labeled transition relation also relies on the following three operations
that each knowledge repository’s handling mechanism must provide:

– K � t = K′: the withdrawal of item t from the repository K returns K′;
– K � t: the retrieval of item t from the repository K is possible;
– K ⊕ t = K′: the addition of item t to the repository K returns K′.

We now briefly comment the rules in Table 4. Rule (pr-sys) transforms process
commitments into system labels by exploiting the interaction predicate. As a
consequence, a substitution σ is applied to the continuation P ′ of the process
that committed to α. When α contains a get(T) or a qry(T), σ replaces in P ′

the variables occurring in T with the corresponding values. The application of
the rule also replaces, in the generated label, self with the corresponding name.
When α is a fresh, it is checked if the name is not already used in the creating
component, except for the process part that will likely use n as, e.g., an infor-
mation to be added to some knowledge repository (notation n(E) is used here to
denote the sets of names occurring in a syntactic term E); this condition can be
always made true by exploiting alpha-equivalence among processes. Moreover, as
a consequence of the evaluation of the interaction predicate, the policy in force
at the component performing the action may change; this update is registered
in the produced system label by applying [Π ′/I.π] to the label λ generated by
the interaction predicate. Notably, the component generated by this transition
contains a placeholder • in place of the policy; it will be replaced by a (possibly
new) policy during the rest of the derivation (see, e.g., the use of [Π ′/•] in rule
(freshn)).

The possibility of executing actions fresh and new is decided by using the
information within a single component. However, since these actions affect the

16 R. De Nicola et al.

Table 4. Systems’ labeled transition relation (1/3): base rules

P ↓α P ′ α = I : fresh(n) ⇒ n
∈ n(I[K, Π,nil]) Π,I : α � λ, σ, Π ′

I[K, Π,P]
λ[Π′/I.π]� I[K, •, P ′σ]

(pr-sys)

C
I:fresh(n)� C′ I.π � I : fresh(n), Π ′

C
τ� (νn)C′[Π ′/•]

(freshn)

C
I:new(J ,K,Π,P)� C′ I.π � I : new(J , K, Π, P),Π ′

C
τ� C′[Π ′/•] ‖ J [K, Π,P]

(newc)

Π � I : t �̄ J , Π ′ K
 t = K′

J [K, Π, P]
I:t 	̄ J [Π′/J .π]� J [K′, Π ′, P]

(accget)

Π � I : t �̄J , Π ′ K � t

J [K, Π,P]
I:t �̄ J [Π′/J .π]� J [K, Π ′, P]

(accqry)

Π � I : t 	̄ J , Π ′ K ⊕ t = K′

J [K, Π, P]
I:t
̄ J [Π′/J .π]� J [K′, Π ′, P]

(accput)

S1
λ� S′

1 λ /∈ {I : t 	 P , I : t 	̄ J }

S1 ‖ S2
λ� S′

1 ‖ S2

(async)

system, as they either create a name restriction or a new component, their ex-
ecution by a process is indicated by a specific system label I : fresh(n) or
I : new(J , K, Π, P) (generated by rule (pr-sys)) carrying enough information
for the authorization request to perform the action to be checked according to
the local policy and for the modification of the system to take place (rules (freshn)
and (newc)). Notably, the authorization predicate is evaluated under the policy
produced by the interaction predicate (rule (pr-sys)); thus, the component per-
forming the action will enforce the (possibly new) policy so generated. Notably,
rule (freshn) relies on the condition checked in rule (pr-sys), about the freshness
of the new name n in the creating component, in order to put in place its scope.

The successful execution of the remaining three actions requires, at system
level, appropriate synchronization. For this reason, we have a pair of complemen-
tary labels corresponding to each action. Rules (accget), (accqry) and (accput) are
used to generate the labels denoting the willingness of components to accept the
execution of an action. More specifically, rule (accget) generates the label I : t �̄J
indicating the willingness of component J to provide the item t to component
I. Notably, the label is generated only if such willingness is authorized by the
policy in force at the component J (by means of the authorization predicate

The SCEL Language: Design, Implementation, Verification 17

Table 5. Systems’ labeled transition relation (2/3): point-to-point communication rules

C
I:t	n� C′ n = I.id C′[I.π/•] I:t 	̄ I� C′′

C
τ� C′′

(lget)

S1
I:t	n� S′

1 S2
I:t 	̄ J� S′

2 J .id = n I.π � I : t �̄ J , Π ′

S1 ‖ S2
τ� S′

1[Π ′/•] ‖ S′
2

(ptpget)

C
I:t�n� C′ n = I.id C′[I.π/•] I:t �̄ I� C′′

C
τ� C′′

(lqry)

S1
I:t�n� S′

1 S2
I:t �̄ J� S′

2 J .id = n I.π � I : t �̄J , Π ′

S1 ‖ S2
τ� S′

1[Π ′/•] ‖ S′
2

(ptpqry)

C
I:t
n� C′ n = I.id C′[I.π/•] I:t
̄ I� C′′

C
τ� C′′

(lput)

S1
I:t
n� S′

1 S2
I:t
̄ J� S′

2 J .id = n I.π � I : t 	̄ J , Π ′

S1 ‖ S2
τ� S′

1[Π ′/•] ‖ S′
2

(ptpput)

Π � I : t �̄J , Π ′) and if withdrawing item t from the repository of J is possible
(K � t = K′). An effect of this transition is also the update of policy Π in Π ′

(both in the resulting component and in the produced label). Rules (accqry) and
(accput) are similar to (accget), the only difference being that they invoke the
retrieval (K � t) and the addition (K ⊕ t = K′) operations of the repository’s
handling mechanism, respectively, rather than the withdrawal one. Finally, rule
(async) states that all actions different from a put for group-oriented communi-
cation and an authorization for a put can be performed by involving only some
of the system’s components. Therefore, if there is a system component able to
perform the authorization for a put, there is no way to infer that such compo-
nent in parallel with any other one (hence the system as a whole) can perform
the action. This ensures that when a system component is going to execute a put
for group-oriented communication all potential receivers are taken into account.

The rules in Table 5 model the variants of the three communication actions
implementing point-to-point interaction, while the rules for group-oriented com-
munication are shown in Table 6.

In case of point-to-point interaction, action get can withdraw an item ei-
ther from the local repository (lget) or from a specific repository with a point
to point access (ptpget). In any case, this transition corresponds to an internal
computation step. The transition labelled by I : t �̄I in the premise of (lget) can
only be produced by rule (accget); it ensures that the component I authorizes

18 R. De Nicola et al.

Table 6. Systems’ labeled transition relation (3/3): group communication rules

S1
I:t	P� S′

1 S2
I:t 	̄ J� S′

2 J |= P I.π � I : t �̄ J , Π ′

S1 ‖ S2
τ� S′

1[Π ′/•] ‖ S′
2

(grget)

S1
I:t�P� S′

1 S2
I:t �̄ J� S′

2 J |= P I.π � I : t �̄J , Π ′

S1 ‖ S2
τ� S′

1[Π ′/•] ‖ S′
2

(grqry)

S1
I:t
P� S′

1 S2
I:t
̄ J� S′

2 J |= P I.π � I : t 	̄ J , Π ′

S1 ‖ S2
I[Π′/I.π]:t
P� S′

1 ‖ S′
2

(grput)

S
I:t
P� S′ (J
|= P ∨ Π
� I : t 	̄ J , Π ′ ∨ I.π
� I : t 	̄ J , Π ′)

S ‖ J [K, Π,P]
I:t
P� S′ ‖ J [K, Π, P]

(engrput)

the local access to item t and that the component’s knowledge and policy are
updated accordingly. When the target of the action denotes a specific remote
repository (ptpget), the action is only allowed if n is the name of the component J
simultaneously willing to provide the wanted item and if the request to perform
the action at J is authorized by the local policy (identified by notation I.π).
Of course, if there are multiple components with the same name, one of them
is non-deterministically chosen as the target of the action. Action qry behaves
similarly to get, the only difference being that, if the action succeeds, after the
computation step all repositories remain unchanged. Its semantics is modeled
by rules (lqry) and (ptpqry). Finally, action put adds item t to a repository. Its
behavior is modeled by rules (lput) and (ptpput), that are similar to those of ac-
tions get and qry, with the major difference being that, if the action succeeds,
after the computation step an item is added to the target repository.

Let us now comment the rules for group-oriented communication that are
shown in Table 6. When the target of action get denotes a set of repositories
satisfying a given predicate (grget), the action is only allowed if one of these
repositories, say that of component J , is willing to provide the wanted item and
if the request to perform the action at J is authorized by the policy in force at
the component performing the action. Relation J |= P states that the attributes
of J satisfy predicate P ; the definition of such relation depends on the kind of the
used predicates. In any case, if the action succeeds, this transition corresponds
to an internal computation step (denoted by τ) that changes the repository of
component J . Rule (grqry) is similar, but in the case of action qry the item
is not removed from the repository. Differently from the two previous actions
that only capture the interaction with one target component arbitrarily chosen
among those satisfying the predicate P and willing to provide the wanted item,
put(t)@P can interact with all components satisfying P and willing to accept

The SCEL Language: Design, Implementation, Verification 19

the item t. In fact, rule (grput) permits the execution of a put for group-oriented
communication when there is a parallel component, say J , satisfying the target
of the action and whose policy authorizes this remote access. Of course, the
action must be authorized to use J as a target also by the policy in force at the
component performing the action (which is updated after each evaluation of the
authorization predicate). Notably, the resulting action is still a put for group-
oriented communication, thus further authorization actions performed by other
parallel components satisfying the target of the action can be simultaneously
executed.

The capability of a component to perform a put for group-oriented commu-
nication is not affected by those system components not satisfying predicate P ,
i.e. not belonging to the ensemble, or not authorising the action according to the
policy in force at the sending component or at the target ones (rule (engrput)).
Therefore, when there is a system component able to perform a put for group-
oriented communication, by repeatedly applying rules (grput) and (engrput) it is
possible to infer that the whole system can perform such an action (which in
fact means that a component produces an item which is added to the repository
of all the ensemble components that simultaneously are willing to receive the
item).

Running example (step 5/7) Let us suppose that IR2 .role=“rescuer” and
IR3 .role=“helpRescuer”, while IRi .role=“explorer” for 4 ≤ i ≤ n. Suppose also
that KR3 contains an item indicating that the victim has position (3, 5) and that
3 additional robots are needed for rescuing it.

Now, by exploiting the operational rule (accget), the third component can
generate the following labelled transition

IR3 [KR3 , ΠR, PR]
IR1 :〈“victim”,3,5,3〉 �̄IR3� IR3 [KR3 � 〈“victim”, 3, 5, 3〉, ΠR, PR]

Recall that KR3 �〈“victim”, 3, 5, 3〉 means that the information about the victim
is withdrawn from the knowledge repository KR3 .

Instead, by exploiting the operational rule (pr-sys), the first component can
generate the following labelled transition

IR1 [KR1 , ΠR, PR]
λ� IR1 [KR1 , •, (P2{3/x, 5/y, 3/c} | P3)]

where λ is

IR1 [Π ′R/ΠR] : 〈“victim”, 3, 5, 3〉 � (role=“rescuer” ∨ role=“helpRescuer”) .

Hence, by exploiting the operational rule (grget) and assuming Π ′R � λ, Π ′′R, the
overall system can perform the transition

S
τ� IR1 [KR1 , Π

′′
R, (P2{3/x, 5/y, 3/c} | P3)] ‖ Robot2

‖ IR3 [KR3 � 〈“victim”, 3, 5, 3〉, ΠR, PR] ‖ Robot4 ‖ . . . ‖ Robotn � S′

��

20 R. De Nicola et al.

Table 7. Systems’ transition relation

S
τ� S′

(tau)
(νn̄)S �−→ (νn̄)S′

S
I:t
P� S′

(put)
(νn̄)S �−→ (νn̄)S′[I.π/•]

(νn̄, n′′)(S1 ‖ S2{n′′/n′}) �−→ S′ n′′ fresh
(top)

(νn̄)(S1 ‖ (νn′)S2) �−→ S′

(νn̄)(S2 ‖ S1) �−→ S′

(comm)
(νn̄)(S1 ‖ S2) �−→ S′

(νn̄)((S1 ‖ S2) ‖ S3) �−→ S′

(assoc)
(νn̄)(S1 ‖ (S2 ‖ S3)) �−→ S′

The unlabeled transition relation (�−→) of the TS providing the semantics of
generic systems is defined on top of the labeled one by the inference rules in Ta-
ble 7. As a matter of notation, n̄ denotes a (possibly empty) sequence of names
and n̄, n′ is the sequence obtained by composing n̄ and n′. (νn̄)S abbreviates
(νn1)((νn2)(· · · (νnm)S · · ·)), if n̄ = n1, n2, · · · , nm with m > 0, and S, other-
wise. S{n′/n} denotes the system obtained by replacing any free occurrence in
S of n with n′. When considering a system S, a name is deemed fresh if it is
different from any name occurring in S.

Rule (tau) of Table 7 accounts for the computation steps of a system where all
(possible) name restrictions are at top level. Rule (put) states that, besides those
labeled by τ , computation steps may additionally be labeled by I : t
 P , cor-
responding to group-oriented communication triggered by an action put(t)@P
performed by component I, and thus transforms them into transitions of the
form �−→. This rule also takes care of updating the policy in force at the sending
component with the policy produced by the last evaluation of the authorization
predicate in the inference of transition S I:t�P� S′. Rule (top) permits to ma-
nipulate the syntax of a system, by moving all name restrictions at top level,
thus putting it into a form to which one of the first two rules can be possibly
applied. This manipulation may require the renaming of a restricted name with
a freshly chosen one, thus ensuring that the name moved at top level is differ-
ent both from the restricted names already moved at top level (to avoid name
clashes) and from the names occurring free in the other (sub)systems in parallel
(to avoid improper name captures). Rules (comm) and (assoc) state that systems’
composition is a commutative and associative operator. Notably, by exploiting
these two rules, we can manipulate systems and avoid adding analogous rules to
those defining the labeled transition relation.

Running example (step 6/7) The robotics system can thus evolve by performing
the reduction S �−→ S′. ��

The SCEL Language: Design, Implementation, Verification 21

3 Knowledge Management

As we have seen in the previous section, the SCEL language definition abstracts
from a few ingredients of the language. In this section, we show two different
knowledge mechanisms that can be used to instantiate the knowledge parame-
ter. We start presenting the simplest, yet effective, instantiation of knowledge
repositories based on multiple distributed tuple spaces à la Klaim [20]. Then, we
consider constraints, which are suitable to represent partial knowledge, to deal
with multi-criteria optimization, to express preferences, fuzziness, and uncer-
tainty. Finally, we show how knowledge can be exploited by external reasoners
for taking decisions according to (a partial perception of) the context.

3.1 Tuple Spaces

Table 8 shows how to instantiate knowledge repositories, items and templates
to deal with tuple spaces. Knowledge items are tuples, i.e. sequences of values,
while templates are sequences of values and variables. Knowledge reposito-
ries are then tuple spaces, i.e. (possibly empty) multisets of stored tuples 〈t〉. We
use ∅ to denote an empty ‘place’ and the operator ‖ to aggregate items in
multisets. Values within tuples can either be targets c, or processes P or, more
generally, can result from the evaluation of some given expression e. We assume
that expressions may contain attribute names, boolean, integer, float and string
values and variables, together with the corresponding standard operators. To
pick a tuple out from a tuple space by means of a given template, the pattern-
matching mechanism is used: a tuple matches a template if they have the same
number of elements and corresponding elements have matching values or vari-
ables; variables match any value of the same type (?x and ?X are used to bind
variables to values and processes, respectively), and two values match only if they
are identical. If more tuples match a given template, one of them is arbitrarily
chosen.

This form of knowledge representation has been already used in the run-
ning examples shown in the previous section. For instance, the template
(“victim”, ?x, ?y, ?c) is used as argument of a get action to withdraw a 4-element
tuple from the repository of one of the robots that knows the victim position.
The first element of such a tuple must be the string “victim”; the other three
values will be bound to variables x, y, and c, respectively.

The three operations provided by the knowledge repository’s handling mech-
anism, namely withdrawal (K � t), retrieval (K � t) and addition (K ⊕ t) of an
item t from/to repository K, are inductively defined by the inference rules shown
in Table 9. Notably, when a matching tuple is withdrawn from K, it is replaced
by the empty place ∅.

3.2 Constraints

In this section, we report some basic definitions concerning the concept of (soft)
constraints. Among the many available formalizations, hereafter we refer to the
one based on c-semirings [7,45], which generalizes many of the others.

22 R. De Nicola et al.

Table 8. Tuple space syntax (e is an expression)

Knowledge: Items: Templates:

K ::= ∅ | 〈t〉 | K1 ‖ K2 t ::= e | c | P | t1, t2 T ::= e | c | ? x | ? X | T1, T2

Table 9. Tuple space operations (
, �, ⊕)

〈t〉
 t = ∅
K1
 t = K′

(K1 ‖ K2)
 t = K′ ‖ K2

K2
 t = K′

(K1 ‖ K2)
 t = K1 ‖ K′

〈t〉 � t

K1 � t

(K1 ‖ K2) � t

K2 � t

(K1 ‖ K2) � t K ⊕ t = K ‖ 〈t〉

Intuitively, a constraint is a relation that gives information on the possible
values that the variables of a specified set may assume. We adopt a functional
formulation. Hence, given a set V of variables and a domain D of values that
the variables may assume, assignments and constraints are defined as follows.

Definition 1 (Assignments). An assignment η of values to variables is a
function η : V → D.

Definition 2 (Constraints). A constraint χ is a function χ : (V → D) →
{true, false}.

A constraint is then represented as a function that, given an assignment η,
returns a truth value indicating if the constraint is satisfied by η. An assignment
that satisfies a constraint is called a solution.

When SCEL’s knowledge repositories are instantiated as multiple distributed
constraint stores, D could be taken as the set of SCEL basic values (e.g., integers
and strings). Variables in V , that we call constraint variables to take them
apart from those of SCEL processes, could be written as pairs of names of the
form n@n′ (e.g., batteryLevel@roboti), where n is the variable name and n′ the
name of the component that owns the variable. Different components may own
variables with the same name; such variables are distinct and may thus store
different values.

We denote an assignment as a collection of pairs of the form n@n′ �→ v,
where n@n′ and v range over variables and values, respectively. Such pairs
explicitly specify the associations for only the variables relevant for the con-
sidered constraint; these variables form the so-called support [8] of the con-
straint, which is assumed to be finite. For example, given the constraints
batteryLevel@roboti ≥ 20% and lifetime@roboti = batteryLevel@roboti · 3000,
the assignment {batteryLevel@roboti �→ 25%, lifetime@roboti �→ 1000} satisfies

The SCEL Language: Design, Implementation, Verification 23

the first constraint (i.e., returns true) but does not satisfy the second one (i.e.,
returns false).

The constraints introduced above are called crisp in the literature, because
they can only be either satisfied or violated. A more general notion is represented
by the soft constraints. These constraints, given an assignment, return an element
of an arbitrary constraint semiring (c-semiring [7]). C-semirings are partially
ordered sets of ‘preference’ values equipped with two suitable operations for
comparison (+) and combination (×) of (tuples of) values and constraints.

Definition 3 (C-semiring). A c-semiring is an algebraic structure
〈S, +, ×, 0, 1〉 such that: S is a set and 0, 1 ∈ S; + is a binary operation
on S that is commutative, associative, idempotent, 0 is its unit element and
1 is its absorbing element; × is a binary operation on S that is commutative,
associative, distributes over +, 1 is its unit element and 0 is its absorbing
element. Operation + induces a partial order ≤ on S defined by a ≤ b iff
a + b = b, which means that a is more constrained than b or, equivalently, that
b is better than a. The minimal element is thus 0 and the maximal 1.

Definition 4 (Soft constraints). Let 〈S, +, ×, 0, 1〉 be a c-semiring. A soft
constraint χ is a function χ : (V → D) → S.

In particular, crisp constraints can be understood as soft constraints on the
c-semiring 〈{true, false}, ∨, ∧, false, true〉.

By lifting the c-semiring operators to constraints, we get the operators

(χ1 + χ2)(η) = χ1(η) + χ2(η) (χ1 × χ2)(η) = χ1(η) × χ2(η)

(their n-ary extensions are straightforward). We can formally define the notions
of consistency and entailment. The consistency condition χ �= 0 stands for

∃ η : χ(η) �= 0

i.e. a constraint is consistent if it has at least a solution; the entailment condition
χ1 ≤ χ2 stands for

∀ η, χ1(η) ≤ χ2(η)

When constraints are used as the argument of actions put, qry and get, these
actions play the role of actions tell, ask and retract, respectively, commonly
used in the CCP paradigm [48] to add a constraint to a store, to check entail-
ment of a constraint by a store and to remove a constraint from a store. These
constraints may only involve constraint variables whose owner is the compo-
nent target of the action. This ensures that all the constraints stored in the
same repository only involve variables owned by the same component, which is
the owner of the repository. Thus, for example, it will never happen that the
robot2’s repository stores a constraint like batteryLevel@robot1 < 100%.

The three operations provided by the knowledge repository’s handling mech-
anism, namely withdrawal (K � χ), retrieval (K � χ) and addition (K ⊕ χ) of a
constraint χ from/to repository K, are inductively defined by the inference rules

24 R. De Nicola et al.

Table 10. Constraint store operations (
, �, ⊕)

K
 χ =
{

K′ if K ≡ K′ ‖ χ
K otherwise

K � χ if K ≡ (χ1 ‖ . . . ‖ χm) and (χ1 × . . . × χm) ≤ χ

K ⊕ χ = K ‖ χ if K ≡ (χ1 ‖ . . . ‖ χm) and (χ1 × . . . × χm × χ)
= 0

shown in Table 10. We use K1 ≡ K2 to denote that K1 and K2 are equal up to
commutation of items. In the definition of K � χ and K ⊕ χ, if the constraint
store is empty (i.e. m = 0), then it suffices to verify that χ is a tautology (i.e.,
it is a constant function returning the c-semiring value 1 for any assignment)
and that χ has at least a solution (i.e., it differs from the c-semiring value 0),
respectively.

As an example of use in our robotics scenario of the constraint-based in-
teraction, robot1 could perform the action qry(lifetime@robot2 > 1000)@robot2
to check if the lifetime of robot2 is at least 1000 seconds (which could be,
e.g., the minimum time to transport the victim to a safe area). Assuming
that the robot2’s repository stores the constraints batteryLevel@robot2 = 50%
and lifetime@robot2 = batteryLevel@robot2 · 3000, the entailment of constraint
lifetime@robot2 > 1000 is satisfied and, hence, the execution of the robot be-
haviour can proceed with the continuation process of the qry action.

3.3 External Reasoners

As discussed, SCEL is sufficiently powerful for dealing with coordination and
interaction issues. However, it does not provide explicit machineries for specify-
ing components that take decisions about the action to perform based on their
context. Obviously, the language could be extended in order to encompass such
possibilities, and one could have specific reasoning phases, or dedicated SCEL

components, triggered by the perception of changes in the context.

The general perspective. In our view, it is however preferable to have separate
reasoning components specified in another language, that SCEL programs can
invoke at need. Having two different languages for computation and coordination,
and for reasoning, does guarantee separation of concerns, a fundamental property
to obtain reliable and maintainable specifications. Also, it may be beneficial to
have a methodology for integrating different reasoners designed and optimised
for specific purposes.

What we envisage is having SCEL programs that whenever have to take
decisions have the possibility of invoking an external reasoner by providing it
information about the relevant knowledge they have access to, and receiving in
exchange informed suggestions about how to proceed. In a scenario like the robot
rescue one, reasoners could for example be exploited by robots to “improve”

The SCEL Language: Design, Implementation, Verification 25

their random walk phase, e.g. trying to minimise collisions in an environment
densely populated by robots moving in an unexpected way. Intuitively, the cur-
rent robot’s perception of the surrounding environment should be provided to
a reasoner, which would return the “best” movement direction according to the
probability of colliding with other robots and, possibly, to other criteria.

As a matter of fact, in [5] we provided a general methodology to enrich SCEL

components with reasoning capabilities by resorting to explicit reasoner integra-
tors, we instantiated the methodology for MISSCEL

7, a SCEL interpreter, and
we discussed the integration of MISSCEL with the Pirlo reasoner [4]. This per-
mits to specify reasoning service component ensembles, and also paves the way
towards the exploitation of tools and techniques for analysing their behaviour,
allowing thus to reason on reasoning service component ensembles. An example
is the collision avoidance scenario considered in [5], which has been analysed ex-
ploiting MultiVeStA [51], a recently proposed statistical model checker. More
details about the scenario and its analysis are provided in Section 8.2.

In the following we present our approach to enrich SCEL components with
external reasoning capabilities, in particular focusing on a SCEL instance where
repositories are implemented as multisets of tuples (as in Section 3.1), while we
refer to [5] for details about its instantiation for MISSCEL.

The methodology. We aim at enriching SCEL components with an external
reasoner to be invoked when necessary (e.g. by a robot before performing a
movement). Ideally, this should be done by minimally extending SCEL. In Fig-
ure 1 we depicted the constituents of a SCEL component: interfaces, policies,
processes and repositories. Interfaces will not be involved in the extension, as
they only expose the local knowledge to other components. Moreover, we cur-
rently restrict ourselves to not explicitly consider policies in the extension. Since,
in the considered dialect, processes store and retrieve tuples in repositories, the
interaction between a process and its local repository is a natural choice where
to plug-in a reasoner: we can use special data (reasoning request tuples) whose
addition to the local knowledge (i.e. via a put at self) triggers the reasoner.
For example, assuming we have a reasoner offering the capability of computing
the best direction where to move so as to minimize the probability of collisions,
a robot may invoke the reasoner before performing a movement by resorting to
an action like put(“reasoningRequest”, “computeDirection”, perceivedEnv)@self,
where perceivedEnv is the current perception that the robot has of the surround-
ing environment (e.g. the number and position of robots within a certain range).
Reasoning results can then be stored in the knowledge as reasoning result tu-
ples, allowing local processes to access them as any other data (e.g. via a get
from self). For example, the direction “dir” generated by the reasoner can be
accessed by resorting to an action like get(“reasoningResult”, dir)@self.

Figure 2 depicts such an enriched SCEL component, together with a generic
external reasoner R. With respect to Figure 1, now local communications are
filtered by RI, a reasoner integrator. As depicted by the grey arrow between RI

7 http://sysma.lab.imtlucca.it/tools/misscel/

http://sysma.lab.imtlucca.it/tools/misscel/

26 R. De Nicola et al.

Knowledge

K
Processes

P

I Interface

Π
Policies

Reasoner
Integrator

RI

Normal flow

Reasoning request
Reasoner
R

Fig. 2. Enriched SCEL component

Fig. 3. An architectural perspective of the reasoner integrator

and R, in case of reasoning requests RI invokes R, which evaluates the request
and returns back the result of the reasoning phase. RI then stores the obtained
result in the knowledge, allowing the local processes to access it via common get
or qry. In case of normal data the flow goes instead directly to the knowledge.
Note that only local put of reasoning request tuples trigger a reasoner.

Actually, RI has the further fundamental role of translating data among the
internal representations used by SCEL and by the reasoner, acting hence as
an adapter between them. For example, the reasoner may use a different rep-
resentation for the space (and thus for the positions of the other robots) with
respect to SCEL. To sum up, RI performs three tasks: it translates the parame-
ters of the reasoning requests from SCEL’s representation to the reasoner’s one
(scel2reasoner), it invokes the reasoner (invokeReasoner), and finally it trans-
lates back the results (reasoner2scel). Clearly, each reasoner requires its own
implementation of the three operations. Hence, as depicted in Figure 3, we sep-
arate the RI component into an Abstract Reasoning Interface and a Concrete
Adapter. The former is given just once and contains the definition of the three
operations, while the latter is reasoner- and domain-specific, and provides the ac-
tual implementation of the three operations. In [5] we discussed the instantiation
for MISSCEL of the Abstract Reasoning Interface, together with an example
of a concrete adapter for the reasoner Pirlo in the context of the mentioned
collision avoidance robotic scenario.

The SCEL Language: Design, Implementation, Verification 27

Note that the presented methodology is not restricted to a particular rea-
soner. Moreover, many reasoners could be used at the same time, each performing
particular reasoning tasks for which they are best suited. To this end, particular
reasoning services (like e.g. the computeDirection one) can be requested by a
SCEL process according to the task at hand.

Finally, it may be worth to remark that, as mentioned, we did not investigate
yet the role of policies in extending SCEL’s components with reasoning capa-
bilities. However, they already play an important role in our methodology, as
they can manipulate the flow of data among processes and local repositories, and
thus can intercept, modify or generate reasoning requests and results. Moreover,
we can easily foresee a scenario in which complicated policies, possibly involving
reasoning tasks, resort to a reasoner as well, following the proposed methodology.
For example, in case of a group get like, e.g. the second action of the process
presented in the step 3/7 of our running example, which is used to help other
robots for rescuing a victim, it may be useful to allow policies to use reasoners
in order to select the best tuple among the many matching ones present in a
distributed repository (e.g. different help requests) according to some specific
criteria (e.g. the one regarding the nearest robot, or the most urgent one).

4 A Policy Language

The SCEL programming constructs presented in Section 2 define the computa-
tional behaviour of components in a procedural style. According to the SCEL

design principles, the interaction and adaptation logics are defined separately by
means of behavioural policies. These policies have to be intuitive and easy-to-
maintain, therefore the use of a declarative paradigm for their specification is
advocated. Recently, policy languages (see e.g. [18,31,29]) are receiving much at-
tention in different research fields, varying, e.g., from access control to network
management. In fact, policies can regulate multiple system’s aspects and, by
using a declarative approach, can be easily integrated with other programming
languages.

Here, we present a simplified version8 of FACPL (Formal Access Control Pol-
icy Language) [36], a simple, yet expressive, language for defining access control,
resource usage and adaptation policies, which is inspired by the XACML [39]
standard for access control. We refer the interested reader to [35] for a presen-
tation of the full version of FACPL, which contains additional aspects that are
not exploited in the integration with SCEL. Syntax and semantics of policy
abstractions are presented in Section 4.1 and Section 4.2, respectively.

4.1 Policies and Their Syntax

Policies are sets of rules that specify strategies, requirements, constraints, guide-
lines, etc. about the behaviour of a controlled system. The syntax is presented
8 In the rest of the paper, unless when explicitly mentioned, we use the acronym

FACPL for referring to this simplified version.

28 R. De Nicola et al.

Table 11. Policy constructs

Policies: π ::= 〈α target : τ ? rules : r+ obl : o∗ 〉
| {α target : τ ? policies : π+ obl : o∗ }

Combining algorithms: α ::= deny-overrides | permit-overrides

| deny-unless-permit | permit-unless-deny

| first-applicable | only-one-applicable

Rules: r ::= (d target : τ ? condition : be? obl : o∗)

Decisions: d ::= permit | deny

Targets: τ ::= f(pv ,sn) | τ ∧ τ | τ ∨ τ

Matching functions: f ::= equal | not-equal | greater-than

| less-than | greater-than-or-equal

| less-than-or-equal | . . .

Obligations: o ::= [d s]

Obligation actions: s ::= ε | a.s

in Table 11. As a matter of notation, symbol ? stands for optional elements, ∗
for (possibly empty) sequences, and + for non-empty sequences. For the sake
of readability, whenever an element is missing, we also omit the possibly re-
lated keyword; thus, e.g., rule (d target : τ condition : obl :) will be written as
(d target : τ).

A Policy is either an atomic policy 〈. . .〉 or a policy set {. . .}. An atomic
policy (resp. policy set) is made of a target, a non-empty sequence of rules (resp.
policies) combined through one of the combining algorithms, and a sequence of
obligations.

A target indicates the authorisation requests to which a policy/rule applies.
It is either an atomic target or a pair of simpler targets combined using the
standard logic operators ∧ and ∨. An atomic target f(pv ,sn) is a triple denoting
the application of a matching function f to policy values9 pv from the policy and
to policy values from the evaluation context identified by attribute (structured)
names10 sn. In fact, an attribute name refers to a specific attribute of the request
or of the environment, which is available via the evaluation context. In this way,
an authorisation decision can be based on some characteristics of the request,
e.g. subjects’ or objects’ identity, or of the environment, e.g. CPU load. For

9 The set of policy values depends on the system where the policies are enforced. In
case of SCEL systems, this set contains action identifiers (i.e., get, qry, put, fresh
and new), items and templates, and all the other knowledge values that can be used
within the evaluation.

10 A structured name has the form name/name, where the first name stands for a
category name and the second one for an attribute name.

The SCEL Language: Design, Implementation, Verification 29

example, the target greater-than(90%,subject/CPUload) matches whenever 90%
is greater then the CPU load of the subject component. Similarly, the structured
name action/action-id refers to the identifier of the action to be performed (such
as get, qry, put, etc.) and, thus, the target equal(get, action/action-id) matches
whenever such action is the withdrawing one.

Rules are the basic elements for request evaluation. A rule defines the tests
that must be successfully passed by attributes for returning a positive or neg-
ative decision — i.e. permit or deny — to the enclosing policy. This decision
is returned only if the target is ‘applicable’, i.e. the request matches the target;
otherwise the evaluation of the rule returns not-applicable. In fact, as shown in
Section 4.2, the semantics of the policies is defined over a three-valued decision
δ that, in addition to permit and deny, can also assume the value not-applicable.
Rule applicability can be further refined by the condition expression be, which
permits more complex calculations than those in target expressions. be is a
boolean expression which acts on policy values and structured names. Notably,
these expressions, as well as the matching functions, can be extended in order
to properly deal with specific data types.

A combining algorithm computes the authorisation decision correspond-
ing to a given request by combining a set of rules/policies’ evaluation results.
The language provides the following algorithms:

– deny-overrides: if any rule/policy in the considered list evaluates to deny, then
the result of the combination is deny. In other words, deny takes precedence,
regardless of the result of evaluating any of the other rules/policies in the list.
Instead, if at least a rule/policy evaluates to permit and all others evaluate
to not-applicable or permit, then the result of the combination is permit. If
all policies are found to be not-applicable to the decision request, then the
policy set evaluates to not-applicable.

– permit-overrides: this algorithm is the dual of the previous one, i.e. this time
permit takes precedence over the other results.

– deny-unless-permit: this algorithm is similar to permit-overrides, because it
is intended for those cases where a permit decision takes precedence over
deny decisions; differently from permit-overrides, this algorithm never returns
not-applicable, i.e. it is converted to deny.

– permit-unless-deny: this algorithm is the dual of the previous one, i.e. deny
takes precedence over permit decisions and not-applicable is never returned.

– first-applicable: rules/policies are evaluated in the order of appearance in the
considered list of rules/policies and the combined result is the same as the
result of evaluating the first rule/policy in the list that is applicable to the
decision request, if such result is either permit or deny. If all rules/policies
evaluate to not-applicable, then the overall result is not-applicable.

– only-one-applicable: if one and only one rule/policy in the considered list is
applicable by virtue of its target, the result of the combining algorithm is the
result of evaluating the single applicable rule/policy. Otherwise, the result
is not-applicable.

30 R. De Nicola et al.

An obligation is a sequence (ε denotes the empty one) of actions that should
be performed in conjunction with the enforcement of an authorisation decision.
It is returned when the authorisation decision for the enclosing element, i.e. rule,
policy or policy set, is the same as the one attached to the obligation. An obli-

gation action is a generic action that can be used for enforcing additional
behaviours in the controlled system and whose arguments may also contain ex-
pressions and structured names that are fulfilled during request evaluation. Like
policy values, the set of obligation actions depends on the system where the
policies are enforced. For example, w.r.t. a given request, the obligation

[deny put(“goTo”, env/station.x, env/station.y)@self]

returned when the authorisation decision for the enclosing element is deny, could
be fullfilled as follows

put(“goTo”, 5.45, 3.67)@self

and could be used to set the robot movement’s direction with respect to the
coordinates of the closest (charging) station. Notably, the coordinates are re-
trieved at evaluation-time through the context, as indeed obligation actions can
use context-dependent arguments.

4.2 Semantics of the Policy Language

Before presenting the semantics, we introduce the key notion of authorisation
requests. They are functions, ranged over by ρ, mapping structured names to
policy values and are written as collections of pairs of the form (sn, pv). As an
example, consider the following request:

ρ = {(subject/subject-id, “cmp”), (subject/attr, 4), . . .
(action/action-id, “act”), . . .
(object/resource-id, “res”), (object/attr, 3), . . . }

Here, the subject identified by the string “cmp” requires the authorisation to
execute the action “act” on the object identified by string “res”. Notably, au-
thorisation requests contain all attributes needed to evaluate them, forming the
so-called evaluation context, including environmental properties.

The language semantics permits, given a policy π and a request ρ, to obtain
a decision δ ∈ {permit, deny, not-applicable} and a (possibly empty) sequence s
of (fulfilled) obligation actions. This is expressed by the judgement π, ρ � δ, s.
When we only consider permit and deny as resulting decisions, we use d instead
of δ. The semantics is defined by the inference rules for the evaluation of policy
elements, reported in Table 12, and of policy combining algorithms, reported in
Table 13. In the next two subsections we comment the rules of the two tables,
respectively.
Semantics of Policies’ Elements. The inference rules of Table 12 are grouped
according to the type of element they refer to. Thus, from top to bottom, we
have the inference rules concerning policies, rules, targets and obligations. To

The SCEL Language: Design, Implementation, Verification 31

Table 12. Semantics of policies’ elements

Policies

τ, ρ � applicable α(r+), ρ � d, s o∗, ρ, d � s′

〈α target : τ rules : r+ obl : o∗ 〉, ρ � d, s.s′

α(r+), ρ � d, s o∗, ρ, d � s′

〈α rules : r+ obl : o∗ 〉, ρ � d, s.s′
α(r+), ρ � not-applicable, ε

〈α rules : r+ obl : o∗ 〉, ρ � not-applicable, ε

τ, ρ � not-applicable ∨ (τ, ρ � applicable ∧ α(r+), ρ � not-applicable, ε)

〈α target : τ rules : r+ obl : o∗ 〉, ρ � not-applicable, ε

Rules

τ, ρ � applicable [[be]]ρ = true o∗, ρ, d � s

(d target : τ condition : be obl : o∗), ρ � d , s

τ, ρ � applicable o∗, ρ,d � s

(d target : τ obl : o∗), ρ � d , s

[[be]]ρ = true o∗, ρ,d � s

(d condition : be obl : o∗), ρ � d , s

o∗, ρ, d � s

(d obl : o∗), ρ � d , s

τ, ρ � not-applicable

(d target : τ condition : be? obl : o∗), ρ � not-applicable, ε

[[be]]ρ = false
(d condition : be obl : o∗), ρ � not-applicable, ε

τ, ρ � applicable [[be]]ρ = false
(d target : τ condition : be obl : o∗), ρ � not-applicable, ε

Targets

τ1, ρ � applicable ∨ τ2, ρ � applicable
(τ1 ∨ τ2), ρ � applicable

τ1, ρ � applicable τ2, ρ � applicable
(τ1 ∧ τ2), ρ � applicable

τ1, ρ � not-applicable τ2, ρ � not-applicable
(τ1 ∨ τ2), ρ � not-applicable

τ1, ρ � not-applicable ∨ τ2, ρ � not-applicable
(τ1 ∧ τ2), ρ � not-applicable

f([[pv]]ρ, ρ(sn)) � true
f(pv,sn), ρ � applicable

sn /∈ dom(ρ) ∨ f([[pv]]ρ, ρ(sn)) � false
f(pv,sn), ρ � not-applicable

pv > pv′

greater-than(pv,pv) � true
pv ≯ pv′

greater-than(pv,pv′) � false

. . .

Obligations

ε, ρ, d � ε

d′ = d [[s]]ρ = s′ o∗, ρ, d � s′′

[d ′ s] o∗, ρ, d � s′.s′′
d′
= d o∗, ρ, d � s′

[d ′ s] o∗, ρ, d � s′

32 R. De Nicola et al.

save space, we do not show the inference rules of policy sets, as they are similar
to those of atomic policies, and of some matching functions.

Some inference rules use the evaluation function [[·]]ρ that first replaces each
attribute occurring in its argument expression with the corresponding value re-
trieved from the request ρ and then makes possible (boolean, integer, float,
string, etc.) calculations. For example, given the request shown before, the arith-
metic expression subject/attr + object/attr is evaluated as follows

[[subject/attr + object/attr]]ρ = ρ(subject/attr) + ρ(object/attr) = 3 + 4 = 7

In case of occurrence of run-time errors, e.g. a function is not defined for argu-
ments of a certain type, the expression evaluation halts and the policy evaluation
does not complete.

The judgement π, ρ � δ, s defines the semantics of policies and is inferred via
the inference rules for targets, obligations and rules, combined together using
the inference rules for the combining algorithms. Specifically, when a policy π is
applied to a request ρ, first it is checked if the policy’s target matches the request.
If this is the case the evaluation proceeds by applying the policy’s combining
algorithm to the (sequence of) enclosed rules, thus obtaining a policy decision d
and a sequence of obligation actions s. The decision d is then used to fulfill the
sequence of policy’s obligations thus obtaining a sequence s′ of obligation actions
that, in the resulting authorisation statement, is appended to s. If the target is
empty then it matches any request. Finally, if the target does not match the
request or the decision obtained by the combining algorithm is not-applicable,
the policy does not apply and the decision not-applicable is returned together
with an empty sequence of obligations. A policy set is evaluated like a policy,
the only difference is that the combining algorithm is applied to a sequence of
policies and/or policy sets, rather than rules.

When a rule r is applied to a request ρ, first it is checked if the rule’s target
matches the request. Additionally, in this case, a condition expression, if present,
is evaluated. If its evaluation returns true, the rule applies, otherwise the deci-
sion not-applicable is returned. If the condition expression is absent, then it is
considered true. When the rule’s target matches the request and the condition
expression returns true, the rule’s effect, i.e. permit or deny, is returned, together
with the sequence of obligation actions resulting from fulfilling the sequence of
rule’s obligations.

A target τ matches a request ρ, i.e. its evaluation returns applicable, if the
combination of its atomic targets matches ρ. A composed target of the form
(τ1 ∨ τ2) matches ρ, if one between τ1 and τ2 matches the request, while in
case of target (τ1 ∧ τ2), both τ1 and τ2 must match the request. An atomic
target of the form f(pv ,sn) matches a request ρ if the matching function f ,
applied to (the evaluation of) the policy value pv and the value identified by
the structured name sn in the request, i.e. ρ(sn), returns true. Before applying
the matching function, the policy value must be evaluated, since it may be a
template containing expressions. This is not necessary for the structured name;
indeed, although it may be an item, it will not contain expressions since it has

The SCEL Language: Design, Implementation, Verification 33

been retrieved from the request. Instead, the evaluation of an atomic target
returns not-applicable either if the structured name does not identify any value
in the request, i.e. it does not belong to the request’s domain (sn /∈ dom(ρ)),
or if the matching function returns false. The rules for matching functions are
straightforward. For example, greater-than(pv,pv′) returns true only when pv is
greater than pv′.

The last three rules account for fulfilment of a sequence of policy’s obliga-
tions when the decision for the enclosing element is d, i.e. permit or deny. If the
sequence is empty, then an empty sequence of obligation actions is returned.
Otherwise, the obligations in the sequence are fulfilled sequentially and the re-
sulting sequences of obligation actions are linked together preserving the same
order. The fulfilment of an obligation with attached effect equal to the decision d
of the enclosing element consists in evaluating all argument expressions by using
function [[·]]ρ. Instead, if the attached effect differs from d, the last rule permits
to continue the fulfilment while ignoring the current obligation.

Semantics of Policy Combining Algorithms. The rules of Table 13 rewrite
formally the combining algorithms descriptions presented in Section 4.1. For each
algorithm, we have separate, but quite similar, rules that deal with the case that
the algorithm is applied to a sequence of rules or of policies. Therefore, to save
space, we only report and comment the first type of rules and, for dual algorithms
(e.g. permit-overrides and deny-overrides), we avoid to report both set of rules.

In the inference rules, given a non-empty sequence r+ of rules, notation
∃ r, ρ � δ, s (� r, ρ � δ, s, resp.) means that there is (not, resp.) a rule in the
sequence satisfying the judgement. The variants with universal quantifier or
where the index of rules is explicitly considered have a similar meaning.

The rules for the algorithm permit-overrides (resp. deny-overrides) are straight-
forward: if there is a rule in the sequence to which the algorithm is applied
returning decision permit (resp. deny) then the algorithm returns permit; in-
stead, if all rules in the sequence are not-applicable, then the algorithm returns
not-applicable; otherwise, i.e. no rule returns permit and there is at least one rule
returning deny (resp. permit), then the algorithm returns deny.

The rules for the algorithm deny-unless-permit (resp. permit-unless-deny) are
similar to those for permit-overrides (resp. deny-overrides) but in this case the
decision not-applicable is never returned. Thus, the algorithm returns permit
(resp. deny) if there is a rule in the sequence returning it; otherwise, it returns
deny (resp. permit).

In the previous inference rules, the sequence of obligation actions returned
by an algorithm together with a decision d is any of those returned by one of
the rules, in the sequence to which the algorithm is applied, returning the same
decision d (if there is no such rule, then it is the empty sequence). However,
no assumption is made about the evaluation order of the rules in the sequence.
Thus, when more rules return permit or deny, the returned sequence of obligation
actions is somehow nondeterministically chosen. Namely, id the execution halts
at the first permit or deny result, the resulting obligation sequence s is composed
by only the actions returned together with such a result.

34 R. De Nicola et al.

Table 13. Semantics of policy combining algorithms

Permit-Overrides

∃ r, ρ � permit, s

permit-overrides(r+), ρ � permit, s

� r′, ρ � permit, s′ ∃ r, ρ � deny, s

permit-overrides(r+), ρ � deny, s

∀ r, ρ � not-applicable, ε

permit-overrides(r+), ρ � not-applicable, ε

Deny-Unless-Permit

∃ r, ρ � permit, s

deny-unless-permit(r+), ρ � permit, s

� r′, ρ � permit, s′ ∃ r, ρ � deny, s

deny-unless-permit(r+), ρ � deny, s

∀ r, ρ � not-applicable, ε

deny-unless-permit(r+), ρ � deny, ε

First-Applicable i ∈ {1, 2, . . . , |r|}

ri, ρ � d, s ∀ 1 ≤ j < i : rj , ρ � not-applicable, ε

first-applicable(r+), ρ � d, s

∀ i : ri, ρ � not-applicable, ε

first-applicable(r+), ρ � not-applicable, ε

Only-One-Applicable i ∈ {1, 2, . . . , |r|}

ri, ρ � d, s ∀ j
= i : rj , ρ � not-applicable, ε

only-one-applicable(r+), ρ � d, s

∃ i, j : i
= j ∧ ri, ρ � di, si ∧ rj , ρ � dj , sj

only-one-applicable(r+), ρ � not-applicable, ε

Differently from the previous cases, the inference rules for the algorithm
first-applicable ensure that the rules to which the algorithm is applied are eval-
uated sequentially. The decision returned is then the first one differing from
not-applicable, if any, or not-applicable, otherwise.

Finally, the rules for the algorithm only-one-applicable check if only one of
the rules to which the algorithm is applied returns a decision differing from
not-applicable: if this is the case, then such decision is returned (together with the
associated sequence of obligation actions), otherwise not-applicable is returned.

To sum up, policies, and their evaluation, are hierarchically structured as
trees: the evaluation of leaf nodes, i.e. rules, return a ‘starting’ decision, permit,
deny or not-applicable, while the intermediate nodes, i.e. policies, combine the
decisions and obligations returned by the evaluation of their child nodes through
the chosen combining algorithm. Policy evaluation terminates when the root
is reached producing a decision and a sequence of obligations. This sequence

The SCEL Language: Design, Implementation, Verification 35

Table 14. pattern-match function

match(T, t) = σ

pattern-match(T ,t) � true

 ∃σ : match(T, t) = σ

pattern-match(T ,t) � false

consists of fulfilled actions that will enforce the consequences resulting from the
authorisation process.

5 A Full-Fledged SCEL Instance

In this section, we present a full instantiation of the SCEL language, called
PSCEL (Policed SCEL). PSCEL uses as knowledge the tuple spaces presented
in Section 3.1 and as policy language the version of FACPL presented in Sec-
tion 4.1. Therefore, each PSCEL component has its own tuple repository and a
collection of policies controlling the behaviour of such a component and conse-
quently the interactions with others.

Section 5 introduces the formal integration of FACPL with SCEL by out-
lining the integration steps which must be followed in order to obtain fully-
interoperable abstractions. Then, Section 5.2 shows PSCEL at work on the
considered swarm robotics scenario.

5.1 PSCEL: Policed SCEL

We present the syntax refinement, followed by the formal integration in the
SCEL operational semantics.

Syntax. FACPL policies are specialised by instantiating the obligation actions
as the set of SCEL actions reported in Table 1, and by defining the matching
function pattern-match, which aims at comparing knowledge values with policy
ones. In particular, this function defines, by using the pattern-matching mech-
anism presented in Section 3.1, the matching of a template with a knowledge
item. The formal rules for the new comparison function are reported in Table 14.

To explicitly represent the fact that the policies in force at any given com-
ponent can dynamically change while the component evolves, we use a sort of
automata somehow reminiscent of security automata [49]. Thus, a policy au-

tomaton Π is a pair 〈A, π 〉, where

– A is an automaton of the form 〈Policies ,Targets, T 〉 where the set of states
Policies contains all the policies that can be in force at different times,
the set of labels Targets contains the security relevant events (expressed as
the targets in Table 11) that can trigger policy modification and the set of
transitions T ⊆ (Policies×Targets×Policies) represents policy replacement.

– π ∈ Policies is the current state of A.

36 R. De Nicola et al.

Dynamically changing policies is a powerful mechanism that permits controlling,
in a natural and clear way, the evolution of adaptive systems having a very high
degree of dynamism, which in principle would be quite difficult to manage. In
Section 5.2 a full application of such an automaton is provided.

Semantics. PSCEL specialises the SCEL operational semantics by connecting
the evaluation of the authorization predicate with the inference rules of Tables 12
and 13. More specifically, the authorization predicate in PSCEL also considers
the outcome of policy evaluation; this is an authorization decision δ and a se-
quence of actions s. The authorization predicate takes the form Π �δ

s λ, Π ′

meaning that the action generating the label λ is evaluated with respect to
the policy automaton Π to a decision δ (i.e., permit, deny or not-applicable),
along with a (possibly empty) sequence s of actions to perform, and a (possibly
adapted) policy automaton Π ′ to enforce. To calculate an authorization deci-
sion, we need first to generate a request ρ from label λ and then to evaluate it
with respect to the current policy state π of Π .

The authorization request is produced on demand when an action that needs
to be authorised is going to be performed. The production is done by function
λ2ρ(·) that maps (a subset of) the SCEL labels to requests and is defined as
follows:

λ2ρ(I : fresh(n)) = {(subject/attr, val) | (attr, val) ∈ I}
∪ {(action/action-id, fresh)}
∪ {(object/attr, val) | (attr, val) ∈ I}

λ2ρ(I : new(J , K, Π,P)) = {(subject/attr, val) | (attr, val) ∈ I}
∪ {(action/action-id,new)}
∪ {(object/attr, val) | (attr, val) ∈ J }

λ2ρ(I : t 	̄ J) = {(subject/attr, val) | (attr, val) ∈ I}
∪ {(action/item, t), (action/action-id,put)}
∪ {(object/attr, val) | (attr, val) ∈ J }

λ2ρ(I : t �̄ J) = {(subject/attr, val) | (attr, val) ∈ I}
∪ {(action/item, t), (action/action-id,get)}
∪ {(object/attr, val) | (attr, val) ∈ J }

λ2ρ(I : t �̄J) = {(subject/attr, val) | (attr, val) ∈ I}
∪ {(action/item, t), (action/action-id,qry)}
∪ {(object/attr, val) | (attr, val) ∈ J }

Each value for subject and object, retrieved from I and J , respectively, is bound
to an attribute identifier, e.g. the identifier of the subject component is bound
to subject/subject-id. Notably, the item attribute identifies the exchanged item
in a communication action, thus it is undefined in the case of fresh and new.

Finally, if we let Π � 〈A, π〉, Π ′′ � 〈A, π′〉 and ρ � λ2ρ(λ), the authorization
predicate can be formally defined in terms of the semantics of policies by the
following rule:

The SCEL Language: Design, Implementation, Verification 37

π, ρ � δ, s Π ′ =
{

Π ′′ if 〈π, τ, π′〉 ∈ A ∧ τ, ρ � applicable
Π otherwise

Π �δ
s λ, Π ′

Intuitively, an action λ is allowed if the corresponding request ρ satisfies π, ρ �
permit, s; moreover, if for some target τ ∈ Targets, such that τ, ρ � applicable,
the automaton A has a transition 〈π, τ, π′〉, then the state of A after the request
evaluation becomes π′. On the other hand, if we get π, ρ � deny, s, then the action
is disallowed but, as a consequence of evaluation of the authorization predicate,
and similarly to the previous case, the policy in force within the component can
change. Notably, the current policy in Π does not change unless there is a target
τ matching the request ρ and producing a transition in the policy automaton.
Of course, if the automaton has a single state or an empty set of transitions, the
policy in force at a component never changes.

The refinement of the authorization predicate forces a slight modification
of the SCEL operational semantics, for appropriately dealing with the autho-
rization decisions permit and deny, and the discharge of obligation actions. For
the sake of simplicity, the PSCEL operational semantics does not take into ac-
count the decision not-applicable. This means that the rules do not explicitly
deal with situations where none of the policies is applicable to a given request,
or the combining algorithms do not convert not-applicable into permit or deny.
These situations are handled as runtime errors that induce the executing process
to get stuck. They could be easily avoided by using an appropriate combining
algorithm, as e.g. permit-unless-deny, at top level of each state of the policy
automaton Π .

PSCEL operational rules are similar to those presented in Section 2.3, there-
fore in Table 15 we only report some significant ones11. As a matter of notation,
I.p indicates the process part of component I and, when s = ε, s.P stands
for P . Notably, all labels taken as argument by the authorization predicate,
i.e. I : fresh(n), I : new(J , K, Π, P), I : t �̄ J , I : t �̄J and I : t
̄J , have a
counterpart corresponding to decision deny which is obtained by application of
functional notation �(·) to the label. Thus, label �(I : t �̄J) indicates that
action get is denied. Some comments on the rules in Table 15 follow.

The interaction predicate, used in rule (pr-sys), is instantiated by the inter-
leaving interaction predicate of Table 3. Moreover, the rule here is tailored for
taking into account the discharge of the obligation actions generated by the in-
ference. To this aim, the component obtained after the transition contains the
placeholder ∗ in place of the process part; it will be replaced by the continuation
of process P , possibly prefixed by a sequence of obligations, during the rest of the
derivation (see, e.g., the use of [s.(I.p)/∗] in the rule (ptpget-p-p)). Notably, this
mechanism permits to apply the substitution σ also to the obligation actions, so
that the variables possibly contained get instantiated.

11 We refer the interested reader to the technical report [37] for a complete account of
the operational rules.

38 R. De Nicola et al.

Table 15. PSCEL (excerpt of) operational semantics (p stands for permit in �p
s, while

d stands for deny in �d
s)

P ↓α P ′ α = I : fresh(n) ⇒ n
∈ n(I[K, Π,nil]) Π,I : α � λ, σ, Π ′

I[K, Π,P]
λ[Π′/I.π , P ′/I.p]� I[K, •, ∗σ]

(pr-sys)

Π �p
s I : t �̄ J , Π ′ K
 t = K′

J [K, Π, P]
I:t 	̄ J [Π′/J .π , s.P/J .p]� J [K′, Π ′, s.P]

(accget-p)

Π �d
s I : t �̄ J , Π ′

J [K, Π, P]
�(I:t 	̄ J [Π′/J .π , s.P/J .p])� J [K, Π ′, s.P]

(accget-d)

C
I:t	n� C′ n = I.id C′[I.π/•, I.p/∗] I:t 	̄ I� C′′

C
τ� C′′

(lget-p)

C
I:t	n� C′ n = I.id C

�(I:t 	̄ I)� C′′

C
τ� C′′

(lget-d)

S1
I:t	n� S′

1 S2
I:t 	̄ J� S′

2 J .id = n I.π �p
s I : t �̄ J , Π ′

S1 ‖ S2
τ� S′

1[Π ′/•, s.(I.p)/∗] ‖ S′
2

(ptpget-p-p)

S1
I:t	n� S′

1 S2
�(I:t 	̄ J)� S′

2 J .id = n I.π �p
s I : t �̄ J , Π ′

S1 ‖ S2
τ� S1 ‖ S′

2

(ptpget-p-d)

S1
I:t	n� S′

1 S2
I:t 	̄ J� S′

2 J .id = n I.π �d
s I : t �̄ J , Π ′

S1 ‖ S2
τ� S1[Π ′/•, s.(I.p)/∗] ‖ S2

(ptpget-d-p)

S1
I:t	n� S′

1 S2
�(I:t 	̄ J)� S′

2 J .id = n I.π �d
s I : t �̄ J , Π ′

S1 ‖ S2
τ� S1[Π ′/•, s.(I.p)/∗] ‖ S2

(ptpget-d-d)

The rules denoting the willingness of components to accept the execution of
an action operating on their local repository are now split in two rules: one rule,
e.g. (accget-p), corresponding to the fact that the action is authorised, and one
rule, e.g. (accget-d), corresponding to the the fact the action is denied. In the
former rule, the label of the transition is updated with the new policy (as in the
SCEL corresponding rule) and with the the obligation actions s that have to be
performed before the continuation process. In the latter rule, the transition label
is updated similarly, although the action on the repository, i.e. the withdrawing
of item t, is not performed.

The SCEL Language: Design, Implementation, Verification 39

When considering the transitions that a single component can perform, the
main difference is that we have one rule, e.g. (lget-p), for the case the action is
allowed by the authorization predicate, and one rule, e.g. (lget-d), for the case it
is denied. Notably, in this latter case, even though the action is not performed
(indeed the last premise of (lget-d) starts from C and not from C′), the new
policies and the obligation actions produced by evaluation of the authorisation
predicate are installed (indeed, in the conclusion of the rule, C evolves to C′′);
they in fact may adapt the system to allow a subsequent successful execution of
the action or to enable an alternative execution path.

Similarly, in case of synchronisation between two components, for each dif-
ferent type of action we have four cases to consider, corresponding to the pairs
consisting of the values permit and deny. For example, the action get can with-
draw an item from a specific repository with a point to point access according to
the rule (ptpget-p-p) of Table 15. The label I : t �̄J , generated by rule (accget-p),
denotes the willingness of component J to provide the item t to component I.
The label is generated only if such willingness is authorised by the authoriza-
tion predicate in force at component J and if withdrawing an item t from the
repository of J is possible (K � t = K′). The target component J is modified
by removing t from the repository and by installing the policy and the sequence
of obligation actions produced by the evaluation of the authorization predicate.
Thus, when the target of the action denotes a specific remote repository (ptpget-p-
p), the action is only allowed if n is the name of the component J simultaneously
willing to provide the wanted item, and if the request to perform the action at
J is authorised by the policy at the source component I (identified by notation
I.π). The authorization to perform the action could be denied by the local pol-
icy (rule (ptpget-d-p) for remote ones) or by the policy of the target component
(rules (accget-d) and (ptpget-p-d)) or by both policies (rule (ptpget-d-d)). Note that
the policy and the sequence of obligation actions produced by evaluation of the
authorisation predicate are always installed on the source component, except
when the action is authorised by the local policy but not by the policy of the
target component, i.e. as in the case of rule (ptpget-p-d). In the target component,
the installation occurs only when the action has been authorised by the source
component.

The rules for group-oriented communication rely on the same basic ideas
described above (i.e., there are four rules for each kind of action). Thus, due to
space limitations, they are not reported here.

5.2 PSCEL at Work

We show here the effectiveness of the PSCEL approach by providing a complete
model of the robot swarm scenario used as a running example in the previous
sections and informally presented in Section 1. Notably, this model exploits the
fact that a process, which represents the behaviour of a robot, can read tuples
produced by sensors, e.g. the tuple 〈“collision”, true〉 indicating that an imminent
collision with a wall of the arena has been detected, and can add tuples that
trigger the activation of actuators, e.g. the tuple 〈“goTo”, 4.34, 3.25〉 forcing the

40 R. De Nicola et al.

robot to reach a specific position. Therefore, as these tuples are produced (resp.,
consumed) by sensors (resp., actuators), no additional data/assumptions on the
initial state are needed. It is also worth noticing that sensors and actuators are
not explicitly modelled in PSCEL, as they are robot’s internal devices while
the PSCEL model represents the programmable behaviour of the robot, i.e. its
running code. We clarify the practical role of sensors and actuators in Section 6.

The scenario is modelled as a set of components (Robot1 ‖ . . . ‖ Robotn)
where each Roboti has the form IRi [KRi , ΠR, PR]. The behaviour of a single
robot corresponds to the following PSCEL process

PR � (qry(“victimPerceived”, true)@self.
put(“victim”, x, y, 3)@self.put(“rescue”)@self

+ get(“victim”, ?xv, ?yv, ?count)@(role=“rescuer”∨role=“helpRescuer”).
HelpingRescuer)

| RandomWalk | IsMoving

A robot follows a random walk to explore the disaster area. To this aim, the
process RandomWalk randomly selects a direction that is followed until either
a wall is hit or a stop signal is sent to the wheels actuator. The robot recognises
the presence of a victim by means of the qry action, while it helps other robots
to rescue a victim by means of the get action and according to the HelpingRes-
cuer process definition. When a victim is found, information about his position
(retrieved by the attributes x and y of the robot’s interface) and the number of
other robots needed for rescuing him (3 robots in our case, but a solution with
a varying number can be easily accommodated) is locally published. Then, the
tuple 〈“rescue”〉 is locally inserted to start the rescuing procedure.

The RandomWalk process calculates the random direction followed by the
robot to explore the arena. The robot starts moving as soon as the first di-
rection is calculated. When the proximity sensor signals a possible collision, by
means of the tuple 〈“collision”, true〉, a new random direction is calculated. This
behaviour corresponds to the following PSCEL process

RandomWalk � put(“direction”, 2πrand())@self.
qry(“collision”, true)@self.RandomWalk

The process defines only the direction of the motion and not the will of moving.
The HelpingRescuer process is defined as follows

HelpingRescuer � if (count > 1) then { put(“victim”, xv, yv, count-1)@self }.
put(“goTo”, xv, yv)@self.
qry(“position”, xv, yv)@self. put(“rescue”)@self

This process is triggered by a victim tuple retrieved from the rescuers ensemble
(see PR). The tuple indicates that additional robots (whose number is stored
in count) are needed at position (xv, yv) to rescue a victim. If more than one

The SCEL Language: Design, Implementation, Verification 41

Explorer Rescuer

LowBattery HelpRescuer

τvictimPerceived

τbatteryLow

τreqF orHelpReceived
τbatteryCharged τvictimReached

Fig. 4. Swarm robotics scenario: policy automaton

robot is needed, a new victim tuple is published (with decremented counter).
Then, the robot, which becomes a helper of the rescuer, goes towards the victim
position. Once it reaches him (i.e., its current position coincides with the victim’s
one), it becomes a rescuer and starts the rescuing procedure. It is worth noting
that, if more victims are in the scenario, different groups of rescuers will be
spontaneously organised to rescue them. To avoid that more than one group
is formed for the same victim, we assume that the sensor used to perceive the
victims is configured so that a victim that is already receiving assistance by
some rescuers is not detected as a victim by further robots. This assumption
is also feasible in a real scenario, where a light-based message communication
among robots can be used [40]. Thus, once a robot has reached the victim, by
using a specific light color, it signals not to “discover” the victim next to it (see
Chapter IV.2 [42]).

Notably, the effectiveness of this approach relies on the assumption that
robots cannot fail. In fact, when a robot that knows the victim’s position fails,
it cannot be ensured that such position is correctly communicated. Specific han-
dling can be used in such a case, e.g. by enabling the perception of a victim if
the robots already taking care of the victim are not active.

Finally, in order to check the level of the battery during the exploration,
and possibly halting the robot when the battery is low, we need to capture the
movement status. This information is represented by the tuple 〈“isMoving”〉,
which is produced by the wheels sensor, and monitored by the following process

IsMoving � qry(“isMoving”)@self.IsMoving

The reading of this datum is exploited by a rule of the authorisation policy.

Each robot dynamically adapts its role, as well as the enforced policies, ac-
cording to external conditions and stimuli. Thus, each role corresponds to a
different enforced policy. The transitions triggering the policy changes are de-
fined by the policy automaton shown in Figure 4.

Before presenting the policies of some of the automaton states, we briefly
outline the conditions of the policy automaton transitions, whose details are re-
ported in Table 16. These transitions, which mimic the role changing previously
described, define the conditions on the action the process wants to execute,

42 R. De Nicola et al.

Table 16. Conditions of the Policy Automaton Transitions

Condition PSCEL action Additional Constraint

τvictimPerceived qry(“victimPerceived”, true)@self -

τvictimReached qry(“position”, ,)@self -

τreqForHelpReceived get(“victim”, , ,)@(role=“rescuer”∨. . .) -

τbatteryLow qry(“isMoving”)@self subject/batteryLevel <20%

τbatteryCharged qry(“charged”)@self -

and (if needed) some additional constraints on environmental values. For in-
stance, the Explorer state evolves to the Rescuer one when the condition
τvictimPerceived holds, that is as soon as the perception of a victim has to be
authorised (i.e., the action qry(“victimPerceived”, true)@self can complete). To
move from Explorer to LowBattery, it is required that the robot is moving
(i.e., the action qry(“isMoving”)@self can complete), and the battery level is
less then 20%. All the other conditions are defined in the same way.

In the explorer state, to stop the robot as soon as a victim is perceived
and to diagnose a critical level of the battery, we define the following policy

〈 permit-unless-deny
rules : (permit target : equal(qry,action/action-id)

∧ pattern-match((“victimPerceived”, true),action/item))
obl : [permit put(“stop”)@self])

(deny target : equal(qry,action/action-id)
∧ pattern-match((“isMoving”),action/item)
∧ greater-than(20%,subject/batteryLevel)

obl : [deny put(“goTo”, env/station.x, env/station.y)@self])〉

The first positive rule has the only purpose of returning the obligation action
put(“stop”)@self when the corresponding qry is executed. This obligation in-
structs the wheels actuator to stop the movement. The negative rule checks
the battery level of the robot, and when the level is critical (i.e., lower then or
equal to 20%), the obligation put(“goTo”, env/station.x, env/station.y)@self is
returned in order to change the robot direction. Notably, the position of the
charging station is provided by the evaluation context during the obligation
fulfilment.

The policy enforced in the HelpRescuer state is defined similarly: it con-
trols the robot movement towards the previously received victim’s position. In
particular, the policy halts the robot as soon as the victim’s position is reached
and forbids unexpected direction changes during the movement.

The SCEL Language: Design, Implementation, Verification 43

In the case of LowBattery state, we define instead the following policy

〈 permit-unless-deny
rules : (permit target : equal(qry,action/action-id)

∧ pattern-match((“position”, ,),action/item))
obl : [permit put(“stop”)@self .put(“charge”)@self.

qry(“charged”)@self])
(deny target : equal(qry,action/action-id)

∧ (pattern-match((“victim”, ,),action/item)
∨ pattern-match((“victimPerceived”, true),action/item)))

(deny target : equal(put,action/action-id)
∧ pattern-match((“direction”,),action/item))〉

When the position of the charging station is reached, the first rule halts the
movement and returns the actions needed for enacting the charging behaviour.
In particular, the battery charging process is started by the put(“charge”)@self
action, while the qry(“charged”)@self blocks the robot until the end of the
charging process. Note that the transition condition τbatteryCharged holds when
the latter action requests for authorisation, and therefore in the continuation
the robot will play the Explorer state.

Finally, the policy enforced in the Rescuer state is as follows

〈 permit-unless-deny
rules : (permit target : equal(put,action/action-id)

∧ pattern-match((“rescue”),action/item))
∧ less-than(40%,subject/batteryLevel)

obl : [permit put(“camera”, “on”)@self]) 〉

This policy does not forbid any actions, it is only used for turning on the robot’s
camera if there is enough battery; other functionalities could be activated as
well.

As shown in this section, the design of a PSCEL specification involves
processes, policies, and obligations. In order to decide which design approach,
e.g. defining a process action or an obligation, is more appropriate, we can follow
the separation of concerns principle. According to it, we decouple the functional
aspects of the components behaviour from the adaptation ones. Thus, the appli-
cation logic generating the computational behaviour of components is defined in
a procedural style, in the form of processes, while the adaptation logic is defined
in a declarative style, in the form of policies enclosing obligations. Processes and
policies have indeed different features:

– a process contains the actions that should be executed. Thus, when an action
is not authorised, the process is blocked until a positive authorisation for such
action is received;

– a policy decides whether to authorise a process action and can force processes
to perform additional actions which can depend on contextual information
or on the authorisation of remote actions.

Of course, a process could decide by itself whether to execute an action or not,
without resorting to a policy. However, this would lead to a specification where

44 R. De Nicola et al.

application and adaptation logics are mixed up, which is more difficult to de-
velop and maintain. Moreover, it would require, at least, some additional efforts
to introduce: (i) conditional choices for checking contextual information; (ii) ac-
tions monitoring the knowledge items for, e.g., discovering when a remote get
is performed. These additional tasks significantly affect the burden of specifying
a process. Indeed, the use of policies and obligations is advocated not only to
decide the authorisation of process actions but also to define actions that are not
executed all the times. Furthermore, by means of the policy automaton, policies
can dynamically change to react to external conditions, while processes cannot.
On the other hand, policy evaluation is triggered by a process action, therefore
additional demon processes, such as the isMoving process, could be needed.

6 A Runtime Environment for SCEL

In this section we present jRESP
12, a Java runtimeenvironment providing a

framework for developing autonomic and adaptive systems according to the
SCEL paradigm. Specifically, jRESP provides an API that permits using in
Java programs the SCEL’s linguistic constructs for controlling the computation
and interaction of autonomic components, and for defining the architecture of
systems and ensembles.

The implementation of jRESP fully relies on the SCEL’s formal semantics.
The close correspondence between the two languages enhances confidence on the
behaviour of the jRESP implementation of SCEL programs, once the latter
have been analysed via formal methods, which is possible given there is a formal
operational semantics.

The SCEL language, as explained in Section 2, is parametric with respect to
some aspects, e.g. knowledge representation and policy language, that may be
tailored to better fit different application domains. For this reason, also jRESP

is designed to accommodate alternative instantiations of the above mentioned
features. Indeed, thanks to the large use of design patterns, the integration of
new features in jRESP is greatly simplified.

SCEL’s operational semantics abstracts from a specific communication in-
frastructure. A SCEL program typically consists of a set of (possibly heteroge-
neous) components, each of which is equipped with its own knowledge reposi-
tory. These components concur and cooperate in a highly dynamic environment
to achieve a set of goals. In this kind of systems the underlying communication
infrastructure can change dynamically as the result of local component interac-
tions. To cope with this dynamicity, the jRESP communication infrastructure
has been designed to avoid centralized control. Moreover, to facilitate interoper-
ability with other tools and programming frameworks, jRESP relies on JSON13.
This is an open data interchange technology that permits simplifying the inter-

12 jRESP (Java Run-time Environment for SCEL Programs) website:
http://jresp.sourceforge.net/.

13 JSON (JavaScript Object Notation) website: http://www.json.org/.

http://jresp.sourceforge.net/
http://www.json.org/

The SCEL Language: Design, Implementation, Verification 45

Hardware/Virtual Machine

N
etw

o
rk
s

Input devices/Sensors

(GPS, Temperature, Battery level,CPU load. . .)

Output devices/Actuators

SCEL Processes (Threads)

Policies

Knowledge

A
tt
r.

P
or
ts

Fig. 5. Node architecture

actions between heterogeneous network components and provides the basis on
which SCEL programs can cooperate with external services or devices.

The overall environment and the programming constructs are presented in
Section 6.1, while the integration of FACPL is detailed in Section 6.2. Finally,
Section 6.3 reports the jRESP implementation of the robot swarm scenario.

6.1 Programming Constructs

Components. SCEL components are implemented via the class Node. The
architecture of a node is shown in Figure 5. Nodes are executed over virtual
machines or physical devices providing access to input/output devices and net-
work connections. A node aggregates a knowledge repository, a set of running
processes, and a set of policies. Structural and behavioral information about a
node are collected into an interface via attribute collectors. Nodes interact via
ports supporting both point-to-point and group-oriented communications (whose
implementation is described in the Network Infrastructure paragraph below).
Knowledge. The interface Knowledge identifies a generic knowledge repository
and indicates the high-level primitives to manage pieces of relevant information
coming from different sources. This interface contains the methods for withdraw-
ing/retrieving/adding a piece of knowledge from/to a repository. Currently, a
single implementation of the Knowledge interface is available in jRESP, which
relies on the notion of tuple space presented in Section 3.1.

External data can be collected into a knowledge repository via sensors. Each
sensor can be associated to a logical or physical device providing data that can
be retrieved by processes and that can be the subject of adaptation. Similarly,
actuators can be used to send data to an external device or service attached to
a node. This approach allows SCEL processes to control exogenous devices that
identify logical/physical actuators.

46 R. De Nicola et al.

The interface associated to a node is computed by exploiting attribute col-
lectors. Each one of these collectors is able to inspect the local knowledge and to
compute the value of the attributes. This mechanism equips a node with reflec-
tive capabilities allowing a component to self-project the image of its state on the
interface. Indeed, when the local knowledge is updated the involved collectors
are automatically activated and the node interface is modified accordingly14.
Network Infrastructure. Each Node is equipped with a set of ports for in-
teracting with other components. A port is identified by an address that can
be used to refer to other jRESP components. Indeed, each jRESP node can be
addressed via a pair composed of the node name and the address of one of its
ports.

The abstract class AbstractPort implements the generic behaviour of a port.
It implements the communication protocol used by jRESP components to inter-
act with each other. Class AbstractPort also provides the instruments to dispatch
messages to components. However, in AbstractPort the methods used for send-
ing messages via a specific communication network/media are abstract. Also the
method used to retrieve the address associated to a port is abstract in Abstract-
Port. The concrete classes defining specific kinds of ports extend AbstractPort
to provide concrete implementations of the above outlined abstract methods,
so as to use different underlying network infrastructures (e.g., Internet, Ad-hoc
networks, . . .).

Currently, four kinds of port are available: InetPort, P2PPort, ServerPort and
VirtualPort. The first one implements point-to-point and group-oriented interac-
tions via TCP and UDP, respectively. In particular, InetPort implements group-
oriented interactions in terms of a UDP broadcast. Unfortunately, this approach
does not scale when the size of involved components increases. To provide a more
efficient and reliable support to group-oriented interactions, jRESP provides the
class P2PPort. This class realises interactions in terms of the P2P and multicast
protocols provided by Scribe15 [14] and FreePastry16 [46]. A more centralized
implementation is provided by ServerPort. All messages sent along this kind of
port pass through a centralized server that dispatches all the received messages
to each of the managed ports. Finally, VirtualPort implements a port where in-
teractions are performed via a buffer stored in memory. A VitualPort is used
to simulate nodes in a single application without relying on a specific network
infrastructure.
Behaviors. SCEL processes are implemented as threads via the abstract class
Agent, which provides the methods implementing the SCEL actions. In fact,
they can be used for generating fresh names, for instantiating new components
and for withdrawing/retrieving/adding information items from/to shared knowl-
edge repositories. The latter methods extend the ones provided by Knowledge
with another parameter identifying either the (possibly remote) node where the

14 This mechanism is implemented via the Observer/Observable pattern.
15 Scribe is a generic, scalable and efficient system for group communication and noti-

fication.
16 FreePastry is a substrate for peer-to-peer applications.

The SCEL Language: Design, Implementation, Verification 47

target repository is located or the group of nodes whose repositories have to be
accessed. As previously mentioned, group-oriented interactions are supported by
the communication protocols defined in the node ports and by attribute collec-
tors.
Policies. In jRESP, like in SCEL, policies can be used to authorise local ac-
tions and to regulate the interactions among components. When a method of
an instance of class Agent is invoked, its execution is delegated to the policy in
force at the node where the agent is running. The policy can authorise or not
the execution of the action (e.g., according to some contextual information) and,
possibly, adapt the agent behaviour by returning additional actions to be exe-
cuted. The interface IPolicy permits to easily integrate different kinds of policies
in jRESP Nodes. When a Node is instantiated, if no policy is provided, a default
policy is used, which allows any operation to be executed.

6.2 Policing Constructs

The interface IPolicy is currently implemented by two different classes: Default-
PermitPolicy and PolicyAutomaton. The former is the default policy of each node;
it allows any action by directly delegating its execution to the corresponding
node. The latter policy implements a generic policy automaton Π (like the
one presented in Section 5) which triggers policy changes according to the ex-
ecution of agent actions. In particular, a PolicyAutomaton consists of a set of
IPolicyAutomatonStates, each of which identifies the possible policies enforced in
the node, and of a reference to the current state, which is used to authorise agent
actions with respect to the current policies.

When a PolicyAutomaton receives a request for the execution of a given ac-
tion, first of all an AutorisationRequest representing the action (like the request
ρ introduced in Section 5) is created. This request identifies the action an agent
wants to perform, thus it provides the action name, its argument, its target and
the list of attributes currently published in the node interface. The created Autho-
rizationRequest is then evaluated with respect to the current policy state via the
(abstract) method evaluate(AutorisationRequest r) defined in the class IPolicyAu-
tomatonState. The request evaluation can trigger an update of the current state
of the PolicyAutomaton. Indeed, for each state, a sequence of transitions is stored
in the automaton. The transitions are instances of the class PolicyAutomaton-
Transition which provides two methods: apply(AutorisationRequest r): boolean and
nextState(): IPolicyAutomatonState. A transition is enabled if the first method re-
turns true, while the next state is then obtained by invoking nextState() on the
enabled transition. If no transitions are enabled, the current state is not changed.

Therefore, the full PSCEL implementation can be now achieved by
defining the class FacplPolicyState, which extends IPolicyAutomatonState and
wraps the Java-translated FACPL policies17. The overwritten method evalu-
ate(AutorisationRequest r) delegates the authorisation to the referred FACPL

17 These translated policies can be automatically obtained by using the FACPL Eclipse
IDE available from the FACPL website (http://www.ascens-ist.eu/facpl).

http://www.ascens-ist.eu/facpl

48 R. De Nicola et al.

policies, which return an instance of the class AuthorisationResponse containing
a decision, i.e. permit or deny, and a set of obligations. The latter ones are ren-
dered as a sequence of Actions that must be performed just after the completion
of the requested action. Hence, if the decision is permit, the corresponding agent
can continue as soon as all the obligations are executed. Instead, if the decision
is deny, the requested action cannot be performed and the obligations possi-
bly returned must be executed. After their completion, the action previously
forbidden can be further evaluated.

6.3 Exploitation

We report here the code18 of the jRESP implementation of the specification,
presented in Section 5.2, of the robot swarm scenario.

In the previous sections we saw that jRESP, like SCEL, is parametric with
respect to the knowledge representation and the policy language. The default
implementations of these components provided with jRESP, i.e. the knowledge
represented via tuple space and policies regulated according to the classes de-
scribed in Section 6.2, allow a programmer to execute PSCEL specifications. The
Java classes reported in this section permit appreciating how close the SCEL

(resp. PSCEL) processes are to their implementation in jRESP.
For the considered scenario, in jRESP we have a Node for each robot

operating in the arena19. Each node is equipped with the appropriate sen-
sors and actuators that provide the machinery for interacting with the robots
circuits/components. Sensors include the ones used to detect a victim, to check
the battery level, to detect possible collisions, to access the robot position and
to verify if a robot is moving. Actuators are used to set robot direction, to stop
the movement and to start the battery recharging activity.

The current state of a robot is modelled via a tuple of the form (“role” , r),
where r can be explorer, rescuer, help rescuer or low battery. This values corre-
spond to the states of the policy automaton considered in Figure 4. The tuple
identifying the robot state is stored in the local tuple space of each node and, to-
gether with the values read from the sensors, is used to infer the node interface.
In the interface of each node, besides the role and the id of the correspond-
ing robot, the current position is also published. The latter is identified by the
attributes x and y.

Running at a node there are four agents: Explorer, HelpingRescuer, Ran-
domWalk and isMoving. Agents Explorer and HelpingRescuer represent respec-
tively the two branches of the non-deterministic choice20 in process PR defined

18 The complete source code for the scenario, together with a simulation environment,
can be downloaded from http://jresp.sourceforge.net/ .

19 These nodes could be executed directly on physical robots assuming that these are
able to execute java code

20 Non-deterministic choice is rendered in jRESP in terms of concurrent execution of
agents (which are implemented as Java threads) regulated by checks on the current
status of the robot (corresponding to the state of the policy automaton).

http://jresp.sourceforge.net/

The SCEL Language: Design, Implementation, Verification 49

in Section 5.2. Since there is almost a one-to-one correspondence between the
class implementing an agent and its definition in PSCEL, here we only present
the code of agent Explorer that is reported below. The interested reader can refer
to the jRESP web site for a detailed description of the other classes.

1 public class Explorer extends Agent {
2 public Explorer () {
3 super(" Explorer ");
4 }
5 protected void doRun() throws Exception {
6 query(
7 new Template(
8 new ActualTemplateField (" VICTIM_PERCEIVED "),
9 new ActualTemplateField(true)

10),
11 Self.SELF
12);
13 // Pass to RESCUER state
14 put(new Tuple("role", Scenario.RESCUER), Self.SELF);
15 double x = getAttributeValue("x" , Double.class);
16 double y = getAttributeValue("y" , Double.class);
17 put(
18 new Tuple(
19 "victim",
20 x,
21 y,
22 3
23),
24 Self.SELF
25);
26 }
27 }

When an instance of class Agent is executed, the method doRun() is invoked.
This method defines the agent behaviour. In the case of Explorer, it consists of
the sequence of steps needed to detect a victim and to broadcast its position to
the other robots. The method query(), used to retrieve data from a knowledge
repository, is defined in the base class Agent and implements the SCEL’s action
qry21. The method takes as parameters an instance of class Template and a
target, and returns a matching tuple. In the code above, the target is the local
component (referred by Self.SELF) while the retrieved tuple is one consisting of
two fields: the first field is the constant “VICTIM PERCEIVED” while the second
field is the boolean value true. This tuple is not retrieved from the local knowledge
but from the victim sensor when the robot is able to perceive the victim. After
that, the agent retrieves the actual robot position via the attributes x and y
stored in the node interface. To perform this operation method getAttributeValue
is used. This method takes as parameter the name of the attribute to evaluate
and its expected types and returns the collected value; null is obtained when
the requested attribute is not published in the interface or when its value has
not the requested type. Finally, method put is invoked to publish in the local
knowledge repository the tuple witnessing that a victim has been perceived at
position (x,y) and 3 robots are needed to rescue it.

The policies in force at each node are managed by an instance of the class
PolicyAutomaton that implements the automaton reported in Figure 4. This au-

21 Class Agent also provides methods put() and get() that implement actions put and
get, respectively.

50 R. De Nicola et al.

tomaton is instantiated as a list of FacplPolicyState, each of which contains the
reference to a particular FACPL policy, and a list of transitions. For the sake
of simplicity, the, straightforward, Java translation of the transition’s conditions
defined in Table 16 is not reported. In the following code, we show, instead, the
Java implementation of the policy in page 43 that defines the automaton state
Rescuer.

1 public class Policy_Rescuer extends Policy {
2
3 public Policy_Rescuer () {
4 addCombiningAlg(PermitUnlessDeny.class);
5 addRule(new RuleCameraOn ());
6 }
7
8 class RuleCameraOn extends Rule{
9

10 RuleCameraOn (){
11 addEffect(RuleEffect.PERMIT);
12
13 addTarget(new TargetTreeRepresentation(TargetConnector.AND ,
14 new TargetTreeRepresentation(new TargetExpression(
15 Equal.class , ActionID.PUT ,
16 new StructName (" action", "action -id"))),
17 new TargetTreeRepresentation(new TargetExpression(
18 PatternMatch.class , new Template(
19 new ActualTemplateField (" rescue "),
20 new FormalTemplateField(Double.class),
21 new FormalTemplateField(Double.class)),
22 new StructName (" action", "item"))),
23 new TargetTreeRepresentation(new TargetExpression(
24 LessThan.class , 40,
25 new StructName (" object", "battery_level ")))
26));
27
28 // The PUT for adapting the process
29 addObligation(new ScelObligationExpression(RuleEffect.PERMIT ,
30 ActionID.PUT , new Tuple(" cameraOn "), Self.SELF));
31 }
32 }
33 }

The policy is formed by the combining algorithm permit-unless-deny, which is
passed as class reference, and the rule CameraOn. This rule is implemented as
an inner class containing an authorization effect, which is RuleEffect.PERMIT,
a target and an obligation. The target contains checks on: (i) the action’s
identifier (i.e., ActionID.PUT); (ii) the action’s template (i.e., a tuple start-
ing with the string “rescue” and followed by two formal double values;
(iii) the battery level (i.e., more than 40). Finally, the instance of the class
ScelObligationExpression defines the put action that triggers the activation
of the robot’s camera.

7 Quantitative Variants of SCEL

In this section we address the issue of enriching SCEL with information about
action duration, by providing a stochastic semantics for the language. There
exist various frameworks that support the systematic development of stochastic
languages [22]. However, the main challenge in developing a stochastic semantics
for SCEL is in making appropriate modeling choices, both taking into account

The SCEL Language: Design, Implementation, Verification 51

the specific application needs and allowing to manage model complexity and size.
Our contribution in this work is the proposal of four variants of StocS, a Marko-
vian extension of a significant fragment of SCEL, that can be used to support
quantitative analysis of adaptive systems composed of ensembles of cooperating
components [32]. In this chapter, we focus on only one of the four variants, the
so called Network oriented one (net-or, for short). The reader interested in the
full spectrum of StocS semantics and their complete formal definition is re-
ferred to [32] and to the technical report [33]. In summary, StocS is essentially
a modeling language which inherits the purpose and focus of SCEL. StocS ex-
tends SCEL by modeling the time of state-permanence as a random variable
(r.v.) with negative exponential distribution and by replacing non-determinism
by a probability distribution over outgoing transitions, thus adopting an opera-
tional semantics based on continuous time Markov chains (CTMC) [21]. Finally,
an important aspect in a modelling language concerns the need of devising an
appropriate syntax to express the environment model. In StocS, like in SCEL,
the only point of contact with the environment is the knowledge base, which
contains both internal information and externally-sensed events.

7.1 StocS: Stochastic SCEL

The syntax of StocS is essentially a subset of that of SCEL. In the presenta-
tion that follows, we deliberately omit to incorporate certain advanced features
of SCEL, such as the presence and role of policies; we focus mainly on action
durations and their stochastic modelling. Furthermore for the sake of simplicity,
we consider only put, get, and qry actions and in get(T)@c, qry(T)@c and
put(t)@c we restrict targets c to the distinguished variable self and to compo-
nent predicates p. In order to be able to obtain a CTMC from a StocS model
specification, all sources of non-determinism must be given a probabilistic in-
terpretation. This is true also for knowledge repositories, where patterns may
match different values. We push the probabilistic view a bit further, assuming
that all repository operations have probabilistic behaviour, thus providing more
flexibility to modellers (e.g. the possibility to model faulty/error outcomes and
related probabilities). Letting K, I and T denote the classes of all possible knowl-
edge states, knowledge items and knowledge templates respectively, we require
that the operator ⊕ : K× I → Dist(K) for adding an item to a repository returns
a probabilistic distribution over repositories as a result. Similarly, the withdraw
operator � : K×T ↪→ Dist(K× I) and the infer operator �: K×T ↪→ Dist(I) are
assumed to return a probability distribution over repositories paired with items,
and over items, respectively. Functions � and � are partial: if no matching item is
found the result is undefined. No further assumptions are required on knowledge
repositories and, in fact, StocS is parametric w.r.t. to knowledge repository, like
SCEL. Finally, it is assumed that an assignment of appropriate r.v. parameters
is given which characterises the transmission and processing durations of the
several phases of StocS action execution, as sketched below.

The semantics of SCEL does not consider any time related aspect of com-
putation. More specifically, the execution of an action of the form act(T)@p . P

52 R. De Nicola et al.

(for put/get/qry actions) is described by a single transition of the underlying
SCEL LTS semantics. In the system state reached by such a transition it is
guaranteed that the process which executed the action is in its local state P and
that the knowledge repositories of all components involved in the action execu-
tion have been modified accordingly. In particular, SCEL abstracts from details
concerning: (a) when the execution of the action starts; (b) when the possible
destination components are required to satisfy p; and (c) when the process exe-
cuting the action resumes execution (i.e. becomes P); and their consequent time
relationship. If we want to extend SCEL with an explicit notion of (stochas-
tic) time, we need to take into account the time-related issues mentioned above.
These issues can be addressed at different levels of abstraction, reflecting a dif-
ferent choice of details that are to be considered in modelling pobabilistic/timed
aspects of SCEL actions.

Point (a) above does not require particular comments.
Point (b) requires to define when a component satisfies p with respect to

a process executing an action, when time and possibly space are taken into
consideration. We assume that source components are not aware of which are the
components satisfying predicate p. Therefore, we define the notion of observation
of the component by the process, the result of which allows to establish whether
the component satisfies the predicate or not. In the context of distributed systems
this is very often realised by means of a message sent by the process to the
component. According to this view, the check whether a component satisfies
predicate p is performed when the message reaches the component. This means
that a StocS action may require broadcast communication to be executed, even
if its effect involves a few (and possibly no) components. In distributed systems,
different components may have different response times depending on different
network conditions and one can model explicitly the message delivery, taking
into account the time required to reach the component.

Finally, point (c) raises the issue of when source component execution is
to be resumed. In particular, it is necessary to identify how the source com-
ponent is made aware that its role in the communication has been completed.
Get/query actions are blocking and they terminate when the source receives a
knowledge item from any component. A reasonable choice is that further re-
sponses received are ignored. We assume appropriate mechanisms that ensure
no confusion arises between distinct actions and corresponding messages. Put
actions are non-blocking, so it is sufficient that the source component is aware
that the observation procedure of all components has started. Our choice is to
make the source side set-up the transmission of one request of predicate evalu-
ation for each component and then resume the execution of the source process
immediately. The evaluation of the predicate against each component and the
corresponding (possible) knowledge repository modification will take place at
the target side(s).

In a network-oriented view of the system, the execution of the various phases
sketched above is explicitly modelled in detail by the operational semantics,
which entails that actions are non-atomic. Indeed, they are executed through

The SCEL Language: Design, Implementation, Verification 53

several intermediate phases, or activities, each of which requires appropriate
time duration modeling, as we illustrate by means of the following simple exam-
ple. Let us consider three components, as illustrated in Fig. 6: C1 = I1 [K1, P1],
C2 = I2 [K2, P2], and C3 = I3 [K3, P3] and let us assume process P1 is de-
fined as put(v)@p . Q. Note that different components may be in different lo-
cations. The interaction we illustrate starts with process P1 executing the first
phase of put(v)@p, i.e. creating two22 copies of the special “envelope” message
{v@p}, one for component C2 and one for component C3, and sending these
messages; they play the role of observers : each of them travels in the system
and reaches the component it is associated with. The special message creation
and message-component association phase has a duration, denoted in grey in the
figure, which is determined by rate λ: this value is computed as a (given) func-
tion of several factors, among which (the size of) v. After message creation, P1
can proceed without waiting for their arrival at the destination components—
since put actions are non-blocking—behaving like Q (the light-grey stripe in
the figure illustrates the resumed execution of C1). Each special message has to
reach its destination component (in the figure this is illustrated by two dashed
arrows), which checks whether its own interface satisfies p, and if so, it delivers
v in its own knowledge repository. Observer delivery to C2 (C3 respectively) is
performed with rate μ2 (μ3, respectively), which may depend on v and other
parameters like the distance between C1 where P1 resides and the target com-
ponent C2 (C3 respectively). Therefore, a distinct rate μj is associated to each
target. In practice, one can be interested in modelling also the event of failed
delivery of the observers. This is interesting both for producing more realistic
models (with unreliable network communication), and for allowing the applica-
tion of advanced analysis techniques based on fluid approximation [10], such as
fluid model-checking [9]. Therefore, we add an error probability to the observers
delivery, which we denoted perr (or simply err, in Fig. 7). This more detailed
semantics of the put(v)@p action is described below in more detail. The exe-
cution of get/qry actions is a little bit more complicated because the executor
must remain blocked as long as a value matching the required pattern is sent
back from one of the potential target components. This is realised by exploiting
the race condition which arises from multiple competing potential target com-
ponents and sophisticated use of interleaving semantics; the interested reader is
referred to [33] for details.

7.2 Semantics of a StocS Fragment

In this section we present the fragment of the formal semantics definition for the
put action in the Network oriented variant of StocS.

We recall that the interface I of a component makes information about the
component available in the form of attributes, i.e. names acting as references to

22 For the sake of notational simplicity, here we assume that predicate p in process
actions implicitly refers only to the other components, excluding the one where the
process is in execution.

54 R. De Nicola et al.

3

2

Fig. 6. Dynamics of the put action

3

2

Fig. 7. Actual model of put

information stored in the component’s knowledge repository. It is convenient to
make this dependency of the interface on the current knowledge K explicit. We do
this by using the notation I(K) for the evaluation of the interface I in the knowl-
edge state K. The set of possible interface evaluations is denoted by E. Interface
evaluations are used within the so-called rate function R : E × Act × E → R≥0,
which defines the rates of actions depending on the interface evaluation of the
source of the action, the action itself (where Act denotes the set of possible
actions), and the interface evaluation of the destination. For this purpose, in-
terface evaluations will be embedded within the transition labels to exchange
information about source/destination components in a synchronisation action.
We will conventionally use σ (δ, respectively) for the interface evaluation of a
source (destination, respectively) component. The rate function is not fixed but
instead is a parameter of the language. Considering interface evaluations in the
rate functions, together with the executed action, allows us to take into account,
in the computation of actions rates, various aspects depending on the component
state such as the position/distance, as well as other time-dependent parameters.
We also assume to have a loss probability function ferr : E × Act × E → [0, 1]
computing the probability of an error in message delivery.

As briefly sketched in Section 7.1, in the net-or semantics of StocS, several
phases, or activities, are identified during the execution of an action. It is con-
venient to distinguish between output activities (those issued by a component)
and input activities (those accepted by a component). To simplify the synchro-
nisation of input and output activities , we assume input activities are “passive”
and probabilistic, i.e. described by (discrete) probability distributions, and out-
put activities have durations which are stochastic, therefore the composition of
output and related input activities yields stochastic durations with parameters
(i.e. rates) computed directly through multiplication.

The operational semantics rules of StocS are given in the FuTSs style [22]
and, in particular, using its Rate Transition Systems (RTS) instantiation [21].
In RTSs a transition is a triple of the form (P, α, P), where the first and second

The SCEL Language: Design, Implementation, Verification 55

components are the source state and the transition label, as usual, and the third
component, P, is the continuation function that associates a real non-negative
value with each state P ′. A non-zero value represents the rate of the exponen-
tial distribution characterising the time needed for the execution of the action
represented by α, necessary to reach P ′ from P via the transition. Whenever
P P ′ = 0, this means that P ′ is not reachable from P via α23. RTS continu-
ation functions are equipped with a rich set of operations that help to define
these functions over sets of processes, components, and systems, as we will see.

Let FTF(S,R≥0) denote the class of total functions from set S to R≥0
with finite support24. Given countable, non-empty sets S (of states) and A
(of transition labels), an A-labelled RTS is a tuple (S, A,R≥0,�) where �⊆
S × A × FTF(S,R≥0) is the A-labelled transition relation.

As for the standard SOS definition, also FuTS-based semantics are fully char-
acterised by the smallest relation induced by a set of axioms and deduction
rules [22]. The operational semantics of StocS is the FuTS induced by the rules
for systems, which in turn are defined using those for processes and components.
In Table 17 (18, 19, respectively) we show only the rules for put actions per-
formed by processes (components and systems, respectively). It is worth noting
that the rules in the tables use a structure for the transition labels which is sim-
pler than that of the labels used in Section 2, due to the fact that we consider
only a fragment of the language. Furthermore, for the sake of readability and
given that our labels are simpler, we prefer to use explicit action names (e.g.
put) instead of symbols (e.g.
). Finally, we typically use annotated transition
labels α for output activities α, while input activities are used as labels without
annotations; labels for activities α which are not intended for synchronisation,
i.e. internal activities, are denoted by ←→α .

Rule (env) models the delivery of the envelope message, with delivery-time
rate μ. The notation [nil �→ μ] states that the only process which can be reached
by {t@p}μ via activity {t@p} is nil and the relevant rate is μ. This is a special
case of the general notation [d1 �→ γ1, . . . , dm �→ γm] for the function which asso-
ciates γi with di and 0 with the other elements; [] denotes the 0 constant function
in FTF(X,R≥0) and is used in Rule (envB), which in fact states that {t@p} is the
only activity {t@p}μ can perform. A process of the form put(t)@c . P lounches
the execution of an output activity put(t)@c, as postulated by Rule (put). Note
that the process transition is parameterized with respect to the evaluation σ of
the interface of the specific component which the process will be running within,
in the specific knowledge repository (state), as we will see when discussing Rule
(c-puto). Similarly, the rate λ for the execution time of the local activity of the
put action is given by the (global) rate function R which takes σ as parameter,
besides (a description of) the action itself. Note that λ does not depend on any
specific destination.

23 We use Currying for continuation function application.
24 A function F has finite support if and only if there exists finite {s1, . . . , sm} ⊆ S,

the support of F , such that F si
= 0 for i = 1 . . . m and F s = 0 otherwise.

56 R. De Nicola et al.

Table 17. Operational semantics of put actions (processes, net-or)

{t@p}μ
{t@p}−−−−⇁ [nil �→ μ]

(env) α
= {t@p}
{t@p}μ

α−⇁ []
(envB)

λ = R(σ,put(t)@c,)

put(t)@c . P
put(t)@c−−−−−−⇁σ [P �→ λ]

(put) α
= put(t)@c

put(t)@c.P
α−⇁ []

(putB)

Table 18. Operational semantics of put actions (components, net-or)

σ = I(K) P
put(t)@self−−−−−−−⇁σ P K ⊕ t = π

I [K, P]
←−−−−−−−−→
σ:put(t)@self−−−−−−−−→ I[π, P]

(c-putl)

σ = I(K) P
put(t)@p−−−−−−⇁σ P

I [K, P]
σ :put(t)@p−−−−−−−→ I[(X K), P]

(c-puto)

δ = I(K) μ = R(σ, {t@p}, δ) perr = ferr(σ, {t@p}, δ)

I [K, P]
σ : put(t)@p−−−−−−−→ [I [K, P] �→ perr, I[K, P |{t@p}μ] �→ (1 − perr)]

(c-puti)

P
{t@p}−−−−⇁ P I(K) |= p K ⊕ t = π

I [K, P]
{t@p}−−−−→ I[π, P]

(c-enva)
P

{t@p}−−−−⇁ P I(K)
|= p

I [K, P]
{t@p}−−−−→ I[(XK), P]

(c-envr)

Rule (c-putl) makes put actions internal, when they are targeted to self. The
rule uses the notation I[π, P]; for interface I and continuation functions F1
and F2, function I[F1, F2] returns (F1 K) · (F2 P) when applied to component
I [K, P], and 0 otherwise. Rule (c-puto) lifts the (start of the) execution of a non-
local put at the source component level; the (Curried) characteristic function X ,
with X K =[K �→ 1], is used in the obvious way. The output label σ : put(t)@p is
used for launching a broadcast; note, in the transition label, the indication of the
source σ which is the evaluated interface of the component at hand and which
is required to be the same as the parameter of the process transition used in the
premiss. As established by Rule (c-puti), every (potentially target) component
can perform an activity with the dual input label σ : put(t)@p. The result is
the instantiation of the envelope process {t@p}μ in the component. In this way,
a specific instance of the envelope is associated with the specific component. The
transmission of the envelope will be modelled by the execution of {t@p}μ, with
transmission time characterized by rate μ (see Rule (env) again). Note that rate μ

The SCEL Language: Design, Implementation, Verification 57

Table 19. Operational semantics of put actions (systems, net-or)

S1
σ :put(t)@p−−−−−−−→ S o

1 S1
σ :put(t)@p−−−−−−−→ S i

1 S2
σ :put(t)@p−−−−−−−→ S o

2 S2
σ :put(t)@p−−−−−−−→ S i

2

S1 ‖ S2
σ :put(t)@p−−−−−−−→ S o

1 ‖ S i
2 + S i

1 ‖ S o
2

(s-po)

S1
σ :put(t)@p−−−−−−−→ S1 S2

σ :put(t)@p−−−−−−−→ S2

S1 ‖ S2
σ :put(t)@p−−−−−−−→ S1 ‖ S2

(s-pi)

S1

←−−−−−−−−→
σ :put(t)@self−−−−−−−−−→ S1 S2

←−−−−−−−−→
σ :put(t)@self−−−−−−−−−→ S2

S1 ‖ S2

←−−−−−−−−→
σ : put(t)@self−−−−−−−−−→ S1 ‖ (X S2) + (X S1) ‖ S2

(s-spl)

may depend both on the source (σ) and on the specific destination components
(δ); furthermore, the successful transmission of the envelope is subject to the
absence of errors (with probability 1 − perr). Rules (c-enva) and (c-envr) ensure
that the repository is updated if the interface evaluation satisfies the predicate.
Finally, Rules (s-po) and (s-pi) together realise the broadcast communication
a component uses for sending the envelope to all the other components, while
(s-spl) takes care of local, consequently internal, put actions. For continuation
functions F1 and F2, function F1 ‖ F2 returns (F1 S1) · (F2 S2) when applied
to a system S1 ‖ S2 and 0 otherwise, whereas function F1 +F2 is the point-wise
extension of +, i.e. (F1 + F2)S = (F1 S) + (F2 S).

8 Verification

In this section we present the verification approaches developed so far for guaran-
teeing properties of systems modelled in SCEL. Currently, rather than develop-
ing new ad-hoc verification tools for SCEL, we have exploited existent tools. In
particular, for verifying qualitative properties we use the well-established model
checker Spin, while for verifying quantitative ones we use a statistical model-
checking approach relying on either the simulation environment provided by
jRESP or the Maude-based interpreter of SCEL specifications MISSCEL.

8.1 Simulation and Analysis via jRESP

To support analysis of autonomic systems specified in SCEL, the jRESP pro-
vides a set of classes that permits simulating jRESP programs. These classes
enable the execution of virtual components over a simulation environment that
can control component interactions and collect relevant simulation data. In fact,
although in principle jRESP code could be directly executed in real robots (pro-
vided that a Java Virtual Machine is running on them and that jRESP’s sensors

58 R. De Nicola et al.

0 200 400 600 800 1000
Time

0

0.2

0.4

0.6

0.8

P
ro
ba
bi
lit
y

10 Robots
30 Robots
50 Robots

Fig. 8. Simulation and analysis of the robot swarm scenario in jRESP

and actuators invoke the API of the corresponding robots’ devices), this may
not be always feasible. Therefore, jRESP also provides simulation facilities.

The simulation environment integrated in jRESP is based on a discrete event
simulator and on a specialised variant of class Node, named SimulationNode, that
allows the execution of SCEL programs in the simulated environment.

jRESP agents can be also directly executed on a SimulationNode (which
shares the same interface of class Node). In this case, agents are rendered as spe-
cific simulation processes instead that Java threads. The discrete event simulator
is responsible for scheduling the execution of SCEL actions. Actions execution
time is computed by an instance of class DelayFactory. This class, following the
same approach considered in Section 7, computes the execution time of a SCEL

action by considering the type of action performed, its arguments and the inter-
faces of the involved components. Notice that, StocS semantics can be easily
obtained when DelayFactory computes the action execution time via the appro-
priate sampling of exponential distributed random variables.

To set-up the simulation environment in jRESP one has also to define a class
that provides the machinery to manage the physical data of the scenario. This
data includes, e.g., robots positions, direction and speed. Sensors and actuators
installed in a SimulationNode are used to collect data from the scenario and to
update the state of the simulation. This mechanism, for instance, can be used
to stop the movement of a robot or to regulate its direction. In our case, we
consider the class ScenarioArena that, in addition to the above mentioned data,
also provides the methods for updating robots position and computing collisions.
These methods are periodically executed by the jRESP simulation environment.
For the sake of simplicity, in the simulation, only collisions with the borders of
the arena are considered, while collisions among robots are ignored.

The SCEL Language: Design, Implementation, Verification 59

By relying on the jRESP simulation environment, a prototype framework
for statistical model-checking has been also developed. A randomised algorithm
is used to verify whether the implementation of a system satisfies a specific prop-
erty with a certain degree of confidence. Indeed, the statistical model-checker is
parameterized with respect to a given tolerance ε and error probability p. The
algorithm guarantees that the difference between the computed value and the
exact one is greater than ε with a probability that is less than p.

The model-checker included in jRESP can be used to verify reachability prop-
erties. These permit evaluating the probability to reach, within a given deadline,
a configuration where a given predicate on collected data is satisfied. In the con-
sidered scenario, this analysis technique is used to study how the number of
robots affects the probability to reach the victim within a given deadline.

In Figure 8, we report a screenshot of the simulation simulation (left-hand
side) and the results of the analysis (right-hand side) of the robot swarm scenario.
In the screenshot, red semi-circles represent the locations of the victims, while
squares represent robots, whose color is used to show their current state. Robots
in the explorer state are blue, rescuers are green, help rescuers are light blue
while the ones with low battery are yellow. The analysis results are represented
as a chart showing the probability of rescuing the victims within a given time
according to different numbers of robots (i.e., 10, 30 and 50). In the performed
analyses we consider two victims each of which needs a swarm of three robots to
be rescued. Notably, the victims can be rescued only after 100 time steps and,
beyond a certain threshold, increasing the number of robots is not worthwhile
(in fact, the difference in terms of rescuing time between 50 and 30 robots is
marginal with respect to the cost of deploying a double number of robots).

8.2 Maude-Based Verification

SCEL comes equipped with solid semantics foundations laying the basis for
formal reasoning. This is exploited in MISSCEL (Maude Interpreter and Sim-
ulator for SCEL) which is an implementation of SCEL’s operational semantics
in the Maude framework [16]. MISSCEL currently focuses on a SCEL dialect
where repositories are implemented as multisets of tuples (as in Section 3.1),
while the processes of a SCEL component evolve in a pure interleaving fashion
(i.e. the interaction predicate is the interleaving one defined in Table 3). Access
control policies are supported, even if no policy language has been integrated
yet: by default, every request is currently authorized.

Why Maude? MISSCEL exploits the rich Maude toolset to perform:

– automatic state-space generation;
– qualitative analysis via Maude’s invariant and LTL model checkers;
– debugging via probabilistic simulations and animations generation;
– statistical model checking via the recently proposed MultiVeStA [51], a

distributed statistical analyser extending VeStA and PVeStA [3,52].

60 R. De Nicola et al.

A further advantage of MISSCEL is that SCEL specifications can now be in-
tertwined with raw Maude code, exploiting its expressiveness. This allows us to
obtain sophisticated specifications in which SCEL is used to model behaviours,
aggregations, and knowledge manipulation aspects, leaving scenario-specific de-
tails like, e.g. robots movements or computation of distances to Maude.

Reasoning in MISSCEL. In Section 3.3 we discussed about the enrichment
of SCEL components with reasoning capabilities via external reasoners. As a
matter of fact in [5] we have showed how to enrich MISSCEL components
(and thus SCEL components) with reasoning capabilities exploiting the reasoner
Pirlo [4], implemented in Maude as well, and we analyzed a collision-avoidance
robotic scenario. Collision avoidance is a key feature of the robot navigation.
For example, in our robot disaster scenario, collision avoidance can be used
to minimise collisions during the random walk phase, which is characterised
by a high density of robots arbitrarily moving in unpredictable ways. Collision
avoidance is also an archetypal example of how external reasoners can be applied
to the scenario considered in this paper.

Using MISSCEL we can specify and evaluate two different random walks
strategies: a normal one and an informed one. We considered two kinds of robots
distinguished by the strategy they apply: normal robots, and informed robots.
Normal robots choose randomly (with a uniform distribution) among five actions:
to perform random walk in one of the four cardinal directions, or to stay idle.
Informed robots monitor their surrounding environment by relying on proximity
sensors, and exploit this information to choose actions aiming at reducing the
number of collisions. The amount of environment perceived by an informed robot
depends on its perception range. The positions up, right, down and left are
reachable with a single move, while the diagonal ones are reachable with two
moves. However, the perception of the diagonal positions is also useful for the
computation of the next action, as a robot located there (e.g. one perceived in
down-left) could move towards the same position chosen by the informed robot
(e.g. up, if the informed robot moves left).

Statistical Analysis with MultiVeStA. In [5] we exploited MISSCEL and the
recently proposed statistical model checker MultiVeStA to perform a statisti-
cal quantitative analysis of the robotic collision avoidance scenario.

MultiVeStA is a Java-based distributed statistical model checker which allows
its users to enrich existing discrete event simulators with automated and statis-
tical analysis capabilities. The analysis algorithms of MultiVeStA do not depend
on the underlying simulation engine: MultiVeStA only makes the assumption
that multiple discrete event simulations can be performed on the input model.
The tool has been used to reason about public transportation systems [26], volun-
teer clouds [50], crowd-steering [41] and robotic collision avoidance [5] scenarios.
Note however that MISSCEL is an executable operational semantics for SCEL,
and as such, given a SCEL specification representing a system’s state (i.e. a set
of SCEL components), MISSCEL executes it by applying a rule of SCEL’s
semantics to (part of) the state. According to such semantics, a system evolves

The SCEL Language: Design, Implementation, Verification 61

Fig. 9. Collisions of normal and informed robots at varying of number of steps.

non-deterministically by executing the process of one of its components, and in
particular by consuming one of its actions. As usual (especially in the Maude

context, e.g. [6,11,2,25]), in order to perform statistical analysis it is necessary to
obtain probabilistic behaviours out of non-deterministic ones by resolving non-
determinism in probabilistic choices. For this reason, we defined a Java wrapper
for MISSCEL together with a set of external schedulers which permit to obtain
probabilistic simulations of SCEL specifications, which can then be exploited
by MultiVeStA to perform statistical model checking.

In our analysis in [5], we considered two scenarios with ten normal robots
and an informed one, varying the size of the perception range of the informed
robot. In the first scenario the informed robot perceives only the four surrounding
positions (up, right, down, left). In the second scenario the informed robot has
a wider perception range, allowing to perceive also the positions in the four
diagonal directions (up-right, down-right, down-left, up-left). For both scenarios
we first studied the expected value of the average number of collisions of the
normal robots when varying of number of execution steps. Not surprisingly, we
obtained very similar measures for both the scenarios, and hence we use only one
plot in Figure 9 (“Avg collisions of random walkers”). More interesting is the
case of informed robots. As depicted by the plots “Collisions of informed robot
- perceive 4 dirs” and “Collisions of informed robot - perceive 8 dirs”, informed
robots do significantly less collisions than the normal ones, and wider perception
ranges allow to further decrease the number of collisions.

62 R. De Nicola et al.

1 SC(I(tId(’SCId), tId(’role), tId(’x), tId(’y), . . .,
2 K(< tId(’SCId) ; av(id(’robot -1)) >, < tId(’role) ; av(" rescuer ") >,
3 < av("pos") av(41) av(3) >, < tId(’x) ; av(41) >, < tId(’y) ; av(3)> . . .,
4 Pi(INTERLEAVING -PROCESSES_AUTHORIZE -ALL),
5 P(pDef(’ProcessName))
6)

Listing 1. A MISSCEL component representing a robot

Implementation details. Listing 1 provides an excerpt of a possible MISSCEL

representation of a robot. As discussed, each robot of our scenario is modelled as
a SCEL component. In MISSCEL, a SCEL component is defined as a Maude

term with sort ServiceComponent built with the following operation

op SC : Interface Knowledge Policies Processes -> ServiceComponent

As an implementation choice, in MISSCEL tuples may have an identifier (e.g.
< tId(’role) ; av("rescuer") > is a tuple with identifier role), but it is
not mandatory (e.g. < av("pos") av(41.0) av(3.0) > has no identifier). Note
that, for implementation reasons, actual values (e.g. strings and integers) are
enclosed in the constructor av. Note moreover that ’role is a Maude term
with sort quoted identifier (similar to strings) built by prefixing alphanumeric
words with the operator “’”. However, only tuples with identifiers can be exposed
by the interface, as identifiers are used as pointers to the actual values of the
tuples stored in the knowledge. Then, as depicted in line 1 of Listing 1, an
interface is just a set of tuple identifiers enclosed in the Maude operation I,
while, as depicted in lines 2-3, the knowledge is a multiset of tuples enclosed
in the operation K. For example, the sketched robot has id id(’robot-1), role
rescuer and position (41,3). Line 4 specifies that the default policy is enforced.

Line 5 specifies that the behaviour of the robot is provided in the process
definition ’ProcessName. To provide an example of process definition, the MISS-
CEL representation of the process Pr of Section 5.2 is provided in Listing 2. Note
the almost one-to-one correspondence between the process specification and its
MISSCEL representation. SCEL variables with type value are built with the
Maude operations ?x (when act as binders, e.g. in a get or qry as in line 5)
or x (when instantiated, e.g. as in line 7), having as parameter the name of the
variable (we also have the corresponding process variables ?X and X). Listing 2
also provides an hint on how MISSCEL deals with process definitions and their
invocations. As depicted in lines 1-10, the body of a process is provided in the
form of a Maude equation. Maude equations are executed by the Maude engine
to rewrite occurrences of terms (in this case invoke(pDef(’Pr))) matching the
left-hand side (LHS) of the equation (i.e. before the =) in the term specified in
the right-hand side (RHS) of the equation (i.e. after the =), in this case the body
of the process. Intuitively, once all the preceding actions have been executed, a
process definition (e.g. pDef(’Pr)) is invoked. That is, it is encapsulated in the
operation

op invoke : ProcessDefinition -> Process

The SCEL Language: Design, Implementation, Verification 63

1 eq invoke(pDef(’Pr)) = (
2 (qry(< av(" victimPerceived ") av(true) >)@self.
3 put(< av(" victim ") x y av(3) >)@ self.
4 put(< av(" rescue ") >)@ self +
5 get(< av(" victim ") ?x(’x) ?x(’y) ?x(’count) >)@ Prescuers .
6 pDef(’HelpingRescuer)
7 put(< av(" victim ") x(’x) x(’y) 3 >)@ self.
8 put(< av(" rescue ") >)@ self
9) | pDef(’RandomWalk) | pDef(’IsMoving)

10) .
11
12 op Prescuers : -> Predicate .
13 eq Prescuers
14 = remote. tId(’role) = av(" rescuer ") OR
15 remote. tId(’role) = av(" helpRescuer ") .
16 op PrescuersWithDist : FormalOrActualValue FormalOrActualValue -> Predicate .
17 vars xvic yvic : ActualValue .
18 eq PrescuersWithDist(xvic ,yvic)
19 = (remote. tId(’role) = av(" rescuer ") OR
20 remote. tId(’role) = av(" helpRescuer ")) AND
21 dist(xvic ,yvic , remote. tId(’x), remote. tId(’y)) <= 10 .

Listing 2. The MISSCEL representation of process Pr of Section 5.2

(e.g. invoke(pDef(’Pr))), which can then be matched with the LHS of the
corresponding equation, causing the replacement of the process definition with
its body.

Predicates are defined as Maude operations with sort Predicate. As de-
picted in line 5 of Listing 2, we exploited the predicate Prescuers, specified
in lines 12-15. In line 12 we define the Maude operation Prescuers with sort
Predicate having no parameters. Then, in lines 13-15 we provide the body of
the predicate in the form of a Maude equation, similarly to what done for pro-
cess definitions. Note that in predicates we follow the convention of prefixing
tuple identifiers referring to the target of the communication with the keyword
remote (while we use this for local ones).

Interestingly, predicates can also be defined with parameters. An example
is PrescuersWithDist of lines 16-21, having as parameter the position of the
victim, so to send the message only to rescuers near to the victim. In line 16 we
define the Maude operation PrescuersWithDist with sort Predicate having
as parameters two FormalOrActualValue (i.e. either SCEL variables or actual
values). Then, similarly to Prescuers, in lines 18-21 we provide the body of the
predicate in the form of a Maude equation. Given that at line 17 we specify
the Maude variables (i.e. place-holders for any term with the same sort) xvic
and yvic with sort ActualValue, we have that only instantiated occurrences of
the predicate (i.e. where all the SCEL variables have been replaced by actual
values) match with the LHS of the equation.

Line 21 of listing 2 provides an interesting example demonstrating the use-
fulness of mixing SCEL and Maude specifications: dist is a Maude opera-
tion which computes the distance between two points (e.g. the positions of two
robots), which could for example correspond to the Euclidean distance. Note-
worthy, in case we would consider distances with different assumptions, e.g.

64 R. De Nicola et al.

1 op commit : Process -> Commitment .
2 rl commit(P) => commitment(inaction ,P) .
3 rl commit(a . P) => commitment(a,P) .
4 crl commit(P + Q) => commitment(a, P1) if commit(P) => commitment(a, P1) .

Listing 3. The first four rules of SCEL process semantics implemented in MISSCEL

congested areas, it would be sufficient to change the Maude operations leaving
unchanged the SCEL specification.

Coming to semantics-related aspects, we have seen in Section 2.3 that the
operational semantics of SCEL is defined in two steps. The same happens in
MISSCEL. For the sake of presentation, we now exemplify the correspondence
of SCEL semantics and its implementation in MISSCEL for the semantics of
processes only.

Let us consider the first four rules of the SCEL process semantics reported
in Table 2. Listing 3 depicts (omitting unnecessary details) how we implemented
these rules in MISSCEL, where P, Q and P1 are Maude variables with sort
Process (i.e. place-holders for any term with the specified sort), while a is an
Action variable. The correspondence is straightforward. Note that we need only
one rule for the + operator, as we defined it with the comm axiom, meaning that
it has the commutative property, i.e. when applying a rule to P + Q, Maude

will try to match the rule also with Q + P.

8.3 Spin-Based Verification

We present here a verification approach for SCEL specifications based on the
Spin model checker [28]. Specifically, we provide a translation of SCEL specifi-
cations into Promela, the input language of Spin, and show how to exploit it to
verify some properties of interest of the swarm robotics scenario with Spin.

From SCEL to Promela. For the sake of presentation, we consider a simple
instance of SCEL with no policies, standard interleaving interaction (as in Ta-
ble 3), and knowledge repositories based on multiple distributed tuple spaces
(as in Section 3.1). Moreover, we do not consider other sophisticated features of
SCEL such as higher-order communication and dynamic creation of new names
and components.

We present below the key points of the translation from SCEL to Promela
by resorting to the robotics scenario25. The translation is defined by a family of
functions �·�, whose formal definitions are given in [23].

25 The complete specification of the scenario can be retrieved from http://rap.dsi.
unifi.it/scel/docs/SpinSpecificationSwarmRoboticsScenario.pml.

http://rap.dsi.unifi.it/scel/docs/SpinSpecificationSwarmRoboticsScenario.pml
http://rap.dsi.unifi.it/scel/docs/SpinSpecificationSwarmRoboticsScenario.pml

The SCEL Language: Design, Implementation, Verification 65

1 /* Constants declaration */
2 #define NROBOTS 10 /* Number of robots */
3 #define CAPACITY 10 /* Maximum size of knowledge repositories */
4 ...
5
6 /* The type of the interface as a struct of attributes */
7 mtype={rescuer , helpRescuer , explorer}
8 typedef interface{
9 int id;

10 mtype role;
11 }
12
13 /* A component -indexed array of interfaces */
14 interface I[NROBOTS];
15
16 /* Component -indexed array of knowledge repositories */
17 mtype={victim , direction}
18 chan K[NROBOTS]=[CAPACITY] of {mtype , int , int , int};
19
20 /* Components specification */
21 active [NROBOTS] proctype Robot(){
22 /* Attribute initialization */
23 int id=_pid;
24 I[id].id=id;
25 I[id].role=explorer;
26
27 /* Component ’s process specification */
28 ...
29 }

Listing 4. Promela specification of the swarm robotics scenario

Specifications. The Promela specification resulting from the translation (of a
simplified variant) of the SCEL specification of the swarm robotics scenario is
shown in Listing 4. It contains the declaration of the necessary data structures for
representing interfaces, knowledge, components and processes. Data structures
representing interfaces and knowledge repositories are declared with a global
scope; in this way, attributes and knowledge items can be directly accessed by
Promela processes.

Interfaces. The translation declares a structured type interface (lines 8-11) as
a collection of variables, one for each attribute. In our scenario, all robots expose
two attributes: id, ranging over integer values, and role, ranging over names
in {rescuer, helpRescuer, explorer}. All interfaces are then recorded in the
array I (line 14), whose size is given by the number of robots, defined by the
constant NROBOTS (line 2).

Repositories. All knowledge repositories are grouped together in the array K
(line 18). Each repository is implemented as a channel of tuples, whose length
is given by the maximum length of items used in the specification. In fact, to
simplify message management in Promela, all tuples have the same length and
are composed only of a value in {victim, direction} followed by integer values.
To fulfil this assumption, messages representing shorter items are completed
by using dummy values. The dimension of repositories is set by means of the
constant CAPACITY (line 3).

66 R. De Nicola et al.

Components. The translation of a component Ii [Ki , Πi , Pi] corresponds to a
declaration of a Promela process, via the proctype construct (line 21), that ini-
tializes the data structure modelling the component attributes with values in Ii

(lines 23-25). In our example, the data structure modelling the knowledge repos-
itory, i.e. channel K[i], is not initialized because Ki is initially empty. Notably,
component translations are automatically instantiated in the initial system state
(by means of the keyword active).

Processes and actions. The composition of SCEL processes can be naturally
translated into Promela process declarations and their composition. For exam-
ple, multiple run statements can be used for the parallel execution of processes.
Then, each SCEL action is translated in a small piece of Promela code that
basically performs output or input operations on channels K[i]. For exam-
ple, the group-oriented action get(“victim”, ?x, ?y, ?count)@(role=“rescuer” ∨
role=“helpRescuer”), used by a robot to receive a request for help by other
robots, is rendered in Promela as a non-deterministic choice among a set of in-
put operations on each K[i]. In particular, for each robot component i, there
is a choice branch

::atomic{(g i -> K[i]??victim,x,y,count}

where the guard g i is as follows:

(I[i].role==rescuer || I[i].role==helpRescuer) && K[i]??[victim, , ,]

This guard ensures the transition to fire only if the target predicate holds for
component i (i.e., the component plays either role rescuer or helpRescuer) and
i has a matching victim tuple in its repository. If that is the case, the tuple is in-
deed removed using the (consuming) input operation K[i]??victim,x,y,count.
It is worth noticing that the atomic block is used to guarantee atomic execution
of the operations.

Spin Verification. We illustrate in this section some examples of how Spin can
be used to check and verify properties of SCEL specifications, by resorting to
the translation of the SCEL specification of our swarm robotics scenario.

Checking Deadlock Absence. A first property one would like to check is absence
of deadlocks. Below, we report the result of invoking Spin for checking deadlock
absence in our scenario with 10 robots:

State-vector 2188 byte, depth reached 415289, errors: 0
415290 states, stored

The result is positive (no errors) and Spin explores more than 400.000 states.

The SCEL Language: Design, Implementation, Verification 67

Checking liveness. Another typical use of Spin that is very convenient for our
purposes is to look for interesting executions, that is, we characterise them by
means of an LTL formula. For example, in our scenario, we can specify a formula

[](I[i].role==helpRescuer ->
<>(positionX[i]==VICTIMX && positionY[2]==VICTIMY))

which states that whenever the robot i becomes a HelpRescuer, it eventu-
ally reaches the victim. Spin provides a positive answer, since in our simplified
scenario robots’ batteries never discharge. We have also defined a variant of the
scenario where each robot component has a battery level value that decreases
after each movement. In this case, the formula is not satisfied and Spin returns a
counterexample showing an execution of the system in which the robot becomes
a HelpRescuer but then stops moving because the battery is completely dis-
charged.

9 Concluding Remarks

We have presented the kernel language SCEL and its Java implementation to-
gether with alternative linguistic primitives and with automatic tools to support
verification of qualitative and quantitative properties of its programs. To assess
to which extent SCEL meets our expectations, we have used it to tackle a num-
ber of case studies from robotics [15,24,13,34], service provision domains [19,23],
cloud-computing [36,38] and e-Mobility domains [12]. Moreover, to verify the
impact of SCEL on autonomic programming we have shown how it can be used
to model a key aspect such as self-expression [13] and how it can flexibly model
different adaptation patterns [15].

Our holistic approach to programming autonomic computing systems permits
to govern systems complexity by providing flexible abstractions for modeling
behaviors, knowledge and policies and for exploiting external reasoners whenever
informed decisions need to be taken. We are now working on two different, almost
opposite, directions.

On the one hand, we are developing a high-level programming language that,
by enriching SCEL with standard constructs (e.g., control flow constructs such
as while or if-then-else), simplifies the programming task. This would enable us
to implement an integrated environment for supporting the development of au-
tonomic systems at different levels of abstraction: from a high-level perspective,
based on SCEL, to a more concrete one, based on jRESP. (Semi-)Automatic
analysis tools, based on the SCEL’s formal semantics, will be integrated in this
toolchain. On the other hand, we are distilling from SCEL a minimal calculus
where communication partners are selected according to predicates on attributes
exposed by the different processes. Our aim is to understand the full impact on
distributed programming of this novel paradigm that has proved very fruitful
in modeling the interaction of large numbers of autonomic systems. For the
new calculus we plan to develop behavioral relations, axiomatizations and logics

68 R. De Nicola et al.

that will help to devise new tools for supporting specification and verification of
SCEL programs.

Other interesting topics that deserve further investigation are those con-
nected to policies, reasoners and adaptation. We are currently working on defin-
ing different interaction policies to study the possibility of modeling different
forms of synchronization and communication, and for example to guarantee lo-
cal synchronous interaction and global asynchronous interaction between compo-
nents. Moreover, we are studying the connections between knowledge handlers,
reasoners and components goals described by means of appropriate knowledge
representation languages. In this case the aim is the development of methodolo-
gies that enable components to take decisions, possibly after consulting external
reasoners, about possible alternative behaviors by choosing among the best pos-
sibilities while being aware of the consequences.

Acknowledgements. We would like to thank all friends of the ASCENS
project, without their contributions and stimuli, SCEL would not have been
conceived.

References

1. Abeywickrama, D.B., Combaz, J., Horký, V., Keznikl, J., Kofroň, J., Lafuente,
A.L., Loreti, M., Margheri, A., Mayer, P., Monreale, V., Montanari, U., Pinciroli,
C., Tůma, P., Vandin, A., Vassev, E.: Tools for Ensemble Design and Runtime. In:
Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998, pp. 429–448. Springer, Heidelberg
(2015)

2. Agha, G.A., Meseguer, J., Sen, K.: PMaude: Rewrite-based specification language
for probabilistic object systems. In: Cerone, A., Wiklicky, H. (eds.) QAPL 2005.
ENTCS, vol. 153(2), pp. 213–239. Elsevier (2006)

3. AlTurki, M., Meseguer, J.: pVeStA: A parallel statistical model checking and
quantitative analysis tool. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO
2011. LNCS, vol. 6859, pp. 386–392. Springer, Heidelberg (2011)

4. Belzner, L.: Action programming in rewriting logic (technical communication).
Theory and Practice of Logic Programming, Online Supplement (2013)

5. Belzner, L., De Nicola, R., Vandin, A., Wirsing, M.: Reasoning (on) service com-
ponent ensembles in rewriting logic. In: Iida, S., Meseguer, J., Ogata, K. (eds.)
Specification, Algebra, and Software. LNCS, vol. 8373, pp. 188–211. Springer,
Heidelberg (2014)

6. Bentea, L., Ölveczky, P.C.: A probabilistic strategy language for probabilistic
rewrite theories and its application to cloud computing. In: Mart́ı-Oliet, N.,
Palomino, M. (eds.) WADT 2012. LNCS, vol. 7841, pp. 77–94. Springer, Hei-
delberg (2013)

7. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and
optimization. J. ACM 44(2), 201–236 (1997)

8. Bistarelli, S., Montanari, U., Rossi, F.: Soft concurrent constraint programming.
ACM Trans. Comput. Log. 7(3), 563–589 (2006)

The SCEL Language: Design, Implementation, Verification 69

9. Bortolussi, L., Hillston, J.: Fluid model checking. In: Koutny, M., Ulidowski, I.
(eds.) CONCUR 2012. LNCS, vol. 7454, pp. 333–347. Springer, Heidelberg (2012)

10. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation
of collective system behaviour: A tutorial. Perform. Eval. 70(5), 317–349 (2013)

11. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: Modelling
and analyzing adaptive self-assembly strategies with Maude. In: Durán, F. (ed.)
WRLA 2012. LNCS, vol. 7571, pp. 118–138. Springer, Heidelberg (2012)

12. Bures, T., De Nicola, R., Gerostathopoulos, I., Hoch, N., Kit, M., Koch, N., Mon-
reale, G.V., Montanari, U., Pugliese, R., Serbedzija, N., Wirsing, M., Zambonelli,
F.: A Life Cycle for the Development of Autonomic Systems: The e-mobility
showcase. In: Proc. of SASOW, pp. 71–76. IEEE, Los Alamitos (2013)

13. Cabri, G., Capodieci, N., Cesari, L., De Nicola, R., Pugliese, R., Tiezzi, F., Zam-
bonelli, F.: Self-expression and dynamic attribute-based ensembles in SCEL. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part I. LNCS, vol. 8802, pp. 147–163.
Springer, Heidelberg (2014)

14. Castro, M., Druschel, P., Kermarrec, A.-M., Rowstron, A.: Scalable Application-
Level Anycast for Highly Dynamic Groups. In: Stiller, B., Carle, G., Karsten, M.,
Reichl, P. (eds.) NGC 2003 and ICQT 2003. LNCS, vol. 2816, pp. 47–57. Springer,
Heidelberg (2003)

15. Cesari, L., De Nicola, R., Pugliese, R., Puviani, M., Tiezzi, F., Zambonelli, F.:
Formalising adaptation patterns for autonomic ensembles. In: Fiadeiro, J.L., Liu,
Z., Xue, J. (eds.) FACS 2013. LNCS, vol. 8348, pp. 100–118. Springer, Heidelberg
(2014)

16. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

17. Combaz, J., Bensalem, S., Tiezzi, F., Margheri, A., Pugliese, R., Kofron, J.: Cor-
rectness of Service Components and Service Component Ensembles. In: Wirsing,
M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective
Autonomic Systems. LNCS, vol. 8998, pp. 107–159. Springer, Heidelberg (2015)

18. Damianou, N., Dulay, N., Lupu, E.C., Sloman, M.: The Ponder Policy Specifica-
tion Language. In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS,
vol. 1995, pp. 18–38. Springer, Heidelberg (2001)

19. De Nicola, R., Ferrari, G.-L., Loreti, M., Pugliese, R.: A Language-Based Ap-
proach to Autonomic Computing. In: Beckert, B., Damiani, F., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 25–48. Springer, Hei-
delberg (2013), http://www.ascens-ist.eu/scel

20. De Nicola, R., Ferrari, G., Pugliese, R.: Klaim: A Kernel Language for Agents
Interaction and Mobility. IEEE Trans. Software Eng. 24(5), 315–330 (1998)

21. De Nicola, R., Latella, D., Loreti, M., Massink, M.: Rate-based transition systems
for stochastic process calculi. In: Albers, S., Marchetti-Spaccamela, A., Matias,
Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp.
435–446. Springer, Heidelberg (2009)

22. De Nicola, R., Latella, D., Loreti, M., Massink, M.: A uniform definition of
stochastic process calculi. ACM Comput. Surv. 46(1), 1–5 (2013)

23. De Nicola, R., Lluch Lafuente, A., Loreti, M., Morichetta, A., Pugliese, R., Senni,
V., Tiezzi, F.: Programming and verifying component ensembles. In: Bensalem,
S., Lakhneck, Y., Legay, A. (eds.) From Programs to Systems. LNCS, vol. 8415,
pp. 69–83. Springer, Heidelberg (2014)

24. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A Formal Approach to Auto-
nomic Systems Programming: The SCEL Language. TAAS 9(2), 7 (2014)

http://www.ascens-ist.eu/scel

70 R. De Nicola et al.

25. Eckhardt, J., Mühlbauer, T., AlTurki, M., Meseguer, J., Wirsing, M.: Stable
availability under denial of service attacks through formal patterns. In: de Lara,
J., Zisman, A. (eds.) Fundamental Approaches to Software Engineering. LNCS,
vol. 7212, pp. 78–93. Springer, Heidelberg (2012)

26. Gilmore, S., Tribastone, M., Vandin, A.: An analysis pathway for the quantitative
evaluation of public transport systems. In: Albert, E., Sekerinski, E. (eds.) IFM
2014. LNCS, vol. 8739, pp. 71–86. Springer, Heidelberg (2014)

27. Hölzl, M., Gabor, T.: Reasoning and Learning for Awareness and Adaptation. In:
Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998, pp. 249–290. Springer, Heidelberg
(2015)

28. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–
295 (1997)

29. IBM: Autonomic Computing Policy Language – ACPL,
http://www.ibm.com/developerworks/tivoli/tutorials/ac-spl/

30. IBM: An architectural blueprint for autonomic computing. Tech. rep., IBM, Third
edition (June 2005)

31. Khakpour, N., Jalili, S., Talcott, C.L., Sirjani, M., Mousavi, M.R.: Formal mod-
eling of evolving self-adaptive systems. Sci. Comput. Program. 78(1), 3–26 (2012)

32. Latella, D., Loreti, M., Massink, M., Senni, V.: Stochastically timed predicate-
based communication primitives for autonomic computing. In: Bertrand, N., Bor-
tolussi, L. (eds.) Proceedings of the Twelfth Workshop on Quantitative Aspects
of Programming Languages (QAPL 2014). Electronic Proceedings in Theoretical
Computer Science (EPTCS), pp. 1–16 (2014), doi:10.4204/EPTCS.154.1

33. Latella, D., Loreti, M., Massink, M., Senni, V.: On StocS: a Stochas-
tic extension of SCEL. Tech. Rep. 11, ASCENS Project (February 2014),
http://www.ascens-ist.eu/

34. Loreti, M., Margheri, A., Pugliese, R., Tiezzi, F.: On programming and policing
autonomic computing systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014,
Part I. LNCS, vol. 8802, pp. 164–183. Springer, Heidelberg (2014)

35. Margheri, A., Masi, M., Pugliese, R., Tiezzi, F.: A Formal Software Engineering
Approach to Policy-based Access Control. Tech. rep., DiSIA, Univ. Firenze (2013),
available at http://www.ascens-ist.eu/scel

36. Margheri, A., Pugliese, R., Tiezzi, F.: Linguistic Abstractions for Programming
and Policing Autonomic Computing Systems. In: UIC/ATC, pp. 404–409. IEEE,
Los Alamitos (2013)

37. Margheri, A., Pugliese, R., Tiezzi, F.: Linguistic abstractions for programming
and policing autonomic computing systems. Tech. rep., Univ. Firenze (2013),
http://www.ascens-ist.eu/scel

38. Mayer, P., Klarl, A., Hennicker, R., Puviani, M., Tiezzi, F., Pugliese, R., Keznikl,
J., Bure, T.: The autonomic cloud: A vision of voluntary, peer-2-peer cloud com-
puting. In: Proc. of SASOW, pp. 89–94. IEEE, Los Alamitos (2013)

39. OASIS XACML TC: eXtensible Access Control Markup Language (XACML)
version 3.0 (January 2013),
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf

40. O’Grady, R., Groß, R., Christensen, A.L., Dorigo, M.: Self-assembly strategies
in a group of autonomous mobile robots. Auton. Robots 28(4), 439–455 (2010),
doi:10.1007/s10514-010-9177-0

41. Pianini, D., Sebastio, S., Vandin, A.: Distributed statistical analysis of complex
systems modeled through a chemical metaphor. In: HPCS (MOSPAS workshop),
pp. 416–423. IEEE, Los Alamitos (2014)

http://www.ibm.com/developerworks/tivoli/tutorials/ac-spl/
http://www.ascens-ist.eu/
http://www.ascens-ist.eu/scel
http://www.ascens-ist.eu/scel
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf

The SCEL Language: Design, Implementation, Verification 71

42. Pinciroli, C., Bonani, M., Mondada, F., Dorigo, M.: Adaptation and Awareness in
Robot Ensembles: Scenarios and Algorithms. In: Wirsing, M., Hölzl, M., Koch, N.,
Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS,
vol. 8998, pp. 471–494. Springer, Heidelberg (2015)

43. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60-61, 17–139 (2004)

44. Project InterLink (2007), http://interlink.ics.forth.gr
45. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Else-

vier, Amsterdam (2006)
46. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and

Routing for Large-Scale Peer-to-Peer Systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

47. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. TAAS 4(2) (2009)

48. Saraswat, V., Rinard, M.: Concurrent constraint programming. In: POPL, pp.
232–245. ACM Press, New York (1990)

49. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000)

50. Sebastio, S., Amoretti, M., Lluch-Lafuente, A.: A computational field framework
for collaborative task execution in volunteer clouds. In: SEAMS, pp. 105–114.
ACM, New York (2014)

51. Sebastio, S., Vandin, A.: MultiVeStA: statistical model checking for dis-
crete event simulators. In: Horvath, A., Buchholz, P., Cortellessa, V.,
Muscariello, L., Squillante, M.S. (eds.) 7th International Conference on
Performance Evaluation Methodologies and Tools, ValueTools ’13, Torino,
Italy, December 10-12, 2013, pp. 310–315. ACM Press, New York (2013),
http://dl.acm.org/citation.cfm?id=2631846

52. Sen, K., Viswanathan, M., Agha, G.A.: Vesta: A statistical model-checker and
analyzer for probabilistic systems. In: Baier, C., Chiola, G., Smirni, E. (eds.)
QEST 2005, pp. 251–252. IEEE Computer Society Press, Los Alamitos (2005)

53. Sommerville, I., Cliff, D., Calinescu, R., Keen, J., Kelly, T., Kwiatkowska,
M.Z., McDermid, J.A., Paige, R.F.: Large-scale complex IT systems. Commun.
ACM 55(7), 71–77 (2012)

54. Vassev, E., Hinchey, M.: Knowledge Representation for Adaptive and Self-aware
Systems. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineer-
ing for Collective Autonomic Systems. LNCS, vol. 8998, pp. 221–247. Springer,
Heidelberg (2015)

http://interlink.ics.forth.gr
http://dl.acm.org/citation.cfm?id=2631846

Chapter I.2

Reconfigurable and Software-Defined Networks
of Connectors and Components�

Roberto Bruni1, Ugo Montanari1, and Matteo Sammartino1

Department of Computer Science, University of Pisa, Italy

Abstract. The diffusion of adaptive systems motivate the study of mod-
els of software entities whose interaction capabilities can evolve dynami-
cally. In this paper we overview the contributions in the ASCENS project
in the area of software defined networks and of reconfigurable connectors.
In particular we highlight: (i) the definition of the Network-conscious pi-
calculus and its use in the modeling and verification of the PASTRY
protocol, and (ii) the mutual correspondence between different frame-
works for defining networks of connectors together with two suitable
enhancements for addressing dynamically changing systems.

Keywords: Network-conscious pi-calculus, PASTRY, overlay networks, coal-
gebraic semantics, HD-automata, BIP, Petri nets with boundaries, algebras of
connectors, tile model, reconfigurable connectors, dynamic connectors

1 Introduction

One of the research strands of the ASCENS project is concerned with the study of
resource-aware infrastructures and networking middleware modeled in terms of
advanced components, glues and connectors which can support different levels of
guarantees, reliability, dynamics and integration to heterogeneous components.
The study includes the development of foundational models and architectures for
network-aware systems with a high degree of dynamism in the communication
topology between components. Formal models must allow a separation between
the detailed behavior of components and their overall coordination. This pa-
per surveys two approaches to coordination whose focus is on Software-Defined
networks and on component-based design, respectively:

– For the former, we have proposed a network-aware extension of classical π-
calculus [27], called NCPi, that allows for expressing the creation and the
activation of connections, and whose semantics deals with the possible rout-
ing paths. We show that NCPi looks more adequate than traditional pro-
cess calculi to describe Software-Defined and overlay networks, their routing

� This research was supported by the European project IP 257414 (ASCENS) and by
the Italian MIUR Project CINA (PRIN 2010/11).

M. Wirsing et al. (eds.): Collective Autonomic Systems, LNCS 8998, pp. 73–106, 2015.
c© Springer International Publishing Switzerland 2015

74 R. Bruni et al.

mechanisms, and to verify their properties. In particular, we show how NCPi
can support the formalization and verification of the PASTRY distributed
hash table system of cloud systems.

– For the latter, we have related some of the most notable theories for ex-
pressing network of connectors between components, by defining mutual em-
beddings that reduce the fragmentation in the body of knowledge and the
different notions and terminologies involving connectors, and then we have
proposed some enhancements to address reconfigurability and dynamism.

Structure of the paper. Section 2 introduces Software-Defined networks and the
PASTRY protocol. Section 3 presents the syntax and semantics of NCPi, includ-
ing an extension with features reflecting real-life routing protocols. Section 4
shows the formalization of the Pastry overlay networks, then used to prove that
each message eventually gets to its destination.

Section 5 explains the rationale for software architectures based on (networks
of) connectors and components, and surveys some approaches from the litera-
ture. Section 6 presents the connection between algebras of connectors and nets
with boundaries, a special flavor of Petri nets with interfaces. Section 7 recalls the
BIP component framework and relates it with the models in Section 6. Section 8
introduces two enhanced models that allow a higher degree of dynamism.

2 Software-Defined and Overlay Networks

The trend in networking is going towards more “open” architectures, where
the infrastructure can be manipulated in software. This trend started in the
nineties, when OpenSig [15] and Active Networks [39] were presented, but nei-
ther gained wide acceptance due to security and performance problems. More
recently, OpenFlow [26,32] or, more broadly, Software-Defined Networking has
become the leading approach, supported by Google, Facebook, Microsoft and
others. Software-Defined networks (SDNs) allow network administrators to con-
trol traffic via software installed on a centralized controller. This machine is
connected to all switches in the network, and instructs them to install or unin-
stall forwarding rules and report traffic statistics.

Another important example of programmable infrastructures are peer-to-peer
systems. They provide the networking substrate for the execution of distributed
applications, such as Distributed Hash Tables (DHTs). In peer-to-peer systems,
peers interact over an application-level overlay network, built on top of the phys-
ical one. An overlay network is highly dynamic, as peers can join and leave it at
any time, and this causes continuous reconfigurations of its topology.

In particular, we consider PASTRY [35], employed in the Science Cloud case-
study (see Chapter IV.3 [25]). PASTRY is a peer-to-peer architecture where peers
and keys have identifiers, regarded as arranged in clockwise order on a ring. The
main service provided by PASTRY is routing by key: given a key k, PASTRY
delivers the message to the peer which is responsible for k, i.e. the one whose
identifier is numerically closest to k than all other peers. Routing is implemented

Software-Defined Networks of Connectors and Components 75

.
1000

1010

1

1111

1011
1000

1
10

0
-

101

Routing Table

Leaf Set

1011

1100

1111

1000 1011

.

1

1100
111

0
-

10001
11

Routing Table

Leaf Set 1100

Fig. 1. PASTRY example system

as follows. Each peer with identifier id maintains two data structures: a routing
table and a leaf-set. The routing table contains peers that share a prefix with id.
The leaf-set contains peers (leaves) with numerically closest smaller and larger
identifiers, relative to id. Whenever id receives a message with target key k, it
checks whether k belongs to the leaf-set range. If so, the message is forwarded
to the leaf numerically closest to k (if it is not id itself). Otherwise, the routing
table is used: the next hop is the peer sharing the longest prefix with k.

Example 1. An example system is in Figure 1, where identifiers are binary
strings. Consider the peer with identifier 1010 and suppose 1100 is responsi-
ble for the key 1101. A message from 1010 with target key 1101 is routed as
follows. Since 1101 does not belong to the interval [1000, 1011] spanned by the
leaf-set of 1010, the routing table is used: the longest prefix shared by 1010 and
1101 is 1, so the message is forwarded to 1111, the peer in the cell (1, 1). Once
1111 receives the message, it discovers that 1101 is in its leaf-set range (the
leaf-set has 1111 itself as upper bound, as no peer has larger identifier), so it
forwards the message to the leaf closest to 1101, that is 1100.

3 Network Conscious π-Calculus (NCPi)

Traditional process calculi, such as π-calculus [27], seem inadequate to describe
Software-Defined and overlay networks, their routing mechanisms, and to ver-
ify their properties. In fact, they abstract away from network details. Complex
infrastructural elements, such as network links, could be described in terms of
processes, and routing protocols in terms of consecutive step-by-step forward-
ings. However, end-to-end routing behavior could not be observed in a single
transition, e.g. the path of a DHT lookup request through a peer-to-peer over-
lay. This information can be useful for the analysis of routing algorithms, e.g.,
to determine whether they are always able to construct a valid/optimal path for
given source and destination.

In order to model network architectures in a more explicit way, in [30,36,31]
we have introduced the Network Conscious π-calculus (NCPi), an extension of

76 R. Bruni et al.

Cloud
def= cl(x).cl(y).(lxy)(cllxy.Cloud)

V1
def= aa.ab.a(lab).(ac.V1

′ | L(lab))

V2
def= b(x).V2′

L(lxy) def= lxy.L(lxy)

S
def= V1 | Cloud | V2 | L(la cl) | L(l′cl a)

Fig. 2. Cloud example system

the π-calculus with a natural notion of network: nodes and links are regarded
as computational resources that can be created, passed and used to transmit, so
they are represented as names, following the π-calculus methodology.

3.1 Illustrative Example

To have a first look at the calculus, consider the system in Figure 2. It represents
the network level of a cloud system, made of (virtual) machines and (virtual)
links between them. Site names a, b, cl represent network interfaces; link names
la cl

and l′cl a represent directed links from a to cl and viceversa, respectively.
We have a cloud manager Cloud, capable of creating new links between virtual
machines and granting access to them, and two virtual machines V1 and V2. We
model a situation where the machine V1 wants to exchange data with V2, but no
links exists between a and b, so V1 will ask Cloud to create such link.

The formal definition says that Cloud can receive two sites x and y at cl,
create a new link between them and emit it at cl. The process V1 can send a and
b from a, wait for a link at a and then become the parallel composition of two
components: the first one can send c from a; the second one invokes the process
L to activate the link lab. This activation is expressed as the link prefix lxy.− in
the definition of L: when consumed, it spawns a transportation service over lxy,
which can be used to forward a datum from x to y. The link prefix expresses a
single activation of the link, as input/output prefixes in the π-calculus express
a single usage of their subject channel. The recursive definition of L is needed
to model a persistent connection. The process V2 simply waits for a datum at b.
Finally, the whole system S is the parallel composition of V1, V2, Cloud and two
processes modeling a bidirectional persistent connection between V1 and Cloud.

As in the π-calculus, we have observations representing inputs, output and
complete communications. However, since NCPi allows for remote communica-
tions, they all include the (possibly empty) sequence of links that are traversed
in the communication. For instance, the process V1 can emit a at a as follows

V1
•;aa−−−→ ab.a(lab).(ac.V1

′ | L(lab))

The label •; aa is a zero-length (i.e. with empty sequence of links) output path,
which can be seen as the π-calculus action aa. The symbol • is syntactic sugar,

Software-Defined Networks of Connectors and Components 77

indicating where the path starts. In general, there may be a list of links W
between • and aa: •; W ; aa means that a went through W before being emitted.
The syntax also include bound output paths of the form •; W ; a(b), representing
the publication of a previously bound name b (its extrusion).

Symmetrically, Cloud can receive a at cl

Cloud
cla;•−−−→ cl(y)(lay)cllay.Cloud

where cla; • is an input path, analogous to the early π-calculus input action cla.
Input paths always have length zero, as we only allow local receptions (this
restriction will be dropped for the concurrent version of NCPi).

Next we introduce service paths, which have no counterpart in the π-calculus.
A service path has the form a; W ; b, where W is a sequence of links. It represents
a transportation service that can be used to route a datum from a to b. For
instance a; la cl

; cl is a service path from a to cl over la cl
and we have

L(la cl
)

a;la cl
;cl−−−−−→ L(la cl

).

Finally, we have complete communication, denoted by a complete path •; W ; •.
Unlike the π-calculus τ -action, this observation is not silent, as the path W
of the transmitted datum is observed; the datum itself remains unobservable.
Another difference is that a complete path is usually produced by more than one
synchronization, each one concatenating a compatible pair of paths. For instance,
in order for V1 to communicate a to Cloud, there must be a first synchronization
between V1 and L(lab), causing •; aa and a; la cl

; cl to be concatenated

V1 | L(la cl
)
•;la cl

;cla−−−−−−→ . . .

Here the continuation is the parallel composition of those shown above, and
•; la cl

; cla is an output path where a is emitted at cl after traversing la cl
. A

complete path is produced by another, final synchronization:

V1 | L(la cl
) | Cloud

•;la cl
;•

−−−−−→ . . .

meaning that a complete communication over lacl
has happened.

Now we overview the steps the entire system S can perform:

1. V1 communicates to Cloud the endpoints a and b of the link to be
created: it is observed as two consecutive occurrences of •; lacl

; •. The state
of the system after these interactions is

a(lxy).(L(lxy) | ac.V1
′) | (lab)(cllab.Cloud) | V2 | L(la cl

) | L(l′cl a) .

2. cllab.Cloud communicates lab to a(lxy).(L(lxy) | ac.V1′): we first rearrange
the processes using structural congruence

(lab)(a(lxy).(L(lxy) | ac.V1
′) | cllab.Cloud | L(l′cl a)) | V2 | L(la cl

) .

78 R. Bruni et al.

Now the processes within the scope of lab can interact, and the resulting
observation is •; l′cl a; •, with continuation

(lab)(L(lab) | ac.V1
′ | Cloud | V2) | L(la cl

) | L(l′cl a) .

3. ac.V1′ communicates c to V2: in this case, despite lab is used for the trans-
mission, only •; • can be observed, because such link is restricted. This is
analogous to the π-calculus τ action. The continuation is

(lab)(L(lab) | V1′ | Cloud | V2′[c/x]) | L(la cl
) | L(l′cl a) .

3.2 Syntax and Semantics

We assume an enumerable set of site names S (or just sites) and an enumerable
set of link names L (or just links), equipped with two functions s, t : L → S,
telling source and target of each link. We denote by lab a link l such that s(l) = a
and t(l) = b. We write Lab for the set of links of the form lab and La for the
union of all Lab and Lba, for all b.

As shown in the previous section, the syntax of NCPi processes is an extension
of the π-calculus one: prefixes can also express input/output of links, and we have
a link prefix lab.p, meaning that this process can offer to the environment the
service of transporting a datum from a to b through l and then continue as p.

The free names fn(p) describe the network available to p, in the form of a
multigraph made of sites and links. They are defined as expected. For links,
if lab is not the argument of a top-level binder, then fn(p) includes {a, b, lab};
otherwise, for instance in a(lbc).p, only lbc is bound, whereas its endpoints are
free, namely fn(a(lbc).p) := {a, b, c} ∪ fn(p) � {lbc}. The interesting cases are:

fn(b(a).p) := {b} ∪ (fn(p) � ({a} ∪ La)) fn((a)p) := fn(p) � ({a} ∪ La)

where a free link in p having a as endpoint is considered bound in (a)p and
b(a).p. This intuitively means that a global link cannot have private endpoints.
Given a name r, we shall write r # p to indicate that r is fresh w.r.t. p, i.e.
r /∈ fn(p); N # p, with N a set of names, has the expected meaning.

Now we define renamings and their extensions to processes. Since names
describe graphs, we require renaming to respect their structure, i.e. to be graph
homomorphisms. In order to define the extension of renamings to processes, we
need a notion of α-conversion that establishes how to avoid captures. For reasons
that will become clear later, α-conversion can only be defined for processes where
bound links are bound explicitly, and not as a side-effect of binding a site. We call
such processes well-formed. For instance, a(b).lbc.p is not well-formed because lbc

is implicitly bound by a(b).

Definition 1 (Well-formed process). A NCPi process p is well-formed if for
every subterm q: (i) q = (a)p′ implies fn(q) = fn(p′) � {a}; (ii) q = b(a).p′

implies fn(q) = {b} ∪ fn(p′) � {a};

Software-Defined Networks of Connectors and Components 79

Table 1. Free names, bound names, objects and interaction sites of a path α

path α fn bn obj is

a; W ; b n(α) ∅ ∅ {a, b}
•; W ; • n(α) ∅ ∅ ∅

•; W ; ar n(α) ∅ n(r) {a}
•; W ; a(r) n(α) � {r} {r} n(r) � {r} {a}
ar; • n(α) ∅ n(r) {a}

Structural congruence axioms for well-formed processes contains the usual com-
mutative monoid laws for | and +, scope extension and unfolding for process
definitions. The interesting case is α-conversion:

(a)p ≡ (a′)p[a′
/a] b(a).p ≡ b(a′).p[a′

/a] a′# (a)p
(lab)p ≡ (l′ab)p[l′ab/lab] c(lab).p ≡ c(l′ab).p[l′ab/lab] l′ab # (lab)p

When α-converting (a)p, [a′
/a] is never applied to a link lab, since such link cannot

be free in p by well-formedness. Indeed, [a′
/a] does not uniquely characterize a

renaming if lab is free; if it is bound, i.e. if (lab)p′ is a subprocess of p, then
we simply have inductively ((lab)p′)[a

′
/a] ≡ (l′a′b)p

′[l′a′b/lab][a
′
/a], for any l′a′b fresh

w.r.t. p. The axioms’ side conditions guarantee preservation of well-formedness.
We now introduce the operational semantics. As mentioned, observations

represent routing paths. We denote them by α. Table 1 introduces some notation
for paths: the interaction sites of α, written is(α), are those sites where the
interaction with another process may happen, similarly to subjects of the π-
calculus. We also have free names fn(), bound names bn() and objects obj() of
α. Given a list of links W , we write W/r for W after removing each occurrence
of r ∈ L, and α/r for α with /r applied to its list of links.

Definition 2 (NCPi transition system). The NCPi transition system is the
smallest transition system generated from the rules in Figure 3. We assume that
structurally congruent processes have the same transitions.

We briefly explain the rules. (out) and (in) infer a zero-length path representing,
respectively, the beginning and the end of a transmission. As in the early π-
calculus, a renaming must be applied to the continuation in the free input case;
if the input object is a site a, then we have a substitution between sites, which
can be turned into a proper renaming by well-formedness. (link) infers a service
path made of one link. (int) infers an internal action, represented as a complete
path where everything is unobservable. (res) computes the paths of a process
with an additional restriction (r) from those of the unrestricted process, provided
that r is not already bound and is not an object or an interaction site. This side
condition reflects that of the corresponding π-calculus rule. (open) treats the
case, excluded by (res), when r is the object of a free output path: such path is
turned into a bound output path, again rendering r unobservable when needed.
(sum) and (par) are as expected. (route), (comp) and (com) concatenate

80 R. Bruni et al.

(out) ar.p
•;ar−−−→ p (open)

p
•;W ;ar−−−−→ q

(r)p
•;W/r;a(r)−−−−−−−→ q

r �=a

(in) a(r).p
ar′;•−−−→ p[r′

/r] (par)

p1
α−→ q1

p1 | p2
α−→ q1 | p2

bn(α) # p2

(link) lab.p
a;lab;b−−−−→ p (route)

p1
•;W ;ax−−−−−→ q1 p2

a;W ′;b−−−−→ q2

p1 | p2
•;W ;W ′;bx−−−−−−−→ q1 | q2

bn(x)# p2

(int) τ.p
•;•−−→ p (comp)

p1
a;W ;b−−−−→ q1 p2

b;W ′;c−−−−→ q2

p1 | p2
a;W ;W ′;c−−−−−−→ q1 | q2

(sum)

p
α−→ p′

p + q
α−→ p′ (com)

p1
•;W ;ar−−−−→ q1 p2

ar;•−−−→ q2

p1 | p2
•;W ;•−−−−→ q1 | q2

(res)

p
α−→ q

(r)p
α/r−−→ (r)q

r/∈
bn(α)
∪ obj(α)
∪ is(α)

Fig. 3. NCPi SOS rules

paths that meet at an interaction site: (route) extends an output path, provided
that the transported name, whenever bound, is fresh w.r.t. the process that offers
the transportation service; (comp) composes two service paths; (com) completes
a communication. It is easy to see that the π-calculus is included in NCPi: we
have just to forbid links in processes. The notion of behavioral equivalence is the
following one, called network conscious bisimulation.

Definition 3 (Network conscious bisimulation). A binary, symmetric and
reflexive relation R is a network conscious bisimulation if (p, q) ∈ R and p

α−→ p′,
with bn(α)# q, implies that there is q′ such that q

α−→ q′ and (p′, q′) ∈ R. The
bisimilarity is the largest such relation and is denoted by ∼NC .

We have the following closure result for ∼NC .

Theorem 1. ∼NC is closed under all syntactic operators except input prefix and
parallel composition.

Closure under input prefix not holding is expected. Surprisingly, also the parallel
composition is problematic. This is because the semantics is transactional, in the
sense that paths can involve more than one synchronization. As in the π-calculus,
closure under input prefix is achieved by taking the greatest bisimulation closed
under all renamings. Closure under parallel composition is discussed in [31].

3.3 Concurrent NCPi(κNCPi)

We now present κNCPi, an extension of NCPi with features reflecting real-life
routing protocols. The most important one is that the semantics allows observing

Software-Defined Networks of Connectors and Components 81

simultaneous actions taking place in the network, in the form of multisets of
paths; this follows the intuition that processes should act in a truly distributed
manner, without a central coordinator that imposes an interleaving order to their
actions. The technical consequence is that bisimilarity becomes a congruence.
Examples of real-life protocols exploiting such features can be found in [31],
where the Border Gateway Protocol [41] is modeled, and in section 4.

The syntax of κNCPi processes is the same as NCPi, with the following excep-
tions. Arguments of binders, which we denote by s, can be sites or expressions
l(ab), meaning that lab is bound together with a and b. The intuitive meaning of
c(l(ab)).p is an atomic, polyadic version of c(a).c(b).c(lab).p. The output primitive
also specifies the destination site: abr.p can emit the datum r, having destination
b, at a and continue as p. The definition of fn(p) for the new constructs is

fn(abr.p) := {a, b}∪n(r)∪ fn(p) fn(a(l(bc)).p) := {a}∪ fn(p)� ({b, c}∪Lb ∪Lc)

Well-formed κNCPi processes have to satisfy the requirements of Definition 1
plus the following one: q = c(l(ab)).p′ implies fn(q) = {c} ∪ fn(p′) � {a, b, lab}.
Structural congruence is minimal: we only have α-conversion and unfolding;
other axioms are moved to observations or implemented through the rules.

Observations for the concurrent semantics, denoted by Λ, are multisets of
paths, called concurrent paths. For the purpose of describing a more realistic
network behavior, we equip paths α with some additional information:

– both input and output paths include a list of links; in the case of input paths,
they are the links that can be traversed in order to reach the destination;

– there is a bound input path ab(s); W ; •, representing the reception of a bound
name; this is needed because we introduce an explicit scope closure rule;

– paths always specify a destination site, namely b in •; W ; abr, abr; W ; • and
ab(s); W ; •.

We remove extrusion paths: extrusions will be represented by concurrent paths,
because we will allow many paths to extrude the same name simultaneously.
Concurrent paths can be of the following forms:

– the empty concurrent path 1 indicates that no activity is performed;
– the singleton concurrent path α is a concurrent path made of a single path;
– the union Λ1 | Λ2 means that the paths in Λ1 and Λ2 are being traversed at

the same time;
– the extrusion restriction (r)Λ indicates that r is being extruded through one

or more paths in Λ.

We impose some axioms on well-formed concurrent paths, telling that they are
indeed multisets and that extrusion restrictions can be swapped and grouped at
the outermost level.

We now introduce the transition system. Most of the rules are the expected
concurrent extensions of Figure 3. The main difference is the synchronization
mechanism. This is made of two steps:

82 R. Bruni et al.

(i) paths of parallel processes are collected through the following rule

(par)

p1
Λ1=⇒ q1 p2

Λ2=⇒ q2

p1 | p2
Λ1 |Λ2====⇒ q1 | q2

where bound names in each concurrent path are require to be fresh w.r.t.
the other process and its concurrent path;

(ii) other rules pick two compatible paths from the multiset produced by (i)
and replace them with their concatenation, without modifying the source
process; in other words, these rules synchronize two subprocesses of the
source process. For instance, an output path and a service path with a
common interaction site can be joined using the following rule, resulting in
an extended output path

(srv-out)

p
(R) (•;W ;abr | a;W ′;c |Θ)
================⇒ q

p
(R) (•;W ;W ′;cbr |Θ)
=============⇒ q

where (R) is a sequence of restrictions and Θ is a concurrent path without
extrusion restrictions (they have all been brought at the top level using
scope extension).

The behavioral equivalence for κNCPi processes is called concurrent network
conscious bisimilarity, denoted ∼NC

κ , and is an obvious extension of Definition 3:
we require that processes can do the same concurrent paths.

Theorem 2. ∼NC
κ is a congruence with respect to all κNCPi operators.

This result allows us to equip the π-calculus with a compositional semantics:
we can characterize π-calculus processes as κNCPi processes via a syntactic re-
striction where links are forbidden and emission and destination sites in output
prefixes coincide. SOS rules derive all possible paths, non-deterministically. In
order to control path construction, e.g. according to a specific routing strategy,
we can define a forwarding predicate

ϕ : L × S × Proc → {true, false}

and then use it as an additional side condition for rules achieving step (ii) de-
scribed above: ϕ(lab, c, p) tells when a path of p, with destination c, can be
extended with lab. In this way, for instance, we could exclude non-optimal links
according to some metric (cost, latency, distance, and others). See [31] for a
forwarding predicate modeling BGP.

3.4 Coalgebraic Semantics of NCPi

In [31] we have introduced a presheaf-based coalgebraic semantics for NCPi, in
the style of [20]. The basic idea is having a model where we distinguish: (a)

Software-Defined Networks of Connectors and Components 83

a domain of resources, (b) a domain of programs and a (c) domain of “maps”
between resources and programs. In NCPi, resources of a process are its free sites
and links, describing its communication network. Therefore, (a) is a category
G of suitable graphs, representing networks, equipped with endofunctors that
add new vertices and edges, modeling network resources allocation; (b) is Set,
where some objects are regarded as sets of NCPi processes; (c) is the category
of functors G → Set (presheaves on C), associating to each network the set of
NCPi processes with such network.

The operational semantics, then, is modeled as a coalgebra with states in a
presheaf, thus each state is decorated with its networks: this enables the explicit
representation of network resources allocation along transitions. Unfortunately,
we still have infinitely many states, because allocated resources may grow in-
definitely, even if only a finite portion of them is actually accessible, e.g., in
recursive processes performing extrusions. However, our presheaf of states is
“well-behaved”, so, according to [16], it is always possible to deallocate the un-
used resources and an equivalent History Dependent (HD) automaton [28] can
be derived from the NCPi coalgebra. HD-automata are automata with allocation
and deallocation along transitions. They admit minimal, possibly finite state,
representatives, where all bisimilar states are identified, which can be computed
as shown and implemented in [19].

4 Formal Definition and Properties of the PASTRY
Distributed Hash Table System

In this section we use κNCPi to model PASTRY overlay networks and DHTs.
We will prove the correctness of our model by checking the following property,
which says that each message eventually gets to its destination.

Property 1 (Routing convergence). The routing procedure always converges:
given a message with target key k and a peer id, either id is responsible for
k or it can forward the message to id′ numerically closest to k than id.

4.1 Peer Model

The key idea is modeling identifiers as sites, and the routing table and the leaf-set
of a peer as two collections of links LRT and LLS , forming the overlay network.
We denote by a � b a link to b in a’s routing table and by a� b a link to b in a’s
leaf-set. A peer with identifier a is modeled as the process

Peer(a, LRT , LLS) def= (ORT)(OLS) Control(a, ORT , OLS)
| RT(LRT , ORT) | LS(LLS , OLS)

Control(a, ORT , OLS) def= JoinH(a) + Route(ORT , OLS)

Processes RT and LS allow other processes to query and modify routing table and
leaf-set. These operations are called internally via the names in ORT and OLS .

84 R. Bruni et al.

1010

1011

1111

1000

1100

1101

Fig. 4. Routing path from 1010 for the key 1101 in the system of Figure 1

The process Control implements the control logic of a peer. JoinH executes
the distributed protocol for node joins: it updates the peer’s own routing data
structures and helps populating the joining peer’s ones. In [36, Theorem 6.3.1] we
show that the reconfiguration of the overlay network due to node joins preserves
Property 1. The process Route simply activates transportation services over the
peer’s links. A PASTRY system is modeled as the parallel composition of peer
processes. For the system in Figure 1 we have

Sys
def= Peer(1000) | Peer(1010) | Peer(1011) | Peer(1100) | Peer(1111)

4.2 DHT Model

Now we want to model routing behavior for a simple Distributed Hash Table,
where observations are routing paths of DHT lookups. In order to do this, we
introduce a new type of link: a � k means that the peer with identifier a is re-
sponsible for the key k. We can model a Distributed Hash Table over a PASTRY
system made of peers a1, . . . , an as follows. Suppose the DHT has m key-value
pairs 〈ki, vi〉, and let aki be the identifier of the peer responsible for ki, i.e. the
closest to ki among a1, . . . , an.

DHT
def= Peer(a1) | . . . | Peer(an) | H

H
def= Entry(k1, v1, ak1) | . . . | Entry(km, vm, akm)

Entry(k, v, a) def= a � k | k(b).abv.Entry(k, v, a)

Here H represents the DHT content as the parallel composition of processes that
handle the table’s entries. The idea is implementing a DHT lookup request for
a key k as a message with destination k, carrying the identifier b of the sender.
Upon receiving this message, the handler Entry(k, v, a) for 〈k, v〉 replies to b
with a message containing v.

In [36, Section 6.4] we provide an implementation of the the PASTRY routing
strategy via a forwarding predicate, and we show that it yields paths satisfying

Software-Defined Networks of Connectors and Components 85

BI(P)
[10]

Nets with
boundaries [38]

Petri
Calculus [10]

Tile
Model [9,11]

Reo

Fig. 5. Relation among the different models of connectors & buffers

Property 1. The consequence is that lookup requests always reach the correct
peer ([36, Theorem 6.4.2]). As an example, we show how to compute a routing
path in the system of Figure 1. For simplicity, let us consider a DHT with only
one key-value pair (1101, v) located at 1100:

H
def= 1100� 1101 | 1101(a).1100a v.H DHT

def= Sys | H

Consider the following process, representing a user application running at 1010

App
def= 1010 1101 1010.1010(v′).App′(v′) .

This sends a lookup request for the key 1101, receives the result and uses it for
some computations. The routing steps for this request are depicted in Figure 4,
and correspond to those of Example 1. The corresponding transition is

App | DHT •;1010�1111;1111�1100;1100�1101;•
=======================⇒ 1010(v′).App′(v′) | Sys | 11001010 v.H

showing the whole routing path from 1010 to 1100.

5 Networks of Connectors and Components

Component-based design is a modular engineering practice that relies on the sep-
aration of concerns between coordination and computation. Component-based
systems are built from loosely coupled computational entities, the components,
whose interfaces comprise the number, kind and peculiarities of communication
ports. The term connector denote entities that glue the interaction of compo-
nents [33], by imposing suitable constraints on the allowed communications. The
evolution of a network of components and connectors (just network for short) is
as if played in rounds: At each round, the components try to interact through
their ports and the connectors allow/disallow some of the interactions selectively.
A connector is called stateless when the interaction constraints it imposes are the
same at each round; stateful otherwise. To address composition and modularity
of a system, networks are often decorated with (input and output) interfaces: in
the simplest case, they consist of ports for network interaction.

Recent years have witnessed an increasing interest about a rigorous modeling
of networks. We survey below, following the chronological order in which they
were proposed, some formal approaches to the representation, composition and
analysis of networks. Although the approaches we shall consider are quite differ-
ent in spirit, the mutual correspondence results are summarized in Figure 5. All

86 R. Bruni et al.

above approaches deal with systems that have static structures, i.e., systems in
which the possible interactions among components are all defined at design time
and remain unchanged during runtime. Nevertheless, when shifting to connectors
for systems that adapt their behavior to changing environments, the situation is
less well-understood. In fact, a general and uniform theory for dynamic connec-
tors is still lacking. Some recent progresses are discussed in Section 8.

The algebra of connectors and the tile model. An algebra consisting of five kinds
of basic stateless connectors (plus their duals) is presented in [9]. The connectors
can be composed in series or in parallel. The operational, observational and
denotational semantics of connectors are first formalized separately and then
shown to coincide. Moreover, a complete normal-form axiomatization is defined.
The Petri calculus in Section 6.2 enriches the algebra in [9] with one-place buffers.

The Tile Model [21,8] offers an operational and abstract semantic framework
for concurrent systems [29,18,14] and also for suitable classes of connectors, of
which the algebra of stateless connectors is just a particular instance. A tile
T : s

α−→
β

t is a rewrite rule stating that the initial configuration s can evolve to

the final configuration t producing the effect β; but the step is allowed only if the
‘arguments’ of s can evolve by providing the trigger α. Triggers and effects are
called observations. Roughly, the semantics of component-based systems can be
expressed via tiles when components and connectors are equipped with sequential
composition s; t and with a monoidal tensor product s⊗t. Technically, we require
that configurations and observations form two monoidal categories [24] with the
same objects. Tiles express the reactive behaviour of connectors in terms of a
Labelled Transition System (LTS) whose labels are pairs 〈trigger, effect〉. In this
context, the usual notion of equivalence is called tile bisimilarity, which is a
congruence (w.r.t. ; and ⊗) when a suitable rule format is met [21].

The Reo coordination model. Reo [1] is an exogenous coordination model based
on channel-like connectors that mediate the flow of data among components. No-
tably, a small set of point-to-point primitive connectors is sufficient to express
a large variety of interesting interaction patterns, including several forms of
mutual exclusion, synchronization, alternation, and context-dependency. Com-
ponents and primitive connectors can be composed into larger Reo circuits by
disjoint union up-to the merging of shared nodes. The semantics of Reo has been
formalized in many ways, tile model included [2]. See [22] for a recent survey.

The BIP component framework. BIP [4] is a component framework for con-
structing systems by superposing three layers of modeling: 1) Behaviour, the
lower level, representing the sequential computation of individual components;
2) Interaction, the middle layer, defining the handshaking mechanisms between
these components; and 3) Priority, the top level, assigning a partial order of
privileges to the admissible synchronizations. The lower layer consists of a set of
atomic components with ports, modeled as automata whose arcs are labelled by
sets of ports. The second layer consists of connectors that define suitable rela-
tions between ports. We name BI(P) the fragment of BIP without priorities (see

Software-Defined Networks of Connectors and Components 87

Section 7). In absence of priorities, the interaction layer admits the algebraic
presentation given in [5]. One key feature of BIP is the so-called correctness
by construction, which allows the specification of architecture transformations
preserving certain properties of the underlying behaviour. For instance it is pos-
sible to provide (sufficient) conditions for compositionality and composability
which guarantee deadlock-freedom. The BIP component framework has been
implemented in a language and a tool-set (cf. Chapter I.3 [17]).

Nets with boundaries and the wire calculus. Nets with boundaries [38] takes
inspiration from the open nets of [3]. The idea is to extend Petri nets with
interfaces that can be used by transitions to synchronize their firings with the
environment. Nets with boundaries can be composed in series and in parallel
and come equipped with a labelled transition system operational semantics. The
correspondence between BI(P) and nets with boundaries is outlined in Section 7.

The wire calculus [37] shares strong similarities with the tile model, in the
sense that it has sequential and parallel compositions and exploits trigger-effect
pairs labels as observations. However, it is presented as a process algebra instead
of via monoidal categories and it exploits a slightly different kind of vertical
composition. Each process comes with an input/output arity typing, written
P : (n, m) for a process P with n input ports and m output ports. The usual
action prefixes a.P of process algebras are extended in the wire calculus by the
simultaneous input of a trigger a and output of an effect b, written a

b .P , where a
(resp. b) is a string of actions, one for each input port (resp. output port) of the
process. In [38,11] a dialect of the wire calculus, called Petri calculus, has been
used to give an exact characterization of a special class of (stateful) connectors
that can be expressed as nets with boundaries. This result is outlined next.

6 Connector Algebras for Petri Nets

In this section we follow the contribution in [38,13]. Roughly, nets with bound-
aries are first introduced, that come equipped with sequential and parallel com-
position and with a labelled transition system semantics. Then, the Petri calculus
is presented, that roughly models circuit diagrams with one-place buffers and in-
terfaces. The first result shows that a Petri calculus process can be defined for
each net such that the translation preserves and reflects operational semantics
(and thus bisimilarity). The second result provides the converse translation, from
Petri calculus to nets. The work in [38] has been recently improved in [11,13] by
considering different firing policies for nets and exploiting the tile model to deal
with Place/Transition Petri nets with boundaries.

6.1 Petri Nets with Boundaries

Petri nets [34] consist of places (i.e. resources types), which are repositories of
tokens (i.e., resource instances), and transitions that remove and produce tokens.

88 R. Bruni et al.

•

��

α ��

��
•

�������	•

��

�������	

��

•

��

β ��

��

•
(a) P : 2 → 2.

•

��

α ��

��
•

�������	

��

�������	•

��

•

��

β ��

��

•
(b) Q : 2 → 2.

•

		

�� γ ��•

δ ��•
(c) R : 1 → 2.

Fig. 6. Three nets with boundaries

Definition 4 (Net). A net N is a 4-tuple N = (S, T, ◦−, −◦) where S is the
(nonempty) set of places, T is the set of transitions, (with S ∩ T = ∅), and the
functions ◦−, −◦ : T → 2S assign finite sets of places, called respectively source
and target, to each transition.

Transitions t, u are independent when ◦t∩◦u = t◦∩u◦ = ∅. A set U of transitions
is independent when, for all t, u ∈ U , if t �= u then t and u are independent.
Given a set of transitions U , let ◦U = ∪u∈U

◦u and U◦ = ∪u∈Uu◦.

Definition 5 (Semantics). Let N = (S, T, ◦−, −◦) be a net, X, Y ⊆ S and
t ∈ T . Write: (N, X) →{t} (N, Y) def= ◦t ⊆ X ∧ t◦ ⊆ Y ∧ X\◦t = Y \t◦.

For U ⊆ T a set of independent transitions, write:

(N, X) →U (N, Y) def= ◦U ⊆ X ∧ U◦ ⊆ Y ∧ X\◦U = Y \U◦.

Note that, for any X ⊆ S, (N, X) →∅ (N, X). A pair (N, X) (or just X when N
is obvious from the context) is called a marking. Sometimes nets comes equipped
with an initial marking X0, representing the initial state of the system.

In the following, given n ∈ N, we let n
def= {0, 1, . . . , n − 1}.

Definition 6 (Nets with boundaries). Let m, n ∈ N. A net with boundaries
N : m → n is a tuple N = (S, T, ◦−, −◦, •−, −•) where (S, T, ◦−, −◦) is a net
and functions •− : T → 2m and −• : T → 2n assign transitions to the left and
right boundaries of N , respectively.

The notion of independence of transitions extends to nets with boundaries in
the obvious way: t, u ∈ T are said to be independent when

◦t ∩ ◦u = ∅ ∧ t◦ ∩ u◦ = ∅ ∧ •t ∩ •u = ∅ ∧ t• ∩ u• = ∅.

Example 2. Figure 6 shows three different nets with boundaries. Places are cir-
cles and a marking is represented by the presence or absence of tokens; rectan-
gles are transitions and arcs stand for pre- and post-set relations. The left (resp.,
right) interface is depicted by points situated on the left (resp., on the right).

Note that for any k ∈ N, there is a bijection � � : 2k → {0, 1}k with �U�i = 1
if i ∈ U and �U�i = 0 otherwise. This fact is exploited to define the semantics of
a net with boundaries N : m → n as a double-labelled transition system, where
transition labels are pairs of strings in {0, 1}m ×{0, 1}n, representing the tokens
requested on the left/right boundary by the firing.

Software-Defined Networks of Connectors and Components 89

Definition 7 (Semantics). Let N : n → n be a net and X, Y ⊆ S. We write
(N, X) α−→

β
(N, Y) iff there exists an independent U ⊆ T such that (N, X) →U

(N, Y), with α = �•U� and β = �U•�.

Given N : m → n and M : k → l, their tensor product is the net N ⊗ M :
m + k → n + l whose sets of places and transitions are the disjoint union of
the corresponding sets in N and M , whose maps ◦−, −◦, •−, −• are defined
according to the maps in N and M and whose initial marking is the disjoint
union of the initial markings of N and M .

The sequential composition N ; M : m → k of N : m → n and M : n → k is
slightly more involved and relies on the following notion of synchronization. A
synchronization is a pair (U, V) with U ⊆ TN and V ⊆ TM independent sets of
transitions such that: (1) U ∪ V �= ∅ and (2) U• = •V .

The set of synchronizations inherits an ordering from the subset relation, i.e.
(U, V) ⊆ (U ′, V ′) when U ⊆ U ′ and V ⊆ V ′. A synchronization is said to be
minimal when it is minimal with respect to this order.

The sequential composition N ; M : m → k is defined as the net with bound-
aries (SN � SM , TN ;M , ◦−N ;M , −◦N ;M , •−N ;M , −•N ;M), where:

– TN ;M
def= {(U, V)|U ⊆ TN , V ⊆ TM , (U, V) a minimal synchronisation},

– ◦(U, V)N ;M = ◦(U)N � ◦(V)M and (U, V)◦N ;M = (U)◦N � (V)◦M ,
– •(U, V)N ;M = •(U)N and (U, V)•N ;M = (V)•M .

Intuitively, transitions attached to the left or right boundaries can be seen as
transition fragments, that can be completed by attaching other complementary
fragments to that boundary. When two transition fragments in N share a bound-
ary node, then they are two mutually exclusive options for completing a fragment
of M attached to the same boundary node. Thus, the idea is to combine the tran-
sitions of N with that of M when they share a common boundary, as if their
firings were synchronized. Of course, only minimal synchronizations are selected.
The initial marking of N ; M is the disjoint union of X0N and X0M .

Example 3. Consider the nets P : 2 → 2 and R : 1 → 2 in Figure 6. Then, the
composed net P ; (R ⊗ R) : 2 → 4 is shown in Figure 7.

6.2 Petri Calculus

In this section we introduce an algebra of connectors that roughly enriches the
algebra of stateless connectors from [9] with one-place buffers along [2]. We call
it Petri calculus after [38]. The algebra of stateless connectors in [9] can be
regarded as a fragment of the Petri calculus where all tiles have identical initial
and final connectors, i.e. they are of the form s

a−→
b

s. In terms of the wire calculus,

this means that only recursive processes of the form recX.a
b .X are considered.

Terms of the Petri Calculus are defined by the grammar:

R ::= © | ©· | I | X | ∇ | ∇| ⊥ | � | ∧ | ∨ | ↓ | ↑ | R ⊗ R | R; R

90 R. Bruni et al.

•

�� γ ��•

δ ��•

•

�� γ ��•

δ ��•
(a)

αγ ��

		

•

αδ ��

��

•

•

��

�������	•

��

��

•

��

��

�������	

��

��

βγ ��

��

•

βδ ��

��

•
(b)

Fig. 7. Nets R ⊗ R (a) and P ; (R ⊗ R) (b)

© : (1, 1) ©· : (1, 1) I : (1, 1) X : (2, 2) ∇ : (1, 2)

∇

: (2, 1)

⊥ : (1, 0) � : (0, 1) ∧ : (1, 2) ∨ : (2, 1) ↓: (1, 0) ↑: (0, 1)

R1 : (k, l) R2 : (m, n)

R1 ⊗ R2 : (k + m, l + n)

R1 : (k, n) R2 : (n, l)

R1 ⊗ R2 : (k, l)

Fig. 8. Sort inference rules

© 1−→
0

©· ©· 0−→
1

© ©· 1−→
1

©· I 1−→
1

I ∇ 1−→
11

∇ ∇11−→
1

∇ ⊥ 1−→ ⊥ � −→
1

�

X
xy−→
yx

X ∧ 1−→
xx

∧ ∨ xx−→
1

∨

R1
α−→
σ

R2 R′
1

σ−→
β

R′
2

R1; R′
1

α−→
β

R2; R′
2

R1
α−→
β

R2 R′
1

ρ−→
σ

R′
2

R1 ⊗ R′
1

αρ−−→
βσ

R2 ⊗ R′
2

R : (m,n)

R
0m

−−→
0n

R

Fig. 9. Operational semantics for the Petri Calculus

It consists of the following constants plus parallel and sequential composition: the
empty place ©, the full place ©· , the identity wire I, the twist X, the duplicator
∇ and its dual

∇

, the mutex ∧ and its dual ∨, the hiding ⊥ and its dual �, the
inaction ↓ and its dual ↑. Any term R has a unique associated sort (k, l) with
k, l ∈ N, that fixes the size k of the left (input) interface and the size l of the
right (output) interface of P (see Fig. 8).

The operational semantics is defined by the rules in Fig. 9, where x, y ∈ {0, 1}
and we let x = 1 − x. The labels α, β, ρ, σ of transitions are binary strings, all
transitions are sort-preserving, and if R

α−→
β

R′ with R, R′ : (n, m), then |α| = n

and |β| = m. Notably, the induced bisimilarity is a congruence.

Example 4. For example, let R1
def= (∇ ⊗ ∇); (©· ⊗ X ⊗ ©); (

∇⊗ ∇

); X and R2
def=

(∇ ⊗ ∇); (© ⊗ X ⊗ ©·); (

∇⊗ ∇

); X. It is immediate to check that both R1 : (2, 2)

Software-Defined Networks of Connectors and Components 91

and R2 : (2, 2), in fact: ∇ ⊗ ∇ : (2, 4), ©· ⊗ X ⊗ © : (4, 4), © ⊗ X ⊗ ©· : (4, 4),

∇⊗ ∇

: (4, 2), and X : (2, 2). The only moves for R1 are R1
00−→
00

R1 and R1
01−→
10

R2

while for R2 are R2
00−→
00

R2 and R2
10−→
01

R1. It is immediate to note that R1 and
R2 are terms analogous to the nets in Fig. 6 and that R1 is bisimilar to X; R2; X.

A close correspondence between nets with boundaries and Petri calculus terms
is established in [13], by providing mutual encodings with tight semantics cor-
respondence. First, it is shown that any net N : m → n with initial marking
X can be associated with a term RN,X : (m, n) that preserves and reflects the
semantics of N . Conversely, for any term R : (m, n) of the Petri calculus there
exists a bisimilar net NR : m → n. We refer the interested reader to [13].

7 From BI(P) to Petri Nets and Vice Versa

This section surveys the correspondence between BI(P) systems and nets (and
with the Petri calculus, by transitivity) as studied in [10]. First, a composition
operation for BI(P) systems is introduced that enables the structured definition
of larger systems. Intuitively, the places of the net are in one-to-one correspon-
dence with the states of the components, while the transitions of the net rep-
resent the synchronized execution of the transitions of the components. Then,
this compositional version of BI(P) systems is used to define a compositional
mapping of BI(P) systems to bisimilar nets with boundaries (see Section 7.2).
Finally, it is shown that any net with boundaries with vacuous left interface can
be encoded as a BI(P) system (see Section 7.3).

7.1 BI(P): BIP Without Priorities

This section reports on the formal definition of BIP as presented in [6]. Since we
disregard priorities, we call BI(P) the framework presented here.

Given a set of ports P , an interaction over P is a non-empty subset a ⊆ P . We
write an interaction {p1, p2, . . . , pn} as p1p2 . . . pn and a ↓Pi for the projection of
an interaction a ⊆ P over the set of ports Pi ⊆ P , i.e., a ↓Pi= a ∩Pi. Projection
extends to sets of interactions by γ ↓P = {a ↓P | a ∈ γ ∧ a ↓P �= ∅}.

Definition 8 (Component). A component B = (Q, P, →) is a triple where Q
is a set of states, P is a set of ports, and →⊆ Q×2P ×Q is the set of transitions.

As usual, we write q
a−→ q′ to denote the transition (q, a, q′) ∈→. We let q a q′

be the name of the transition q
a−→ q′. Given a transition t = q a q′, we let ◦t,

t◦ and λ(t) denote respectively its source q, its target q′ and its label a. An
interaction a is enabled in q, denoted q

a−→, iff there exists q′ s.t. q
a−→ q′. By

abusing notation, we will also write q
∅−→ q for any q.

Definition 9 (BI(P) system). A BI(P) system BS = γ(B1, . . . , Bn) is the
composition of a finite set {Bi}n

i=1 of transitions systems Bi = (Qi, Pi, →i)

92 R. Bruni et al.

such that their sets of ports are pairwise disjoint, i.e., Pi ∩ Pj = ∅ for i �= j
parameterized by a set γ ⊂ 2P of interactions over the set of ports P =

⊎n
i=1 Pi.

We call P the underlying set of ports of BS, written ι(BS).

The semantics of a BI(P) system γ(B1, . . . , Bn) is given by the transition system
(Q, P, →γ), where Q = ΠiQi, P =

⊎n
i=1 Pi and →γ⊆ Q× 2P ×Q is the least set

of transitions satisfying the following inference rule

a ∈ γ ∀i ∈ 1..n : qi

a↓Pi−−−→ q′i

(q1, . . . , qn) a−→γ (q′1, . . . , q
′
n)

Definition 10 (Coherent interaction extension). A set of interactions γ′

is a coherent extension of γ over the set of ports P , written γ �P γ′, iff γ′ ↓P ⊆ γ.

The idea underlying coherent extension is that the extended set of interactions
γ′ does not allow more interactions (in P) than those specified by γ.

Definition 11 (cBI(P) system). A composite BI(P) system C, cBI(P) for
short, is either a BI(P) system γ(B1, . . . , Bn) or a composition γ(C1, . . . , Cn)
where {Ci = γi(Ci,1, . . . , Ci,ni)}n

i=1 is a family of cBI(P) systems such that their
sets of underlying ports are pairwise disjoint, i.e., ι(Ci) ∩ ι(Cj) = ∅ for i �= j,
and γ a set of interactions over �n

i=1ι(Ci) s.t. γi �ι(Ci) γ.

The semantics of cBI(P) systems is defined analogously to that of BI(P) systems
by viewing each subsystem as a component. Next result states that any BI(P)
system can be seen as a cBI(P) system of exactly two components. We will use
this property when defining the compositional encoding of BI(P) systems.

Lemma 1. Let BS = γ(B1, . . . , Bn) be a BI(P) system. Then, for any i < n,
BS is bisimilar to the cBI(P) system C = γ(γ ↓P1..i (B1, . . . , Bi), γ ↓P\P1..i

(Bi+1, . . . , Bn)) where P = ι(BS) and P1..i = �j≤iι(Bj).

7.2 Structural Mapping from BI(P) to Nets with Boundaries

Given a finite set S with k = |S|, we use wS to denote an injective function
wS : S → k that orders elements of S. By abuse of notation, we write also wS

to denote its extension wS : 2S → 2k.

Definition 12. Let B = (Q, P, →) be a transition system. The corresponding
net with boundaries [[B]] : 0 → |P | is [[B]] = (Q, T, ◦−, −◦, •−, −•) where:

– T = {q a q′ | q
a−→ q′}.

– ◦(q a q′) = {q} and (q a q′)◦ = {q′}.
– •(q a q′) = ∅ and (q a q′)• = wP (a).

Lemma 2. Let B = (Q, P, →) be a transition system. Then, q
a−→ q′ if and only

if ([[B]], {q}) −−−−−→
�wP (a)�

([[B]], {q′}).

Software-Defined Networks of Connectors and Components 93

• ��
a

ac ��

��

��

•
a

•
��

b

��
����•

��

		

•
b

•

��

c
bd

��

��

•
c

•

��

d
•
d

(a) [[{ac, bd}]]{a,b,c,d}.

��������q1

��

[[B1]]

• ��

a
a ��

��

[[γ ↓{a,b}]]{a,b}

•
��

a

[[γ]]{a,b,c,d}

•
a

q1 ab q′
1

��

 �������

����
���

��

��
����•

!!

""

ac

##

��

��

������ !q′
1 • ��

b
b ��

$$

•
%%

b

��
����•

��

&&

•
b

��������q2

��

• ��

c
c ��

��

•

��

c
bd

��

��

��

•
c

q2 cd q′
2

��
����

���
��

 �������

��
����•

''

""
������ !q′

2

[[B2]]

• ��
d

d ��

$$

[[γ ↓{c,d}]]{c,d}

•

��

d
•

d

(b) [[γ(B1, B2)]] with γ = {ac, bd}.

Fig. 10. Compositional encoding

Next definition introduces the encoding of a set of synchronizations glueing com-
ponents as a marked net with boundaries.

Definition 13. Let γ be a set of synchronizations over P . The corresponding
marked net with boundaries [[γ]]P : |P | → |P | is ({Pγ}, γ, ◦−, −◦, •−, −•, {Pγ})
with: ◦a = a◦ = {Pγ} and •a = a• = wP (a).

Note that the place Pγ guarantees that all interactions are mutually exclusive.

Example 5. Consider the set of interactions γ = {ac, bd} and assume w{a,b,c,d}
coincides with alphabetical order. The corresponding net is shown in Fig. 10(a).

Lemma 3. [[γ]]P
�wP (a)�−−−−−→
�wP (a)�

[[γ]]P iff a ∈ γ.

Next definition introduces the compositional encoding of BI(P) systems.

Definition 14. Let C = γ(C1, . . . , Cn) be a cBI(P) system. The net with bound-
aries [[C]] : 0 → |P | with P = ι(C) is recursively defined as

[[γ(C1)]] = [[C1]]; [[γ]]P
[[γ(C1, . . . , Cn)]] = (γ ↓ι(C1) [[C1]] ⊗ [[γ ↓P\ι(C1) (C2, . . . , Cn)]]); [[γ]]P

Example 6. Consider the BI(P) system {ac, bd}(B1, B2) where B1 has just one
transition q1

ab−→ q′1 and B2 has only q2
cd−→ q′2. The encoded net is in Figure 10(b).

Note the necessity of considering all transitions in the encoding of {ac, bd} to
be mutual exclusive. Otherwise, the encoded form will also allow behaviors like
([[B]], {q1, q2}) −−−−→

�abcd�
([[B]], {q′1, q

′
2}), where abcd �∈ {ac, bd}.

94 R. Bruni et al.

{{s1, c1}, {s2, c2}, {e1, d1}, {e2, d2}, {a, b1}, {a, b2}}

•
a

•
s1

•
e1

•
s2

•
e2

��
����a
((

e1

C1S

��
����

s2
��

s1
))

DS

��
���� a
**

e2

++

C2S

•
b1

•
c1

•
d1

��
����

c1
��

DC1

��
���� b1**

d1

++

CC1

•
b2

•
c2

•
d2

��
����

c2
��

DC2

��
���� b2**

d2

++

CC2

Cloud VM1 VM2

Fig. 11. A simple BI(P) system

Theorem 3. Let C = γ(C1, . . . , Cn) be a cBI(P) system. Then, (q1, . . . , qn) a−→γ

(q′1, . . . , q
′
n) iff ([[C]], {q1, . . . , qn}) −−−−−→

�wP (a)�
([[C]], {q′1, . . . , q

′
n}) with P = ι(C).

7.3 Encoding Nets with Boundaries into BI(P)

This section shows that any net with boundaries without left interface can be
seen as a BI(P) system consisting on just one component. The correspondence is
stated by showing that there exists a straightforward encoding that maps states
and transitions of the net to states and transitions of the unique component.

Definition 15. Let N : 0 → n with N = (S, T, ◦−, −◦, •−, −•) be a net with
boundaries. Then, the corresponding BI(P) system BSN = γ(B) is defined as
follows: γ = 2n and B = (2S , 2n, →) with →= {X

a−→ Y | (N, X) −−→
�a�

(N, Y)}.

Note that N : 0 → n corresponds to a component that has 2n ports, i.e., one
port for any possible combination of the ports on the interface.

8 Reconfigurable and Dynamic BIP

In order to contribute to the development of a general theory for dynamic con-
nectors, in this section we present two other extensions of the BI(P) framework
with different degrees of “dynamism” that allow enhanced conciseness, modu-
larity and expressiveness. A reconfigurable BI(P) system allows for the dynamic
modification of interactions among components. A dynamic BI(P) system sup-
ports the runtime creation / elimination of ports and components.

Example 7. Consider the BI(P) system shown in Fig. 11, which contains a cloud
manager component Cloud that interacts with two virtual machines VM1 and
VM2. The Cloud starts a connection with VMi via the interaction sici. After
the session is started, the manager and the clients can interact on abi. The
session ends when eidi is performed. Note that the manager has dedicated ports
(si, ei) for handling the connections of different machines. Next, we introduce
two enhancements that allows for a more compact description of this system.

Software-Defined Networks of Connectors and Components 95

∅

•
a

��
����

ab1+,ab2+
��

DS

��
���� a
**

ab1−,ab2−

++

CS

•
b1

��
����

ab1+
��

DC1

��
���� b1**

ab1−

++

CC1

•
b2

��
����

ab2+
��

DC2

��
���� b2**

ab2−

++

CC2

Cloud VM1 VM2

Fig. 12. A simple reconfigurable BI(P) system

8.1 Reconfigurable BI(P)

Our first extension is concerned with the possibility of enabling and disabling
specific interactions dynamically. An interaction a can be enabled / disabled
when all components involved in the interaction a agree to do so. After a is
enabled, it can be used as an ordinary interaction until it gets disabled.

Our first result proves that any reconfigurable BI(P) system is equivalent
to an ordinary BI(P) system where a “controller” component is introduced for
each interaction that can be added or removed at run-time. Thus, reconfigurable
BI(P) only provides a more compact representation of ordinary systems, while
ordinary BI(P) representations may require an exponential blow up in the num-
ber of controllers (interactions are subsets of ports). The crux of the proof is the
fact that the set of controller components can be defined statically.

Transitions in a reconfigurable BI(P) component have a decoration ρ that
can be either (i) ε for ordinary interactions, (ii) + to add a new interaction, and
(iii) − to remove an interaction.

Definition 16 (Reconfigurable component). Let P be a set of ports. A re-
configurable component R = (Q, P, −�) is a transition system where Q is a set of
states, P ⊂ P is a finite set of ports, and −�⊆ Q×2P×{+, −, ε}×Q is the set of
labelled transitions such that (q, a, ε, q′) ∈−� implies a ∈ 2P and (q, a, ρ, q′) ∈−�
with ρ ∈ {+, −} implies a ∩ P �= ∅.

We write q
aρ
−−� q′ for (q, a, ρ, q′) ∈−�. We say that a is enabled in q, denoted

q
a
−�, iff there exists q′ s.t. q

aε
−� q′. We assume that for all q, q′ it holds q

∅ε
−−� q′

iff q = q′. Given a set of ports P , we write a#P if a ∩ P = ∅.

Definition 17 (Reconfigurable BI(P) system). A reconfigurable BI(P) sys-
tem RS = γ(R1, . . . , Rn) is the composition of a finite set {Ri}n

i=1 of reconfig-
urable components Ri = (Qi, Pi, −�i) such that their sets of ports are pairwise
disjoint, i.e., Pi ∩ Pj = ∅ for i �= j, parametrized by a set γ ⊂ 2P . We call
P =

⊎n
i=1 Pi the underlying set of ports of RS, written ι(RS).

Example 8. The scenario in Example 7 can be modeled as the reconfigurable
BI(P) system in Fig. 12, where for simplicity we represented multiple transitions

96 R. Bruni et al.

a ∈ γ ∀i ∈ 1..n : qi

a↓Pi
ε

−−−−� q′
i

γ(q1, . . . , qn)
a
−� γ(q′

1, . . . , q
′
n)

[int]

a ∈ 2P � γ ¬(a#Pi) =⇒ qi
a+
−−� q′

i (a#Pi) =⇒ q′
i = qi γ′ = γ ∪ {a}

γ(q1, . . . , qn)
a
−� γ′(q′

1, . . . , q
′
n)

[add]

a ∈ γ ¬(a#Pi) =⇒ qi
a−
−−� q′

i (a#Pi) =⇒ q′
i = qi γ′ = γ � {a}

γ(q1, . . . , qn)
a
−� γ′(q′

1, . . . , q
′
n)

[del]

Fig. 13. Operational semantics of reconfigurable BI(P) systems

with the same source and target (but different labels) with a single arc with mul-
tiple labels (e.g., ab1+, ab2+). Now, the transitions abi+ and abi− respectively
allow for the dynamic enabling / disabling of the interaction abi.

The semantics of a reconfigurable BI(P) system RS = γ(R1, . . . , Rn) with
ι(RS) = P and γ ⊆ 2P is given by the transition system (Q, −�) where

– Q = 2P × ΠiQi (we write γ(q1, . . . , qn) for 〈γ, 〈q1, . . . , qn〉〉 ∈ Q), and
– −�⊆ Q × 2P × Q is the least set of transitions given by the rules in Fig. 13.

Each state of the transition system keeps, not only the states of all components
but also, the set γ of all enabled interactions. Rule [int] stands for ordinary
interactions. Rule [add] accounts for the addition of a new global interaction
a to the set of enabled interactions γ. Rule [del] specifies the removal of an
enabled interaction and is analogous to [add].

Example 9. Consider the reconfigurable BI(P) system in Example 8. The ini-
tial state in which no connection has been established is given by the term
∅(DS, DC1 , DC2). In this state, the system can start a session between the Cloud
and either VM1 or VM2. Assuming that a session with VM1 is established, then the
system can move as follows (where s = {ab1}(CS , CC1, DC2)):

∅(DS, DC1 , DC2)
ab1+−−−� s

ab1−−� . . .
ab1−−� s

ab1−−−−� ∅(DS, DC1 , DC2)

Let R(R) = {a | (q, a, ρ, q′) ∈−� and ρ �= ε} be the set of reconfigurable in-
teractions of a reconfigurable component R = (Q, P, −�). For any a ∈ R(R)
we add two additional ports ãR+ and ãR− in the encoded component, where
ãR = (a∩P)∪{p̃ | p ∈ a�P} (decorations .̃ are needed to guarantee uniqueness

of ports in different components). We let R̃(R) = {ãR | a ∈ R(R)}. For example,
˜R(Cloud) = {ab̃1 , ab̃2}. The function R(·) is extended to reconfigurable BI(P)

systems RS = γ(R1, . . . , Rn) by letting R(RS) =
⋃

1≤i≤n R(Ri).

Software-Defined Networks of Connectors and Components 97

•
a

•
a ˜b1+ •

a ˜b2+ •
a ˜b1−

•
a ˜b2−

��
����

a˜b1+,a˜b2+
��

DS

��
���� a
**

a ˜b1−,a ˜b2−

++

CS

(a) Component Cloud

•
a

•
a+

•
a−

��
����

a+
��

disa

��
���� a
**

a−

++

ena

(b) Controller Ca

Fig. 14. Encoding reconfigurable BI(P) in BI(P)

Definition 18. Let R = (Q, P, −�) be a reconfigurable component. The corre-

sponding BI(P) component [[R]] is (Q, P ∪(R̃(R)×{+, −}), −→) with (q, a, q′) ∈−→
iff (q, a, ε, q′) ∈−� or (q, a′, ρ, q′) ∈−�, ρ �= ε and a = (ã′

R
, ρ).

Figure 14(a) shows the BI(P) component corresponding to the reconfigurable
component Cloud depicted in Fig. 12.

Next, we associate any reconfigurable interaction a with a new BI(P) com-
ponent Ca = (QCa , PCa , −→), called controller : it models the dynamic enabling /
disabling of a (see Fig. 14(b)).

Definition 19. Let RS = γ(R1, . . . , Rn) be a reconfigurable BI(P) system with
R(RS) = {a0, . . . , aj}. The corresponding BI(P) system is defined by

[[γ(R1, . . . , Rn)]] = [[γ]]([[R1]], . . . , [[Rn]], Ca0 , . . . , Caj)

where [[γ]] = (γ � R(RS)) ∪ (
⋃

a∈R(RS),ρ∈{ε,+,−}{[[a]]ρ}) with

[[a]]ρ =
{

{aρ} ∪ {ãRiρ | 1 ≤ i ≤ n and a ∈ R(Ri)} if ρ ∈ {+, −}
{a} ∪ {p | 1 ≤ i ≤ n and p ∈ a ↓Pi} if ρ = ε

Finally, any state γ(q1, . . . , qn) of RS is associated with a state [[γ(q1, . . . , qn)]] =
(q1, . . . , qn, s0, . . . , sj) of [[RS]] where si = enai if ai ∈ γ, and si = disai if ai �∈ γ.

Example 10. The reconfigurable system introduced in Example 8 is encoded as
the BI(P) system shown in Fig. 15.

Theorem 4. Given RS=γ(R1, . . . , Rn), we have γ(q1, . . . , qn)
a
−�γ′(q′1, . . . , q

′
n)

iff ∃b ∈ {a, γa, γa+, γa−} s.t. [[γ(q1, . . . , qn)]] b−→[[γ]] [[γ′(q′1, . . . , q
′
n)]].

8.2 Dynamic BI(P)

In this section we further extend BI(P) by allowing the dynamic replication
of components. In the case of dynamic BI(P) we can define systems that are
possibly infinite state and more expressive than ordinary BI(P) systems. We
take as an inspiring example the notion of correlation sets in web services [40,23].
In these cases, when a service call is made, then an instance of the session is
initialized with suitable correlation data (e.g., specific message fields) gathered

98 R. Bruni et al.

γ = {{ab1, a, b1}, {ab1+, ab̃1+, ãb1+}, {ab1−, ab̃1−, ãb1−}
{ab2, a, b2}, {ab2+, ab̃2+, ãb2+}, {ab2−,ab̃2−, ãb2−}}

•
a

•
a ˜b1+ •

a˜b2+ •
a ˜b1−

•
a˜b2−

��
����

a ˜b1+,a˜b2+
��

DS

��
���� a
**

a˜b1−,a˜b2−

++

CS

•
b1

•
ãb1+

•
ãb1−

��
����

ãb1+
��

DC1

��
���� b1**

ãb1−

++

CC1

•
b2

•
ãb2+

•
ãb2−

��
����

ãb2+
��

DC2

��
���� b2**

ãb2−

++

CC2

Cloud VM1 VM2

•
ab1

•
ab1+

•
ab1−

��
����

ab1+
��

ab1dis

��
���� ab1**

ab1−

++

ab1en

•
ab2

•
ab2+

•
ab2−

��
����

ab2+
��

ab2dis

��
���� ab2**

ab2−

++

ab2en

Cab1 Cab2

Fig. 15. A simple reconfigurable BI(P) system encoded in ordinary BI(P)

for the partner. To this aim we exploit colored tokens, where the colors are freshly
created session identifiers. This way, we do not need to replicate the ports and
structure of components, instead we keep all the coloured tokens within the same
instance of the component, then it can happen that two or more coloured tokens
mark the same state at the same time. An interaction is possible only when
all the involved components carry correlated colors, i.e., identifiers for the same
session. In fact, while session identifiers are created locally to each component
(e.g., s1 in a first component and s2 in a second component), a new interaction is
also created that correlates them (e.g., s1s2). Possibly many sessions are opened
with the same partners involved. In subsequent interactions, correlation tokens
are then exploited to identify the session that interaction is part of. When the
session ends, the correlation tokens are discarded. At the beginning, when the
system is initialized, we assume that all components carry correlated tokens, i.e.,
that they are all part of the same session. Notably, reachability is decidable for
dynamic BI(P). This is achieved by tracing a correspondence between dynamic
BI(P) systems and Place/Transition (P/T) Petri nets.

We assume an infinite set of port names P ranged over by a, b, . . ., an infinite
set of port variable names X ranged over by x, y, . . ., and an infinite set of state
names Q ranged over by p, q, . . ., such that P , Q and X pairwise disjoint. As
in general an interaction is related to a specific session, we sometimes decorate
ports and interactions with specific correlation tokens as their subscripts. For
example, for a = ab we write ac for acbc.

Definition 20 (Dynamic component). A dynamic component is a tuple D =
(Q, P, →) where Q ⊂ Q is a set of places, P ⊂ P is a set of ports, and → is a
finite set of transitions, each having one of the following shapes:

Software-Defined Networks of Connectors and Components 99

q(x) α−→ q′(x) a ∈ δ(P) α ∈ {ax, x}

〈P, q(a) ⊕ f〉 α[x/a]−−−→ 〈P, q′(a) ⊕ f〉
[Cint]

q(x)
axy+−−−→ q′(x) ⊕ q′′(y) a ∈ δ(P) b �∈ P

〈P, q(a) ⊕ f〉 aab+−−−→ 〈P ∪ {b} ∪ Pb, q
′(a) ⊕ q′′(b) ⊕ f〉

[Copen]

q(x) x−−−→ ∅ a ∈ δ(P)

〈P, q(a) ⊕ f〉 a−−−→ 〈P � ({a} ∪ Pa), f〉
[Cclose]

Fig. 16. Operational semantics of dynamic components

– q(x) ax−→ q′(x), i.e., (a coloured version of) a BI(P) transition;
– q(x)

axy+−−−→ q′(x) ⊕ q′′(y), i.e., a port creation;
– q(x) x−−−→ ∅, i.e., a port removal;
– q(x) x−→ q′(x), i.e., an interaction over a dynamically created port.

Ports that appear in labels of the form ax are parametric to the correlation token
and are called static ports; the other ports are called dynamic. We assume static
ports cannot be used as correlation tokens. In the following we denote by Px the
set of static ports of P , by Pa the set of static ports in P parametrized by the
token a and by δ(P) the set of dynamic ports. For example, if P = {a, b} with a
static and b dynamic, then Pc = {ac}. Note that if all transitions have the form
q(x) ax−→ q′(x) then D is essentially an ordinary BI(P) component.

The current state of a dynamic component D = (Q, P, →) takes the form
〈P, f〉 with P ⊂ P defining the current ports of the component (that includes
opened sessions) and f : Q → 2P such that f(q1) ∩ f(q2) = ∅ for q1 �= q2.
The function f represents the current internal state of the component replicas.
For example, if f(q) = {a, b} then there are two replicas of the component,
one involved in session a and one in b both with current state q. The condition
f(q1) ∩ f(q2) = ∅ for q1 �= q2 guarantees that each replica is associated with a
different session and that to each session corresponds exactly one state.

As a matter of notation we denote f ⊕ p(a) the function defined as

(f ⊕ p(a))(q) =
{

f(q) if q �= p
f(q) ∪ {a} if q = p

Remark 1. Initially there is only one session opened for each component. To
shorten the notation but without loss of generality, we shall assume that such
initial session identifier is void, i.e. f(p) = {•} and omit the corresponding port
• from the drawing of components (in the initial and subsequent states).

The operational semantics of components is given by the three rules in Fig. 16.
The first rule ([Cint]) deals with both: i) the case of an ordinary interaction aa
(here coloured by the token a); and ii) the case of a dynamic interaction over
the session associated with a. The rule ([Copen]) is the most complex one, as

100 R. Bruni et al.

cnty+
x

,,

y
��

•
cnt

�������	

x
--

accept

�������	

x
..

x
��

open x
x

//

x−

(a) Cloud

reqy+

y
��

x
,,

•
req

�������	

x
--

start

�������	

x
��

x
��

run x
x

//

x−

(b) VM

Fig. 17. Two dynamic components

it deals with component spawning and port creation. Here the freshly created
session identifier is b, which is then used as a fresh dynamic port, together with
suitable instances Pb of the static ports of the component. The spawned instance
of the component has initial state q′′(b). Ports in Pb will allow the spawned
instance of the component to interact on static ports with some other spawned
components that are part of the same session. Moreover, the spawned instance
of the component will be able to interact on the port b by synchronizing with
all the other spawned components that are part of the same session. Note that
although the token b has been created within the session a, such information is
not maintained in the state, i.e., sessions a and b will run independently. Finally,
the rule ([Cclose]) deals with session closure, where the token a and all the
ports {a} ∪ Pa associated with the closed session a are discarded.

Example 11. Consider a cloud manager that interacts with a possibly unbounded
number of clients. This behaviour can be modeled as the component depicted in
Fig. 17(a), where arcs are decorated with the colors of the involved tokens. (The
analogous client is in Fig. 17(b).) The component in Fig. 17(a) has one static
port cnt, two places accept and open with the following three transitions:

– t0 = accept(x)
cntx y+−−−−−→ accept(x) ⊕ open(y): the action cnt opens a new

session (whose id is stored in place open).
– t1 = open(x) x−→ open(x): for any open session, an action on the correspond-

ing dynamic port can be repeatedly performed.
– t2 = open(x) x−−−→ ∅: An already opened session x is closed by synchronizing

all participants to that session on the interaction x−.

Definition 21 (Dynamic BI(P) system). A dynamic BI(P) system DS =
γ(D1, . . . , Dn) is the composition of a finite set {Di}n

i=1 of dynamic BI(P) com-
ponents Di = (Qi, Pi, →i) such that their sets of ports are pairwise disjoint,
parametrized by a set γ ⊂ 2P of interactions over the set of ports P =

⊎n
i=1 Pi.

Without loss of generality, we assume that for any a ∈ γ it is either the case
that a contains static ports only and we call it static or it contains no static port

Software-Defined Networks of Connectors and Components 101

a ∈ γ ∀i.si

a↓Pi−−−→ s′
i

γ(s1, . . . , sn) a−→ γ(s′
1, . . . , s

′
n)

[Sint]

a ∈ γ i ∈ I(a) =⇒ si

a↓Pi
bi+−−−−−→ s′

i bi fresh σ = [idsi(a)/bi]i∈I(a)

i ∈ I(a) =⇒ s′
i = si b = {bi}i∈I(a)

γ(s1, . . . , sn) a−→ (γ ∪ {b} ∪ γσ)(s′
1, . . . , s

′
n)

[Sopen]

a ∈ γ i ∈ I(a) =⇒ si

a↓Pi
−

−−−−→ s′
i i ∈ I(a) =⇒ s′

i = si

γ(s1, . . . , sn) a−→ (γ � a)(s′
1, . . . , s

′
n)

[Sclose]

Fig. 18. Operational semantics of dynamic BI(P) systems

at all and we call it dynamic. Moreover, if a ↓Pi is made of static ports, then
a ↓Pi= a′ai

for some a′ and ai ∈ Pi, i.e., all static ports in a ↓Pi are parametrized
by the same session identifier ai. In such case, we let idsi(a) denote ai We write
I(a) to denote the set of indices {i | ¬(a#Pi)} of the components involved in a
and I(a) to denote its complement [1, n] � I(a) = {i | a#Pi}. If a is static, we
denote by ids(a) the set {idsi(a) | i ∈ I(a)}, otherwise we let ids(a) = ∅.

Given a substitution σ = [ai/bi]i∈I and a static interaction a ∈ γ such that
ids(a) ⊆ {ai}i∈I we write aσ for the interaction obtained by replacing in a each
parameter ai by the corresponding parameter bi. Moreover, we write γσ for the
set of renamed static interactions {aσ | a ∈ γ ∧ ids(a) ⊆ {ai}i∈I}. Finally, given
a dynamic interaction a we let γ � a = {a′ ∈ γ | a′ ∩ a = ∅ ∧ ids(a′) ∩ a = ∅}
be the set of interactions in γ where the ports in a do not appear.

Let si range over 2Pi ×PQi

i representing a generic state of the component Di.
The semantics of a dynamic BI(P) system γ(D1, . . . , Dn) is defined by the three
rules in Fig. 18. Rule [Sint] deals with the usual synchronization. Rule [Sopen]

represents the opening of a session: local fresh session identifiers bi are created
(that are used in s′i) and the set of interactions is enriched with the new ses-
sion synchronization b = {bi}i∈I(a) and a renamed instance γσ of the static
interactions in γ (for the new session). Finally, rule [Sclose] deals with the
synchronized closing of a session: note that the set of interactions is updated by
removing the interactions concerned with the closed session.

Example 12. Consider the dynamic BI(P) components introduced in Example 11.
We illustrate one possible run of the server with two clients in Fig. 19. Roughly,
it corresponds to the series of transitions in Fig. 20, where γ, γ′, γ′′ are the ones
indicated in Fig. 19. Note that suitable replicas cntv, cntw, req1m, req2n of the
static ports cnt, req1, req2 have been created locally to each component, and
that the set of interactions has been enriched with suitable replicas cntv req1m
and cntw req2n of the static interactions cnt req1 and cnt req2 together with
freshly created dynamic interactions v m and w n. Let s denote the last state
reached. Then, the server can interact with the clients by performing the inter-

102 R. Bruni et al.

γ = { cnt req1 , cnt req2 }

cnty+
x

,,

y

��

•cnt

�������	•
x

--

accept

�������	

x
..

x

��

open x
x

//

x−

req1y+

y

��

x
,,

•
req1

�������	•
x

--

start1

�������	

x
��

x

��

run1 x
x

//

x−

req2y+

y

��

x
,,

•
req2

�������	•
x

--

start2

�������	

x
��

x

��

run2 x
x

//

x−

Cloud VM1 VM2
(a) Initial State

γ′ = { cnt req1 , cnt req2 , v m , cntv req1m }

cnty+
x

,,

y

��

•cnt •cntv •v

�������	•
x

--

accept

�������	

x
..

x

��

open v x
x

//

x−

req1y+

y

��

x
,,

•
req1 •

req1m •m

�������	•
x

--

start1

�������	

x
��

x

��

run1 m x
x

//

x−

req2y+

y

��

x
,,

•
req2

�������	•
x

--

start2

�������	

x
��

x

��

run2 x
x

//

x−

Cloud VM1 VM2
(b) First Synchronisation

γ′′ = { cnt req1 , cnt req2 , v m , cntv req1m , w n , cntw req2n }

cnty+
x

,,

y

��

•cnt •cntv •v •cntw •w

�������	•
x

--

accept

�������	

x
..

x

��

open v
w x

x

//

x−

req1y+

y

��

x
,,

•
req1 •

req1m •m

�������	•
x

--

start1

�������	

x
��

x

��

run1 m x
x

//

x−

req2y+

y

��

x
,,

•
req2 •

req2n •n

�������	•
x

--

start2

�������	

x
��

x

��

run2 n x
x

//

x−

Cloud VM1 VM2
(c) Second Synchronisation

Fig. 19. A run of the server with two clients

Software-Defined Networks of Connectors and Components 103

γ

⎛
⎝ 〈{cnt}, accept(•)〉 ,

〈{req1}, start1(•)〉 ,
〈{req2}, start2(•)〉

⎞
⎠ cnt req1−−−−−→ γ′

⎛
⎝ 〈{cnt, cntv, v}, accept(•) ⊕ open(v)〉 ,

〈{req1, req1m, m}, start1(•) ⊕ run1(m)〉 ,
〈{req2}, start2(•)〉

⎞
⎠

cnt req2−−−−−→ γ′′

⎛
⎝ 〈{cnt, cntv, v, cntw, w}, accept(•) ⊕ open(v) ⊕ open(w)〉 ,

〈{req1, req1m, m}, start1(•) ⊕ run1(m)〉 ,
〈{req2, req2n, n}, start2(•) ⊕ run2(n)〉

⎞
⎠

Fig. 20. Transitions representing a run of the server with two clients

actions v m and w n as many times as needed, with the system remaining in the
same state s: s

v m−→ s
w n−→ s · · · Finally, we illustrate the case when the session

between the server and the second client is closed:

s
w n−→ γ′

⎛
⎝ 〈{cnt, cntv, v}, accept(•) ⊕ open(v)〉 ,

〈{req1, req1m, m}, start1(•) ⊕ run1(m)〉 ,
〈{req2}, start2(•)〉

⎞
⎠

The above transition is obtained by combining a closing transitions of the server
(label w−) with a closing transition of the second client (label n−).

Unlike reconfigurable BI(P) systems, dynamic BI(P) systems are strictly more
expressive than ordinary BI(P) systems. This can be immediately seen by noting
that BI(P) systems are finite state, while this is not the case for dynamic BI(P)
systems (see, e.g., Example 12).

In [12] we have defined a correspondence between dynamic BI(P) systems
and Place/Transition Petri nets. This is interesting because: i) it shows that
properties like reachability remains decidable and ii) it draws a nice analogy
with the correspondence between ordinary BI(P) systems and Petri nets in [10].

Roughly, given a dynamic BI(P) system DS = γ(D1, ..., Dn) we define a P/T
Petri net N(DS) whose places are tuples of states from components D1, ..., Dn

and whose transitions represent the possible interactions. Note that N(DS) is
determined statically and although it may contain more places and transitions
than those strictly necessary, it is finite.

Another dynamic extension of BIP is Dy-BIP [7]. With respect to Dy-BIP,
we think dynamic BI(P) has some advantages. While Dy-BIP imposes ad hoc
restrictions (e.g., transitions of atomic components are labelled with only one
single local port instead of a set of local ports) and extensions (e.g. transitions
of atomic components are decorated with non-local architecture constraints that
may involve port names of other components, thus compromising the modularity
of the specification and moreover history variables are introduced to store the
identity of interacting components), this is not necessary for dynamic BI(P).
Furthermore, the number of component instances cannot change in Dy-BIP,
contrary to dynamic BI(P). Finally, the definition of Dy-BIP systems can be
error-prone or lead to incomplete specifications unless the design methodology
outlined in [7] is adopted.

104 R. Bruni et al.

9 Concluding Remarks

One of the main limitations of the state-of-the-art theories of component-based
system is the lack of a reference paradigm for describing and analyzing their
highly dynamic interactions. In this paper we have overviewed some recent pro-
posals for addressing this limitation that emerged within the ASCENS project,
i.e., the Network-Conscious pi-calculus and possible BI(P) enhancements.

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. in Comp. Sci. 14(3), 329–366 (2004)

2. Arbab, F., Bruni, R., Clarke, D., Lanese, I., Montanari, U.: Tiles for reo. In:
Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 37–55.
Springer, Heidelberg (2009)

3. Baldan, P., Corradini, A., Ehrig, H., Heckel, R.: Compositional semantics for open
Petri nets based on deterministic processes. Mathematical Structures in Computer
Science 15(1), 1–35 (2005)

4. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: SEFM’06, pp. 3–12. IEEE Computer Society Press, Los Alamitos (2006)

5. Bliudze, S., Sifakis, J.: The algebra of connectors - structuring interaction in BIP.
IEEE Trans. Computers 57(10), 1315–1330 (2008)

6. Bliudze, S., Sifakis, J.: Causal semantics for the algebra of connectors. Formal
Methods in System Design 36(2), 167–194 (2010)

7. Bozga, M., Jaber, M., Maris, N., Sifakis, J.: Modeling dynamic architectures using
Dy-BIP. In: Gschwind, T., De Paoli, F., Gruhn, V., Book, M. (eds.) SC 2012.
LNCS, vol. 7306, pp. 1–16. Springer, Heidelberg (2012)

8. Bruni, R.: Tile Logic for Synchronized Rewriting of Concurrent Systems. Ph.D.
thesis, Computer Science Department, University of Pisa (1999)

9. Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors.
Theor. Comput. Sci. 366(1-2), 98–120 (2006)

10. Bruni, R., Melgratti, H., Montanari, U.: Connector algebras, Petri nets, and BIP.
In: Clarke, E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162,
pp. 19–38. Springer, Heidelberg (2012)

11. Bruni, R., Melgratti, H., Montanari, U.: A connector algebra for P/T nets inter-
actions. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011 – Concurrency Theory.
LNCS, vol. 6901, pp. 312–326. Springer, Heidelberg (2011)

12. Bruni, R., Melgratti, H.C., Montanari, U.: Behaviour, interaction and dynamics.
In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Software.
LNCS, vol. 8373, pp. 382–401. Springer, Heidelberg (2014)

13. Bruni, R., Melgratti, H.C., Montanari, U., Sobocinski, P.: Connector algebras
for C/E and P/T nets’ interactions. Logical Methods in Computer Science 9(3)
(2013)

14. Bruni, R., Montanari, U.: Dynamic connectors for concurrency. Theor. Comput.
Sci. 281(1-2), 131–176 (2002)

15. Campbell, A.T., Katzela, I., Miki, K., Vicente, J.B.: Open signaling for ATM,
internet and mobile networks (OPENSIG’98). Computer Communication Review
29(1), 97–108 (1999)

Software-Defined Networks of Connectors and Components 105

16. Ciancia, V., Kurz, A., Montanari, U.: Families of symmetries as efficient models
of resource binding. ENTCS 264(2), 63–81 (2010)

17. Combaz, J., Bensalem, S., Tiezzi, F., Margheri, A., Pugliese, R., Kofron, J.: Cor-
rectness of Service Components and Service Component Ensembles. In: Wirsing,
M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective
Autonomic Systems. LNCS, vol. 8998, pp. 107–159. Springer, Heidelberg (2015)

18. Ferrari, G.L., Montanari, U.: Tile formats for located and mobile systems. Inf.
Comput. 156(1-2), 173–235 (2000)

19. Ferrari, G.L., Montanari, U., Tuosto, E.: Coalgebraic minimization of HD-
automata for the pi-calculus using polymorphic types. Theor. Comput. Sci. 331(2-
3), 325–365 (2005)

20. Fiore, M.P., Turi, D.: Semantics of name and value passing. In: LICS 2001, pp.
93–104. IEEE Computer Society Press, Los Alamitos (2001)

21. Gadducci, F., Montanari, U.: The tile model. In: Proof, Language, and Interaction,
pp. 133–166. MIT Press, Cambridge (2000)

22. Jongmans, S.-S.T.Q., Arbab, F.: Overview of thirty semantic formalisms
for Reo. Scientific Annals of Computer Science 22(1), 201–251 (2012),
doi:10.7561/SACS.2012.1.201

23. Lapadula, A., Pugliese, R., Tiezzi, F.: A formal account of WS-BPEL. In: Lea,
D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 199–215.
Springer, Heidelberg (2008)

24. MacLane, S.: Categories for the Working Mathematician. Springer, Heidelberg
(1971)

25. Mayer, P., Velasco, J., Klarl, A., Hennicker, R., Puviani, M., Tiezzi, F., Pugliese,
R., Keznikl, J., Bureš, T.: The Autonomic Cloud. In: Wirsing, M., Hölzl, M.,
Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Sys-
tems. LNCS, vol. 8998, pp. 495–512. Springer, Heidelberg (2015)

26. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G.M., Peterson, L.L.,
Rexford, J., Shenker, S., Turner, J.S.: Openflow: enabling innovation in campus
networks. Comput. Commun. Rev. 38(2), 69–74 (2008)

27. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I–II. Inf. Com-
put. 100(1), 1–77 (1992)

28. Montanari, U., Pistore, M.: Structured coalgebras and minimal hd-automata for
the π-calculus. Theor. Comput. Sci. 340(3), 539–576 (2005)

29. Montanari, U., Rossi, F.: Graph rewriting, constraint solving and tiles for coordi-
nating distributed systems. Applied Categorical Structures 7(4), 333–370 (1999)

30. Montanari, U., Sammartino, M.: Network conscious π-calculus: A concurrent se-
mantics. ENTCS 286, 291–306 (2012)

31. Montanari, U., Sammartino, M.: A network-conscious π-calculus and its coal-
gebraic semantics. Theor. Comput. Sci. 546(0), 188–224 (2014), doi:10.1016/
j.tcs.2014.03.009

32. Openflow foundation website, http://www.openflow.org/
33. Perry, D.E., Wolf, E.L.: Foundations for the study of software architecture. ACM

SIGSOFT Software Engineering Notes 17, 40–52 (1992)
34. Petri, C.: Kommunikation mit Automaten. Ph.D. thesis, Institut für Instru-

mentelle Mathematik, Bonn (1962)
35. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location,

and routing for large-scale peer-to-peer systems. In: Middleware, pp. 329–350
(2001)

36. Sammartino, M.: A Network-Aware Process Calculus for Global Computing and
its Categorical Framework. Ph.D. thesis, University of Pisa (2013)

http://www.openflow.org/

106 R. Bruni et al.

37. Sobocinski, P.: A non-interleaving process calculus for multi-party synchronisa-
tion. In: ICE’09. EPTCS, vol. 12, pp. 87–98 (2009)

38. Sobociński, P.: Representations of Petri net interactions. In: Gastin, P.,
Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 554–568. Springer,
Heidelberg (2010)

39. Tennenhouse, D.L., Wetherall, D.J.: Towards an active network architecture.
Comput. Commun. Rev. 26, 5–18 (1996)

40. Viroli, M.: A core calculus for correlation in orchestration languages. J. Log.
Algebr. Program. 70(1), 74–95 (2007)

41. Rekhter, Y.: A border gateway protocol 4 (bgp-4). (March 1995),
http://www.ietf.org/rfc/rfc1771.txt

http://www.ietf.org/rfc/rfc1771.txt

Chapter I.3

Correctness of Service Components and Service
Component Ensembles�

Jacques Combaz1, Saddek Bensalem1, Francesco Tiezzi2, Andrea Margheri3,
Rosario Pugliese3, and Jan Kofroň4

1 UJF-Verimag, Grenoble, France
2 IMT Institute for Advanced Studies Lucca, Italy

3 Università degli Studi di Firenze, Italy
4 Charles University, Prague, Czech Republic

Abstract. Nowadays, cyber-physical systems consist of a large and pos-
sibly unbounded number of nodes operating in a partially unknown envi-
ronment to which they need to adapt. They also have strong requirements
in terms of performances, resource usage, reliability, or security. To face
this inherent complexity it is crucial to develop adequate tools and under-
lying models to analyze these properties at design time. Proposed models
must be able to capture essential aspects of the behavior (e.g. interac-
tions between the components, adaptive behavior, uncertain or changing
environments), and the corresponding analysis techniques can only suc-
ceed if they exploit as much as possible the specific structure of the
considered systems (e.g. large replication of the same component, hierar-
chical compositions). We consider qualitative analyses targeting boolean
properties stating that the system behaves without any flaw, as well
as quantitative analyses that evaluate expected performances according
to predefined metrics (energy/memory consumption, average/maximum
time to accomplish a task, probability to fulfil a goal, etc.). We also
address security specific issues such as control policies and information
flow.

Keywords: Formal methods, Verification, Model-Checking

1 Introduction

There are several reasons for checking the design of a system before its real-life
deployment. One of them is saving cost and time: finding misconceptions very
early in a design flow very often shortens the iterative trial and error process
required to obtain the desired properties. For some systems, it is even practically
inconceivable to modify them a posteriori (e.g. hardware systems, autonomous
rovers for space missions). Formal guarantees can be also required prior to the

� This research was supported by the European project IP 257414 (ASCENS).

M. Wirsing et al. (eds.): Collective Autonomic Systems, LNCS 8998, pp. 107–159, 2015.
c© Springer International Publishing Switzerland 2015

108 J. Combaz et al.

deployment for safety reasons, e.g. for critical systems. Verification approaches
rely on solid mathematical foundations to establish properties of a system at
design time. They are model-based, that is, they represent the system (and its
environment) using mathematical models. Therefore, they analyze properties
under the assumption that the real system behaves according to its model.

System design differs radically from pure software design in that it must ac-
count not only for functional requirements but also for extra-functional require-
ments regarding the use of execution platform resources, such as time, memory,
and energy. This is especially true for cyber-physical systems, for which strong
requirements in terms of performances, resource usage, reliability, or even secu-
rity, are considered. Meeting extra-functional requirements needs the evaluation
of how design choices affect overall system behavior. It also implies a deep un-
derstanding of how components of the system are interrelated, and how they
interact with the underlying execution platform. Yet system designers currently
lack rigorous techniques for deriving global models of a given system from soft-
ware specifications and the execution platform. The inherent system complexity,
and in particular the number of components they involve, can easily lead to
non-tractable models. As a results, one of the main challenges in building sys-
tem models is not only to come up with faithful representations but also to
develop efficient analysis techniques so as to validate system properties. Usually,
system properties can be classified into two main categories:

– qualitative properties which are boolean properties stating that the system
operate without any flaw,

– and quantitative properties that refers to the evaluation of system perfor-
mance according to predefined metrics (energy/memory consumption, aver-
age/maximum time to accomplish a task, probability to fulfill a goal, etc.).

Our approach for dealing with qualitative properties is to use so called formal ver-
ification techniques, e.g. model-checking [10]. When successful, such techniques
provide formal guaranties that the system satisfies the target property, by estab-
lishing a mathematical proof of it. However, they often face state-space explosion
issues which makes them practically not scalable to large systems [30]. We ad-
vocate the use of compositional verification methods, in which global properties
of the whole system are established based on local characterizations of its com-
ponents and their interactions, which avoids building explicitly the composition
of components which is the source of the exponential grow of the state-space.
They also permit incrementality, that is, to profit from properties established for
sub-part of the system when verifying the whole system. For instance, this may
avoid to redo from scratch the verification process after adding a few components
to an existing system.

Concerning quantitative properties and system performance, one can notice
that they are in general strongly related to the environment in which the system
is immersed: a design may perform well in some contexts, but poorly in others.
As a result, we need models for the environment behavior that can capture
a large spectrum of possible situations that the system may face. Including
stochasticity in our models permits us to quantify the degrees of likelihood for

Correctness of Service Components and Service Component Ensembles 109

each scenario. We not only worked on the development of stochastic models and
corresponding framework for the evaluation of quantitative properties, but also
on their application to several realistic case studies showing their practicability.

Security aspects are addressed specifically according two working directions.
To address confidentiality issues we develop a model-driven framework for in-
formation flow analysis which is suited for checking non-interference, a system
property stating that information about higher security levels cannot be inferred
from lower security levels. We also propose the framework FACPL for the de-
velopment and the enforcement of security policies.

The rest of the chapter is structured as follows. Section 2 presents verifica-
tion techniques having in common a single semantic model and corresponding
tool-chain, namely BIP [24]. This includes compositional verification targeting
qualitative properties (Section 2.1), statistical model-checking which is suited
for quantitative properties (Section 2.2), and information flow analysis for con-
fidentiality properties (Section 2.3). Additional and complementary verification
techniques based on alternative models are also presented in Section 3. Finally,
Section 4 gives a summary of the contributions of this chapter and provides
future working directions.

2 Verification Techniques for BIP Models

In this Section we present three verification techniques developed specifically for
BIP models [24]. BIP was the main model considered in the ASCENS project
to perform formal verification of systems. A connection between SCEL (used in
ASCENS for specifying systems and presented in Chapter I.1 [33]) and BIP has
also been made but its presentation is beyond the scope of this chapter.

In BIP there exists a clear separation between computation and coordination
(expressed in terms of interactions and priorities), which allows to check safety
properties compositionally by a separate analysis of components behavior and
system architecture, as explained in Section 2.1. Two extensions of BIP have also
been considered for verification of other types of properties: one adds stochastic-
ity in BIP systems for quantitative properties (Section 2.2), the other one assigns
security domains for non-interference of the information flow (Section 2.3).

2.1 Compositional Verification

Component-based design confers numerous advantages, in particular, increased
productivity through reuse of existing components. Nonetheless, establishing
the correctness of ensembles of components remains an open issue. In contrast
to other engineering disciplines, software and system engineering badly ensures
predictability at design time. Consequently, a posteriori verification as well as
empirical validation are essential for ensuring correctness. Monolithic verifica-
tion [58,31] of component-based systems is a challenging problem. It often re-
quires computing the product of the components by using both interleaving and
synchronization. The complexity of the product system is often prohibitive due

110 J. Combaz et al.

to state explosion. Compositional methods in verification have been developed
to cope with state explosion. Generally based on divide-and-conquer principles,
compositional methods attempt to break monolithic verification problems into
smaller sub-problems by exploiting either the structure of the system or of the
property to verify, or both. Compositional reasoning can be used in different fla-
vors, e.g. deductive verification, assume-guarantee reasoning [53,42,57], contract-
based verification [32,47], compositional generation, etc.

In a series of recent works [14,21,16], we proposed novel approaches and the
dfinder tool [19] which rely on compositional generation of invariants for sys-
tems described in the BIP framework [24]. We observed that most of the existing
work on generating invariants for component-based systems are too general and
do not strongly exploit the structure of the system and the algebra that defines
the interactions between its components. Moreover, only few attempts have been
made for exploiting compositionality principles in timed systems and they remain
marginal in the research literature. Our techniques start by building invariants
for individual components, which can be done with any existing approach for
invariant generation on sequential programs. The novel concept in dfinder is
that the invariant for the overall system is then obtained by glueing this set of in-
dividual invariants with another one that is an abstraction of the algebra used to
define the interactions between the components. By doing so, one avoids building
huge parts of the state-space before generating the invariant. One of the major
advantages of our approach is that it allows for the development of incremental
techniques such as [16], capable of reusing invariants that have already been
computed on subparts of the model. The incremental approach is particularly
useful when multiple instances of the same component (atomic or composite) are
used in the system. In such cases, it allows to factorize the analysis. Thus, local
invariants established on a subpart of the system can be automatically lifted to
all similar subparts within the system.

dfinder originally implements efficient symbolic techniques for computing
invariants [19]. It relies on the external third party tools Omega for constraints
manipulation, Yices for SAT solving, and JavaBDD for BDD operations. As
shown in Figure 1, dfinder combines several invariants obtained from system
components and system architecture, into a global invariant GI for the complete
system [20]. Given a target safety property expressed as a predicate Φ on the
state of the system (e.g. deadlock freedom is obtained Φ = ¬DIS, where DIS
is a predicate characterizing the deadlock states), if the formula GI ∧ ¬Φ (i.e.
GI ∧ DIS for deadlock freedom) is unsatifiable then the system satisfies Φ. In
the other case, the solutions denote some suspicious counter examples that can
be reused by the tool to automatically refine the analysis.

Regarding verification of timed systems it is generally admitted that the dif-
ficulty for using compositional reasoning is inherently due to the synchronous
model of time. Time progress hides continuous synchronization of all the com-
ponents of the system. Getting rid of such synchronization is necessary for ana-
lyzing independently different parts of the system (or of the property) but also
extremely problematic when attempting to re-compose the partial verification

Correctness of Service Components and Service Component Ensembles 111

Expression Analysis

Model
BIP

DL free
false DL

suspects

Analysy is

predicates

true

CEX

Omega

Yices

BDD

Fig. 1. Structure of the dfinder tool

results. We developed a novel compositional method for the generation of invari-
ants for timed systems. In contrast to exact reachability analysis, invariants are
symbolic approximations of the set of reachable states of the system. The main
challenge for timed systems was capture the relations between the local timing
of the components induced by their interactions Without them the proposed
compositional analysis proved to be too weak for verifying even simple systems.
The proposed relations take the shape of equalities between the clocks of com-
ponents used for expressing their timing constraints. We proved the soundness
of the proposed approach, and successfully applied it to academic examples and
non trivial case studies. However, the method is not complete, that is, it may be
not able to prove certain properties even if they are satisfied by the system.

Our Compositional Verification Method. The compositional method we
propose here is based on the verification rule (VR) from [18]. Assume that a sys-
tem consists of n components Bi interacting by means of an interaction set γ, and
that the system property of interest is Φ. If components Bi, respectively interac-
tions γ, can be locally characterized by means of invariants CI (Bi), respectively
II (γ), and if Φ can be proved to be a logical consequence of the conjunction of
the local invariants, then Φ is a global invariant. This is what the rule below
synthesizes.

�
∧
i

CI (Bi) ∧ II (γ) → Φ

‖γBi |= �Φ
(VR)

112 J. Combaz et al.

In the rule (VR), the symbol � is used to underline that the logical implication
can be effectively proved (for instance with an SMT solver) and the notation
B |= �Φ is to be read as “Φ holds in every reachable state of B”.

The key idea behind the compositional generation method is to use additional
history clocks in order to track the timing of interactions between different com-
ponents. History clocks allow to decouple the analysis for components and for
their composition. On component level, history clocks are used to capture and
expose the local timing constraints relevant to their interactions. At composi-
tion level, extra constraints on history clocks are enforced due to simultaneity
of interactions and to the synchrony of time progress.

Timed Systems. In our framework, the components are timed automata [8]
and systems are compositions of timed automata with respect to n-ary interac-
tions. Timed automata represent the behavior of components. They have con-
trol locations and transitions between these locations. Transitions may have
timing constraints, which are defined on clocks. Clocks can be reset and/or
tested along with transition execution. Formally, a timed automaton is a tu-
ple (L, l0, A, T, X, tpc) where L is a finite set of control locations, l0 is an ini-
tial control location, A is a finite set of actions, X is a finite set of clocks,
T ⊆ L× (A×C ×2X)×L is finite set of transitions labeled with actions, guards,
and a subset of clocks to be reset, and tpc : L → C assigns a time progress con-
dition to each location. C is the set of timing constraints which are predicates
on the clocks X defined by the following grammar:

C ::= true | false | x#ct | x − y#ct | C ∧ C

with x, y ∈ X , # ∈ {<, ≤, =, ≥, >} and ct ∈ Z. Time progress conditions are
restricted to conjunctions of constraints as x ≤ ct. For simplicity, we assume
that at each location l the guards of the outgoing transitions imply the time
progress condition tpc(l) of l.

A timed automaton is a syntactic structure whose semantics is based on
continuous and synchronous time progress. That is, a state is given by a con-
trol location paired with real-valued assignments of the clocks. From a given
state, a timed automaton can let time progress when permitted by the time
progress condition of the corresponding location, or execute a (discrete) tran-
sition if its guard evaluates to true. The effect of time progress of δ > 0 is to
increase synchronously all the clocks by the real value δ. Executions of transi-
tions are instantaneous, that is, they keep values of clocks unchanged except the
ones that are reset (i.e. assigned to 0). Because of their continuous semantics,
timed automata have in general infinite state spaces. However, they admit finite
symbolic representations of their state spaces called zone graph [7,6,40,66], in
which equivalent assignments of clocks are grouped in a single (symbolic) state
called zone having the shape of timing constraints defined previously. That is,
the reachable states of a timed automata corresponds to a finite number of con-
figurations (lj , ζj), 1 ≤ j ≤ m, where for all j, lj is a control location and ζj is
a timing constraint.

Correctness of Service Components and Service Component Ensembles 113

Examples of timed automata are provided by Figure 2. For instance, compo-
nents Workeri, i ∈ {1, 2}, are implemented by similar timed automata, consist-
ing of two control locations li1 and li2 and two transitions: a transition from li1
to li2 labelled by action bi and having timing constraint y ≥ 8, and a transition
from li2 to li1 having action di and resetting clock y. By convention non displayed
guards of transitions and time progress conditions of locations are true.

lc0

lc1x ≤ 4

lc2

x ≥ 8
x := 0

a, x = 4
x:=0

c
x := 0

a

c

Controller

l11

l12

b1,
y1 ≥ 8

d1,
y1 := 0

b1

d1

Worker1

l21

l22

b2,
y2 ≥ 8

d2,
y2 := 0

b2

d2

Worker2

Fig. 2. A composition of three timed automata

In our framework, components interact by means of strong synchroniza-
tion between their actions. The synchronizations are specified in the so called
interactions as sets of actions. An interaction can involve at most one ac-
tion of each component. Given n components (i.e. timed automata) Bi =
(Li, li0, A

i, T i, X i, tpci), 1 ≤ i ≤ n, and a set of interactions γ, we denote by
γ(B1, . . . ,Bn) the composition of components Bi with respect to interactions γ.
States of the composition γ(B1, . . . ,Bn) are combinations of the states of the
components Bi. In γ(B1, . . . ,Bn), a component Bi can execute an action ai only
as part of an interaction α ∈ γ, ai ∈ α, that is, along with the execution of all the
actions participating to α, which corresponds to the usual notion of multi-party
interaction. Notice that for a component Bi of a composition γ(B1, . . . ,Bn),
the application of interactions γ can only restrict its reachable states. That is,
the reachable states of Bi when executed in the composition γ(B1, . . . ,Bn) are
included in the reachable states of Bi executed alone (i.e. as a single timed au-
tomata). This property is essential for building our compositional verification
method, presented below.

Components and Interaction Invariants. To give a logical characterization
of a system S = γ(B1, . . . ,Bn) we use invariants. An invariant Φ is a state
property which holds in every reachable state of S, in symbols, S |= �Φ.

114 J. Combaz et al.

Component invariants CI (Bi) characterize the reachable states of compo-
nents Bi when considered alone. Such invariants can easily be computed from
the zones of the corresponding timed automata. More precisely, given the reach-
able (symbolic) states (lj , ζj), 1 ≤ j ≤ m, of component Bi, the invariant for Bi

is defined by: ∨
1≤j≤m

lj ∧ ζj ,

where we abuse of notation and use lj for the predicate that holds whenever Bi

is at location lj . Notice that zones ζj are timing constraints, that is, predicates
on clocks. Notice also that invariants CI (Bi) still hold for the composed system
S = γ(B1, . . . ,Bn), but are only over approximations of the states reached by
each component Bi in S. For example, the component invariants for Controller ,
Worker 1 and Worker 2 of Figure 2 are as follows:

CI (Controller) = (lc0 ∧ x ≥ 0) ∨ (lc1 ∧ x ≤ 4) ∨ (lc2 ∧ x ≥ 0)

CI (Worker i) = (li1 ∧ yi ≥ 0) ∨ (li2 ∧ yi ≥ 8).

Interaction invariants II (γ) are induced by the synchronizations and have the
form of global conditions involving control locations of components. In previous
work, we have considered boolean conditions [18] as well as linear constraints [15]
for II (γ). For instance, such invariants exclude configurations such that lc1 ∧ li2,
that is, they establish ¬

(
lc1 ∧ (l12 ∨ l12)

)
. Interaction invariants are not the main

purpose of this work, interested readers should refer to [18] and [15] for detailed
presentations.

A safety property of interest for example of Figure 2 is absence of deadlocks. A
necessary condition for deadlock freedom is that a can synchronize with b1 or b2
when the controller is at lc1 and the workers are at li1, that is, Φ = lc1∧l11∧l21 =⇒
y1 − x ≥ 4 ∨ y2 − x ≥ 4. Even if Φ holds in S, it cannot be proved by applying
(VR) using only component invariants CI (Bi) and interaction invariant II (γ).
A counter example is given by lc1 ∧ l11 ∧ l21 and x = y1 = y2 = 0, which satisfies
the invariant CI (Controller)∧CI (Worker 1)∧CI (Worker 2)∧ II (γ)5 but violate
property Φ, that is, CI (Controller)∧CI (Worker 1)∧CI (Worker 2)∧II (γ) �=⇒ Φ.
One problem is that the proposed invariants cannot relate values of clocks of
different components according to their synchronizations (e.g. synchronous reset
of clocks).

Adding History Clocks. To strengthen computed invariants, we proposed
to equip each component Bi (and later, interactions) with history clocks: one
clock hai per action of ai of Bi. A history clock hai is reset on all transitions
executing ai. Notice that since there is no timing constraint involving history
clocks, the behavior of the components remain unchanged after the addition of
the history clocks, which is shown in [9]. They are only introduced for establish-
ing properties. Each time an interaction α ∈ γ is executed, all the history clocks
5 Notice that interaction invariants cannot exclude lc1 ∧ l11 ∧ l21 since it is a reachable

configuration.

Correctness of Service Components and Service Component Ensembles 115

corresponding to the actions participating in α are reset synchronously, and then
become identical at the next state (until another interaction is executed). More-
over, history clocks of actions of the last executed interaction α are necessarily
lower than the ones of actions not participating in α, since they are the last
being reset. That is, at each state of the system there exists an interaction α
(i.e. the last executed interaction) for which hai = haj for all ai, aj ∈ α, and
ai ≤ ak for all ak /∈ α. Notice that actions that are not part of α are subject to
the same type of constraint depending on the interaction executed right before
α. This is captured by the recursive definition of the following invariant:

E(γ) =
∨
α∈γ

((∧
ai,aj∈α

ak /∈α

hai = haj ≤ hak

)
∧ E(γ
 α)

)
,

where γ
α = {β \α | β ∈ γ ∧β �⊆ α}. It can be shown that E(γ) is an invariant
of the system [9]. For example of Figure 2, invariant E(γ) is given by:

E(γ) = (ha = hb1 ≤ hb2 ∨ ha = hb2 ≤ hb1) ∧ (hc = hd1 ≤ hd2 ∨ hc = hd2 ≤ hd1).

Component invariants for example of Figure 2 including the history clocks are
as follows:

CI (Controllerh) = lc0 ∨ (lc1 ∧ x ≤ 4 ∧ (ha = hc ≥ 8 + x ∨ x = hc ≤ ha)) ∨
(lc2 ∧ x = ha ∧ (hc ≥ ha + 12 ∨ hc = ha + 4))

CI (Workerh
i) = (y = hdi ∧ li1 ∧ hdi ≤ hbi) ∨ (li2 ∧ hdi ≥ 8 + hbi).

Such invariants proved to be sufficient for stating deadlock-freedom for a similar
example involving only one worker, but are too weak for establishing deadlock-
freedom with two workers. When interactions are conflicting on shared action
ai, the proposed invariants for history clock hai always consider that any of
these interactions can execute. For instance, in example of Figure 2 our invari-
ants cannot capture the fact that if action a of Controller synchronizes with
b1 of Worker1, then the following execution of action c of Controller can only
synchronize with d1 of Worker1 (it cannot synchronize with d2 of Worker2).

Handling Conflicting Interactions. We developed a general way for com-
puting stronger invariants relating execution of the interactions. The principle
is to add again history clocks hα for each the interaction α of γ, and to reset hα

each time α is executed by the means of an additional component and adequate
synchronizations. A full description of this approach can be found in [9]. For an
action ai of component Bi, we define the separation constraint S(γ, ai) as:

S(γ, ai) =
∧

α,β∈γ | ai∈α,β
α�=β

| hα − hβ |≥ δai ,

where δai is a lower bound of the time elapsed between two consecutive execu-
tions of ai in Bi, which can be statically computed from the timed automata of

116 J. Combaz et al.

Bi. It can be shown [9] that separation constraints S(γ, ai) are invariants of the
system, that is, the following is an invariant of the system:

S(γ) =
∧

1≤i≤n

∧
ai∈Ai

S(γ, ai).

Invariant E(γ) can be rewritten using additional history clocks as follows:

E(γ) =
∧

1≤i≤n

∧
ai∈Ai

hai = minα�aihα.

This corresponds to the intuition that the history clock of an action ai equals
the history clock of the last executed interaction α involving ai, which is the one
having hα minimal.

Experiments. We have developed a prototype in Scala implementing the ap-
proach. It takes as input components Bi, interactions γ, and a global safety
property Φ, and checks whether the system satisfies Φ. To this end, it first com-
putes the invariants proposed above, using PPL [2]. Then it generates Z3 [4]
Python code to check the satisfiability of the following formula:

∧
1≤i≤n

CI (Bi) ∧ II (γ) ∧ E(γ) ∧ S(γ) ∧ ¬Φ. (1)

Notice that when γ has no conflicting interactions we can simply use the ini-
tial form for E(γ) and discard S(γ). If (1) is not satisfiable then the system is
guaranteed to satisfy Φ (i.e. our approach is sound). Otherwise, Z3 returns an
assignment of the variables satisfying (1) and corresponding to a global state
of the system that violates property Φ. Since we use over-approximations (i.e.
invariants) instead of the exact behavior of the system, this state may be not
reachable and Φ may actually hold in the system.

We experimented the approach on several classical examples, namely the
Train-Gate-Controller (TGC), the Fischer mutual exclusion protocol, and the
Temperature-Control-System (TCS). We compared our prototype implementa-
tion with Uppaal [3]. Uppaal is a widely used model-checker for timed systems
implementing symbolic reachability of parallel composition of timed automata
using zones. We measured execution times for verifying properties of interest
for these examples, i.e. mutual exclusion for TGC and Fischer and deadlock-
freedom for TCS (see Table 1). Experimental results shown that Uppaal is sub-
ject to state-explosion when increasing the number of components, which hap-
pened with TCS for 16 components or more, and with Fischer for 14 components
or more. In contrast, our prototype managed to verify TCS even for 124 com-
ponents in less than 20 seconds. We believe that such compositional approach is
very interesting for systems composed of large number of identical components
(e.g. swarms of robots) since in this case we reuse already computed invariants
following incremental approaches of [19].

Correctness of Service Components and Service Component Ensembles 117

Table 1. Experimental results for model-checking tool Uppaal and our prototype tool

Model & Size Time/Space
Property Our prototype Uppaal

1 0m0.156s/2.6kB+140B 0ms/8 states
Train Gate Controller & 2 0m0.176s/3.2kB+350B 0ms/13 states

mutual exclusion 64 0m4.82s/530kB+170kB 0m0.210s/323 states
124 0m17.718s/700kB+640kB 0m1.52s/623 states
2 0m0.144/3kB 0m0.008s/14 states

Fischer & 4 0m0.22s/6.5kB 0m0.012s/156 states
mutual exclusion 6 0m0.36s/12.5kB 0m0.03s/1714 states

14 0m2.840s/112kB no result in 4 hours
1 0m0.172s/840B+60B 0m0.01s/4 states

Temperature Controller & 8 0m0.5s/23kB+2.4kB 11m0.348s/57922 states
absence of deadlock 16 0m2.132s/127kB+9kB no result in 6 hours

124 0m19.22s/460kB+510kB no result in 6 hours

Case Study. To illustrate the applicability of our approach, we also applied
it to a robotics scenario provided by the ASCENS partner EPFL. It consists of
cooperating robots used in a child’s bedroom for home automation, automatic
cleaning, or child assistance in tidying up. We considered the following types of
robots/devices in the room, all capable of wireless communications.

Cleaning Robot. We assume the presence of an autonomous vacuum cleaner. This
kind of domestic robot is nowadays widely used and working well, e.g. Roomba
Vacuum Cleaning Robot. The distinguishing feature we consider in our setting
is its ability to cooperate with other types of robots.

Toy Case Robot. The toy case robot—called Ranger—is currently developed in
a research project of EPFL [1]. Its goal is to encourage the child to put away the
toys in the case. To this end, it interacts with the child and produces pleasing
sound and light each time the child takes toys from the floor and puts them
in the case. The effectiveness of such robot has already been shown in previous
studies. We also assume that this robot has sensors able to detect the presence
of the child when he is close enough.

Bed and desk chair. We assume that the bed and the desk chair are equipped
with sensors allowing to detect when the child seats on.

Door. We assume that the bedroom door is equipped with an electric closing
and locking system. A safety mechanism stops any closing procedure if the child
tries to enter the bedroom while the door is closing.

Ceiling Camera. A camera located on the ceiling can take pictures that can be
analyzed to detect whether the child is in the bedroom. The shape of the child
can be tracked in these pictures only if it is not too close to other shapes, i.e. if
the child is not playing with the toy case and not on the bed or the chair. For

118 J. Combaz et al.

energy consumption reasons, we assume that the pictures are shot and analyzed
only once a while, e.g. at a given period P .

In this scenario we focused on a safety property stating that the child should
not be in the bedroom while the cleaning robot is cleaning. To achieve this prop-
erty, we designed a protocol in which the cleaning robot (1) checks if the child
is outside the bedroom by correlating information from all the other robots /
devices, (2) if so, closes and locks the door to keep the child outside, and (3)
cleans the bedroom. To accomodate with the delays induced by the communica-
tion amongst the distributed robots, our protocol also relies on time measured
by timers. A picture is considered fresh if it was shot by the camera less than
F time units before. Similarly, the child is considered not detected by the chair,
the case or the bed if he was not there for more than R time units.

We used our compositional verification method to prove that our protocol
satisfies that the child is not in the bedroom while the robot is cleaning, for any
value of the parameters such that R ≥ F . In the BIP model we built (Figure 3),
this property boils down to checking that if the cleaning robot is in control state
C, then the child must be in state 0 (which are the blue states of Figure 3).
This property is non trivial as it strongly depends on the individual behavior
of all the devices and in particular their timings, and it can be tricky to ensure
for the system. Notice that the model proposed here is far too abstract to be
used directly for implementing the devices. It uses primitives such as atomic
synchronizations between two or more components (i.e. multi-party interactions)
that should be translated into simpler interactions (e.g. messages passing). To get
correct-by-construction implementations we could transform the proposed BIP
model into a Send/Receive BIP model using techniques developed for generating
distributed implementations from BIP [25].

Conclusion. We have presented a compositional verification method for sys-
tems subject to timing constraints. It relies on invariants computed separately
from system components and their interactions. This method is sound for ver-
ification of safety properties, that is, it can be used to prove that the system
cannot reach an undesirable configuration. We believe that it is suited to check
correctness of coordinations within distributed systems, usually implemented by
communication protocols relying on time, as shown by the case robotics case
study.

2.2 Application of SMC-BIP to a Robotics Scenario

We applied the statistical model-checking tool SMC-BIP to the robotics case
study of the ASCENS project which is described in Chapter IV.2 [55]. The sce-
nario consists in (1) deploying a swarm of marXbot [26] robots—the explorers—
to find victims (which are other marXbots) distributed all over an arena shown
in Figure 7, and (2) to rescue the victims. We focused on the deployment phase
only whose goal is not only to deploy the swarm and to find the victims, but

Correctness of Service Components and Service Component Ensembles 119

g
et
O
n
,c
:=

0
c≥

R
n
o
ch
il
d

g
et
U
p

ch
il
d

n
o
ch
il
d

g
et
U
p

g
et
O
n

ch
il
d

B
ed

c≥
P

tk
P
ic
tI
n

c:
=
0
,i
sC

h
il
d
:=

1

c≤
F

n
o
C
h
il
d

is
C
h
il
d
:=

0

c≤
F

n
o
C
h
il
d
P

is
C
h
il
d
:=

0

c≥
P

tk
P
ic
tO

u
t

c:
=
0
,i
sC

h
il
d
:=

0

a
n
a
ly
ze

c
≥

1

n
o
C
h
il
d

n
o
C
h
il
d
P

tk
P
ic
tI
n

tk
P
ic
tO

u
t

C
a
m
er
a

se
a
t

c:
=
0

to
D
es
k

c:
=
0

c≥
R

re
a
ch
ed

D
es
k

c≥
R

n
o
tS
ea
te
d

g
et
u
p

c:
=
0

c≥
5
0

v
ib
ra
te

c:
=
0

se
a
te
d

c≥
1

le
av
eD

es
k

to
D
es
k

re
a
ch
ed

D
es
k

se
a
t

se
a
te
d

C
h
a
ir

C

c≥
6
0
0

co
ll
a
b
,c
:=

0

c≥
1
2
0

ti
m
eo
u
t,
c:
=
0

st
a
rt
C
le
a
n

c:
=
0

c≥
1
5

st
o
p
C
le
a
n

c:
=
0

co
ll
a
b

st
a
rt
C
le
a
n

st
o
p
C
le
a
n

C
le
a
n
in
g
R
o
b
o
t

IO

c≤
1
0

en
te
r,
c:
=
0

tO
u
t

c>
1
0

ex
it
,c
:=

0

c≥
1
0

se
a
t

c≥
1
0

b
ed

,c
:=

0

c≥
1
0

p
u
t/
tk
O

o
:=

0
,c
:=

0

c≥
1
0

in
R
o
o
m

tO
u
t

tO
u
t

c≥
1
0

in
R
o
o
m
,c
:=

0

o
<
2

tO
u
t

o
≥2

tI
n

c≥
2

p
u
t/
tk
O

c≥
1
0

in
R
o
o
m
P
,c
:=

0

p
u
t/
tk
O

en
te
r/
ex
it

tI
n

tO
u
t

b
ed

se
a
t

in
R
o
o
m

C
h
il
d

c≥
R

lo
ck

cl
o
se

o
p
en

c≥
3

co
m
p
le
te
,c
:=

0
o
p
en

o
p
en

cl
o
se

c:
=
0

u
n
lo
ck

lo
ck

cl
o
se

u
n
lo
ck

o
p
en

D
o
o
r

c≥
R

u
n
d
er
B
ed

n
o
A
ss
is
t

c≥
6
0

n
av

ig
c:
=
0

c≥
2

sl
ee
p
,c
:=

0

n
o
A
ss
is
t

c≥
3
0

sl
ee
p

c:
=
0

co
ll
a
b

c:
=
0

p
u
t/
tk
O

c:
=
0

u
p
d

p
u
t/
tk
O

c:
=
0
,u
p
d

c≥
6
0

ti
m
eo
u
t

c:
=
0

st
o
p
A
ss
is
t

st
o
p
A
ss
is
t

u
n
d
er
B
ed

co
ll
a
b

p
u
t/
tk
O

T
oy

C
a
se

Fig. 3. BIP model of the cooperating robots example

120 J. Combaz et al.

also to establish “landmark” robots which are used during the rescued phase as
routers.

We first built a BIP model of the marXbot based on specifications provided
by ASCENS partners. It includes a faithful implementation of the 24 proximity
sensors as well as the rotating scanner of the robot, considering noisy values for
all the sensors. To keep our model simple, we used abstractions for representing
the detection of landmarks by the camera and the communications through
the range-and-bearing module. The skeleton of the BIP component used for
modelling the marXbot behavior is provided in Figure 5. Following the approach
implemented in the simulator ARGoS [56], we rely on synchronous discrete time
execution with a duration of 10 ms for the time steps. This is implemented by a
connector (tick) synchronizing all the robots (victims and explorer) as shown in
Figure 4. Notice that we also stop the execution when all the victims are found,
by disabling connector tick. The model of the swarm represents 1500 lines of
BIP code along with 1200 lines of external C++ code.

Fig. 7. Arena of the rescue scenario

Single Robot Behavior. We
started by experimenting with several
behavioral strategies for a single
robot: straight walk, random walk,
and random walk improved using
the rotating scanner. All includes
basic obstacle avoidance so as not to
bump into walls and/or other robots.
Figures 6 and 8 show examples of
simulations obtained for different
strategies and corresponding delays
for finding the victims. In Figure 6,
victims are the five small circles
(three at the top and two at bottom)
in the arena, and the path followed
by the explorer is represented by
drawings inside the arena. Using
straight walk minimizes the distance
for travelling from one location to
another. However, it resulted in a
very poor coverage since the explorer
was trapped on the left side of the arena from which it did not escape even after
a long time. Random walk led to good coverage but longer delays for finding
the first three victims than the ones obtained with straight walk. From this
observation, we improved random walk by using the rotating scanner which
allows the explorer to track long distances obstacles and to follow corridors and
walls, which is clearly visible on simulations (see Figures 6 and 8). All these
observations are confirmed by the analysis performed by SMC-BIP with which
we computed the expected time for finding the 1st and the 5th considering

Correctness of Service Components and Service Component Ensembles 121

Fig. 4. Architecture of the BIP model built for the whole system

Fig. 5. BIP model for the behavior of a single robot

122 J. Combaz et al.

probability 0.85, provided in Figure 9. Parameters α, β and δ in table of
Figure 9 correspond to the target degree of confidence for SMC-BIP. The lower
these parameters are, the lower the probability to obtain an incorrect answer
is. They are formally defined in [17]. Using SMC-BIP we also managed to show
that increasing the number of explorers (we tested for 11, 21, and then 31) tends
to reduce the expected delays for finding victims (see Figure 9). An example of
simulations traces for 31 explorers can be found in Figure 10(a).

Cooperation Between Robots. We completed the model by including land-
marking mechanisms. When a robot become too far away from other landmarks,
or if it finds a victim, it stops to establish a new landmark. Landmarking alone
reduced drastically the performances, as shown by Figure 11. This can be ex-
plained by the fact that landmarking reduces the moving range of the explor-
ers and decreases the number of active robots, sometimes to the point where
all robots were stopped (i.e. were landmarks) whereas victims remained to be
found. An example of such situation can be observed in Figure 10(b).

The actual goal of landmarking is to prevent explorers/rescuers from going
to uninteresting areas, which is essentially useful for the rescue part of the sce-
nario. For this, landmarks must communicate with active robots to route them
for achieving their goal (exploring, rescuing, etc.). We included basic commu-
nication capabilities in the model allowing landmarks to route robots back if
there is no need for exploration in their given direction (e.g. presence of a dead
end). These communications were implemented by simple connectors between
the robots (see Figure 12). By the way, this shows limitations of (static) BIP
representations as we had to include all possible connections between the robots,
that is, n2 connectors when using n explorers. It would have been better to use
dynamic description of connectors as it is possible with DyBIP [27], but this
feature was not part of the existing tool-chain we used. Adding communications
allowed acceptable performance for finding all the five victims, while establish-
ing landmarks required by the second phase of the scenario. Simulation traces
clearly show the switchbacks performed by the robots when meeting landmarks
from which no further exploration is needed (see Figure 10(c)).

SMC-BIP allowed us to fine-tune the behavior of the marXbot to optimize
the deployment phase of the ASCENS scenario. Such fine-tuning is also possible
with standard simulation techniques (e.g. with ARGoS), but statistical model-
checking permits us to have reliable information about the performances of the
swarm, guaranteed by explicit degrees of confidence and based on exploration
of possible behaviors. For example, it required sometimes more than 20000 sim-
ulations for SMC-BIP to conclude on a single delay value. The BIP model we
developed can also be a basis for computing stochastic abstractions and/or for
applying verification techniques and tools.

2.3 Model-Driven Information Flow Security for SCEs

Systems and software conceived nowadays know a continuous increase of their
complexity. Information protection and secure information flow between these

Correctness of Service Components and Service Component Ensembles 123

(a) straight (b) random (c) random + scanner

Fig. 6. Simulation of a single robot and various moving strategies

strategy: straight random random + scanner
number of explorers: 1 1 1 11 21 31

1st victim 207 1243 556 175 149 154
2nd victim 2265 5619 790 329 220 176
3rd victim 2983 12675 1231 551 481 273
4th victim timeout 16053 3075 964 638 500
5th victim timeout 16883 3358 1134 645 540

Fig. 8. Delays in seconds for finding victims corresponding to simulations of Figures 6
and 10(a)

strategy: straight random random + scanner
number of explorers: 1 1 1 11 21 31

1st victim (α=β=δ=0.05) 343 2996 892 211 188 152
5th victim (α=β=δ=0.01) timeout 41250 11562 1171 820 742

Fig. 9. Delays in seconds computed by SMC-BIP for finding victims with probability
P=0.85

124 J. Combaz et al.

(a) no landmarking (b) landmarking (c) landmarking + comm.

Fig. 10. Simulation of landmarking strategies for 31 explorers

strategy: landmarking landmarking + communication
1st victim (α=β=δ=0.05) 380 375
5th victim (α=β=δ=0.01) timeout 1797

Fig. 11. Delays in seconds computed by SMC-BIP for finding victims with probability
P=0.85

Fig. 12. Architecture of the BIP model including communications explorers and land-
marks

Correctness of Service Components and Service Component Ensembles 125

systems is paramount and represent a great design challenge. Model driven se-
curity (MDS) [11] is an innovative approach that tend to solve system-level
security issues by providing an advanced modeling process representing security
requirements at a high level of abstraction. Indeed, MDS guarantees separation
of concerns between functional and security requirements, from early phases of
the system development till final implementation.

Information flow security can be ensured using various mechanisms. Amongst
the first approaches considered, ones find access control mechanisms [62,45] that
allow protecting data confidentiality by limiting access to data to be read or
modified only by authorized users. Unfortunately, these mechanisms have been
proven incomplete and limited since only by preventing the direct access to data,
indirect (implicit) information flows are still possible given rise to the so called
covert channels [63]. As an alternative, non-interference has been studied as a
global property to characterize and to develop techniques ensuring information
flow security. Initially defined by Goguen and Meseguer [39], non-interference
ensures that the system’s secret information does not affect its public behavior.

In this work, we adapt the Model driven security (MDS) [11] approach to
develop a component-based framework, named secBIP, that guarantees auto-
mated verification and implementation of secure information flow systems with
respect to specific definition of non-interference. In general, component-based
frameworks allow for the construction of complex systems by composition of
atomic components with communication and coordination operators. That is,
systems are obtained from unitary atomic components that can be independently
deployed and composed with other components. Component-based frameworks
are usually well adopted for managing key issues for functional design includ-
ing heterogeneity of components, distribution aspects, performance issues, etc.
Nonetheless, the use of component-based frameworks is also beneficial for estab-
lishing information flow security. Particularly, the explicit system architecture
allows tracking easily intra and inter-components information flow.

The secBIP framework is built as an extension of the BIP [12] framework
encompassing information flow security. secBIP allows to create systems that are
secure by construction if certain local conditions hold for composed components.
The secBIP extension includes specific annotations for classification of both data
and events. Thanks to the explicit use of composition operators in BIP, the
information flow is easily tracked within models and security requirements can
be established in a compositional manner, first locally, by checking the behavior
of atomic components and then globally, by checking the communication and
coordination inter-components.

Information flow security has been traditionally studied separately for
language-based models [61,64] (see also the survey [60]) and trace-based models
[51,52,67,48]. While the former mostly focus on verification of data-flow security
properties in programming languages, the latter is treating security in event-
based systems. In secBIP, we achieve a useful combination between both aspects,
data-flow and event-flow security, in a single semantics model. We introduce and
distinguish two types of non-interference, respectively event non-interference and

126 J. Combaz et al.

data non-interference. For events, non-interference states that the observation of
public events should not allow to deduce any information about the occurrence
of secret events. For data, it states that there is no leakage of secret data into
public ones.

The rest of our contribution is structured as follows. First, we introduce
the security extension and we provide the two associated definitions of non-
interference, respectively for data flows and event flows. Next, we formally es-
tablish non-interference based on unwinding relations and we provide sufficient
conditions that facilitate its automatic verification. Finally we illustrate the ap-
proach on a use-case, and we conclude.

Information Flow Security. We explore information flow policies [34,13,39]
with focus on the non-interference property. In order to track information we
adopt the classification technique and we define a classification policy where
we annotate the information by assigning security levels to different parts of
secBIP model (data variables, ports and interactions). The policy describes how
information can flow from one classification with respect to the other.

As an example, we can classify public information as a Low (L) security level
and secret (confidential) information as High (H) security level. Intuitively High
security level is more restrictive than Low security level and we denote it by
L ⊆ H . In general, security levels are elements of a security domain, defined as
follows:

Definition 1 (security domain). A security domain is a lattice of the form
〈S, ⊆, ∪, ∩〉 where:

– S is a finite set of security levels.
– ⊆ is a partial order “can flow to” on S that indicates that information can

flow from one security level to an equal or a more restrictive one.
– ∪ is a “join” operator for any two levels in S and that represents the upper

bound of them.
– ∩ is a “meet” operator for any two levels in S and that represents the lower

bound of them.

As an example we consider the set S = {L, M1, M2, H} of security levels that
are governed by the “can flow to” relation L ⊆ M1, L ⊆ M2, M1 ⊆ H and
M2 ⊆ H . M1 and M2 are incomparable and we note M1 � M2 and M1 � M2.
This security domain is graphically illustrated in figure 13.

We briefly recall the definition of BIP models. For a detailed description the
reader can refer to [12]. We assume that the system is represented by a set of
atomic components Bi, 1 ≤ i ≤ n, interacting through multiparty interactions
(i.e. synchronizations between two or more components). Each component Bi

defines an interface consisting of communication ports associated with variables,
and its behavior is given by an automaton whose transitions τ are labelled by
ports, are guarded by boolean expressions gτ on variables, and updates values
of variables according to functions fτ . An interaction a between components Bi,

Correctness of Service Components and Service Component Ensembles 127

H

M2

L

M1

Fig. 13. Security domain

i ∈ I ⊆ {1, . . . , n}, is defined as a subset of ports such that it has at most one
port of each components, i.e. a = {pi}i∈I . Moreover, an interaction a can be
guarded by a boolean condition Ga on the variables associated to its ports, and
may assign new values to these variables according to a function Fa. Given a set
of interactions γ, we denote by C = γ(B1, . . . Bn) the composition of B1, . . . ,
Bn with respect to interactions γ. In the composite component C, transitions of
atomic components Bi are executed synchronously according to interactions γ.
That is, if for an interaction a = {pi}i∈I of γ the guard Ga evaluates to true,
and if all components Bi enable transitions τi labelled by pi, then a can execute
if C which corresponds to the synchronous execution of all transitions τi after
execution of transfer function Fa. A detailed formalization of the model provided
in [12]. In the following, we write X (resp. P) for the set of all variables (resp.
ports) defined in all atomic components (Bi)i=1,n of C. We also write QC (resp.
Q0

C) for the set of states of C (resp. initial states of C). A security assignment
for C with respect to a security domain 〈S, ⊆, ∪, ∩〉 assigns security levels to
variables, ports and interactions in a consistent way. It is defined as follows.

Definition 2 (security assignment). A security assignment for component
C is a mapping σ : X ∪ P ∪ γ → S that associates security levels to variables,
ports and interactions such that the security levels of ports match the security
levels of interactions, that is, for all a ∈ γ and for all p ∈ a it holds σ(p) = σ(a).

In atomic components, the security levels considered for ports and variables allow
to track intra-component information flows and control the intermediate com-
putation steps. Moreover, inter-components communication, that is, interactions
with data exchange, are tracked by the security levels assigned to interactions.

Let σ be a security assignment for C.
For a security level s ∈ S, we define γ ↓σ

s the restriction of γ to interactions
with security level at most s that is formally, γ ↓σ

s = {a ∈ γ | σ(a) ⊆ s}.
For a security level s ∈ S, we define w|σs the projection of a trace w ∈ γ∗

to interactions with security level lower or equal to s. Formally, the projection
is recursively defined on traces as ε|σs = ε, (aw)|σs = a(w|σs) if σ(a) ⊆ s and
(aw)|σs = w|σs if σ(a) �⊆ s. The projection operator |σs is naturally lifted to sets
of traces W by taking W |σs = {w|σs | w ∈ W}.

128 J. Combaz et al.

For a security level s ∈ S, we define the equivalence ≈σ
s on states of C. Two

states q1, q2 are equivalent, denoted by q1 ≈σ
s q2 iff (1) they coincide on variables

having security levels at most s and (2) they coincide on control locations having
outgoing transitions labeled with ports with security level at most s.

We are now ready to define the two notions of non-interference.

Definition 3 (event non-interference). The security assignment σ ensures
event non-interference of γ(B1, . . . , Bn) at security level s iff,

∀q0 ∈ Q0
C : traces(γ(B1, . . . , Bn), q0)|σs = traces((γ ↓σ

s)(B1, . . . , Bn), q0),

where traces(γ(B1, . . . , Bn)) denotes the set of execution traces of the system
γ(B1, . . . , Bn) (see [28] for a formal definition of traces of BIP systems).

Event non-interference ensures isolation/security at interaction level. The defi-
nition excludes the possibility to gain any relevant information about the occur-
rences of interactions (events) with strictly greater (or incomparable) levels than
s, from the exclusive observation of occurrences of interactions with levels lower
or equal to s. That is, an external observer is not able to distinguish between the
case where such higher interactions are not observable on execution traces and
the case these interactions have been actually statically removed from the com-
position. This definition is very close to Rushby’s [59] definition for transitive
non-interference. But, let us remark that event non-interference is not concerned
about the protection of data.

L

L

H

H

L

comp3

comp2comp1

l1

l2

l3
l5

b2

c1

a2

c2

b2

d2

a1

b1

a2

l6

l7

d3

b3
b3

b1

c1

a1

d2

c2
d3

l4

Fig. 14. Example for event non-interference

Example 1. Figure 14 presents a simple illustrative example for event non-
interference. The model consists of three atomic components compi,i=1,2,3. Dif-
ferent security levels have been assigned to ports and interactions: comp1 is a low
security component, comp2 is a high security component, and comp3 is mixed se-
curity component. The security levels are represented by dashed squares related
to interactions, internal ports and variables. As a convention, we apply high (H)

Correctness of Service Components and Service Component Ensembles 129

level for secret data and interactions and low(L) level for public ones. The set
of traces is represented by the automaton in figure 15 (a). The set of projected
execution traces at security level L is represented by the automaton depicted in
figure 15 (b). This set is equal to the set of traces obtained by restricted com-
position, that is, using interaction with security level at most L and depicted in
figure 15 (c). Therefore, this example satisfies the event non-interference condi-
tion at level L.

a1a2

b1c2

a1a2

d2d3

b2b3

l3l4l7

l1l4l6

(a)

l1l4l7

l3l4l6 l2l5l7

l2l5l6

a1a2

b1c2

a1a2

l3l4l7

l1l4l6

(b)

l1l4l7

l3l4l6 l2l5l7

l2l5l6
τc1

c1 c1

c1

b1c2b1c2
d2d3

τ

τ

(c)

a1a2

b1c2

l1l4l6

l3l4l6

l2l5l6

c1

Fig. 15. Sets of traces represented as automata

Definition 4 (data non-interference). The security assignment σ ensures
data non-interference of C = γ(B1, . . . , Bn) at security level s iff,

∀q1, q2 ∈ Q0
C : q1 ≈σ

s q2 ⇒
∀w1 ∈ traces(C, q1), w2 ∈ traces(C, q2) : w1|σs = w2|σs ⇒

∀q′1, q
′
2 ∈ QC : q1

w1−−→
C

q′1 ∧ q2
w2−−→
C

q′2 ⇒ q′1 ≈σ
s q′2

Data non-interference provides isolation/security at data level. The definition
ensures that, all states reached from initially indistinguishable states at secu-
rity level s, by execution of arbitrary but identical traces whenever projected at
level s, are also indistinguishable at level s. That means that observation of all
variables and interactions with level s or lower excludes any gain of relevant in-
formation about variables at higher (or incomparable) level than s. Compared to

130 J. Combaz et al.

event non-interference, data non-interference is a stronger property that consid-
ers the system’s global states (local states and valuation of variables) and focus
on their equivalence along identical execution traces (at some security level).

Example 2. Figure 16 presents an extension with data variables of the previous
example from figure 14. We consider the following two traces w1 = 〈a1a2,b2b3,
c2b1, d2d3, c1, a2a1〉 and w2 = 〈a1a2, b2b3, c2b1, c1, a2a1〉 that start from the initial
state ((l1, u = 0, v = 0), (l4, x = 0, y = 0), (l6, z = 0, w = 0)). Although the
projected traces at level L are equal, that is, w1|σL = w2|σL = 〈a1a2, c2b1, c1, a1a2〉,
the reached states by w1 and w2 are different, respectively ((l2, u = 4, v =
2), (l5, x = 3, y = 2), (l6, z = 1, w = 1)) and ((l2, u = 4, v = 2), (l5, x = 2, y =
2), (l7, z = 1, w = 0)) and moreover non-equivalent at low level L. Hence, this
example is not data non-interferent at level L.

L

L

H

H

w: low
z: highL

u: low
v: high

y=y+1

u=0
v=0

[y>0]

x: low
y: high

u=u+2

x=x+1

y=0
x=0

v=v+1

y=y+x
v=2v w=w+1x=x+1

comp1
comp3

comp2

z=x

z=0
w=0

l1

l2

l3

l4

l5

b2

a2 b2a1

b1

c2
c1

d2

c1

c2

a1

b3

d3
b1

d2

d3
b3a2

l6

l7

Fig. 16. Example for data non-interference

Definition 5 (secure component). A security assignment σ is secure for a
component γ(B1, . . . , Bn) iff it ensures both event and data non-interference, at
all security levels s ∈ S.

Verification. The verification technique of non-interference proposed for
secBIP models is using the so-called unwinding conditions. This technique was
first introduced by Goguen and Meseguer for the verification of transitive non-
interference for deterministic systems [39]. The unwinding approach reduces the
verification of information flow security to the existence of certain unwinding
relation. This relation is usually an equivalence relation that respects some ad-
ditional properties on atomic execution steps, which are shown sufficient to imply
non-interference. In the case of secBIP, the additional properties are formulated
in terms of individual interactions/events and therefore easier to handle.

Let C = γ(B1, . . . , Bn) be a composite component and let σ be a security
assignment for C.

Correctness of Service Components and Service Component Ensembles 131

Definition 6 (unwinding relation). An equivalence ∼s on states of C is
called an unwinding relation for σ at security level s iff the two following condi-
tions hold:

1. local consistency
∀q, q′ ∈ QC : ∀a ∈ γ : q

a−→
C

q′ ⇒ σ(a) ⊆ s ∨ q ∼s q′

2. output and step consistency
∀q1, q2, q

′
1 ∈ QC : ∀a ∈ γ :

q1 ∼s q2 ∧ q1
a−→
C

q′1 ∧ σ(a) ⊆ s ⇒
∃q′2 ∈ QC : q2

a−→
C

q′2∧
∀q′2 ∈ QC : q2

a−→
C

q′2 ⇒ q′1 ∼s q′2

The existence of unwinding relations is tightly related to non-interference.
The following two theorems formalize this relation for the two types of non-
interference defined. Let C be a composite component and σ a security assign-
ment.

Theorem 1 (event non-interference). If an unwinding relation ∼s exists
for the security assignment σ at security level s, then σ ensures event non-
interference of C at level s.

Theorem 2 (data non-interference). If the equivalence relation ≈σ
s is also

an unwinding relation for the security assignment σ at security level s, then σ
ensures data non-interference of C at level s.

The two theorems above can be used to derive a practical verification method
of non-interference using unwinding. We provide hereafter sufficient syntactic
conditions ensuring that indeed the unwinding relations ∼s and ≈s exist on the
system states. These conditions aim to efficiently simplify the verification and
reduce it to local constrains check on both transitions (inter-component verifi-
cation) and interactions (intra-component verification). Especially, they give an
easy way to automate the verification.

Definition 7 (security conditions). Let C = γ(B1, . . . , Bn) be a compos-
ite component and let σ be a security assignment. We say that C satisfies the
security conditions for security assignment σ iff:

(i) the security assignment of ports, in every atomic component Bi is locally
consistent, that is:

• for every pair of causal transitions:

∀τ1, τ2 ∈ Ti : τ1 = �1
p1−→ �2, τ2 = �2

p2−→ �3 ⇒
�1 �= �2 ⇒ σ(p1) ⊆ σ(p2)

• for every pair of conflicting transitions:

∀τ1, τ2 ∈ Ti : τ1 = �1
p1−→ �2, τ2 = �1

p2−→ �3 ⇒
�1 �= �2 ⇒ σ(p1) ⊆ σ(p2)

132 J. Combaz et al.

(ii) all assignments x := e occurring in transitions within atomic components
and interactions are sequential consistent, in the classical sense:

∀y ∈ use(e) : σ(y) ⊆ σ(x),

where use(e) denotes the set of variables involved in an expression e

(iii) variables are consistently used and assigned in transitions and interactions,
that is,

∀τ ∈ ∪n
i=1Ti ∀x, y ∈ X : x ∈ def(fτ), y ∈ use(gτ) ⇒

σ(y) ⊆ σ(pτ) ⊆ σ(x)
∀a ∈ γ ∀x, y ∈ X : x ∈ def(Fa), y ∈ use(Ga) ⇒

σ(y) ⊆ σ(a) ⊆ σ(x),

where def(F) denotes the set of variables modified by a function F .

(iv) all atomic components Bi are port deterministic:

∀τ1, τ2 ∈ Ti : τ1 = �1
p−→ �2, τ2 = �1

p−→ �3 ⇒
(gτ1 ∧ gτ2) is unsatisfiable

The first family of conditions (i) is similar to Accorsi’s conditions [5] for ex-
cluding causal and conflicting places for Petri net transitions having different
security levels. Similar conditions have been considered in [36,38] and lead to
more specific definitions of non-interferences and bisimulations on annotated
Petri nets. The second condition (ii) represents the classical condition needed
to avoid information leakage in sequential assignments. The third condition (iii)
tackles covert channels issues. Indeed, (iii) enforces the security levels of the data
flows which have to be consistent with security levels of the ports or interactions
(e.g., no low level data has to be updated on a high level port or interaction).
Such that, observations of public data would not reveal any secret information.
Finally, condition (iv) enforces deterministic behavior on atomic components.

The relation between the syntactic security conditions and the unwinding
relations is precisely captured by the following theorem.

Theorem 3 (unwinding theorem). Whenever the security conditions hold,
the equivalence relation ≈σ

s is an unwinding relation for the security assignment
σ, at any security level s.

The following corollary is the immediate consequence of theorems 1, 2 and 3.

Corollary 1. Whenever the security conditions hold, the security assignment σ
is secure for the component C.

Application. We illustrate the secBIP framework to handle information flow
security issues for a typical example, the web service reservation system intro-
duced in [41]. A businessman, living in France, plans to go to Berlin for a private

Correctness of Service Components and Service Component Ensembles 133

and secret mission. To organize his travel, he uses an intelligent web service who
contacts two travel agencies: The first agency, AgencyA, arranges flights in Eu-
rope and the second agency, AgencyB, arranges flights exclusively to Germany.
The reservation service obtains in return specific flight information and their
corresponding prices and chooses the flight that is more convenient for him.

In this example, there are two types of interference that can occur, (1) data-
interference since learning the flight price may reveal the flight destination and
(2) event interference, since observing the interaction with AgencyB can reveal
the destination as well. Thus, to keep the mission private, the flight prices and
interactions with AgencyB have to be kept confidential.

The modeling of the system using secBIP involves two main distinct steps:
first, functional requirements modeling reflecting the system behavior, and sec-
ond, security annotations enforcing the desired security policy. The model of the
system has four components denoted: Travel A and Travel B who are instances
from the same component and correspond respectively to AgencyA and Agen-
cyB, and components Reservation and Payment. To avoid figure 17 cluttering,
we did not represent the interactions with Travel A component. Search parame-
ters are supplied by a user through the Reservation component ports dests and
dates to which we associate respectively variables (from, to) and dates. Next,
through search interaction, Reservation component contacts Travel B component
to search for available flights and obtains in return a list L of specific flights with
their corresponding prices. Thereafter, Reservation component selects a ticket ti
from the list L and requests the Payment component to perform the payment.

All the search parameters from, to, dates, as well as the flights list L are set
to low since users are not identified while sending these queries. Other sensitive
data like the selected flight ti, the price variable p and the payment parameters
(identity id, credit card variable cna and code number cno) are set to high.
Internal ports dests and dates as well as search, fly list, accept interactions are
set to low since these interactions (events) do not reveal any information about
the client private trip. However, the select f ly interaction must be set to high
since the observation of the selection event from AgencyB allow to deduce the
client destination. In the case of a selected flight from AgencyA, the select f ly
interaction could be set to low since, in this case, the destination could not be
deduced just from the event occurrence.

We recall that any system can be proven non-interferent iff it satisfies the
syntactic security conditions from definition 7. Indeed, these conditions hold for
the system model depicted in Figure 17. In particular, it can be easily checked
that all assignments occurring in transitions within atomic component as well
as within interactions are sequentially consistent. For example, at the select f ly
interaction we assign a low level security item from the flight list L to a high
security level variable ti, formally ti = L[i]. Besides, the security levels assign-
ments to ports exclude inconsistencies due to causal and conflicting transitions,
in all atomic components.

134 J. Combaz et al.

nc
a,

nc
o,

pr
ic

e,
id

 :
H

ig
h

re
fu

se
d

pa
y_

re
qu

es
t

tr
ea

t

id
nc
a,
nc
o,
pr
ic
e

ap
pr

ov
ed

pa
y

P
a
ym

en
t

L

L
L

L
L

H
H

H
H

H
H

H

fr
om

,to
,d

at
es

,L
,L

[i
]

: L
ow

,id
,n

ca
,n

co
,p

ri
ce

 :
H

ig
h

H
L

L
H

H

ne
w

_p
ay

_r
eq

ue
st

re
fu

se
d

ye
s pa

y

fl
y_

lis
t

se
le

ct
_f

ly
pa

y_
re

qu
es

t
ap

pr
ov

ed
pa

y

de
lv

_t
ic

ke
t

L
pr
ic
e

no

nc
a,
nc
o,
pr
ic
e

id

cancel

pa
y_

re
qu

es
t

re
fu

se
d

ap
pr

ov
ed

se
ar

ch

fr
om

,t
o

da
te
s

da
te

s

de
st

s

ca
nc

el

treat

pa
y

ap
pr

ov
ed

re
fu

se
d

pa
y_

re
qu

es
t

de
lv

_t
ic

ke
t

T
ra

ve
l_
A

se
ar

ch
de

lv
_t

ic
ke

t
se

le
ct

_f
ly

cancel treat

tr
ea

t
fl

y_
lis

t
ac

ce
pt

se
le

ct
_f

ly

de
lv

_t
ic

ke
t

se
ar

ch

T
ra

ve
l_
B

ca
nc

el

fl
y_

lis
t

ac
ce

pt

se
le

ct
_f

ly
ac

ce
pt

fl
y_

lis
t

se
ar

ch

R
es

er
va

ti
on

ne
w

_p
ay

_r
eq

ue
st

de
st

s
da

te
s

no
ye

s

L
,L

[i
]

: L
ow

l 1
l 2

l 4
l 3

t i

l 9

l 1
2

l 1
4

l 1
0

l 1
1

ac
ce

pt
l 1

3

t i

l 4
l 5

l 6
l 7

l 8
t i

l 3l 2l 1

l 3
l 2

l 1
l 5 l 6

l 4 l 7

t i

t i
t i

:
H

ig
h

Fig. 17. Reservation Web Service composition

Correctness of Service Components and Service Component Ensembles 135

Conclusion. We presented a model driven security framework to secure
component-based systems. We formally defined two types of non-interference,
respectively event and data non-interference. We provided a set of sufficient
syntactic conditions formulated to simplify non-interference verification. These
conditions are extensions of security typed language rules applied to our model.
The use of our framework has been demonstrated to secure a web service appli-
cation.

3 Alternative Approaches to Ensure System Correctness

In addition to verification techniques developed for BIP models and detailed
in the previous section, we present here complementary methods for checking
system correctness. We developed a fully integrated Java-based framework in
which it is possible to perform in concert control synthesis and formal verifica-
tion (Section 3.1). Security is also addressed in Section 3.2 via a framework for
the expression and the enforcement of policies in systems. Finally, Section 3.3
gives an overview of the work we made towards the verification of the code
implementing system components.

3.1 Quantitative Synthesis and Verification Framework

We developed a framework that integrates various recent and more classic algo-
rithms for quantitative verification and synthesis. To our best knowledge, this
is the first time that verification and synthesis work in tandem in the same
framework. Figure 18 gives a general overview of our framework.

At the core lies a Java Embedded Domain Specific Language for describing
continuous models. We provide, hidden from the user, means for deriving a
discretized from the continuous model. The user has full access to this derived
model and can use it in his own programs. Our framework provides several
algorithms to effectively find optimal controllers for the discretized model. We
also provide several ways to use these discretized controllers as controllers in the
original continuous model.

In addition we provide two means of controller validation and verification.
First, Probabilistic Model Checking checks the performance of the continuous
controller against a discretized model. This discretized model does not have to be
(and should not be) the same as the discretized model from which we generated
the controller. Instead, we should use different parameters for discretization as
well as different parameters in the model itself to check the model for robust-
ness and over-fitting. Second, we have implemented Bayesian Stochastic Model
checking which allows to validate and verify the controller in a continuous en-
vironment. This allows us to check the controller against models with different
parameters, as well as to check errors induced by the discretization.

For an example of a controller our system generates and validates, consider
an Adaptive Cruise Control (ACC) system. ACCs are now built into luxury cars
and are responsible for automatically maintaining a fixed distance to the car

136 J. Combaz et al.

Continuous Model

Discrete Model

Discrete Controller

Continuous Controller

Real World

Prob. MC Stoch. MC

Verification

Fig. 18. Framework Overview

in front of it. Such a system senses (1) the current distance between the car it
equips and the car in front of it, and (2) their relative velocity, i.e,. by calculating
how much the distance shrinks or grows per second. On the one hand, the goal of
this system is to reach and maintain the desired distance quickly. On the other
hand, the controller is also responsible for pleasant driving. That is, it should
not unnecessarily or suddenly accelerate or jerk (where jerk is the change of
acceleration over time). There is an obvious trade-off between these two criteria,
and our framework allows study of trade-offs like these. An additional concern
is that the relative velocity is not exclusively under the control of the system.
Instead, since we do not know and cannot predict the other driver’s intentions,
we assume that she is going to behave randomly.

We support various algorithms for finding such optimal controllers, and we
also support analyzing the controller we generate. The analysis is necessary for
the following reasons.

1. Controllers are generated under certain assumptions; we need to know what
happens if these assumptions are not met by the real world.

2. Controllers are optimized with regard to a certain set of criteria; we might
be interested in other criteria as well.

3. Continuous state space makes it necessary that we use discretization tech-
niques; we have to study the influence discretization has on the controller.

4. Behavior of the environment is modelled as probabilistic; we want to know
the worst-case behavior of the controller under all possible behaviors of the
environment.

Formally, we use Markov Decision Processes (MDPs) as models. A Markov De-
cision Process is a probabilistic model with a finite set of states S. In each

Correctness of Service Components and Service Component Ensembles 137

state, there is at least one active action from the finite set of possible actions
A. Function α : S → 2A \ {∅}, defines what actions are active in what state.
For each pair of states and active actions, there is a probability distribution
defining how likely it is that we go to some state from a state with that action,
i.e., p : S × A → D(S). Lastly, we want to evaluate the costs/rewards of each
decision. To that end, we define a vector of functions R = (S → R)n. A MDP is
then a tuple M = (S, A, α, p, R).

Specification. Our framework supports various input formats defining MDPs.
Here, we will concentrate on a novel format based on Java programs. In this
format, models inherit from a class Model, with a few abstract methods. Before
we define the exact semantics of the abstract model, we will consider the ACC
model as an example.

public class ACC extends Model <ACC > {
// Distance from car in front
@CVAR(min=0, max=100)
public double distance ;

// Relative velocity
@CVAR(min=-14, max=14)
public double velocity ;

// Distance we desire
public double desiredDistance = 50;

// Updates per second
public int ticks = 10;

@Override
public void next(double acceleration , ACC target) {

double random_acceleration = normal.sample (0, 4.0);
double nextVelocity = velocity +

(acceleration + random_acceleration) / ticks;
double nextDistance = distance -

(0.5 * velocity + 0.5 * nextVelocity) / ticks;
target.velocity = nextVelocity;
target.distance = nextDistance;

}

@Override
public double [] rewards (double acceleration) {

double [] rewards = new double [2];
rewards [0] = -Math.abs(desiredDistance - distance);
rewards [1] = -acceleration* acceleration;
return rewards ;

}
}

A few features here are noteworthy. Variables that are part of the model are
annotated with @CVAR. A variable should be part of a model if (1) it influences
the probability distribution and (2) it changes over time. In our case, variables
distance and velocity are part of the model, while desiredDistance and
ticks are not part of the model (because they are constant). Method void
next(double acceleration, ACC target) defines a distribution over the next
states, given the current state. We first sample a random acceleration for the
other car, with mean zero and standard deviation 4. Next, we calculate the

138 J. Combaz et al.

velocity of the next state, based on the current velocity, the random acceleration
and the acceleration we got as input. Lastly, based on old velocity and distance
and on the new velocity, we calculate the distance of the next state. Note that
our framework supports both loops and branching, although they are not present
in this example. Additionally, we define the rewards the controller gets for its
decisions in method double[] rewards(double acceleration). In the case
of ACC, it receives a cost (negative reward) depending on how far the current
distance is from the desired distance (rewards[0]), and a cost depending on how
much it accelerates (rewards[1]). Note that these two define exactly the trade-
off mentioned before. On the one hand, we want to minimize both rewards[0]
and rewards[1], but applying less acceleration will lead to a greater deviation
from our desired distance. On the other hand, being stricter about staying close
to the desired distance requires more acceleration.

A class like ACC (defined above) by itself defines a continuous Markov Decision
Process, i.e., a MDP with infinite sets of states and actions. It describes how a
system evolves over time. For example, if we are in a state in which distance
is 50 and velocity is -4, then we first have to draw a random sample from a
normal distribution to determine how much the car in front of us accelerates or
brakes. In our example, we assume that we draw a zero. Therefore, only our own
acceleration counts. Since we are already at the desired distance, we can assume
that a sensible controller will brake to catch the negative relative velocity. Let
us assume that the controller gives us an acceleration of 4m/s2. Then the next
velocity is going to be −4 + (4 + 0)/10 = −3.6. The next distance is defined by
the current distance plus the average of old and new distance, i.e. 50 + (−3.6 +
−4.0)/2/10 = 49.62 meters. So now we are in state (49.62, −3.6). Notice how
we left the desired distance, but we also decreased our velocity. Presumable, the
controller will continue in this way until we have removed all our access velocity,
producing more points on the way (e.g., (49.28, −3.2), (48.89, −2.8), . . . , (48, 0).
At this point, the controller will continue braking so that the other car gains
distance again, e.g., we will now see points (48.02, 0.4), (48.08, 0.8) After that
(at around distance 49m) we might see acceleration again such that we reach
relative velocity 0 once we reach the desired distance. Note that in this example
we assumed that the car in front of the controlled car will maintain its own
velocity. In the real model, though, the controller has to cope with the other
car’s random behavior.

In the trace above, the controller gets rewards at each instant. For exam-
ple, in the transition between the second two points (from (49.28, −3.2) to
(48.89, −2.8)), the controller gets two scores: 1. 0.72 for the deviation from the
desired distance, and 2. −9 for the applied acceleration. We will discuss later
how we combine these instantaneous rewards to rewards over infinite traces and
how to combine rewards over traces to rewards for controllers (which define
probability measures of infinite sets of infinite traces).

Synthesis. In general, finding perfect controllers for these continuous, proba-
bilistic sequential models is impossible. We still have to deal with them since
they are very useful for modelling real world physics. Further, once we decide

Correctness of Service Components and Service Component Ensembles 139

what action to take in what state, we can use a model like the above for simula-
tion and continuous analysis6. In fact, we will use models like ACC for Bayesian
Model Checking of synthesized controllers later.

Discretization. To fit such a continuous, infinite state model into our framework,
(i.e., finite set of states and actions), we employ sigma point sampling [23] and
linear interpolation. This is a non-trivial process, but happens transparently for
the user. All that is necessary for him is to add an annotated class like in the
following.

@Discretize(model=ACC.class)
public static class DModel extends ACC {};

DModel is now a discretized version of ACC and describes a MDP as formally
defined above. The specific details of discretization (like number of discrete states
used) and sampling are configurable. Note that discretized classes like this one
are not part of the hidden internals of the framework but are fully accessible to
the engineer.

Algorithms. We support various algorithms for finding optimal controllers. They
differ in how they treat the sequence of rewards the evolution of the process
presents. Let r1, r2, r3 . . . be a sequence of vectors. Then the aggregated reward
is defined in one of the following ways.

– Total Sum: r1 + r2 + r3 + . . .
– Discounted: r1 + λr2 + λ2r3 . . .
– Average Payoff: limn→∞ 1/n

∑n
i=0 ri

When we fix a controller, a model gives us a vector of expected rewards for
each state of the model. Together with a distribution over the states, these
rewards can be combined into a single vector, which serves as an overall quality
measure. For two different controllers with rewards r1, r2 ∈ Rn, we say that the
controller generating r1 is better than the controller generating r2 if r1 > r2. In
a recent publications [37], the authors showed that all possible quality measures
form a convex set for Total Sum and Discounted aggregators. This allows us to
effectively approximate the shape of all possible quality measures in form of a
Pareto Curve. One example of such a curve is shown in Figure 19(a). The curve
clearly shows the trade-offs between the two rewards. An engineer might select
a region for further refinement, or ask us to analyze all controllers in a certain
region of the curve (all of this is supported by our framework). From the extreme
right of this curve we can conclude that even small reductions in the importance
of the deviation from distance over time leads to massive decreases in applied
acceleration in this area. Analogously, the left extreme of the curve shows us that
that small reductions in applied acceleration lead to big gains in time spend far
away from the desired distance. Using these conclusions, an engineer can pick a
quality measure and therefore a controller he desires.
6 Note that this is indeed the way simulations are usually written

140 J. Combaz et al.

We show the actions of a controller generated with weight (0.9788, 0.0211)
by our framework in Plot 20(a). On the x-axis we present the distance to the car
in front, while we present the relative velocity on the y-axis. The color indicates
the applied acceleration. For example, where the distance is as desired (50 m),
and the relative velocity is 0, no further acceleration is applied. Going through
this point is a diagonal going from roughly (35, -15) to (65, 15) where applied
acceleration equals zero. In this area, the controller judges the relative velocity
just right to reach the desired distance quickly enough. As we move horizontally
outwards from this narrow band, the acceleration the controller applies rises
sharply. Especially, as either distance or relative velocity decreases, the controller
increases the applied acceleration.

Plot 19(b) shows one trace of the interplay between controller and environ-
ment as it happens in the continuous environment (i.e., we run the program
defined above as it is). It starts out in position (50,10), i.e., where the distance
is as desired but we are closing in too fast. As we follow the trace, we see that
the car equipped with an ACC gains on the car in front (as its velocity is greater
than that of the other car). The color of the trace shows the applied braking
force in each particular moment. As we can see, the controller brakes the car
harshly until he reaches a relative velocity of -3 m/s. At this point it slowly
decreases the de-acceleration until a relative velocity of about -5 m/s is reached.
It now maintains speed until we reach a distance of about 47 m (i.e., the car
is 3 meters too close). Would the controller maintain speed here, then it would
overshoot the desired distance. Instead, it gently accelerates the car again until
it reaches a relative velocity of 0 and is very close to the desired distance. The
“ball” region around the desired distance and relative velocity 0 shows how the
controller reacts to the random behavior of the car in front.

In Plot 20(b), we present a controller generated with weight (0.9588, 0.0411).
In comparison to the weight above, we have decreased the importance of
rewards[0], and increased the importance of rewards[1]. This decreases the
importance of the distance to the other car and increases the importance of not
applying too much acceleration. This has the effect of growing the band where
relative velocity is judged adequate, and also moving the area of increased ac-
celeration further out.

These two examples show that the weight chosen when optimizing a controller
can have a strong influence on the one hand, and that choosing weights is not
intuitive on the other hand, especially as the number of dimension increases.
We therefore consider the easy availability of Pareto Curves an asset of our
framework.

Verification. Once a controller has been selected, we can turn to verification
and validation. To that end, we support two systems that complement each
other: (1) a classical probabilistic model checking algorithm, and (2) a Bayesian
probabilistic model checking algorithm.

Correctness of Service Components and Service Component Ensembles 141

(a) Pareto Curve of ACC

(b) Trace of one run

Fig. 19. Pareto curve and trace of controller

142 J. Combaz et al.

(a) Controller Plot with weight (0.9788, 0.0211)

(b) Plot of Controller with weight (0.9588, 0.0411)

Fig. 20. Two controller plots for different weights

Correctness of Service Components and Service Component Ensembles 143

Classical Probabilistic Model Checking. We use both systems to judge how the
controller behaves if assumptions we made about the environment are not met
and how the controller behaves with regard to properties that were not used for
its construction. As an example of the latter, we can consider the stability of the
system. In control theory, stability is the property of a system to reach a bounded
set of states and never leave it. In our case, we define this set as a bound on the
deviation of the distance of the two cars from the desired distance. We can easily
state a desired bounded set of states via PCTL formula: P=?[G(|d − 50| < c)],
where d denotes the distance between the two cars and c is a constant. This
formally asks “what is the probability of from now on always (denoted by G)
seeing states whose deviation from 50 meters is less than c. Our framework takes
this formula as input and calculates the probability of being in a stable (i.e., in
a state from which only other stable states can be reached) for each state. In
Plot 21(a) we plot the probability of being in a stable state, where we arbitrarily
judge a state stable if c = 5. Note, first, that any state with a distance not
within 5 meters of the desired distance cannot be stable. Note second, that as
the relative velocity becomes more extreme, the probability of a state being
stable goes towards zero. At the very extreme ends, the controller is unable to
maintain control over the relative velocity in a way that guarantees that the
distance will stay within 5 meters of the desired distance. Closer to the area
where relative velocity is 0, the probability lies between 0 and 1. The reason
that there is no sharp threshold between probability 0 and 1 lies in the random
acceleration of the car in front. With a certain probability, the car in front will
contribute to moving the distance towards the desired distance (braking where
the controller needs to accelerate and vice versa). With a certain probability, the
car will work against our controller (accelerating where we need to accelerate,
braking where the controllers needs to brake as well).

Judging the probability of reaching a stable state is an additional task. This
can be easily done in our framework by checking the controller against formula
P =?(FP=1[G(|d − 50| < c))). Verbally, this means “what is the probability of
reaching a state such that the state is stable almost surely?”. As it turns out,
the probability is 1 for all states of our model, i.e., under the given assumptions
the controller is able to reach and maintain a low deviation from the desired
distance to the other car almost surely.

We can now modify certain parameters of the system, and judge its behavior
under these modified assumptions. For example, consider very rainy weather,
where we assume that acceleration only works at 70% efficiency of what the
controller expects7. In this case, the probability of a state being stable is only
about at most 40% (see Plot 21(b))8.

Lastly, our framework also allows us to easily turn the tables around and
choose actions for the car in front. In this new model, the braking force applied

7 This assumes that we use the same controller in bad weather, and that we cannot
compensate

8 Note that there are techniques for dealing with uncertain parameters(e.g., Robust
Markov Decision Processes

144 J. Combaz et al.

(a) Probability of being in a stable state

(b) Probability of being in a stable state with 70% acceleration effectiveness

Fig. 21. Statibilty of the controller

Correctness of Service Components and Service Component Ensembles 145

by the ACC is determined by a controller we previously generated, and we now
synthesize worst-case accelerations for the car in front. This is easily achieved
by replacing the function next of the Java class ACC (defined previously) by the
following implementation.

public void next(double acceleration2 , ACC target) {
double acceleration = controller.get(this);
double nextVelocity = velocity +

(accleration + acceleration2) / ticks;
double nextDistance = distance -

(0.5 * velocity + 0.5 * nextVelocity) / ticks;
target.velocity = nextVelocity;
target.distance = nextDistance;

}

Now we can apply the very same techniques we used above to compute the
worst-case probability of a state being stable.

Bayesian Probabilistic Model Checking. As we have noted before, the models
described in Java lend themselves directly to continuous state space simulation.
In general, we cannot check PCTL formulas since they may express properties
over infinite runs. Instead we have to give time-bound formulas. As an example,
we consider a formula expressing the property “What is the probability that we
reach a state inside 5 meters around the desired distance in 1000 steps (where 1
step is 10 milliseconds long), and stay inside this area for the next 1000 steps.”
Bayesian probabilistic model checking allows us to make statements like “given
the set of samples generated, the probability that this formula is true lies in the
interval [a, b] with probability c”. In this framework, the width of the interval
b − a and confidence c are configurable. In our case it turns out, that with 95%
confidence the formula holds with probability [0.98, 1.00] from some randomly
generated state. We assume that the remaining cases will require longer runs.
For comparison, we decreased the efficiency of the applied acceleration to 70%.
In this case, we get an interval [0.971297, 0.991297], which shows us that the
controller performs well even under adverse conditions.

Conclusion. We believe that our framework is the first time that verification
and synthesis are present in a loop in the same tool. It allows engineers to
(1) quickly model probabilistic environments for controllers in a language they
know, (2) study the trade-offs their model possesses and pick a controller that
is to their liking, (3) study the robustness of their controller with respect to
environment assumptions, (4) study the performance of the controller in criteria
for which the controller was not optimized, (5) allow efficient specification of
latter criteria via a formal language, (6) judge the effect of discretization on the
same criteria via the simulation engine we contribute. (7) effectively compare
the influence discretization resolution has on the controllers.

In addition to what we presented here, our framework is developer-friendly
and open and allows for quick addition of new synthesis and analysis algorithms.
It also allows the easy consumption of new input formats. For example, to judge

146 J. Combaz et al.

the correctness of our PCTL model checking algorithm, we imported PRISM
[46] models and compared results.

Lastly, the implementation uses parallel algorithms in all performance rele-
vant parts of the system. Speedup is linear in the number of processors, up to
12 processors we checked.

3.2 Access Control, Resource Usage, and Adaptation Policies for a
Cloud Scenario

In this section, we briefly present a development methodology for policy-based
systems and its application to a Cloud IaaS scenario. This methodology is based
on the policy language FACPL [50], whose simplified variant is presented in
Chapter I.1 [33] (Section 4). FACPL is capable of dealing with different systems’
aspects through a user-friendly, uniform, and comprehensive approach. Indeed,
FACPL can express access control policies as well as policies dealing with other
systems’ aspects, as e.g. resource usage and adaptation.

FACPL intentionally takes inspiration from XACML [54], the OASIS stan-
dard language for defining access control policies, but is much simpler and usable.
Differently from XACML, FACPL has a compact and intuitive syntax and is en-
dowed with a formal semantics based on solid mathematical foundations, which
make it easy to learn and, most of all, paves the way to reasoning about policies.
Moreover, in FACPL policies can be written at a higher abstraction level than
XACML.

The development and the enforcement of FACPL policies is supported by
practical software tools: a powerful Eclipse-based development environment and
a Java library supporting the policy evaluation process. The policy designer can
use the dedicated environment for writing the desired policies in FACPL syntax,
by taking advantage of the supporting features provided by the tool. Then,
according to the rules defining the language’s semantics, the tool automatically
produces a set of Java classes implementing the FACPL policies. The generated
policy code can be integrated as a module into the enclosing application and
can be used to compute a policy decision by executing it with the request code
passed as parameter.

A Cloud IaaS Scenario. We consider here a scenario from the Cloud com-
puting domain, in which a small-size IaaS provider offers to customers a range
of pre-configured virtual machines (VMs), providing different amounts of dedi-
cated computing capacity in order to meet different computing needs. Each type
of VM features a specific Service Level Agreement (SLA) that the provider com-
mits to guarantee. Thus, the allocation of the right amount of resources needed
to instantiate new VMs (while respecting committed SLAs) is a key aspect of
the considered IaaS provider. As is common for Cloud systems, virtualisation is
accomplished using an hypervisor, i.e., a software entity managing the execution
of VMs.

For the sake of simplicity, the considered IaaS provider relies only on two
hypervisors (i.e., HYPER 1 and HYPER 2) running on top of two physical machines.

Correctness of Service Components and Service Component Ensembles 147

Fig. 22. IaaS provider scenario

The provider offers strongly defined types of VMs, like most of popular IaaS
providers (consider, e.g., the instance types M1 Small and M1 Medium provided
by Amazon EC2). Two types of VMs, namely TYPE 1 and TYPE 2, are in the
provider’s service portfolio. Each type of VM has an associated SLA describing
the hardware resources needed to instantiate the VM (e.g., CPU performance,
size of memory and storage) by means of an aggregated measure: TYPE 1 requires
the allocation of one unit of resources, while TYPE 2 requires two units.

The two types of VMs have different guarantees when the system is highly
loaded. Specifically, if the system does not have enough resources for allocating a
new TYPE 2 VM, an appropriate number of TYPE 1 VMs already instantiated will
be frozen and moved to a queue of suspended VMs. This queue is periodically
checked with the aim of trying to reactivate suspended VMs. When a VM is
frozen, according to the Insurance [65] SLA approach for resource provisioning
in Cloud computing systems, the VM’s owner will receive a credit that can be
used, e.g., for activating new VMs or for paying computational time.

Policy-Based Implementation. A graphical representation of the data-flow
in our implementation of the scenario is shown in Figure 22. Clients interact with
the Cloud system via a Web portal that, following a multi-tenancy architecture,
sends VM instantiation requests to the Cloud manager through SOAP messages.
This means that the manager exposes its functionalities to users by means of a
Web service. Then, the manager evaluates the received requests with respect to a
set of policies defining the logic of the system. In particular, such policies specify
the credentials the clients have to provide in order to access the service (access
control policies), the resource allocation strategy (resource-usage policies), and
the actions to be performed to fulfill the requests by also taking into account

148 J. Combaz et al.

the current system state, which include the system re-configuration actions in
case of high load (adaptation policies). It is worth noticing that all policies are
written by using the same policy language, FACPL, and are enforced by means
of the same software tool. By means of a similar workflow, clients can request
the shutdown of VMs, which involves the release of the allocated resources.

The administrator of the Cloud system can access a dedicated panel for
managing the governing policies. Indeed, he can change at run-time the current
policies with other ones, obtaining in this way a fully configurable and adaptable
system. The core of the Cloud manager is the Policy Enforcement Point (PEP),
which evaluates client requests according to the available policies in the Policy
Repository (PR) and the environmental information about the Cloud system.
The sub-component Policy Decision Point (PDP) has the duty of calculating
if a request can be granted or rejected, and determining the actions needed
to enforce the decisions (called obligations in FACPL jargon), such as creation,
freezing and shutdown of VMs. The enforcing is executed by the PEP by sending
to the hypervisors the commands corresponding to the obtained actions. Notably,
policies are independent from the specific kind of hypervisors installed on the
system, such as XEN or Linux-KVM, i.e., the actions returned by the PDP are
converted by the PEP into the appropriate commands accepted by the used
hypervisors. Thus, in principle, the policy engine we have developed could be
integrated with any IaaS system provided that the adequate action translation
is also defined.

We have developed two different approaches for managing, instantiating
and releasing requests. The first one concentrates the workload on hypervisor
HYPER 1, while hypervisor HYPER 2 is only used when the primary one is fully
loaded. Thus, by keeping the secondary hypervisor in stand-by mode until its use
becomes necessary, energy can be saved. The second approach, instead, balances
the workload between the two hypervisors.

An excerpt of the energy saving policies is presented below (we refer the
interested reader to [49] for a complete account). This specification defines a PEP
using the enforcing algorithm deny-biased9 and a PDP using the combining
algorithm permit-overrides10, and includes a policy set, for supervising VMs
instantiation requests (specifying action CREATE), and a policy, for supervising
release requests (specifying action RELEASE). Such policies are included through
a cross name reference, which simplifies code organisation.

{
pep: deny -biased;
pdp: permit -overrides

include Create_Policies
include Release_Policies

9 The algorithm deny-biased states: if the PDP decision is permit and all obligations
are successfully discharged, then the PEP grants access, otherwise it forbids access.

10 The algorithm permit-overrides states: if any policy among the considered ones
evaluates to permit, then the decision is permit; otherwise, if all policies are found to
be not-applicable, then the decision is not-applicable; in the remaining cases, the
decision is deny or indeterminate according to specific error situations (see [49]).

Correctness of Service Components and Service Component Ensembles 149

}

The policy set Create Policies uses the combining algorithm permit-
overrides and specifies a policy for each type of VM, namely SLA Type1 and
SLA Type2, and a target determining the requests to which the policy set applies,
i.e. all requests having attribute action/action-id set to CREATE.

PolicySet Create_Policies { permit -overrides
target:

equal("CREATE ",action/action -id)
policies:

Policy SLA_Type1 < ... >
Policy SLA_Type2 < ... >

}

The enclosed policies achieve the prioritized choice between the two hypervisors
by specifying the combining algorithm deny-unless-permit and by relying on
the rules order. As an example, we report below the policy managing the in-
stantiation of TYPE 1 VMs. The policy’s target indicates that instantiation of
TYPE 1 VMs can be required by clients having P 1 or P 2 as profile. The policy’s
combining algorithm evaluates the enclosed rules according to the order they
occur in the policy; then, if one of them evaluates to permit, the evaluation ter-
minates. Rule hyper 1 evaluates to permit only if the hypervisor HYPER 1 has
at least one unit of available resources and, in this case, returns an obligation
requiring the PEP to create a VM in this hypervisor. Rule hyper 2, governing
VMs creation on HYPER 2, is similar. If no rule evaluates to permit, then the
combining algorithm returns deny and, hence, the policy’s (optional) obligation
will be executed by the PEP to notify the Cloud administrator that there are not
enough resources in the system to instantiate a new TYPE 1 VM. In this way, the
administrator can decide to upgrade the system by adding new resources (e.g.,
a new physical machine).

Policy SLA_Type1 < deny -unless-permit
target:

(equal("P_1", subject /profile -id)||equal("P_2", subject /profile -id))
& & equal("TYPE_1", resource /vm-type)

rules:
Rule hyper_1 (permit

target:
less -than -or-equal(1, system/hyper1. availableResources)

obl:
[permit M create("HYPER_1 ", system/vm-id, "TYPE_1 ")]

)
Rule hyper_2 (...)

obl:
[deny O warning ("Not enough available resources for TYPE_1 VMs")]

>

The policies for the load balancing approach are the same as before except that
a condition on the hypervisors’ load is added to each instantiation rule. This
condition permits applying a rule for a certain hypervisor only if its amount of
available resources is greater than or equal to the amount of available resources
of the other hypervisor. For example, the rule hyper 1 is extended as follows:

150 J. Combaz et al.

FACPL
policies

<<generates>>

<<generates>>

<<uses>><<uses>>

Translation
rules

FACPL
library

XML

< / >

Policy
developer

<<interacts>>

FACPL IDE

XACML
policies

JAVA

y

JARXtend

XML

< / >

XACML
policies

<<generates>>

FACPL CODE

Fig. 23. FACPL toolchain

Rule hyper_1 (permit
target: ...
condition: less -than -or-equal(system/hyper2. availableResources,

system/hyper1. availableResources)
obl: ...)

Supporting Tools. We have seen so far how the FACPL language can be used
to define policies for the considered Cloud scenario. We conclude by briefly de-
scribing the software tools we have used to develop and enforce FACPL policies
(we refer to [35] for a more complete account of these tools).

Figure 23 shows the toolchain supporting the use of FACPL. The FACPL

Integrated Development Environment (IDE) allows the policy developer to spec-
ify the system policies in FACPL. In addition to policies, the IDE permits also
specifying user requests in order to test and validate the policies. The specifi-
cation task is facilitated both by the high level of abstraction of FACPL and
by the graphical interface provided by our IDE. Furthermore, the developer can
automatically create FACPL code starting from XACML policies. Obviously,
the tool just accepts XACML inputs that only contain the supported elements.

By exploiting some translation rules, written using the Xtend language, which
provides facilities for defining code generators, the IDE generates the corre-
sponding low-level policies both in Java and in XML. The latter format obeys
the XACML 3.0 syntax and can be used to connect our toolchain to external
XACML tools (as, e.g., the test cases generator X-CREATE [22]). The former
format relies on a Java library specifically designed for compile- and run-time
supporting FACPL code. Once these Java classes are compiled, they can be
used by the enclosing main application (i.e., the Cloud manager in our scenario)
for evaluating client requests, simply by means of standard method invocation.
Whenever new policies are introduced, new Java classes will be generated and
compiled.

As an example of Java code generation, we report below an excerpt of the
code corresponding to the policy SLA Type1:

Correctness of Service Components and Service Component Ensembles 151

public class Policy_SLA_Type1 extends Policy {
public Policy_SLA_Type1() {

addId("SLA_Type1");
addCombiningAlg(it.unifi.facpl.lib. algorithm.DenyUnlessPermit.class);
addTarget(new TargetTree(Connector.AND,

new TargetTree(...), new TargetTree(...)));
addRule (new hyper_1 ());
addRule (new hyper_2 ());
addObligation(new ObligationExpression("warning ",Effect.DENY ,

TypeObl .O,"Not enough available resources for TYPE_1 VMs"));
}
private class hyper_1 extends Rule {

hyper_1 (){
addId("hyper_1 ");
addEffect(Effect.PERMIT);
addTarget(...);
addConditionExpression(null);
addObligation(new ObligationExpression ("create ",Effect.PERMIT ,

TypeObl .M,"HYPER_1 ",new StructName("system ","vm-id"), "TYPE_1"));
}

}
private class hyper_2 extends Rule { ... }

}

Policy evaluation is coordinated by the class implementing the combining al-
gorithm (i.e., DenyUnlessPermit.class). The expression corresponding to the
policy target is structured as nested expressions organised according to the struc-
ture of the original FACPL target. Since rules are only used inside their enclos-
ing policy, for each of them the policy class contains an inner class. In the code
above, these are the classes hyper 1 and hyper 2.

In order to experiment with the Java code generated from the complete
FACPL specification of the Cloud manager behaviour, we have integrated such
code with a mock-up application and then with a more realistic application
managing XEN hypervisors. Both applications provide a front-end for the ad-
ministrator, from where he can manage the policies governing the hypervisors,
and a front-end for the clients, from where they can submit requests for the
creation or the shutdown of VMs. The two applications expose the same be-
havior to users and only differ in their back-end, as the cloud manager in the
mock-up application interacts with a simple emulator of the hypervisors, while
the manager in the XEN-based one interacts with real hypervisors. Notably, the
mock-up application allows different users to independently experiment with the
cloud system by creating a dedicated session for each of them. Instead, users of
the XEN-based application interacts with the same servers and, as it happens
in real cloud platforms, they share the same servers loading.

The two applications have been implemented by using the Java code au-
tomatically generated from the same FACPL policies. This gives a practical
evidence of the interoperability and composability of the Java code generated
from FACPL code. Indeed, such classes are decoupled from their working envi-
ronment, hence no changes are needed to embed them in a real-world application
rather than a mock-up one, apart from the implementation of the context han-
dler.

For both applications, the server-side implementation is a Tomcat server that,
by integrating FACPL and Xtext libraries, is able to accept FACPL polices,

152 J. Combaz et al.

parse and compile these policies, and finally enforce the corresponding decisions
for adapting hypervisors’ state to client requests.

3.3 jDEECo Verification

jDEECo is a Java-based implementation of the DEECo component model [29]
runtime framework. It allows for convenient management and execution of
jDEECo components and ensemble knowledge exchange. DEECo is, in turn, a
software-engineering refinement of the SCEL concepts (see Chapter I.1 [33] for a
detailed presentation of SCEL).

The main tasks of the jDEECo runtime framework are providing access to
the knowledge repository, storing the knowledge of all the running components,
scheduling execution of component processes (either periodically or when a trig-
gering condition is met), and evaluating membership of the running ensembles
and, in the positive case, carrying out the associated knowledge exchange (also
either periodically or when triggered). In general, the jDEECo runtime frame-
work allows both local and distributed execution; currently, the distribution is
achieved on the level of knowledge repository.

We designed and implemented support for automated verification of jDEECo
applications with the Java Pathfinder model checker (JPF) [43]. This work con-
sists of two main steps: (1) making the jDEECo runtime framework amenable
to practical verification with JPF and (2) implementing support for checking
specific properties relevant to jDEECo applications. First we provide a brief
introduction to JPF and then we describe the two main steps.

Java Pathfinder (JPF) is a highly customizable verification framework for
Java programs. The core of JPF is a special JVM that supports non-deterministic
thread scheduling choices, non-deterministic data choices (for input values),
backtracking, and state matching. Using these mechanisms, JPF systematically
explores the state space of a given program, in particular all possible thread inter-
leavings, and looks for specific errors such as assertion violations and deadlocks.
During the state space traversal, JPF makes thread scheduling non-deterministic
choices at (i) bytecode instructions that access global data (e.g., fields of shared
heap objects) and (ii) synchronization primitives (locking, calls of the wait()
method, etc). JPF has limited support for Java reflection and other library
classes that use native methods (e.g., file I/O and networking).

The main goal in our effort to make the jDEECo framework (Fig. 24)
amenable to verification with JPF was to enable systematic traversal of all possi-
ble interleavings of sessions executed by component processes, while at the same
time mitigating state explosion, i.e. limit the number of unnecessary thread
scheduling choices in the state space. We apply JPF to a local version of the
jDEECo runtime framework, whose development started in the previous year,
in order to precisely verify the concrete behavior of jDEECo. We do not per-
form abstraction of any kind. The architecture of the local version being subject
to verification is in Fig. 25. Due to the fact that JPF has limited support for
native methods (especially reflection), the verification process works as follows.
First, all components and ensembles forming the jDEECo application that are

Correctness of Service Components and Service Component Ensembles 153

JVM

Knowledge Repository

Process /Ensemble
Scheduling

C1 E1 C2 ……

Fig. 24. jDEECo: Look inside

7Seite
JPF

Specialized Knowledge
Repository

Specialized Process
/Ensemble Scheduling

C1 E1 C2 …

JP
F

 B
ac

kt
ra

ck
in

g

JPF-LTL

Fig. 25. jDEECo + JPF

subject to verification are serialized into a file. Then, JPF is run on the program
consisting of the local version of the jDEECo runtime framework and the given
application. Runtime loads all the components and ensembles from the file with-
out the use of reflection, and then starts all the component processes. Note that
JPF interprets every action performed by the runtime, starting with the loading
of components from the file, up to the finish of the application, and searches
for errors. To mitigate state explosion, we configured JPF such that it makes
thread scheduling choices at the beginning of each session. This is sufficient in
order to let JPF check all interleavings of sessions, because each session makes
only a single atomic modification of the knowledge. Components interact only
through modifications of the global knowledge. We disabled thread choices at
all other places inside the jDEECo framework (e.g., field accesses in classes that
implement the knowledge repository). Even though component processes are pe-
riodic, JPF does not have to model the periods (real time), because it just has
to explore all interleavings of actions that may influence the future behavior of
multiple threads. Our solution is to use a thread scheduler that ignores periods

154 J. Combaz et al.

and limit the number of iterations of each process by (N*H)/P + 1, where P is
the period of a given process, H is the length of one hyperperiod, and N is the
number of hyperperiods for which the given application should be tested. The
user has to define the number of hyperperiods because this value is typically
application-specific. Upon reaching an error state (e.g., an assertion violation),
JPF prints the full counterexample, which includes the path leading to the error
state and snapshot of the current state. A limitation of this approach is that
JPF explores an over-approximation of the set of possible thread interleaving
because it does not model periods, and therefore it may report spurious errors
that cannot happen in any feasible interleaving of the processes with respect to
specific periods.

In the second step of our work, we focused on checking properties of
two kinds: temporal behavior of jDEECo applications and data consistency.
This includes assertions over values stored in the knowledge repository (e.g.,
the assertion “battery.level > 0” for a component representing a car) and
LTL formulas. An example of a LTL formula is “G(follower near leader =>
F follower at destination)” for the Convoy demo application, which is a part of
the jDEECo distribution. Temporal behavior of the jDEECo applications is inter-
esting because component processes make small steps and it is not clear whether
the process will reach the goal state. Atomic propositions in LTL formulas may
contain path expressions, arithmetic operators, and logical operators. JPF can
search for assertion violations out of the box, so we just had to implement check-
ing of the LTL formulas using JPF. Our solution is based on JPF-LTL [44], which
is a third-party extension to JPF that supports checking of LTL formulas. In
order to support checking LTL formulas over jDEECo applications, we modified
the implementation of JPF-LTL to enable seamless integration into the jDEECo
framework and created a new module for jDEECo. The module evaluates atomic
propositions based on the content of knowledge repository and stores the cur-
rent value of each proposition. LTL formulas are checked on-the-fly during the
state space traversal by JPF. The process works as follows. When the knowledge
repository is updated by some process, our module at the jDEECo side evaluates
all atomic propositions and gives the list of satisfied propositions to JPF. At the
JPF side, it is then checked whether the LTL formula still holds.

4 Conclusion

System designers deal with two types of hardly reconcilable requirements: trust-
worthiness requirements and optimization requirements. The former characterize
properties whose violation may disrupt system availability with more or less se-
vere consequences. The latter are constraints applied to resources dealing with
performance, cost or tradeoffs between them. As a rule, improving trustworthi-
ness entails non-optimized use of resources. Conversely, resource optimization
may jeopardize trustworthiness.

A key issue is ensuring trustworthiness without disregarding optimization.
In this chapter we proposed methods to help designers for choosing amongst

Correctness of Service Components and Service Component Ensembles 155

different equally trustworthy designs those better fitting the resources of the
computing infrastructure. For the analysis of optimization requirements we pro-
posed statistical model-checking approaches and corresponding tools, e.g. the
statistical-based verification tool SBIP for stochastic systems that enrich BIP
tool-set. SBIP provides two major extensions to the BIP framework: (1) a proba-
bilistic semantics that expands BIP modeling capabilities for stochastic systems,
and (2) a set of statistical algorithms for verification of qualitative and quantita-
tive properties. The SBIP tool has been used to verify a set of large scale real life
systems such as Avionics Full-DupleX switched ethernet, Precision Time Pro-
tocol IEEE 1588, MPEG2 Decoder, and Controller Area Network (CAN)/CAN
Open.

Regarding security policies, we proposed a framework for information flow
security in component ensembles, in which the security policies are checked early
in the design following a model-based approach. We introduced a compositional
verification method for non-interference properties. This work can be extended to
investigate additional security conditions allowing to relax the non-interference
property and control where downgrading can occur. Second, it will be interesting
to work on the implementation of a complete design flow for secure systems based
on secBIP. As a first step, we shall implement the verification method presented
for annotated secBIP models. Then, we will use these models for generation of
secure implementations, that is, executable code where the security properties
are enforced by construction, at the generation time.

In addition to security, we also completed the verification techniques pro-
posed for the verification of ensembles as explained as follows. We first focused
on systems with bounded and static architectures. We proposed a verification
method that encompasses timing constraints of components. As shown by the
experimental results, and due to its compositional nature, the proposed method
scales better to large systems than existing symbolic exploration algorithms such
as the ones used in the tool Uppaal [3].

Finally, we presented a method towards the verification of service component
implementation code by adding a support for jDEECo applications to the Java
Pathfinder model checker. The current approach does not scale well, because
each transition in the program state space between two thread choices consists
of many bytecode instructions (up to hundreds of thousands), and therefore
it takes JPF a very long time to interpret all these instructions (and process
such a long transition). A new direction of work is to improve scalability of the
verification process.

References

1. Intelligent robots for improving the quality of life, http://www.nccr-robotics.ch
2. PPL, http://bugseng.com/products/ppl/
3. Uppaal, http://www.uppaal.org/
4. Z3, http://research.microsoft.com/en-us/um/redmond/projects/z3/

http://www.nccr-robotics.ch
http://bugseng.com/products/ppl/
http://www.uppaal.org/
http://research.microsoft.com/en-us/um/redmond/projects/z3/

156 J. Combaz et al.

5. Accorsi, R., Lehmann, A.: Automatic information flow analysis of business process
models. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481,
pp. 172–187. Springer, Heidelberg (2012)

6. Alur, R.: Timed automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999.
LNCS, vol. 1633, pp. 8–22. Springer, Heidelberg (1999)

7. Alur, R., Courcoubetis, C., Dill, D.L., Halbwachs, N., Wong-Toi, H.: An imple-
mentation of three algorithms for timing verification based on automata empti-
ness. In: RTSS, pp. 157–166 (1992)

8. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

9. Astefanoaei, L., Rayana, S.B., Bensalem, S., Bozga, M., Combaz, J.: Composi-
tional invariant generation for timed systems. Tech. Rep. TR-2013-5, Verimag
Research Report

10. Baier, C., Katoen, J.P.: Principles of Model Checking (Representation and Mind
Series). MIT Press, Cambridge (2008)

11. Basin, D., Doser, J., Lodderstedt, T.: Model driven security: from uml models to
access control infrastructures. ACM Transactions on Software Engineering and
Methodology 15 (2006)

12. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.H., Sifakis,
J.: Rigorous component-based design using the BIP framework. IEEE Software
Special Edition – Software Components beyond Programming – from Routines to
Services 28(3), 41–48 (2011)

13. Bell, E.D., La Padula, J.L.: Secure computer system: Unified exposition and mul-
tics interpretation (1976)

14. Bensalem, S., Bozga, M., Sifakis, J., Nguyen, T.-H.: Compositional verification
for component-based systems and application. In: Cha, S(S.), Choi, J.-Y., Kim,
M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 64–79.
Springer, Heidelberg (2008)

15. Bensalem, S., Boyer, B., Bozga, M., Legay, A.: Incremental generation of linear in-
variants for component-based systems. Tech. Rep. TR-2012-15, Verimag Research
Report (2012), http://www-verimag.imag.fr/TR/TR-2012-15.pdf

16. Bensalem, S., Bozga, M., Legay, A., Nguyen, T.H., Sifakis, J., Yan, R.: Incremental
component-based construction and verification using invariants. In: FMCAD’10
(2010)

17. Bensalem, S., Bozga, M., Delahaye, B., Jegourel, C., Legay, A., Nouri, A.: Sta-
tistical model checking qoS properties of systems with SBIP. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 327–341. Springer,
Heidelberg (2012)

18. Bensalem, S., Bozga, M., Sifakis, J., Nguyen, T.H.: Compositional verification for
component-based systems and application. In: Cha, S(S.), Choi, J.-Y., Kim, M.,
Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 64–79. Springer,
Heidelberg (2008)

19. Bensalem, S., Griesmayer, A., Legay, A., Nguyen, T.-H., Sifakis, J., Yan, R.:
D-finder 2: Towards efficient correctness of incremental design. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
453–458. Springer, Heidelberg (2011)

20. Bensalem, S., Legay, A., Nguyen, T.H., Sifakis, J., Yan, R.: Incremental invariant
generation for compositional design. In: TASE (2010)

21. Bensalem, S., Bozga, M., Nguyen, T.-H., Sifakis, J.: D-Finder: A tool for com-
positional deadlock detection and verification. In: Bouajjani, A., Maler, O. (eds.)
CAV 2009. LNCS, vol. 5643, pp. 614–619. Springer, Heidelberg (2009)

http://www-verimag.imag.fr/TR/TR-2012-15.pdf

Correctness of Service Components and Service Component Ensembles 157

22. Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E.: The X-CREATE Frame-
work - A Comparison of XACML Policy Testing Strategies. In: WEBIST, pp.
155–160. SciTePress (2012)

23. Bertuccelli, L.F., How, J.P.: Robust Markov decision processes using sigma point
sampling. In: American Control Conference (ACC), 11-13 June 2008, pp. 5003–
5008 (2008)

24. BIP – incremental component-based construction of real-time systems,
www.bip-components.com

25. Bonakdarpour, B., Bozga, M., Quilbeuf, J.: Model-based implementation of dis-
tributed systems with priorities. Design Autom. for Emb. Sys. 17(2), 251–276
(2013), doi:10.1007/s10617-012-9091-0

26. Bonani, M., Longchamp, V., Magnenat, S., R\’etornaz, P., Burnier, D., Roulet,
G., Vaussard, F., Bleuler, H., Mondada, F.: The MarXbot, a Miniature Mobile
Robot Opening new Perspectives for the Collective-robotic Research. In: Inter-
national Conference on Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ,
pp. 4187–4193. IEEE Press, Los Alamitos (2010), http://mobots.epfl.ch/

27. Bozga, M., Jaber, M., Maris, N., Sifakis, J.: Modeling dynamic architectures using
dy-bip. In: Gschwind, T., De Paoli, F., Gruhn, V., Book, M. (eds.) SC 2012. LNCS,
vol. 7306, pp. 1–16. Springer, Heidelberg (2012)

28. Bozga, M., Jaber, M., Sifakis, J.: Source-to-source architecture transformation
for performance optimization in BIP. IEEE Trans. Industrial Informatics 6(4),
708–718 (2010), doi:10.1109/TII.2010.2069102

29. Bures, T., Gerostathopoulos, I., Horky, V., Keznikl, J., Kofron, J., Loreti, M.,
Plasil, F.: Language Extensions for Implementation-Level Conformance Checking.
In: ASCENS Deliverable D1.5 (2012)

30. Clarke, E.M., Klieber, W., Nováček, M., Zuliani, P.: Model checking and the
state explosion problem. In: Meyer, B., Nordio, M. (eds.) LASER 2011. LNCS,
vol. 7682, pp. 1–30. Springer, Heidelberg (2012), doi:10.1007/978-3-642-35746-6 1

31. Clarke, E., Grumberg, O., Peled, D.: Model checking. MIT Press, Cambridge
(1999)

32. David, A., Larsen, K.G., Legay, A., Møller, M.H., Nyman, U., Ravn, A.P., Skou,
A., Wasowski, A.: Compositional verification of real-time systems using Ecdar.
STTT (2012)

33. De Nicola, R., Latella, D., Lafuente, A.L., Loreti, M., Margheri, A., Massink, M.,
Morichetta, A., Pugliese, R., Tiezzi, F., Vandin, A.: The SCEL Language: Design,
Implementation, Verification. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P.
(eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998,
pp. 3–71. Springer, Heidelberg (2015)

34. Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Commun. ACM pp. 504–513 (1977)

35. FACPL Website (2013), http://rap.dsi.unifi.it/facpl/
36. Focardi, R., Gorrieri, R., Martinelli, F.: Classification of security properties. In:

Focardi, R., Gorrieri, R. (eds.) FOSAD 2001. LNCS, vol. 2946, pp. 139–185.
Springer, Heidelberg (2004)

37. Forejt, V., Kwiatkowska, M., Parker, D.: Pareto curves for probabilistic model
checking. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561,
pp. 317–332. Springer, Heidelberg (2012)

38. Frau, S., Gorrieri, R., Ferigato, C.: Petri net security checker: Structural non-
interference at work. In: Degano, P., Guttman, J.D., Martinelli, F. (eds.) FAST
2008. LNCS, vol. 5491, pp. 210–225. Springer, Heidelberg (2009)

www.bip-components.com
http://mobots.epfl.ch/
http://rap.dsi.unifi.it/facpl/

158 J. Combaz et al.

39. Goguen, J.A., Meseguer, J.: Security policy and security models. In: Proceedings
of 1982 Symposium on Security and Privecy, pp. 11–20. IEEE Computer Society
Press, Los Alamitos (1982)

40. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model check-
ing for real-time systems. Inf. Comput. 111(2), 193–244 (1994), doi:10.1006/
inco.1994.1045

41. Hutter, D., Volkamer, M.: Information flow control to secure dynamic web service
composition. In: Clark, J.A., Paige, R.F., Polack, F.A.C., Brooke, P.J. (eds.) SPC
2006. LNCS, vol. 3934, pp. 196–210. Springer, Heidelberg (2006)

42. Jones, C.B.: Specification and design of (parallel) programs. pp. 321–332 (1983)
43. Java PathFinder, http://babelfish.arc.nasa.gov/trac/jpf/
44. JPF-LTL: An extension to JPF for checking LTL,

https://bitbucket.org/michelelombardi/jpf-ltl
45. Kuhn, D.R.: Role based access control on mls systems without kernel changes.

In: Proceedings of the ACM Workshop on Role Based Access Control, pp. 25–32
(1998)

46. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilis-
tic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

47. Lin, S.-W., Liu, Y., Hsiung, P.-A., Sun, J., Dong, J.S.: Automatic generation of
provably correct embedded systems. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012.
LNCS, vol. 7635, pp. 214–229. Springer, Heidelberg (2012)

48. Mantel, H.: Possibilistic definitions of security - an assembly kit. In: Proceedings
of the 13th IEEE workshop on Computer Security Foundations (CSFW ’00), p.
185. IEEE Computer Society Press, Los Alamitos (2000)

49. Margheri, A., Masi, M., Pugliese, R., Tiezzi, F.: Developing and enforcing policies
for access control, resource usage, and adaptation. In: Tuosto, E., Chun, O. (eds.)
WS-FM 2013. LNCS, vol. 8379, pp. 85–105. Springer, Heidelberg (2014)

50. Margheri, A., Pugliese, R., Tiezzi, F.: Linguistic Abstractions for Programming
and Policing Autonomic Computing Systems. In: UIC/ATC, pp. 404–409. IEEE
Computer Society Press, Los Alamitos (2013)

51. McCullough, D.: Noninterference and the composability of security properties. In:
Proceedings of the 1988 IEEE conference on Security and privacy (SP’88), pp.
177–186. IEEE Computer Society Press, Los Alamitos (1988)

52. McLean, J.: A general theory of composition for trace sets closed under selective
interleaving functions. In: Proceedings of the 1994 IEEE Symposium on Security
and Privacy (SP ’94), p. 79. IEEE Computer Society Press, Los Alamitos (1994)

53. Misra, J., Chandy, K.M.: Proofs of networks of processes. IEEE Transactions on
Software Engineering 7(4), 417–426 (1981)

54. OASIS XACML TC: eXtensible Access Control Markup Language (XACML)
version 3.0 - Candidate OASIS Standard (September 2012)

55. Pinciroli, C., Bonani, M., Mondada, F., Dorigo, M.: Adaptation and Awareness in
Robot Ensembles: Scenarios and Algorithms. In: Wirsing, M., Hölzl, M., Koch, N.,
Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS,
vol. 8998, pp. 471–494. Springer, Heidelberg (2015)

56. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M.,
Mathews, N., Ferrante, E., Caro, G.D., Ducatelle, F., Birattari, M., Gambardella,
L.M., Dorigo, M.: Argos: a modular, parallel, multi-engine simulator for multi-
robot systems. Swarm Intelligence 6(4), 271–295 (2012)

http://babelfish.arc.nasa.gov/trac/jpf/
https://bitbucket.org/michelelombardi/jpf-ltl

Correctness of Service Components and Service Component Ensembles 159

57. Pnueli, A.: In transition from global to modular temporal reasoning about pro-
grams. In: Apt, K. (ed.) Logics and Models of Concurrent Systems, pp. 123–144.
Springer, New York (1984)

58. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in
CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982.
LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982)

59. Rushby, J.: Noninterference, transitivity, and channel-control security policies.
Tech. rep. (December 1992), http://www.csl.sri.com/papers/csl-92-2/

60. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on selected areas in communications 21(1) (2003)

61. Sabelfeld, A., Sands, D.: A per model of secure information flow in sequential
programs. Higher Order Symbol. Comput. 14(1), 59–91 (2001)

62. Sandhu, R., Munawer, Q.: How to do discretionary access control using roles. In:
RBAC ’98 Proceedings of the third ACM workshop on Role-based access control,
pp. 47–54. ACM Press, New York (1998)

63. Shen, J.-j., Qing, S., Shen, Q., Li, L.: Covert channel identification founded on
information flow analysis. In: Hao, Y., Liu, J., Wang, Y.-P., Cheung, Y.-m., Yin,
H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.) CIS 2005. LNCS (LNAI), vol. 3802, pp.
381–387. Springer, Heidelberg (2005)

64. Smith, G., Volpano, D.: Secure information flow in a multi-threaded imperative
language. In: Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (POPL ’98), pp. 355–364. ACM Press, New
York (1998)

65. Verma, D.C.: Service level agreements on IP networks. Proceedings of the
IEEE 92(9), 1382–1388 (2004)

66. Yi, W., Pettersson, P., Daniels, M.: Automatic verification of real-time commu-
nicating systems by constraint-solving. In: FORTE, pp. 243–258 (1994)

67. Zakinthinos, A., Lee, E.S.: A general theory of security properties. In: Proceedings
of the 1997 IEEE Symposium on Security and Privacy (SP ’97), p. 94. IEEE
Computer Society Press, Los Alamitos (1997)

http://www.csl.sri.com/papers/csl-92-2/

Part II:
Modeling and Theory of Adaptive and

Self-aware Systems

Ensembles face several challenges related to adaptation that are not present for
simpler software systems. The second part of the book is therefore devoted to
models and theories for self-aware and adaptive systems.

The first chapter reconciles two perspectives on adaptation, black-box adap-
tation which only takes into account the performance of a system in particular
environments and white-box adaptation which classifies the system’s data or
actions into basic or adaptive activities. The second chapter is concerned with
the distribution of knowledge between the components of an ensemble, and in
particular the deduction of global knowledge from local representations. It in-
cludes a representation for soft-constraint satisfaction problems that can express
dynamic programming strategies, which is applied to various optimization prob-
lems. The second part of the chapter shows how the techniques can be generalized
to problems that are not straightforward optimization problems.

To operate in difficult, changing conditions it is often useful for a component
to have knowledge about the environment, the other actors present in the en-
vironment, and the ensemble itself. The third chapter introduces KnowLang, a
language for knowledge representation. KnowLang provides a comprehensive set
of operators to specify logical and stochastic knowledge, to describe the update
of knowledge bases and to describe reasoning processes. The chapter introduces
the pyramid of awareness and the awareness control loop. The fourth chapter
continues the discussion of awareness with a multi-dimensional classification of
awareness mechanisms and then focuses on reasoning and learning techniques
for achieving awareness and adaptation. It introduces extended behavior trees
(XBTs), a graphical language for modeling behavior strategies that include hier-
archical reasoning and learning and shows how a novel method for reinforcement
learning in cooperative ensembles can be expressed using XBTs. Additionally,
mechanisms for integrating on-line and off-line learning in an approach called
teacher-student learning are described.

The fifth and final chapter in this part is focused on one particular aspect of
awareness that is highly relevant for ensembles consisting of many, often small
and energy-constrained, devices: performance. Performance monitoring, mea-
surement evaluation, performance modeling, adaptation and design are described
in the context of the ASCENS cloud case study.

M. Wirsing et al. (eds.): Collective Autonomic Systems, LNCS 8998, p. 161, 2015.
c© Springer International Publishing Switzerland 2015

Chapter II.1

Reconciling White-Box and Black-Box
Perspectives on Behavioral Self-adaptation�

Roberto Bruni1, Andrea Corradini1, Fabio Gadducci1, Matthias Hölzl2,
Alberto Lluch Lafuente3, Andrea Vandin4, and Martin Wirsing2

1 Department of Computer Science, University of Pisa, Italy
2 Ludwig-Maximilians-Universität München, Germany

3 DTU Compute, Technical University of Denmark, Denmark
4 Electronics and Computer Science, University of Southampton, UK

Abstract. This paper proposes to reconcile two perspectives on behav-
ioral adaptation commonly taken at different stages of the engineering of
autonomic computing systems. Requirements engineering activities often
take a black-box perspective: A system is considered to be adaptive with
respect to an environment whenever the system is able to satisfy its goals
irrespectively of the environment perturbations. Modeling and program-
ming engineering activities often take a white-box perspective: A system
is equipped with suitable adaptation mechanisms and its behavior is
classified as adaptive depending on whether the adaptation mechanisms
are enacted or not. The proposed approach reconciles black- and white-
box perspectives by proposing several notions of coherence between the
adaptivity as observed by the two perspectives: These notions provide
useful criteria for the system developer to assess and possibly modify the
adaptation requirements, models and programs of an autonomic system.

Keywords: Autonomic Computing, Behavioral Adaptation, Requirements En-
gineering, Software Engineering, Linear-time Properties, Games

1 Introduction

Autonomic systems operating in highly variable, even unpredictable, environ-
ments must be self-adaptive. Unfortunately, there is not a widely accepted agree-
ment on a foundational model for adaptivity. Already in the early Sixties Lofti
Zadeh [27] claimed that “it is very difficult – perhaps impossible – to find a way
of characterizing in concrete terms the large variety of ways in which adaptive
behavior can be realized” and was pessimistic regarding the possibility to obtain
a unifying definition due to the inherent difficulty of subsuming under the same

� This research was supported by the European project IP 257414 (ASCENS) and by
the Italian project PRIN 2010LHT4KM (CINA).

M. Wirsing et al. (eds.): Collective Autonomic Systems, LNCS 8998, pp. 163–184, 2015.
c© Springer International Publishing Switzerland 2015

164 R. Bruni et al.

Fig. 1. The ASCENS life cycle for autonomic software component ensembles

hood both the external manifestations of adaptive systems (black-box adaptiv-
ity) and the internal mechanisms by which adaptation is achieved (white-box
adaptivity).

These two perspectives persist today. Often, requirements engineering activ-
ities take the black-box one, by expressing requirements as goals to be achieved
in some environments (cf. Chapter III.3 [26]). The system is adaptive to an en-
vironment if it may satisfy the goal in that environment. Sometimes, pairs of en-
vironments and goals are considered, if it makes sense to consider different goals
in different environments. An example of these approaches is in the ASCENS [4]
methodology (cf. Chapter III.1 [14]) to the engineering of autonomic systems (cf.
Fig. 1): The General Ensemble Model (Gem) [15], a formalisation of the SOTA [1]
approach to requirements engineering, takes a black-box perspective.

Later design activities such as modeling and programming tend to take the
white-box perspective by focusing on the realisation of adaptation mechanisms,
often based on linguistic or architectural techniques. A widely used approach
is to clearly separate the functional and adaptation logics when structuring the
behavior of a system. Thus, computations are classified according to the presence
of normal steps aimed at realising the functional logic and adaptation steps
aimed at adapting the system’s behavior. An archetypal approach are Adaptable
Interface Automata (AIAs) [6], a formalisation of white-box perspectives for
autonomic systems like CoDa [7] developed within ASCENS [4].

Contribution. Clearly, adaptation remains a subjective concept in both perspec-
tives. The fundamental difference lies in who is responsible of declaring whether
a system is adaptive or not: the requirements engineer (black-box) or the system
engineer (white-box). Ideally, both perspectives should be coherent. This paper
proposes an approach to reconcile black- and white-box approaches to behavioral
adaptation in autonomic systems and to assess their coherence.

The key idea is that the white-box perspective allows to classify and quan-
tify the behaviors of the system in an environment according to the presence of
actual adaptations. Mismatches between black- and white-box perspectives may
arise, e.g. if the system satisfies its goals in an environment, but no adaptation is
observed. Mismatches can be used to improve the system, e.g. by disabling com-
putationally expensive adaptation mechanisms based on monitoring and aware-

White-Box and Black-Box Perspectives on Behavioral Self-adaptation 165

ness (cf. Fig. 1). Moreover, mismatches may provide information to requirements
and system engineers, since they can help to assess and modify specifications.

Our presentation focuses on the above mentioned approaches developed
within the ASCENS project [4], respectively Gem and AIAs. However, the
methodology we introduce is general enough to be applicable in a wide range of
approaches to the engineering of autonomic systems.

Structure of the Paper. Section 2 briefly presents a case study from the AS-
CENS project that we use for illustrative purposes throughout the paper. Sec-
tion 3 recalls two archetypal approaches to adaptation based on black-box and
white-box perspectives, namely Gem (Section 3.1) and AIAs (Section 3.2). Sec-
tion 4 presents our approach to reconcile them. Section 5 discusses related works.
Section 6 concludes the paper and outlines opportunities for future research.

2 A Robot Rescue Case Study

We shall use the robot rescue scenario (cf. Chapter IV.2 [21]) from the ASCENS
case studies (cf. Chapter IV.1 [25]) as a running example throughout the paper.
Fig. 2 illustrates this scenario, where a swarm of rescuer robots (represented as
black circles with a grip) has to rescue victims (represented as stars) of a natural
or industrial disaster (toxic waves in the figure), possibly cooperating to secure
the area first (building a protection barrier in the figure) and then pulling the
victim with the grippers until a safe place (e.g. Home in the figure) is reached.

Fig. 2. Robot Rescue Scenario

To keep the scenario as simple as possible
we limit us in some cases to a single rescuer
robot and a single victim that has to be res-
cued. We assume that the locations of the vic-
tim and the robot are expressed as Cartesian
coordinates: The robot can navigate the en-
vironment with constraints specified by kine-
matic equations and pick up objects in the en-
vironment according to certain physical con-
straints. The main requirement of the system
is that the robot transports the victim to a
rescue zone, but often a purely goal-based de-
scription is not sufficient to capture the real
requirements.

We assume that one of the main question
of interest is to determine whether the rescuer
robot is capable of rescuing the victim under
certain conditions on the environment. This
is, as we shall see in Section 3.1, precisely a
question about the adaptivity properties from
the black-box perspective. For instance, if the victim has a weight of 80 Kg and
the robot is capable of lifting only 20 Kg, then it is simply not possible for the

166 R. Bruni et al.

robot to complete the rescue mission, given reasonable assumptions about the
operating environment. However, an autonomic robot with these specifications
operating on the moon would be able to lift the victim, and likewise a subaqueous
robot.

The interplay between system and environment is not only important for
the general structure of the system, it remains relevant as designers progress to
more and more detailed system designs and their inherent trade-offs: A biped
robot that is in principle capable of lifting a victim might not be able to do so
in a marsh whereas a tracked vehicle might be able to. On the other hand, a
tracked vehicle might not be capable of navigating stairs that pose no problem
for the biped. A quadcopter might be able to lift a victim if the location is at
sea level, but not if it is high in the mountains. Of course, given a specification
of the problem the system designers and programmers have to decide how to
actually solve the problem from an architectural and algorithmic point of view.
This very same scenario has been tackled in the ASCENS project with a variety
of techniques, from aspect-oriented programming to high-level policies, to meta-
programming techniques (see e.g. the long discussion in [10] and the references
therein).

3 Black-Box and White-Box Adaptation

This section offers a gentle introduction to two archetypal examples of black-
box and white-box approaches to adaptation in autonomic computing systems,
namely Gem (Section 3.1) and AIAs (Section 3.2). The presentation of both
approaches has been simplified to focus on their essential features.

3.1 A Black-Box Perspective on Adaptive Systems

Gem [15], the General Ensemble Model, is a formalisation of the state space-
based SOTA approach to requirements engineering [1]. Gem models describe the
possible behaviors of a system as trajectories through its phase space5 while the
system is interacting with an environment, i.e., a system consists of a preordered
time structure T , a phase space X and a set of trajectories in T → X .6 T might
be as simple as the natural numbers with the usual order, while in our example
the state space might be the position of each robot. Since they are used during
the analysis or the high-level design of a system, the initial Gem models of a
system typically have very little information about its internal structure. Chapter
III.3 [26] in this volume discusses the Ensemble Development Life Cycle (EDLC)
and the role that SOTA plays in the overall development process.

We illustrate the kind of Gem models that might be built during the de-
velopment of a system like our scenario in Section 2, with some examples: The
5 In this section we use the terms phase space and state space interchangeably.
6

Gem actually allows the definition of more general types of systems, and ensembles
in Gem are defined in a manner that is isomorphic but not identical to the one given
here. The definition given above corresponds to time ensembles.

White-Box and Black-Box Perspectives on Behavioral Self-adaptation 167

developer might start the initial system inception by defining simple and abstract
requirements in the form of Gem models that are meant to analyse whether the
proposed system is feasible at all. These models can be either discrete-state or
continuous. For instance, for large ensembles we might approximate the number
r of rescue robots that are still properly working after time t by the differential
equation ṙ(t) = −αr(t)+ c, where α is the rate at which robots can be damaged
(e.g. by toxic waves), c is a constant rate of newly produced robots, and ṙ is
the derivation dr/dt. After the feasibility of the system has been determined,
a high-level Gem model for the rescue scenario might describe the state of the
system in an abstract manner, e.g. by specifying the aforementioned Cartesian
locations and movement constraints.

In general the phase space X becomes unwieldy as the systems become larger,
therefore Gem allows developers to define individual components of a system on
their own, and to combine them using combination operators that construct a
new state space from the state spaces of the components. Those operators are de-
noted by ⊗. In the example, the system’s designers might define two components,
the robot Sr and the victim Sv, to investigate whether a robot can transport
victims under the given environment conditions. To be useful the state of these
components has to be sufficiently complete to allow a full description of the rel-
evant aspects of the system behavior. The state Xr of the robot would probably
include state variables for the robot’s velocity and orientation, its position, the
configuration of its gripper, its carrying capacity and so on. Similarly, the state
of a victim would contain information about its physical properties, e.g., weight
and how the victim’s body behaves when it is picked up by the robot. By apply-
ing a suitable combination operator, designers can build a component Sr ⊗ Sv

that represents a robot carrying a victim. In the combined system, state vari-
ables of the individual components that are no longer necessary to describe the
combined system can be suppressed and new state variables that result from the
combination can be introduced. For example, the configuration of the robot’s
gripper and the physical properties of the victim’s body may be replaced in
Sr ⊗Sv by state parameters that specify the manoeuvrability of the robot while
it is carrying the victim.

In a simple version of the rescue scenario, the main requirement for each
rescuer robot can be described in a purely goal-based manner: Transport the
victim to a safe zone. On the other hand, such a purely goal-based description
is often not sufficient to capture the real requirements. Therefore, Gem allows
developers to describe the quality of a solution (called its utility in Gem) using
real numbers. For example, the utility of the robot might be defined as the time
it needs to rescue the victim, possibly taking into account factors such as the
exposure of the victim to environmental hazards during the transport phase.

The Gem Approach to Black-Box Adaptation. Gem defines a notion of adapta-
tion, which we call black-box adaptation, that is applicable to models in the early
stages of requirements engineering of autonomic computing systems (cf. the left-
most cycle in Fig 1). It is clear that at those stages the focus of the definition
has to rely on the “circumstances” aspect of adaptation and not on the “change

168 R. Bruni et al.

of the system”, since little or no information about the system’s internal struc-
ture is usually available at this stage of the development process. Nevertheless
there are some interesting adaptation-related questions that can be answered by
looking at the intrinsic capabilities of a system S and its environment η.

As we already advanced in the previous section, the most obvious question
is perhaps “Is the system in principle capable of satisfying the requirements?”.
More precisely, it is mandatory to specify the range of environments E under
consideration and ask for which environments in E a given system can fulfill the
requirements. This is the basic idea underlying black-box adaptation.

While focusing on systems and environments would be sufficient from a the-
oretical point of view, models are often not detailed enough to contain all the
information required to analyse the behavior of the combination. For example,
the ability to recognise robots might be reduced because of lighting conditions in
the environment; however the robot’s model might not contain sufficient detail
to represent this when combining it with an environment. Gem therefore intro-
duces a third component into the ensemble model that describes the interaction
of the system with the environment. In Gem this component is called the net-
work ν, although in the rescue example “system/environment fit” might better
describe the role of ν. For example, the performance of a robot’s camera obvi-
ously depends on the lighting conditions, but in many cases the modelers do not
want to specify the system in enough detail to compute the effect of lighting on
the camera. To model the decreased camera quality under the expected lighting
condition, the camera can instead be combined with the environment using a
noisy or lossy communication channel in ν, without adjusting the models of the
system or the environment themselves.

The Gem Formalisation of Black-Box Adaptation. We can now describe black-
box adaptation in slightly more detail.

Definition 1 (adaptation domain and requirements). Given a set of en-
vironments E, networks N and goals G, an adaptation domain A is a subset of
E × N × G, i.e., a set of triples (η, ν, γ) called an adaptation requirements.

An adaptation domain is therefore a package consisting of environments, net-
works and goals that are of interest to the system designer. Adaptation domains
provide a basic signature for adaptation requirements that can be instantiated
in several ways as we shall see further in this paper. A concrete example of this
is the requirements specification language SOTA [1].

Concrete Gem models where adaptation domains are given a precise seman-
tics can be subject to different kinds of analysis. A typical example is require-
ments satisfiability. For instance, the adaptation domain A={(η, ν, γ), (η, ν, ¬γ)}
is unlikely to be satisfiable under any reasonable semantics for ¬.

Of course, given a satisfiable adaptation domain, the question remains wheth-
er a given system can adapt to it. This concept is formalised as follows.

White-Box and Black-Box Perspectives on Behavioral Self-adaptation 169

Definition 2 (adaptation to a domain). Let S ⊗ η ⊗ ν |= γ denote that
a system S fulfills a goal γ when in environment η with network ν. We say a
system S can adapt to an adaptation domain A, written S � A, iff ∀(η, ν, γ) ∈
A . S ⊗ η ⊗ ν |= γ.

Again some of the concepts such as goal fulfillment |= and composition ⊗ are left
underspecified on purpose. They can be instantiated in many different ways. For
instance, in this paper we shall see a trace-based semantics for |= and automata
synchronisation semantics for ⊗, which turn out to be very useful for reconciling
black- and white-box perspectives.

Very often, one needs to compare the adaptation ability of different systems,
which may correspond to different early designs of the same system. Recall, for
instance, our case study (cf. Section 2) and the example of biped and tracked
robots, where systems may make different trade-offs and therefore be able to
deal with different adaptation requirements or domains. For instance, given a
fixed adaptation domain A, a system S1 may be able to satisfy every adaptation
requirement system in A that S2 can satisfy; in that case we say S1 is at least as
adaptive to A as S2. But it can be also the case that a system S1 may be able to
operate in every adaptation domain of interest in which system S2 can operate;
in that case we say S1 is at least as adaptive as S2. If S1 can additionally adapt
to at least one adaptation domain to which S2 cannot adapt we call S1 more
adaptive than S2. More formally, we define an adaptation space A as a family of
adaptation domains, A ⊆ P(E × N × G). For any adaptation space we define a
pre-order of adaptivity for systems as follows.

Definition 3 (adaptation pre-orders). Let A be an adaptation space and let
A ∈ A be one of its adaptation domains. The A-adaptation pre-order �A∈ S×S
is the relation among systems defined by

S �A S′ ⇐⇒ ∀(η, ν, γ) ∈ A . S ⊗ η ⊗ ν |= γ =⇒ S′ ⊗ η ⊗ ν |= γ

The adaptation pre-order �A∈ S × S is the relation among systems defined by

S �A S′ ⇐⇒ ∀A ∈ A : S � A =⇒ S′ � A

It is worth to remark that S �A S′ implies ∀A ∈ A . S �A S′ but the contrary
is not true. A trivial example is one in which the adaptation space A is just {A},
neither S nor S′ adapt to A but S �A S′, i.e. S′ can satisfy more requirements
than S but they both adapt to the same set of domains, namely none.

It is easy to extend those relations to the case of utility-based systems; intu-
itively a system S′ is more adaptive than a system S given an adaptation domain
A if the utility of S′ is at least as high as that of S for every element of A, and
higher for at least one element of A. This definition is extended to adaptation
spaces in the obvious way.

All in all, Gem’s approach to adaptation requirements engineering from a
black-box perspective provides a simple yet useful tool for designers to analyse

170 R. Bruni et al.

various aspects of early system specifications. For instance, Gem models can
be used to compare various early systems designs in terms of their adaptation
abilities to cope with the desired requirements; adaptation spaces can also be
used to check whether it is at all possible to satisfy all adaptation requirements,
or whether certain requirements are expensive to implement.

3.2 A White-Box Perspective on Adaptive Systems

White-box perspectives on adaptation shift the attention to later stages of sys-
tem design (e.g. Modeling and Programming in Fig. 1) and allow one to specify
or inspect (part of) the internal structure of a system in order to offer a clear
separation of concerns to distinguish changes of behavior that are part of the ap-
plication or functional logic from those which realise the adaptation logic. This
section summarises the CoDa approach to adaptation and one of its formalisa-
tions, namely Adaptable Transition Systems [6].

The CoDa Approach to White-Box Adaptation. In general, the behavior of a
system is governed by a program and according to the traditional, basic view, a
program is made of control (i.e. algorithms) and data. The conceptual notion of
adaptation proposed in [7] requires to identify control data which can be changed
to adapt the system behavior. Adaptation is, hence, the run-time modification of
such control data. According to this notion, a system is adaptable if it has a dis-
tinguished collection of control data that can be modified at run-time, adaptive
if it is adaptable and its control data are modified at run-time, at least in some
of its executions, and self-adaptive if it modifies its own control data at run-time.
So, essentially, the CoDa approach to measure the adaptation ability of a system
is to identify control data and observe its modification in the system’s behaviors.
For example, the adaptation mechanisms of robots like the ones in our scenario
are sometimes based on the use of operation modes. Each mode of operation is
tailored to some specific class of situation and a high-level controller adapts the
behavior of the robot by switching between modes of operation. In this case, the
control data is precisely the data defining the current mode of operation.

Several programming paradigms and reference models have been proposed
for adaptive systems. A notable example is the Context Oriented Programming
paradigm, where the contexts of execution and code variations are first-class cit-
izens that can be used to structure the adaptation logic in a disciplined way [24].
This paradigm has also influenced the many programming and modeling ap-
proaches developed within the ASCENS project [4] among which we cite the
Service Component Ensemble Language (see [12] and also Chapter I.1 [11]) and
the architectural approach of [9]. Nevertheless, it is not the choice of the pro-
gramming language what makes a program adaptive: any computational model
or programming language can be used to implement an adaptive system, just
by identifying the part of the data that governs the adaptation logic, that is
the control data. Consequently, the nature of control data can vary considerably,
including all possible ways of encapsulating behavior: from simple configuration
parameters to a complete representation of the program in execution that can

White-Box and Black-Box Perspectives on Behavioral Self-adaptation 171

be modified at run-time, as it is typical of computational models that support
meta-programming or reflective features.

Adaptable Transition Systems: A Foundational Model for CoDa. Adaptable
Interface Automata (AIAs) are a model of adaptive component-based systems
built upon interface automata [2,3]. AIAs are an incarnation of the more general
concept of adaptable transition systems. The key feature of AIAs are control
propositions evaluated on states, the formal counterpart of control data. The
choice of such propositions is arbitrary but it imposes a clear separation between
ordinary behaviors and adaptive ones.

Interface automata were introduced in [3] as a framework for component-
based design and verification. Following [2], an interface automaton P is a tuple
〈V, V i, AI , AO, T 〉, where V is a set of states; V i ⊆ V is the set of initial states,
which contains at most one element (if V i is empty then P is called empty);
AI and AO are two disjoint sets of input and output actions (we denote by
A = AI ∪ AO the set of all actions); and T ⊆ V × A × V is a deterministic
set of transitions (also called steps), i.e. for any two transitions (u, a, v) ∈ T
and (u, a, v′) ∈ T we have that v = v′. An interface automaton can represent,
for instance, the behavioral model of one of our robots, where actions represent
interactions with the environment and the distinction between input and output
reflects the flow of information between them.

As usual, a transition (u, a, v) can be denoted by u
a−→ v. The absence of

non-determinism is not essential for the purposes of this paper, but it plays
a fundamental role for the feasibility of control synthesis. Given B ⊆ A, we
sometimes use P|B to denote the automaton obtained by restricting the set of
steps to those whose action is in B. Also, the set of actions in B labelling the
outgoing transitions of a state u is denoted by B(u). A computation ρ of an
interface automaton P is a finite or infinite sequence of consecutive transitions
{ui

ai−→ ui+1)}i<n from T (thus n can be ω).
In our case study, an interface automaton could represent the overall behavior

of a robot, possibly obtained as the result of composing different components
such as controllers and sensors. The main idea of AIAs is to exhibit the minimal
amount of information that allows one to distinguish the ordinary behaviors
aimed at realising the application logic of the system (e.g. a robot) from the
behaviors aimed at realising the system’s adaptation. AIAs extend interface
automata with atomic propositions (state observations), some of which are called
control propositions and play the role of the control data of [7].

Definition 4 (adaptable interface automata). An adaptable interface au-
tomaton (AIA) is a tuple 〈P, Φ, l, Φc〉 such that P = 〈V, V i, AI , AO, T 〉 is an
interface automaton; Φ is a set of atomic propositions, l : V → 2Φ is a labelling
function mapping states to sets of propositions; and Φc ⊆ Φ is a distinguished
subset of control propositions.

We call P an AIA with underlying interface automaton P , whenever this intro-
duces no ambiguity. Most of the ingredients of Interface Automata are trivially

172 R. Bruni et al.

lifted to AIAs. This includes the notion of computation. Furthermore, we shall
consider as well the usual notion of trace, denoting with Traces(P) the set of
traces of an AIA P , i.e. the projection of all computations of P on the state
observation Φ. More precisely, if u

a−→ v is a transition of a computation, its
projection on a trace will be the trace transition l(u) a−→ l(v). Additional lifted
concepts are those of compatibility and composition among AIAs. Indeed, AIAs
come equipped with a suitable composition operator, denoted ⊗, which essen-
tially corresponds to lifting the composition operator on the underlying Interface
Automata structure. We refer the interested reader to [6]. The choice of symbol
⊗ is not an accident: interpreting composition in Gem models as composition of
AIAs is indeed part of our approach to reconcile both views on adaptation, as
we shall explain later in Section 4.

The AIA Approach To White-Box Adaptation. A transition u
a−→ u′ ∈ T is called

an adaptation if it changes the control data, i.e. if there exists a proposition
φ ∈ Φc such that either φ ∈ l(u) and φ
∈ l(u′), or vice versa. Otherwise, it
is called a basic transition. Consider for instance an AIA modeling one of the
robots of our case study. Let us assume that its control propositions allow one to
observe the robot’s mode of operation, whose change is the way of implementing
adaptive behaviors. Then the adaptive transitions will exactly correspond to
those adaptive behaviors, i.e. switching between modes of operation. The basic
behaviors would be the ordinary behavior within a mode of operation. Clearly,
the concept trivially lifts to trace transitions. An action a ∈ A is called a control
action if it labels at least one adaptation. The set of all control actions of an
AIA P is denoted by AC

P .
Computations are classified according to the presence of adaptation steps.

Definition 5 (adaptive computations). Let P be an AIA and ρ a computa-
tion in P . We say that ρ is basic if it contains no adaptive transition, and it is
adaptive otherwise.

We will also use the concepts of basic computation starting at a state u and
of adaptation phase, i.e. a maximal computation made of adaptive steps only.
Again, this concept can be trivially lifted to traces.

The concept of adaptive trace can be formalised in temporal logics such as
LTL as follows, ψadaptive ≡ ¬

∧
φ∈Φc(φ ↔ Gφ), i.e. it is not the case that all

observable control data remain the same forever. This clearly enables the use of
standard model checking techniques to analyse properties of adaptive systems
(see e.g. the references and the discussion in [6]).

It is worth to remark that what distinguishes adaptive computations and
adaptation phases are not the actions, because control actions may also label
transitions that are not adaptations. However, very often an AIA has coherent
control, meaning that the choice of control propositions is coherent with the
induced set of control actions, in the sense that all the transitions labelled with
control actions are adaptations. In the rest of the paper we assume that every
system under consideration has coherent control.

White-Box and Black-Box Perspectives on Behavioral Self-adaptation 173

The relationship between the set of control actions AC
P and the alphabets

AI
P and AO

P is arbitrary in general, but it could satisfy some pretty obvious
constraints for specific classes of systems. Let P be an AIA. We say that P
is adaptable if AC

P
= ∅; controllable if AC
P ∩ AI

P
= ∅; self-adaptive if AC
P ∩

AO
P
= ∅. Intuitively, an AIA is adaptable if it has at least one control action,

which means that at least one transition is an adaptation. An adaptable AIA

is controllable if control actions include some input actions and self-adaptive
if control actions include some output actions (which are under the control of
the AIA). From these notions we can derive others. For instance, we can say
that an adaptable AIA is fully self-adaptive if AC

P ∩ AI
P = ∅ (the AIA has

full control over adaptations). Note that hybrid situations are possible as well,
when control actions include both input actions (i.e. actions in AI

P) and output
actions (i.e. actions in AO

P). In this case we have that P is both self-adaptive and
controllable. In our case study we could expect to have fully self-adaptive ground
rescue robots or partially adaptive ones that can be influenced from supervisor
quadcopter robots.

Those notions can be lifted to computations in the obvious way.

Definition 6 (adapted computations). Let P be an AIA and ρ a compu-
tation in P . We say that ρ is controlled if it contains a transition which is an
adaptation and corresponds to an input action, and it is fully self-adapted if all
its adaptation transitions correspond to output actions.

Such concepts may be formalised as well with modal logics. Of course, LTL
cannot be directly applied since it is a pure state-based logic and here we need to
observe actions, but one may use logics for double-labelled transition systems or
standard encodings between action-labelled transitions systems (e.g. automata)
and state-labelled transitions systems (e.g. Kripke structures).

4 Reconciling Black-Box and White-Box Adaptation

We present here our approach to reconcile white-box and black-box perspectives
on adaptation. We assume that the black-box perspective on the systems under
study is formalised by Gem models whose systems, environments and networks
are suitably represented by AIAs, our reference model for white-box perspective.
One of the key observations regarding the different treatments of adaptation on
black-box and white-box perspectives is that adaptation in the former case is
“asymmetric” in that it considers various environments in which a system may
operate, but the system is defined by all its possible behaviors, irrespectively of
whether they require internal changes or not. Tackling this asymmetry is one
of the issues in the conciliation. We propose here two ways of reconciling white-
box and black-box perspectives on adaptation. A first, simple one is based on a
trace-based semantics of Gem and AIAs (cf. Section 4.1). The second one (cf.
Section 4.2) is based on game semantics.

174 R. Bruni et al.

4.1 Trace-Based Reconciliation

A key assumption to combine Gem and AIA concepts is to assume that Gem

notion of property satisfaction is based on semantic relations on computations.
For the sake of illustration, we consider the well-studied and popular notion of
property satisfaction based on trace inclusion.

Definition 7 (trace-based adaptation). Let S be a system and (η, ν, γ) a
requirement. We instantiate the fulfillment by S of a goal γ in an environment
η with network ν as

S ⊗ η ⊗ ν |= γ iff Traces(S ⊗ η ⊗ ν) ⊆ Traces(γ)

Recall that trace inclusion amounts to the satisfaction relation of model check-
ing linear-time temporal logics. This means that if goals are expressed as LTL
properties (as SOTA requirements essentially are), checking the fulfillment of re-
quirements can be done with efficient state-of-the art model checking techniques.

A consequence of our choice of trace based semantics is that we are instan-
tiating the adaptation of a system S to an adaptation domain A as S � A iff
∀(η, ν, γ) ∈ A.Traces(S ⊗η⊗ν) ⊆ Traces(γ). This trace-based notion is not only
interesting from the theoretical point, but it allows us to re-use all the useful ma-
chinery of linear-time properties, including model checking. For instance, we may
assume goals γ to be suitably specified in languages with linear-time semantics
such as ω-regular expressions, linear-time temporal logic, and various forms of
automata or transition systems. Moreover, the SOTA approach to requirements
engineering for autonomic systems, for which Gem provides a formalisation, is
indeed based on trace semantics and inclusion relations.

More interestingly, the trace-based semantics offers a common ground to
compare and reason about properties of systems and their computations from
both the black-box and white-box perspectives. The first interesting question
we address to reconcile the two perspectives on a system is the following. Let S
be a system that is adaptive to an adaptation domain A (i.e. S � A). Are the
behaviors of S that witness adaptation to A adaptive from the white-box point
of view? This leads us to the concept of coherent adaptation.

Definition 8 (coherent adaptation). Let S be a system and A be an adap-
tation domain. We say that S is coherently adaptive to A if S � A implies that
for all (η, ν, γ) ∈ A there is at least one trace ρ ∈ Traces(S ⊗ η ⊗ ν) that is
adaptive.

It is worth to remark once more that coherence can be boiled down to a standard
model checking problem. Note that if a system S is not coherently adaptive
to an adaptation domain A then the system is able to satisfy one goal in A
without performing any transition observationally identified as adaptation (from
the white-box perspective). This implies a certain mismatch between what is
considered to be a normal operation environment from the system design point

White-Box and Black-Box Perspectives on Behavioral Self-adaptation 175

of view (i.e. the system S as an AIA) and from the requirements point of view (i.e.
the adaptation domain A). The system designer can then exploit this information
for improving the design of the system. For instance, in the case of our case study,
a lack of coherent adaptation could help the designer decide that the components
of the robot software realising its adaptive behavior are not necessary, so that
robots can be deployed with a light-weight version of the software, possibly
consuming less computational resources and battery.

Further distinctions can be done by considering the presence/absence of adap-
tation transitions controlled by the environment: if all adaptation transitions
correspond to output control actions of S, the system is fully self-adaptive to A,
even if it may not necessarily be fully self-adaptive in general.

Ideally, one would like to have a system S that is coherently adaptive and fully
self-adaptive with respect to the adaptation domain A under consideration. That
is, a system that has full control over its adaptation actions when operating in
A and whose adaptation mechanisms are actually enacted in all the situations
identified in the adaptation domain A. When this is not the case the system
designer can take the necessary actions as we exemplified above.

4.2 A Game-Based Reconciliation

The last section introduced the notion of coherent adaptation for systems rep-
resented by AIAs. This definition can be generalised to arbitrary SOTA/Gem

models if we define control propositions Φc (see Section 3.2) as propositions in a
suitable logic over the state space X . These propositions define a subset Xc ⊆ X
that we call the control space of the system. The notion of adaptive computation
from Definition 5 can then be applied to segments of SOTA/Gem traces: Let T
be the time domain of the model, θ : T → X a trajectory in X , and t1, t2 ∈ T .
We say that θ is adaptive in the interval [t1, t2] if it intersects the control space
in that interval, i.e., {θ(t) | t ∈ [t1, t2]} ∩ Xc
= ∅; it is purely adaptive if it is
contained in Xc, i.e., {θ(t) | t ∈ [t1, t2]} ⊆ Xc; and it is basic if it is not adaptive.
Definition 8 can be applied to arbitrary SOTA/Gem models in a similar manner.

An environment that reacts to the system behaviors but does not pursue its
own goals is sometimes called (purely) parametric or stochastic; an environment
in which other agents pursue their own goals (and thus may actively work to
inhabit the ensemble goals) is called game-theoretic or strategic. Many interesting
and practically occurring environments are strategic; in these environments it is
useful to regard black-box adaptation as a game between two players System
and Environment, moderated by a Network that determines properties such as
the information available to each player during the game.

The structure of this game (e.g., whether the players move simultaneously
or in an alternating manner) and the features of the combined state space X
are given by a combination operator between the models of the System S, the
Environment η and the Network ν. The moves of System and Environment are
given by the models S and η, and their effect is described by the change to the
combined state space X . The information about the moves of the other player
is provided by ν (which may also contribute to the shared state space). Roughly

176 R. Bruni et al.

speaking, S and η determine the moves in the game, whereas ν describes the
information sets and thus, together with the combination operator, determines
whether the game is one with concurrent or sequential moves and whether it is
one of perfect or imperfect information. We call this way of specifying a Gem

model M a game-based presentation (of M). In a game-based presentation we
may say “M1 wins against more opponents (from an adaptation domain A) than
M2” instead of “M1 is more adaptive than M2.”

SOTA/Gem themselves impose no specific organization on models, and many
SOTA/Gem models have a continuous time structure and large state spaces;
therefore writing a game-based presentation of a model does not imply that the
model becomes amenable to game-theoretic analysis. However, typical models
are often structured in a particular way: The model is represented as a hierar-
chy of components, and components interact mostly in a local manner between
themselves and with the environment. The temporal structure of a model can
often be divided into several concurrent threads, where in each thread compo-
nents of the system interact in “episodes” that can themselves be regarded as
a discrete unit. Control propositions can then provide additional structure by
classifying each episode either as “adaptive” or “performative”. In this manner
we can often apply game-theoretic techniques to discrete abstractions of parts
of the overall model, and this analysis is often particularly useful to investigate
the adaptation strategies of a system. The following example will illustrate this
in more detail.

To obtain more interesting adaptation concerns we focus on a slightly more
complex variant of the rescue scenario presented in Section 2. We assume that the
rescue mission is performed by an ensemble E (for ensemble or, as we see shortly,
evaders) consisting of a large number of robots Ei. To keep the kinematics simple
we assume that each robot can instantaneously change direction, but that its
speed is limited by vmax . We can describe its position in a cartesian coordinate
system at each instant with two state variables xi and yi. Its velocity is given by
the derivations vi = ẋi and wi = ẏi with the constraint that

√
v2

i + w2
i ≤ vmax .

We assume that each robot has three ingress routes into the environment on
which it encounters different amounts of toxic waste. Route ρ1 is mostly free of
waste and therefore does not damage the robot; on route ρ2 the robot incurs a
10% chance of suffering debilitating damage that causes it to fail its mission, on
route ρ3 this chance is 20%.

To obtain more interesting adaptive behaviors, we now suppose that there is
a party actively opposing the rescue ensemble, either because there are raptors
in the area that mistake the robot for prey, or because the rescue mission takes
place in a conflict zone in which an enemy is shooting at the robot. We call this
opponent H (for hunters) and assume that each Hj moves at constant speed
vH where supposedly vH > vmax , but where Hj cannot instantaneously change
direction but only turn with a minimum radius τmin . Its cartesian coordinates ξ
and χ are thus described by the following equations

ξ̇ = vH cos θ χ̇ = vH sin θ θ̇ = u · vH/τmin , 0 ≤ u ≤ 1

White-Box and Black-Box Perspectives on Behavioral Self-adaptation 177

where θ is the angle between Hj and the x-axis. It is easy to see that if the speed
vH of Hj is only slightly larger than vmax and if its turning radius τmin is large,
then it is impossible for Hj to catch any Ei. On the other hand, if vH is much
larger than vmax and τmin is small, then a Ei that finds itself close to Hj has no
hope of escaping. What might perhaps not be obvious is that even this simple
hunter/evader dynamics, known under the name “homicidal chauffeur” problem
generates a rich solution space that gives rise to multiple different strategies,
depending on the initial conditions and parameters [20].

The rescue scenario now unfolds in the following way: Each hunter Hj chooses
a route ρκ to guard and each evader Ei chooses a route ρμ to take. The hunters
that have chosen to guard a given route then attack the evaders taking that route.
If Ei can successfully evade all attacks and it is not damaged by the waste, it
completes its rescue mission and receives a reward of 1, otherwise it receives a
reward of 0; if a hunter Hj captures an evader it receives a reward of 1 otherwise
of 0. If an evader Ei is disabled by toxic waves this results in a reward of 1 for
the ensemble H that is not attributed to any Hj .

Both E and H try to optimise their respective rewards; for each trip of
an evader Ei one of the players receives reward 1 and the other 0, therefore
the players will always try to obtain opposite outcomes. Obviously the rewards
obtained by E depend on the strategy chosen by H , and vice versa. Even for this
relatively simple scenario, finding the optimal behavior for the rescue robots is a
non-trivial task. Therefore we have to divide the model into smaller components
that are more amenable to analysis, and then further refine our initial analysis
steps once we have gained a better understanding of the problem. To this end
we will first focus on the choices of single agents.

When looking at the trajectory of an evader Ei through the state space, we
see that it repeatedly moves through the following segments: (1) first it picks
a route ρμ without modifying other parameters in the state space; (2) then it
moves through the other dimensions of the state space without modifying its
choice of route. If we choose Φc so that Xc contains (1) the choice of a route ρμ

when all other parameters are kept constant and (2) the evasive manoeuvring of
an evader when avoiding a hunter, we see that the trajectory for Ei repeatedly
traverses the following stages: (i) a purely adaptive segment of the trace in which
Ei chooses the route it takes (the “adaptation stage”); (ii) a basic segment of the
trace in which Ei performs a rescue mission, possibly interrupted by Ei evading
a hunter (the “performance stage”), the evasion being an adaptive segment of
Ei’s trajectory that is not purely adaptive. This structure supports the design
of the ensemble relatively well: The non-adaptive behaviors that are required in
the basic segment (navigation, picking up the victim, etc.) can be implemented
using established methods. The adaptation in the performance stage depends
only on the local interaction of an evader and a hunter, and it can be solved
for different initial configurations of Ei and Hj . If the developers of the evaders
know the control strategies that are used by the hunters, the designers of the
evaders can exploit this model to develop efficient strategies to counter them, or
determine that no such strategies exist.

178 R. Bruni et al.

ρ1 ρ2 ρ3

ρ1 0, 1 1, 0 1, 0
ρ2 0.9, 0.1 0, 1 0.9, 0.1
ρ3 0.8, 0.2 0.8, 0.2 0,1

Fig. 3. Payoff matrix for the choice of route

The adaptive segment is, in some respects, the most challenging part: It
cannot be locally solved since it depends crucially on the distribution of hunters
between the different routes, and on the expected outcomes of the “homicidal
chauffeur” game between hunters and evaders. In order to restrict the amount of
required game-theoretic background, we study a greatly simplified version of this
question. We assume, for now, that a single hunter H = H1 is matched against a
single evader E = E1 and that the hunter always manages to capture the evader
when they choose the same route. Fig. 3 shows the payoff matrix for this game.
The rows of this matrix represent the route choices of E, the columns the choices
of H . In each cell of the table, the first number gives the reward obtained by E
if this pair of strategies is played, the second number gives the reward of H . For
example, if H and E both choose route ρ1 then H receives a reward of 1 since
we assume that it always captures E, and E receives a reward of 0. If, however,
E chooses ρ2 while H chooses ρ1, then 90% of the time E receives a reward of 1,
whereas 10% of the time it is disabled by toxic waves, and therefore H receives
the reward even though the two players do not encounter each other. See [19]
for more information on utility theory and values of lotteries.

Given this payoff matrix, how should E choose its routes? It is clear that
no choice of route of E is a best reply against all possible choices of H , since
the pair of routes ρi, ρi always results in a loss for H . The solution for robot
E is therefore to mix the routes it chooses, so that H cannot predict the route
that it should guard. Closer investigation of the game results in the observation
that to prevent H from exploiting its choices E has to pick the probability pi

of choosing route ρi so that its probability of survival times the probability of
choosing the route is the same for all routes [22]: 1×p1 = 0.9×p2 = 0.8×p3. This
results in the approximate probabilities p1 = 30%, p2 = 33% p3 = 37%. There-
fore, perhaps slightly counter-intuitively, E has to choose the most dangerous
route most frequently to maximise its guaranteed reward. To refine this analysis
we need to compute the expected outcomes of the “homicidal chauffeur” (HC)
game between E and H . Whereas the choice of route could be cast in terms of a
traditional competitive game this is not possible for the HC game; here the con-
tinuous time and the dynamics generated by the system of differential equations
are essential. We are therefore in the realm of differential games [16].

The HC game generates a rich and varied solution space that we only describe
qualitatively and in general terms: If the hunter H arrives in a position behind
and only slightly offset to the evader E as shown in Fig. 4(a), the best solution
for E is to move away from H in a straight line, and H will follow this line until

White-Box and Black-Box Perspectives on Behavioral Self-adaptation 179

rmin

E

P

(a) Chase

rmin

E

P

(b) Direct approach

rmin

E

P

rmin

(c) Swerve

Fig. 4. Strategies for initial configurations: evader in back front (a) and back (b,c)

it captures E (indicated by the star). If the HC game continues indefinitely long,
the velocity of H is much higher than the maximal velocity vmax of E and the
turn radius τmin of H is sufficiently small this capture will always occur and the
strategy employed by E does not actually matter given the reward structure of
our model. But if H has only a limited range (e.g., due to a small fuel supply),
and the initial position of E is far enough away, E may successfully evade H .
The goal of E in the HC game is therefore to maximise the distance that H has
to cover before capture can no longer be avoided.

If the initial configuration is slightly different, with E behind H , a different
situation may arise: E may navigate towards H in order to arrive inside the circle
described by the turn of H , as shown in Fig. 4(b). Once E is inside the turning
circle of H , the hunter cannot reach the evader by continuing to turn in the same
direction. But this does not mean that E will necessarily escape H : the hunter
can “swerve” away from E, i.e., turn in the opposite direction, then continue
straight to gain some distance and, once it has gained enough separation, turn
back towards E as shown in Fig. 4(c). In this case the correct strategy for E is
to first turn towards H in order to force H into as big a swerve as possible, and
then to turn away from H once the chase situation of Fig. 4(a) has been reached.
By formalising these observations we can compute the probability that E can
escape H for a given distribution of initial configurations. It is thus possible to
use this estimate to improve the choice of ingress route by inserting these values
into the payoff matrix in Fig. 3.

So far the analysis has only taken into account the interaction between two
players. This is not a problem for the HC game, since the pursuit dynamics of the
system consists of a number of independent two-player HC games. But for the
choice of route, the relative sizes of the ensembles E and H can greatly influence
the validity of the analysis: If the cardinalities of H and E are similar then
the analysis remains at least approximately valid for many reasonable strategies.
If however there are three times as many members in H than in E, then the
system H has a strategy that prevents E from completing any rescue mission at
all (guard each route with one third of H ’s members) and the analysis for the
single-robot case cannot be transferred.

180 R. Bruni et al.

There are two additional complications when considering the adaptation of
competing ensembles consisting of multiple members each: (1) When there are
multiple players in each “team” E and H , there is no guarantee that a stable
equilibrium of strategies will emerge; instead, at each point of time E is trying
to find a best strategy against the mix of strategies currently played by the
members of H while simultaneously H is trying to find a best strategy against
the mix of strategies currently played by the members of E. This results in
a dynamical system that may exhibit stable behavior, periodic cycles between
different strategy mixes, or even chaotic changes in the strategy mixes of E and
H . (2) The previous analysis relies on the assumption that both players play
optimal strategies. This is not necessarily the case when a system is deployed
in a real environment, and assuming that opponents play optimally when this is
not often the case leads to less than optimal performance.

For these reasons, systems will rarely be developed with fixed adaptation
rules; instead, members of an ensemble will often observe which strategies (used
either by themselves or by other members) are particularly successful and use
these strategies more frequently in the future. The effects of these kinds of adap-
tations can also be modelled and analysed in a game-theoretic setting: Since it
is possible to compute the reward obtained by different strategy combinations
in the basic segment of our example, we can compute the expected reward for a
strategy used by a rescue robot Ei against a distribution of strategies for H . If we
have large numbers of evaders and hunters, we can regard the sequence of adapta-
tions as an evolutionary game: We abstract from the detailed interleaving of the
segments of individual agents and assume that adaptation is a continuous game
played between randomly chosen evaders and hunters. We assign a probability of
being chosen to each of the paths ρμ for Ei ∈ E and for Hj ∈ H : The expected
value of a choice of ρμ against the distribution of H (respectively E) in the
adaptation stage can be computed using the corresponding performance stages.
The probabilities in the next round of the game are adjusted using these values:
strategies with high values in the previous stage are played more frequently in
the next stage; strategies with low values are played less frequently.

Chapter II.4 [13] in this volume goes into more details about evolutionary
games and the methods to solve them. Note that the separation of behaviors into
adaptive and base behaviors allowed us to reduce the analysis task into the pair-
wise evaluation of configurations (which depends on the number of configurations
but not on the number of agents), and an evolutionary game between two popu-
lations of configurations (which, again, depends on the number of configurations
but not the size of the ensembles). Since neither part of the analysis depends on
the size of the ensembles, they scale to ensembles of arbitrary size. Furthermore,
while the computation of the values of the performance stages is rather involved,
this computation can be performed offline; for a moderate number of configu-
rations the computation of an adaptation strategy via the evolutionary game
becomes viable at run time. This is important if the evaders need to dynami-
cally adjust their adaptation strategy (e.g., because there is uncertainty about
the distribution of strategies used by the hunters).

White-Box and Black-Box Perspectives on Behavioral Self-adaptation 181

We conclude this section by returning to the connection between black-box
and white-box adaptation mentioned in Section 4.1: Suppose that we start with
a simple system that supports neither the choice of route nor the evasive ma-
noeuvring described in this section. By adding either of these features to the
implementation we allow the system to move along trajectories through its con-
trol space XC that were not present in the original system. The new trajectories
in turn allow the system to operate in adaptation spaces in which it previously
could not reach its goals, i.e., they increase its black-box adaptivity. Similarly,
if we want to increase the system’s black-box adaptivity so that it can operate
in new environments, we have to add new trajectories through its phase space.
Since these trajectories serve the express purpose of adapting the system to novel
situations it is sensible that the parts of the phase space traversed by these tra-
jectories belong to the control space XC . This shows again that black-box and
white-box adaptation are closely connected when the control propositions of the
system are appropriately defined.

5 Related Work

The notion of behavioral adaptation has been studied in several works. The
interested reader is referred to [7,10,23]. For a discussion of work related to the
main formalisms used in this paper like Gem [15] and AIAs [6] we refer to
the corresponding publications. We briefly discuss here some works related to
properties of adaptive systems, a key notion in the presented contribution.

Several proposals follow a black-box perspective that aims at somehow mea-
suring or expressing requirements on how a software system changes its ability
to reach a goal under specific context variations. An interesting contribution of
this kind is represented by [18], which analyses the notion of adaptation in a
very general sense and identifies the main concepts around adaptation drawn
from several different disciplines, including evolution theory, biology, psychology,
business, control theory and cybernetics. Furthermore, it provides some general
guidelines on the essential features of adaptive systems in order to support their
design and understanding. The author claims that “in general, adaptation is a
process about changing something, so that it would be more suitable or fit for some
purpose that it would have not been otherwise”. Accordingly, the term adaptabil-
ity is then used to denote the capacity of enacting adaptation, and adaptivity
for the degree or extent to which adaptation is enacted. The author concludes
by suggesting that “due to the relativity of adaptation it does not really matter
whether a system is adaptive or not (they all are, in some way or another), but
with respect to what it is adaptive”.

A formal black-box definition is proposed in [5]. If a system reacts differently
to the same input stream provided by the user at different times, then the system
is considered to be adaptive because ordinary systems should exhibit a determin-
istic behavior. Thus, a non-deterministic reaction is interpreted as an evidence
of the fact that the system adapted its behavior after an interaction with the
environment. For example, a system where a change of behavior is triggered by

182 R. Bruni et al.

an interaction with the user would not be classified as adaptive, which we think
is too strong a requirement.

A different line of research studies the properties of adaptive systems and
their classification according to the kind of computations that are concerned
with, so that the usual adaptation analysis S � A is instantiated in some of the
computations of S depending of the class of goals in A. We have seen this in the
trace-based semantics of Gem presented here.

Some authors [29,28,17] distinguish the following three kinds of properties.
Local properties are “properties of one [behavioral] mode”, i.e. properties that
must be satisfied by basic computations only. Adaptation properties are to be
“satisfied on interval states when adapting from one behavioral mode to another”,
i.e. properties of adaptation phases. Global properties “regard program behavior
and adaptations as a whole. They should be satisfied by the adaptive program
throughout its execution, regardless of the adaptations.”, i.e. properties about
the overall behavior of the system.

The authors of [6] consider also the class of adaptability properties, i.e. prop-
erties that may fail for local (i.e. basic) computations, and that need the adapting
capability of the system to be satisfied. We refer to [6] for a presentation of some
such properties in the context of AIAs.

6 Conclusion

The development of reliable autonomic computing systems poses many chal-
lenges for the software engineer. Several approaches have been proposed to tackle
those challenges at different stages of system development and regarding the var-
ious aspects of those systems. In this paper we focused on behavioral adaptation
aspects as tackled in requirements engineering, modeling and programming activ-
ities within development methodologies such as the one of ASCENS (cf. Fig.1).

We have reconciled two foundational approaches to behavioral adaptation,
each taking a different perspective: Gem which provides a black-box perspective,
useful to reason about adaptivity from the requirements point of view, and AIAs,
which provide a white-box perspective, useful to reason about adaptivity from
the modeling and programming point of view. A first common ground to relate
both approaches is a trace-based semantics. First, Gem is instantiated on a
trace inclusion-based notion of property satisfaction (i.e. adaptation in the Gem

approach). Second, the AIA approach allows us to distinguish adaptations from
normal behaviors within traces. A notion of coherence is then defined which can
be used to identify mismatches between requirements and models in the design of
an autonomic system. A second, more sophisticated approach has been presented
as well, built on a game-based semantics of adaptive systems, as advocated in [8].

An interesting line of research is to investigate quantitative notions of the
hereby proposed notion of adaptation coherence, e.g. to measure the influence
of adaptation mechanisms to achieve certain goals that would provide system
developers with further tools to assess and analyse their designs.

White-Box and Black-Box Perspectives on Behavioral Self-adaptation 183

References

1. Abeywickrama, D.B., Bicocchi, N., Zambonelli, F.: SOTA: Towards a general model
for self-adaptive systems. In: Reddy, S., Drira, K. (eds.) WETICE 2012, pp. 48–53.
IEEE Computer Society Press, Los Alamitos (2012)

2. de Alfaro, L.: Game models for open systems. In: Dershowitz, N. (ed.) Verification:
Theory and Practice. LNCS, vol. 2772, pp. 269–289. Springer, Heidelberg (2004)

3. de Alfaro, L., Henzinger, T.A.: Interface automata. ACM SIGSOFT Software En-
gineering Notes, vol. 26(5), ESEC/SIGSOFT FSE 2001, pp. 109–120 (2001)

4. Autonomic Service Component Ensembles (ASCENS),
http://www.ascens-ist.eu

5. Broy, M., Leuxner, C., Sitou, W., Spanfelner, B., Winter, S.: Formalizing the notion
of adaptive system behavior. In: Shin, S.Y., Ossowski, S. (eds.) SAC 2009, pp. 1029–
1033. ACM Press, New York (2009)

6. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: Adaptable
transition systems. In: Mart́ı-Oliet, N., Palomino, M. (eds.) WADT 2012. LNCS,
vol. 7841, pp. 95–110. Springer, Heidelberg (2013)

7. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: A con-
ceptual framework for adaptation. In: de Lara, J., Zisman, A. (eds.) FASE 2012.
LNCS, vol. 7212, pp. 240–254. Springer, Heidelberg (2012)

8. Bruni, R., Corradini, A., Gadducci, F., Lluch-Lafuente, A., Vandin, A.: Adaptation
is a game. TinyToCS 2 (2013)

9. Bruni, R., Corradini, A., Gadducci, F., Lluch-Lafuente, A., Vandin, A.: Modelling
and analyzing adaptive self-assembly strategies with Maude. Science of Computer
Programming 99(1), 75–94 (2015)

10. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: A white
box perspective on adaptation. In: De Nicola, R., Hennicker, R. (eds.) Software,
Services and Systems. LNCS, vol. 8950, Springer, Heidelberg (2015)

11. De Nicola, R., Latella, D., Lafuente, A.L., Loreti, M., Margheri, A., Massink, M.,
Morichetta, A., Pugliese, R., Tiezzi, F., Vandin, A.: The SCEL Language: Design,
Implementation, Verification. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.)
Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 3–71.
Springer, Heidelberg (2015)

12. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: The SCEL language. ACM Transactions on Autonomous
and Adaptive Systems 9(2), 7:1–7:29 (2014)

13. Hölzl, M., Gabor, T.: Reasoning and Learning for Awareness and Adaptation. In:
Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998, pp. 249–290. Springer, Heidelberg
(2015)

14. Hölzl, M., Koch, N., Puviani, M., Wirsing, M., Zambonelli, F.: The Ensemble De-
velopment Life Cycle and Best Practices for Collective Autonomic Systems. In:
Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998, pp. 325–354. Springer, Heidelberg
(2015)

15. Hölzl, M., Wirsing, M.: Towards a system model for ensembles. In: Agha, G., Danvy,
O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological Sys-
tems. LNCS, vol. 7000, pp. 241–261. Springer, Heidelberg (2011)

16. Isaacs, R.: Differential Games. Dover, New York (1965)

http://www.ascens-ist.eu

184 R. Bruni et al.

17. Kulkarni, S.S., Biyani, K.N.: Correctness of component-based adaptation. In:
Crnković, I., Stafford, J.A., Schmidt, H.W., Wallnau, K. (eds.) CBSE 2004. LNCS,
vol. 3054, pp. 48–58. Springer, Heidelberg (2004)

18. Lints, T.: The essentials in defining adaptation. Aerospace and Electronic Sys-
tems 27(1), 37–41 (2012)

19. Maschler, M., Solan, E., Zamir, S.: Game Theory. Cambridge University Press,
Cambridge (2013)

20. Patsko, V.S., Turova, V.L.: Homicidal chauffeur game: History and modern studies.
In: Breton, M., Szajowski, K. (eds.) Advances in Dynamic Games. Annals of the
International Society of Dynamic Games, vol. 11, pp. 227–252. Birkhäuser, Basel
(2011)

21. Pinciroli, C., Bonani, M., Mondada, F., Dorigo, M.: Adaptation and Awareness in
Robot Ensembles: Scenarios and Algorithms. In: Wirsing, M., Hölzl, M., Koch, N.,
Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS,
vol. 8998, pp. 471–494. Springer, Heidelberg (2015)

22. Ross, D.: Game theory. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philos-
ophy. Stanford University, Winter 2014 edn. (2014),
http://plato.stanford.edu/archives/win2014/entries/game-theory/

23. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. ACM Transactions on Autonomous and Adaptive Systems 4(2), 14:1–14:42
(2009)

24. Salvaneschi, G., Ghezzi, C., Pradella, M.: Context-oriented programming: A pro-
gramming paradigm for autonomic systems (v2). CoRR abs/1105.0069 (2012)

25. Šerbedžija, N.: The ASCENS Case Studies: Results and Common Aspects. In: Wirs-
ing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective
Autonomic Systems. LNCS, vol. 8998, pp. 451–469. Springer, Heidelberg (2015)

26. Vassev, E., Hinchey, M.: Engineering Requirements for Autonomy Features. In:
Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998, pp. 379–403. Springer, Heidelberg
(2015)

27. Zadeh, L.A.: On the definition of adaptivity. Proceedings of the IEEE 51(3), 469–
470 (1963)

28. Zhang, J., Goldsby, H., Cheng, B.H.C.: Modular verification of dynamically adap-
tive systems. In: Moreira, A., Schwanninger, C., Baillargeon, R., Grechanik, M.
(eds.) AOSD 2009, pp. 161–172. ACM Press, New York (2009)

29. Zhao, Y., Ma, D., Li, J., Li, Z.: Model checking of adaptive programs with mode-
extended linear temporal logic. In: EASe 2011, pp. 40–48. IEEE Computer Society
Press, Los Alamitos (2011)

http://plato.stanford.edu/archives/win2014/entries/game-theory/

Chapter II.2

From Local to Global Knowledge and Back�

Nicklas Hoch1, Giacoma Valentina Monreale2, Ugo Montanari2,
Matteo Sammartino2, and Alain Tcheukam Siwe3

1 Volkswagen AG, Corporate Research Group, Wolfsburg, Germany
2 Dipartimento di Informatica, Università di Pisa, Pisa, Italy

3 IMT Institute for Advanced Studies, Lucca, Italy

Abstract. Two forms of knowledge are considered: declarative and pro-
cedural. The former is easy to extend but it is equipped with expensive
deduction mechanisms, while the latter is efficiently executable but it
can hardly anticipate all the special cases. In the first part of this chap-
ter (Sections 2 and 3), we first define a syntactic representation of Soft
Constraint Satisfaction Problems (SCSPs), which allows us to express
dynamic programming (DP) strategies. For the e-mobility case study of
ASCENS, we use Soft Constraint Logic Programming (SCLP) to pro-
gram (in CIAO Prolog) and solve local optimization problems of single
electric vehicles. Then we treat the global optimization problem of find-
ing optimal parking spots for all the cars. We provide: (i) a Java orches-
trator for the coordination of local SCLP optimizations; and (ii) a DP
algorithm, which corresponds to a local to global propagation and back.
In the second part of this chapter (Section 4) we assume that differ-
ent subjects are entitled to decide. The case study concerns a smart grid
model where various prosumers (producers-consumers) negotiate (in real
time, according to the DEZENT approach) the cost of the exchanged en-
ergy. Then each consumer tries to plan an optimal consumption profile
(computed via DP) where (s)he uses less energy when it is expensive
and more energy when it is cheap, conversely for a producer. Finally, the
notion of an aggregator is introduced, whose aim is to sell flexibility to
the market.

Keywords: service component ensembles, local knowledge, global knowledge,
declarative knowledge, procedural knowledge, constraint programming, soft con-
straint, soft constraint satisfaction problem, soft constraint logic programming,
hierarchical soft constraint satisfaction problem, dynamic programming,
e-mobility, prolog, ciao prolog, optimization, electric car, parking optimization
problem, smart grid, prosumer, dezent, address project, power, energy, aggrega-
tor, java, constraint semiring, reinforcement learning.

� This research was supported by the European project IP 257414 (ASCENS).

M. Wirsing et al. (eds.): Collective Autonomic Systems, LNCS 8998, pp. 185–220, 2015.
c© Springer International Publishing Switzerland 2015

186 N. Hoch et al.

1 Introduction

Service Component ensembles are usually distributed, open systems. The re-
quirements of self-awareness, self management and autonomicity imply the exis-
tence of convenient knowledge representation and deduction mechanisms. Typi-
cally, information is distributed in the various components of the system, which
on the other hand can appear and disappear, making the structure of the en-
semble quite variable in time.

As a consequence, it is not efficient to keep a full representation of the global
knowledge of the system. Rather, it is better to start from the local knowledge
of components and to derive the required conclusions by need (forward propaga-
tion). Conversely, the discovery of certain global properties may imply important
knowledge acquisitions and state changes by the components (backward propa-
gation). However, the deduction of global knowledge from local information may
be a complex procedure, typically of exponential complexity, similar to the pro-
cess of solving partial differential equations. Thus we expect to be impossible to
derive an exact/complete global knowledge and we are ready to accept various
forms of approximation.

Two rather different forms of knowledge exist, declarative and procedural,
which have been compared and contrasted since the beginning of the studies of
knowledge representation in artificial intelligence [20].

Declarative knowledge is typically (i) symbolic; (ii) equipped with deduction
procedures which define its (usually much larger) closure; (iii) easy to extend;
but (iv) deduction steps may require exhaustive “British museum” search, and
thus often inacceptable amounts of space and time. Procedural knowledge is
instead efficiently accessible (executable), but rather boring, in the sense that
all the special cases must be anticipated, rigid and difficult to modify.

As a consequence, the process of forward propagation is rather different for
declarative and procedural knowledge: the former corresponds to proof discovery
in some formal system, while the latter can be obtained via coordination of ex-
ecutable processes in some procedural language. The most convenient approach
is thus to employ a declarative formalism for local deductions (possibly con-
cerning a small number of components) and a procedural formalism for forward
propagation.

In the applications ASCENS is considering, both kinds of knowledge are
needed, with independent roles. That is, none of them should be fully controlled
by the other. For instance, it should not be the case that the declarative part
synthesizes the code for the procedural knowledge and deploys it. In fact, to do
so the declarative part should be fully aware of the operational semantics of the
programs/machines/networks and able to reason about it, which seems unfeasi-
ble. Conversely, branching procedures of the procedural part should be simple
and should query the declarative part for issues related, e.g., to the ontology of
the application area.

The interaction/coordination primitives between the two kinds of knowledge
are thus the critical choice, since they should have a clear meaning on both
sides and a reasonable correspondence, even if the two semantics have just a

From Local to Global Knowledge and Back 187

limited overlapping. In general, the main difference between the two knowledge
forms is that disjunctive expressions in the declarative case, which are essential
for expressiveness, correspond to nondeterminism in the procedural case, which
is usually present only in very restricted forms. For instance, process descrip-
tion languages and logic languages resolve nondeterminism at the first move. A
significant extension would be introducing nondeterminism in a more explicit,
useful form. We remind that AND-OR semantics of logic programming has been
extensively studied in the Fifth Generation period, to take advantage of both
AND and OR parallelism e.g. in the Andorra Kernel Language (AKL). Here
we can envisage a complex state in the procedural component, where suitable
mutual exclusion relations hold between processes, e.g. in the style of Petri net
nonsequential, nonderministic processes. However, we will not examine this issue
further in this chapter.

Among the existing formalisms, a good example of combination of declara-
tive and procedural knowledge is offered by constraint programming [32], where
a constraint system, able to represent declarative knowledge, coexists with some
imperative/functional/process description language. Also, while classical con-
straints have a crisp, logical interpretation (they either hold or do not hold), it
is convenient to interpret soft constraints in a constraint semiring, where the
values may represent partial validity (e.g. fuzzy constraints) or costs in an op-
timization problem. Constraint semirings are equipped with multiplicative and
additive operations, expressing constraint combination and constraint choice re-
spectively. For the optimization case, the costs are real numbers plus infinity,
while the multiplicative and additive operations are sum and min, respectively.

In Section 2, we shortly introduce constraint semirings, Soft Constraint Sat-
isfaction Problems (SCSP) and Soft Constraint Logic Programming (SCLP). We
define a syntactic representation of SCSPs which allows one to express dynamic
programming solution strategies. Such strategies, for large problems, correspond
to forward propagation, and we hint at convenient approximation methods for
limiting the computational complexity. Then in Section 3 we present our contri-
butions to the e-mobility case study of ASCENS. The first contribution is about
using SCLP for solving some optimization problems of an electrical vehicle at
trip level and at journey level. Since the problem concerns a single vehicle at
a time, and the solution is exact, we can consider it as applying a declarative
approach to a local problem. We implemented the SCLP program on a CIAO
Prolog system, where the soft primitives are separately realized on the same sys-
tem. The second contribution is about a parking problem, where the best global
allocation must be found of all the cars to the available parking slots. For each
car, the considered cost includes driving distance from the car to the chosen
parking lot, walking distance from the parking lot to the destination address,
and the cost of the parking. Being the problem global, its solution is expected
to be unfeasible (both for our SCLP implementation and for state-of-the-art
optimization packages). Thus the approach is proposed of finding the optimal
slot for each car separately (local knowledge) and to combine them heuristically
using a procedural programming language (forward propagation). In the actual

188 N. Hoch et al.

implementation, a Java program checks that the constraints on the capacity of
parking lots are satisfied by the tentative allocation based only on optimal, local,
independent choices of the single cars. If there are parking lots with too many
cars, their costs is increased, and the local optimization procedure is repeated, in
the hope that the number of cars choosing the critical lots is adequately reduced.

In Section 4 we consider the more complex case where the computation pro-
cess cannot be expressed as an optimization problem, since there are different
subjects entitled to decide. The case study concerns a smart grid model where
various prosumers (producers-consumers) negotiate (in real time, according to
the DEZENT approach) the cost of the exchanged energy. The parameters of the
negotiation (implying, e.g., a slow or fast increase/decrease in the offer) are de-
termined using a reinforcement learning approach. Each consumer tries to plan
an optimal consumption profile (computed via dynamic programming) where
(s)he uses less energy when it is expensive and more energy when it is cheap,
conversely for a producer. Variations of energy requirements are possible using
an energy storage, with limited capacity and charging speed. Extensive exper-
imental results using the DEZENT simulator allow to establish the conditions
under which the gain is maximal with respect to a neutral prosumer which does
not modify the basic consumption profile. Finally, the notion of aggregator is
introduced, whose aim is to sell flexibility in its market, and its realization in
the EU project ADDRESS is compared with our DEZENT version.

2 Constraints Programming

2.1 Constraint Satisfaction Problems

Classical constraint satisfaction problems (CSPs) [35] represent an expressive
and natural formalism useful to specify different types of real-life problems.
A CSP can be described as a set of variables with their domains, and a set
of constraints. A constraint is a limitation of the possible combinations of the
values of some variables. So, solving a CSP consists in finding an assignment of
values to all its variables guaranteeing that all constraints are satisfied.

Despite their applicability, the main limit is the ability of just stating if a
certain assignment to the variables is allowed or not. This is indeed not enough
to model scenarios where the knowledge is either not entirely available or not
crisp. In these cases constraints are preferences and, when the problem is over-
constrained, one would like to find a solution that is not so bad, i.e., the best
solution according to the levels of preference. For this reason, in [9,10], the soft
CSP framework has been proposed. It extends classical constraints by adding
to the usual notion of CSP the concept of a structure expressing the levels of
satisfiability or the costs of a constraint. Such a structure is represented by a
semiring, that is, a set with two operations: one (usually denoted by +) is used
to generate an ordering over the levels, while the other one (denoted by ×) is
used to define how two levels can be combined and which level is the result of
such a combination.

From Local to Global Knowledge and Back 189

2.2 CSP and Dynamic Programming

In this section we shortly illustrate an approach to SCSPs based on dynamic pro-
gramming, understood as the decoupling of declarative and procedural knowl-
edge. Here SCSPs are represented as distributed systems where constraints are
deployed in different locations, connected via their shared variables. The proce-
dural part consists in decomposing the problem into subproblems, each depend-
ing on a small set of variables. The declarative part then consists in optimiz-
ing subproblems with respect to their variables, which then can be eliminated.
The global solution is then reconstructed. The problem of finding the optimal
strategy of variable elimination, here solved heuristically, is called the secondary
optimization problem of dynamic programming [8]. It affects in an essential way
the computational costs of solutions. Details and proofs can be found in [21].

An Algebraic Specification for SCSPs. Let V = {x, y, . . . } a set of variables
and C = {A, B, . . . } a set of atomic constraints, equipped with an arity function
ar : C → N telling how many variables each constraint involves. We assume an
empty constraint nil, with ar(nil) = 0. The SCSP signature is given by

p, q := p ‖ q | (x)p | A(x̃) | nil

where: the parallel composition p ‖ q consists of two subproblems p and q,
possibly sharing some variables; the restriction (x)p is p where the assignment
for x has already been determined; the atomic problem A(x̃) represents a problem
that only involves the constraint A over variables x̃; nil represents the empty
problem. The variable x is said to be bound in (x)p. The free variables of p, fv(p),
are those variables that have an occurrence in p that is not inside a subterm of
p of the form (x)q.

We consider terms up to structural congruence. The operator ‖ (with nil)
forms a commutative monoid, meaning that problems in parallel can be solved
in any order. Restrictions can be α-converted, i.e., names of assigned variables
are irrelevant, and they can also be swapped, i.e., assignments can happen in
any order, and can be removed, whenever restricted variables do not appear in
their scope. The most important axiom is scope extension

(x)(p ‖ q) = (x)p ‖ q x /∈ fv(q)

The intuition is that, instead of assigning x when solving the whole p ‖ q, the
assignment can happen earlier, when solving p, if q does not involve x. SCSP
specifications without scope extension are called hierarchical, because the order
in which variables are assigned w.r.t. subproblems cannot be changed.

We include permutations in the signature, that are operations representing
bijective functions over variables. The importance of permutations for represent-
ing signatures with variables and variable binding has long been recognized. In
particular, through permutation we can define the support of an element in a
model of the SCSP signature, that is the set of “relevant” variables. For instance,
the support of a term p is fv(p).

190 N. Hoch et al.

Every non-hierarchical term has a normal form, with all restrictions at the
top level

(x̃)(A1(x̃1) ‖ A2(x̃2) ‖ · · · ‖ An(x̃n)) ,

which can be obtained via structural congruence. A term in normal form is
intuitively closer to a typical SCSP: x̃ specifies which variables should be as-
signed, and the term in its scope represents constraints and their connections.
Non-hierarchical terms also admit canonical forms, dual to normal forms: every
restriction (x) is as close as possible to the atomic problems where x occurs.
They are produced by the repeated application of the scope extension axiom
from left to right, until termination. A term may have more than one canonical
form, each of them being a hierarchical term. For instance the term

(x1)(x2)(x3)(A(x1, x2) ‖ B(x2, x3) ‖ C(x3))

has exactly the following four canonical forms

(x1)((x2)(A(x1, x2) ‖ (x3)(B(x2, x3) ‖ C(x3))))
(x1)((x3)((x2)(A(x1, x2) ‖ B(x2, x3)) ‖ C(x3)))
(x2)((x1)A(x1, x2) ‖ (x3)(B(x2, x3) ‖ C(x3)))
(x3)((x2)((x1)A(x1, x2) ‖ B(x2, x3)) ‖ C(x3))

Notice that

(x2)((x1)A(x1, x2) ‖ (x3)(B(x2, x3) ‖ C(x3)))
(x2)((x3)(B(x2, x3) ‖ C(x3)) ‖ (x1)A(x1, x2))

and

(x1)((x3)((x2)(A(x1, x2) ‖ B(x2, x3)) ‖ C(x3)))
(x3)((x1)((x2)(A(x1, x2) ‖ B(x2, x3)) ‖ C(x3)))

are structurally congruent as hierarchical terms, so they correspond to the same
canonical forms.

Evaluation of SCSP Terms. SCSP terms can be evaluated in a model of the
SCSP specification, that is: a set of values, equipped with interpretations of syn-
tactic operators complying with the axioms. It can be shown that structurally
congruent terms have the same evaluation. However, evaluations may be com-
puted in different ways, each possibly with a different computational cost. One
can consider a notion of complexity for a SCSP term p, similar to the one of [8],
estimating the cost of computing its evaluation �p�. This is given by the function
with greatest “size” of subterms q of p encountered while inductively construct-
ing �p�, the size being given by |fv(q)|. It can be shown that any canonical form
of a term has complexity lower or equal than the normal form.

From Local to Global Knowledge and Back 191

Computation of Cost Functions via Dynamic Programming. In the
context of optimization problems, we can evaluate a SCSP term p as a cost
function

�p� : (V → D) → R∞

giving a cost to each assignment to the free variables of p (discarding assignments
to other variables). Typically, parallel composition and restriction are interpreted
on cost functions as sum of costs and minimization w.r.t. the restricted variable,
respectively. We will see an example of another interpretation in a later section.

In order to compute �p�, one has to choose a particular hierarchical term for
p, which amounts to choosing the order of variable elimination, i.e., a solution of
the secondary optimization problem. Then, �p� can be computed using dynamic
programming with tabling. In fact, since �p� is only determined by fv(p), it
admits a finite representation as a table associating values to all assignments to
fv(p). More precisely, �p� is computed, following a bottom-up order, from atomic
subterms to increasingly complex terms. 4 This allows computing and storing
tabular representations of cost functions the first time they are encountered, once
and for all. Notice that the algorithm is parametric w.r.t. the interpretation of
syntactic operators on cost functions. We emphasize that each hierarchical term,
structurally congruent to p, corresponds to a different solution algorithm with
its own computational complexity, even if all such terms compute the same cost
function �p�. Therefore, the notion of hierarchical term is meaningful by itself.

2.3 Constraint Logic Programming

Constraint logic programming (CLP) [24] extends logic programming (LP) by
embedding constraints in it: term equalities are replaced with constraints and the
basic operation of LP languages, the unification, is replaced by constraint han-
dling in a constraint system. It therefore inherits the declarative approach of LP,
according to which the programmer specifies what to compute while disregarding
how to compute it, by also offering efficient constraint-solving algorithms.

However, only classical constraints can be handled in the CLP framework.
So, in [11], CLP has been extended to also handle soft constraints. This has
led to a high-level and flexible declarative programming formalism, called Soft
CLP (SCLP), allowing to easily model and solve real-life problems involving
constraints of different types. Roughly speaking, SCLP programs are logic pro-
grams where constraints are represented by predicates which are defined by
clauses whose body is a value of the semiring modeling the levels of satisfiabil-
ity or the costs of the constraints. The flexibility of the approach is due to the
fact that the same framework can be used to handle different kinds of soft con-
straints by simply choosing different semirings. It can indeed be used to handle
fuzzy, probabilistic, prioritized and optimization problems, as well as classical
constraints.
4 Actually, thanks to structural congruence, we can compute the cost function of many

parallel terms at once, and we can optimize w.r.t. a set of restrictions, i.e., a sequence
of restrictions at the same level. We will see an example in a later section.

192 N. Hoch et al.

Fig. 1. Levels of mobility in the e-mobility framework

3 E-mobility Optimization Problems

In the e-mobility case study, a user is positioned in a location and has a set
of appointments. Each of them is in a location and has a starting time and a
duration. The user makes a series of decisions regarding the sequences of trips
from an appointment to another one. For example, he decides which route he
wants to follow, where to park and if and how to charge the Electric Vehicle
(EV hereafter) at the appointment location. All possible combinations of travel
choices form the choice set. A travel choice is optimal if it minimizes the user’
cost criteria.

In [22], the authors propose a hierarchical presentation of the e-mobility
framework, which they exploit to decompose the optimization problem in sub-
optimization problems. In particular, they identify four levels of mobility, de-
scribed in Figure 1: the component level, whose main tasks are the inter- and
intra-component coordination; the trip level, whose main task is the time and
energy optimal routing; the journey level, which handles sequences of trips to-
gether with charging and parking strategies; and the mobility level, which handles
mobility services, such as car and ride service. Each level offers different opti-
mization problems and the results of the lower level can be employed as inputs
of the higher level. However, since, in general, the best solution of the lower
level could be not optimal for the higher one, the results of the lower level could
contain several solutions and not only the best one.

Besides optimizing local resources, the e-Mobility case study aims at solv-
ing global problems, involving large ensembles of different vehicles. Such large
problems tend to be complex and often a globally optimal solution may be im-
possible to find. For this reason specific strategies are needed to solve them. In
particular, we are interested in the parking optimization problem [4], consisting
in finding the best parking lot for each vehicle of an ensemble. The best parking
lot is chosen by considering: the distance from the current location of the vehicle
to the parking lot, the distance from the parking lot to the appointment location
and the cost of the parking lot.

From Local to Global Knowledge and Back 193

�������	r
〈3,3〉 ��

〈1,1〉

��

�������	s

〈1,1〉

��
�������	p

〈3,9〉

��

〈2,7〉

��������������� 〈2,4〉 ���������	q

〈1,1〉

��

〈4,8〉

��������������� 〈2,4〉 ���������	t

Loc. Start. time Dur.
p 7 1
r 11 2
t 18 3

Name Spots Loc.
csp1 7 p
csr1 4 r
csr2 0 r

Road Network Appointments Charging Stations

Fig. 2. The road network, the user’s appointments and the charging stations

3.1 Trip Level and Journey Level Optimization Problems

Here we consider the trip level and journey level optimization problems. Finding
a single optimal trip is the classical shortest path problem. Only, when there
are different, two or more, incomparable costs for the same path (e.g., travel
time and fuel consumption), the Pareto solution should be found, namely the
set of tuples of costs not worse in all components than any other tuple. Which
solution will actually be taken will be left to further steps, taking into account
additional requirements by the user. Finding instead the optimal journey, that
is, the optimal sequence of coupled trips, consists in finding the best journeys not
only in terms of travel time and energy consumption, but also in terms of other
important criteria for the user, such as the charging cost, the number of charging
events, etc. However, the solution needs to guarantee that the user reaches each
appointment in time and that the state of charge (SoC) of the vehicle never falls
below a predefined threshold.

The trip level problem substantially coincides with the multicriteria version
of the shortest path problem modeled in [14] as an SCLP program. So, start-
ing from a slightly different specification of this problem, we propose an SCLP
program modeling the journey problem. In order to also actually execute both
SCLP programs, we propose CIAO Prolog [15], a system supporting constraint
logic programming. We therefore explicitly implement the soft framework, by
defining two predicates, the plus and the times ones, which respectively model
the additive and the multiplicative operations of the semiring. More details can
be found in [27].

Models. In the trip level optimization problem, the road network is indeed
represented by a directed graph G := (N, E), where each arc e ∈ E from a node
p to a node q has associated a label 〈cT , cE〉, that is, a pair whose elements
represent the costs, respectively in terms of time and energy consumption, of
the arc from p to q.

So, given the road network G, such as the one on the left of Figure 2, a source
node ns and a destination node nd, the problem consists in finding all the best
paths between ns and nd in terms of time and energy consumption. Note that,

194 N. Hoch et al.

since the costs of the arcs are elements of a partially ordered set, the solution
can contain several paths, that is, all paths which are not dominated by others,
but which have different incomparable costs. For example, if we want to know
the best paths from p to t in the graph of Figure 2, the solution will contain
both the paths {p, t} with cost 〈3, 9〉 and {p, q, t} with cost 〈4, 8〉. The former is
indeed better in terms of time while the latter in terms of energy consumption.

As far as the journey level optimization problem is concerned, we use the for-
malization presented in [22]. Actually, we consider a simpler version of it, which
avoids to consider car parks and the time that the users would take to go from
either the car park or the charging station to the location of the appointment.
Moreover, we consider only the time and energy consumption as cost criteria
to be minimized. All these simplifications allow a slender and more readable
presentation of the SCLP program modeling the problem.

Let A = {A1, . . . , An} be the set of the user’s appointments. In order to
describe the problem, we use different time variables. All of them have the shape
it

Y
Z , where i denotes the appointment, Y ∈ {D, A} (D stands for drive and A

for appointment), and Z ∈ {S, E} (S stands for start and E for end).
Each appointment is defined by a location Li, a starting time it

A
S , an end

time it
A
E and therefore a duration id

A. In order to go from an appointment
Ai to the next one Ai+1, the user leaves with an EV from the location Li at
time it

D
S and drive to location Li+1. The user travels along the route alternative

iRD (computed by the trip level problem), which consumes energy and hence
reduces the SoC. Obviously, the chosen route must allow the user to arrive to
destination with the SoC of his EV. We assume that the SoC always decreases
during driving and increases during charging events5. The user arrives at it

D
E and

the appointment starts at it
A
S . The user must arrive in time to the appointment,

so it is required that it
D
E ≤ it

A
S . During the appointment, it is also possible to

schedule a charging event if the SoC of the EV is not enough to continue the
journey. We assume to have a set of charging stations. Each of them is simply
defined by its name CSname, the number of available charging spots SpotsNum,
and the location L where it is.

Therefore, given the road network G, a set of appointments, as the ones
described in the table in the middle of Figure 2, and a set of charging stations,
as the ones in the rightmost table of Figure 2, the problem consists in finding
all the best journeys through all the appointment locations in terms of time
and energy consumption. As for the travel optimization problem, also here the
solution can contain several journeys, that is, all the non-dominated ones.

SCLP Programs. In the following, we show how the SCLP framework can be
used to solve the two optimization problems presented.

As far as the trip level optimization problem, we propose a slightly different
version of the model proposed in [14] for the multi-criteria shortest path problem.
So, as there, we consider an SCLP program over the c-semiring denoted PH(S)
5 This is the typical behaviour of EVs, however, as explained in [22], in particular

cases it might also increase during driving and decreases during charging.

From Local to Global Knowledge and Back 195

which, given a source node ns and a target node nd, allows us to obtain the set
of the costs of all non-dominated paths from ns to nd.

The semiring PH(S) is obtained starting from a semiring S = 〈A, +, ×, 0, 1〉,
which in our case is the one modeling the costs associated to each edge, i.e, S =
〈N2, min′, +′, 〈∞, ∞〉, 〈0, 0〉〉, where min′ and +′ are the min and + operations
extended to pairs. Indeed, in general we want to minimize the sum of each cost,
but, since we want to obtain all the non dominated paths, we consider PH(S).

Given a semiring S, we define PH(S) = 〈PH(A), 	, ×∗, ∅, A〉, where PH(A)
is the Hoare Power Domain of A, that is, PH(A) = {S ⊆ A|x ∈ S, y ≤S x implies
y ∈ S}. In the finite case, these sets are isomorphic to those containing just the
non-dominated values, thus, in the following, we will use this more compact and
efficient representation, where each element of PH(A) will represent the costs
of all non-dominated paths from a node to another one. The top element of the
semiring is the set A (its compact form is {1}, which in our example is {〈0, 0〉});
the bottom element is the empty set; 	 is the formal union that takes two sets
and gives their union; ×∗ takes two sets and produces another one obtained by
multiplying (using the multiplicative operation of the original semiring, in our
case +′) each element of the first set with each element of the second one.

Note that, in the partial order induced by the additive operation of this
semiring, a ≤P H(S) b intuitively means that for each element of a, there exists
an element of b which dominates it (in the partial order of the original semiring).

Following [14], in order to also really execute the SCLP program, we model
the problem with a program in CIAO Prolog, shown in Figure 3.

Here we consider the road network presented in Figure 2, so we have a set of
clauses modeling it. In particular, we have a set of facts modeling all the edges
of the graph. Each fact has the shape edge(ns, nd, [cT , cE]), where ns represents
the source node, nd represents the destination node and the pair [cT , cE] rep-
resents the costs of the edge in term of time and energy. Note that, differently
from what would happen in the pure SCLP framework, these facts (represent-
ing constraints) have the cost in the head of the clauses and not in the body.
This is needed for implementing the soft framework, and in particular the two
operations of the semiring.

Moreover, there are two clauses path describing the structure of paths: the up-
per one models the base case, where a path is simply an edge, while the lower one
represents the recursive case, where a path is an edge plus another path. The head
of the path clauses has the following shape path(ns, nd, LN , LV , [cT , cE], Lim),
where ns and nd are respectively the source and destination nodes, LN is the list
needed to remember, at the end, all the visited nodes of the path in the ordering
of the visit, LV is the list of the already visited nodes needed to avoid infinite
recursion where there are graph loops, [cT , cE] is used to remember the cost of
the path in terms of time and energy, and finally, Lim represents the maximum
amount of energy that the EV can consume. It is used to retrieve only the paths
with a total cost in terms of energy equal to or less than the passed value.

The times and plus clauses are useful to model the soft framework. In par-
ticular, the first clause is useful to model the multiplicative operation of the

196 N. Hoch et al.

:-module(paths,_,_).
:-use_module(library(lists)).
:-use_module(library(aggregates)).

minPair([T,E],[T1,E1]):-
T < T1,
E < E1.

times([T1,E1],[T2,E2],[T3,E3]):-
T3 = T1 + T2,
E3 = E1 + E2.

plus([],L,[]).
plus([[P,T,E]|RestL],L,
[[P,T,E]|BestPaths]):-
nondominated([T,E],L),
plus(RestL,L,BestPaths).

plus([[P,T,E]|RestL],L,BestPaths):-
\+nondominated([T,E],L),
plus(RestL,L,BestPaths).

nondominated([T,E],[]).
nondominated([T,E],[[P,T1,E1]|L]):-
\+minPair([T1,E1],[T,E]),
nondominated([T,E],L).

edge(p,q,[2,4]). edge(q,t,[2,4]).
edge(p,r,[2,7]). edge(r,s,[3,3]).
edge(p,t,[3,9]). edge(r,q,[1,1]).
edge(q,r,[1,1]). edge(s,t,[1,1]).
edge(q,s,[4,8]).

path(X,Y,[X,Y],_,[T,E],Lim):-
edge(X,Y,[T,E]),
E =< Lim.

path(X,Y,[X|L],V,[T,E],Lim):-
edge(X,Z,[T1,E1]),
nocontainsx(V,Z),
path(Z,Y,L,[Z|V],[T2,E2],Lim),
times([T1,E1],[T2,E2],[T,E]),
E =< Lim.

paths(X,Y,Lim,BestPaths):-
findall([P,T,E],path(X,Y,P,[X],
[T,E],Lim),ResL),
plus(ResL,ResL,BestPaths).

Fig. 3. The CIAO program modeling the trip level optimization problem

semiring allowing us to compose the global costs of the edges together, time
with time and energy with energy. The plus predicate instead mimics the addi-
tive operation and it is useful to find the best, i.e. non-dominated, paths among
all the possible solutions. The plus predicate is indeed used in the body of the
paths clause, which collects all the paths from a given source node to a given
destination node and returns the best solutions chosen with the help of the plus
predicate. So, if we want to know the best paths, in the graph of Figure 2, from
p to t with a total cost in terms of energy consumption less than or equal to
10, we have to perform the CIAO query paths(p, t, 10, BestPaths), where the
BestPaths variable will be instantiated with the list containing all the non-
dominated paths. In particular, for each of them, the list will contain the se-
quence of the nodes in the path and the total cost of the path in terms of time
and energy. The output of the CIAO program for this query is shown in Figure 4.

Now, by using the SCLP program modeling the travel optimization problem,
we can also show the one modeling the journey level problem. Also in this case, as
before, we consider the PH(S) semiring and we propose a CIAO program, where
we also model the soft framework. The CIAO program modeling the journey
optimization problem is presented in Figure 5.

From Local to Global Knowledge and Back 197

Ciao 1.14.2-13646: Mon Aug 15 10:49:59 2011

?- paths(p,t,10,BestPaths).

BestPaths = [[[p,t],3,9],[[p,q,t],2+2,4+4]] ?.
no
?-

Fig. 4. The output for the query paths(p, t, 10, BestPaths)

:-module(journey,_,_).
:-use_module(paths).

plus([],L,[]).
plus([[P,T,E,ChEv]|RestL],L,

[[P,T,E,ChEv]|BestPaths]):-
nondominated([P,T,E],L),
plus(RestL,L,BestPaths).

plus([[P,T,E,ChEv]|RestL],L,
BestPaths):-

\+nondominated([P,T,E],L),
plus(RestL,L,BestPaths).

nondominated([P,T,E],[]).
nondominated([P,T,E],

[[P1,T1,E1,ChEv1]|L]):-
\+minPair([T1,E1],[T,E]),
nondominated([P,T,E], L).

appointment(p,7,1).
appointment(r,11,2).
appointment(t,18,3).

chargingStation(csp1,7,p).
chargingStation(csr1,4,r).
chargingStation(csr2,0,r).

journey([X,Y],[P],[],[T,E],SoC):-
appointment(X,Tx,Dx), appointment(Y,Ty,Dy),
path(X,Y,P,[X],[T,E],SoC),
timeSum(Tx,Dx,T,ArrT), ArrT=<Ty.

journey([X,Y],[P],[[X,ID]],[T,E],SoC):-
appointment(X,Tx,Dx), appointment(Y,Ty,Dy),
\+path(X,Y,P,[X],[T,E],SoC),
chargingStation(ID,Spots,X),Spots>0,
newSoC(SoC,Dx,NewSoC),
path(X,Y,P,[X],[T,E],NewSoC),
timeSum(Tx,Dx,T,ArrT), ArrT=<Ty.

journey([X|[Y|Z]],[P|LP],ChEv,[T,E],SoC):-
appointment(X,Tx,Dx), appointment(Y,Ty,Dy),
path(X,Y,P,[X],[T1,E1],SoC),
timeSum(Tx,Dx,T1,ArrT), ArrT=<Ty,
journey([Y|Z],LP,ChEv,[T2,E2],(SoC-E1)),
times([T1,E1],[T2,E2],[T,E]).

journey([X|[Y|Z]],[P|LP],[[X,ID]|ChEv],[T,E],SoC):-
appointment(X,Tx,Dx), appointment(Y,Ty,Dy),
\+path(X,Y,P,[X],[T1,E1],SoC),
chargingStation(ID,Spots,X), Spots>0,
newSoC(SoC,Dx,NewSoC),
path(X,Y,P,[X],[T1,E1],NewSoC),
timeSum(Tx,Dx,T1,ArrT), ArrT=<Ty,
journey([Y|Z],LP,ChEv,[T2,E2],(NewSoC-E1)),
times([T1,E1],[T2,E2],[T,E]).

journeys(Places,EV,BestJourneies):-
findall([P,T,E,ChEv],journey(Places,P,ChEv,[T,E],SoC),ResL),
plus(ResL,ResL,BestJourneies).

Fig. 5. The CIAO program modeling the journey optimization problem

We have a set of facts modeling the user’s appointments and the charging
stations. In particular, for each appointment Ai, there is a clause

appointment(Li, it
A
S , idA),

while for each charging station we have a clause

chargingStation(CSname, SpotsNum, L).

198 N. Hoch et al.

Moreover, there are four journey clauses describing the structure of journeys.
The upper two represent the base case, while the other two represent the re-
cursive case. The first clause models the case where a journey is simply a path
with a cost in terms of energy less than or equal to the SoC of the EV. The
second clause models the case where the SoC of the EV is not enough to do any
path and so a charging event, incrementing the energy level, must be scheduled.
The third journey clause represents the case where a journey is a path with a
cost in terms of energy less than or equal to the SoC of the EV, plus another
journey. Finally, the last clause models the recursive case where a charging event
is needed. In all cases we check that the paths allow the user to arrive in time.

The head of the journey clauses has the shape

journey(LL, LP , LChEv, [CT , CE], SoC),

where LL is the list of the locations of the appointments, LP is the list needed to
remember, at the end, all the paths of the journey in the correct ordering, LChEv

is the list needed to remember all the charging events needed to complete the
journey, [CT , CE] represents the cost of the journey in terms of time and energy,
and finally, SoC represents the current energy level of the EV.

To make the program as readable as possible, we omit the predicates newSoC
and timeSum, useful to respectively compute the new energy level of the EV
after a charging event and the arriving time of the user to an appointment.

The plus clauses are useful to model the soft framework and they are very
similar to the ones of the trip level problem. The only difference is that here we
have to consider the charging events. Moreover, note that we reuse the times
predicate defined in the CIAO program in Figure 3.

The journeys clause collects all the journeys through a set of locations (the
ones of the user’s appointments) and returns the best solutions chosen with the
help of the plus predicate. So, if we want to know the best journeys, in the graph
of Figure 2, through the locations where the user has the appointments, with
an EV having an energy level equal to 10, we have to perform the CIAO Prolog
query

journeys([p, r, t], 10, BestJourneys),

where p, r, t are the locations of the appointments and the BestJourneys variable
will be instantiated with the list containing all the non-dominated journeys. In
particular, for each of them, the list will contain the sequence of the paths of
the journey, the total cost of the journey in terms of time and energy, and the
list of the charging events, each of them described by the name of the charging
station and its location.

The output of the CIAO program for this query is shown in Figure 6.

3.2 Coordination of Local and Global Optimization: The Parking
Problem

In order to solve the parking problem, we propose a technique based on the co-
ordination of declarative and procedural knowledge. It consists in decomposing

From Local to Global Knowledge and Back 199

Ciao 1.14.2-13646: Mon Aug 15 10:49:59 2011

?- journeys([p,r,t],10,BestJourneys).

BestJourneys = [
[[[p,r],[r,s,t]],2+(3+1),7+(3+1),[[r,csr1]]],
[[[p,r],[r,q,t]],2+(1+2),7+(1+4),[[r,csr1]]],
[[[p,q,r],[r,s,t]],2+1+(3+1),4+1+(3+1),[]],
[[[p,q,r],[r,q,t]],2+1+(1+2),4+1+(1+4),[]]

] ?.
no
?-

Fig. 6. The output for the query journeys([p, r, t], 10, BestJourneys)

the global optimization problem in many local problems which can be separately
solved by a SCLP implementation and which are coordinated by suitable proce-
dural strategies acting at run time on the declarative optimization environment
to guarantee an acceptable global solution. Here the use of SCLP is convenient
for two reasons: (1) it allows one to naturally model and solve local optimization
problems (see for example [27]); (2) a fact/clause-based declarative implemen-
tation is more flexible and easier to modify than an ordinary imperative module
structure.

In particular, we consider the parking optimization problem. The application
of the coordination technique described above to this problem leads to several
local optimization problems, one for each vehicle of the ensemble, consisting
in determining the best parking lot for it. All these local problems are solved
separately by using a SCLP implementation. The orchestrator implementing
the coordination strategy then receives the results of all the local optimization
solutions and verifies if the local solutions all together form an admissible global
solution, i.e., if local optimal choices can be satisfied by the parking lots. If it
is so, the problem is solved, otherwise the orchestrator queries the declarative
knowledge again, but now by increasing the costs of the parking lots which
received too many requests. The procedure is repeated, with suitable variations,
until a global solution is found. Notice that in this way the orchestrator has a
hypothetical, transactional behavior, with the options of committing (a solution
is found) or partially backtracking (on the parkings which are overfull).

The solution is guaranteed to be just an acceptable global solution: it may
or may not be globally optimal. However, sub-optimality is in general needed to
solve the problem in reasonable time.

The coordination technique has been implemented in a demo application. We
used Java for the orchestrator and CIAO to model and solve the local problems.
Figure 7 shows one phase of this execution. There, four vehicles, represented
by the markers A, B, C and D, are finding a parking lot. Parking lots are rep-
resented by circles and each has a capacity of two vehicles. Each vehicle has
autonomously computed the best parking lot for it and has sent its local solu-
tion to the Java orchestrator. Therefore, the vehicles A, B and D would like to

200 N. Hoch et al.

F
ig.7.

D
em

o
application

for
the

parking
optim

ization
problem

From Local to Global Knowledge and Back 201

park in the rightmost parking lot, while C prefers the parking lot at the lower
part of the map. The orchestrator checks if each parking lot is able to satisfy the
requests of the vehicles. In this case, since there are too many requests for the
rightmost parking lot, the orchestrator increases the cost of it and asks to the
vehicles to recompute new local solutions.

3.3 Dynamic Programming

We show how the parking optimization problem can be represented and solved
in the style of Section 2.2. We consider the following formalization of the prob-
lem. Assume a set of parking zones C = {A, B, . . . } and of car variables V =
{x, y, . . . }, and two functions:

– c : C → N, assigning a capacity to every zone;
– F : V → C → R∞, speciyfing the cost F (x)(A) for x to park in A.

Given an assignment ρ : V → C of cars to zones, let ρA = {x | ρ(x) = A}. We
want to find an assignment ρ such that |ρA| ≤ c(A), for all A ∈ C, minimizing∑

x∈V
F (x)(ρ(x))

Here a term p of the SCSP specification is intended to represent a parking system:
A(x1, . . . , xn) means that xi might be parked in A; (x)p means that car x cannot
be parked outside of p, so it must have a parking spot in one of the zones of p. In
general, a term p represents a part of the system made of one or more parking
zones.

To each parking system p we associate a cost function

�p� : P(fv(p)) → R∞

The intended meaning of �p�X is the cost of actually parking cars X ⊆ fv(p)
in p. Any subset of fv(p) can be seen as a boolean vector {�, −}|fv(p)|, where
� marks a variable in the subset, so �p� can be represented as a finite table
associating a value to all such vectors.

Solution Algorithm. We present a solution algorithm, based on dynamic pro-
gramming. The computation of �p� is performed as follows.

Atomic terms. if p is an atom A(x̃) then we have

�A(x̃)�X =

{∑
x∈X F (x)(A) |X | ≤ c(A)

∞ otherwise

Variable elimination. if p = (x̃)(q1 ‖ · · · ‖ qn), where qi are canonical terms
without parallel composition as top operator, then we assume to have already
computed tables �qi�. We consider each X ⊆ fv(p), and all collections of n sets
X1 ⊆ fv(q1), . . . , Xn ⊆ fv(qn) that form a partition of X ∪ x̃ (x̃ and X are
disjoint, as so are x̃ and fv(p)). Then we compute �q1�X1 + · · · + �qn�Xn, for
every such collection of sets, and we set �p�X as the smallest among these values.

202 N. Hoch et al.

Table 1. Example tables. Parameters of atomic subterms are often omitted

(a) �A(x1, x3)�

x1 x3 cost

� � 7
� − 3
− � 4
− − 0

(b) �B(x2, x3)�

x2 x3 cost

� � 10
� − 4
− � 6
− − 0

(c) �C(x2)�

x2 cost

� 1
− 0

(d) �(x1)A(x1, x3)�

x3 cost

� 7
− 3

(e) �(x2)(B(x2, x3) ‖ C(x2))�

x3 �B� �C� �B� + �C� cost

�

x2 x3 x2

7
� � − 10
− � � 7

− � − − 4
1− − � 1

(f) �(x3)((x1)A(x1, x3) ‖ (x2)(B(x2, x3) ‖ C(x2)))�

�(x1)A� �(x2)(B ‖ C)� �(x1)A� + �(x2)(B ‖ C)� cost

x3 x3

8
� − 8
− � 10

Example. Consider the scenario with three possible parking zones A, B, C and
three cars x1, x2 and x3. The following table shows, for each zone, the cost of
parking a car in it and its capacity.

F (x1) F (x2) F (x3) c

A 3 ∞ 4 2
B ∞ 4 6 2
C ∞ 1 ∞ 2

The term in normal form modeling the system is

(x1)(x2)(x3)(A(x1, x3) ‖ B(x2, x3) ‖ C(x2))

while we consider its canonical form

p = (x3)((x1)A(x1, x3) ‖ (x2)(B(x2, x3) ‖ C(x2))).

because, as mentioned, it has lower computational complexity.
In order to compute the solution, the dynamic programming algorithm starts

from the cost functions for each zone. These are shown in Table 1 where the
leftmost columns indicates whether a car is parked inside (�) or outside (−)
the subsystem described by the term. Then, the algorithm eliminates all the
variables in the order they appear in p, from the inmost to the outmost one:

From Local to Global Knowledge and Back 203

1. Elimination of x1: Table �(x1)A(x1, x3)� (1d), with only one column x3, is
computed by forcing x1 to be inside A;

2. Elimination of x2: the table

�(x2)(B(x2, x3) ‖ C(x2))�

is computed: Table 1e shows values for x3, the partitions considered when
computing the output cost, and the final cost. Notice that this and the
previous step could be executed in parallel. This fact comes immediately
from terms (x1)A(x1, x3) and (x2)(B(x2, x3) ‖ C(x2)) being composed in
parallel in (x1)A(x1, x3) ‖ (x2)(B(x2, x3) ‖ C(x2)).

3. Elimination of x3: finally, the Table �p� (1f) is computed, by comparing costs
of parking x3 inside either (x1)A(x1, x3) or (x2)(B(x2, x3) ‖ C(x2)).

4. Optimal variable assignment: tracking back through the Tables we find:
– x3 inside (x1)A(x1, x3) ‖ (x2)(B(x2, x3) ‖ C(x2));
– x3 inside (x1)A(x1, x3);
– x3 inside A(x1, x3) with cost 4;
– x1 inside A(x1, x3) with cost 3;
– x2 inside B(x2, x3) ‖ C(x2);
– x2 inside C(x2) with cost 1.

4 Smart GRIDS for Renewable Electrical Power
Production/Consumption

The electricity is a vital asset and a priority for the social and economic develop-
ment of today’s world. Building energy infrastructures with high efficiency and
renewable energy sources is an important yet challenging task for a sustainable
future. Smart grid is a term referring to a modernized electrical grid that uses
information and communications technology to gather and act on information,
such as information about the behaviors of suppliers and consumers, in an auto-
mated fashion to improve the efficiency, reliability, economics, and sustainability
of the production and distribution of electricity. The power grid operation can
be subdivided into three main tasks:

– Centralized power generation: where electricity is produced by large size
energy source generators as coal plants, nuclear plants, natural gas plants
and hydroelectric plants. Generally, electricity is produced at an extra high
voltage, in the order of 265 to 275 KV.

– Power transmission: it is a high voltage electric transmission in the order
of 110 KV or above, from generating power plants to substations located
near to population centers. The electricity is transmitted at high voltages to
reduce the energy loss in long distance transmission. It is usually transmitted
through overhead power lines.

– Electricity distribution: it is the final stage in the delivery of electricity to
end users or consumers. It works typically at medium-voltage (less than 50
KV) and low-voltage (less than 1 KV).

204 N. Hoch et al.

Fig. 8. Smart grid foundational layers

The increasing cost of the electricity along with the need to reduce greenhouse
gas emissions to protect the environment, have made energy efficiency one of
the technological challenges of our century. The purpose is to optimize the grid
operation and the electricity usage worldwide. We can refer to the EU’s 20-20-20
climate change objectives, whose target for the year 2020 includes: 20% reduction
in greenhouse gas emissions, 20% EU renewables share and 20% savings in con-
sumption by improving energy efficiency [1]. These goals require new solutions
and management strategies at the (see Figure 8):

– power and energy layer;
– communications layer;
– computing and information technology layer.

At the power and energy layer there is a need to integrate renewable energy
sources, such as solar and wind, in the electricity production chain, in order to
reduce the peak of energy consumption and transmission losses. This may lead
to a decentralization of the power grid due to the electricity production from the
medium and low voltage layers of the grid; and to the need to take into account
the intermittence of renewable energy sources during the electricity production.
In the communication layer, and in the computing and information technology
layer, both electric power and information flows will be distributed. The need to
reduce energy demand imbalances will require tackling the optimization of the
electricity generation, transportation and distribution. This will be possible by
controlling the real-time collection of data on the status of systems and on the
network, and by using advanced technologies of communication and elaboration
of data based on models of distributed computing and on adaptive algorithms.

In the smart power grid context we can distinguish between two types of
electricity power management systems: (i) the centralized [5] power management
system which is a model in which at the physical layer, the grid is designed for a
one-way flow of the electricity; and (ii) the decentralized [37] power management

From Local to Global Knowledge and Back 205

system. Hereafter we present a power grid scenario based on the ADDRESS
project [6,30,7].

4.1 ADDRESS: An Integrated Power Management System

ADDRESS [6,30,7] is a large-scale integrated R&D project co-founded by the
European Commission under the 7th Framework Programme, in the energy area
for the “Development of Interactive Distribution Energy Networks”. ADDRESS
stands for Active Distribution network with full integration of Demand and dis-
tributed energy RESourceS and has been carried out by a Consortium of 25
partners from 11 European countries. The main goal of the ADDRESS project
was to enable the active participation of domestic and small commercial con-
sumers to electricity system markets and the provision of services to the dif-
ferent electricity system participants (see Figure 9, Figure 10 coming from [30]).
More specifically, the active participation of domestic and small commercial con-
sumers is suggested to be managed by a new market player called “aggregator”
whose objective is to exploit the flexibility of power consumers for building ac-
tive demand services to the power market. Figure 9 represents the ADDRESS
architecture, with the main players and the relationships between them. Other
important components of the ADDRESS architecture are: consumers, Distribu-
tion System Operators (DSO), markets and contracts. In ADDRESS, consumers
are the providers of flexibility and they are directly connected to the low voltage
distribution network. The aggregator, see Figure 10, is the key mediator between
consumers, markets and other power system participants. Its main function is
to gather (aggregate) the flexibility of consumers for building Active Demand
(AD) services; to offer the AD services to the power system participants via the
markets; to manage the risks associated with uncertainties in the markets; and
finally to maximize the value of consumers’ flexibility.

4.2 Decentralized Prosumer Based Solution for Smart Energy
Production/Consumption

Decentralized power management systems will play a key role in reducing green-
house gas emissions and increasing electricity production through alternative en-
ergy sources. A particular attention will be placed on end-users. They will now
play different roles acting as producer or consumer and thus they will contribute
to energy saving in the network. The term prosumer (producer-consumer) will
refer to a user that not only consumes electricity, but can also produce and store
electricity.

In the next section, we focus on power market models in which prosumers
interact in a distributed environment during the purchase or sale of electric
power. We have chosen to follow the distributed power market model DEZENT.
In Section 4.6 we extend [28] and, following [33], we define the optimization
algorithm used by the prosumer during the planning phase of the electricity
consumption/production. Finally, in Section 4.7 we propose [29] an aggregator
in the DEZENT power market model and in Section 4.8 we compare the results
with that of the aggregator of the ADDRESS project.

206 N. Hoch et al.

Fig. 9. ADDRESS conceptual architecture

Fig. 10. ADDRESS project architecture

From Local to Global Knowledge and Back 207

Fig. 11. Power grid and associated agents

4.3 The DEZENT Electrical Market Model and Its Reinforcement
Learning Adaptation Model

DEZENT [37,36] is the result of a R&D project between the School of Com-
puter Science and the College of Electrical Engineering of Dortmund University,
the E.ON Energy and the German research foundation (DFG). The DEZENT
project was devoted to decentralized and adaptive electric power management
through a distributed real-time multi-agent architecture. DEZENT power man-
agement system focuses on a regional grid where there is a predominant use of
renewable energy sources. The power grid architecture (see Figure 11 coming
from [36]) is subdivided into four levels. The first level (0.4 kV) is a low-range
network covering subdivisions (a neighborhood). The second level (10 kV) is a
medium-range area network covering a suburb (regional grid). The third level
(110 kV) is a long-distance energy transport network. Finally in the fourth level
(380 kV) the electricity is produced from large power plants (coal, gas or nu-
clear). Power needs of prosumers are covered through alternative energy sources
within the first 2 layers and additional power needs will be covered at the latest
by the fourth level.

At the negotiation layers, the balancing of demand and supply between par-
ticipants is carried out through balancing group managers (BGMs), which are
located in different network layers and operate in parallel on each grid. A BGM
is a financial instrument which balances the supply and the demand of electricity
between a producer and a consumer who have submitted a similar bid. A day
is discretized, resulting in a set of consecutive slots, and negotiation takes place
in each slot. Slot duration must be longer than the time needed for stabilizing

208 N. Hoch et al.

power flow. The latter time depends on the size of the balancing groups. The
negotiation will start independently for the groups on the lowest level (a small
subdivision). If a balance cannot be found for all customer agent in a group,
then unsatisfied customers are sent to the next-higher BGM and the negotiation
scope is extended to that new group of customers. A slot in DEZENT consists
of 3 cycles of negotiation and the sale or purchase of the electricity (at a fixed
cost) to/from the main production facilities. Each cycle consists of 10 rounds of
negotiation in which bids and offers of customer agents are adjusted according
to their own negotiation strategies.

In the case of a consumer, let [Ak, Bk] be the price frame of negotiation
for level k (1 ≤ k ≤ 3). Here Ak represents the lower bound of the electricity
cost and Bk the upper bound. Let SC be a finite set of real values. The ne-
gotiation strategy set by a consumer agent C is characterized by a pair of the
form (s1, bid (0)). Here s1 is chosen from the set SC , while bid (0) is the open-
ing bid and it is chosen from the interval [Ak, 1/2 (Bk + Ak)]. The consumer will
also specify a device-specific urgency urg0. All these parameters characterize the
gradient of the bidding curves of the consumer. After round n, n ∈ [0 − 9], the
unsatisfied consumer will increase his bid according to the function :

bid (n) = − 1

e
urg0·n

s1
+s2

+ Bk (1)

where the parameter s2 is determined by the opening bid:s2 =−log(Bk−bid (0)).
This consumer will participate to the next negotiation round n by using the new
value of his bid (bid (n)).

Conversely, in the case of a producer, let [Ak, Bk] be the price frame of
negotiation for level k (1 ≤ k ≤ 3). Let TP be a finite set of real values. A
negotiation strategy set by a producer agent P is characterized by a pair of the
form (t1, offer (0)). Here t1 is chosen from the set TP , while offer (0) is the opening
offer and it is chosen from the interval [1/2 (Bk + Ak) , Bk]. The producer will
also specify a device-specific urgency urg0. All these parameters characterize the
gradient of the bidding curves of the producer. After round n, n ∈ [0 − 9], the
unsatisfied producer will decrease his offer according to the function :

offer (n) =
1

e
urg0·n

t1
+t2

+ Ak (2)

where the parameter t2 is determined by the opening offer: t2 =
− log (offer (0) − Ak). Finally, this producer will participate to the next nego-
tiation round n by using the new value of his offer (offerP (n)). At the end
of each slot, each consumer/producer will adapt his own negotiation strategy
in DEZENT and this adaptation process will be made by using reinforcement
learning techniques.

4.4 Background on Reinforcement Learning

In computer science, reinforcement learning [25] is the problem faced by an
agent that must learn the behavior through trial-and-error interactions with a

From Local to Global Knowledge and Back 209

Fig. 12. The standard reinforcement-learning model

dynamic environment. There are two main strategies for solving reinforcement-
learning problems: the first is to search in the space of behaviors in order to find
one that performs well in the environment and this approach has been taken
by work in genetic algorithms and genetic programming; the second is to use
statistical techniques and dynamic programming methods to estimate the utility
of taking actions in states of the world. Hereafter we are focusing on statistical
techniques because they take advantage of the special structure of reinforcement-
learning problems, which is not available in optimization problems in general
[25]. In the standard reinforcement learning model, an agent is connected to
its environment via perception and action, as depicted in Figure 12. On each
step of interaction the agent receives as input i some indication of the current
state s of the environment; the agent then chooses an action, a, as output.
The action changes the state of the environment, and the value of this state
transition is communicated to the agent through a scalar reinforcement signal,
r. The agent’s behavior, B, should choose actions that tend to increase the
long-run sum of values of the reinforcement signal. It can learn to do this over
time by systematic trial and error, guided by a wide variety of algorithms. The
reinforcement learning approach is similar to the El Farol bar problem [38] in
economics and the minority game in statistical physics [17]. Chapter II.4 [23] in
this volume contains further background material on reinforcement learning and
dynamic programming.

4.5 Periodic Reinforcement Learning in DEZENT

In DEZENT, prosumers adapt their negotiation strategy at the end of each slot.
Each customer has a set of strategy bids (user acting as a consumer) and offers
(user acting as a producer). The selection of the negotiation strategy of the

210 N. Hoch et al.

next slot is made probabilistically according to a fixed probability distribution
defined in DEZENT. The reward of a negotiation strategy is computed by using
the Sutton’s update method [34].

More specifically, the negotiation function of a user acting as a consumer
(see Equation 1) is characterized by the pair (s1, bid (0)) and that of a user act-
ing as a producer (see Equation 2) is characterized by the pair (t1, offer (0)).
Moreover, the parameter s1 is chosen from the set SC , the parameter t1 is
chosen from the set TP , the opening consumer bid is chosen from the inter-
val [A0, 1/2 (B0 + A0)] and finally, the opening producer offer is chosen from the
interval [1/2 (B0 + A0) , B0]. Let us denote the set of feasible bids for a consumer
C by OC and the set of feasible offers for a producer P by OP . Each element of
the set OC belongs to the interval [A0, 1/2 (B0 + A0)] and each element of the
set OP belongs to the interval [1/2 (B0 + A0) , B0]). The strategy space of a pro-
sumer is defined by: A := (AC , AP) = (SC × OC , TP × OP). Here the strategy
spaces AC and AP are used when the prosumer acts as a consumer and as a
producer respectively.

For the selection of the negotiation strategy of the next slot, 3 modes have
been defined in DEZENT: Exploitation, Explore1 and Explore2. Exploitation
selects the action with the maximum reward. Explore1 randomly picks a strat-
egy which is in the neighborhood of the action with the maximum reward. Fi-
nally, Explore2 randomly picks any strategy. One mode is randomly determined
according to a fixed probability distribution. Then a strategy is selected and
executed through the determined mode. The learning process is applied to the
selection of the strategies and not of the modes. Otherwise, the size of the ma-
trix encoding the learning space and the convergence time of the learning process
would have grown unacceptably.

At the end of a negotiation, the final achieved price is normalized according
to the frame size of the negotiation of DEZENT. Then, the temporal difference
method of Sutton[34] is used to derive the reward of the negotiation strategy
currently executed. More specifically, let a be a negotiation strategy and P (t, a)
be the value of the reward at the beginning of the slot t. Suppose that the
strategy a has been executed and let r′(t) be the normalized prices negotiated
under strategy a. The reward P (t + 1, a) of the strategy a at the end of slot t is
computed by using Sutton’s update formula [34]:

P (t + 1, a) := P (t, a) + α (r′ (t) − P (t, a)) ; 0 < α ≤ 1 (3)

4.6 Optimal Prosumer Profiling via Dynamic Programming

In this section we propose a strategy which helps prosumers to optimize their
consumption (production) and to better manage their own electricity costs. The
challenge is to make elastic the demand for, and the supply of, electricity of pro-
sumers in order to optimize their energy cost based on power market conditions
and on suitable constraints on their power consumption. A prosumer is charac-
terized by the class of energy variation profiles (s)he can adopt during the day. If
the energy variation is positive, then the prosumer acts as a producer, otherwise

From Local to Global Knowledge and Back 211

(s)he acts as a consumer. In our model, the allowed profiles must satisfy the
following constraints: (i) the energy variation in a slot has a lower and an upper
bound; (ii) the sum of all the energy variations in the whole day is zero, i.e. if
in some slot the variation is positive, in some other slot it must be negative.
(iii) summing up all the variations from the beginning of the day to any time,
we cannot exceed a lower and an upper bound. This constraint accounts for
available energy storage media, like electric vehicle batteries or thermic accumu-
lations due to anticipated heating, or delayed air conditioning. Given the class of
consumption profiles, the prosumer will choose the optimal profile on the basis
of the information (s)he has on the unit cost of the energy which resulted by the
DEZENT negotiation in each slot of the previous day. In fact, if we assume that
the free market cost in the same slot of the previous day is the same, that the
prosumer environment is the same and that the reinforcement learning algorithm
of DEZENT is close to convergence, we can safely rely on the costs (result of the
negotiation) of the previous day. The aim of the prosumer is to find an allowed
profile assigning to each slot an energy consumption (production) of optimal
total cost. Moreover, whenever the prosumer acts as a producer, an additional
cost is added in the control algorithm. The additional cost is due to the fact
that a part of the electricity stored will be lost by the Joule effect or some kind
of loss in energy transformations. We term it “overhead” and it characterizes
the inefficiency of the prosumer energy store. The prosumers use a dynamic pro-
gramming algorithm for planning their energy consumption (production). The
control algorithm of the prosumers has two inputs: (i) the definition of the class
of allowed consumer profiles; and (ii) the cost of a unit of energy which resulted
by the DEZENT negotiation in each slot of the previous day. Hereafter, the op-
timization problem and the proposed dynamic programming algorithm used to
solve it are defined.
Notations: some definitions and notations are listed below (N are the natural
numbers).

Discretized energy : s1, . . . , sn slots in a day, n : N
: e : R basic energy level, e > 0
: ae average consumption, a : N
: re maximal energy reserve, r : N
: r0e initial energy reserve, r0 : N
: ±ke maximal variation in energy
consumption, k : N, k ≤ a/2

: o : Z → R overhead,
if 0 ≤ x then o(x) = x else x ≤ o(x) ≤ 0.

Unitary energy cost : ci : R in slot si, i = 1, 2, . . . , n ci ≥ 0.

212 N. Hoch et al.

Notice that the decision variables are discretized, despite the fact that the cal-
culations are made on the reals. Moreover the number 2k + 1 of possible values
of the decision variables determine the precision of the algorithm.

Optimization problem: the optimization problem is then defined by the de-
cision variables, the function to be minimized and the constraints on the energy
consumption.

Decision variables : −k ≤ xi ≤ +k, xi : N where xi (4)
is the variation for slot si,

i = 1, 2, . . . , n.

Cost function to be minimized : f(x1, . . . , xn) =
n∑

i=1

(o(xi) + a)ci (5)

Optimal cost : C = min
x1,...,xn

n∑
i=1

(o(xi) + a)ci (6)

Constraints : ∀ 0 ≤ j ≤ n. 0 ≤ r0 +
j∑

i=1

xi ≤ r (7)

:
n∑

i=1

xi = 0 (8)

Algorithm: the proposed solution algorithm decomposes the problem into sub-
problems, so that an efficient dynamic programming approach can be employed.
Let Cj(yj) : R ∪ {∞}, j = 0, . . . , n, 0 ≤ yj ≤ r be the optimal energy costs for
slots s1, . . . , sj , when the final energy reserve at slot sj is yje. Here Cj(yj) = ∞ if
energy reserve yje cannot be achieved at slot j. Thus C0(y0) (no slot has elapsed
yet) is everywhere ∞ except for C0(r0) = 0.

Subproblems : Cj(yj) = min
x1,...,xj

j∑
i=1

(o(xi) + a)ci, j = 1, 2, . . . , n. (9)

: ∀i′. 1 ≤ i′ ≤ j, 0 ≤ r0 +
i′∑

i=1

xi ≤ r (10)

: r0 +
j∑

i=1

xi = yj 0 ≤ yj ≤ r. (11)

Dynamic programming : (12)
Cj(yj) = min

−k≤xj≤k
0≤yj−xj≤r

Cj−1(yj − xj) + (o(xj) + a)cj ,

: C0(y0) = if y0 = r0 then 0 else ∞ (13)
: Cn(r0) = C (14)

From Local to Global Knowledge and Back 213

The value of Cj at slot j can be computed sequentially in terms of Cj−1 by
looking backwards for Cj(yj) to the optimal energy costs at slot j −1 for eligible
values yj −xj of the energy reserve. Finally, an optimal strategy S is any sequence
S = (x̂1, ŷ1), . . . , (x̂n, r0) such that the values of x̂j and of ŷj−1 are computed
backwards from ŷj , j = n . . . , 1, by letting ŷn = r0, the final reserve being r0.
Formally:

Optimal strategies : Cj(ŷj) = Cj−1(ŷj − x̂j) + (o(x̂j) + a)cj , (15)
j = 1, 2, . . . , n

: ŷj−1 = ŷj − x̂j (16)
: ŷn = r0 (17)

The time and space complexity of the algorithm are O(nrk) and O(nr) respec-
tively.

4.7 BGM as Prosumers in DEZENT

In this section the operation of the balancing group managers (BGM) previously
defined in DEZENT work will be extended. In a decentralized way, the concept
of aggregator is introduced. A new agent called aggregator is characterized by
a set of virtual prosumers. Each virtual prosumer exploits the control model
defined in Section 4.6. In the proposed approach, each prosumer is neutral in
the sense that it essentially neither consumes nor produces energy, as it can only
sell in the power market the energy previously bought and stored. Actually, a
virtual prosumer consumes a little amount of energy, due to the overhead of the
energy storing processes. Thus the behavior of the virtual prosumer is similar to
that of a rechargeable battery. Only, a real prosumer could combine the effect
of a virtual prosumer with that of a producer and a consumer.

The aim of the aggregator in this model is twofold: (i) to reduce the energy
cost of the consumer’s population during peak energy consumption; and (ii)
to maximize its profit. In order to evaluate the impact of our aggregator, we
compare two types of power market situations: (i) a neutral situation in which
there is no aggregator in the power market; and (ii) the active situation in which
an aggregator is present. Each simulation (wrt. the type of the power market
situations) is run separately and in the same conditions.

The space of the experiments is based on the available DEZENT simulator
and on the implementation of the introduced aggregator. It depends essentially
on three parameters: (i) the free market power cost, which can exhibit high
or low variance: for this we chose real data from the day ahead market prices
of Switzerland (date: March 9, 2013) [2] and Italy (date: June 18, 2013) [3]
respectively; (ii) the prosumers environment, namely heavy production or heavy
consumption, in which the total amount of the electricity produced in the subnet
is respectively greater than or less than the total amount needed in the subnet. In
the heavy consumption situations, the additional, needed power is made available
at the large power plant level, at a price which depends on the time of the day.

214 N. Hoch et al.

Analogously for the heavy production situations. In all these cases, the profile
cost of the electricity at the global level (namely at the large power plant level)
was the same for all days; (iii) the available energy reserve capacity of the virtual
prosumers characterizing the aggregator; it is either finite or infinite.

The experiments were conducted on the IMT cluster at the IMT Institute of
Advanced Studies Lucca, simulating a 3 days service period (see Table 2) and
our comparative studies were based on the total cost of the electricity paid at
the end of the last day by the consumer population and on the profit realized
by the aggregator. Here the last day has been considered, since in this way
transitory effects are minimized. The performance of the aggregator relies on
the performance of the combination of the reinforcement learning mechanism at
DEZENT level and of the control mechanism used for profile optimization of
virtual prosumers characterizing the aggregator.

Figure 13 concerns the best case of the simulations: larger differences in en-
ergy global cost (day ahead power market: Switzerland, March 9, 2013) in the
presence of undersupply conditions and infinite reserve capacity of virtual pro-
sumers in the case in which the aggregator is active.

Figure 13 (a) shows the behavior of the optimal controller of one of the
virtual prosumers of the aggregator. The two upper curves of Figure 13 (a)
represent the unitary cost of energy as resulting from the negotiation phase at
day 2 (solid curve) and at day 3 (dashed curve). The difference between the two
upper curves gives an idea of the possible variations between the outcomes of
different negotiations. Notice that the profile of the global energy cost and the
context of competing prosumers is the same in both days. The lower dashed
curve (respectively lower solid curve) represents the result of the optimization
algorithm applied to the curve of day 2 (respectively of day 3). The curves plot
the sum (from the beginning of the day) of the suggested variations: according
to the constraints we assumed on the virtual prosumers profiles, the sum of
the variation must be not greater than 0 and should start and end up at 0.
Notice that the controller correctly suggests variations which are opposite wrt.
the negotiated cost.

Figure 13 (b) reports the result of the placebo test on the behavior of the
consumer population. In Figure 13 (b), the dashed curve represents the energy
cost achieved in each hour by the entire population when there is no aggregator in
the power market. Analogously, the solid curve represents the case in which the
aggregator is active. The observation we have is that the consumer’s population
when the aggregator is active has spent less during peak energy consumption
period.

In Figure 13 (c) the final cost achieved at the end of day 3 by the population
of consumers in which the aggregator was active (solid curve) is less than the
case in which there was no aggregator (dashed curve). This positive effect is due
to the introduction of our aggregator.

In Figure 13 (d) the solid curve reports the energy cost (actual profit) real-
ized by the aggregator in the power market. The profit is given by the sum of
the entire profit realized by the 4 virtual prosumers characterizing the aggrega-

From Local to Global Knowledge and Back 215

Table 2. Experimental setup of the placebo test

Architecture

Negotiation Level 1
BGM on Level 1 1
Clients 15
Producers (50 − 200 KW) 10
Consumers (200 KW) 5

Electricity price
Day duration: 60 slots (24 hours)
Profile cost of the electricity (free market)

prosumers environment
Heavy consumption
Heavy production

Energy reserve
Infinite
Finite: 0 to 40

Controller
Class of consumption profiles
Planning phase: optimization

aggregator Collection of 4 prosumers

Simulations
Duration: 3 days
Test 1: without aggregator
Test 2: with aggregator

tor. The dashed curve, of the same figure, represents the expected profit of the
aggregator at the end of day 3, computed by assuming known in advance the
energy cost. That curve has been obtained by summing up all the energy costs
of the optimal profile of day 3 of the prosumers. As mentioned above, Figure 13
concerns the best case. In the worst case, the gain is low; but in any case there
is no loss, neither from the side of the aggregator nor from that of prosumers.

4.8 Comparison: DEZENT’s Aggregator versus ADDRESS’s
Aggregator

Four key factors have been considered for assessing the impact of the aggregator
introduced in the ADDRESS project: the general weather conditions of the area,
the consumer density and characterization, the electricity industry infrastructure
and the technological context. The success of the aggregator has been evaluated
according to the global welfare improvements of the power grid management
systems and to the profit maximization of the aggregator. The positive impact
of the aggregator was observed in two scenarios: Southern City and Mid-Latitude
High-Rise Community [30].

Both scenarios were characterized by a significant number of domestic and
small business consumers whose demand for electricity is driven primarily by
cooling needs, space heating and air conditioning. The suggested result of the
ADDRESS project is that the potential supply of active demand by the aggre-
gator within the areas of the scenarios is quite high and this is due to high
consumer density and high demand for electricity, the latter driven chiefly by
the needs for space cooling, which is inherently flexible. Conversely, a limited

216 N. Hoch et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
30

40

50

60

70

80

hours

un
it

co
st

 e
ne

rg
y

(c
en

t)

unit cost day 2
unit cost day 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

5

10

15

20

25

30

hoursen
er

gy
 p

ro
fil

in
g

(.
x5

0K
W

)

optimal profile day 2
optimal profile day 3

(a) best case: controller operation of one prosumer

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
3

4

5

6

7

8

9
x 10

4

hours

en
er

gy
 c

os
t (

ce
nt

)

without aggregator
with aggregator

(b) best case: consumer population, aggregated energy cost

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

hours

en
er

gy
 c

os
t (

ce
nt

)

without aggregator
with aggregator

(c) best case: consumer population, final energy cost

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

5

hours

to
ta

l c
os

t (
ce

nt
)

current profit
expected profit

(d) best case: aggregator, profit realized

Fig. 13. Simulation studies

From Local to Global Knowledge and Back 217

effect of the aggregator was observed in two scenarios: Southern Countryside
and Northern Suburban Village [30]. In both cases the density of the consumers
was sparse and their demands for electricity were dominated by lighting.

In light of the result of the four ADDRESS scenarios mentioned above, it
is clear that an aggregator potential success depends on the flexibility of power
consumption in the area and on convenient power exchange in the power mar-
ket. The main difference on the use of active demand between the ADDRESS
approach and the approach we introduce in DEZENT is that ADDRESS fo-
cuses on an integrated power management system while DEZENT focuses on a
completely decentralized and real time power management system.

The results we obtained in the simulation studies in Section 4.7 are similar to
those obtained in the ADDRESS approach. The best case scenario we simulated
(in Section 4.7) in our approach corresponds to the best case scenarios simulated
also in the ADDRESS approach. Namely, they represent the situation in which
the aggregator can maximize its profit at the power market while lowering peak
energy consumption at the power grid layer. This is thanks to the flexibility
of consumers and of the power market situation. Similarly, in the worst case
scenarios of the two approaches, the gain of the aggregator is low and its impact
on the power market is almost neutral.

5 Conclusion and Future Work

In the chapter, we considered two related issues, both quite relevant for ser-
vice component ensembles. On the one hand we have local vs. global knowledge,
where the distinction is made more significant by the variability of ensambles,
due to their open ended and autonomic nature. On the other hand we distinguish
declarative from procedural knowledge. Here declarative knowledge is typically
symbolic, equipped with deduction procedures and easy to extend. However,
deduction steps may require exhaustive search, and thus often unacceptable
amounts of space and time. Procedural knowledge is instead efficiently exe-
cutable, but rigid and difficult to modify. The two issues are related in the sense
that the process of forward propagation typically proceeds from local-declarative
towards global-procedural knowledge: deduction/coordination mechanisms vary
accordingly.

In the chapter we present two case studies of the above framework, the first
about an application of SCLP and SCSP programming to the e-mobility case
study of ASCENS, the second about reinforcement learning and dynamic pro-
gramming for global negotiation and local prosumer profile optimization, re-
spectively, for a smart grid application. In both cases we take advantage of the
ability of constraint programming and reinforcement learning of addressing both
declarative and procedural issues.

5.1 Related Work

The literature on SCSPs and on their solution using dynamic programming tech-
niques is vast. The following lines of research are relevant to us. Bistarelli, Monta-

218 N. Hoch et al.

nari and Rossi deal with SCSP [10] and its combination with logic programming
[11,12] and concurrency [13]. Their approach is too restrictive, and does not eas-
ily accommodate the example of Section 3.3. Dechter in [18] introduces bucket
elimination as a general solution technique for a variety of problems: it consists
in a strategy of problem reduction employing a convenient elimination ordering
of variables and constraints. Kohlas and Pouly in [26] suggest valuation algebras
as a foundation for a general view of information processing. Our approach is
similar, being based on a simple, process calculus-like algebraic specification. The
main advantage of our presentation is that it benefits from the well-established
machinery of permutation algebras [31,19]. The analogy with process algebras
is useful when providing a uniform language for supporting both the declara-
tive and the procedural parts of our approach. A first approximation of such a
language is cc-pi [16], which combines concurrent constraint programming and
pi-calculus.

The SCLP approach presented in Section 3 is mainly related to [14], dealing
with the multicriteria version of the shortest path problem. However, we consider
a different semiring (namely the one based on Hoare Power Domain operator),
which allows us to obtain only the best routes. In [22] a form of approxima-
tion is introduced, by considering an aggregated cost function to be optimized,
whereas we consider two criteria, and we return all optimal journeys considered
equivalently feasible.

Finally, Section 4 is mainly related to the ADDRESS project [6]. Details can
be found in [33].

5.2 Future Work

Future work in the above line could concern the definition of formalisms and pro-
gramming languages flexible enough to express both local-declarative and global-
procedural aspects at the same time, but with varying degrees of expressiveness.
Language SCEL, proposed by ASCENS, addresses this issue. A recent develop-
ment where SCEL is extended with constraint programming primitives which
do not require global consistency, but which can impose it locally, if needed, are
first results in this direction.

References

1. http://www.twenties-project.eu
2. European power exchange, http://www.epexspot.com
3. Gestore mercati elettrici, http://www.mercatoelettrico.org
4. ASCENS: Requirement specification and scenario description of the ascens case

studies, deliverable 7.1 (2011)
5. Barroso, L.A., Cavalcanti, T.H., Giesbertz, P., Purchala, K.: Classification of elec-

tricity market models worldwide. In: IEEE PES, International Symposium, pp.
9–16. IEEE, Los Alamitos (2005)

6. Belhomme, R., Real de Asua, R.C., Valtorta, G., Paice, A., Bouffard, F., Rooth,
R., Losi, A.: Address - active demand for the smart grids of the future. In: CIRED
Seminar: Smart Grids for Distribution, pp. 1–4.

http://www.twenties-project.eu
http://www.epexspot.com
http://www.mercatoelettrico.org

From Local to Global Knowledge and Back 219

7. Belhomme, R., Sebastian, M., Diop, A., Entem, M., Bouffard, F., Valtorta,
G., De Simone, A., Cerero, R., Yuen, C., Karkkainen, S., Fritz, W.: Ad-
dress technical and commercial architecture, deliverable ADDRESS D1.1 (2010),
http://www.addressfp7.org/

8. Bertelé, U., Brioschi, F.: On non-serial dynamic programming. Journal of Com-
binatorial Theory, Series A 14(2), 137–148 (1973)

9. Bistarelli, S., Montanari, U., Rossi, F.: Constraint solving over semirings. In:
IJCAI, pp. 624–630 (1995)

10. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and
optimization. J. ACM 44(2), 201–236 (1997)

11. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based contstraint logic program-
ming: syntax and semantics. ACM Trans. Program. Lang. Syst. 23(1), 1–29 (2001)

12. Bistarelli, S., Montanari, U., Rossi, F.: Soft constraint logic programming and
generalized shortest path problems. J. Heuristics 8(1), 25–41 (2002)

13. Bistarelli, S., Montanari, U., Rossi, F.: Soft concurrent constraint programming.
ACM Trans. Comput. Log. 7(3), 563–589 (2006)

14. Bistarelli, S., Montanari, U., Rossi, F., Santini, F.: Unicast and multicast qos
routing with soft-constraint logic programming. ACM Trans. Comput. Log. 12(1),
5 (2010)

15. Bueno, F., Cabeza, D., Carro, M., Hermenegildo, M.V., López-Garćıa, P., Puebla,
G.: The ciao prolog system. Reference manual. Tech. Rep. CLIP3/97.1, School of
Computer Science, Technical University of Madrid, UPM (1997)

16. Buscemi, M.G., Montanari, U.: CC-pi: A constraint-based language for specifying
service level agreements. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 18–32. Springer, Heidelberg (2007)

17. Challet, D., Zhang, Y.C.: Emergence of cooperation and organization in an evo-
lutionary game. Physica A: Statistical Mechanics and its Applications 246(3–4),
407–418 (1997)

18. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artif. In-
tell. 113(1-2), 41–85 (1999)

19. Gadducci, F., Miculan, M., Montanari, U.: About permutation algebras
(pre)sheaves and named sets. Higher-Order and Symbolic Computation 19(2-3),
283–304 (2006)

20. Hewitt, C.: PLANNER: A language for proving theorems in robots. In: IJCAI,
pp. 295–302 (1969)

21. Hoch, N., Monreale, V., Montanari, U., Sammartino, M.: Declarative vs procedu-
ral approach for scsp with an application to an e-mobility optimization problem.
Internal Report (2014)

22. Hoch, N., Zemmer, K., Werther, B., Siegwart, R.: Electric vehicle travel
optimization-customer satisfaction despite resource constraints. In: 2012 IEEE
Intelligent Vehicles Symposium, pp. 172–177 (2012)

23. Hölzl, M., Gabor, T.: Reasoning and Learning for Awareness and Adaptation. In:
Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998, pp. 249–290. Springer, Heidelberg
(2015)

24. Jaffar, J., Lassez, J.: Constraint logic programming. In: POPL, pp. 111–119 (1987)
25. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey.

J. Artif. Intell. Res. (JAIR) 4, 237–285 (1996)
26. Kohlas, J., Pouly, M.: Generic Inference: A Unifying Theory for Automated Rea-

soning. John Wiley, Chichester (2011)

http://www.addressfp7.org/

220 N. Hoch et al.

27. Monreale, G.V., Montanari, U., Hoch, N.: Soft constraint logic programming for
electric vehicle travel optimization. In: 26th Workshop on Logic Programming
(2012)

28. Montanari, U., Siwe, A.T.: Real time market models and prosumer profiling. In:
IEEE INFOCOM Workshops. pp. 7–12 (2013)

29. Montanari, U., Siwe, A.T.: Prosumers as aggregators in the dezent context of
regenerative power production. In: IEEE SASO Workshops (2014)

30. Peters, E., Belhomme, R., Battle, C., Bouffard, F., Karkkainen, S., Six, D., Hom-
melberg, M.: Address: Scenarios and architecture for the active demand develop-
ment in the smart grids of the future. In: CIRED 20th International Conference
on Electricity Distribution, pp. 1–4 (2009)

31. Pitts, A.M.: Nominal Sets: Names and Symmetry in Computer Science. Cam-
bridge Tracts in Theoretical Computer Science, vol. 57. Cambridge University
Press, Cambridge (2013)

32. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Foun-
dations of Artificial Intelligence. Elsevier, Amsterdam (2006)

33. Siwe, A.T.: Prosumer planning in the DEZENT context of regenerative power
production. Ph.D. thesis (2013)

34. Sutton, R.S.: Learning to predict by the methods of temporal differences. Machine
Learning 3, 9–44 (1988)

35. Tsang, E.P.K.: Foundations of constraint satisfaction. Computation in cognitive
science. Academic Press, London (1993)

36. Wedde, H.F., Lehnhoff, S., Moritz, K.M., Handschin, E., Krause, O.: Distributed
learning strategies for collaborative agents in adaptive decentralized power sys-
tems. In: IEEE International Conference and Workshop on the Engineering of
Computer Based Systems (ECBS ’08), pp. 26–35 (2008)

37. Wedde, H.F., Lehnhoff, S., Rehtanz, C., Krause, O.: Bottom-up self-organization
of unpredictable demand and supply under decentralized power management.
In: IEEE International Conference on Self-Adaptive and Self-Organizing Systems
(SASO ’08), pp. 74–83 (2008)

38. Whitehead, D.: The el farol bar problem revisited: Reinforcement learning in
a potential game. ESE Discussion Papers 186, Edinburgh School of Economics,
University of Edinburgh (2008)

Chapter II.3

Knowledge Representation for Adaptive and
Self-aware Systems�

Emil Vassev and Mike Hinchey

Lero–the Irish Software Engineering Research Center, University of Limerick,
Limerick, Ireland

Abstract. This chapter presents the ASCENS approach to knowledge
representation and reasoning for self-adaptive systems. The approach tar-
gets both the integration and promotion of autonomy and self-adaptation
in software-intensive systems by providing a mechanism and methodol-
ogy for specification and operation of knowledge for self-adaptive behav-
ior. The approach is based on the KnowLang Framework, a formal ap-
proach to knowledge representation and reasoning developed within the
ASCENS Project mandate. With KnowLang we build special knowledge
bases meant to be integrated in software-intensive systems to establish
the vital connection between knowledge, perception, and actions realiz-
ing self-adaptive behavior. At runtime, the knowledge is used against the
perception of the world to generate appropriate actions in compliance to
the system goals and beliefs.

Keywords: self-adaptive systems, knowledge representation, reasoning, adap-
tive behavior, awareness

1 Introduction

One of the significant scientific contributions that we achieved with the ASCENS
Project is related to knowledge representation and reasoning (KR&R) for self-
adaptive systems. Note that self-adaptive systems must be aware of their physical
environment and whereabouts, as well as of their current internal status. This
ability helps software intensive systems sense, draw inferences, and react by
exhibiting self-adaptation. A common understanding about the process of self-
adaptation is the ability of a system to autonomously monitor its behavior and
eventually modify the same according to changes in the operational environment,
or in the system itself. The paradigm requires that the system engages in various
interactions where important structural and dynamic aspects of the environment
are perceived. Therefore, it is of major importance for a self-adaptive system to
acquire and structure comprehensive knowledge in such a way that it can be
effectively and efficiently processed, so such a system becomes aware of itself
� This research was supported by the European project IP 257414 (ASCENS).

M. Wirsing et al. (eds.): Collective Autonomic Systems, LNCS 8998, pp. 221–247, 2015.
c© Springer International Publishing Switzerland 2015

222 E. Vassev and M. Hinchey

and its environment. Such a system needs to be developed with initial knowledge
and learning capabilities based on knowledge processing and awareness. In this
approach, it is very important how the system knowledge is both structured and
modeled to provide essence of self-adaptation.

In this chapter, we present an approach to implementing self-adaptation ca-
pabilities with KnowLang, a special framework for KR&R. KnowLang provides
for a special knowledge context and a special reasoner operating in that context.
The approach is formal and demonstrates how knowledge representation and rea-
soning help to establish the vital connection between knowledge, perception, and
actions realizing the self-adaptive behavior. The knowledge is used against the
perception of the world to generate appropriate actions in compliance to some
goals and beliefs. KnowLang [22,24] is an initiative undertaken by Lero–the Irish
Software Engineering Research Center within Lero’s mandate in the ASCENS
Project [1].

The rest of this chapter is organized as follows. Section 2 introduces the
KnowLang formal language as an approach to knowledge representation of self-
adaptive systems. The section also presents a proof-of-concept case study. Section
3 presents the KnowLang Reasoner. Section 4 presents a mechanism for aware-
ness in software-intensive systems and how this mechanism is implemented by
the KnowLang platform. Section 5 presents related work and finally, Section 6
presents a brief conclusion and future work.

2 KnowLang – Language for Knowledge Representation
of Self-adaptive Systems

KnowLang [22,24,23,20,21] is a framework for KR&R that aims at efficient and
comprehensive knowledge structuring and awareness based on logical and statis-
tical reasoning. Knowledge specified with KnowLang takes the form of a Knowl-
edge Base (KB) that outlines a Knowledge Representation (KR) context. A spe-
cial KnowLang Reasoner operates in this context to allow for knowledge querying
and update. In addition, the reasoner can infer special self-adaptive behavior.

2.1 Multi-tier Specification Model

A key feature of KnowLang is a formal language with a multi-tier knowledge
specification model allowing for integration of ontologies together with rules
and Bayesian networks [13]. The language aims at efficient and comprehensive
knowledge structuring and awareness based on logical and statistical reasoning.
It helps us tackle [22]: 1) explicit representation of domain concepts and rela-
tionships; 2) explicit representation of particular and general factual knowledge,
in terms of predicates, names, connectives, quantifiers and identity; and 3) un-
certain knowledge in which additive probabilities are used to represent degrees
of belief. Other remarkable features are related to knowledge cleaning (allow-
ing for efficient reasoning) [22] and knowledge representation for autonomic
behavior [24]. By applying the KnowLang’s multi-tier specification model (see

Knowledge Representation for Adaptive and Self-aware Systems 223

Figure 1) we build a Knowledge Base (KB) structured in three main tiers [22]: 1)
Knowledge Corpuses ; 2) KB Operators ; and 3) Inference Primitives. The tier of
Knowledge Corpuses is used to specify KR structures. The tier of KB Operators
provide access to Knowledge Corpuses via special classes of ASK and TELL Op-
erators where ASK Operators are dedicated to knowledge querying and retrieval
and TELL Operators allow for knowledge update. When we specify knowledge

Fig. 1. KnowLang Specification Model

with KnowLang, we build a KB with a variety of knowledge structures such as
ontologies, facts, rules and constraints where we need to specify the ontologies
first in order to provide the “vocabulary” for the other knowledge structures.
A KnowLang ontology is specified over concept trees, object trees, relations and
predicates. Each concept is specified with special properties and functionality and
is hierarchically linked to other concepts through PARENTS and CHILDREN
relationships. For reasoning purposes every concept specified with KnowLang
has an intrinsic STATE attribute that may be associated with a set of possible

224 E. Vassev and M. Hinchey

state values the concept instances may be in. The concept instances are consid-
ered as objects and are structured in object trees - a conceptualization of how
objects existing in the world of interest are related to each other. The relation-
ships in an object tree are based on the principle that objects have properties,
where the value of a property is another object, which in turn also has proper-
ties. Moreover, concepts and objects might be connected via relations. Relations
are binary and may have probability-distribution attribute (e.g., over time, over
situations, over concepts’ properties, etc.). Probability distribution is provided
to support probabilistic reasoning and by specifying relations with probability
distributions we actually specify Bayesian networks connecting the concepts and
objects of an ontology. Figure 2 shows a KnowLang specification sample demon-
strating both the language syntax [17] and its visual counterpart - a concept map
based on interrelations with no probability distributions. Modeling knowledge
with KnowLang requires a few phases:

– Initial knowledge gathering - involves domain experts to determine the basic
notions, relations and functions (operations) of the domain of interest.

– Behavior definition - identifies situations and behavior policies as “control
data” helping to identify important self-adaptive scenarios.

– Knowledge structuring - encapsulates domain entities, situations and be-
havior into KnowLang structures like concepts, objects, relations, facts and
rules.

Fig. 2. KnowLang Specification Sample

Note that the full presentation of the KnowLang specification model is beyond
the scope of this chapter. For further reading, covering other parts of the spec-
ification model, such as Contexts, Logical Framework, Inter-ontology Operators,
and Inference Primitives, the interested reader is advised to refer to [25].

Knowledge Representation for Adaptive and Self-aware Systems 225

2.2 Knowledge Representation for Self-adaptive Behavior

KnowLang employs special knowledge structures and a reasoning mechanism
for modeling autonomic self-adaptive behavior [24]. Such a behavior can be ex-
pressed via KnowLang policies, events, actions, situations and relations between
policies and situations (see Definitions 1 through 10). Policies (Π) are at the core
of autonomic behavior. A policy π has a goal (g), policy situations (Siπ), policy-
situation relations (Rπ), and policy conditions (Nπ) mapped to policy actions
(Aπ) where the evaluation of Nπ may eventually (with some degree of probabil-

ity) imply the evaluation of actions (denoted Nπ
[Z]→ Aπ) (see Definition 6). A

condition is a Boolean expression over an ontology (see Definition 2), e.g., the
occurrence of a certain event.

Policy situations Siπ are situations (see Definition 7) that may trigger (or
imply) a policy π, in compliance with the policy-situations relations Rπ(denoted

by Siπ
[Rπ]→ π), thus implying the evaluation of the policy conditions Nπ(denoted

by π → Nπ)(see Definition 6). Therefore, the optional policy-situation relations
(Rπ) justify the relationships between a policy and the associated situations (see
Definition 10). Note that in order to allow for self-adaptive behavior, relations
must be specified to connect policies with situations over an optional probability
distribution (Z) where a policy might be related to multiple situations and vice
versa. Probability distribution (Z) is provided to support probabilistic reasoning
and to help the reasoner to choose the most probable situation-policy “pair”.
Thus, we may specify a few relations connecting a specific situation to different
policies to be undertaken when the system is in that particular situation and
the probability distribution over these relations (involving the same situation)

should help the reasoner decide which policy to choose (denoted by si
[Z]→ π – see

Definition 10). Hence, the presence of probabilistic beliefs (Z) in both mappings
and policy relations justifies the probability of policy execution, which may vary
with time.

A goal g is a desirable transition to a state, or from a specific state to another
state, (denoted by s ⇒ s′) (see Definition 5). A state s is a Boolean expression
over ontology (be(O))(see Definition 4), e.g., “a specific property of an object
must hold a specific value”. A situation is expressed with a state (s), a history
of actions (A ←

si) (actions executed to get to state s), actions Asi that can be
performed from state s and an optional history of events E

←
si that eventually

occurred to get to state s (see Definition 8).

Definition 1. Π := {π1, π2,, πm}, m ≥ 0 (policies)

Aπ ⊂ A, Nπ
[Z]→ Aπ (Aπ - policy actions; A - the set of all actions)

Siπ ⊂ Si, Siπ
[Rπ]→ π → Nπ (Siπ - policy situations)

Rπ ⊂ R (Rπ-policy-situation relations)

Definition 2. n := be(O) (Boolean expression over ontology)

Definition 3. Nπ := {n1, n2,, nk}, k ≥ 0 (policy conditions)

226 E. Vassev and M. Hinchey

Definition 4. s := be(O) (state)

Definition 5. g := 〈⇒ s′〉|〈s ⇒ s′〉 (goal)

Definition 6. π :=< g, Siπ, [Rπ], Nπ, Aπ, map(Nπ, Aπ , [Z]) >

Definition 7. Si := {si1, si2,, sin}, n ≥ 0 (situations)

Definition 8. si :=< s, A
←
si , [E

←
si], Asi > (situation)

A
←
si⊂ A∗ (A ←si - executed actions;

A∗ - the set of all finite sequences with elements in A)
Asi ⊂ A (Asi - possible actions)
E
←
si⊂ E∗ (E ←si - situation events)

E∗ - the set of all finite sequences with elements in E)

Definition 9. R := {r1, r2,, rn}, n ≥ 0 (Relations)

Definition 10. r :=< π, [rn], [Z], si > (rn - Relation Name)

si ∈ Si, π ∈ Π, si
[Z]→ π

Ideally, KnowLang policies are specified to handle specific situations, which may
trigger the application of policies. A policy exhibits a behavior via actions gen-
erated in the environment or in the system itself. Specific conditions determine,
which specific actions (among the actions associated with that policy – see Defini-
tion 6) shall be executed. These conditions are often generic and may differ from
the situations triggering the policy. Thus, the behavior not only depends on the
specific situations a policy is specified to handle, but also depends on additional
conditions. Such conditions might be organized in a way allowing for synchro-
nization of different situations on the same policy. When a policy is applied, it
checks what particular conditions Nπ are met and performs the mapped actions
Aπ (map(Nπ, Aπ, [Z]) – see Definition 6). An optional probability distribution
Z may additionally restrict the action execution. Although specified initially,
the probability distribution at both mapping and relation levels is recomputed
after the execution of any involved action. The re-computation is based on the
consequences of the action execution, which allows for reinforcement learning.

2.3 Case Study: Knowledge Representation for Autonomic Clouds

To better understand the concepts behind KnowLang, in this section, we present
an example of using the approach to specify a KB for autonomic ensemble de-
scribed by the ASCENS Science Clouds case study (see Chapter IV.3 [11]).

2.4 Science Clouds

Science Clouds is a cloud computing scientific platform for application execution
and data storage Chapter IV.3 [11]. Individual users or universities can join a
cloud to provide (and consume of course) resources to the community. A science

Knowledge Representation for Adaptive and Self-aware Systems 227

cloud is a collection of cloud machines - notebooks, desktops, servers, or virtual
machines, running the Science Cloud Platform (SCP). Each machine is usually
running one instance of the Science Cloud Platform (Science Cloud Platform
instance or SCPi). Each SCPi is considered to be a Service Component (SC)
in the ASCENS sense. To form a cloud, multiple SCPis communicate over the
Internet by using the IP protocol. Within a cloud, a few SCPis might be grouped
into a Service Component Ensemble (SCE), also called a Science Cloud Platform
ensemble (SCPe). The relationships between the SCPis are dynamic and the for-
mation of a SCPe depends mainly on the properties of the SCPis. The common
characteristic of an ensemble is SCPis working together to run one application in
a fail-safe manner and under consideration of the Service Level Agreement (SLA)
of that application, which may require a certain number of active SCPis, certain
latency between the parts, or have restrictions on processing power or memory.
The SCP is a platform as a service (PaaS), which provides a platform for ap-
plication execution [15]. Thus, SCP provides an execution environment where
special applications might be run by using the SCP’s application programming
interface (API) and SCP’s library [15]. These applications provide a software as
a service (SaaS) cloud solution to users. The data storage service is provided in
the same manner, i.e., via an application.

2.5 Formalizing Science Clouds with KnowLang

Recall that KnowLang is exclusively dedicated to knowledge specification where
knowledge is specified as a Knowledge Base (KB) comprising a variety of knowl-
edge structures, e.g., ontologies, facts, rules, and constraints. In order to formilize
the KB of Science Clouds, the first step is to specify the KB representing the
cloud, SCPes, SCPis, applications, etc. To do that, we need to specify ontology
structuring the knowledge domains of the cloud. Note that these domains are
described via domain-relevant concepts and objects (concept instances) related
through relations. To handle explicit concepts like situations, goals, and policies,
we grant some of the domain concepts with explicit state expressions.

A big question here is what to specify. The answer can be obtained by per-
forming the initial two phases of the process of knowledge modeling with KnowL-
ang, i.e., 1) initial knowledge requirements gathering; and 2) behavior definition
(see Section 2.1). By applying the Autonomy Requirements Engineering (ARE)
approach to capture the autonomy requirements for Science Clouds, we actually
perform these two phases, as described above (see Chapter III.3 [26]).

Science Cloud Ontology. Figure 3, depicts a graphical representation of the
Cloud Thing concept tree relating most of the concepts within the Science Cloud
Ontology (SCCloud). Most of the concepts presented in Figure 3 were derived
from the Science Clouds Goals Model built during the autonomy requirements
engineering (see Chapter III.3 [26]). Other concepts are considered as “explicit”
and were derived from the KnowLang’s multi-tier specification model (see Sec-
tion 2.1).

228 E. Vassev and M. Hinchey

Fig. 3. Science Clouds Ontology: Cloud Thing Concept Tree

The following is a sample of the KnowLang specification representing two
important concepts: the SCP concept and the Application concept (partial spec-
ification only). As specified, the concepts in a concept tree might have properties
of other concepts, functionalities (actions associated with that concept), states
(Boolean expressions validating a specific state), etc.

// Science Cloud Platform
CONCEPT SCP {
CHILDREN {}
PARENTS { SCCloud.Thing..Cloud_Platform }
STATES {
STATE Running { this.PROPS.platform_API. STATES.Running AND this.PROPS.platform_Library.STATES.Running }
STATE Executing { IS_PERFORMING(this.FUNCS.runApp) }
STATE Observing { IS_PERFORMING(this.FUNCS.runApp) AND SCCloud.Thing..Application.PROPS.initiator=this }
STATE Down { NOT this.STATES.Running }
STATE Overloaded { this.STATES.OverloadedCPU OR this.STATES.OverloadedStorage OR this.STATES.OverloadedMemory }
STATE OverloadedCPU { SCCloud.Thing..Metric.CPU_Usage.VALUE > 0.95 }
STATE OverloadedMemory { SCCloud.Thing..Metric.Memory_Usage.VALUE > 0.95 }
STATE OverloadedStorage { SCCloud.Thing..Metric.Hard_Disk_Usage.VALUE > 0.95 }
STATE ApplicationTransferred { LAST_PERFORMED(this, this.FUNCS.transferApp) }
STATE InCommunication { this.FUNCS.hasActiveCommunication }
STATE InCommunicationLatency { this.STATES.InCommunication AND this.FUNCS.getCommunicationLatency >0.5 }
STATE InLowTrafic { this.FUNCS.getDataTrafic <= 0.5 }
STATE Started { LAST_PERFORMED(this, this.FUNCS.start) }
STATE Stopped { LAST_PERFORMED(this, this.FUNCS.stop) }

}
PROPS {
PROP platform_API { TYPE {SCCloud.Thing..API} CARDINALITY {1} }
PROP platform_Library { TYPE {SCCloud.Thing..Library} CARDINALITY {1} }
PROP platform_CPU { TYPE {SCCloud.Thing..CPU} CARDINALITY {1} }
PROP platform_Memory { TYPE {SCCloud.Thing..Memory} CARDINALITY {1} }
PROP platform_Storage { TYPE {SCCloud.Thing..Data_Storage} CARDINALITY {1} }
PROP platform_Applications { TYPE {SCCloud.Thing..Application} CARDINALITY {*} }

}
FUNCS {
FUNC run { TYPE { SCCloud.Thing..Action.RunSCP } }
FUNC down { TYPE { SCCloud.Thing..Action.StopSCP } }
FUNC runApp { TYPE { SCCloud.Thing..Action.RunApplication } }
FUNC startApp { TYPE { SCCloud.Thing..Action.StartApplication } }
FUNC stopApp { TYPE { SCCloud.Thing..Action.StopApplication } }
FUNC transferApp { TYPE { SCCloud.Thing..Action.TransferApplication } }
FUNC startNewCommunication { TYPE { SCCloud.Thing..Action.StartCommunication } }
FUNC stopNewCommunication { TYPE { SCCloud.Thing..Action.StopCommunication } }

Knowledge Representation for Adaptive and Self-aware Systems 229

FUNC hasActiveCommunication { TYPE { SCCloud.Thing..Action.HasActiveCommunication } }
FUNC getCommunicationLatency { TYPE { SCCloud.Thing..Action.GetCommunicationLatency } }
FUNC getDataTraffic { TYPE { SCCloud.Thing..Action.GetTraffic } }

}
IMPL { SCCloud.SCPImpl }

}

// Science Cloud Application
CONCEPT Application {
CHILDREN {}

PARENTS { SCCloud.Thing..Software }
STATES {
STATE Running { PERFORMED(this.FUNCS.Started) AND NOT PERFORMED(this.FUNCS. Stopped) }
STATE Started { LAST_PERFORMED(this, this.FUNCS.start) }
STATE Stopped { LAST_PERFORMED(this, this.FUNCS.stop) }

}
PROPS {
PROP needed_CPU_Power { TYPE {SCCloud.Thing..CPU_Power} CARDINALITY {1} }
PROP needed_Memory { TYPE {SCCloud.Thing..Capacity} CARDINALITY {1} }
PROP needed_Storage { TYPE {SCCloud.Thing..Storage} CARDINALITY {1} }
PROP distributiveness { TYPE {Boolean} CARDINALITY {1} }
PROP requiredSCPis { TYPE {Integer} CARDINALITY {1} }
PROP requiredLatency { TYPE { SCCloud.Thing..Latency } CARDINALITY {1} }
PROP initiator { TYPE {SCCloud.Thing..SCP} CARDINALITY {1} }

}
FUNCS { }
IMPL { SCCloud.ApplicationImpl }

}

As mentioned, the states are specified as Boolean expressions. For example, the
state Executing is true while the SCP is performing the runApp function. The
KnowLang operator IS PERFORMING evaluates actions and returns true if
an action is currently performing. Similarly, the operator LAST PERFORMED
evaluates actions and returns true if an action is the last successfully performed
action by the concept realization. A concept realization is an object instantiated
from that concept, e.g., a SCP instance (SCPi). A complex state might be ex-
pressed as a Boolean function of other states. For example, the Running state
is expressed as a Boolean function of two other states, particularly, states of
concept’s properties, e.g., the SCP is running if both its API and Library are
running:
STATE Running { this.PROPS.platform_API.STATES.Running AND this.PROPS.platform_Library.STATES.Running }

States are extremely important to the specification of goals (objectives), situa-
tions, and policies. For example, states help the KnowLang Reasoner determine
at runtime whether the system is in a particular situation or a particular goal
(objective) has been achieved. Note that to specify some of the SCP states, we
used the KnowLang metric concept..
STATE OverloadedCPU { SCCloud.Thing..Metric.CPU_Usage.VALUE > 0.95 }

The Cloud Thing concept tree (see Figure 3) is the main concept tree of the
SCCloud Ontology. Due to space limitations, Figure 3 does not show all the
concept tree branches. Moreover, some of the concepts in this tree are “roots” of
other trees. For example, the Action concept, expressing the common concept
for all the actions that can be realized by the cloud, is the root of the concept
tree shown in Figure 4. As shown, actions are grouped by subsystem (or part)
they are associated with. For example, the SCP actions are: RunSCP, StopSCP,
LeaveSCPe, and JoinSCPe.

Note that in the KnowLang specification models, in addition to concepts we
also specify concept instances, which are considered as objects and are structured
in object trees. The latter are a conceptualization of how objects existing in the

230 E. Vassev and M. Hinchey

Fig. 4. Science Clouds Ontology: Cloud Action Concept Tree

world of interest (e.g., Science Clouds) are related to each other. The relation-
ships in an object tree are based on the principle that objects have properties,
where the value of a property is another object, which in turn also has properties
[25]. Therefore, the object trees are the realization of concepts in the ontology
domain (e.g., Science Clouds). To better understand the relationship between
concepts and objects, we may think of concepts as similar to the OOP classes
and objects as instances of these classes. For example, the SCP concept might
be regarded as a class and the SCPis as SCP “instances” of that class. In this
exercise, we specified a few exemplary SCPis as object trees, which we do not
present here due to space limitations.

Self-adaptive Behavior. To specify self-adaptive behavior, we use goals, poli-
cies, and situations (see Section 2.2). These are defined as explicit concepts in
KnowLang and for the Cloud Ontology (SCCloud) we specified them under the
concepts Virtual entity->Phenomenon->Knowledge (see Figure 3). Figure 5, de-
picts a concept tree representing the specified Science Clouds goals. Note that
most of these goals were derived from the goals model build for Science Clouds
by applying the ARE approach (see Chapter III.3 [26]).

KnowLang specifies goals as functions of states where any combination of
states can be involved. A goal has an arriving state (Boolean function of states)
and an optional departing state (another Boolean function of states) (see Section
2.2). The following code samples present the specification of two simple goals.
Note that their arriving and departing states can be either single SCP states or
Boolean functions involving more than one state. Note that the states used to
specify these goals are specified as part of the SCP concept.

Knowledge Representation for Adaptive and Self-aware Systems 231

Fig. 5. Science Cloud Ontology: Cloud Goal Concept Tree

//
//==== Cloud Goals ===
//
CONCEPT_GOAL Self-optimizing_1 {
SPEC {
DEPART { SCP.STATES.OverloadedCPU }
ARRIVE { SCP.STATES.ApplicationTransferred AND NOT SCP.STATES.OverloadedCPU }

}
}
CONCEPT_GOAL Self-optimizing_3 {
SPEC {
DEPART { SCP.STATES.InCommunicationLatency }
ARRIVE { SCP.STATES.InLowTrafic AND NOT SCP.STATES.InCommunicationLatency }
}

}

According to the KnowLang semantics, in order to achieve specified goals (objec-
tives), we need to specify policies triggering actions that will eventually change
the system states, so the desired ones, required by the goals, will become effec-
tive (see Section 2.2). All the policies in KnowLang descend from the explicit
Policy concept. Recall that the KnowLang policies allow the specification of self-
adaptive behavior. As a rule, we need to specify at least one policy per single
goal, i.e., a policy that will provide the necessary behavior to achieve that goal.
Of course, we may specify multiple policies handling same goal (objective) and
let the system decides which policy to apply taking into consideration the current
situation and conditions.

The following is a specification sample showing a simple policy called Re-
duceCPUOverhead – as the name says, this policy is intended to reduce the

232 E. Vassev and M. Hinchey

CPU overhead of a SCPi. As shown, the policy is specified to handle the goal
Self-Opimizing 1 and is triggered by the situation HighCPUUsage. Further, the
policy triggers conditionally (the CONDITONS directive requires that a SCPi
is executing an application) the execution of a sequence of actions.
CONCEPT_POLICY ReduceCPUOverhead {
SPEC {
POLICY_GOAL { SCCloud.Thing..Self-Optimizing_1 }
POLICY_SITUATIONS { SCCloud.Thing..HighCPUUsage }
POLICY_RELATIONS { SCCloud.Thing..Policy_Situation_1 }
POLICY_ACTIONS {SCCloud.Thing..Action.StartCommunication, SCCloud.Thing..Action.TransferApplication,

SCCloud.Thing..Action.StopCommunication }
POLICY_MAPPINGS {
MAPPING {
CONDITIONS { SCCloud.Thing..SCP.STATES.Executing }
DO_ACTIONS { SCCloud.Thing..SCP.Action.StartCommunication, SCCloud.Thing..SCP.Action.TransferApplication,

SCCloud.Thing..SCP.Action.StopCommunication }
}

}
}

}

Policies are triggered by situations (see Section 2.2). Therefore, while specifying
policies, we need to think of important situations that may trigger those policies.
A single policy requires to be associated with (related to) at least one situation,
but for polices handling self-adaptation we eventually will need more situations.
Therefore, a single situation may need more policies, those providing alterna-
tive behaviors or execution paths departing from that situation. The following
code represents the specification of the HighCPUUsage situation, used for the
specification of the ReduceCPUOverhead policy.

//
//==== Cloud Situations ===
//
CONCEPT_SITUATION HighCPUUsage {
CHILDREN {}
PARENTS { SCCloud.Thing..Situation}
SPEC {
SITUATION_STATES { SCCloud.Thing..SCP.STATES.OverloadedCPU}
SITUATION_ACTIONS { SCCloud.Thing..Action.TransferApplication, SCCloud.Thing..Action.SlowDownApplication,

SCCloud.Thing..Action. StopApplication }
}

}

As shown, the situation is specified with states and possible actions. To consider
a situation effective (the system is currently in that situation), its associated
states must be respectively effective (evaluated as true). For example, the situ-
ation HighCPUUsage is effective if the SCP state OverloadedCPU is effective.
The possible actions define what actions can be undertaken once the system
falls in a particular situation. For example, the HighCPUUsage situation has
three possible actions: TransferApplication, SlowDownApplication, and StopAp-
plication. The following code represents another policy intended to handle the
HighCPUUsage situation. In this policy, we specified three MAPPING sections,
which introduce three possible alternative execution paths.

CONCEPT_POLICY AIReduceCPUOverhead {
SPEC {
POLICY_GOAL { SCCloud.Thing..Self-Optimizing_1 }
POLICY_SITUATIONS { SCCloud.Thing..HighCPUUsage }
POLICY_RELATIONS { SCCloud.Thing..Policy_Situation_2 }
POLICY_ACTIONS { SCCloud.Thing..Action.SlowDownApplication, SCCloud.Thing..Action. StopApplication }
POLICY_MAPPINGS {
MAPPING {
CONDITIONS { SCCloud.Thing..SCP.STATES.Executing }
DO_ACTIONS { SCCloud.Thing..Action. SlowDownApplication }
PROBABILITY {0.5}

}

Knowledge Representation for Adaptive and Self-aware Systems 233

MAPPING {
CONDITIONS { SCCloud.Thing..SCP.STATES.Executing }
DO_ACTIONS { SCCloud.Thing..Action. StopApplication }
PROBABILITY {0.4}

}
MAPPING {
CONDITIONS { SCCloud.Thing..SCP.STATES.Executing }
DO_ACTIONS { GENERATE_NEXT_ACTIONS(SCCloud.Thing..SCP) }
PROBABILITY {0.1}

}
}

}
}

Recall that situations are related to policies via relations (see Section 2.2). The
following code demonstrates how we related the HighCPUUsage situation to two
different policies: ReduceCPUOverhead and AIReduceCPUOverhead.
//
//==== Cloud Relations ===
//
RELATIONS {
RELATION Policy_Situation_1 {
RELATION_PAIR { SCCloud.Thing..HighCPUUsage, SCCloud.Thing..ReduceCPUOverhead } PROBABILITY {0.5}

}
RELATION Policy_Situation_2 {
RELATION_PAIR { SCCloud.Thing..HighCPUUsage, SCCloud.Thing..AIReduceCPUOverhead} PROBABILITY {0.4}

}
}

As specified, the probability distribution gives initial designer’s preference about
what policy should be applied if the system ends up in the HighCPUUsage
situation. Note that at runtime, the KnowLang Reasoner maintains a record of
all the action executions and re-computes the probability rates every time when
a policy has been applied. Thus, although initially the system will apply the
ReduceCPUOverhead policy (it has the higher probability rate of 0.5), if that
policy cannot achieve its goal due to action fails (e.g., the communication link
with another SCPi is broken and application transfer is not possible), then the
probability distribution will be shifted in favor of the AIReduceCPUOverhead
policy and the system will try to apply that policy. Note that in this case both
policies share the same goal.

Monitoring. In general, a self-adaptive system has sensors that connect it to
the world and eventually help it listen to its internal components. These sensors
generate raw data that represent the physical characteristics of the world. In
our approach, we assume that cloud sensors are controlled by a software driver
(e.g., implemented in C++) where appropriate methods are used to control a
sensor and read data from it. In KnowLang, by specifying a Metric concept we
introduce a class of sensors to the KB and by specifying objects, instances of
that class, we represent the real sensor. KnowLang allows the specification of
four different types of metrics [25]:

– RESOURCE - measure resources like capacity;
– QUALITY - measure qualities like performance, response time, etc.;
– ENVIRONMENT - measure environment qualities and resources;
– ENSEMBLE - measure complex qualities and resources where the metric

might be a function of multiple metrics both of RESOURCE and QUALITY
type.

234 E. Vassev and M. Hinchey

The following is a specification of metrics mainly used to assist the specification
of states in the specification of the SCP concept (see Section 2.5).

//Cloud Metrics
CONCEPT_METRIC CPU_Usage {
SPEC { METRIC_TYPE { RESOURCE } METRIC_SOURCE { CPU.Usage }
DATA { DATA_TYPE { Number } VALUE { 0.00 } }

} }
CONCEPT_METRIC Memory_Usage {
SPEC { METRIC_TYPE { RESOURCE } METRIC_SOURCE { Memory.Usage }
DATA { DATA_TYPE { Number } VALUE { 0.00 } }

} }
CONCEPT_METRIC Hard_Disk_Usage {
SPEC { METRIC_TYPE { RESOURCE } METRIC_SOURCE { HDD.Usage }
DATA { DATA_TYPE { Number } VALUE { 0.00 } }

} }

3 KnowLang Reasoner

A very challenging task is the R&D of the inference mechanism providing for
knowledge reasoning and awareness. In order to support reasoning about self-
adaptive behavior and to provide a KR gateway for communication with the KB,
we have developed a special KnowLang Reasoner. The reasoner communicates
with the system and operates in the KR Context, a context formed by the
represented knowledge (see Figure 6).

Fig. 6. KnowLang Reasoner

The KnowLang Reasoner should be supplied as a component hosted by the
system and thus, it runs in the system’s Operational Context as any other sys-
tem’s component. However, it operates in the KR Context and on the KR sym-
bols (represented knowledge). The system talks to the reasoner via special ASK
and TELL Operators allowing for knowledge queries and knowledge updates
(see Figure 6). Upon demand, the KnowLang Reasoner can also build up and
return a self-adaptive behavior model - a chain of actions to be realized in the
environment or in the system.

Knowledge Representation for Adaptive and Self-aware Systems 235

3.1 ASK and TELL Operators

KnowLang provides for a predefined set of ASK and TELL Operators allowing
for communication with the KB. TELL Operators feed the KR Context with
important information driven by errors, executed actions, new sensory data,
etc., thus helping the KnowLang Reasoner update the KR with recent changes in
both the system and execution environment. The system uses ASK Operators to
receive recommended behavior where knowledge is used against the perception
of the world to generate appropriate actions in compliance to some goals and
beliefs. In addition, ASK Operators may provide the system with awareness-
based conclusions about the current state of the system or the environment and
ideally with behavior models for self-adaptation.

So far, we have developed the operational semantics of the following TELL
and ASK Operators [18]:

– TELL ERR - tells about a raised error;
– TELL SENSOR - tells about new data collected by a sensor;
– TELL ACTION - tells about action execution;
– TELL ACTION (behavior) - tells about action execution as part of behav-

ior performance;
– TELL OBJ UPDATE - tells about a possible object update;
– TELL CNCPT UPDATE - tells about a possible concept update;
– ASK BEHAV IOR - asks for self-adaptive behavior considering the current

situation;
– ASK BEHAV IOR(goal) - asks for self-adaptive behavior to achieve certain

goal;
– ASK BEHAV IOR(situation, goal) - asks for self-adaptive behavior to

achieve certain goal when departing from a specific situation;
– ASK BEHAV IOR(state) - asks for self-adaptive behavior to go to a certain

state;
– ASK RULE BEHAV IOR(conditions) - asks for rule-based behavior;
– ASK CURR STATE(object) - asks for the current state of an object;
– ASK CURR STATE - asks for the current system state;
– ASK CURR SITUATION - asks for the current situation.

3.2 The ASK BEHAVIOR Operator

This subsection provides a brief presentation of the operational semantics of the
ASK BEHAV IOR KB Operator [18]. For more information on the operational
semantics of the other KnowLang KB Operators, please consult [18].

ASK BEHAVIOR Operator is used by the system to ask the KnowLang Rea-
soner for self-adaptive behavior considering the current situation the system is
in. The following rules reveal the operational semantics of the ASK BEHAVIOR
Operator - σ states for Operational Context (OC) and σ′ states for Knowledge
Representation Context (KRC) (see Figure 6). For clarity reasons, we do not
show the change in KRC after updates have been made in that context.

236 E. Vassev and M. Hinchey

(1) σ
ask behavior()−−−−−−−−−→σ′

〈ASK BEHAV IOR,σ′〉−→〈findCurrentSituation(),σ′〉

(2)
σ

ask behavior()−−−−−−−−−→σ′〈findCurrentSituation(),σ′〉−→〈si,σ′〉
〈findSitnPolcyRltns(si),σ′〉−→〈Rsi,σ′〉

(3)
σ

ask behavior()−−−−−−−−−→σ′〈findSitnPolcyRltns(si),σ′〉−→〈Rsi,σ
′〉

〈max(Rsi),σ′〉−→〈πsi,σ′〉

(4) 〈π, σ′〉 −→ 〈applyPolicy(π), σ′〉

(5)

〈πsi,σ′〉−→〈applyP olicy(πsi),σ
′〉

∀nπ∈Nπ•〈nπ,σ′〉−→〈TRUE,σ′〉
〈map(πsi,Nπ,Aπ,Z),σ′〉−→〈<A′

π,Z′>,σ′〉 A′π ⊆ Aπ

(6)

〈πsi,σ′〉−→〈applyP olicy(πsi),σ
′〉

〈map(πsi,Nπ,Aπ,Z),σ′〉−→〈<A′
π,Z′>,σ′〉

〈max(Z′),σ′〉−→〈z,σ′〉
〈getProbableActions(<A′

π ,Z′>,z),σ′〉−→〈<A′′
π ,z>,σ′〉

(7)

〈πsi,σ′〉−→〈applyP olicy(πsi),σ
′〉

〈map(πsi,Nπ,Aπ,Z),σ′〉−→〈<A′
π,Z′>,σ′〉

〈getProbableActions(<A′
π ,Z′>,z),σ′〉−→〈<A′′

π,z>,σ′〉
〈recordBehavior(πsi,A′′

π),σ′〉−→〈b
π
si,σ′〉

(8)
σ

ask behavior()−−−−−−−−−→σ′〈recordBehavior(πsi,Aπ),σ′〉−→〈b
π
si,σ

′〉
σ′

return(b π
si)−−−−−−−→σ

As shown in Rule 1, to ask for behavior, the system calls the ask behavior() func-
tion (a method implementing the system call of the ASK BEHAVIOR Operator),

which triggers a context switching σ
ask behavior()−−−−−−−−−→ σ′. This passes the process

control to the KnowLang Reasoner operating in the KRC. Further, this context
switching initiates an internal for KRC call of the ASK BEHAVIOR Operator,
which starts an internal operation (denoted with the findCurrentSituation()
abstract function) to find the situation the system is currently in.

The current situation will be approximately determined based on the global
system state. Once the current situation is successfully determined (see the sec-
ond premise in Rule 2), the reasoner needs to find all the policies associated
with that situation. Thus, the reasoner looks up all the situation-policy relations
the current situation participates in (denoted with the findSitnPolcyRltns(si)
- see the conclusion in Rule 2). Next, the relation with the highest probability
rate is selected (recall that KnowLang Relations may be associated with a prob-
ability rate - see Definition 10 in Section 2.2), which helps to determine the most
appropriate policy for that particular situation (see the conclusion in Rule 3).
The selected policy is applied (see Rule 4). The evaluation of a policy triggers
a mapping operation where any policy condition that is held (the conditions are
Boolean expressions) is mapped to appropriate actions with eventual probabil-
ity rate (see Definition 6 in Section 2.2). This operation selects pairs “actions
subset”-“probability rate” (see the conclusion in Rule 5). Next, the reasoner se-
lects from these pairs the one with the highest probability rate to extract the sub-

Knowledge Representation for Adaptive and Self-aware Systems 237

set of actions to be executed (see the last premise and conclusion in Rule 6). The
extracted subset of possible actions has to be recorded as a behavior model (see
the conclusion in Rule 7 where this is denoted with the recordBehavior(πsi , A

′′
π)

abstract function). Finally, the KnowLang Reasoner returns the recorded behav-
ior model to the system with a context switching back to OC σ (see Rule 8).
Note that the behavior model must comprise only actions allowed to be executed
from the actual situation (see Definition 8 in Section 2.2).

4 Awareness in Software-Intensive Systems

In general, any autonomic system engages in interactions where it is not just
able to interact with its operational environment, but also to perceive important
structural and dynamic aspects of the same [8,19]. To become interaction-aware
such a system needs to be aware of its physical environment and whereabouts
and its current internal status. This ability is defined as awareness and it helps
intelligent computerized systems to sense, draw inferences for their own behav-
ior and react. The notion of awareness should be generally related to perception,
recognition, thinking and eventually prediction. Closely related to artificial intel-
ligence, awareness depends on the knowledge we must transfer to a computerized
system and make it use that knowledge, so it can exhibit intelligence. However,
in addition to computerized knowledge, artificial awareness also requires a means
of sensing changes (e.g., event perception and data gathering), so the external
and internal worlds can be perceived through their raw events and data. Thus,
self-monitoring and monitoring the environment is the key to awareness, i.e., to
exhibit awareness, computerized systems must sense and analyze their internal
components and the environment where they operate. Such systems should be
able to notice a change and understand its implications. Moreover, an aware sys-
tem should be able to determine normal and abnormal states. See Chapter II.4
[6] for a formal description of awareness based on the Gem model.

4.1 Classes of Awareness

Awareness can be classified into two major classes: self-awareness about the
internal world and context awareness about the external world. The autonomic
computing research [8] defines these two classes as following:

– self-awareness - a system has detailed knowledge about its own entities,
current states, capacity and capabilities, physical connections and ownership
relations with other (similar) systems in its environment;

– context-awareness - a system knows how to sense, negotiate, communicate
and interact with environmental systems and how to anticipate environmen-
tal system states, situations and changes.

Another intriguing class of awareness could be the so-called situational aware-
ness, which is related to situations. Situation awareness considers circumstances

238 E. Vassev and M. Hinchey

particularly relevant to important situations a computerized system can be in-
volved in. Other classes might be more specific and draw our attention to spe-
cific problems, e.g., operational conditions and performance (operational aware-
ness), control processes (control awareness), interaction processes (interaction
awareness), navigation processes (navigation awareness), etc. Note that although
classes of awareness may differ by their subject, basically they all require percep-
tion of events and data from the subjective context “within a volume of time and
space, the comprehension of their meaning, and the projection of their status in
the near future” [2].

To better understand the idea of awareness in computerized systems, we may
think of an example with exploration robots where we may consider navigation
awareness, which requires context-relative plots of position so that the system
can infer robot speed and direction. Landmarks should be represented as part
of the environment knowledge. Moreover, at the beginning of the navigation
process a special “navigation map” can be built on the fly by the navigation
awareness mechanism. Then, basically navigation awareness is reading the sen-
sor data from cameras and plotting the position of the robot at the time of
observation. Via repeated position plots, the course and land-reference speed of
the robot is established.

4.2 Structuring Awareness

To function, the mechanism implementing awareness must be structured taking
into consideration possible different stages of an awareness process. The mecha-
nism of awareness might be built over a complex chain of functions pipelining
the stages of the awareness process such as: 1) raw data gathering ; 2) data pass-
ing; 3) filtering; 3) conversion; 4) assessment ; 5) projection; and 6) learning. As
shown in Figure 7, ideally all the awareness functions might be structured as a
Pyramid of Awareness forming the mechanism that converts raw data (facts,
measures, raw events, etc.) into conclusions, problem prediction and eventually
may trigger learning.

As shown in Figure 7, the different pyramid levels represent awareness func-
tions that can be grouped into four function groups determining specific aware-
ness tasks. The first three pyramid levels compose the group of monitoring tasks.

Fig. 7. The Pyramid of Awareness

Knowledge Representation for Adaptive and Self-aware Systems 239

Further, the fourth level forms the group of recognition tasks. The fifth and the
sixth levels compose the group of assessment tasks, and finally, the last seventh
level form the group of learning tasks. In addition, aggregation can be included
as a sub-task at any function level. Note that aggregation is intended to improve
the overall awareness performance, e.g., aggregation techniques can be applied
to aggregate large amounts of sensory data during the filtering stage, or can be
applied by the recognition tasks to improve classification.

Ideally, the four awareness function groups require a comprehensive and well-
structured KB representing knowledge in KR Symbols expressing the system
itself with its proper internal structures and functionality and the environment.
Moreover, the awareness process is not as straightforward as one might think.
Instead, it is a cyclic with many iterations over the awareness functions. Thus,
by closing the chain of awareness functions we form a special awareness control
loop [19] where different classes of awareness may emerge (see Figure 8).

Fig. 8. Awareness Control Loop

An elaborated description of the awareness function groups is the following:

– monitoring - collects, aggregates, filters, manages, and reports internal and
external details such as metrics and topologies gathered from the system’s
internal entities and its context;

– recognition - uses knowledge structures and data patterns to aggregate and
convert raw data into knowledge symbols;

– assessment - tracks changes and determines points of interest, generates hy-
potheses about situations involving these points, and recognizes situational
patterns;

– learning - generates new situational patterns and maintains a history of
property changes.

Its cycling nature is the main reason to regard awareness as complex product
with several levels of exhibition and eventually degree of awareness. The levels
of awareness might be related to data readability and reliability, i.e., it could
happen to have noisy data that must be cleaned up and eventually interpreted
with some degree of probability. Other levels of awareness exhibition might be
early awareness, which is supposed to be a product of one or two passes of the

240 E. Vassev and M. Hinchey

Awareness Control Loop and late awareness, which should be more mature in
terms of conclusions and projections. Similar to humans who may react to their
first impression and then the reaction might shift together with a late but better
realization of the current situation, an aware computerized system should rely
on early awareness to react quickly to situations when fast reaction is needed
and on late awareness when more precise thinking is required.

4.3 Implementing Awareness with KnowLang

Ideally, awareness should be a part of the cognitive process where it might sup-
port learning. An efficient awareness mechanism should rely on both past expe-
rience and new knowledge introduced to the system. Moreover, awareness via
learning is the basic mechanism for introducing new facts into the cognitive sys-
tem - other possible ways are related to interaction with a human operator who
may manually introduce new facts into the KB. An efficient awareness mech-
anism needs to properly integrate the Pyramid of Awareness. The baseline is
to provide a means of monitoring and knowledge representation with proper
reasoner supporting the Pyramid of Awareness.

By the time of that chapter writing, the presented awareness mechanism
was partially implemented in the KnowLang Reasoner. As shown in Section 3,
a KR with KnowLang adds a new context to the program and the KnowLang
Reasoner operates in this context taking into account the monitoring activities
driven by the system’s sensors and reported via TELL Operators to the reasoner
(see also Figure 6). The KnowLang Reasoner drives the Awareness Control Loop
and delivers awareness results to the system as outputs of the ASK Operators.

In addition to the awareness abilities initiated via ASK and TELL operators,
a further implementation of the KnowLang Reasoner envisions an additional
awareness capability based on self-initiation where the KnowLang Reasoner may
initiate actions without being asked for it. In this approach, we consider a behav-
ior model based on the so-called Partially Observable Markov Decision Processes
(POMDP) [10]. Note that this model is appropriate when there is uncertainty
and lack of information needed to determine the state of the entire system. For
example, individuals in complex systems like Science Clouds (see Section 2.4) of-
ten might be idle, i.e., not actively participating in the cloud’s activities, because
they are not certain about the current global state of the cloud. The POMDP
model helps individuals reason on the current cloud state (or that of the envi-
ronment) and eventually self-initiate when an action is needed to be performed.
Therefore, according to a POMDP-based model, built for the Science Clouds case
study, a SCPi (a service component - SC) takes as input observable situations,
involving other SCPis and the environment, and generates as output actions
initiating SCPi activity (see Section 2.4). Note that the generated actions affect
the global cloud state.

Knowledge Representation for Adaptive and Self-aware Systems 241

Formally, this model is a tuple M :=< S, A, T, R, X, O > where:

– S is a finite set of system states.
– An initial belief state s0 ∈ S is based on z0(s0; s0 ∈ S), which is a discrete

probability distribution over the set of system states S, representing for each
state a SCPi’s belief that it is currently occupying that state.

– A is a finite set of actions that may be undertaken by a SCPi. Note that the
system state determines the current situation and thus, the possible set of
actions is reduced only to those able to cope with that situation.

– T : S × A −→ Z(S) is a state transition function, giving for each system
state s and action a, a probability distribution over states. Here, T (s; a; s′)
computes the probability of ending in state s′, given that the start state is
s and a SCPi takes action a, z(s′|s; a).

– O : A× S −→ Z(X) is the observation function giving for each system state
s and action a, a probability distribution over observations X . For example,
O(s′; a; x) is the probability of observing x, in state s′ after performing action
a, z(x|s′; a).

– R : S ×A −→ R is a reward function, giving the expected immediate reward
gained by a SCPi for performing an action a while staying in a state s, e.g.,
R(s; a). The reward is a scalar value in the range [0..1] determining, which
action (among many possible) should be undertaken by a SCPi in compliance
with the system goals.

Interpretation. To illustrate this model, let’s assume that a cloud is currently
occupying the state s = ”there is an SCPi with overloaded both CPU and storage,
but no application transfer procedure has been initiated yet and still no SCPi has
self-initiated for new application hosting”. Let’s assume there is at least one idle
SCPi in the cloud ready to undertake a few actions A, including the action a =
”self-initiation for new application hosting”. That SCPi performs the following
reasoning steps in order to self-initiate for new application hosting:

1. The SCPi computes its current belief state s0 - the SCPi picks up the state
with the highest probability z0 and eventually s0 = s.

2. The SCPi computes the probability z1 of the cloud occupying the state s′

= ”there is an SCPi with overloaded both CPU and storage and a SCPi has
self-initiated for new application hosting” if the action a is undertaken from
state s0.

3. The SCPi computes the probability z2(x|s′; a) of observation x = ”there are
sufficient CPU and storage resources to host a new application”.

4. The SCPi computes the reward r(s0; a) for taking the action a (self-initiation
for new application hosting) in state s0. If no other immediate actions should
be undertaken (forced by other cloud goals), the reward r should be the
highest possible, which will determine the execution of a.

Probability Computation. The POMDP model for self-initiation requires the
computation of a few probability values. Our model for assessing probability ap-
plicable to the computation of POMDP probability values (probability of the

242 E. Vassev and M. Hinchey

Table 1. Transition Matrix Z

s1 s2 ... si ... sn

s1 z11 z12 ... z1j ... z1n

s2 z21 z22 ... z2j ... z2n

...
si zi1 zi2 ... zij ... zin

...
sn zn1 zn2 ... znj ... znn

cloud being in a state and probability of observation) is basically based on the
probability distributions at the levels of situation-policy relations and policy
mappings connecting conditions to actions (see definitions 10 and 6 in Section
2.2). Therefore, we need to provide the system with initial probability distribu-
tions at these levels, which practically is building Bayesian networks in our KR
model. In our approach, the probability assessment is an indicator of the number
of possible execution paths a SCPi may take meaning the amount of certainty
(excess entropy) in the cloud’s behavior. To assess that behavior prior to the
KR, it is important to understand the complex interactions among the SCPis in
a cloud. This can be achieved by modeling the behavior of individual reactive
SCPis together with the cloud’s behavior as Discrete Time Markov Chains [3],
and assessing the level of probability through calculating the probabilities of the
state transitions in the corresponding models. We assume that the SCPi-cloud
interaction is a stochastic process where the cloud events are not controlled by
the SCPi and thus the probabilities of occurring these events are considered
equal. The theoretical foundation for our Probability Assessment Model is the
property of Markov chains, which states that, given the current state of the
cloud, its future evolution is independent of its history, which is also the main
characteristic of a reactive autonomic SCPi. An algebraic representation of a
Markov chain is a matrix (called transition matrix) (see Table 1) where the rows
and columns correspond to the states, and the entry zij in the i-th row, j-th
column is the transition probability of being in state sj at the stage following
state si. The following property holds for the calculated probabilities:

∑
j zij = 1

We contend that probability should be calculated from the steady state of the
Markov chain. A steady state (or equilibrium state) is one in which the probabil-
ity of being in a state before and after a transition is the same as time progresses.
Here, we define probability for a cloud SCPe (a SCE - Service Component En-
semble) composed of k SCPis as the level of certainty quantified by the source
excess entropy, as follows:

ZSCPe =
∑

i=1,k Hi − H
Hi = −

∑
j zij log2(zij)

H = −
∑

i vi

∑
j zij log2(zij)

Knowledge Representation for Adaptive and Self-aware Systems 243

Here,

– H is an entropy that quantifies the level of uncertainty in the Markov chain
corresponding to a SCPe;

– Hi is a level of uncertainty in the Markov chain corresponding to a SCPi;
– v is a steady state distribution vector for the corresponding Markov chain;
– zij values are the transition probabilities in the extended state machines that

model the behavior of the i-th SCPi.

Note that for a transition matrix Z, the steady state distribution vector v satisfies
the property v ∗Z = v, and the sum of its components vi is equal to 1. The level
of uncertainty H is exponentially related to the number of statistically typical
paths in the Markov chain. Having an entropy value of 0 means that there is no
level of uncertainty in a Markov system for a specific SCPi’s behavior. Here, a
higher value of a probability measure implies less uncertainty in the model, and
thus, a higher level of predictability.

5 Related Work

Developing self-adaptive systems with Knowledge Representation and Reason-
ing (KR&R) has been an increasingly interesting topic for years. Examples are
found in semantic mapping [4], improving planning and control aspects [12], and
most notably in human-robotic interaction (HRI) systems [5,9]. Overall, KR&R
strives to solve complex problems where the operational environment is non-
deterministic and a system needs to reason at runtime to find missing answers.
Decision-making is a complex process that is often based on more than logical
conclusions. Probability and statistics may provide for the so-called probabilis-
tic and statistical reasoning intended to capture uncertain knowledge in which
additive probabilities are used to represent degrees of belief of rational agents
in the truth of statements. For example, the purpose of a statistical inference
might be to draw conclusions about a population based on data obtained from
a sample of that population. Probability theory and Bayes’ theorem [14] lay the
basis for such reasoning where Bayesian networks [13] are used to represent be-
lief probability distributions, which actually summarize a potentially infinite set
of possible circumstances. The key point is that nodes in a Bayesian network
have direct influence on other nodes; given values for some nodes, it is possi-
ble to infer the probability distribution for values of other nodes. How a node
influences another node is defined by the conditional probability for the nodes,
usually based on past experience. The experience can be associated with the
success of the actions generated in the physical environment by the intelligent
system. Maintaining an execution history of the actions shall help that system
eventually compute the success probability for those actions. In that way, the
system may learn (infer new knowledge) not to execute actions that traditionally
have low success rate.

Today, knowledge representation for self-adaptive systems is a wide open
research area with only a limited number of approaches yet considered. The work

244 E. Vassev and M. Hinchey

that is most similar in spirit to our own is that on developing cognitive robots
relying on the so-called deliberative controllers. Architectures for autonomous
control in robotic systems require concurrent embedded real-time performance,
and are typically too complex to be developed and operated using conventional
programming techniques. The core of an autonomous controller is an execution
system that executes commands and monitors the environment [7]. Execution
systems with deliberative controllers are based on knowledge that contains an
explicitly represented symbolic model of the world. Deliberation is the explicit
consideration of alternative behaviors (courses of actions).

In [27] an agent programming language called Goal is used to program a cog-
nitive robot control architecture that combines low-level sub-symbolic control
with high-level symbolic control. The Goal language helps to realize a cogni-
tive layer where low-level execution control and processing of sensor data are
delegated to components in other layers. Similar to KnowLang, Goal supports a
goal-oriented behavior and decomposition of complex behavior by means of mod-
ules that can focus their attention on relevant sub-goals. However, KnowLang is
far more expressive than Goal, especially at the level of modeling self-adaptive
behavior, which is not supported by Goal. The integration of situations, goals,
policies, and actions with a Bayesian network probability distribution allows for
self-adaptation based on both logical and statistical reasoning.

In [16] the high-level language Golog is used for robot programming. Golog
supports writing control programs in a high-level logical language, and provides
an interpreter that, given a logical axiomatization of a domain, will determine a
plan. Similar to KnowLang, Golog also supports actions and situations (actually
the language incorporates Situation Calculus), but again, KnowLang is far more
expressive with its Ontology-logical framework knowledge structuring. Moreover,
Golog does not provide a means for self-adaptive KR, which is provided by
KnowLang.

Lately, there have been significant research efforts in the implementation of
awareness for computerized systems. For example, commercially-available server
monitoring platforms, such as NimSoft’s NimBUS and JJ Labs’ Watch Tower,
offer robust, lightweight sensing and reporting capabilities across large server
farms. Note that these solutions are oriented towards massive data collection
and performance reporting, and leave much of the final analysis and decision-
making to the administrator. In other approaches, awareness is achieved through
a model-based detection and response based on offline training and models (e.g.,
Markov models) constructed to represent different scenarios.

6 Conclusions

This chapter has presented the KnowLang approach to knowledge representation
and reasoning for self-adaptive and aware systems. The approach was developed
by the ASCENS project and used to build and operate knowledge models for the
ASCENS case studies. KnowLang provides a special knowledge context and a
special reasoner operating in that context, these helping to establish the vital con-

Knowledge Representation for Adaptive and Self-aware Systems 245

nection between knowledge, perception, and actions realizing the self-adaptive
behavior. The knowledge is used against the perception of the world to generate
appropriate actions in compliance to some goals and beliefs.

A proof-of-concept example has been presented where we formalized a knowl-
edge model for the ASCENS Science Clouds case study. With this example, we
have demonstrated how KnowLang can be used to handle self-adaptive behavior
at the level of knowledge representation.

Further, we have discussed the reasoning capabilities of the KnowLang Rea-
soner based on special KB Operators implemented by KnowLang. An approach
to awareness capabilities of self-adaptive systems has been also discussed in this
chapter. Basically, artificial awareness depends on the knowledge we transfer to
software-intensive systems so they can use it to exhibit intelligence. In addition
to knowledge, artificial awareness also requires a means of sensing changes so
that the system can perceive both external and internal worlds through raw
events and data. The KnowLang mechanism implementing the awareness capa-
bilities of the knowledge-represented systems is structured in a way taking into
consideration different stages and different degrees of awareness, thus helping
SCs to self-initiate for performing actions part of self-adaptive behavior.

Future work is mainly concerned with full implementation of the KnowLang
Reasoner including the presented POMDP model for self-initiation. Moreover,
a further integration of KnowLang in the ARE (Autonomy Requirements Engi-
neering) Framework is envisioned.This includes the development of special ARE
Test Bed tool based on the KnowLang Reasoner. With such a test bed, we shall
be able to evaluate capabilities that might manifest system awareness about
situations and conditions.

References

1. ASCENS: ASCENS - Autonomic Service-Component Ensembles (2012),
http://www.ascens-ist.eu/

2. Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Human
Factors 37(1), 32–64 (1995)

3. Ewens, W.J., Grant, G.R.: Stochastic processes (i): poisson processes and Markov
chains. In: Statistical methods in Bioinformatics, 2nd edn., Springer, New York
(2005)

4. Galindo, C., Fernandez-Madrigal, J., Gonzalez, J., Saffiotti, A.: Robot task plan-
ning using semantic maps. Robotics and Autonomous Systems 56(11), 955–966
(2008)

5. Holzapfel, H., Neubig, D., Waibel, A.: A dialogue approach to learning object
descriptions and semantic categories. Robotics and Autonomous Systems 56(11),
1004–1013 (2008)

6. Hölzl, M., Gabor, T.: Reasoning and Learning for Awareness and Adaptation. In:
Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998, pp. 247–288. Springer, Heidelberg
(2015)

7. J. Ocón et al.: Autonomous controller - survey of the state of the art, ver. 1.3.
Tech. Rep. GOAC, GMV-GOAC-TN01, Contract No. 22361/09/NL/RA, Oct. 31,
ESTEC (2011)

http://www.ascens-ist.eu/

246 E. Vassev and M. Hinchey

8. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-
puter 36(1), 41–50 (2003)

9. Kruijff, G.J.M., Lison, P., Benjamin, T., Jacobsson, H., Hawes, N.: Incremental,
multi-level processing for comprehending situated dialogue in human-robot inter-
action. In: Proceedings of the Symposium on Language and Robots (2007)

10. Littman, M.L.: Algorithms for sequential decision making, phD Thesis, Department
of Computer Science, Brown University (1996)

11. Mayer, P., Velasco, J., Klarl, A., Hennicker, R., Puviani, M., Tiezzi, F., Pugliese, R.,
Keznikl, J., Bureš, T.: The Autonomic Cloud. In: Wirsing, M., Hölzl, M., Koch, N.,
Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS,
vol. 8998, pp. 493–510. Springer, Heidelberg (2015)

12. Mozos, O., Jensfelt, P., Zender, H., Kruijff, G.J.M., Burgard, W.: An integrated
system for conceptual spatial representations of indoor environments for mobile
robots. In: Proceedings of the IROS 2007 Workshop: From Sensors to Human
Spatial Concepts (FS2HSC), pp. 25–32 (2007)

13. Neapolitan, R.: Learning Bayesian Networks. Prentice-Hall, Englewood Cliffs
(2003)

14. Robinson, P., Bauer, S.: Introduction to Bio-Ontologies. CRC Press, Boca Raton
(2011)

15. Serbedzija, N., Reiter, S., Ahrens, M., Velasco, J., Pinciroli, C., Hoch, N., Werther,
B.: D7.1: First Report on WP7 Requirement Specification and Scenario Description
of the ASCENS Case Studies, ASCENS Deliverable (2011)

16. Soutchanski, M.: High-level robot programming and program execution. In: Pro-
ceedings of the ICAPS’03 Workshop on Plan Execution, AAAI Press, Menlo Park
(2003)

17. Vassev, E.: KnowLang Grammar in BNF. Tech. Rep. Lero-TR-2012-04, Lero, Uni-
versity of Limerick, Ireland (2012)

18. Vassev, E.: Operational semantics for KnowLang ASK and TELL operators. Tech.
Rep. Lero-TR-2012-05, Lero, University of Limerick, Ireland (2012)

19. Vassev, E., Hinchey, M.: The challenge of developing autonomic systems. IEEE
Computer 43(12), 93–96 (2010)

20. Vassev, E., Hinchey, M.: Towards a formal language for knowledge representation in
autonomic service-component ensembles. In: Proceedings of the 3rd International
Conference on Data Mining and Intelligent Information Technology Applications
(ICMIA2011). AICIT, IEEE Xplore, pp. 228–235. IEEE Computer Society Press,
Los Alamitos (2011)

21. Vassev, E., Hinchey, M.: Awareness in software-intensive systems. IEEE Com-
puter 45(12) (2012)

22. Vassev, E., Hinchey, M.: Knowledge representation for cognitive robotic
systems. In: Proceedings of the 15th IEEE International Symposium on
Object/Component/Service-oriented Real-time Distributed Computing Work-
shops (ISCORCW 2012), pp. 156–163. IEEE Computer Society Press, Los Alamitos
(2012)

23. Vassev, E., Hinchey, M.: Knowledge representation with KnowLang - the marXbot
case study. In: Proceedings of the 11th IEEE International Conference on Cyber-
netic Intelligent Systems (CIS 2012), IEEE Computer Society Press, Los Alamitos
(2012)

24. Vassev, E., Hinchey, M., Gaudin, B.: Knowledge representation for self-adaptive
behavior. In: Proceedings of C* Conference on Computer Science & Software En-
gineering (C3S2E ’12), pp. 113–117. ACM Press, New York (2012)

Knowledge Representation for Adaptive and Self-aware Systems 247

25. Vassev, E., Hinchey, M., Montanari, U., Bicocchi, N., Zambonelli, F., Wirsing, M.:
D3.2: Second Report on WP3: The KnowLang Framework for Knowledge Modeling
for SCE Systems, ASCENS Deliverable (2012)

26. Vassev, E., Hinchey, M.: Engineering Requirements for Autonomy Features. In:
Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998, pp. 377–401. Springer, Heidelberg
(2015)

27. Wei, C., Hindriks, K.V.: An agent-based cognitive robot architecture. In: Program-
ming Multi-Agent Systems (ProMAS) Workshop Affiliated with AAMAS 2012,
Valencia, Spain, pp. 55–68 (2012)

28. Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.): Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998. Springer, Heidelberg (2015)

Chapter II.4

Reasoning and Learning for Awareness and
Adaptation�

Matthias Hölzl and Thomas Gabor

Ludwig-Maximilians-Universität München, Germany

Abstract. Reasoning and learning for awareness and adaptation are
challenging endeavors since cogitation has to be tightly integrated with
action execution and reaction to unforeseen contingencies. After dis-
cussing the notion of awareness and presenting a classification scheme for
awareness mechanisms, we introduce Extended Behavior Trees (XBTs),
a novel modeling method for hierarchical, concurrent behaviors that al-
lows the interleaving of reasoning, learning and actions. The semantics
of XBTs are defined by a transformation to SCEL so that sophisticated
synchronization strategies are straightforward to realize and different
kinds of distributed, hierarchical learning and reasoning—from centrally
coordinated to fully autonomic—can easily be expressed. We propose
novel hierarchical reinforcement-learning strategies called Hierarchical
(Lenient) Frequency-Adjusted Q-learning, that can be implemented us-
ing XBTs. Finally we discuss how XBTs can be used to define a multi-
layer approach to learning, called teacher-student learning, that combines
centralized and distributed learning in a seamless way.

Keywords: Autonomic Computing, Learning, Reasoning, Planning, Behavioral
Adaptation, Self-awareness, Computational Reflection

1 Introduction

An autonomic ensemble performing challenging tasks in an open-ended, dynamic
environment cannot rely solely on data and information provided by its develop-
ers while it was designed—there are too many contingencies, too many possible
alterations of the environment, too many differences between the real environ-
ment and its development model for that to be feasible. Instead the ensemble has
to have some way to gather data about the environment, account for its previous
experience and modify its behavior accordingly. This can take many forms: for
example, agents may leave traces in the environment that lead to stigmergic co-
ordination of actions, agents may modify their behavior based on feedback from
the environment, or a central controller may evaluate the performance of agents

� This research was supported by the European project IP 257414 (ASCENS).

M. Wirsing et al. (eds.): Collective Autonomic Systems, LNCS 8998, pp. 249–290, 2015.
c© Springer International Publishing Switzerland 2015

250 M. Hölzl and T. Gabor

and modify those that fail to reach certain performance criteria. While the de-
tails of these techniques vary considerably, each leads to some form of learning,
and most of these techniques employ some form of automated reasoning. Learn-
ing and reasoning are based on the knowledge that a system has about itself
and its environment—whether it was pre-specified by its developers or gathered
dynamically during execution. We call this knowledge the ensemble’s awareness ;
and the capability of an ensemble to choose actions based on its awareness self-
expression. Since there is a plethora of possible methods for a system to obtain
and update data and to process it into information and knowledge, it is not
helpful to classify some of them as “aware” and some as “not aware,” or even
to say that an ensemble is “more aware” than another without further qualifica-
tion. We will instead identify various dimensions along which the awareness of
a system and its capabilities for self-expression can be classified.

Automated reasoning and machine learning are difficult problems when ap-
plied to single agents operating in a well-defined, static environment. Extending
them to multi-agent settings poses several additional challenges. To mention two
examples: (1) The computational complexity—which is already significant in the
single-agent case—increases exponentially since joint actions and joint results of
many agents have to be taken into account. (2) Evaluating the performance of
actions becomes much more difficult, since actions of an agent A now depend
not only on a stochastic but stationary environment; instead the results of ac-
tions are influenced by the actions of other agents, and these agents also learn
new behaviors and may, in competitive scenarios, actively try to undermine
the success of A. Therefore, many properties that hold in static, single-agent
settings are no longer true in dynamic, multi-agent environments. Empirically,
reinforcement-learning algorithms that provably converge to the optimal strat-
egy in the single-agent case often result in non-optimal solutions when naively
applied to multi-agent settings in which the expectations underlying the proof
of optimality are no longer satisfied. It is therefore necessary to develop im-
proved learning techniques that take into account the effects of other agents
and a dynamic environment, and to reduce the computational effort expended
for computing solutions, e.g., by reusing learned results in multiple contexts or
by exploiting the hierarchical nature inherent in many problems. This is a very
active area of research, and no completely satisfactory solution has been found
so far. Recently, significant progress has been made in developing theoretical
foundations, based on evolutionary game theory, for multi-agent learning, and
in adapting reinforcement techniques to cooperative multi-agent scenarios.

Besides algorithmic difficulties, designers of learning and reasoning mecha-
nisms face another problem: the components of the ensemble have to act, even
if they are resource constrained and have only limited information about the
environment. As has been pointed out, e.g., by Ghallab et al. [18], this imposes
requirements on the system architecture that are often a poor fit to the assump-
tions made in the literature. For example, a planner in an adaptive ensemble
will not be able to plan the execution of a task and then pass that plan to an
executive that performs the completed plan; instead the planning and execution

Reasoning and Learning for Awareness and Adaptation 251

stages have to be interwoven, high-level plans have to take into account uncer-
tainty about the possible actions at lower levels and consider new information
as it becomes available. Often, the planner in such a scenario will itself be dis-
tributed among agents with only local information about the environment and
the overall state of the ensemble. This means that the reasoning system cannot
exist as a “black box” that provides complete solutions to the rest of the system;
reasoning and learning has to be incremental, integrated with the distributed
structure of the ensemble, and tightly interwoven with action execution; often
different reasoning and execution mechanisms have to be active simultaneously.
This chapter presents several techniques that can be helpful in achieving these
goals.

In the next section we review various notions of awareness, self-awareness and
self-expression discussed in the literature and present a classification scheme for
awareness based on the one initially proposed by Hölzl and Wirsing in [21].

In Sect. 3 we give a short review of behavior trees, a behavioral modeling
technique; then we introduce Extended Behavior Trees (XBTs) and give their
semantics in SCEL. XBTs are a novel graphical language for modeling hierar-
chical, concurrent behaviors based on behavior trees; they allow modelers to
interleave reasoning, learning and actions in a goal-directed manner, but they
can also react flexibly to external events. We also show that XBTs can express
hierarchical plans and generalize a variant of total-order HTN-planning.

We introduce (hierarchical) reinforcement learning, the main learning tech-
nique used in ASCENS, in Sect. 4. After a short overview of Markov-Decision
Processes and the dynamic-programming approach to solving them we review
the TD(0) algorithm as an example for flat single-agent reinforcement learning
and indicate how function approximation and hierarchical structure can allow
reinforcement-based approaches to scale to larger problems. We then give a brief
overview of Markov games and evolutionary game theory, the foundations for
multi-agent learning, before addressing the topic of multi-agent learning. At the
end of the section we propose new reinforcement-learning strategies for hierarchi-
cal, cooperative multi-agent learning, Hierarchical (Lenient) Frequency-Adjusted
Q-learning.

Sect. 5 shows how ideas from the previous two sections can be combined
into teacher-student learning, a multi-layer approach that integrates centralized
and decentralized learning and is therefore particularly applicable in the context
of the Ensemble-Development Life Cycle (EDLC) proposed by the ASCENS
project and presented in Chapter III.1 [20] of this volume. The final sections
discuss related work and conclude.

This chapter focuses on learning and reasoning methods and their integration
with the mechanisms the system has for achieving awareness and self-expression.
Since the chapter covers a broad range of topics the later sections are mostly in-
troductory and point to other publications for in-depth treatments of the topic.
Several related aspects are discussed in more detail in other chapters of this
book: The awareness of a system depends on its knowledge; KnowLang, a mech-
anism for representing and updating knowledge is introduced in Ch. II.3 [42].

252 M. Hölzl and T. Gabor

Awareness, reasoning and learning are not objectives in themselves, rather they
are techniques that enable a system to adapt to different environments and to
perform well in unforeseen situations. Different conceptions of adaptation are
discussed in Ch. II.1 [9].

2 Awareness and Self-expression

A theory of awareness should state what we consider to be part of a system’s
awareness, and explain how its own notion of awareness relates to the rich pub-
lished literature on the subject. In this section we propose a simple model that
defines behavioral self-expression as well as operational and non-operational no-
tions of “degree of awareness” and that identifies various dimensions of awareness
that can usefully be distinguished.

2.1 Classifying Awareness and Self-expression

We will at first focus on a structural, or white-box, definition of awareness; an
observational notion can be based on this definition (see p. 257). We therefore
assume for the time being that we can conceptually inspect and analyze the inter-
nal structure of the ensemble. We use Gem as the formal basis of our definition
and therefore describe ensembles by their state space. All possible trajectories a
system can take through its state space over time form its trajectory space. An
introduction to the formal model underlying Gem is given in Ch. II.1 [9] of this
volume, a more in-depth discussion can be found in [22].

We base our model of awareness on the notion of an awareness mechanism, a
conceptual set of features for describing awareness. Awareness mechanisms may
be compared along different dimensions, each of which represents a particular
aspect of the general notion of awareness. A discussion of other approaches to
awareness and self-awareness and their relationship to the work presented in this
section can be found in [21].

Elements of the Awareness Mechanism. A system that can be called aware
should be able to sense or store at least some information about its environment
or itself. We call this information the awareness model M of system S. The
awareness model does not have to be centralized in a single location or node
of S; it can be distributed between the nodes of S and even the environment.
Therefore, our concept of awareness models also encompasses, e.g., system ar-
chitectures based on stigmergy, such as a swarm of robots that communicate by
placing tokens in their environment.

Since ensembles operate in non-static environments the awareness model will
often take into account the dynamics of their environment E (which may include,
from the point of view of S, other agents active in E): changes in E should be
reflected in the awareness model M and, if S is to make use of its awareness, vice
versa. Adapting the definition of Smith [38] for procedurally reflective systems
to ensembles, we call a subset N ⊆ M and E causally connected if changes to

Reasoning and Learning for Awareness and Adaptation 253

N eventually influence E. In many systems, this influence happens only after a
delay, since activities taken by the system need time to affect the the environment.
Similarly, we say that N ⊆ M is inversely (causally) connected to E if certain
changes in E lead to corresponding changes in N . However, the change might
only take place after S reaches some state in which it can perceive the changes.
We call the parts of S that are responsible for maintaining the inverse connection
between E and M the sensor system of S. As with the awareness model, the
sensor system does not necessarily have to be a single, dedicated component.

Most environments are only partially observable: S cannot directly perceive
all relevant information. In this case, S may employ various reasoning techniques
to obtain the information required for action. We use the term “reasoning” in
a very broad sense: in the simplest case it might simply mean querying the
data stored in an agent’s awareness model. More sophisticated reasoning en-
gines might perform complex computations or inferences, run simulations or
develop plans as part of their reasoning process. A system may include several,
distributed reasoning engines operating simultaneously.

In the following we identify the results of the reasoning process with their
(model-theoretic) interpretation, and we assume that predicates relating to the
system’s state space are interpreted in the state space itself; see [22] for de-
tails. We call the set of all inferences the reasoning engines may draw from the
awareness model the inference closure of the awareness model. We allow empty
inferences, hence the inference closure includes the awareness model. If an infer-
ence depends on an inversely connected subset of the awareness model we call the
result transitively connected. Given our choice of models, the inference closure in-
tersects the state space as long as the awareness model contains any information
about the state of the system, and the transitively connected inferences contain
the intersection of the state space with the awareness model.

We call the combination of sensor system, awareness model and reasoning
engines of a system its awareness mechanism. Its components need not be dedi-
cated to the awareness mechanism, they can also be used by other parts of the
system.

A White-Box Definition of Awareness. We classify awareness mechanisms
along three different axes: expressivity, quality and interface with the rest of the
system.

Expressivity. An awareness mechanism will only contain some dimensions of the
state space, often with limited precision, and it will only store a limited amount
of information about past events. Expressivity measures how much information
about the state space an awareness mechanism retains. Basing our notion of
awareness on Gem alleviates the problems involved in comparing the expressivity
of different languages, since we can regard both the state space and the awareness
mechanism as sets. Therefore, scope and depth can be defined as follows:

254 M. Hölzl and T. Gabor

Scope: The scope of an awareness mechanism is the intersection of the aware-
ness mechanism with the phase space of the system, i.e., the subspace of the
trajectory space contained in the awareness-mechanism.

Depth: The depth of an awareness mechanism is the transitive closure of its
scope.

Note that scope and depth are defined with relation to the state space; both
“M1 has larger scope than M2” and “M1 is deeper than M2” mean that M1
contains more information than M2, the difference is whether this information
is part of the system’s state or whether it is meta-information about the system.
Intuitively, the scope of an awareness model M describes how big the slice of
the world represented by M is and the depth of M describes the richness of the
model’s ontology. The transitive connection between depth and scope prevents
information that is completely unrelated to the system’s behavior from counting
as deeper awareness.

Quality. Scope measures the part of the phase space that is contained in an
awareness model, depth measures the inferences an awareness mechanism may
draw from this information. However, neither tells us about whether the data
in the awareness model corresponds to the actual situation or whether the in-
ferences drawn by the reasoning engines are correct. Therefore we are not only
interested in the expressivity of awareness mechanisms but also in their quality,
which we subdivide into accuracy, predictive power, precision and performance:

Historical accuracy: The historical accuracy of an awareness mechanism at a
point of time t is a measure of the distance between the trajectory of the
system stored in the awareness mechanism and the projection of the system’s
trajectory in the state space into the awareness mechanism for times t′ ≤ t.

Predictive power: The predictive power of an awareness mechanism at a point
of time t is a measure of the distance between the trajectory of the system
predicted by the awareness mechanism and the projection of the system’s
trajectory in the state space into the awareness mechanism for times t′ > t.

Precision: The precision of an awareness mechanism is a measure for the vari-
ance of the awareness mechanism, i.e., how close the values for identical
states are to each other, independent of their distance to the “real” value.

Performance: We define the performance of an awareness mechanism as the
average time it takes to answer queries of a certain complexity.

Accuracy (as well as predictive power) and precision capture the usual defini-
tions for measurement systems, and correspond to the terms “trueness” and
“precision” as specified by the ISO 5724-1 standard. An awareness mechanism
is accurate if the values stored in the awareness model or inferred by reasoners
are close to the corresponding values in the real world. It is precise if it always
represents the same real world state in the same manner. An awareness mecha-
nism may be precise without being accurate, e.g., a robot that stores its latitude
and longitude as (0◦, 0◦) irrespectively of its real location is very precise but
wildly inaccurate. For decisions about actions it is often important to predict

Reasoning and Learning for Awareness and Adaptation 255

future developments; therefore we introduce the notion of predictive power that
represents the accuracy of awareness mechanisms for estimating future events.

Interface. Another aspect that distinguishes different awareness mechanisms is
the interface they expose to the ensemble. The interface can be divided into its
interaction with the rest of the system, its accessibility, its traceability and its
configurability.

Interaction: There are various ways how awareness mechanisms may interact
with the rest of the system. Ensembles often consist of components that
communicate via well-defined ports and protocols, in contrast to biological
systems, e.g., within which responsibilities of and interactions between dif-
ferent parts of the system are often much more complex.

Accessibility: An interface may restrict access to some features of the aware-
ness mechanism. We call the subset of the awareness mechanism’s scope
that is exposed to the rest of the system its accessible scope, and similarly
for depth, quality, etc.

Traceability: It is often necessary that users of an awareness mechanism can
comprehend or analyze the reasoning that led to certain conclusions. We call
this property the traceability of the awareness mechanism.

Configurability: Some awareness mechanisms allow users to modify the struc-
ture of the awareness model, add or remove sensors from the sensor system,
and add, replace or reconfigure reasoners. The extent to which these oper-
ations are possible is called the (run-time) configurability of the awareness
mechanism.

The design of the interfaces of awareness mechanisms plays an important role in
awareness engineering [21] since awareness mechanisms generally have to balance
many competing demands: extensible awareness mechanisms often require more
resources, demand complex interactions from the rest of the system, and often
produce results that are difficult to comprehend. Accessible awareness mecha-
nism may enable more features but pose privacy or security problems for the
ensemble.

A White-box Definition of Awareness. We call the functionality of a system’s
awareness mechanism its (internal) awareness and the accessible functionality
of the awareness mechanism its (structurally) accessible or exposed awareness.
Since this notion is based on the internal workings of the system’s awareness
mechanism and not on an operational description of its behavior, this is a non-
operational (or structural, white-box) definition of awareness.

By defining measures md or partial orders ≺d on the different dimensions of
the awareness mechanism discussed in the previous sections, we can classify or
compare the degree of awareness of different systems with regard to the measure∏

d md or the order
∏

d ≺d. We call the degree of awareness of the awareness
mechanism itself the internal degree of awareness of the system with regards to∏

d md or
∏

d ≺d and the degree of awareness of the functionality exposed by

256 M. Hölzl and T. Gabor

the interface of the awareness mechanism’s interface the (structurally) exposed
degree of awareness of a system.

Various (non-operational) notions of self-awareness found in the literature
can be expressed using our definition by placing constraints on the expressivity
of the awareness mechanism. See [21] for further details.

Self-expression. Given a structural definition of awareness or self-awareness,
we know whether a system has enough information about itself, its environment
and the behaviors required to achieve certain goals, but unless this information
can actually influence the behavior of the system it serves no operational purpose.
Therefore we are usually interested in systems whose knowledge representation
is causally connected. Recall that a system and its model are causally connected
if a change in the model can affect the system’s behavior and thereby eventually
the environment.

We call a system S bicausally connected to E (via its model M) if it is causally
and inversely connected to E. The idea behind this notion is that a change in
the model that a system has of its environment will have the potential to affect
its behavior, and a change in the environment will eventually trigger an update
of the system’s internal model when the system reaches a state in which it can
perceive the change.

Whereas inverse connection is required to maintain high-quality awareness in
changing environments, causal connection (and hence bicausal connection) is not
a necessary ingredient of awareness. For example, a passive monitoring system
might possess a deep, high-quality awareness mechanism for the circumstances
in a room, but no effectors to change the room. According to our classification
this system would have an inverse connection to the room and a high degree of
awareness about its environment, but it would not be causally connected to the
room.

We propose to define the level of self-expression exhibited by a system in a
decision-theoretic way that is similar to the one presented in [26] and weaker than
the one by Zambonelli et al. [47]. To this end, we suppose that the desirability of
various courses of action can be described by a value function V , which may or
may not be explicitly known to the system; see Sect. 4.1 of this chapter. Using
V we can express goals of the system and preferences over the system’s behavior
in a unified manner.

Recall that causal connection means that the awareness model influences the
behavior of the system, but causal connection does not imply any expectation
that these behavioral changes are positively correlated with either goals of the
system itself or the externally provided value function. For self-expression we
strengthen this notion slightly and demand that a change in the awareness model
M of a system that is self-expressive with respect to V influences its behavior so
that it improves the expected value of V given M . Note that the dependence on
M is crucial for this definition; a system with an inaccurate awareness model M
may exhibit perfect self expression (because it optimizes the expected value of
V based on M) but bad overall performance (because M bears no relationship

Reasoning and Learning for Awareness and Adaptation 257

to the actual environment). Also, the degree of self-expression depends crucially
on V ; we call a system self-expressive if it is self-expressive with regards to its
own value function.

Put another way, the degree of self-expression of a system with respect to
V can be defined as the degree of rationality that the system’s actions exhibit
relative to the value function V and its awareness model, i.e., a system expresses
itself perfectly, if it uses its awareness mechanism to maximize the expected total
value of its actions over its lifetime.

A Black-Box Definition of Awareness. From the definitions of non-opera-
tional awareness and self-expression we can recapture a notion of operational (or
black-box) awareness. To analyze the awareness of a system S without relying on
knowledge about its internal structure, we require a fixed value function V . We
can then compare the performance of S, as measured by V for the tasks we are
interested in to systems Si with known awareness mechanisms exhibiting perfect
self-expression with respect to V . If S achieves a performance measure that is
at least as good as Si, we define its (operational) awareness to be at least the
same as that of Si.

For example, in certain environments it is not possible for a robot to effi-
ciently navigate to a target location without knowing its own position. If a robot
R is consistently able to navigate to a desired target location, we say it is (op-
erationally) aware of its location, without knowing anything about its internal
structure. If, on the other hand, a robot R′ is unable to find the target location,
it is not operationally aware of its location. This may mean that the awareness
mechanism of R′ does not contain the necessary data to make good decisions, or
the failure of R′ may be due to a lack of self-expression; this distinction cannot
be established by the chosen experiment.

Having defined a model of awareness, subsequent sections will introduce learn-
ing and reasoning techniques that can be used to increase the expressivity and
quality of awareness mechanisms. In the next section we introduce a modeling
approach that facilitates the integration of awareness-based decision into the
behavior of autonomic components.

3 Extended Behavior Trees

Behavior Trees are a flexible behavioral modeling approach that was developed
for the AI-component of computer games and has recently been used in robotics
and avionics. In this section we introduce Extended behavior trees (XBTs), an
extension of behavior trees that support many kinds of reasoning and learning
beyond the reactive planning that behavior trees perform.

3.1 Behavior Trees

As mentioned in the introduction, exploiting the hierarchical nature and inherent
structure of many tasks is essential to learning in and reasoning about non-trivial

258 M. Hölzl and T. Gabor

systems. Various formalisms for specifying hierarchical behaviors have been pro-
posed and are being used, the most popular being state machines [13]. State-
based models excel at specifying reactive behaviors; they can concisely describe
different state configurations of a system, the transitions between configurations,
and the behaviors exhibited by each configuration. But it has also been noted,
e.g., by Zhang and Hölzl [48], that state machines exhibit significant modularity
deficiencies and, e.g., by Millington and Funge [29] that they are poorly suited
for expressing goal-based behaviors. Behavior trees are a modeling technique
that was initially developed for computer games [23] and has recently gained
popularity in other areas, such as robotics [28] and aircraft control [33].1

Whereas state machines represent the state of a system and behaviors are
triggered by transitions between states, each node in a behavior tree represents
a task, i.e., some kind of (instantaneous or ongoing) behavior that the system
exhibits. We use the terms task, behavior and node interchangeably. Children of
a task represent the subtasks that are executed (either sequentially or concur-
rently) to perform the parent task.

Since behavior trees have been integrated into various systems, often with
pre-existing scheduling and distribution architectures, there is a wide variety of
“behavior tree dialects.” For example, behavior trees have been implemented with
event-based scheduling of behaviors [16], or their semantics has been described
in a highly concurrent manner as CSP processes by Colvin and Hayes [11]. In the
following we give an overview of a commonly used model for behavior trees; the
SCEL-based semantics presented in Figs. 5–9 formalize and extend this informal
description.

In the following we assume that each behavior tree is integrated into an event
loop that repeatedly triggers execution of the topmost node of the tree; this is
called ticking the tree. We say a task in the tree is ticked if its execution is
started. This is an architecture that is frequently used for reactive systems, e.g.,
in the ARGoS [35] swarm robotics runtime and simulator used for the ASCENS
case study described in Chapter IV.2 [34]. Ticks sometimes have an associated
integer counter so that nodes can determine whether they are triggered in succes-
sive steps. Since we want to integrate behavior trees with reinforcement learning
techniques in later sections we assume for concreteness that a behavior tree oper-
ates on a Markov Decision Process (MDP, see Sect. 4.1), and that the primitive
actions performed by the tasks in the behavior tree trigger transitions in this
MDP.

In each iteration of the loop, each ticked node in the behavior tree performs
a small amount of computation (potentially ticking one or more of its child
nodes or executing actions in the process) and then returns control to its parent.
The return value passed to the parent can either be succeeded if the behavior
terminated successfully, running if the behavior did not terminate in this tick
but can continue to run in future ticks, and failed when the behavior cannot
be continued but also did not produce the desired result. The presence of the

1 Note that there is also a graphical requirements modeling language called Behavior
Trees; this language is different from the one discussed in this paper.

Reasoning and Learning for Awareness and Adaptation 259

?

not

->

victim
nearby?

random
walk

can lift
victim?

->

pick up
victim

move to
base

drop
victim

->

call
robot

...

Fig. 1. Behavior tree for simple rescue robot

running return value allows the integration of long-lasting computations into
an event-loop based control mechanism if the behavior can be structured in a
co-routine like manner.

A behavior can either be atomic or composite; the simplest atomic behaviors
correspond to triggering single actions in the MDP associated to the behavior
tree. However, it is not necessary for atomic actions to consist of a single instruc-
tion or to be instantaneous. For example, an atomic behavior might perform
actions a1 and a2 on the MDP and return running; when it is triggered again
in the next tick it might perform action a3 and return succeeded if the associ-
ated MDP is in state s1 and failed otherwise. The important property of atomic
behaviors is thus that they are leaves in the behavior trees.

A composite behavior has one or more children in the behavior tree; these
children are ordered. The simplest behavior trees provide just two composite
actions with multiple children: sequence and choice. A sequence node executes
its children from left to right; when a child returns running the node returns
running as well and resumes executions with this child if it is ticked again in the
next step. When a child returns failed the sequence node returns failed as well
and resumes execution with its leftmost child when it is triggered again. When a
child returns succeeded, the sequence node continues with the evaluation of the
next child; when the rightmost node returns succeeded the sequence node returns
succeeded as well. Choice nodes exhibit the reverse behavior: they evaluate their
children until one returns succeeded and then immediately return succeeded; if
all children return failed they return failed as well. When we interpret succeeded
as t and failed as f, sequence nodes correspond to an and operation and choice
nodes to an or. With this interpretation a behavior tree can be seen as an and/or
tree and evaluation of the tree as a non-strict depth-first walk.

A composite node with just a single child is called a decorator. The addition of
a decorator that “negates” succeeded and failed and an action that does nothing

260 M. Hölzl and T. Gabor

and always return succeeded allows the embedding of propositional logic in a
behavior tree, so that if/then/else decisions can be modeled by behavior trees.

Many different kinds of decorators have been proposed for behavior trees
or implemented in behavior tree libraries [29]. One common usage scenario for
decorators is the protection of resources via semaphores: A semaphore decorator
tries to acquire a semaphore and executes its child if it can obtain the semaphore.
When the child returns a value the decorator releases the semaphore and passes
the value to its parent. When it cannot obtain the semaphore, the semaphore
decorator fails immediately.

Fig. 1 shows the behavior tree for a simple rescue robot: the robot performs a
random walk until it happens upon a victim. If it can pick up the victim it picks
it up, moves it to the base and drops the victim off; otherwise it calls another
robot and performs a joint rescue mission. Note how certain actions serve as
guards: The robot only performs a random walk if there is no victim nearby. If
victim nearby? evaluates to succeeded the negation decorator inverts it into failed
and the sequence node fails.

One feature that makes behavior trees well-suited to modeling adaptive be-
haviors is their uniform handling of failures. For physical systems it is, in general,
not possible to perform a reliable test whether an action will succeed since there
may be failure conditions that cannot be easily tested before trying the action.
Therefore a guard can avoid unnecessary execution of operations that are likely
to fail, but when a task fails after evaluating a guard that predicted its success,
the same fallback behavior is triggered as if the guard had correctly predicted the
task’s performance. For example, if the can lift victim? guard returns succeeded
in Fig. 1, the pick up victim behavior can still fail, e.g., because the victim is
heavier than expected. In this case the sequence node will fail and the topmost
choice node will continue with the joint rescue behavior.

Behavior trees, as described in this section, provide no way for nodes to com-
municate data values. In practice this is often too restrictive, therefore behavior
trees often provide a knowledge repository (typically called blackboard) that can
be read and written by tasks, so that communication of values between tasks
becomes possible.

3.2 Extended Behavior Trees

While behavior trees are a convenient way to model behavior, in the simple form
presented in the previous section they are not sufficient to seamlessly integrate
learning and reasoning. Extended Behavior Trees (XBTs) are an extension of
the behavior-tree language that allows them to represent different hierarchical
multi-agent learning and reasoning mechanisms.

To achieve this, XBTs modify the conceptual model of behavior trees in the
following way

– During evaluation, a state object is passed from parent nodes to their chil-
dren. Actions and access to global state are mediated by the state object.

– Each XBT has a name, and it is possible to call other XBTs as subroutines.

Reasoning and Learning for Awareness and Adaptation 261

– The succeeded result returns two values: a performance indicator quality
taken from an ordered monoid specifies the quality of the evaluated tree,
and a Boolean flag cont? indicates whether the tree can continue executing
to try and improve the result achieved so far.

The actions performed by tasks of a behavior tree are, conceptually, directly
executed, i.e., they either modify the state of the associated MDP that represents
the world if the behavior tree is used as part of a simulation, or they invoke the
actuators of a system that modify the real world. In either case, an action that
has been performed by the behavior tree is visible to the rest of the system, even if
the subtree containing this action later fails. Since choice nodes can be used to try
different behaviors when some behaviors fail, the execution strategy of behavior
trees is sometimes called reactive planning [29]: While, in contrast to planning
techniques, behavior trees exhibit no foresight when selecting their tasks, the
reaction to failed tasks closely resembles the manner in which some forward
planning algorithms build plans. For example, the widely-used Hierarchical-Task-
Network (HTN) planner SHOP2 [6] performs this kind of forward planning. In
XBTs, in contrast to traditional behavior trees, all actions and state accesses
are performed via a state object, and the state object can be virtualized, i.e., a
snapshot of the state object can be created so that updates to the virtual state
do not influence the original state. This extension allows the straightforward
definition of a new type of composite XBT-task that performs HTN-planning:
This node first executes its child nodes on a virtualized state and prunes tasks
resulting in failure as well as choices that do not achieve the desired goal from
(a copy of) its children. The result is a new XBT that contains only those paths
that correspond to valid plans; this XBT is executed with the original (non-
virtual) state. In contrast to the plans produced by most planners, the resulting
XBT still retains the flexibility to try different alternatives should one of the
generated plans fail during execution.2

To illustrate the use of the additional features of XBTs, Figs. 2–4 show XBTs
for the rescue scenario that modularize the structure of the behavior tree shown
in Fig. 1 and refine the rescue strategy in various ways. The top-level XBT in
Fig. 2 is a sequence of calls to other behavior trees so that the structure of the
rescue task becomes more explicit and the behaviors expressed by the subtrees
can more easily be reused.

The top-level node in the locate victim tree in Fig. 3 is a reinforcement learn-
ing node. These nodes are similar to choice nodes, but the order of their child
nodes is not fixed, but chosen by a learning system to maximize the performance
of the agent. The reinforcement learning techniques used by these nodes are de-
scribed in Sect. 4; note that the integration of reinforcement learning techniques

2 The input language of SHOP2 can describe more general plans than the XBTs
presented in this section since it allows more general constraints between nodes in the
task network than XBTs allow between behaviors. The planning problems directly
expressible in XBTs correspond to totally-ordered Simple Task Networks (STNs) in
the nomenclature of Ghallab et al. [17], but we believe it would be straightforward
to extend XBTs to the expressivity of full HTN planning.

262 M. Hölzl and T. Gabor

->

call:
locate victim

call:
rescue victim

Fig. 2. Top-level XBT

RL?

not

->

victim
nearby?

random
walk

10
min

not

->

victim
nearby?

search
pattern

10
min

locate victim

call:
locate victim

Fig. 3. XBT for locating victims

into XBTs relies on the performance indicator returned by child nodes to their
parent. In this example the rescue robot has two strategies to locate victims: it
can perform a random walk or it can follow a fixed search pattern. The locate
victim XBT tries each strategy for 10 minutes and then switches to the other one
if no victim has been found yet. After both strategies have been tried the XBT
calls itself recursively to continue the search. Initially the robot performs the
random walk before switching to the predefined search pattern. However, if the
search pattern results in higher average performance, the reinforcement learning
node will swap the order of its child branches and turn to a random walk strat-
egy only when the search pattern fails. As this example shows, XBTs can use
recursive function calls to express behavioral strategies of indefinite length.

Reasoning and Learning for Awareness and Adaptation 263

HTN?

can lift
victim?

->

pick up
victim

move to
base

drop
victim

->

call
robot

...

rescue victim

Fig. 4. XBT for rescuing victims

The XBT for rescuing victims is shown in Fig. 4; it mimics the rescue behavior
shown in Fig. 1. However, the topmost node in this scenario is a planning node
that first executes its subtrees on a virtual state and discards branches of the tree
that are not successful. Therefore, while a robot using the original behavior tree
always tries to lift the victim and only resorts to a collective rescue operation if
this action fails, a robot using the rescue victim XBT will first execute the rescue
mission on a virtual state. If the simulation fails to achieve the desired result,
the left subtree will be pruned and the robot will start the rescue mission by
calling another robot.

3.3 SCEL Semantics

In the following we specify the semantics of XBTs in SCEL.3 We use a slight
syntax extension for SCEL that can be expressed by the following pre-processing
rules for:

– placing common follow-up processes outside of brackets of a sum,

[a1,1.a1,2.a1,m1 + · · · + an,1.an,2.an,mn].P →
a1,1.a1,2.a1,m1 .P + · · · + an,1.an,2.an,mn .P

– combining otherwise identical processes starting with actions with different
parameters

(qry(x1, . . . , xm−1, a � b, xm+1, . . . , xn)@t).P →
(qry(x1, . . . , xm−1, a, xm+1, . . . , xn)@t).P

+ (qry(x1, . . . , xm−1, b, xm+1, . . . , xn)@t).P
3 A detailed discussion of SCEL can be found in chapter I.1 [32] of this volume. Note

that just like the definition of SCEL, the realization of XBTs in SCEL presented
here is parametrized for K and Π .

264 M. Hölzl and T. Gabor

– and supporting a short notation for updating existing values.

(put(x1, . . . , xm−1, !xm, xm+1, . . . , xn)@t).P →
(get(x1, . . . , xm−1, ? , xm+1, . . . , xn)@t).

(put(x1, . . . , xm−1, xm, xm+1, . . . , xn)@t).P

To simplify the notation, we don’t write the performance indicator and the im-
provement flag for succeeded results.

We assume that we have an XBT B consisting of N nodes n1, . . . , nN with
root n1. We write Ti for the node type of ni and also for the corresponding SCEL
process; the possible node types are

– DoNothingNode for a node that always returns succeeded.
– CallNodeF for node representing a call to an (externally defined) process

that communicates via the knowledge repository at target F . A call node
passes the state as argument to the external process, therefore it can be used
to invoke other behavior trees.

– ChoiceNode for a choice node.
– SequenceNode for a sequence node.
– ExternalChoiceNodeF for a generalized form of choice node where an external

function communicating via the knowledge repository at target F can modify
the children of the node before it is ticked.

– VirtualizationNode for a node that virtualizes the current state.
– DecoratorNodeF for an (externally defined) decorator node communicating

via the knowledge repository at target F .

We translate the structure of the XBT into SCEL components that make the
following components’ knowledge repositories available:

– A component children models the parent-child relationships of the XBT by
providing a knowledge repository acting as a tuple space containing the
following tuples:

• For each decorator nP decorating a tree node nC , the knowledge reposi-
tory of children contains the tuple (nP , only, nC).

• For each non-leaf node nP of the XBT, which has the children ni1, . . . , niM ,
the knowledge repository of children contains the tuples (nP , first, ni1),
(nP , last, niM) to mark the first and last child, and (nP , next, ni1 , ni2),
(nP , next, ni2 , ni3), . . . , (nP , next, niM−1 , niM) to encode the order of the
child nodes.

• For each node ni of the XBT, it contains the tuple (ni, all, c) where c is
some vector representation of all child nodes of ni which is understood
by the tuple space of states.

– A component states providing a tuple space to all other XBT components,
which initially contains the tuples (n1, inactive), . . . , (nN , inactive). Note that
states is able to recognize and accept parameters of some vector format as a
first parameter to put and processes each of the vector’s elements separately.

Reasoning and Learning for Awareness and Adaptation 265

BehaviorTree = new(I1, K, Π,T1 (n1))
| . . .
| new(IN , K, Π,TN (nN))
| children
| states
| virtualizer
| ticks

DoNothingNode(nP) = get(nP , ?state)@ticks .
put(nP , !succeeded)@states .
DoNothingNode(nP)

CallNodeF (nP) = get(nP , ?state)@ticks .
put(invoke, nP , state)@F.
[get(running)@F.put(nP , !running)@states
+ get(succeeded)@F.put(nP , !succeeded)@states
+ get(failed)@F.put(nP , !failed)@states].
CallNodeF (nP)

Fig. 5. SCEL semantics for XBTs (top-level and atomic processes)

– A component virtualizer , which returns a virtual world state on request via
get. This requires a SCEL instantiation that provides reflection over tuple
spaces.

– A component containing a tuple space ticks and a user-defined process which
invokes the execution of B by executing the operation put(n1, state)@ticks
for world state state. This process can then retrieve the status of the execu-
tion by qry-ing the tuple space of states for the root node n1.

Given these preparations, Figs. 5 – 9 give the process structure of the XBT.
We write T [P2/P1] for the process definition of T where each occurrence of the
syntactic token P1 is replaced by the token P2 to avoid unnecessary duplication
of similar node definitions.

When execution of an XBT B is started, a new SCEL component is instan-
tiated for each node of B; this node initially runs a single process controlling
the execution of the node. The structure of the process for the different nodes is
similar: Atomic nodes (like the DoNothingNode or CallNode in Fig. 5) perform
a get operation with their name as parameter on the ticks knowledge repository
to block until they are ticked; this get also retrieves the current state. They
then perform their slice of work and put their current state in the knowledge
repository of the states component. An atomic node that performs a long-lasting
task repeatedly performs this get operation followed by a work slice, followed
by a put on the states knowledge repository.

Similarly, compound nodes (cf. Figs. 8 and 9, which use the same program
structure) start by waiting for a tick. However, if they have previously reached
the end of one execution run (i.e., they have returned succeeded or failed), they

266 M. Hölzl and T. Gabor

ChoiceNode(nP) = [qry(nP , running � inactive)@states
+ qry(nP , succeeded � failed)@states .

qry(nP , all, ?c)@children.
put(c, !inactive)@states].

get(nP , ?state)@ticks
qry(nP , first, ?nc)@children.
Choice(nP , nC , state)

Choice(nP , nC , state) = [qry(nC , running � inactive)@states .
put(nC , !inactive)@states .
put(nC , state)@ticks

+ qry(nC , succeeded � failed)@states].
(qry(nC , running)@states .

put(nP , !running)@states .
Choice(nP)

+ qry(nC , succeeded)@states .
put(nP , !succeeded)@states .
ChoiceNode(nP)

+ qry(nC , failed)@states .
(qry(nP , next, nC , ?nN)@children.

Choice(nP , nN , state)
+ qry(nP , last, nC)@children.

put(nP , !failed)@states .
ChoiceNode(nP)))

Fig. 6. SCEL semantics for XBTs (choice)

first “clean up” their children by setting their respective states to inactive. Then,
they iterate over all children from left to right, transitioning into a new process
with the current child as one if its parameters. These sub-processes (like Choice
or Sequence) tick the current child if it was previously running or inactive, i.e., if
it has still slices of work to run or it has never been run at all. Then, they wait for
the child to enter one of the states {running, succeeded, failed}.4 In the example of
Choice , the states running and succeeded are passed on to the parent, since they
indicate that the execution of the current slice of work or the whole parent node,
respectively, has finished. Previously failed children are skipped over, unless all
children have failed, which again indicates that the whole parent node is failed.
For Sequence nodes, the child states succeeded and failed are treated reversely.

Decorators (cf. Fig. 8) invoke an external process with their only child node
as argument and return the same value as the external process. Virtualization

4 For a ChoiceNode nP with children < ni1 , . . . , niM >, these children are in the
states:

– < failed, . . . , failed, running, inactive, . . . , inactive > if nP is running,
– < failed, . . . , failed, succeeded, inactive, . . . , inactive > if nP is succeeded,
– < failed, . . . , failed > if nP is failed.

For a SequenceNode , succeeded and failed are reversed. Note that a succeeded or
failed parent resets its children’s states to inactive quickly, as previously discussed.

Reasoning and Learning for Awareness and Adaptation 267

SequenceNode(nP) = ChoiceNode [Sequence/Choice](nP)
Sequence(nP , nC , state) = Choice[Sequence/Choice,SequenceNode/ChoiceNode ,

succeeded/failed, failed/succeeded](nP , nC , state)

Fig. 7. SCEL semantics for XBTs (sequence)

DecoratorNodeF (nP) = get(nP , ?state)@ticks .
qry(nP , only, ?nC)@children.
put(invoke, nP , nC , state)@F.
[get(running)@F.put(nP , !running)@states
+ get(succeeded)@F.put(nP , !succeeded)@states
+ get(failed)@F.put(nP , !failed)@states].
DecoratorNodeF (nP)

VirtualizationNode(nP) = fresh(F).(DecoratorNodeF (nP) | V irtualizationF ())
VirtualizationF () = get(invoke, ?nP , ?nC , ?state)@F .

get(state , ?virtualState)@virtualizer .
put(nC , !inactive)@states .
put(nC , virtualState)@ticks .
[qry(nC , running)@states .put(running)@F
+ qry(nC , succeeded)@states .put(succeeded)@F
+ qry(nC , failed)@states .put(failed)@F].
VirtualizationF ()

Fig. 8. SCEL semantics for XBTs (decorators and virtualization)

nodes have the same structure as decorators, but also create a new process that
receives the decorator’s child nC as a message through a fresh shared channel F .5

It then continues to virtualize the received state and tick nC with the virtualized
state, thereby executing the respective subtree of B under nC using the virtual
state. On its own this is not particularly useful, but together with external choice
nodes this allows the implementation of different kinds of planning strategies as
described at the beginning of this section.

An ExternalChoiceNode (cf. Fig. 9) is a choice node that allows another
process to transform its children before it behaves as a choice node. Together
with virtualization nodes, external choice nodes can be used to integrate planning
techniques into XBT evaluation; without virtualization of the state, external
choice nodes can be used to perform reinforcement learning by reordering the
choices according to their expected value. We will examine this in greater detail
in the next section.

5 This message marked by its first component invoke is part of the interface every
DecoratorNode provides and contains the decorating node nP and the current state
as well.

268 M. Hölzl and T. Gabor

ExternalChoiceNodeF (nP) = [qry(nP , running � inactive)@states
+ qry(nP , succeeded � failed)@states

qry(nP , all, ?c)@children.
put(c, !inactive)@states
put(reorder please, nP)@F.
get(reordering complete, nP)@F].

get(nP , ?state)@ticks.
qry(nP , first, ?nC)@children.
ExternalChoice(nP , nC , state)

ExternalChoiceF (nP ,nC,state) = Choice [ExternalChoiceF /Choice ,
ExternalChoiceNodeF/ChoiceNode](nP ,nC,state)

Fig. 9. SCEL semantics for XBTs (external choice)

Note that the basic XBT model given in this section can be extended in
a multitude of ways. Since the semantics are based on SCEL one obvious ex-
tension is the introduction of composite nodes that execute their child nodes
concurrently and fail or succeed based on a predicate over the children, e.g., it is
straightforward to define a node that runs its children concurrently and succeeds
if at least two of its children succeed. Another important addition is the possi-
bility to interrupt a running configuration. Currently, once a path is activated
it runs until it either succeeds or fails. Interrupts can be introduced by defining
decorators that evaluate the condition that should trigger the interrupt and re-
set the tree below them to its initial state when the condition becomes true. A
similar construction can be used to define state-based behaviors that abort even
long-running tasks of the XBT when an external state machine switches into a
different state.

4 Reinforcement Learning

Many learning problems for adaptive agents can be expressed as controlling a
Markov decision process (MDP, see [39]), and the corresponding problem for
ensembles is control of a Markov Game [40]. We briefly introduce these models
and solution algorithms based on dynamic programming. Reinforcement learning
can then be understood as an approximate version of the dynamic-programming
algorithms. Two characteristics of reinforcement learning are problematic for
many applications to realistic problems: (1) By expressing the problem as a
“flat” MDP, all information about the solution structure of the problem is lost,
and no learning from shared sub-problems is possible. (2) For all but the smallest
state spaces it is impractical to maintain a table of all state/action or state/value
mappings. These problems can be addressed by hierarchical reinforcement learn-
ing, which only considers solutions that follow a certain structure, and by state
approximation techniques, which approximate the state by a smaller number
of parameters. Following the introduction of single-agent reinforcement learning

Reasoning and Learning for Awareness and Adaptation 269

we discuss issues arising in a multi-agent setting and extensions of reinforcement
learning for multiple independent agents.

4.1 Single-Agent Learning

Markov Decision Processes. The behavior of an agent and its environment
can often be modeled in the following way: At each point in time, agent and
environment are in some (combined) state s from a nonempty, finite state set
S. Whenever the agent performs an action a from a finite, nonempty set A of
actions, the system probabilistically transitions into state s′; we write P a

ss′ for
the probability of reaching s′ after performing action a in state s. Obviously
P a

ss′ ∈ [0, 1] and
∀s ∈ S : ∀a ∈ A :

∑
s′∈S

P a
ss′ = 1

Whenever it performs an action, the agent receives reward Ra
ss′ ∈ R

6. The dis-
tribution of the initial state is I : S → [0, 1]; typically this is either a uniform
distribution over all states or a deterministic distribution, i.e., a distribution
that assigns all weight to a single state s0. We are interested in the total reward
that the agent obtains when it performs a sequence of actions. It is possible to
consider finite and infinite sequences of actions; in this chapter we concern our-
selves only with infinite action sequences.7 We write a sequence of transitions,
where the agent starts in state s0, performs action a0 and transitions to state s1
with reward r0, and so on, as

s0, a0, r0, s1, a1, r1, s2, . . .

and call this sequence a trajectory. A finite sequence of the form s0, a0, r0, . . . ,
sn, an, rn, sn+1 is called a history; H is the set of all histories. To ensure that
the sum of rewards is finite, we define the value V of a sequence of rewards

V ((ri)i∈N) =
∑
i∈N

γiri

where γ ∈ [0, 1) is called a discount factor8. If each sequence of actions eventually
leads to an absorbing state we also allow γ = 1.

The six-tuple (S, A, P, R, I, γ) is called a Markov decision process. A mapping
π : H → A → [0, 1] from histories to probability distributions over A is called a
strategy or policy, Π is the set of all policies. If π(h) is a deterministic distribution

6 MDPs may be defined in a more general manner: S and A can be infinite, e.g., Borel
subsets of Polish spaces, the possible actions may depend on the state, and the
reward may be a random variable. This has no significant impact on the following
discussion.

7 A finite sequence of actions can always be extended to an infinite one by adding a
transition into an additional (absorbing) state s# with P a

s#s# = 1 and Ra
s#s# = 0

for every action a.
8 For infinite state or action spaces we also have to ensure that (ri)i∈N is bounded

270 M. Hölzl and T. Gabor

for every history h we call π deterministic, i.e., a deterministic strategy prescribes
a single action for every situation the agent may encounter; we then regard it
as function π : H → A. If π depends only on the last state sn of each history,
i.e., it can be written in the form π : S → A → [0, 1], it is a stationary policy.
Deterministic, stationary policies can be regarded as functions π : S → A.

Value Functions. Since transitions are probabilistic we cannot determine the
exact value an agent will obtain when starting in state s0 and following a policy
π. Instead we define the value of s0 when following π, written V π(s0), as the
expected value of the discounted rewards obtained when starting from s0 and
following π:

V π(s) = E

(∞∑
n=0

γnrn

∣∣∣ s0 = s, π
)

(1)

V is called the state-value or simply value function, or the V -function, for strat-
egy π. Under the assumptions we have made the value of every state is finite,
therefore (ri) is bounded, and V maps each state to a real number, V : S → �.
There is always at least one optimal strategy which is written π∗. It is easy to
see that π∗ has the value function

V ∗(s) = V π∗
(s) = max

π∈Π
V π(s)

and that, if several optimal strategies exist, their value functions are identical.
Since V ∗(s) is independent of the history with which s was reached, we can
restrict ourselves to stationary policies in the rest of this section.

When trying to find a good behavior it is often useful to compute the value
of a state s if the agent performs action a and then follows strategy π. This
function is called the action-value or Q-function for π, Qπ : S × A → �. As for
the state-value function there is always at least one optimal action-value function
Q∗, and its value can be computed from the expected reward for the transition
on a and the state-value of the successor state:

Qπ(s, a) = E

(∞∑
n=0

γnrn

∣∣∣ s0 = s, a0 = a, π
)

(2)

Q∗(s, a) = max
π∈Π

Qπ(s, a) (3)

= E

(
r0 + γV ∗(s1)

∣∣∣ s0 = s, a0 = a
)

(4)

Bellman Equations. By computing the expected values in equations (1) and (2)
we easily obtain two recursive equations for V π and Qπ, the so-called Bellman

Reasoning and Learning for Awareness and Adaptation 271

equations :

V π(s) =
∑
a∈A

π(s, a)
∑
s′∈S

P a
ss′

(
Ra

ss′ + γV π(s′)
)

(5)

Qπ(s, a) =
∑
s′∈S

P a
ss′

(
Ra

ss′ + γ
∑
a′∈A

π(s′, a′)Qπ(s′, a′)
)

(6)

The Bellman equation for V π computes the value for a state s from the values of
its successor states. It is easy to see intuitively how this works: When going from
s to s′ the agent obtains immediate reward Ra

ss′ and enters a state with value
V π(s′), however this value has to be discounted with γ since it is obtained one
step in the future. The probability of ending up in state s′ after having chosen
action a in state s is given by P a

ss′ , therefore the inner sum in Eq. (1) is the
expected value of s if the agent chooses action a. The sum of all these values,
weighted by the probability of choosing each action a is exactly the expected
value of s.

For the optimal state- and action-value functions, the Bellman equations are:

V ∗(s) = max
a∈A

∑
s′∈S

P a
ss′

(
Ra

ss′ + γV ∗(s′)
)

(7)

Q∗(s, a) =
∑
s′∈S

P a
ss′

(
Ra

ss′ + γ max
a′∈A

Q∗(s′, a′)
)

(8)

They are obtained from equations (5) and (6) by maximizing over a or a′, i.e.,
by picking the best possible action, either immediately (in Eq. (7)) or after
performing one transition, and then following the optimal strategy.

The Bellman equations provide a way to compute optimal strategies using
dynamic programming. We sketch one possible method for achieving this, called
policy iteration [39] in Fig. 10. The intuition behind this algorithm is that policy
evaluation will improve the value function V to match the current policy π,
policy improvement will then set π to the greedy policy for V . Since there are
only finitely many policies, it is easy to see that this process converges to the
optimal policy. The idea of using an existing approximation to generate a better
approximation is called bootstrapping. See Sutton and Barto [39] for a more
detailed discussion of this algorithm. Ch. II.2 [19] in this volume contains other
applications of dynamic programming techniques.

Reinforcement Learning. The algorithm presented in the previous section
has two serious drawbacks for applications in autonomic systems:

1. Each iteration sweeps the whole state space of the problem and the algorithm
computes the whole policy, even for parts of the state space that the system
may never reach. An algorithm for online use should focus the evaluation on
the parts of the state space that are actually relevant for the agent.

272 M. Hölzl and T. Gabor

1. Choose V and π arbitrarily
2. Repeat the following algorithm until Δ becomes smaller than a (small) positive

number θ:
Δ ← 0
for all s ∈ S do

v ← V (s)
V (s) ←

∑
s′∈S P

π(s)
ss′

(
R

π(s)
ss′ + γV (s′)

)
Δ ← max(Δ, |v − V (s)|)

end for
This step is called policy evaluation

3. Run the following algorithm:
policy-stable ← t
for all s ∈ S do

b ← π(s)
π(s) ← arg maxa

∑
s′∈S P a

ss′
(
Ra

ss′ + γV (s′)
)

if b �= π(s) then
policy-stable ← f

end if
end for

If policy-stable is t then V approximates V ∗, otherwise continue with the policy
evaluation of step 2. Step 3 is called policy improvement.

Fig. 10. Policy iteration

2. The algorithm relies on a model of the MDP, i.e., it needs the reward function
and the transition probabilities as input. In most scenarios an agent will
have no way of obtaining this model; even in cases where generating an
exact model would theoretically be feasible, it is often too complicated or
expensive to do so.

TD-learning uses the bootstrapping principle presented in the dynamic-program-
ming algorithm. However, the improvement is not based on values computed
from a model but on experience gained by either operating in the real environ-
ment, or by exploring a simulated environment.

Before describing TD-algorithms in more detail we note that moving from
a model that contains the whole dynamics of the MDP to feedback obtained
while traversing the environment introduces another issue: If the agent can only
update the value of states it is exploring, there is a trade-off between utilizing
the knowledge it has already gained and exploring parts of the state space that it
has not yet seen. This is known as the exploration/exploitation trade-off: If the
agent is too eager to exploit the knowledge it has gained so far it may converge
to a sub-optimal solution, either because it has not sampled the best states at
all or because the initial samples of the best states were worse than average. If,
on the other hand, the agent spends too much time exploring the state space it
may not gain enough value from the accumulated knowledge. There are various
ways to choose actions that try to achieve a good balance; in the rest of this

Reasoning and Learning for Awareness and Adaptation 273

Initialize V (s) arbitrarily, s according to I
loop

a ← ε[π(s)]
Perform a, obtaining reward r and moving to state s′

V (s) ← V (s) + α
(
r + γV (s′) − V (s)

)
s ← s′

end loop

Fig. 11. Tabular TD(0) learning for policy π and constant learning rate α

chapter we assume that the agent uses a simple ε-greedy strategy: It will choose
the action a proposed by the current policy with probability 1− ε, and otherwise
choose equiprobably between the other actions. We write this selection as ε[a].

Another question that has to be addressed when learning from experience is
the question of temporal credit assignment: If rewards for actions are not received
immediately but only after a sequence of actions, how should the reward be
distributed among the actions? For example, when winning a game of chess, all
the reward is obtained with the final mate, but the actual winning move has
likely taken place long before.

TD-Learning. The main idea behind TD-learning is to use Eq. (1) (or, for al-
gorithms improving the action-value function, Eq. (2)) to bootstrap an estimate
of the state (or action) value function. The improvement is not based on a value
computed from a model, but on values obtained while exploring the environment:
if V (s) is an estimate of the value of V π and following π results in reward r and
a state s′ then r + γV (s′) can be used as a better estimate for the value of V (s).
This is easy to see for the case of deterministic, episodic environments and a
deterministic strategy: If we reach a final state sf then no more reward will be
received, hence the reward rf of the final transition is the value of the previous
state sp. Every state immediately before sp therefore has value rp + γV (sp). By
backward iteration we can find the exact values of all states.

When applying TD-learning the situation is not so simple, since the agent
usually has to learn while it is operating, and since the environment is stochastic.
Therefore the agent cannot perform a simple backward induction step. Instead
it updates its current estimate while it is operating; but it only updates V (s)
by a percentage α of the difference between r + γV (s′) and V (s). The value
of α is called the learning rate. Often the learning rate will be reduced with
time, so that the algorithm learns rapidly in the beginning and becomes more
robust against random fluctuations later. Since (r+γV (s′))−V (s) represents the
difference between estimates of the value of s at two different times (after and
before performing the transition to s′), the update is according to the temporal
difference, hence the name TD-learning. It is possible to take longer temporal
differences into account, leading to a class of reinforcement learning algorithms
called TD(λ).

274 M. Hölzl and T. Gabor

Initialize Q(s, a) arbitrarily, s according to I
loop

a ← ε[π(s)]
Perform a, obtaining reward r and moving to state s′

Q(s, a) ← Q(s, a) + α
(
r + γ maxa′∈A Q(s′, a′) − Q(s, a)

)
s ← s′

end loop

Fig. 12. One-step Q-learning for policy π and constant learning rate α

In the simplest case, when only the temporal difference between a state and
its immediate successor is taken into account we obtain the following equations
for the estimates V and Q of the state-value and action-value functions:

V (sn) ← V (sn) + αn

(
rs + γV (sn+1) − V (sn)

)
Q(sn, an) ← Q(sn, an) + αn

(
rs + γQ(sn+1, at+1) − Q(sn, an)

)
Fig. 11 gives pseudo-code for the TD(0) algorithm. Note that, in contrast to
the dynamic programming algorithm, TD(0) updates a single value of V when
new information becomes available and does not perform a sweep through the
state space. The TD(0) algorithm can be used to perform policy evaluation,
either interleaved with policy improvement as shown in Fig. 10, or with π as the
greedy policy with respect to V .

It is sometimes advantageous to learn the Q function instead of the V func-
tion, and to be able to learn even when not following the policy being learned
(off-policy learning). One of the important breakthroughs in reinforcement learn-
ing was the discovery of Q-learning by Watkins [43], an off-policy algorithm for
learning action-value functions. Q-learning updates an estimate of the Q function
according to the temporal difference

Q(s, a) ← Q(s, a) + α
(
r + γ max

a′∈A
Q(s′, a′) − Q(s, a)

)

when action a leads to a transition from s to s′. It can be shown to converge to
Q∗ independently of the policy being followed.9

Fig. 12 contains the complete algorithm.

Function Approximation. The algorithms presented in the previous section
represent the value for each state (or state-action pair) exactly. Since they con-
ceptually maintain a table of values for each state they are called table-based
algorithms. For most application this is neither feasible nor desirable. Obviously,
the full state space is typically too large to be represented explicitly, and in
continuous state spaces learning becomes impossible since the probability of
reaching the same state twice is zero. There is another reason why learning an
9 Convergence is always subject to some constraints, e.g., that the exploration policy

samples each state infinitely often.

Reasoning and Learning for Awareness and Adaptation 275

individual value for every state is counter-productive: this does not allow the
system to reuse learned behaviors in similar situations. For example, if a robot
has learned how to pick up a red object it should be able to use this knowledge
to pick up a blue object as well, since the color of the object does not influence
how to grasp it. Therefore, in practice value functions are typically represented
using parameterized approximations, e.g., as a linear combinations of a fixed
number of basis functions. Updates of the value functions then consist in finding
a parameter change that moves the approximation closer to the desired function.

For factored state spaces (i.e., state spaces that are subsets of a Cartesian
product space), approximations are often defined in terms of their individual fea-
tures. Therefore function approximators are sometimes called featurizers. While
they are indispensable for practical applications, function approximators gener-
ally lead to learning systems that no longer converge to the optimal solution.

4.2 Hierarchical and Multi-agent Learning

Function approximation allows reinforcement learning agents to generalize about
states: if two states are approximated in the same way the behavior in both states
is identical. Hierarchical structure is another frequently-used abstraction mech-
anism, and it is not surprising that this kind of decomposition is also useful for
learning: If several tasks rely on a common subroutine, this subroutine can often
learn much more efficiently if it reuses its knowledge across all tasks. Consider,
as an example, a rescue robot that learns the location of a victim, finds a path
to get there, picks up the victim and transports it to a rescue zone. Clearly
the task of the robot consists of several phases in which different behavior is
required, and it has several sub-problems (e.g., navigation) that can be reused
across different phases. When representing the problem as a single MDP this
“phase structure” is lost and the space of possible solutions becomes intractably
large. Furthermore, it is difficult to deal with concurrent, ongoing activities in a
pure MDP framework. For example, the robot should look for additional victims
as it moves through the environment and, depending on several factors such as
the severity of the victim’s injuries and the topology of the environment, modify
its currently planned actions.

The reinforcement learners described in the previous section and the MDP
model on which they are based are not well-suited to express hierarchical and
concurrent problems. We will therefore look at two extensions to MDPs and the
extended capabilities they allow: Semi-Markov Decision Processes (SMDPs) for
hierarchical reinforcement learning and Markov games for multi-agent learning.
Due to limited space we only provide short conceptual overviews and refer to
the literature for details.

Hierarchical Learning and SMDPs. The main idea behind hierarchical re-
inforcement learning (HRL) is to group sets of actions together so that the agent
can execute them as a single unit. Then reinforcement learning techniques can be
applied at different levels of the hierarchy, and results learned at lower levels can

276 M. Hölzl and T. Gabor

be reused whenever the low-level operation is invoked by a higher-level system.
For example, if a robot has learned the motor commands for a ninety-degree
turn it can simply execute these commands whenever a turn is requested by a
higher level. A flat reinforcement learner cannot do this, since the concept of
“ninety-degree-turn” does not even exist in the flat MDP.

The distinguishing feature of high-level commands is that they often take vari-
able amounts of time, and that subsequent actions are therefore discounted with
variable factors. Therefore, high-level commands are no longer strictly Markovian
even though the low-level actions still are. To capture this feature, Semi-Markov
Decision Processes (SMDPs) have been introduced by Tanaka and Wakuta [40].
SMDPs extend MDPs by associating a distribution over times to each transition.
This extension is sufficient to add hierarchical actions to the MDP framework.

To provide an execution model for hierarchical learners, Andre [5] introduced
the notion of reinforcement learning machines (RLMs). A RLM is a model for
a computer program that can be composed with a MDP so that the combined
system is a SMDP. To this end, RLMs contain different types of states, among
them choice and action states. Choice states represent choices in the execution
of the program where the programmer has specified different alternatives; the
task of the RLM in choice states is to learn an optimal strategy. Action states
are states in which the program triggers actions in the associated MDP and
therefore a non-deterministic transition of the MDP. Additionally, RLMs sup-
port subroutines which are responsible for the hierarchical decomposition of the
learning task.

It is not guaranteed that an optimal policy respects the constraints imposed
by the hierarchical decomposition of the problem. For example, assume that the
high-level task decomposition for a rescue robot is

nav(victim) → pickup(victim) → nav(base) → drop(victim)

If this robot has picked up a victim and is navigating back to its base, it will not
be able to pick up a second victim, even if it has the means to carry it and that
is the optimal solution. Therefore the best strategies we can expect a hierarchic
learning algorithm to learn are only optimal among strategies that respect the
hierarchical task decomposition, which is called hierarchically optimal.

RLMs guarantee a number of interesting properties, in particular that the
composition of a RLM H and an MDP M results in a joint SMDP H
 M, and
that optimal solutions for (a minimized version of) H
M constitute an optimal
policy for M that is consistent with H. This result allows us to use SMDP
solution algorithms to solve HRL problems. In particular, reinforcement learning
techniques can be modified to work with the joint SMDP without explicitly
building H
 M. The basic idea thereby is to operate on the product space of
the states of H and M, to collect the rewards and times accumulated by M for
all transitions that do not lead into a choice state of H. Upon reaching a choice
state of H, the algorithm updates the Q-function with the collected reward and
discounts future rewards with the accumulated time. Fig. 14 shows an example
of a hierarchical learning algorithm for a multi-agent setting.

Reasoning and Learning for Awareness and Adaptation 277

Fig. 13. Learning curves with good and bad choice of features for hierarchy

There exists a class of function approximations for hierarchical reinforcement
learners based on RLMs that preserves hierarchical optimality; we call them ad-
missible. The existence of admissible featurizers is important, since badly chosen
abstractions can lead to very low performance of hierarchical learners. Fig. 13
shows an example of this effect. The plots in this figure show the learning per-
formance of a robot performing a simulation of the rescue task. The x-axis rep-
resents the number of rescue missions the robot performed to learn a strategy,
the y-axis shows the performance achieved by this strategy (i.e., how quickly the
robot could rescue victims). The left learning curve uses an admissible function
approximator whereas the right curve shows an experiment where the approxi-
mator was deliberately chosen to conflict with the learning hierarchy. The robot
using an admissible featurizer starts with the performance of a random walk,
since initially the robot has no information about its environment. It then con-
verges quickly towards the optimal strategy and consistently obtains a reward
close to the maximum achievable in this environment (approximately 48.5). The
other strategy performs even worse than even a random walk, since the featurizer
used for this strategy is deliberately designed so that the robot cannot learn to
return to the base when it learns a solution that navigates to the victim, and vice
versa (note the different offsets of the y axis for the graphs). We emphasize that
this is an extreme example in which the hierarchy and featurizers have deliber-
ately been designed to show the possible problems; in practice non-admissible
featurizers will often lead to a performance that is worse than that obtained by
an admissible featurizer but still better than random actions.

The best-known language for hierarchical reinforcement learning is ALisp [5],
which allows developers to write programs in which some choices are unspecified,
so-called partial programs. The ALisp system learns strategies for the choices
appearing in a partial program during execution and uses them to guide the
execution of the program. The set of all learned strategies is called the completion
of a partial program and can be shown to converge to the hierarchically optimal
solution given admissible featurizers and learning strategies, e.g., a hierarchical
version of the Q-learning algorithm from Fig. 12.

278 M. Hölzl and T. Gabor

The integration of an ALisp-like facility for hierarchical reinforcement learn-
ing into XBTs is straightforward: choices in ALisp correspond to external choice
nodes in the XBT which learn a Q function and order their child nodes, e.g.,
ε-greedy according to the value of the Q function.10 As in ALisp the hierarchy is
provided by subroutine calls. A partial XBT is an XBT in which certain external
choice nodes are controlled by a learning process, and the completion of a partial
XBT consists of all learned strategies. The correctness results for reinforcement
learning machines can immediately be applied to partial XBTs: The completion
of a partial XBT converges to the hierarchically optimal solution as long as the
Q-learning algorithm and the featurizers are admissible.

Multi-agent Learning and Markov Games. The reinforcement-learning
techniques we have seen so far can scale to large, complex problems. But they
are restricted to scenarios in which there is a single learning agent operating in a
mostly static environment. If an environment contains multiple learning agents
the problem becomes much more complex, and currently available techniques are
much more restricted in their scope of applicability. There are several reasons
for this:

– The different agents may cooperate, compete, or mix cooperation and com-
petition. In many scenarios a mix of cooperation and competition happens,
even for agents belonging to the same ensemble. For example, different rescue
robots may cooperate to rescue victims but compete for space in recharging
stations. Utility functions of individual robots therefore have to take into
account the utility for the robot itself as well as for the ensemble. This of-
ten leads to performance problems for learners, since utility functions that
correspond well to the ensemble utility are difficult to learn for individual
agents, and vice versa [2].

– With several agents operating simultaneously, the state and action spaces
both become exponentially larger: One state of the MDP is now the product
of the states of all agents and the environment. If learning agents in such an
environment have to consider the actions of other agents in addition to their
own, reasoning about actions has to take place in the cross-product space
of actions of all relevant agents. To avoid this state explosion problem each
agent in a multi-agent system is often treated as an individual learner and
the other agents are aggregated into the environment. However, while this
works well for some practical applications, few theoretical considerations for
the single-agent case apply, since in this scenario the environment of each
agent is neither Markovian nor stationary.

– In addition to the temporal credit assignment problem there also exists a
structural credit assignment problem: If an agent receives a high or low re-

10 Actually a slight extension of external choice nodes as we have presented them in
Sect. 3.2 is required: Whenever a choice is performed the value of the choice has to
be recorded in the choice node. It is straightforward, although somewhat tedious, to
add this extension to the SCEL model.

Reasoning and Learning for Awareness and Adaptation 279

ward, how much of this reward should it attribute to its own actions, and
how much should it assign to actions of other agents?

– For hierarchical multi-agent learning there is another, similar complication:
When performing a high-level action that spawns a series of lower-level ac-
tions, the activities of the other agents while the actions are running may
lead to a large number of possible traces through the SMDP, which makes it
difficult to identify which action in the hierarchy is ultimately responsible for
the credit obtained. We call this the hierarchical credit assignment problem.

– When different types of agents operate in an environment, they will often
use different learning algorithms. Thus the analysis of multi-agent scenar-
ios has to encompass heterogeneous scenarios, where different learners are
interacting with each other.

Another contrast to the single-agent case is that the theoretical foundations of
multi-agent learning are much less definite than in the single agent case. The
basic model for most work is that of a Markov game, a generalization of both
repeated games (by introducing states for the individual stages of a game) and
MDPs (by introducing multiple players acting on the environment).

However, whereas in the single-agent case different algorithms can be mean-
ingfully compared by evaluating their performance on example problems, e.g., in
terms of rate of convergence to an optimal solution, this alone is not sufficient
to analyze the multi-agent case: These environments are dynamical systems in
which convergence to a single learned strategy for all agents of a type (i.e., a fixed-
point attractor) is not guaranteed. Instead we should expect agents to converge
towards a mixture of different learned behaviors, or even settle into periodic
or chaotic oscillations between learned behaviors. In the analysis of multi-agent
learning, the dynamics of the learning process therefore plays a much greater
role than in the single-agent case.

Following the work of Boörgers and Sarin [8], evolutionary game theory, and
in particular the notion of replicator dynamics, is becoming a common framework
for understanding the dynamical behavior of multi-agent learning algorithms.
Replicator dynamics describe how the likelihood of players using a certain strat-
egy πi varies over time, based on the success that πi has when playing against
the strategies played by other players. If A and B are the payoff matrices of
players x and y, respectively, and if we identify players with the vector of proba-
bilities with which they play each strategy (so that xi is the probability of player
x playing strategy i), then the change of strategies over time can be described
by the differential equations

ẋi = xi

(
(Ay)i − xT Ay

)
ẏi = yi

(
(Bx)i − yT Bx

)

(assuming that the players play continuously). ẋi is the derivative of xi, i.e., the
rate of change of x over time. (Ay) is the payoff vector for player x given the
distribution of strategies that y plays. xT Ay is the average payoff that x achieves
against y. If strategy i fares better than average, the replicator dynamics will

280 M. Hölzl and T. Gabor

cause x to play i more frequently, if i is less successful than average, x will
play it less frequently in the future. The replicator equations provide a tool to
forecast the steady states of a multi-agent learning system (if they exist) and
the trajectory to arrive there.

(Lenient) Frequency Adjusted Q-Learning. As we have discussed previ-
ously, there are two major ways in which multi-agent learning can be performed:
it is possible to learn in the joint state and action space, so that an optimal
policy for all agents performing choices together is learned, or it is possible to
learn individual actions for each individual agent operating in the joint state
space, without taking the actions of the other agents into account. Concurrent
ALisp by Marthi [27] is an example for the first approach; each agent runs a
hierarchical learning algorithm in a single thread and waits at choices points for
the other agents to perform a shared choice.

While the approach of Concurrent ALisp can be very successful in practice
and has nice theoretical properties, the notion of a central planner that computes
joint actions is not well suited for ensembles of individual components. Therefore
we will focus on the second approach.

The Q-learning algorithm from Fig. 12 can be applied to the multi-agent
case by simply treating the actions of other agents as stochastic. Since the envi-
ronment is no longer Markovian because of the actions of the other agents, no
convergence guarantees can be given, and in fact the algorithm typically con-
verges to a sub-optimal solution. The comparison of the learning behavior pre-
dicted by the evolutionary model of Q-learning with observed behavior shows
significant differences between prediction and observed behavior, with the actual
behavior often being less desirable than the predicted behavior. The reason for
the difference is that the derivation of the evolutionary behavior supposes that
the update frequency is the same for all actions, which does not hold in practice.
Kaisers and Tuyls [24] propose a modification of Q-learning which addresses
this discrepancy by adjusting the learning rates for different actions according
to their probability, so that the frequency difference is eliminated. This variant
of Q-learning is called Frequency-Adjusted Q-learning (FAQ-learning).

The approximation of the action-value function Q used by FAQ-learning is
thus

Q(s, a) ← Q(s, a) + min
(

β

P (π(s′) = a′)
, 1

)
α
(
r + γ max

a′∈A
Q(s′, a′) − Q(s, a)

)

where the new factor min (β/P (π(s′) = a′), 1) is used to simulate the desired syn-
chronous updates of actions, all occurring with equal frequencies, by increasing
the update rate of less-frequently used actions.11 The value of P (π(s′) = a′), the
probability that action a′ is selected by strategy π is state s′, changes according
to a replicator dynamics of the form Ṗ (π(s′) = a′) = f(s′, a′) where f depends
of the reward matrices of the players, see Bloembergen et al. [7] for details.
11 The factor β is not necessary in theory but introduced for pragmatic reasons to

adjust the convergence of the algorithm.

Reasoning and Learning for Awareness and Adaptation 281

Initialize Q([m,s], a) arbitrarily, [m, s] according to I
Initialize m0 ← m, s0 ← s, rc ← 0, γc ← 0
loop

a ← ε[π(s)]
Perform a, obtaining reward r and moving to state [m′, s′]
if m′ is a choice state then

Q([m0, s0], a) ← Q([m0, s0], a)+
min

(
β

P (π(s′)=a′) , 1
)
α
(
r + γV ([m′, s′], a′) − Q([m0, s0], a)

)
else

rc ← r + rc, γc ← γγc

end if
m ← m′, s ← s′

end loop

Fig. 14. One-step HFAQ-learning for policy π and constant learning rate α; as in
Q-learning, V ([m′, s′], a′) = maxa′∈A Q([m′, s′], a′)

One important discovery in the area of cooperative multi-agent reinforcement
learning is that, particularly in the early stages of the learning process, it is of-
ten advantageous for agents to be lenient with respect to actions that result in
low rewards, i.e., to not reduce the value estimates for these rewards. Intuitively,
this can be explained by the observation that in the early stages of learning no
good synchronization strategy has yet been learned by the cooperating players,
and therefore they may inadvertently perform joint actions that result in bad
outcomes, even though the individual actions might be beneficial. One possible
action update rule for lenient learning is that rewards are not updated immedi-
ately but only after κ samples for a state action pair have been collected, and the
highest of these κ values is then taken as the first reward. When using a lenient
update strategy for Q values together with the Q-function for FAQ-learning, we
obtain the Lenient Frequency-Adjusted Q-learning (LFAQ) algorithm [7].

LFAQ-learning operates on a flat state space. Since the reasons for hierarchi-
cal learning given in Sect. 4.2 apply in the multi-agent case as well, we propose
to extend (L)FAQ-learning to the hierarchical case, resulting in the H(L)FAQ-
learning update rule. The definition of an HFAQ-learning algorithm with con-
stant learning rate is given in Fig. 14. It can be seen that this algorithm operates
on the joint state space of the XBT (or, more generally, RLM) and the MDP. If
the values of Q are initialized lazily it is not necessary to store the whole action-
value table but only the states that are actually reached. rC and γ accumulate
the reward and discount accrued while executing actions that do not result in
a choice state; the update rule adjusts the value of the previous choice state ac-
cording to rC and γ when the next choice state is reached, i.e., the whole reward
and discount factor count towards the value of the choice state from which the
current path started.

282 M. Hölzl and T. Gabor

5 Passing Knowledge to Other Components:
Teacher-Student Learning

There are manifold possibilities for an ensemble to engage in learning. While
previous studies tend to focus on offline learning, which is as of now yielding
“better” results, online learning is much more practical since simulations have
consistently proven not to be able to fully mimic the physical world.12

In the general case, considering the lifetime of an adaptive ensemble, there
will be several learning periods as well as operational periods. In the case of offline
learning, the learning and operational periods will be mutually exclusive.13 Typi-
cally, any ensemble utilizing offline learning will also provide dedicated resources
capable of and responsible for reasoning and simulation.14 Offline learning tends
to produce more consistent and predictable results but is obviously highly de-
pendent on the quality and efficiency of available simulations. Conversely, in
the “clean” approach of online learning, the periods of learning and operation
are strictly congruent, i.e. the ensemble is supposed to work its defined purpose
from day one and is not simulating nor reviewing scenarios when shut down.
This approach removes any dependency on simulation, but tends to require a
long operational time in the real world to produce results comparable to offline
learning and may thus be rather costly. Since both approaches provide advan-
tages (and come with disadvantages),15 it only seems reasonable to combine both
approaches into one more general framework allowing both “pure” online and
offline learning as boundary instances and thus abstracting from the previously
described distinction between them.

In order to do so, we introduce the teacher-student approach: It does not
model learning as occurring at certain time periods only, but as a continuous
process, through which information flows into and spreads inside the ensemble.
By not limiting learning to certain components or specific time periods, this ap-
proach combines online and offline learning into one model. In general though,
there will be components more concerned with or able to produce knowledge
valuable to the ensemble, which will be called “teachers” for simplicity, while
components that tend to play a relative small role in producing new model
information will be called “students”. Note that this distinction is built upon

12 Considering ASCENS’s rescue scenario e.g., complete offline planing is highly unreal-
istic by the very definition of the scenario, with robots acting in a randomly altered
version of the world model available for planning.

13 By this definition, offline learning includes “review” approaches where learning takes
place after an actual run of the scenario and can use results gathered there to improve
further planning.

14 Most scenarios embrace a view where simulation resources are considered external
to an ensemble made up of agents which actually interact with the environment
and thus directly working towards the goal of the scenario. However, considering
the complete life-cycle of an ensemble, it is natural to regard every part involved in
computing its observable behavior as a component of the ensemble.

15 Cf. Watson et al. [44] for further discussion of the (dis-)advantages. Although that
article is more focused on evolutionary algorithms, most points apply regardless.

Reasoning and Learning for Awareness and Adaptation 283

tendency and thus not a strict dichotomy nor fixed in time (i.e., it is reason-
able to talk about students becoming teachers and vice versa), but referring to
components by the task they excel at seems most practical.16

This approach allows us to integrate different models not only statically for
a new model description, but also dynamically during run-time. Thus, it also
helps formalize and automate the feedback/deployment loop of the Ensemble
Development Life Cycle (EDLC) as described in chapter III.1 [20]: The learned
behavior that proved to be successful among the agents describes strategies to be
considered during the next design cycle while deploying new strategies can be as
simple as adjusting the teaching environment, e.g. by favoring said strategies or
adding a new teaching component. In practice, our ensembles feature dedicated
learning entities, which act as teachers, that try to learn agent behavior through
different learning mechanisms (cf. Sect. 4). They can then pass the knowledge
they gained on to agents controlling robots e.g., which continue to adapt their
behavior to concrete environmental changes. They use online learning through
an embodied genetic algorithm17 to exchange their execution plans between one
another. Using a genetic algorithm here is the obvious choice because the agents
implicitly form a framework suitable for it: Since students usually are not capa-
ble of enhancing their current action plans on their own (because they lack the
reasoning resources), they need to exchange plans with other agents to improve
on their current fitness. If the agents’ environment favors the passage of more
fit plans (or parts of plans) over less fit ones, evolution on plans (or plan parts)
happens “naturally”. That can easily be achieved by granting (more) teach-
ing functionality to agents considered more fit by some means of evaluation.18

Interestingly, as robotic agents promoted to (possibly part-time) teachers can
still interact with the environment and change their location in particular, the
teacher-student framework naturally includes the means necessary for the devel-
opment of local optimization, i.e. group forming or even speciation. This follows
Karafotias et al. [25], which suggests using an island model for a self-adaptive
embodied evolutionary algorithm.19

16 For example, a typical robot swarm scenario may feature dedicated servers running
reasoning software acting as teachers while the actual robots are equipped with much
less computational power and will be acting as students. It is obvious that basically
all online information collecting will be done by the robots which actually act in
and observe the environment through their sensors, thus generating a lot of data.
However, as long as the bulk of the processing and distributing is not done at the
robot side, they still fit the “student” description.

17 That is a genetic algorithm running on actual agents where gene transfer follows
agent interaction in the real world. For more information on so-called embodied
evolution, cf. Karafotias et al. [25] and Watson et al. [44].

18 Also note that it may be necessary to include some space constraint on concurrently
“active” plans in order to introduce selection pressure. However, this usually coincides
with restrictions of the physical world, i.e. computer hardware, anyway.

19 Island models for evolutionary algorithms model several separate populations (solv-
ing the same problem), which evolve independently most of the time, but do exchange
individuals on some occasions. Cf. Tomassini [41] for further information.

284 M. Hölzl and T. Gabor

In other cases, arguably well-working agents and/or suitable reasoning en-
gines are already available, making it only necessary to pass on their abilities to
an ensemble of agents. When the knowledge representations of their plans are
available in the format expected by the agents, these can just be copied over to
the students. However, instead of copying the internal data structure, teaching
is the wider approach and works across different learning models as well: In the
most general case, “teaching” encompasses re-learning a behavior by applying
a learning method with the original behavior as a fitness/goal function. Again,
in the boundary cases, when the student is able to understand the teacher’s
knowledge representation anyway, the learning method may be the id function.
In most cases, however, this method can be used to bridge different models and
reasoning approaches if necessary. In another boundary case, it may even allow
operationally very distinct components like a human teacher manually assign-
ing grades to agent behavior to be integrated into the ensemble. The inherent
loss of precision due to the usually non-exact re-learning process and the model
conversion is negligible or even advantageous as the re-learned model are later
used as individuals in a the embodied evolutionary algorithm, which is inher-
ently resistant to random distortions and needs mutation to function properly
anyways.

Thus, it is easy to include manually adjusted teachers into an ensemble,
pushing the evolutionary process into a certain direction deemed fruitful by
having said teachers constantly spreading relevant knowledge (without giving
in to “peer pressure” even when most students diverge towards other regions
of the solution space). Including a fixed set of teachers then gives rise to an
implicit, fuzzy version of the utility space as described by Abeywickrama and
Zambonelli [1]: The agents’ plans are able to diverge into other regions of the
solution space, but are quite unlikely to do so due to the constant influence
of the teachers.20 Using the notion of an adaptation domain as defined in III.1
[20], this approach can be interpreted as a utility-based system: The system
may potentially adapt to very wide range of adaptation requirements, but has a
preference attached to each of them.

Ensemble behavior can be learned by teaching a suitable single-agent strategy
for the task, which should include solutions to “atomic” problems like navigation
e.g., and have the agents use a distributed learning algorithm to adapt it into a
viable ensemble strategy.21

Obviously, this presupposes a common communication language: Extended
behavior trees (XBTs) as described in section 3 provide a powerful yet concise

20 However, for this approach to function it is necessary to include parameters previ-
ously fixed by external constraints in the genome to be decided by the evolutionary
mechanic, with all the performance overhead that comes with this design. Note that
it is in no way prohibited for student agents to use further optimization techniques
suited for own capabilities (like greedy search algorithms for example) to alleviate
that problem.

21 This phenomenon is suspected by and discussed by Dinu et al. [12]: Even under
widely different circumstances, robotic agents previously trained (even for a different
problem) tend to perform distinctively better than randomly initialized ones.

Reasoning and Learning for Awareness and Adaptation 285

tool for expressing agent programs that is easily visualizable and human-readable
as well, which allows for using the same representation in the manual part of the
development process. In the end, the goal of this approach is to specify a com-
mon framework, which helps using and most of all combining different concrete
approaches to machine learning, thus enabling the design of very heterogeneous
ensembles that are still able to work together in a reasonable way. In the end,
knowledge always dies out without proper means of passing it on.

6 Related Work

The notions of “awareness” and “self-awareness” have been investigated in var-
ious disciplines. The arguably most famous experiments about self-awareness
arose from research in biology and psychology: They are the “mirror tests” going
back to Charles Darwin and performed in a systematic manner by Gallup [15],
amongst others. An extensive overview of biologically inspired notions of self
awareness is contained in Lewis et al. [26]. The authors of this paper also pro-
vide a definition of awareness in terms of two essential and four optional char-
acteristics. Mitchell [30] defines four “principles of self-awareness and control in
decentralized systems” based on studies of the human immune system and ant
colonies. Anderson and Perlis [4] give convincing arguments for the need to build
self-aware systems in order to achieve non-brittle behavior in complex environ-
ments. They present active logic and the metacognitive loop as components for
aware systems.

The notion of situation awareness and methods to measure situation aware-
ness have been developed in human factors research starting in the 1980s. A
comprehensive treatment is Endsley [14].

Behavior trees are extensively covered in the literature on game program-
ming; Millington and Funge [29] gives a good introduction that also discusses the
strengths and weaknesses of the approach. Applications to robotics and avionics
are given by Marzinotto et al. [28] and Ogren [33].

Machine learning is a large and diverse research area. Alpaydin [3] and Mur-
phy [31] provide book-length introduction into the subject area. Sutton and
Barto [39] is the standard introductory text to reinforcement learning; Busoniu
et al. [10] provide more information on techniques for function approximation.
Andre [5] comprehensively covers hierarchical reinforcement learning; Marthi [27]
extends this work to the concurrent case. Schwartz [36] covers reinforcement
learning in the context of multi-agent systems. Wiering and van Otterlo [46]
describe the major current developments in reinforcement learning.

Shoham and Leyton-Brown [37] and Weiss [45] provide a broad overview over
topics relevant to multi-agent systems and include chapters about reasoning and
learning in this context. Ghallab et al. [17] is a comprehensive overvies of single-
agent planning techniques. More specialized references have been included in
their respective sections of the text.

286 M. Hölzl and T. Gabor

7 Conclusions and Future Work

Despite (or maybe because of) their reduced expressiveness when compared to
other formalisms, behavior trees are gaining popularity as modeling tool for
control and artificial intelligence in different areas. There are several reasons
for this, among them the simplicity of the basic execution model, the ease with
which behavior trees can be visualized, and their straightforward behavior in
case of task failure, which is a common occurrence when interacting with an
external world.

We have introduced Extended Behavior Trees (XBTs), an extension of behav-
ior trees, as a way to model and implement reasoning and learning mechanisms
for adaptive and self-aware agents. While XBTs are more expressive, and hence
more complicated, than behavior trees, we hope that the additional capabilities
do not significantly diminish the usability of XBTs when compared to behavior
trees. The semantics of XBTs are defined in terms of SCEL, therefore many
more sophisticated concurrency and control features can be defined. It remains
to investigate which ones are the most useful ones to increase the expressive
power, and how they impact the cognitive complexity of XBTs.

We have indicated how XBTs can be used to define reasoning and learning
mechanisms for single-agent and multi-agent applications and in particular how
reinforcement learning techniques can be integrated into XBTs. For the multi-
agent case we have proposed H(L)FAQ-learning, which is to our knowledge the
first proposal for a hierarchical, cooperative multi-agent reinforcement-learning
technique that does not presuppose simultaneous execution of actions. XBTs are
also well suited to the requirements of teacher-student learning since they allow
agents with very different capabilities to share structurally equivalent programs.

Despite the tremendous progress that has been made in the last decades, the
field of machine learning and reasoning for adaptation and awareness is still in
its infancy, and its methods are neither as universally applicable nor as robust as
would be desirable. Experimental validation of the techniques proposed in this
paper is therefore an important area for future work; specific guidelines when
individual techniques can usefully be employed and which circumstances are
counter-indications would be extraordinarily valuable to practitioners. For this
a derivation of the replicator dynamics of H(L)FAQ-Learning would be highly
desirable. It would also be interesting to better understand the combination of
different techniques, e.g., the interaction between planning and learning used
within a single decision mechanism.

The ASCENS project has proposed the Ensemble Development Life Cycle
as a guideline for developing robust ensembles. The teacher-student approach to
learning is one example how learning techniques might be integrated into this
life cycle in such a manner that the feedback inside each development phase, as
well as the feedback from run-time to design-time can be exploited to improve
the learning behavior over the lifetime of an ensemble. There are many aspects
of the EDLC that teacher-student learning in its current form does not take
into account, e.g., how knowledge representation or formal verification interact
with learning. It would also be beneficial to gain knowledge about the behavioral

Reasoning and Learning for Awareness and Adaptation 287

properties of the evolutionary algorithms implicitly defined by a teacher-student
environment. Further progress on both theoretical properties of as well as prac-
tical experience with the EDLC and teacher-student learning is required.

References

1. Abeywickrama, D., Zambonelli, F.: Model Checking Goal-oriented Requirements
for Self-Adaptive Systems. In: 19th IEEE Conference on the Engineering of
Computer-based Systems, Novi Sad, Serbia, April 2012, IEEE CS Press, Los
Alamitos (2012),
http://pmi.ascens-ist.eu/text_files/0000/0017/ECBS12.pdf

2. Agogino, A.K., Tumer, K.: Analyzing and visualizing multiagent rewards in
dynamic and stochastic domains. Autonomous Agents and Multi-Agent Sys-
tems 17(2), 320–338 (2008), doi:10.1007/s10458-008-9046-9

3. Alpaydin, E.: Introduction to Machine Learning, 2nd edn. Adaptive Computation
and Machine Learning. MIT Press, Cambridge (2010)

4. Anderson, M.L., Perlis, D.: Logic, self-awareness and self-improvement: the
metacognitive loop and the problem of brittleness. J. Log. Comput. 15(1), 21–
40 (2005)

5. Andre, D.: Programmable Reinforcement Learning Agents. Ph.D. thesis, Univer-
sity of California at Berkeley (2003)

6. Au, T., Ilghami, O., Kuter, U., Murdock, J.W., Nau, D.S., Wu, D., Yaman, F.:
SHOP2: an HTN planning system. CoRR abs/1106.4869 (2011),
http://arxiv.org/abs/1106.4869

7. Bloembergen, D., Kaisers, M., Tuyls, K.: Lenient frequency adjusted Q-learning.
In: Proc. of 22nd Belgium-Netherlands Conf. on Artificial Intelligence (BNAIC
2010), pp. 19–26 (2010)

8. Börgers, T., Sarin, R.: Learning Through Reinforcement and Replicator Dynamics.
Journal of Economic Theory 77, 1–14 (1997)

9. Bruni, R., Corradini, A., Gadducci, F., Hölzl, M., Lafuente, A.L., Vandin, A.,
Wirsing, M.: Reconciling White-Box and Black-Box Perspectives on Behavioral
Self-adaptation. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software
Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 163–184.
Springer, Heidelberg (2015)

10. Busoniu, L., Babuska, R., Schutter, B.D., Ernst, D.: Reinforcement Learning and
Dynamic Programming Using Function Approximators. CRC Press, Boca Raton
(2012)

11. Colvin, R.J., Hayes, I.J.: A semantics for Behavior Trees using {CSP} with spec-
ification commands. Science of Computer Programming 76(10), 891–914 (2011),
http://www.sciencedirect.com/science/article/pii/S0167642310002066

12. Dinu, C.M., Dimitrov, P., Weel, B., Eiben, A.E.: Self-adapting fitness evaluation
times for on-line evolution of simulated robots. In: Proceedings of the 15th Annual
Conference on Genetic and Evolutionary Computation. GECCO ’13, pp. 191–198.
ACM Press, New York (2013), doi:10.1145/2463372.2463405

13. Drusinsky, D.: Modeling and Verification Using UML Statecharts. Elsevier, Ams-
terdam (2006)

14. Endsley, M.: Design and evaluation for situation awareness enhancement. In: Pro-
ceedings of the Human Factors Society 32nd Annual Meeting, pp. 97–101. Human
Factors Society (1988)

http://pmi.ascens-ist.eu/text_files/0000/0017/ECBS12.pdf
http://arxiv.org/abs/1106.4869
http://www.sciencedirect.com/science/article/pii/S0167642310002066

288 M. Hölzl and T. Gabor

15. Gallup, G.G.: Self recognition in primates: A comparative approach to the bidirec-
tional properties of consciousness. American Psychologist 32(5), 329–338 (1977)

16. Games, E.: How Unreal Engine 4 Behavior Trees Differ (2014), https://docs.
unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/HowUE4Behavior
TreesDiffer/index.html, last accessed 2014-11-28

17. Ghallab, M., Nau, D.S., Traverso, P.: Automated planning - theory and practice.
Elsevier, Amsterdam (2004)

18. Ghallab, M., Nau, D.S., Traverso, P.: The actor’s view of automated plan-
ning and acting: A position paper. Artif. Intell. 208, 1–17 (2014), doi:10.1016/
j.artint.2013.11.002

19. Hoch, N., Monreale, G.V., Montanari, U., Sammartino, M., Siwe, A.T.: From
Local to Global Knowledge and Back. In: Wirsing, M., Hölzl, M., Koch, N., Mayer,
P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998,
pp. 185–220. Springer, Heidelberg (2015)

20. Hölzl, M., Koch, N., Puviani, M., Wirsing, M., Zambonelli, F.: The Ensemble
Development Life Cycle and Best Practices for Collective Autonomic Systems. In:
Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998, pp. 325–354. Springer, Heidelberg
(2015)

21. Hölzl, M., Wirsing, M.: Issues in engineering self-aware and self-expressive ensem-
bles. In: Pitt, J. (ed.) The Computer After Me: Awareness and Self-awareness in
Autonomic Systems, October 2014, Imperial College Press (2014)

22. Hölzl, M.M., Wirsing, M.: Towards a system model for ensembles. In: Agha, G.,
Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological
Systems. LNCS, vol. 7000, pp. 241–261. Springer, Heidelberg (2011)

23. Isla, D.: Handling complexity in the halo 2 ai. In: Proceedings of the Game
Developer’s Conference 2005 (GDC2005) (2005), http://www.gamasutra.com/
view/feature/130663/gdc 2005 proceeding handling .php, last accessed 2014-
11-28

24. Kaisers, M., Tuyls, K.: Frequency adjusted multi-agent q-learning. In: van der
Hoek, W., Kaminka, G.A., Lespérance, Y., Luck, M., Sen, S. (eds.) 9th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS
2010), vol. 1–3, Toronto, Canada, May 10-14, 2010, pp. 309–316. ACM Press, New
York (2010), doi:10.1145/1838206.1838250

25. Karafotias, G., Haasdijk, E., Eiben, A.E.: An algorithm for distributed on-line,
on-board evolutionary robotics. In: Proceedings of the 13th Annual Conference
on Genetic and Evolutionary Computation, pp. 171–178. ACM Press, New York
(2011), doi:10.1145/2001576.2001601

26. Lewis, P.R., Chandra, A., Parsons, S., Robinson, E., Glette, K., Bahsoon, R., Tor-
resen, J., Yao, X.: A Survey of Self-Awareness and Its Application in Computing
Systems (2011)

27. Marthi, B.: Concurrent hierarchical reinforcement learning. In: Veloso, M.M.,
Kambhampati, S. (eds.) Proceedings, The Twentieth National Conference on Arti-
ficial Intelligence and the Seventeenth Innovative Applications of Artificial Intelli-
gence Conference, Pittsburgh, Pennsylvania, USA, July 9-13, 2005, pp. 1652–1653.
AAAI Press / The MIT Press (2005),
http://www.aaai.org/Library/AAAI/2005/dc05-009.php

28. Marzinotto, A., Colledanchise, M., Smith, C., Ögren, P.: Towards a unified be-
havior trees framework for robot control. In: 2014 IEEE International Confer-
ence on Robotics and Automation, ICRA 2014, Hong Kong, China, May 31 -

https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/HowUE4BehaviorTreesDiffer/index.html
https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/HowUE4BehaviorTreesDiffer/index.html
https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/HowUE4BehaviorTreesDiffer/index.html
http://www.gamasutra.com/view/feature/130663/gdc_2005_proceeding_handling_.php
http://www.gamasutra.com/view/feature/130663/gdc_2005_proceeding_handling_.php
http://www.aaai.org/Library/AAAI/2005/dc05-009.php

Reasoning and Learning for Awareness and Adaptation 289

June 7, 2014, pp. 5420–5427. IEEE Computer Society Press, Los Alamitos (2014),
doi:10.1109/ICRA.2014.6907656

29. Millington, I., Funge, J.: Artificial Intelligence for Games, 2nd edn. Morgan Kauf-
mann, San Francisco (2009)

30. Mitchell, M.: Self-awareness and control in decentralized systems. In: Metacogni-
tion in Computation, pp. 80–85 (2005)

31. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. Adaptive Compu-
tation and Machine Learning. MIT Press, Cambridge (2013)

32. De Nicola, R., Latella, D., Lafuente, A.L., Loreti, M., Margheri, A., Massink, M.,
Morichetta, A., Pugliese, R., Tiezzi, F., Vandin, A.: The SCEL Language: Design,
Implementation, Verification. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P.
(eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998,
pp. 3–71. Springer, Heidelberg (2015)

33. Ogren, P.: Increasing Modularity of UAV Control Systems using Computer Game
Behavior Trees. AIAA Guidance, Navigation and Control Conference, Minneapo-
lis, Minnesota, pp. 13–16 (2012)

34. Pinciroli, C., Bonani, M., Mondada, F., Dorigo, M.: Adaptation and Awareness in
Robot Ensembles: Scenarios and Algorithms. In: Wirsing, M., Hölzl, M., Koch, N.,
Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS,
vol. 8998, pp. 471–494. Springer, Heidelberg (2015)

35. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M.,
Mathews, N., Ferrante, E., Caro, G.D., Ducatelle, F., Stirling, T.S., Gutiérrez, Á.,
Gambardella, L.M., Dorigo, M.: ARGoS: A modular, multi-engine simulator for
heterogeneous swarm robotics. In: IROS, pp. 5027–5034. IEEE Computer Society
Press, Los Alamitos (2011)

36. Schwartz, H.M.: Multi-Agent Machine Learning: A Reinforcement Approach. Wi-
ley, Chichester (2014)

37. Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. Cambridge University Press, New York
(2008)

38. Smith, B.C.: Reflection and semantics in LISP. In: POPL ’84: Proceedings of
the 11th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pp. 23–35. ACM Press, New York (1984)

39. Sutton, R.S., Barto, A.G.: Reinforcement Learning. MIT Press, Cambridge (1998)
40. Tanaka, K., Wakuta, K.: On Continuous Time Markov Games With The Expected

Average Reward Criterion. Science Reports of Niigata University. Series A, Mathe-
matics 14, 15–24 (1977), http://projecteuclid.org/euclid.nihmj/1273779029

41. Tomassini, M.: Spatially Structured Evolutionary Algorithms: Artificial Evolu-
tion in Space and Time. Natural Computing Series. Springer, Heidelberg (2005),
http://books.google.de/books?id=z7Hf6bL3x7MC

42. Vassev, E., Hinchey, M.: Knowledge Representation for Adaptive and Self-aware
Systems. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineer-
ing for Collective Autonomic Systems. LNCS, vol. 8998, pp. 221–247. Springer,
Heidelberg (2015)

43. Watkins, C.: Learning from Delayed Rewards. Ph.D. thesis, Cambridge (1989)
44. Watson, R.A., Ficici, S.G., Pollack, J.B.: Embodied evolution: Distributing an

evolutionary algorithm in a population of robots. Robotics and Autonomous Sys-
tems 39(1), 1–18 (2002),
http://dblp.uni-trier.de/db/journals/ras/ras39.html#WatsonFP02

45. Weiss, G. (ed.): Multiagent Systems, 2nd edn. MIT Press, Cambridge (2013)

http://projecteuclid.org/euclid.nihmj/1273779029
http://books.google.de/books?id=z7Hf6bL3x7MC
http://dblp.uni-trier.de/db/journals/ras/ras39.html#WatsonFP02

290 M. Hölzl and T. Gabor

46. Wiering, M., van Otterlo, M. (eds.): Reinforcement Learning. Adaptation, Learn-
ing, and Optimization, vol. 12. Springer, Heidelberg (2012)

47. Zambonelli, F., Bicocchi, N., Cabri, G., Leonardi, L., Puviani, M.: On self-
adaptation, self-expression, and self-awareness in autonomic service component
ensembles. In: SASO Workshops, pp. 108–113. IEEE Computer Society Press,
Los Alamitos (2011)

48. Zhang, G., Hölzl, M.M.: HiLA: High-Level Aspects for UML State Machines.
In: Ghosh, S. (ed.) MODELS Workshops 2009. LNCS, vol. 6002, pp. 104–118.
Springer, Heidelberg (2010)

Chapter II.5

Supporting Performance Awareness
in Autonomous Ensembles�

Lubomı́r Bulej1, Tomáš Bureš1, Ilias Gerostathopoulos1, Vojtěch Horký1,
Jaroslav Keznikl1, Lukáš Marek1, Max Tschaikowski2, Mirco Tribastone2, and

Petr Tůma1

1 Department of Distributed and Dependable Systems, Faculty of Mathematics and
Physics, Charles University, Czech Republic

2 Electronics and Computer Science, University of Southampton, United Kingdom

Abstract. The ASCENS project works with systems of self-aware, self-
adaptive and self-expressive ensembles. Performance awareness repre-
sents a concern that cuts across multiple aspects of such systems, from
the techniques to acquire performance information by monitoring, to
the methods of incorporating such information into the design making
and decision making processes. This chapter provides an overview of five
project contributions – performance monitoring based on the DiSL instru-
mentation framework, measurement evaluation using the SPL formalism,
performance modeling with fluid semantics, adaptation with DEECo and
design with IRM-SA – all in the context of the cloud case study.

Keywords: performance, monitoring, modeling, adaptive systems, au-
tonomic systems

1 Introduction

The ASCENS project deals with adaptive systems formed as ensembles of com-
ponents that both possess and exchange knowledge. In general, an ensemble
achieves awareness by observing the state of its components and the state of its
environment, deriving knowledge from thus collected information, and deciding
how to act on this knowledge through reasoning.

Each of the individual steps that combine to achieve awareness can be re-
lated to performance. Consider the example of an adaptive cloud application,
used throughout this chapter and outlined in more detail in Chapter IV.3 [38].
Components of such an application may measure the request arrival rate or the
request processing time, aiming to adjust resource pool sizes – such as caches or
threads – to match the actual workload. Additionally, the components may also
monitor the utilization of the host platform and form ensembles with compo-
nents of other applications on the same host, reacting to possible overload with
� This research was supported by the European project IP 257414 (ASCENS).

M. Wirsing et al. (eds.): Collective Autonomic Systems, LNCS 8998, pp. 291–322, 2015.
c© Springer International Publishing Switzerland 2015

292 L. Bulej et al.

coordinated migration. Besides utilizing the measurements directly, the compo-
nents may also derive useful knowledge by analyzing long term trends or periodic
behavior observed in performance, or by comparing observed performance with
model based predictions, to support proactive rather than reactive adaptation.

Many research contributions of the ASCENS project deal with awareness in
general, rather than focusing on a particular aspect such as location awareness or
performance awareness. These include results described in other chapters of this
book – such as reasoning and learning in Chapter II.4 [23], SOTA in Chapter II.1
[4], SCEL in Chapter I.1 [41], IRM-SA in Chapter III.4 [12] – whose neutral char-
acter makes the project results more broadly applicable. Performance awareness
represents a concern that cuts across these results, we therefore focus on con-
tributions that facilitate integration of performance awareness in the broader
awareness context.

The integration starts with the need for observing performance – while many
tools for performance monitoring exist, the dynamic nature of ensembles requires
that we are able to start and stop monitoring performance of any component
on demand, with managed overhead. Towards this goal, we work on dynamic
instrumentation support in the context of DiSL [37], described in Section 2.

The next requirement of integration concerns the output of monitoring –
typically, this output takes the form of a series of measurements listing function
durations or event times, complete with noise and outliers due to interfering
activities. Such output is difficult to use, we therefore work on a formalism
that allows reasoning about performance while abstracting away the technical
measurement details. The formalism, SPL [9], is presented in Section 3.

Besides integration in system behavior specification, the SPL formalism can
be embedded in system implementation, permitting smooth transition between
the specification and the implementation. The SPL formalism also does not re-
quire differentiating between measurements of a real system and predictions of
a high level model, which allows us to efficiently integrate performance model-
ing activities. The support for SPL at the implementation level is outlined in
Section 4 and available in the form of prototype tools with open source licens-
ing [25].

The performance modeling techniques for ensembles are introduced in Sec-
tion 5. Ensemble performance modeling is challenging due to a high number of
potentially interacting components. Models that track the state of individual
components encounter state explosion issues. The ASCENS project investigates
fluid modeling techniques that rely on symmetries in the behavior of individual
components to keep the model both accurate and tractable.

Finally, Section 6 demonstrates the integration of performance awareness in
the DEECo component model, and Section 7 presents the process of designing
for performance adaptation with the IRM-SA method.

This is an overview text that connects multiple previously published research
results of the ASCENS project. We refer the reader to the original publications as
appropriate, especially where the detailed formal proofs and experimental evalu-
ation is concerned. In particular, a broader overview of the ASCENS project can

Supporting Performance Awareness in Autonomous Ensembles 293

be found in [57], more information about the DiSL instrumentation framework is
in [37,35], the SPL formalism description is cited and summarized from [9,25,8],
the introduction on performance modeling with fluid semantics is condensed
from [54], and various elements of the case study with DEECo and IRM-SA have
been published in [7]. Where reasonably possible, we have also refrained from
printing code, and instead encourage the reader to access our evolving research
prototypes directly on the ASCENS project website.

2 Instrumentation for Performance Monitoring

The ability of ensembles to reason about the performance of the constituent
components or the surrounding environment requires support for performance
monitoring with particular dynamic properties. To avoid limiting the reasoning
process, the ensemble must be able to monitor performance at any location that
the reasoning process can consider. At the same time, the ensemble must avoid
continuous monitoring of many locations, which would induce high overhead and
therefore unduly influence the ensemble behavior.

The combination of the two requirements necessitates performance monitor-
ing with dynamic instrumentation that can be inserted and removed on demand.
To execute on a specific platform, such an instrumentation has to solve various
issues of highly technical nature. The focus of the ASCENS project with dy-
namic instrumentation is on Java, a platform used in the autonomic cloud case
study and the jRESP and jDEECo frameworks.

At a glance, Java provides several technologies with potential use for perfor-
mance monitoring, each with a particular set of advantages and limitations. The
JVM Tool Interface (JVMTI) [43] is a powerful native interface used for monitor-
ing, debugging, profiling and similar application analyses. The java.lang.instru-
ment API provides class-loading hooks that allow instrumenting an application
using a custom Java agent. In addition, Java also provides a standard interface
for delivering performance data to applications, based on Java Management Ex-
tensions (JMX).

To combine the available Java technologies in a robust instrumentation solu-
tion, we participate in the development of DiSL [37], a domain specific language
and framework that allows to conveniently monitor an application using instru-
mentation. Using the aspect oriented programming model, DiSL can insert code
fragments into Java applications. We use DiSL to specify and execute the perfor-
mance monitoring code, whose output events are processed by the custom SPL
framework, described in Sections 3 and 4.

Listing 1 illustrates a simple method invocation profiling code written in
DiSL. The responsibility of the profiling code is to sample the time before and
after a method invocation and print the method duration after the invocation.
In real monitoring code, the duration is recorded rather than printed.

The method entry time is sampled in the onMethodEntry method. DiSL is
guided by the @Before annotation to insert the entire body of onMethodEntry at

294 L. Bulej et al.

Listing 1. Simple method invocation profiling in DiSL

public class SimpleProfiler {

@SyntheticLocal
static long entryTime;

@Before(marker=BodyMarker.class)
static void onMethodEntry() {

entryTime = System.nanoTime();
}

@After(marker=BodyMarker.class)
static void onMethodExit(MethodStaticContext msc) {

long exitTime = System.nanoTime();
System.out.println(msc.thisMethodFullName()

+ ” duration is ”
+ (exitTime − entryTime));

}
}

the beginning of each monitored method. Similarly, the method exit time is sam-
pled and the method duration calculated in onMethodExit, which is inserted at
the end of each monitored method. The use of DiSL removes the need for manual
instrumentation, as well as complex handling of situations such as exceptional
method exits.

DiSL provides other features useful for dynamic instrumentation, including
the ability to insert monitoring routines at arbitrary code locations. DiSL con-
tains specialized SyntheticLocal and ThreadLocal variables that allow efficient
communication between the monitoring code that handles related events. To
access additional event context information, DiSL introduces constructs called
StaticContext and DynamicContext. StaticContext exposes information about
location like method or class name. DynamicContext allows to access dynamic
information like field or variable values. In the listed example, MethodStaticCon-
text is used to retrieve a name of the profiled method.

Insertion of monitoring code can be restricted using two mechanisms, Scopes
and Guards. Scope is a language construct for defining patterns restricting class
and method instrumentation. Guard is a standard Java class that allows to eval-
uate complex instrumentation conditions during weaving. As a vital property
from the performance monitoring perspective, DiSL does not insert any instru-
mentation besides snippets, and therefore does not incur any hidden overhead.
The monitoring code is prevented from modifying the control flow of the applica-
tion and the instrumentation does not violate the virtual machine hotswapping
rules. As a result, the monitoring code can be dynamically inserted and removed
during application execution. Finally, DiSL has very few limitations on which

Supporting Performance Awareness in Autonomous Ensembles 295

code can be instrumented, making it possible to monitor any arbitrary location
in both the application components and the Java class library.

Related to DiSL are instrumentation frameworks such as AspectJ [33], which
offers similar features but less control over the instrumentation process and lim-
ited dynamic instrumentation support. Better control over the glue code is of-
fered by Javassisst [15] or ASM [2], however, this requires working at the byte-
code level. Higher level tools, such as Perf4J [44], rely on these instrumentation
frameworks for inserting probes into code. On the whole system level, generic
monitoring tools such as DTrace [13] or SystemTap [49] are also available. For
more thorough comparison and information about DiSL, we refer the reader
to [37]. The DiSL framework is available for download at [36], the monitoring
prototype is available at [48].

3 Expressing Performance Properties

In its raw form, the monitoring output contains records of performance relevant
events, such as times when particular requests or responses were observed, or
execution durations of particular methods. Further processing of the monitoring
output depends on the context. For example, an application that needs to be
aware of Service Level Agreement (SLA) violations would count those request
processing times that exceed a given threshold, including potential outliers. In
contrast, an application that needs to adapt an algorithm for the processor cache
layout would look for minimum or median algorithm execution times, removing
outliers.

To provide a suitable level of abstraction for processing the monitoring out-
put, we introduce a formalism where the performance measurements are rep-
resented as observations of random variables and operators allow comparing
measurements in a statistically rigorous manner, depending on the adopted in-
terpretation. The formalism is called Stochastic Performance Logic (SPL) and
was originally introduced in [9] in the context of software performance evalua-
tion, with broader applications discussed in [7] and practical experience reported
in [25]. See [8] for formal proofs of the SPL properties presented here.

SPL is related to previous research on languages for expressing performance
properties. An early example of such a language is PSpec [45], a language for
expressing performance assertions in performance tests. Unlike SPL, it requires
that the performance expectations are specified against absolute bounds. Per-
formance expectations are associated with behavior specification in PIP [46].
Assertion checking and runtime adaptation are also possible with the PA lan-
guage [55]. The SPL framework implementation offers features similar to JUnit-
Perf [17], an extension of JUnit [50] is for unit testing of performance.

3.1 Stochastic Performance Logic

We illustrate the SPL concepts on an example of two methods whose perfor-
mance needs to be related to each other – this example finds an application in

296 L. Bulej et al.

systems that adapt by choosing the faster of two method implementations or
the faster of two execution platforms. We formally define the performance of
a method as a random variable representing the time it takes to execute the
method with random input parameters drawn from a particular distribution.
The nature of the random input is formally represented by workload class and
method workload. The workload is parametrized by workload parameters, which
capture the dimensions along which the workload can be varied, e.g. array size,
matrix sparsity, graph density, etc.

Definition 1. Workload class is a function L : Pn → (Ω → I), where for a
given L, P is a set of workload parameter values, n is the number of parameters,
Ω is a sample space, and I is a set of objects (method input arguments) in a
chosen programming language.

Definition 2. Method workload is a random variable Lp1,...,pn such that

Lp1,...,pn = L(p1, . . . , pn)

for a given workload class L and parameters p1, . . . , pn.

Unlike conventional random variables that map observations to a real num-
ber, method workload is a random variable that maps observations to object
instances, which serve as random input parameters for the measured method.
Note that without loss of generality, we assume in the formalization that there
is exactly one LM for a particular method M and that M has just one input
argument.

Definition 3. Let M(in) be a method in a chosen programming language and
in ∈ I its input argument. Then method performance PM : Pn → (Ω → R) is a
function that for given workload parameters p1, . . . , pn returns a random variable,
whose observations correspond to execution duration of method M with input
parameters obtained from observations of Lp1,...,pn

M = LM (p1, . . . , pn), where LM

is the workload class for method M .

To facilitate comparison of method performance, SPL is based on regular arith-
metics, in particular on axioms of equality and inequality adapted for the method
performance domain.

Definition 4. SPL is a many-sorted first-order logic defined as follows:

– There is a set FunPe of function symbols for method performances with
arities Pn → (Ω → R) for n ∈ N+.

– There is a set FunT of function symbols for performance observation trans-
formation functions with arity R → R.

– The logic has equality and inequality relations =, ≤ for arity P × P .
– The logic has equality and inequality relations ≤p(tl,tr), =p(tl,tr) with arity

(Ω → R) × (Ω → R), where tl, tr ∈ FunT .
– Quantifiers (both universal and existential) are allowed only over finite sub-

sets of P .

Supporting Performance Awareness in Autonomous Ensembles 297

– For x, y, z ∈ P and PM , PN ∈ FunPe, the logic has the following axioms:

x ≤ x (1)
(x ≤ y ∧ y ≤ x) ↔ x = y (2)
(x ≤ y ∧ y ≤ z) → x ≤ z (3)

For each pair tl, tr ∈ FunT such that
∀o ∈ R : tl(o) ≤ tr(o), there is an axiom
PM (x1, . . . , xm) ≤p(tl,tr) PM (x1, . . . , xm)

(4)

(PM (x1, . . . , xm) ≤p(tm,tn) PN (y1, . . . , yn)∧
PN (y1, . . . , yn) ≤p(tn,tm) PM (x1, . . . , xm)) ↔

PM (x1, . . . , xm) =p(tm,tn) PN (y1, . . . , yn)
(5)

Using SPL, we can express assumptions about method performance. The lambda
notation [3] with id = λx.x is introduced for brevity:

Example 1. “On arrays of 100, 500, 1000, 5000, and 10000 elements, the sort-
ing algorithm A is at most 5% faster and at most 5% slower than sorting algo-
rithm B.”

∀n ∈ {100, 500, 1000, 5000, 10000} :
PA(n) ≤p(id,λx.1.05x) PB(n) ∧ PB(n) ≤p(id,λx.0.95x) PA(n)

3.2 Logic Interpretations

To ensure correspondence between the SPL formula in Example 1 and its textual
description, we need to introduce the appropriate semantic that provides the
intended SPL interpretation. In [9], we first introduce an expected-value-based
interpretation, where the SPL relations are defined over expected values of the
random variables that represent execution duration. This interpretation is useful
when the expected values are known, such as when performance is computed
using analytical models. When performance is observed through monitoring, an
interpretation based on the observed samples is needed.

Simple Sample-Based Interpretation. To formulate the sample-based inter-
pretation from [9], we first fix the set of observations for which the relations will
be interpreted. We define an experiment, denoted E , as a finite set of observations
of method performances under a particular method workload.

Definition 5. Experiment E is a collection of OPM (p1,...,pm), where

OPM (p1,...,pm) = {P 1
M (p1, . . . , pm), . . . , PV

M (p1, . . . , pm)}

is a set of V observations of method performance PM subjected to workload
Lp1,...,pm

M , and where P i
M (p1, . . . , pm) denotes i-th observation of performance of

method M .

298 L. Bulej et al.

For a particular experiment, we define the sample-based interpretation of
SPL.

Definition 6. Let tm, tn : R → R be performance observation transformation
functions, PM and PN be method performances, x1, . . . , xm, y1, . . . , yn be work-
load parameters, and α ∈ 〈0, 0.5〉 be a fixed significance level.

For a given experiment E, the relations ≤p(tm,tn) and =p(tm,tn) are interpreted
as follows:

– PM (x1, . . . , xm) ≤p(tm,tn) PN (y1, . . . , yn) iff the null hypothesis

H0 : E(tm(P i
M (x1, . . . , xm))) ≤ E(tn(P j

N (y1, . . . , yn)))

cannot be rejected by one-sided Welch’s t-test [56] at significance level α
based on the observations gathered in the experiment E;

– PM (x1, . . . , xm) =p(tm,tn) PN (y1, . . . , yn) iff the null hypothesis

H0 : E(tm(P i
M (x1, . . . , xm))) = E(tn(P j

N (y1, . . . , yn)))

cannot be rejected by two-sided Welch’s t-test at significance level 2α based
on the observations gathered in the experiment E;

where E(tm(P i
M (. . .))) and E(tn(P j

N (. . .))) denote the mean value of perfor-
mance observations transformed by function tm or tn, respectively.

The sample-based interpretation is reasonable for situations where it is pos-
sible to collect a relatively large number of samples to be used for the statistical
testing. Experience suggests tens of thousands of samples suffice [25]. When SPL
is used to make adaptation decisions at runtime, the number of collected sam-
ples might be smaller by several orders of magnitude, and the individual samples
might suffer from many kinds of disruptive artefacts.

We discuss two kinds of disruptive artefacts – initial transient conditions and
run-to-run fluctuations. We assume that system execution consists of stationary
episodes termed runs.3 Within a run, system performance would be considered
stable, except for initial transient conditions disrupting the run. From run to
run, system performance can exhibit fluctuations that are measurable and sta-
tistically significant, but not controllable and not significant from the adaptation
perspective [30]. The interpretations in the following sections explicitly handle
runs.

3.3 Handling Initial Transient Conditions

On many computing platforms, runs are exposed to mechanisms that may in-
troduce transient execution time changes. Measurements performed under these

3 Practical reasons for the existence of runs are for example rejuvenation episodes with
virtual machine restarts.

Supporting Performance Awareness in Autonomous Ensembles 299

conditions are typically denoted as warmup measurements, in contrast to steady
state measurements.4

One well known mechanism that introduces warmup is just-in-time compila-
tion. With just-in-time compilation, the method whose execution time is mea-
sured is initially executed by an interpreter or compiled into machine code with
selected optimizations based on static information. During execution, the same
method may be compiled with different optimizations based on dynamic infor-
mation and therefore exhibit different execution times. This effect is illustrated
on Figure 1.5

●

●
●●●●●
●●
●

●

●
●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●
●●●
●●●●
●
●
●●

●
●●●

●

●●

●

●●
●●●

●

●●

●

●●●

●

●●
●
●●

●

●●

●

●●

●

●●
●
●●

●

●●

●

●●

●

●●

●

●●
●
●●●

●

●●

●

●●

●

●●
●
●●●

●

●●

0 50 100 150 200

5
10

15
20

Time since measurement start [s]

M
et

ho
d

tim
e

[m
s]

Fig. 1. Example of how just-in-time compilation influences method execution time

The warmup measurements are not necessarily representative of steady state
performance and are therefore typically avoided. Sometimes, such measurements
can be identified by analyzing the collected observations. Intuitively, long se-
quences of observations with zero slope (such as those on the right side of Fig-
ure 1) likely originate from steady state measurements, in contrast to initial
sequences of observations with downward slope (such as those on the left side of
Figure 1), which likely come from warmup. This intuition is not always reliable,
because the warmup measurements may exhibit very long periods of apparent
stability between changes. These would look like steady state measurements
when analyzing the collected observations. Furthermore, the mechanisms that
introduce warmup may not have reasonable bounds on warmup duration. As one
example, just-in-time compilation can be associated with events such as change
in branch behavior or change in polymorphic type use, which may occur at any
time during measurement.
4 The illustrative measurements in this section were collected on an Intel Xeon E5-

2660 machine with 2 sockets, 8 cores per socket, 2 threads per core, running at
2.2 GHz, 32 kB L1, 256 kB L2 and 20 MB L3 caches, 48 GB RAM, running 64 bit
Fedora 20 with OpenJDK 1.7.

5 The method is SAXBuilder::build, used to build a DOM tree from a byte array stream,
from the JDOM library [29]. The selection is ad hoc, made to illustrate practical
behavior.

300 L. Bulej et al.

Given these obstacles, we believe that warmup should not be handled at
the level of logic interpretation. Instead, knowledge of the relevant mechanisms
should be used to identify and discard observations collected during warmup.

In addition to the transient initial conditions, the logic interpretation has
to cope with run-to-run fluctuations. In contemporary computer systems, the
execution conditions include factors that stay relatively stable within each run
but differ between runs – for example, a large part of the process memory layout
on both virtual and physical address level is determined at the beginning of each
run. When these factors cannot be reasonably controlled, as is the case with the
memory layout example, each run will execute with possibly different conditions,
which can affect the measurements. The memory layout example is one where
a significant impact was observed in multiple experiments [30,40]. Therefore, no
single run is entirely representative of the observable performance.

A common solution to the problem of changing conditions between runs is
collecting observations from multiple runs. In practice, each run takes some time
before performing steady state measurements, the number of observations per
run will therefore be high but the number of runs will be low. In this situation,
the sample variance S2 (when computed from all the observations together)
is not a reliable estimate of the population variance σ2 and the sample-based
logic interpretation becomes more prone to false positives, rejecting performance
equality even between measurements that differ only due to changing conditions
between runs. The problem can be avoided by introducing a sensitivity limit [25],
or by explicitly considering runs in the logic interpretations, done next.

3.4 Parametric Mean Value Interpretation

From the statistical perspective, measurements taken within a run have a condi-
tional distribution depending on a particular run. This is typically exhibited as
a common bias shared by all measurements within the particular run [31]. As-
suming that each run has the same number of observations, the result statistics
collected by a benchmark can be modeled as the sample mean of sample means
of observations per run (transformed by tm as necessary):

M =
1
ro

r∑
i=1

o∑
j=1

tm(P i,j
M (x1, . . . , xm))

where P i,j
M (x1, . . . , xm) denotes the j-th observation in the i-th run, r denotes

the number of runs and o denotes the number of observations in a run.
From the Central Limit Theorem, M and the sample means of individual runs

M i = 1
o

∑o
j=1 tm(P i,j

M (x1, . . . , xm)) are asymptotically normal. In particular, a
run mean converges to the distribution N(μi, σ

2
i /n). Due to the properties of the

normal distribution, the overall sample mean then converges to the distribution

M ∼ N

(
μ,

ρ2

r
+

σ2

ro

)

Supporting Performance Awareness in Autonomous Ensembles 301

where σ2 denotes the average of run variances and ρ2 denotes the variance of
run means [31].

This can be easily turned into a statistical test of equality of two means,
used by the interpretation defined below. Note that since the variances are not
known, they have to be approximated by sample variances. That makes the test
formula only approximate, though sufficiently precise for large r and o [31].

Definition 7. Let tm, tn : R → R be performance observation transformation
functions, PM and PN be method performances collected over rM , rN runs, each
run having oM , oN observations respectively, x1, . . . , xm, y1, . . . , yn be the work-
load parameters, and α ∈ 〈0, 0.5〉 be a fixed significance level.

For a given experiment E, the relations ≤p(tm,tn) and =p(tm,tn) are interpreted
as follows:

– PM (x1, . . . , xm) ≤p(tm,tn) PN (y1, . . . , yn) iff

M − N ≤ z(1−α)

√
oMR2

M + S2
M

rMoM
+

oNR2
N + S2

N

rNoN

where z(1−α) is the 1 − α quantile of the normal distribution,

S2
M = 1

rM (oM−1)

∑r
i=1

∑o
j=1

(
tm(P i,j

M (x1, . . . , xm)) − 1
o

∑o
k=1 tm(P i,k

M (x1, . . . , xm))
)2

R2
M =

1
rM − 1

r∑
i=1

⎡
⎣
⎛
⎝ 1

n

o∑
j=1

tm(P i,j
M (x1, . . . , xm)

⎞
⎠ − M

⎤
⎦

2

and similarly for S2
N and R2

N .
– PM (x1, . . . , xm) =p(tm,tn) PN (y1, . . . , yn) iff

∣∣M − N
∣∣ ≤ z(1−α)

√
oMR2

M + S2
M

rMoM
+

oNR2
N + S2

N

rNoN

3.5 Non-parametric Mean Value Interpretation

The interpretation given by Definition 7 requires a certain minimal number
of runs to work reliably. This is because the distribution of run means M i =
o−1 ∑o

j=1 tm(P i,j
M (x1, . . . , xm)) is not normal even for relatively large values of

o – illustrated on Figure 2.6 Again, for a small number of runs this typically
results in a high number of false positives, we therefore provide an alternative
6 Each run collects o = 20000 observations after a warmup of 40000 observations. The

method is SAXBuilder::build, used to build a DOM tree from a byte array stream,
from the JDOM library [29]. The selection is ad hoc, made to illustrate practical
behavior.

302 L. Bulej et al.

interpretation that uses the distribution of M i directly. It works reliably with
any number of runs (including only one run), however, the price for this im-
provement is that the test statistics has to be learned first (e.g. by observing
performance across multiple runs of similarly behaving methods).

Method execution time [ms]

F
re

qu
en

cy

8.6 8.8 9.0 9.2 9.4 9.6 9.8

0
5

10
15

Fig. 2. Example histogram of run means from multiple measurement runs of the same
method and workload

We assume that all observations P i,j
M (x1, . . . , xm) in a run i are identically

and independently distributed with a conditional distribution depending on a
hidden random variable C. We denote this distribution as BC=c

M , meaning the
distribution of observations in a run conditioned by drawing some particular c
from the hidden random variable C.

We further define the distributions of the test statistics as follows:

– BM,rM ,oM
is the distribution function of

(rMoM)−1
rM∑
i=1

oM∑
j=1

tm(Ṗ i,j
M (x1, . . . , xm))

where Ṗ i,j
M (x1, . . . , xm) denotes a random variable with distribution BC=c

M

for c drawn randomly once for each i. In other words, BM,rM ,oM
denotes a

distribution of a mean computed from rM runs of oM observations each.
– BM,rM ,oM−N,rM ,oM

is the distribution function of the difference M̃ − Ñ ,
where M̃ is a random variable with distribution BM,rM ,oM

and Ñ is a random
variable with distribution BN,rN ,oN

.

After adjusting the distributions BM,rM ,oM
and BN,rN ,oN

by shifting to have an
equal mean, the performance comparison can be defined as:

– PM (x1, . . . , xm) ≤p(tm,tn) PN (y1, . . . , yn) iff

M − N ≤ B−1
M,rM ,oM−N,rN ,oN

(1 − α)

Supporting Performance Awareness in Autonomous Ensembles 303

where M denotes the sample mean of tm(PM (x1, . . . , xm)), N is defined sim-
ilarly, and B−1

M,rM ,oM−N,rN ,oN
denotes the inverse of the distribution function

BM,rM ,oM−N,rN ,oN
(i.e. for a given quantile, it returns a value).

– PM (x1, . . . , xm) =p(tm,tn) PN (y1, . . . , yn) iff

B−1
M,rM ,M−N,rN ,oN

(α) ≤ M − N ≤ B−1
M,rM ,oM ,−N,rN ,oN

(1 − α)

An important problem is that the distribution functions BM,rM ,oM
, BN,rN ,oN

,
and consequently BM,rM ,oM−N,rN ,oN

are unknown. To get over this problem,
we approximate the B-distributions in a non-parametric way by bootstrap and
Monte-Carlo simulations [47]. This can be done either by using observations
P i,j

M (x1, . . . , xm) directly, or by approximating from observations of other meth-
ods whose performance behaves similarly between runs.

Finally, we define a non-parametric interpretation of the logic as follows:

Definition 8. Let tm, tn : R → R be performance observation transformation
functions, PM and PN be method performances, x1, . . . , xm, y1, . . . , yn be work-
load parameters, α ∈ 〈0, 0.5〉 be a fixed significance level, and let X, Y be methods
(including M and N) whose performance observations are used to approximate
the distributions of PM and PN , respectively.

For a given experiment E, the relations ≤p(tm,tn) and =p(tm,tn) are interpreted
as follows:

– PM (x1, . . . , xm) ≤p(tm,tn) PN (y1, . . . , yn) iff

M − N ≤ B∗−1
X,rX ,oX−Y ,rY ,oY

(1 − α)

– PM (x1, . . . , xm) =p(tm,tn) PN (y1, . . . , yn) iff

B∗−1
X,rX ,oX−Y ,rY ,oY

(α) ≤ M − N ≤ B∗−1
X,rX ,oX−Y ,rY ,oY

(1 − α)

4 Coding for Performance Awareness

The basic role of SPL is to provide a versatile mechanism to express perfor-
mance properties at various stages of the software development process – the
design requirements, the developer assumptions, the test conditions, the health
indicators, the adaptation triggers, and so on. Every specialized use of the formal-
ism brings additional considerations, which must be addressed to achieve fitness
for purpose. Here, we outline how the formalism is connected to data and code
in the implementation environment, additional considerations in the context of
adaptive systems are discussed in [10], the context of software documentation is
examined in [26], software testing in [25].

304 L. Bulej et al.

4.1 Performance Data Sources

The introduction of SPL in Section 3 formalized performance as the execution
time of a particular method under a particular workload, as collected by perfor-
mance monitoring from Section 2. However, SPL provides considerable freedom
as far as the input data is concerned. For example, in the autonomic cloud case
study from Chapter IV.3 [38], applications migrate from busy to idle nodes and
it is therefore useful to compare the system load metric to identify the busy and
idle nodes.

The system load is typically represented as the number of ready threads on
the node. If this number is normalized to the number of processors, it can be
used as a criterion in a distributed environment for finding the least loaded ma-
chine. The formula for deciding whether machine A is less loaded than machine
B then remains rather simple, LA < LB. When comparing the load, we can
rely on a trivial SPL interpretation – both LA and LB are scalars and plain
comparison can therefore be used. If multiple observations of load are available,
the comparison can rely on any of the sample-based interpretations. We note
that the two cases differ – one is concerned with the current system load, one
evaluates the mean system load over a longer time period. There are other prac-
tical differences – for example, when a new observation arrives, evaluating the
formula with sample-based interpretation is more resource intensive than eval-
uating with plain comparison. For environments with restricted resources, this
can be important.

More systematically, applying SPL to data other than method execution
times gives rise to the concept of data sources. The performance data is ab-
stracted as a random variable and the data source is responsible for providing
information on the random variable that the particular interpretation requires –
for example, the expected value for the expected-value-based interpretation, the
sample mean X, sample size VX and sample variance S2

X for the simple sample-
based interpretation, and so on. Introducing data sources provides an important
level of abstraction in the software development process. In particular, the same
SPL formulas can be used in multiple software development phases from model-
ing to execution – the only difference is what data source is bound to the actual
random variables in the SPL formula.

We illustrate the concept on an example of an adaptive application. Consider
a problem that can be solved using two different algorithms, A and B, with A
performing better on larger and B on smaller inputs. The adaptation consists
of choosing the better performing algorithm depending on the actual input size.
The adaptation is simple when the limit size – size slimit such that A performs
better for inputs larger than slimit and B for inputs smaller than slimit – is
known, however, s depends on the execution platform and therefore cannot be
included in the application design. Instead, an equally simple SPL formula can
be used to describe the condition for selecting particular algorithm for given
input size s – we use A if A(s) ≤ B(s) and B otherwise.

In the early application design phase, modeling might be used to assess the
application behavior – and because data on the actual performance would not yet

Supporting Performance Awareness in Autonomous Ensembles 305

be available, the model would bind A(s) and B(s) to data sources that roughly
estimate performance from the algorithm complexity. In the testing phases of
the application development process, the same formula would be bound to data
sources that measure the performance of the (already implemented) algorithms
in a potentially restricted testing environment. The formula would be used as
a base indicator that the implementation works as expected. Where needed,
artificial data injection (similar to fault injection) through the same data sources
could be used to test corner cases. Finally, at runtime, the same formula would be
bound to data sources collecting runtime measurements, allowing the application
to adapt itself to the actual timing of the particular execution platform.

4.2 Language Integration Support

The outlined uses of SPL require integrating the support for performance mon-
itoring and formula evaluation with data source binding in a particular imple-
mentation environment. In the ASCENS project, the choice for the prototype
integration environment is Java– it is a well-known multi-platform language that
is used in the case studies and in the jRESP and jDEECo frameworks. We note,
however, that the choice of Java is without loss of generality – in principle,
most methods developed in the ASCENS project are implementation-language-
agnostic.

To indicate performance properties (requirements, expectations, conditions)
at code level, SPL formulas are attached in the form of annotations to the
relevant method, as outlined in the example in Listing 2.

Listing 2. Java annotation expressing performance requirements

@SPL(
methods = ”javaSort=java.util.Arrays#sort(long[])”,
generators = ”data=SPL:LongUniform(’0;1000’)”,
formula = ”for (i {100, 1000, 10000}) SELF[data](i) <=(2, 1) javaSort[data](i)”

)
public void fasterSort(long[] data) {

// Measured method ...
}

The annotation states that fasterSort should be at least two times faster than javaSort,
a library implementation. The generator provides the workload that is being measured,
that is, the objects used as arguments when calling the measured methods.

The annotations are suitable for use by external tools that evaluate the per-
formance properties at development time or deployment time – such as with
testing, outlined in [25]. It is also possible to include the formula evaluation
in the component system runtime, where it can direct mechanisms related to
component lifecycle or connector binding, as outlined in [6].

306 L. Bulej et al.

Besides the static language integration based on annotations, we have also
designed an API for evaluating SPL formulas directly from application code at
runtime. Listing 3 depicts a code fragment that uses the API to check whether a
method execution time does not exceed the given threshold – where the example
simply prints a warning, an adaptive application would take an action to remedy
the problem.

Listing 3. Checking method execution time

/∗
∗ Preparation.
∗ The SPL.instrument() creates the data source and also
∗ adds the measuring code automatically to the measured
∗ method.
∗/

SourceData data = SPL.instrument(”pkg.MyClass#myMethod”);
Formula formula = SPL.createFormula(”A < 100”);
formula.bind(”A”, data);

/∗
∗ Check the formula (once enough samples were collected).
∗/

if (formula.evaluate() == Result.FALSE) {
logger.warn(”myMethod is too slow!”);

}

The SPL.instrument() method uses DiSL, outlined in Section 2, to instrument
the running Java application with code that measures the method execution
time. The instrumentation is also performed on demand, whenever the need to
measure a particular method arises – this happens when an annotation uses
a formula to refer to the method performance. In addition to plain Java, the
prototype implementation includes support for OSGi, where the use of class
loaders for component isolation poses additional technical challenges.

4.3 Integrating Predictive Models

A degree of performance awareness can be achieved entirely based on the knowl-
edge of current and past performance. A simple example of this is a server that
increases the number of threads in reaction to the observed response time using
a simple rule – when the response time grows, more threads are added. The
SPL formulas used to express this rule only need to rely on current and past
measurements, provided by the appropriate data sources.

In some situations, performance awareness can augment the information
about current and past events by using predictive models – following the ex-
ample, it may be possible to use trend estimation methods to predict a rise in

Supporting Performance Awareness in Autonomous Ensembles 307

request frequency and adjust the number of service threads accordingly [19].
This option is handled in the support for performance awareness by presenting
predictive models as data sources – that way, the same SPL formulas that were
used to react to current events can react to predicted behavior.

The integration of predictive models on an application migration example is
exemplified Section 6, where the Planner may rely on modeling to pick a suitable
deployment alternative. Relying on the modular solution with pluggable data
sources simplifies the technical integration of such models in the SPL framework.

5 Modeling Performance

Reasoning about the performance of ensembles introduces a level of difficulty
due fact to the system under study comprises of potentially many interacting
components. To cope with this inherent complexity, in the ASCENS project we
followed an established line of research on finding symmetries at the model level
which induce a suitable coarsening of the state space that retains some informa-
tion about the original one. In this respect, the classical results on bisimilarity
allow to relate processes of possibly different state space sizes which are however
equivalent with respect to an external observer [39]. Analogous notions have been
developed form Markovian process algebra with a discrete-state Markov chain
semantics. For instance, the notions of Markovian bisimulation for MTIPP [20]
and strong equivalence for PEPA [22] are equivalence relations that give an ex-
actly aggregated Markov chain in terms of the theory of CTMC lumpability [5].

A similar line of research in the ASCENS project leads to exact as well
as approximate notions of aggregation for Markovian process algebra. Different
from the listed literature, we targeted fluid semantics. This has recently emerged
as an alternative to the classical Markovian semantics, describing the model
dynamics in terms of a system of ordinary differential equations (ODEs) [21,34].
These can be interpreted as a deterministic approximation to the expectation
of the Markov chain [14,16,18,51]. When the model under consideration consists
of many copies of processes in parallel, the ODE system size is independent of
the multiplicities of such copies. This is considerably more convenient than the
Markovian representation which suffers from the well-known problem of state
explosion, where the number of states grows exponentially (in the worst case)
with the number of concurrent processes in the model.

5.1 Fluid Process Algebra

The motivating observation here is that not all models of ensemble-based sys-
tems enjoy a compact ODE description [53]. Indeed, the problem of aggregating
large-scale models based on ODEs has attracted the attention of researchers in a
variety of other disciplines including control theory [1], theoretical ecology [28],
and chemical engineering [42]. Here we consider a Fluid Process Algebra, pre-
sented in [52] as a fragment of the Markovian process algebra PEPA [22].

308 L. Bulej et al.

Exact Fluid Lumpability. In [52] we define the notion of exact fluid lumpa-
bility (EFL). It establishes an equivalence relation between processes such that
their associated ODE solutions have equal trajectories whenever they are ini-
tialized with the same conditions. To be concrete yet informal for the purpose
of overviewing our results, let us consider the process(

P1[N1] ‖K P2[N2] ‖K · · · ‖K PD[ND]
)

‖L Q[M] (6)

where, for all 1 ≤ i ≤ D, Pi is some sequential component that is replicated
Ni times, and ‖K is the parallel operator, parameterised by an action set K,
in a CSP-like fashion. EFL may essentially reduce the analysis of such a model
by considering the fluid trajectory of a representative Pi, which is shown to be
equal to that of any other Pj if, for all 1 ≤ i, j ≤ D, it holds that Ni = Nj and
Pi and Pj are isomorphic. Thus, denoting by VS(t) the ODE solution related
to the sequential component S, EFL would yield VPi (t) = VPj (t) for all t. EFL
has been exploited in [53] as a building block to automatically simplify models
that feature a pattern of replicated composites – large ensembles of composite
processes which themselves consist of replicated copies of other composites, with
an arbitrary level of nesting. However, in general symmetries are required both at
the level of the sequential component and at the compositional level, by ensuring
that all populations have the same size.

Taking EFL as the starting point of our investigation, it is possible to extend
it along two orthogonal directions [54]. In one direction, we define a new notion
of lumpability, called ordinary fluid lumpability (OFL), which relaxes assump-
tions on certain symmetries whilst still guaranteeing exactness of the aggregated
system. In the other direction, we consider approximate versions of both EFL
and OFL which can yield coarser aggregations, at the cost of losing exactness.

Ordinary Fluid Lumpability (OFL). Similarly to EFL, ordinary fluid
lumpability considers symmetry through isomorphism at the sequential level;
thus, it still requires that Pi and Pj be isomorphic for all i, j. However, it allows
heterogeneity at the compositional level: in the example above, it may yield an
exactly aggregated ODE system even if Ni �= Nj . However, unlike EFL, where
all the trajectories of the original ODE system can be obtained from the solution
of the aggregate, in OFL the aggregate gives the exact sum of the solutions of its
parts, but their individual trajectories cannot be recovered. Thus, for instance,
OFL would define an aggregate ODE for some variable WP (t) and show that
WP (t) = VP1(t)+VP2 (t)+ . . .+VPD (t). More precisely, OFL identifies an aggre-
gate ODE system where the solution to each ODE is the linear combination of
solutions of ODEs belonging to the original system.

Approximate Aggregations. To relax the requirement on the exactness of
the aggregation, we study ε-variants of both EFL and OFL as a means of re-
laxing symmetries at the sequential level. These variants allow non-isomorphic
processes to be aggregated if there exists a perturbation in the rates that makes

them isomorphic. For instance, let us take Pi
(α,r)−−−→ Pk and Pj

(α,r+ε)−−−−−→ Pk, for

Supporting Performance Awareness in Autonomous Ensembles 309

some Pk, where the edges give the action/rate pair, specifying a label that iden-
tifies the activity and the rate of an exponential distribution determining its
duration, with r > 0 and ε > 0. Then, these processes cannot be aggregated
with either EFL or OFL because ε > 0 does not make them isomorphic. How-
ever, there exists a perturbation on the parameters of Pi and Pj that makes

them isomorphic. For instance, one can take Pj
(α,r)−−−→ Pk such that ε represents

the degree of such perturbation. In fact, there exist infinitely many such per-

turbations. For instance, it would be possible to consider Pi
(α,r+ε/2)−−−−−−→ Pk and

Pj
(α,r+ε/2)−−−−−−→ Pk. In all these cases, it would hold that the model is ε-ordinarily

fluid lumpable for any Ni and Nj . Clearly, the aggregated system will not be in
exact correspondence with the original one. However, a theoretical bound shows
that the aggregation error depends linearly in the intensity of the perturbation
|ε|.

Exhibiting such near-symmetries may appear quite limiting for practical ap-
plications; however, there are models in the literature that do exhibit this char-
acteristic. This has been recently studied also in [27], where a similar notion of
approximate aggregation has been presented.

Characterisation of ODE Aggregations. When the aggregation is induced
by a process algebra, it is possible to study the nature of such aggregation in
two main ways.

1. The ODE aggregations can be induced by suitable notions of behavioural
equivalence, which turn out to be congruences with respect to the parallel
operator of Fluid Process Algebra.

2. We consider the nonrestrictive (syntactic) notion of model well-posedness
originally defined in [52]. Under this assumption, processes which can be ag-
gregated according to either EFL or OFL are related by semi-isomorphism.
This is an extension of graph isomorphism to labelled transition systems with
transition multi-sets, which does not distinguish between the multiplicity of
arcs connecting two nodes whenever the total rate is the same. Furthermore,
under well-posedness it holds that ε-EFL and ε-OFL imply the behavioural
notion of ε-semi-isomorphism, the natural extension of semi-isomorphism
which relates graphs up to changes in the transition rates. At the same time,
however, processes that are semi-isomorphic cannot be aggregated according
to EFL or OFL in general, essentially because two semi-isomorphic processes
may be present in different contexts, which may impact their ODE expres-
sions due to possibly different synchronisations.

5.2 Aggregation Error

To provide some numerical evidence of the aggregation error introduced by ε-
EFL and ε-OFL, let us consider the model in (6) where the sequential compo-
nents are defined, for 1 ≤ d ≤ D, as

Pd
def= (α, rd).P ′d P ′d

def= (β, s).Pd Q
def= (α, r).Q′ Q′ def= (γ, w).Q . (7)

310 L. Bulej et al.

0 0.02 0.04 0.06 0.08 0.1
0

5

10

15

20

25

Δ

%
 E

rr
or

D = 3
D = 6
D = 9
D = 12

(a) ε-EFL for ρ = min

0 0.02 0.04 0.06 0.08 0.1
0

2

4

6

8

10

12

14

Δ
%

 E
rr

or

D = 3
D = 6
D = 9
D = 12

(b) ε-EFL for ρ = ·

0 0.02 0.04 0.06 0.08 0.1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Δ

%
 E

rr
or

ρ = min
ρ = ⋅

(c) ε-OFL, for D = 12

Fig. 3. Numerical evaluation of ε-lumpability

These model two agents, Pd and Q, which cycle through states P ′d and Q′,
respectively. With this choice, the model can be interpreted as a high-level de-
scription of a multi-class service system where one resource, modelled by Q, can
be accessed by different classes of clients, Pd, each with its own service demand
characterized by rd. We arbitrarily chose the rates of the independent actions,
fixing s = 0.5 and w = 15.0, while we varied the values of rd.

Our intent is to approximate ODEs systems where Pi and Pj are aggregated
for some 1 ≤ i, j ≤ D. Thus, in order to obtain non-isomorphic sequential
components, we made rd dependent on 1 ≤ d ≤ D, setting rd = 1.0 + (d − 1)Δ.
Here, Δ is a parameter that was varied between 0.0005 and 0.1000 at 0.005
steps in our tests. In this way, it is directly proportional to the intensity of the
perturbation. For instance, in a model with D = 12 and Δ = 0.1000, we have
r10/r1 = 2.1, showing a non-negligible difference between the rate parameters of
P1 and those of P10. In order to enforce asymmetry also in the initial populations,
we made the initial populations of Pd components dependent on d. Specifically,
we considered initial conditions defined as VPd

(0) = 200 + (d − 1), VP ′
d
(0) = 0,

VQ(0) = 400, and VQ′(0) = 0; thus, the components have initial populations
separated by a few percent. For evaluating both ε-EFL and ε-OFL, we considered
a perturbed model where rd in (7) was made independent of d and set equal to
the average value in the original model, i.e.,

r̃d = 1.0 + (Δ/D)
D∑

d=1

(d − 1).

In such a perturbed model, all Pd sequential components are now isomorphic.

Assessment of ε-EFL We considered different values of D to numerically evaluate
the impact of different initial conditions on the quality of the aggregation of
ε-EFL. Specifically, we set D = 3, 6, 9, 12. Let us recall that (6) has 2D + 2
ODEs. For each value of D and Δ, the model solution was compared against
that of the perturbed model with the initial conditions set as follows: V ε

Pd
(0) =

Supporting Performance Awareness in Autonomous Ensembles 311

200 + (1/D)
∑D

d=1(d − 1), V ε
P ′

d
(0) = 0, V ε

Q(0) = 400, and V ε
Q′ (0) = 0. In this

way, the initial population of Pd sequential components is made independent
from d and is set equal to the average initial population across d, similarly to
what done for the perturbation on rd. It follows that, in the perturbed model,
{{P1, . . . , PD}, {Q}} is an exactly fluid lumpable partition. Hence, the original
model and the perturbed one are related by ε-EFL. Both models were solved
over the time interval [0; 100], so as to ensure convergence of the ODE solution
to equilibrium for all parameterisations considered. Solutions were registered at
0.2 time steps. The approximation relative error for ε-EFL is as:

100 × max
t∈{0,0.02,...,100}

max
S∈{P1,...,Pd,Q}

|VS(t) − V ε
S (t)|

VS(0)
,

where VS(t) is the solution of the original model and V ε
S (t) is the corresponding

solution in the perturbed one. The absolute difference is normalised with respect
to the total population of the component.

The results are presented in Figures 3a and 3b, for two distinct interpretations
of the synchronisation operator. The first one defines synchronisation as the
minimum of the rates of the synchronising components (ρ = min) while the
second one takes the product of their rates (ρ = ·). In both cases, it is possible
to observe a linear growth of the error as a function of the perturbation Δ.
For any fixed D, the case ρ = · yields more accurate aggregates than ρ = min,
with particularly small errors for D = 3, 6, 9. These tests show that even non-
negligible perturbations (i.e., up to Δ ca 0.04) can produce acceptable errors
(i.e., less than 10%) in practice.

Assessment of ε-OFL Analogous tests were performed for the assessment of ε-
OFL, since in the perturbed model {{P1, . . . , PD}, {Q}} is also an ordinarily fluid
lumpable partition. We analysed only the case D = 12, which yielded the worst
accuracy in ε-EFL; the other cases showed the same errors (up to numerical
precision of the ODE solver). A different error metric was used, to reflect the
fact that OFL involves sums of ODE solutions of the unaggregated model. The
approximation relative error is defined as:

100 × max
t∈{0,0.02,...,100}

max

⎧⎨
⎩

∣∣∣∑D
d=1 VPd

(t) − W ε
P (t)

∣∣∣∑D
d=1 VPd

(0)
,
|VQ(t) − W ε

Q(t)|
VQ(0)

⎫⎬
⎭ .

The numerical results are shown in Figure 3c. Overall, both for ρ = min and
ρ = ·, the ε-OFL appears to be much more robust, with negligible errors across
all values of Δ.

6 Performance Aware Ensembles

We present performance aware ensembles in the context of the cloud case study
from Chapter IV.3 [38]. We assume a heterogeneous cloud where mobile devices,

312 L. Bulej et al.

such as smart phones, can offload computationally intensive applications to the
nearby available computational nodes to improve battery lifetime [7]. To elabo-
rate the example, we use the DEECo component model [11], which realizes the
concepts of the SCEL formalism for developing adaptive ensembles. As a ma-
jor feature, the ensembles consist of components that communicate exclusively
through shared knowledge – we therefore include performance measurements
among the knowledge elements.

6.1 Scenario Description

The scenario elaborated in this section is that of a person travelling in a train
or a bus, who wants to do productive work using a tablet computer or review
travel plans and accommodation. The tablet notes the presence of a cloud server
machine located in the bus itself, and to save battery, it offloads the most com-
putationally intensive tasks to that machine. Later, when the bus approaches
its destination, the server notifies the tablet that its service will soon become
unavailable and tasks will start moving back to the tablet. When the bus enters
the terminal, the tablet will discover another server, provided by the termi-
nal authority, and move some of the tasks to the newly found machine. The
challenge is in predicting which deployment scenario will deliver the expected
performance – that is, when is it worth migrating parts of the application to a
different computer.

For our example, we assume that the application has a frontend component
that cannot be migrated (such as the user interface, which obviously has to
stay with the user, Af in our example) and a backend component that can be
offloaded (typically the computationally intensive tasks, Ab in our example).
Figure 4 depicts the adaptation architecture (the used notation is that of com-
ponent systems, except for interfaces which are based on exchanging knowledge
rather than invoking methods, various types of arrows denote various instances
of interaction through knowledge described next).

6.2 Adaptation Architecture Components

The adaptation architecture on Figure 4 forms an overlay that reflects the appli-
cation architecture. Central to the adaptation architecture is the Planner com-
ponent, responsible for computing the optimum application component deploy-
ment. The Planner relies on Monitor components to provide information about
application performance – each Monitor is a surrogate of one application compo-
nent on one machine. The machines are represented by Device components. In
more detail:

Planner. Each adaptive application is managed by a Planner component, whose
implementation includes the application adaptation preferences. Specifically,
given the alternatives for deploying each of the application components, the
Planner selects the application deployment that best satisfies the preferences.
We assume that the resulting deployment is described by a deployment plan,

Supporting Performance Awareness in Autonomous Ensembles 313

Monitor(Ab)
<<observation>>
<<predictive>>

Mobile device Stationary device

Monitor(Af)
<<observation>>

Planner(A)

NFPData(Ab) MonitorDef(A*)

NFPData(Af)

MonitorDef(*)

NFPData(A*)

DeploymentPlan(A)

MonitorDef(*)

Monitor(Ab)
<<predictive>>

<<observation>>
NFPData(Ab)

(2) The Device spawns a new monitor
in the predictive mode for each MonitorDef
(3) After external ly migrating-in
the application component the Device
turns the monitor into observation mode

NFPDeviceData(*)
(2, 3)

Device(S)

(2)

(1) The Device spawns a new
monitor in the observation mode for each new MonitorDef
(3) After external ly migrating-out the application
component the Device turns the monitor into predictive mode

Device(M)

NFPDeviceData(A)
(1, 2)

(3)

NFPDeviceData(A)

NFPDeviceData(*)

(3)

(2, 3)

(2)
(3)

(1, 2, 3)

(1, 2, 3)

(1, 2, 3)

Distributes only models
that are allowed to be
migrated on the device

Fig. 4. Adaptation architecture. Numbers denote adaptation phases, 1 for Ab located
at M, 2 for S discovered, 3 for Ab migrated to S.

and an external mechanism is responsible for performing the adaptation (for
example by migrating components) as directed by the plan. To select among
the available alternatives, the Planner is provided with data on non-functional
properties (such as estimated frame rate or power consumption) that character-
ize the performance of the corresponding application component in a particular
deployment (NFPData). The Planner also advertises definitions of Monitors for
individual application components (MonitorDef).

Monitor. A single Monitor component exists for every application component
in every deployment alternative. The Monitor component is responsible for pro-
viding NFPData for that particular combination of component and alternative.
Depending on the actual deployment of the corresponding application compo-
nent, the Monitor operates in one of two modes:

– The Monitor is in the observation mode if it resides on the same machine
as the corresponding application component and therefore can observe the
actual component execution. In this mode, NFPData is obtained by perfor-
mance measurement of the running application component.

– The Monitor is in the predictive mode if it resides on a different machine than
the one where the application component currently executes, and therefore
represents a potential deployment alternative. NFPData is estimated from
machine parameters in NFPDeviceData (such as estimating frame rate from
the CPU and GPU parameters as a function CPU ×GPU → FPS). In other
words, the Monitor roughly predicts the performance that the application
component would exhibit if it were deployed on a particular machine, relying
on machine-specific data passed in NFPDeviceData.

Device. Each machine is represented by the Device component, which is re-
sponsible for instantiating Monitors advertised by newly discovered Planners and
providing NFPDeviceData for Monitors operating in the predictive mode.

314 L. Bulej et al.

6.3 Adaptation Architecture Ensembles

In the assumed scenario, the number of available computation nodes, as well
as the number of Monitors, changes dynamically. Therefore, the communication
among the components exploits the concept of emergent component ensembles.
The architecture involves the following ensembles (Figure 4):

Planner and Device(s). Each Planner is a coordinator of an ensemble that dis-
tributes MonitorDefs (including the performance prediction model) of application
components to Devices representing currently available machines (including the
one the Planner is running on). The Planner is able to limit which MonitorDefs
should be distributed to which Devices (effectively constraining the potential
migration destinations for a particular application component).

Planner and Monitor(s). Each Planner is a coordinator of an ensemble that
aggregates NFPData from all Monitors corresponding to the components of the
application managed by the Planner. Thus, this ensemble aggregates all the de-
ployment alternatives for the application.

Device and Monitor(s). Each Device component is a coordinator of an en-
semble that distributes NFPDeviceData to the Monitors in the predictive mode
residing on the corresponding machines.

6.4 Adaptation Interaction Example

Initially (phase 1, Figure 4), the ensemble distributes the MonitorDefs of both
Af and Ab from Planner(A) to the Device(M) component of the mobile device,
which subsequently spawns Monitors for both components and sets them to the
observation mode. The Monitors start measuring NFPData of the locally execut-
ing components, which are eventually aggregated and delivered as knowledge to
the Planner. So far, no deployment alternatives are discovered.

After the stationary device is discovered (phase 2, Figure 4), the ensemble
propagates MonitorDefs of the components that could be (potentially) migrated
(here only Ab) to the Device(S) component, which spawns a new Monitor. Be-
cause Ab is deployed on Device(M), this Monitor runs in the predictive mode. The
Device(S) component feeds the Monitor with NFPDeviceData and, based on this
NFPDeviceData and the performance prediction model of Ab, the Monitor pro-
duces NFPData describing the expected performance of Ab on S. Consequently,
another ensemble delivers all the currently produced NFPData for Af and Ab to
the Planner. The Planner thus eventually discovers that there are two deployment
alternatives for Ab (the one currently executing on M and the one modeled on
S) and, assuming the adaptation is perceived as beneficial, decides to deploy Ab
on the stationary device.

After Ab is migrated to the stationary device (phase 3, Figure 4), the Monitor
on S switches to the observation mode. In turn, the Monitor on M is set to the
predictive mode and the whole monitoring and planning process repeats.

When further stationary devices are discovered, new Monitors in the predic-
tive mode are spawned, eventually providing new deployment alternatives for

Supporting Performance Awareness in Autonomous Ensembles 315

consideration by the Planner. Disappearing devices are handled similarly (but
the overlay does not tackle state loss).

7 Designing Performance-Based Adaptation

The dynamic membership and communication features of ensembles, the formal
methods of expressing and evaluating performance properties, and the availabil-
ity of dynamic instrumentation at implementation level are all elements that
contribute to the support for building adaptive applications. Complementing
these elements is a method for designing adaptation strategies – the Invariant
Refinement Method for Self-Adaptation (IRM-SA), described in detail in Chap-
ter III.4 [12]. IRM-SA is an extension to IRM [32] and guides the design of an
application from high-level strategic goals and (performance) requirements to
their realization in terms of system architecture with design choices that corre-
spond to different adaptation alternatives.

Design with IRM-SA captures the high-level system goals and requirements
in terms of interaction invariants. The invariants describe the desired state of
the system-to-be at every time instant, and, in general, are to be maintained
by the cooperation of the system elements (actors, components, ensembles). A
special type of invariant, called assumption, describes a condition that is ex-
pected to hold about the environment – an assumption is not intended to be
maintained explicitly by the system-to-be. In a sequence of design decisions, the
identified top-level invariants are decomposed into combinations of more specific
invariants forming a decomposition graph. By this decomposition, we strive to
get to the level of abstraction where the (leaf) invariants represent detailed de-
sign of the particular system constituents – components, component processes,
and ensembles. Two special types of invariants, the process and exchange invari-
ants, are used to model the component computation (processes) and interaction
(ensembles), respectively.

To facilitate design with alternatives, IRM-SA features two decomposition
types, AND-decomposition and OR-decomposition. The AND-decomposition is
essentially a refinement in the traditional interpretation, where the composition
of the children exhibits all the behavior expected from the parent and (poten-
tially) some more. Formally, the AND-decomposition of a parent invariant Ip

into a conjunction of sub-invariants Is1 ... Isn is a refinement if the conjunction
of the sub-invariants can guarantee the parent invariant:

1. Is1 ∧ ... ∧ Isn ⇒ Ip (entailment)
2. Is1 ∧ ... ∧ Isn � false (consistency)

For the OR-decomposition, in the context of adaptation alternatives, we intro-
duce the concept of situations. A situation is a state that the system and its
environment can reside in. Situations should not be confused with system (op-
erating) modes – whereas the former refer to the perceived environment, which
is inherently impossible to control, the later describe different system configura-
tions, whose choice is under the control of the running software.

316 L. Bulej et al.

The OR-decomposition is used for invariants that can be decomposed into
two or more sub-invariants, with each sub-invariant corresponding to a different
situation. The OR-decomposition of a parent invariant Ip into two or more sub-
invariants Is1 ... Isn is correct if in any situation (corresponding to some of the
invariants Is1 ... Isn) there is at least one sub-invariant that refines the parent
invariant Ip. It is important to notice that the situations identified and elaborated
in an OR-decomposition can potentially overlap. Overlapping of situations can
add to the overall robustness of the system, as it essentially means that more
than one design solution is applicable to the same situation. Of course, situations
can also be nested, following the observation that certain situations arise only
in the context of other ones.

Technically, each situation in the IRM-SA graph is associated with one or
more assumptions (see Figure 5). These assumptions describe the conditions
that are expected to hold under a given situation in a declarative way, and can
in fact be understood as evaluation conditions or adaptation triggers for a given
situation. The formalism used for describing the assumptions depends on the
nature of the assumptions, especially on whether the assumption conditions can
be observed and quantified.

7.1 Scenario Description

To illustrate the IRM-SA method, we return to the cloud case study and the com-
putation offloading example. In the case study, multiple heterogeneous network
nodes form an open cloud platform that runs user applications, some possi-
bly computationally intensive. When such an application executes on a mobile
device, it can take advantage of the nearby cloud nodes by offloading the com-
putationally intensive processing to those nodes. These nodes can even be a part
of a traditional cloud infrastructure, leased on demand when there is a need for
computational resources. The general assumptions are that (i) the application
can be partitioned to run on multiple nodes, and (ii) a mechanism for effectively
migrating application components across cloud nodes exists. Given this scenario,
the goal of the system-to-be is two-fold: (1) to guarantee an upper limit in the
response time observed by the user; (2) to guarantee that the application com-
ponents are distributed in line with the maximum capacity constraints and load
of each node.

Figure 5 shows a possible IRM-SA graph for the above scenario. The design
starts with the identified top-level invariant stating that “Load is balanced while
expected QoS is kept”. The “expected QoS” has been quantified by the SPL
formula that specifies an upper bound on the application’s response time (500
ms). This invariant can be decomposed into two possible sub-invariants, based
on the situation the system resides in and specifically based on whether extra
computational power from a cloud data center is needed.

In the first case (left alternative from top) invariant (1) is decomposed into
one assumption (2) and two invariants, (3) and (4), following Figure 5. Assump-
tion (2) specifies that ”Mobile nodes have enough capacity to handle application

Supporting Performance Awareness in Autonomous Ensembles 317

(1) Load is balanced while
expected QoS is kept
(RespTime ≤p 500 ms)

(10) A Cloud is available and the
application can scale out infinitely

(9) VM execution is controlled by
the VMM

+ nodesLoad
+ nodesCapacity

Arbitrator

+ load
+ capacity
+ migrationDecisions

Node

(2) Mobile nodes have enough
capacity to handle application load

(3) A::migrationDecisions are
available

(4) A::migrationDecisions are
followed by nodes

(7) N::migrationDecisions – N’s
belief over A::migrationDecisions
– is up-to-date

X
(5) A::nodesLoad, A::nodesCapacity
– belief over N::load, N::capacity – is
up-to-date

X

(6) A::migrationDecisions are
computed w.r.t. A::nodesLoad,
A::nodesCapacity

P
(8) Migration routines are
executed w.r.t.
N::migrationDecisions

P

(11) AVG(RespTime) ≤p 200ms

(12) VM instances are being
stopped: Every 20 secs one
instance is stopped.

P

(13) 200ms ≤p
AVG(RespTime)≤p 400ms

P

(14) AVG(RespTime) ≥p 400ms

(15) VM instances are being
spawned: Every 20 secs one
instance is spawned.

P

VM Manager1[VMM] 1[VMM]

1[N]

1[A]

*[N]

Takes-role
R

Invariant Process
invariant

Exchange
invariant

Assumption AND
decomposit ion

PX [R]

Knowledge
dependency

OR
decomposit ion

ExtendsComponent

Fig. 5. Cloud case study with situations – IRM-SA graph

load” – it is an example of an assumption specified in an informal way in natu-
ral language. Obviously, this kind of assumption cannot be formally specified or
checked at execution time, but has to be included for design completeness and
consistency. Invariants (3) and (4) are further refined into lower level semantics
which specify the architecture of the load balancing mechanism. Specifically, the
Arbitrator component (which is a specialization of the Node component, indicat-
ing that it contributes both to the invariants it takes a role in and to its parent’s
invariants, and inherits the knowledge of its parent) implements the load bal-
ancing logic by acquiring a view over every node’s capacity and load (5), and
devising a migration plan (6). In order for the migration plan to be followed, it
has to be distributed to all nodes (7) and executed in every node separately (8).

In the second case (right alternative from top) invariant (1) is now decom-
posed into one assumption (10), and three invariants, (3), (4), and (9). Whereas
invariants (3) and (4), which describe the load balancing mechanism, are shared
between the two situations, invariant (9) is local to the second situation. In par-
ticular, invariant (9) specifies that virtual machine execution is controlled by the
VM Manager component (VMM) in a manner described by the sub-invariants
(12) and (15).

Here, three situations are distinguished, depending on the response time of
the application: Low RespTime, Normal RespTime, and High RespTime, each as-

318 L. Bulej et al.

sociated with a different assumption regarding the average response time over
some period in time (assumptions (11), (13) and (14) respectively). These as-
sumptions refer to a measurable system attribute and as such can be formally
verified and checked at execution time – indeed, all three assumptions are spec-
ified as SPL formulas, which can be evaluated at runtime using the SPL engine
in conjunction with DiSL, as exemplified in Listing 1. The idea here is to use the
concept of situations to specify a simple control logic: if the average response
time is less than 200 ms (11), the VMM needs to react by stopping virtual ma-
chines (12); if it is more than 400 ms (14), the VMM has to start new virtual
machines (15); otherwise (13), do nothing.

7.2 Transforming Design into Code

IRM-SA is tailored towards producing system designs for DEECo [11]. The leaves
of the IRM-SA graph can be process invariants, exchange invariants or assump-
tions. The first two types are mapped to the DEECo concepts of processes and
ensembles, respectively. For assumptions, we distinguish between the ones that
can be formally specified, observed and verified, and the informal ones, typically
specified in natural language. Whereas informal assumptions cannot be checked
at runtime (thus we optimistically assume that they hold during system execu-
tion), formal assumptions are checked at runtime by mapping them to runtime
monitors.

When the formal assumptions concern performance, they can be specified
using SPL. This is especially useful when the assumptions concern alternative
decompositions that model different adaptation strategies – the performance
properties described in SPL can be used to identify what situation the system
is currently in, and to react accordingly (e.g. invariants (11), (13) and (14)
on Figure 5). SPL can also specify performance invariants that are checked to
validate the design (e.g. invariant (1) on Figure 5). Finally, the presence of SPL
formulas in the IRM-SA graph gives an early (design time) indication of the
need for monitoring, whose potential overhead needs to be balanced against the
adaptation capabilities.

8 Summary

Besides dealing with many individual challenges inherent to the construction
of collective autonomic systems, the ASCENS project also examines the overall
lifecycle of such systems, considering where and how the proposed individual
solutions interact and complement each other. Chapter III.1 [24] describes this
perspective in general terms, introducing the concept of continuous development
lifecycle, where repeated design and runtime activities interact with each other
through deployment and feedback to manage system evolution.

In this chapter, we present the support for performance awareness in the
same lifecycle context – starting with the runtime cycle, where instrumentation
is used to monitor performance relevant system properties (Section 2), which are

Supporting Performance Awareness in Autonomous Ensembles 319

evaluated (Section 3) by the system implementation (Section 4). Both the design
and the runtime cycles may reflect on system performance through modeling
(Section 5), the design cycle also provides the concept of dynamic ensembles to
structure the implementation (Section 6), which can be architected by gradual
refinement from the initial system requirements (Section 7).

References

1. Aoki, M.: Control of large-scale dynamic systems by aggregation. IEEE Trans.
Autom. Control 13(3) (1968)

2. ASM (2014), http://asm.ow2.org/
3. Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics. Mathematical

Programming Study. North-Holland Publishing Company, Amsterdam (1984)
4. Bruni, R., Corradini, A., Gadducci, F., Hölzl, M., Lafuente, A.L., Vandin, A.,

Wirsing, M.: Reconciling White-Box and Black-Box Perspectives on Behavioral
Self-adaptation. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software
Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 163–184.
Springer, Heidelberg (2015)

5. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. Journal of
Applied Probability 31(1) (1994)

6. Bulej, L., Bureš, T., Horký, V., Keznikl, J., Tůma, P.: Performance awareness in
component systems: Vision paper. In: Proc. COMPSAC 2012 CORCS (2012)

7. Bulej, L., Bureš, T., Horký, V., Keznikl, J.: Adaptive deployment in ad-hoc sys-
tems using emergent component ensembles: Vision paper. In: Proceedings of the
4th ACM/SPEC International Conference on Performance Engineering (ICPE
’13), ACM Press, New York (2013)

8. Bulej, L., Bureš, T., Horký, V., Kotrč, J., Marek, L., Trojánek, T., Tůma, P.:
SPL: Unit testing performance. Tech. Rep. D3S-TR-2014-04, Dep. of Distributed
and Dependable Systems, Charles University in Prague (2014)

9. Bulej, L., Bureš, T., Keznikl, J., Koubková, A., Podzimek, A., Tůma, P.: Captur-
ing performance assumptions using stochastic performance logic. In: Proc. ICPE
2012, ACM Press, New York (2012)

10. Bureš, T., Horký, V., Kit, M., Marek, L., Tůma, P.: Towards performance-aware
engineering of autonomic component ensembles. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2014, Part I. LNCS, vol. 8802, pp. 131–146. Springer, Heidelberg
(2014)

11. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.:
DEECo – an ensemble-based component system. In: Proc. of the International
ACM SIGSOFT Symposium on Component Based Software Engineering (CBSE
’13), Vancouver, Canada, ACM, New York (2013)

12. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.: The
Invariant Refinement Method. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P.
(eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998,
pp. 405–428. Springer, Heidelberg (2015)

13. Cantrill, B.M., Shapiro, M.W., Leventhal, A.H.: Dynamic instrumentation of pro-
duction systems. In: Proceedings of the USENIX Annual Technical Conference
(ATC’04), Berkeley, CA, USA (2004)

14. Cardelli, L.: On process rate semantics. Theor. Comput. Sci. 391 (2008)

http://asm.ow2.org/

320 L. Bulej et al.

15. Chiba, S.: Load-time structural reflection in Java. In: Bertino, E. (ed.) ECOOP
2000. LNCS, vol. 1850, p. 313. Springer, Heidelberg (2000)

16. Ciocchetta, F., Hillston, J.: Bio-PEPA: A framework for the modelling and anal-
ysis of biological systems. Theor. Comput. Sci. 410(33–34) (2009)

17. Clark, M.: JUnitPerf (2014), http://www.clarkware.com/software/JUnitPerf
18. Hayden, R.A., Bradley, J.T.: A fluid analysis framework for a Markovian process

algebra. Theor. Comput. Sci. 411(22-24) (2010)
19. Herbst, N.R., Huber, N., Kounev, S., Amrehn, E.: Self-adaptive workload clas-

sification and forecasting for proactive resource provisioning. In: Proceedings
of the 4th ACM/SPEC International Conference on Performance Engineering
(ICPE ’13), ACM Press, New York (2013)

20. Hermanns, H., Rettelbach, M.: Syntax, semantics, equivalences, and axioms for
MTIPP. In: Proceedings of Process Algebra and Probabilistic Methods, Erlangen
(1994)

21. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of Quanti-
tative Evaluation of Systems, IEEE Computer Society Press, Los Alamitos (2005)

22. Hillston, J.: A compositional approach to performance modelling. Cambridge Uni-
versity Press, New York (1996)

23. Hölzl, M., Gabor, T.: Reasoning and Learning for Awareness and Adaptation. In:
Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998, pp. 249–290. Springer, Heidelberg
(2015)

24. Hölzl, M., Koch, N., Puviani, M., Wirsing, M., Zambonelli, F.: The Ensemble De-
velopment Life Cycle and Best Practices for Collective Autonomic Systems. In:
Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998, pp. 325–354. Springer, Heidelberg
(2015)

25. Horký, V., Haas, F., Kotrč, J., Lacina, M., Tůma, P.: Performance regression
unit testing: a case study. In: Balsamo, M.S., Knottenbelt, W.J., Marin, A. (eds.)
EPEW 2013. LNCS, vol. 8168, pp. 149–163. Springer, Heidelberg (2013)

26. Horký, V., Libič, P., Marek, L., Steinhauser, A., Tůma, P.: Utilizing performance
unit tests to increase performance awareness. In: Proc. ICPE 2015, ACM Press,
New York (2015)

27. Iacobelli, G., Tribastone, M.: Lumpability of fluid models with heterogeneous
agent types. In: DSN (2013)

28. Iwase, Y., Levin, S.A., Andreasen, V.: Aggregation in model ecosystems I: perfect
aggregation. Ecological Modelling 37 (1987)

29. JDOM Library (2013), http://www.jdom.org
30. Kalibera, T., Bulej, L., Tůma, P.: Benchmark precision and random initial state.

In: Proc. SPECTS 2005, pp. 853–862. SCS (2005)
31. Kalibera, T., Bulej, L., Tuma, P.: Automated detection of performance regres-

sions: the Mono experience. In: 13th IEEE International Symposium on Model-
ing, Analysis, and Simulation of Computer and Telecommunication Systems, Sep.
2005, IEEE Computer Society Press, Los Alamitos (2005)

32. Keznikl, J., Bures, T., Plasil, F., Gerostathopoulos, I., Hnetynka, P., Hoch, N.:
Design of ensemble-based component systems by invariant refinement. In: Proc.
of the 16th International ACM SIGSOFT Symposium on Component Based Soft-
ware Engineering (CBSE ’13), Vancouver, Canada, ACM, New York (2013)

33. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An overview of aspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072,
p. 327. Springer, Heidelberg (2001)

http://www.clarkware.com/software/JUnitPerf
http://www.jdom.org

Supporting Performance Awareness in Autonomous Ensembles 321

34. Kwiatkowski, M., Stark, I.: The continuous π-calculus: A process algebra for bio-
chemical modelling. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS
(LNBI), vol. 5307, pp. 103–122. Springer, Heidelberg (2008)

35. Marek, L., Zheng, Y., Ansaloni, D., Bulej, L., Sarimbekov, A., Binder, W., Tůma,
P.: Introduction to dynamic program analysis with DiSL. Science of Computer
Programming (2014)

36. Marek, L., Zhen, Y., Binder, W.: DiSL (2012),
http://d3s.mff.cuni.cz/software/disl

37. Marek, L., Zheng, Y., Ansaloni, D., Binder, W., Qi, Z., Tuma, P.: DiSL: An
extensible language for efficient and comprehensive dynamic program analysis.
In: Proc. 7th Workshop on Domain-Specific Aspect Languages (DSAL ’12), ACM
Press, New York (2012)

38. Mayer, P., Velasco, J., Klarl, A., Hennicker, R., Puviani, M., Tiezzi, F., Pugliese,
R., Keznikl, J., Bureš, T.: The Autonomic Cloud. In: Wirsing, M., Hölzl, M.,
Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Sys-
tems. LNCS, vol. 8998, pp. 495–512. Springer, Heidelberg (2015)

39. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle
River (1989)

40. Mytkowicz, T., Diwan, A., Hauswirth, M., Sweeney, P.F.: Producing wrong data
without doing anything obviously wrong. In: Proceedings of ASPLOS 2009, ACM
Press, New York (2009)

41. De Nicola, R., Latella, D., Lafuente, A.L., Loreti, M., Margheri, A., Massink, M.,
Morichetta, A., Pugliese, R., Tiezzi, F., Vandin, A.: The SCEL Language: Design,
Implementation, Verification. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P.
(eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998,
pp. 3–71. Springer, Heidelberg (2015)

42. Okino, M.S., Mavrovouniotis, M.L.: Simplification of mathematical models of
chemical reaction systems. Chemical Reviews 2(98) (1998)

43. Oracle: JVM Tool Interface (2006), http://docs.oracle.com/javase/6/docs/
platform/jvmti/jvmti.html

44. Perf4J (2014), http://perf4j.codehaus.org/
45. Perl, S.E., Weihl, W.E.: Performance assertion checking. SIGOPS Oper. Syst.

Rev. 27 (1993)
46. Reynolds, P., Killian, C., Wiener, J.L., Mogul, J.C., Shah, M.A., Vahdat, A.: Pip:

Detecting the Unexpected in Distributed Systems. In: NSDI’06. USENIX (2006)
47. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Proce-

dures. CRC Press, Boca Raton (2011)
48. SPL Tool (2013), http://d3s.mff.cuni.cz/software/spl
49. SystemTap (2014), http://sourceware.org/systemtap/
50. Tahchiev, P., Leme, F., Massol, V., Gregory, G.: JUnit in Action, 2nd edn. (2010)
51. Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process

algebra models. IEEE Transactions on Software Engineering 38(1) (2012)
52. Tschaikowski, M., Tribastone, M.: Exact fluid lumpability for Markovian process

algebra. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454,
pp. 380–394. Springer, Heidelberg (2012)

53. Tschaikowski, M., Tribastone, M.: Tackling continuous state-space explosion in a
Markovian process algebra. Theoretical Computer Science 517 (2014)

54. Tschaikowski, M., Tribastone, M.: A unified framework for differential aggrega-
tions in Markovian process algebra. Journal of Logical and Algebraic Methods in
Programming (2014)

http://d3s.mff.cuni.cz/software/disl
http://docs.oracle.com/javase/6/docs/platform/jvmti/jvmti.html
http://docs.oracle.com/javase/6/docs/platform/jvmti/jvmti.html
http://perf4j.codehaus.org/
http://d3s.mff.cuni.cz/software/spl
http://sourceware.org/systemtap/

322 L. Bulej et al.

55. Vetter, J.S., Worley, P.H.: Asserting Performance Expectations. In: Proc. 2002
ACM/IEEE Conf. on Supercomputing (Supercomputing ’02), IEEE Computer
Society Press, Los Alamitos (2002)

56. Welch, B.L.: The generalization of student’s problem when several different pop-
ulation variances are involved. Biometrika 34(1/2) (1947)

57. Wirsing, M., Hölzl, M.M., Tribastone, M., Zambonelli, F.: ASCENS: Engineering
Autonomic Service-Component Ensembles. In: Beckert, B., Damiani, F., de Boer,
F.S., Bonsangue, M.M. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 1–24. Springer,
Heidelberg (2013)

Part III:
Engineering Techniques for Collective

Autonomic Systems

In order to guide developers in the construction and maintenance of ensembles,
the ASCENS project provides engineering techniques and tools.

The first chapter describes a cornerstone of the ASCENS approach to devel-
oping ensembles: the Ensemble Development Life Cycle (EDLC). It is comprised
of two feedback loops for activities that take place during design time and during
run time of an ensemble. Since many ensembles are long-running systems that
are continuously improved and adapted over the course of their lifetime, a third
feedback loop is established by deployment and feedback of runtime data to the
design phase. These interlocking cycles serve as a framework for the whole de-
velopment process. Solutions to more specific development issues arising in the
individual activities of the design cycle are provided by a catalog of patterns
that capture best practices for designing ensembles.

The second chapter addresses issues that arise from the interaction of many
autonomous components in a system: self-organization and emergence. To build
reliable ensembles these phenomena have to be engineered such that they support
the goals of the system and do not lead to unintended consequences. The chapter
shows how a strategy of design that follows the problem organization helps to
address the issues presented by self-organization and emergence.

Chapters three and four represent two complementary methods for require-
ments engineering: the goal-oriented Autonomy Requirements Engineering ap-
proach that focuses mainly on high-level aspects of the system and its knowledge
requirements, and the Invariant Refinement Method that relies on invariants to
model both high-level system goals and low-level software obligations.

The fifth chapter describes tools that were developed as part of the ASCENS
project and that support the development process, for example a compiler for
the BIP language that allows the execution and verification of BIP models, the
jRESP runtime environment for the SCEL language or the FACPL policy IDE
and evaluation library.

M. Wirsing et al. (eds.): Collective Autonomic Systems, LNCS 8998, p. 323, 2015.
c© Springer International Publishing Switzerland 2015

Chapter III.1

The Ensemble Development Life Cycle
and Best Practices for Collective

Autonomic Systems�

Matthias Hölzl1, Nora Koch1, Mariachiara Puviani2, Martin Wirsing1, and
Franco Zambonelli2

1 Ludwig-Maximilians-Universität München, Germany
2 University of Modena and Reggio Emilia, Italy

Abstract. Collective autonomic systems are adaptive, open-ended, high-
ly parallel, interactive and distributed software systems. Their key fea-
tures are so-called self-* properties, such as self-awareness, self-adapta-
tion, self-expression, self-healing and self-management. We propose a
software development life cycle that helps developers to engineer adap-
tive behavior and to address the issues posed by the diversity of self-*
properties. The life cycle is characterized by three feedback loops, i.e.
based on verification at design time, based on monitoring and awareness
in the runtime, and the feedback provided by runtime data to the design
phases. We illustrate how the life cycle can be instantiated using specific
languages, methods and tools developed within the ASCENS project. In
addition, a pattern catalog for the development of collective autonomic
systems is presented to ease the engineering process.

Keywords: software development life cycle, patterns, ensembles, aware-
ness, adaptation, autonomic systems

1 Introduction

Software is increasingly used to model or control massively distributed and dy-
namic collective autonomic systems. These systems consist of a set of usually
open-ended, highly parallel and interactive components, which operate in highly
variable, even unpredictable, environments. Their key features are so-called self-*
properties, such as self-awareness, self-adaptation, self-expression, self-healing
and self-management.

Self-awareness is concerned with knowledge the system has about the sys-
tem’s behavior and the environment, which may be centrally held or distributed
in nature. However, in designing autonomic self-aware systems, it is useful to ex-
plicitly and separately consider the process of determining system’s actions as a
result of this knowledge. This process is called self-adaptation or self-expression.
� This work has been sponsored by the EU project ASCENS IP 257414 (FP7).

M. Wirsing et al. (eds.): Collective Autonomic Systems, LNCS 8998, pp. 325–354, 2015.
c© Springer International Publishing Switzerland 2015

326 M. Hölzl et al.

In particular, if the autonomic system is recovering from some failure, the term
self-healing is used. We distinguish also a self-management property as the abil-
ity collective autonomic systems have to manage local and global knowledge in
order to be aware of their own state and the state of the environment. The knowl-
edge is used for reasoning, learning and adapting at runtime to the system’s and
environmental changes.

One of the main challenges for software engineers is then to find reliable
methods and tools to build the software that implement those self-* features re-
quired by collective autonomic systems. The main aim of the ASCENS project3

is to tackle these issues using an engineering approach based on service com-
ponents and ensembles. Ensembles are dynamic groups of components that are
formed on demand to fulfill specific goals by taking into account the state of the
(changing) environment they are operating in. One distinguishing characteristic
of the approach is the use of formal methods to guarantee that the behavior of
the software complies to the specifications.

In this chapter we present the Ensemble Development Life Cycle (EDLC)
that covers the full design and runtime aspects of collective autonomic systems.
It is a conceptual framework that defines a set of phases and their interplay
mainly based on feedback loops as shown in Figure 1. The life cycle comprises a
“double-wheel” and two “arrows” between the wheels providing three different
feedback control loops: (1) at design time, (2) at runtime and (3) between the
two of them allowing for the system’s evolution. The design feedback control loop
enables continuous improvement of models and code due to changing require-
ments and results of verification or validation. The runtime feedback control loop
implements self-adaptation based on awareness about the system and its envi-
ronment. Finally, the evolution feedback control loop provides the mechanisms
to change architectural models and code on the basis of the runtime behavior of
the continuous evolving system.

We illustrate the EDLC using methods and tools, mostly developed within
the ASCENS project. Examples are SOTA [2] for requirements engineering of
awareness and adaptive issues, SCEL ([31], Chapter I.1 [54]) for modeling and
programming, SBIP ([9], Chapter I.3 [28]) for verification, SPL ([20], Chap-
ter II.5 [18]) for monitoring, Iliad (Chapter II.4 [42]) as awareness-engine, and
JDEECo [22] and JRESP (Chapter I.1 [54]) as runtime frameworks. These meth-
ods and tools are specifically designed to capture the self-* features of autonomic
systems.

When complex collective autonomic systems are developed, an important
aspect of the development process is the reusability of design choices, i.e. the
advantage to identify architectural schemes that can be reused at component
and ensemble level. We have defined a pattern catalog of interrelated patterns
–a so-called pattern language. Such a pattern language enables developers to
choose different design elements making the resulting models, implementation
and selected verification techniques more understandable. We illustrate the pat-

3 ASCENS website: http://www.ascens-ist.eu/

http://www.ascens-ist.eu/

The EDLC and Best Practices for Collective Autonomic Systems 327

Design Runtime

Deployment Deployment

Feedback

Fig. 1. Ensembles Development Life Cycle (EDLC)

tern catalog with a set of architectural patterns focusing mainly on the feedback
control loops they support.

The structure of the chapter is as follows: Section 2 provides an overview of
the EDLC. Section 3 focuses on the feedback control loops and their relationship
to the phases of the EDLC. Section 4 present a pattern language for ensemble
development and a set of pattern examples. Section 5 relates our work to other
relevant software engineering approaches, and Section 6 concludes with a sum-
mary and future challenges regarding the engineering of collective autonomic
systems.

2 Software Development Life Cycle for Ensembles

The development of collective autonomic systems goes beyond addressing the
classical phases of the software development life cycle like requirements elici-
tation, modeling, implementation and deployment. Engineering these complex
systems has also to tackle aspects such as self-* properties like self-awareness
and self-adaptation. Such properties have to be considered from the beginning
of the development process, i.e. during elicitation of the requirements. Therefore,
we need to capture how the system should be adapted and how the system or
environment should be monitored in order to make adaptation possible.

Models are usually built on top of the elicited requirements, mainly following
an iterative process, in which also validation and verification in early phases of
the development are highly recommended, in order to mitigate the impact of
design errors. A relevant issue is then the use of modeling and implementation
techniques for adaptive and awareness features. Our aim is to focus on these
distinguishing characteristics of collective autonomic systems along the whole
development cycle.

We propose a “double-wheel” life cycle to sketch the main aspects of the
engineering process as shown in Figure 1. The “left wheel” represents the design

328 M. Hölzl et al.

or offline phases and the second one represents the runtime or online phases.
Both wheels are connected by the transitions deployment and feedback.

The offline phases comprise requirements engineering, modeling and program-
ming, and verification and validation. We emphasize the relevance of mathemat-
ically founded approaches to validate and verify the properties of the collective
autonomic system and enable the prediction of the behavior of such complex
software. This closes the cycle providing feedback for checking the requirements
identified so far or improving the model or code.

The online phases (“right wheel”) comprise monitoring, awareness and self-
adaptation. They consist of observing the running system and the environment,
reasoning on such observations and using the results of the analysis for adapting
the system and providing feedback that can be used in the offline activities.

Transitions between online and offline phases can be performed as often as
needed throughout the system’s evolution feedback control loop, i.e. data ac-
quired during monitoring at runtime are fed back to the design cycle to provide
information for the system redesign, verification and redeployment.

The process defined by the EDLC can be refined by providing details on the
involved stakeholders, the methods and tools they will use in the development as
well as the input needed and the output produced in each stage. This will ease the
selection of the most appropriate tools for each collective autonomic system to
be build. Process modeling languages can be used to specify these details: Either
general workflow-oriented modeling languages such as UML activity diagrams4,
and BPMN5, or a Domain Specific Language (DSL) such as the OMG standard
Software and Systems Process Engineering Metamodel (SPEM)6 and the Multi-
View Process Modeling Language (MV-PML) developed by NASA [13].

Figure 2 shows an example of a process model specified in SPEM for the
requirements engineering steps of the e-Mobility scenario described in [24]. It
illustrates the relationships between stakeholders like the requirements engineer,
actions such as the definition of adaptation goals and process inputs like in-
terviews and results such as the SOTA model and the IRM model. Aspects of
the runtime phases of the development process of this scenario are shown in
Fig. 3 focusing on the monitoring and adaptation activities that use JDEECo
components and enables feedback to the phases of the design “wheel”.

3 Engineering Feedback Control Loops

Feedback control loops are the heart of any collective autonomic system provid-
ing the generic mechanism for adaptation and enabling the creation of flexible
runtime solutions by monitoring the subsystem and applying corrections in or-

4 UML website: http://www.uml.org/
5 BPMN website: http://www.omg.org/spec/BPMN/2.0/
6 SPEM website: http://www.omg.org/spec/SPEM/2.0/

http://www.uml.org/
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/SPEM/2.0/

The EDLC and Best Practices for Collective Autonomic Systems 329

definition of
interaction invariants

modeling of monitoring
and adaptation requirements

(adaptation loops)

Requirements
engineer

definition of
adaptation goals

SOTA model

Adaptation
patterns

Interviews

IRM model

«mandatory»
«output»

«performs»

«performs»

«mandatory»
«input»

«mandatory»
«input»

«performs»

«mandatory»
«output»

«mandatory»
«output»

«optional»
«input»

«mandatory»
«input»

Fig. 2. E-Mobility Scenario Development Process: Requirements Engineering Aspects

der to approach the goals. Moreover they allow a system to become self-aware
with respect to the quality of its operations, and self-healing if there are any
problems. This is achieved by approaches like MAPE-K [30] that collect appro-
priate runtime data and analyzing it, and by planning and executing adaptation
strategies.

Engineering approaches for building collective autonomic systems need to
consider feedback control loops from the beginning on and all over the devel-
opment life cycle. This includes requirements that make such loops necessary,
the influence loops have on architecture, deployment aspects to be taken into
account, additional features to be supported as monitoring and awareness of the
system’s and environmental behavior, and implementation of adaptation mech-
anisms.

These engineering features are considered by the EDLC presented in the
previous section, which itself is composed of three feedback loops: at design time,
at runtime, and from runtime back to improve the design with the associated
redeployment of the evolving software. The development of collective autonomic
system offers several engineering challenges that are addressed by the methods,
techniques and tools that have been developed in the ASCENS project. The
remainder of this section focuses on the feedback loops and provides examples of
ASCENS approaches that can be used in the different phases of the development
life cycle within each feedback loop.

330 M. Hölzl et al.

Fig. 3. E-Mobility Scenario Development Process: Runtime Aspects

3.1 Design Cycle

The “design wheel” comprises three phases: requirements engineering, modeling
and programming, and verification and validation. At first glance it resembles
a traditional software development life cycle. However, an autonomic ensemble,
has to be aware of other autonomic ensembles and take into account its envi-
ronment. It has to provide and consume knowledge, manage policies specified in
form of goals, rules and/or constraints and infer lower-level actions [46]. These
features of collective autonomic systems have to be addressed in the stages prior
to programming, too, i.e. requirements engineering and modeling. In particu-
lar, goal-oriented approaches are in these stages promising techniques used for
requirements elicitation and specification. Particularly challenging are also the
validation and verification of large-scale autonomic systems as it will be harder
to anticipate their environment.

Requirements Engineering. Traditionally, software engineering divides re-
quirements in two categories: functional requirements (what the system should
do) and non-functional requirements (how the system stands for achieving its
functional requirements in terms of performance, quality of service, etc.). In the
area of adaptive systems, and more in general of open-ended systems, both func-
tional and non-functional requirements are better expressed in terms of “goals”
[53]. A goal, in most general terms, represents a desirable state of the affairs that
a software component or software system, aims to achieve. In fact, a self-adaptive
system/component should be engineered not simply to “achieve” a functionality
or state of the affairs, but rather to “strive to achieve” such functionality per-

The EDLC and Best Practices for Collective Autonomic Systems 331

haps in several steps, i.e., be able to take self-adaptive decisions and actions so
as to preserve its capability of achieving despite contingencies.

Within the ASCENS project a couple of different goal-oriented approaches
were proposed to elicitate and specify the requirements of collective autonomic
systems, i.e. State of the Affairs (SOTA), General Ensemble Model (GEM),
Invariant Refinement Method (IRM) and Autonomy Requirements Engineering
(ARE) that we briefly sketch below.

The SOTA approach [2] proposes an extension of existing goal-oriented re-
quirements engineering approach that integrates elements of dynamic systems
modeling. SOTA models the entities of a self-adaptive system as if they were
immersed in n-dimensional space S, each of the n dimensions of such space rep-
resenting a specific aspect of the current situation of an entity/ensemble and of
its operational environment. As the entity executes, its position in S changes
either due to its specific actions or because of the dynamics of environment.
Thus, we can generally see this evolution of the system as a movement in S.
For example, in the ASCENS e-mobility scenario described in [24], the space S
includes the spatial dimensions related to the street map, but also dimensions
related to the current traffic conditions, the battery conditions, etc. Once the
SOTA space is defined, a goal is specified in SOTA; for instance, a goal for a ve-
hicle could imply reaching a position in the SOTA space that, for the dimensions
representing the spatial location, trivially represents the final destination and for
the dimension representing the battery condition may represent a charging level
ensuring safe return.

Along these lines, the activity of requirements engineering for self-adaptive
systems in SOTA implies: (i) identifying the dimensions of the SOTA space,
which means modeling the relevant information that a system/entity has to
collect to become aware of its location in such space, a necessary condition
to recognize whether it is correctly behaving and adapt its actions whenever
necessary; (ii) identifying the set of goals for each entity and for the system as a
whole, which also implies identifying when specific goals get activated and any
possible constraint on the trajectory to be followed while trying to achieve such
goals.

The General Ensemble Model (Gem) is a mathematical formalization of the
SOTA approach that gives precise semantics to SOTA models and provides ways
to specify model properties in various logics [44], such as the higher-order logic of
the PVS system [55] or various temporal logics. The precise semantics that Gem

provides for SOTA models enables developers to analyze requirements models
using mathematical techniques; Chapter II.1 [16] in this volume shows how a
SOTA/Gem model may be used to derive an adaptation strategy for a swarm
of robots operating in an adversarial environment by applying concepts from
(differential and evolutionary) game theory.

The Autonomy Requirements Engineering (ARE) (described in detail in
Chapter III.3 [59]) of this volume uses a goal-oriented approach, too, along
with a special model for generic autonomy requirements (GAR). ARE starts
with the creation of a goals model that represents system objectives and their

332 M. Hölzl et al.

inter-relationships. In the next phase, the GAR model is used to refine each
one of the system goals with elicited environmental constraints to come up with
self-* objectives providing autonomy requirements for achieving these goals. The
autonomy requirements are derived in the form of goal-supportive and alterna-
tive self-* objectives, along with required capabilities and quality characteristics.
Finally, these autonomy requirements can be specified with KnowLang, a frame-
work dedicated to knowledge representation for self-adaptive systems.

For the refinement of the high-level strategic goals defined in SOTA to the
architecture of the collective autonomic system in terms of low-level components
and ensemble, we can use the Invariant Refinement Method (IRM) [47] (see also
Chapter III.4 [23]of this volume). The main idea of IRM is to capture the high-
level goals and requirements in terms of invariants, which describe the desired
state of the system-to-be at every time instant. Invariants are to be maintained
by the coordination of the different system components. As a design decision,
top-level invariants are iteratively decomposed into more concrete sub-invariants,
forming a decomposition graph with traceability of design decisions.

The IRM approach has been used e.g. to model the functional and adap-
tive requirements of the e-Mobility scenario, capturing the necessity to keep the
vehicle’s plan updated and to check whether the current plan remains feasible
with respect to measured battery level. The identified leaf invariants are eas-
ily mappable to component activities, which are further formally specified by
(SCEL) [32] or SCPL [21] (see Sec. 3.1).

The requirements engineering approaches SOTA, GEM, ARE and IRM com-
plement each other and are useful to understand and model the functional and
adaptation requirements, and to check the correctness of such specifications (as
described in [1]). However, when a designer considers the actual design of col-
lective autonomic system, it is necessary to identify which architectural schemes
need to be chosen for the individual components and the ensembles. In the next
section we give an overview of the taxonomy of architectural patterns we defined
[26] for adaptive components and ensemble.

Modeling and Programming. The Service Component Ensemble Language
(SCEL) [32,31] (see also Chapter I.1 [54] of this volume) has been designed to
deal with adaptation and move toward the actual implementation of the self-
* properties identified during the requirements engineering phase, which have
been specified e.g. using the IRM approach. It brings together programming ab-
stractions to directly address aggregations (how different components interact to
form ensembles and systems), behaviors (how components progress) and knowl-
edge manipulation according to specific policies. SCEL specifications consist of
cooperating components which, are equipped with an interface, a knowledge
repository, a set of policies, and a process.

The language is equipped with an operational semantics that permits verifi-
cation of formal properties of systems. Moreover, a SCEL program can rely on
separate reasoning components that can be invoked when decisions have to be
taken.

The EDLC and Best Practices for Collective Autonomic Systems 333

To move toward implementation, jRESP7, a JAVA runtime environment has
been developed that provides an API that permits using in JAVA programs
the SCEL’s linguistic constructs for controlling the computation and interac-
tion of autonomic components, and for defining the architecture of systems and
ensembles. Its main objective is to be a faithful implementation of the SCEL
programming abstractions, suitable for rapid prototyping and experimentation
with the SCEL paradigm. The large use of design patterns greatly simplifies
the integration of new features. It is worth noticing that the implementation of
jRESP fully relies on the SCEL’s formal semantics. This close correspondence
enhances confidence in the behavior of the jRESP implementation of SCEL pro-
grams, once the latter have been analysed through formal methods made possible
by the formal operational semantics. For more details on SCEL and jRESP the
reader is referred to Chapter I.1 [54] of this volume.

As a complement to SCEL, within the ASCENS context an approach called
Soft Constraint Logic Programming (SCPL) (see Chapter II.2 [39]) has been
used and applied to an e-Mobility travel optimization scenario. Besides optimiz-
ing trips of single users, so-called local problems, the e-Mobility case study aims
to solve global problems involving large ensembles of vehicles. To tackle these
a coordination of declarative and procedural knowledge is used and a decom-
position of the global problem into local problems, which are solved by SCLP
implementations and whose parameters can be iteratively determined by a pro-
grammable orchestration.

Complementary approaches to SCEL, like Helena [49] and DEECo, have been
developed for the specification of collective autonomic systems as well within
the scope of ASCENS. The Helena approach proposes a role-based method for
modeling collaborations using a UML-like notation and is founded on a rigorous
formal semantics. Helena focuses on the description of the behavior of each role
as well as on the behavior on the ensemble level.

DEECo (Dependable Emergent Ensembles of Components) component model
[48,22] can be used to provide us with the relevant software engineering abstrac-
tions that ease the programmers’ tasks. A component in DEECo, features an
execution model based on the MAPE-K [30] autonomic loop. In compliance
with SCEL, it consists of (i) well-defined knowledge, being a set of knowledge
items and (ii) processes that are executed periodically in a soft real-time manner.
The component concept is complemented by the first-class ensemble concept. An
ensemble stands as the only communication mechanism between DEECo compo-
nents. It specifies a membership condition, according to which components are
evaluated for participation. The evaluation is based on the components’ knowl-
edge (their attributes in SCEL). An ensemble also specifies what is to be commu-
nicated between the participants, that is, the appropriate knowledge exchange
function. Similar to component processes, ensembles are invoked periodically in
a soft realtime manner.

In order to bring the above abstractions to practical use we have used jDEECo
– our reification of DEECo component model in Java. In jDEECo, components

7 jRESP website: http://code.google.com/p/jresp/

http://code.google.com/p/jresp/

334 M. Hölzl et al.

are intuitively represented as annotated Java classes, where component knowl-
edge is mapped to class fields and processes to class methods. Similarly, ap-
propriately annotated classes represent DEECo ensembles. Once the necessary
components and ensembles are coded, they are deployed in jDEECo runtime
framework, which takes care of process and ensemble scheduling, as well as low-
level distributed knowledge manipulation.

Verification and Validation. When dealing with complex collective auto-
nomic systems one needs to face the problem of the development and of the
validation of the models used for planning and for execution control. These sys-
tems are deployed for increasingly complex tasks; and it becomes more and more
important to prove as early as possible in the development life cycle that they
are safe, dependable, and correct.

Analysis techniques for collective autonomic systems that capture essential
aspects such as adaptive behavior, interactions between the components, and
changing environments can only succeed if they exploit as much as possible
the specific structure of the considered systems (e.g. large replication of the
same component, hierarchical compositions). In ASCENS (see Chapter I.3 [28])
we consider both, qualitative analyses targeting boolean properties stating that
the system behaves without any flaw, and quantitative analyses that evaluate
expected performances according to predefined metrics (energy/memory con-
sumption, average/maximum time to accomplish a task, probability to fulfil a
goal, etc.). We also address security specific issues such as control policies and
information flow.

Our approach for dealing with qualitative properties is to use so called formal
verification techniques, which provide a mathematical proof, e.g. model-checking
and theorem prover. Formal verification is an attractive alternative to traditional
methods of testing and simulation that can be used to provide correctness guar-
antees. Hereby, we mean not just the traditional notion of program verification,
where the correctness of code is at question. We more broadly focus on design
verification, where an abstract model of a system is checked for desired behav-
ioral properties. Finding a bug in a design is more cost-effective than finding the
manifestation of the design flow in the code.

Regarding quantitative properties and system performance, the environment
in which the system is immersed plays an important role. Therefore the envi-
ronment behavior has to be modeled as well providing additional information
on possible scenarios the system may present. In ASCENS we used stochastic
models and frameworks for the evaluation of quantitative properties related to
the case studies of the project.

Considering security aspects, the focus was on confidentiality issues. We de-
velop a model-driven framework for information flow analysis, named secBIP
[7], which is suited for checking non-interference, a system property stating that
information about higher security levels cannot be inferred from lower security
levels. This component-based framework allows for the construction of complex

The EDLC and Best Practices for Collective Autonomic Systems 335

systems by composition of atomic components with communication and coordi-
nation operators.

Several tools have been implemented within ASCENS to support these ver-
ification and validation methods, some of them as extension of well known ex-
isting tools. We mention here the most relevant: D-Finder [10,11], SMC-BIP [6],
SBIP [9] and GMC.

The first three are based on BIP, a formal framework for building heteroge-
neous and complex component-based systems [8]. Notably, thanks to the formal
operational semantics of the SCEL language, BIP models can be obtained from
static SCEL descriptions (i.e. involving only bounded creation/deletion of com-
ponents and processes) by exploring a set of transformations rules. D-Finder is a
tool used for the compositional verification of safety properties, that is, it aims at
producing proofs stating that ensemble of components cannot reach a predefined
set of undesirable states. The method developed combines structural analysis for
component behaviors with structural analysis of connectors. SMC-BIP is a tool
to perform quantitative analysis, using formally-defined models from which it
explores the reachable states. Its main characteristic is to provide answers to
quantitative questions based on partial state-space coverage. It also evaluates
confidence in such results based on stochastic models. SBIP is an extension of
BIP that allows stochastic modeling and statistical verification. On one hand, it
relies on BIP expressiveness to handle heterogeneous and complex component-
based systems. On the other hand it uses statistical model checking techniques
to perform quantitative verification targeting non-functional properties. GMC
is a model checker that verifies whether properties of service components are
satisfied by their implementations in the C or C++ language, i.e. that in any
thread interleaving, no deadlock appears and no assertion state in the code is
violated. It supports verification of multi-threaded programs.

3.2 Runtime Cycle

The “runtime wheel” comprises the online activities the system performs au-
tonomically: monitoring, awareness and adaptation. This cycle is characteristic
for the life cycle of collective autonomic systems and a major difference from
traditional software which has a much more static runtime behavior.

The runtime collecting of data about the system, its components or its en-
vironment is called monitoring. Monitoring is an essential feature of adaptive
systems. While sometimes systems react directly to the data obtained by the
monitor, it is more common for ensembles to pass this data to an awareness
mechanism, i.e., a subsystem that contains reasoners, planners or learning mech-
anisms, that allow an autonomic system to come up with responses to the chal-
lenges posed by its environment. Adaptation, in this context, is then the act
of implementing the decisions made by the awareness mechanism, e.g., by per-
forming different actions done before or by reconfiguring the system structure.
To manage their collective behavior, self-aware components in an ensemble may
need to communicate with each other. Therefore the phases of the runtime cy-
cle are not restricted to actions taken by a single component, they may also

336 M. Hölzl et al.

involve the joint activities of multiple components. For example, when a robot
in a swarm becomes aware of a danger to the swarm it should communicate the
presence of the danger to other robots in the swarm.

Monitoring. Monitoring is the first step in the runtime cycle of any adaptive
system: without information about the state of the system or environment, any
change in behavior can only be a random activity and not a purposeful action of
the system. Individual components, subsystems of a collective autonomic system,
the whole system or parts of the environment may all be monitored.

In the double-wheel life cycle, monitoring has a dual role. The primary ob-
jective is usually to provide information about the current state of the system
and its environment to the awareness mechanism, which incorporates this in-
formation into the decision making process. A secondary objective is to provide
developers feedback about properties of the environment so that they can check
whether the behavior of the awareness mechanism is adequate and achieves the
desired goals.

One of the technical challenges faced by monitoring systems is dynamic cov-
erage configuration: The awareness mechanism may require different information
at different points. Monitoring should accommodate these requests for informa-
tion dynamically, rather than relying only on a statically configured description
of what has to be monitored. It is also important to provide monitoring cost
awareness, to make it possible to reason on the trade off between the cost of
monitoring and the awareness benefit provided by the data. Often high moni-
toring coverage is necessary to accommodate the requirements of the awareness
mechanism, but sometimes this may lead to monitoring costs that are higher
than the benefits gained by the additional situational awareness.

To support easy access to monitoring performance information in ASCENS,
we have developed SPL [20], a formalism that makes it possible to express con-
ditions on performance-related observations in a compact manner. To collect
the monitoring information from executing components, we use dynamic instru-
mentation in DiSL [50]. In [19] and the Chapter II.5 [18] of this volume we
explain how the two technologies interact in the context of a performance-aware
component system.

Awareness. The knowledge a collective autonomic system has on its behavior
and environment as well as the reasoning mechanisms that can be employed by
the system at runtime comprise its awareness. We divide the notion of awareness
along four dimensions: scope (which parts of the system and environment are
represented by the awareness mechanism), breadth (which properties are part of
the awareness model), depth (which kinds of questions the awareness mechanism
can answer) and quality (how well the conclusions the ensemble draws correspond
to reality). Chapter II.4 [42] contains a more detailed discussion of awareness
mechanisms.

To enable problem solving and adaptation in complex domains, deep aware-
ness mechanisms may be required. Deep models and reasoners can not only an-

The EDLC and Best Practices for Collective Autonomic Systems 337

swer questions about the immediately observable state of the system, they also
model underlying principles such as causality or physical properties so that they
may, e.g., infer consequences of actions or diagnose likely causes of unexpected
events.

Designers cannot provide a complete specification of the conditions in which
an autonomic system has to operate. To achieve the desired performance and to
allow flexible reactions to contingencies not foreseen at design-time, the aware-
ness mechanism may need to learn how to adapt its internal models to the
circumstances encountered at runtime.

The Poem language [41] enables developers to specify deep logical and sto-
chastic domain models that describe the expected behavior of the system’s en-
vironment. System behaviors are specified as partial programs, i.e., programs in
which certain operations are left as non-deterministic choices for the runtime
system. A strategy for resolving non-determinism is called a completion. Various
techniques can be used to build completions: If precise models of the environ-
ment are available for certain situations, completions may be inferred logically
or statistically and planning techniques can be used to find a long-term strategy.
In cases where models cannot be provided, reinforcement learning techniques
can instead be applied, and the ensemble can behave in a more reactive manner.

The Iliad implementation of Poem includes facilities for full first-order in-
ference and special-purpose reasoners for, e.g., temporal and spatial reasoning;
their results can be combined with planning methods to compute long-term
strategies if enough information about the ensemble’s operating conditions is
available. In addition, it can compute completions of programs using hierarchical-
reinforcement-learning techniques. Iliad is fully integrated as knowledge reposi-
tory and reasoner in jRESP and can therefore be used as awareness engine for
SCEL programs.

Self-adaptation. Once the awareness mechanism of a component or ensemble
has come to the conclusion that a malfunction, contingency, or simply a per-
formance issue exists, it has to decide how to respond in order to resolve the
situation.

In ASCENS we call this response an adaptation action, and we distinguish
between two main classes of adaptation actions:

– Weak-adaptation, which implies modifying some of the control parameters
of a component/ensemble, and possibly adding new functions/behaviors or
modifying some of the existing ones.

– Strong-adaptation, which implies modifying the very structure of the com-
ponent or ensemble, and in particular modifying the architecture by which
adaptive feedback loops are organized around the component or ensemble.

Weak adaptations are often cheaper and simpler than strong adaptations and still
sufficient to respond adequately to changes in its environment: If the path of a
rescue robot is blocked it can simply try to take another route to its target; there
is no need for the robot to change its configuration to respond to this scenario.

338 M. Hölzl et al.

However, for more difficult adaptations, the whole structure of an ensemble may
need to be reconfigured: If a swarm of independently operating rescue robots
has to move victims that are too heavy for a single robot to carry, several robots
may have to form a new sub-ensemble that coordinates their actions using a
centralized autonomic manager. The adaptation patterns presented in Sect. 4
support these kinds of strong adaptation.

To the best of our knowledge, ASCENS is the first approach in which both
weak and strong forms of self-adaptation are put at work in a unique coherent
framework. For white-box and black-box adaptation mechanisms for collective
autonomic systems the reader is referred to Chapter II.1 [16] of this volume.

3.3 Evolution Control Loop

The two cycles of EDLC are complemented by transitions from design cycle
to runtime cycle and vice versa supporting the long term system’s evolution.
The collective autonomic system evolution consists in monitoring data at run-
time, the fed back to the design cycle to provided basis for system redesign and
redeployment. These transitions thus correspond to deployment and feedback
activities.

Deployment. The transition from design to runtime deploys a collective auto-
nomic system preparing it for its execution. This involves installing, configuring
and launching the application. The deployment may also involve executable code
generation and compilation/linking. In ASCENS, the deployment is addressed
by service-component runtime frameworks like JDEECo [22] and JRESP. These
frameworks allow for the distributed execution of a service component applica-
tion and provide their specific means of deployment.

Feedback. The transition from runtime to design provides feedback based on
data collected by the monitoring and learning process of the running application.
The feedback is used for improving the specification, code or a deeper analysis
of the requirements. It connects the online with the offline development process.
This connection is made possible by employing design methods that keep the
traceability of design decisions to code artefacts and knowledge – e.g. the Invari-
ant Refinement Method (IRM) [47], which has been specifically developed for
hierarchical design of a service component application. When used in conjunc-
tion with IRM, monitoring (i) observes the real functional and non-functional
properties of components and situation in components’ environment, and (ii)
provides observed data. At design time these observed data can be compared
to assumptions and conclusions captured by IRM; comparison is currently per-
formed manually but we envision automated support. If a contradiction is de-
tected, IRM is used to guide a developer to a component or ensemble which
has to be adjusted or extended, e.g. to account for an unexpected situation en-
countered at runtime. For further details on IRM, see Chapter III.4 [23] of this
volume.

The EDLC and Best Practices for Collective Autonomic Systems 339

4 A Pattern Language for Ensemble Development

In order to design and develop collective autonomic systems, we have defined
a catalog of patterns for this kind of systems [56,43]. The importance of the
catalog and of patterns in general start from the idea that “software patterns are
reusable solutions to recurring design problems and are considered a mainstream
of software reuse practice” [52]. So software adaptation can indeed benefit from
reuse in a similar way that designing software architectures has benefited from
the reuse of software design patterns [37].

Presenting engineering concepts in terms of interrelated patterns enables de-
velopers to explore the relationship between different design elements and simpli-
fies an understanding of the trade-offs involved in different modeling, verification
and implementation choices. To support the full development life cycle and to be
usable for developers who are not already expert in the EDLC and the various
technologies developed by ASCENS we have included patterns at different levels
of abstraction so that the pattern catalog [40] can also serve as introduction to
certain development techniques.

4.1 Pattern Categories

We started identifying adaptation patterns, one of the undoubtedly most impor-
tant and unique design aspects of ensembles. There are, however, many other
parts of the ensemble development process where interrelated design challenges
and implementation choices can be clarified and made accessible via a catalog
of interrelated patterns, which is often called a pattern language.

Currently our pattern catalog contains patterns in the following areas:

Conceptual Patterns: High-level descriptions of certain techniques or con-
cepts that can serve as introduction to topics with which developers may
not be familiar. An example is Awareness Mechanism that describes the
general concept of those mechanisms to ensure awareness of the system’s
and environmental behavior.

Architectural Patterns: Patterns that describe the architecture of a system
or a component. An example for a pattern in this category is Distributed
Awareness-based Behavior . These patterns often serve as entry points into
the catalog for developers trying to solve an architectural problem.

Adaptation Patterns: Patterns concerned with adaptation and the control-
loop structure of ensembles. Examples for patterns in this area are Reactive
Stigmergy Service Components Ensemble Pattern and Centralised AM Ser-
vice Components Ensemble Pattern described in detail in section 4.3.

Awareness Patterns: Patterns for developing and using awareness mecha-
nisms. An example is Action-calculus Reasoning, a pattern that describes
the trade-offs in using a logical formalism based on an action calculus for
modeling and reasoning about the system’s domain.

Coordination Patterns: Patterns that are concerned with coordination as-
pects of an ensemble. An example for a pattern in this category is Tuple-space
Based Coordination.

340 M. Hölzl et al.

Cooperation Patterns: Patterns that describe mechanisms for cooperation
between agents in an ensemble. For example the Auction mechanism belongs
to this category.

Implementation Patterns: Patterns that are mainly concerned with imple-
mentation or low-level design aspects. An example is the Monkey Patching
(anti)-pattern which deals with a certain method of dynamic code update.

Knowledge Patterns: Patterns that addresses issues arising with the devel-
opment of knowledge bases and knowledge-based systems. Examples for pat-
terns in this category are Build Small Ontology or Reuse Large Ontology.

Navigation Patterns: Patterns that address navigation or position keeping in
physical space, for example Build Chain to Target.

Self-expression Patterns: Patterns that are concerned with self-expression
of ensembles, and goal-directed or utility-maximizing behaviors. A simple
example is Decompose Goal into Subgoals.

These categories are neither exhaustive nor disjoint. Patterns such as Cooperate
to Reach Goal belong into several categories (cooperation patterns and self-
expression patterns), and it is easy to think of patterns which do not fit in any of
the categories mentioned above. Therefore, the classification of patterns is done
via keywords, which allow m-n relationships between patterns and categories and
make it easy to introduce new categories. For each pattern that is concerned with
particular phases of the EDLC, these phases are also represented as keywords
for the pattern.

As the Monkey Patching example shows, the catalog also includes some pat-
terns that describe widely used but potentially dangerous techniques, so-called
anti-patterns. We think it is important to also include anti-patterns since there
are often good reasons why an anti-pattern has become widely used. In many
cases anti-patterns are good solutions for specialized problems which are reg-
ularly applied in situations in which they are unnecessary or in which better
solutions exist (this is the case for the Monkey Patching pattern). Additionally,
developers might not even know that a certain practice is considered an anti-
pattern, and they might not be aware of superior alternatives, or of ways to
mitigate the downside of using the anti-pattern.

When exploring the pattern catalog [40], the first two categories of patterns
(conceptual patterns and architectural patterns) serve as good entry points into
the pattern system; patterns in these categories provide a coherent overview of a
general topic, and the tree of references starting from patterns in these categories
transitively spans the whole pattern catalog.

4.2 Pattern Template

In the following paragraphs we describe the template that we use for our pattern
language. Since the patterns in our pattern system range from conceptional
patterns to implementation patterns, we include a relatively large number of
fields, but we allow several of them to be left empty. In the following description,
mandatory fields are marked with an asterisk. Except for conceptual patterns,

The EDLC and Best Practices for Collective Autonomic Systems 341

each pattern should either contain a context field or the two fields motivation
and applicability, but it should not contain all three.

Name:∗ A descriptive name for the pattern, e.g., Algorithmic Planning.
Specializes: A pattern may inherit properties from another pattern but modify

certain fields. In this case the parent pattern is included in the specializes
field and the differences are described in the respective fields.

Classification:∗ The set of keywords that describes, e.g., to which phases of
the EDLC the pattern applies.

Aliases: Other names by which this pattern is known.
Intent:∗ The purpose for this pattern, what does the pattern accomplish?
Summary: For patterns which have a very long description, a summary that

addresses the most important features may be given in this field.
Context:∗ The design problem or runtime conditions to which this pattern is

applicable. This field is mandatory for adaptation patterns; for other patterns
the context is often split into motivation and applicability.

Motivation:∗ The reasons why this pattern is necessary.
Applicability:∗ Describes for which systems the pattern is applicable, and

which influences might lead to other patterns being preferable.
Diagram/Structure: If applicable a diagram that describes the pattern; e.g.,

adaptation patterns contain a diagram illustrating the components that are
involved in the feedback loops.

Description/Behavior:∗ A description of the pattern.
Formal Behavior: If applicable a more formal description of the pattern’s be-

havior can be given in this section. For example, all adaptation patterns
include a specification using the State-of-the-Affairs (SOTA) [2] notation of
their behavior, which comprises the description of the pattern’s goals, con-
straints and utilities.

Consequences: Consequences and trade-offs for using the patterns. If this sec-
tion is present it often summarizes trade-offs already mentioned in the de-
scription field.

Implementation: Implementation techniques and practical tips for realizing
this pattern. This section also includes references to ASCENS tools that are
helpful for implementing the pattern.

Variants: If a pattern has simple variations which are not significant enough
to justify their own patterns they are mentioned here.

Related Patterns: Related patterns, e.g., patterns that specialize the current
pattern, alternatives for the current pattern or patterns that are useful in
the implementation of the current pattern.

Applications: References to applications that apply self-adaptation patterns
in different real life scenarios. This is very important because the catalog
has to be based on experiences and/or on some solid formal ground, and on
a solid organization.

342 M. Hölzl et al.

4.3 Pattern Examples

The pattern language described above provides a flexible structure in which
many kinds of patterns can be conveniently expressed while still retaining enough
commonality to build a coherent system of patterns.

To give a flavor of the patterns we present an excerpt of five patterns of
the ASCENS pattern catalog. Due to space restrictions we omitted the section
applications for some of the examples. The complete catalog is available on
the web [40]. For a detailed description as long as the taxonomy table of the
adaptation patterns the reader is referred to [56].

Pattern: Reactive Stigmergy Service Components Ensemble Pattern.

– Name: Reactive Stigmergy Service Components Ensemble.
– Classification: service-components-ensemble, edlc-requirements-engineering
– Intent: There are a large amount of components that are not able to directly

interact one to each other. The components simply react to the environment
and sense the environment changes.

– Context: This pattern has to be adopted when:
• there are a large amount of components acting together;
• the components need to be simple components, without having a lot of

knowledge;
• the environment is frequently changing;
• the components are not able to directly communicate one with the other.

– Structure: See Figure 4.

Fig. 4. Reactive Stigmergy Service Components Ensemble

– Behavior: This pattern has not a direct feedback loop. Each single compo-
nent acts like a bio-inspired component (e.g. an ant). To satisfy its simple
goal, the Service Component (SC) acts in the environment that senses with
its “sensors” and reacts to the changes in it with its “effectors”. The differ-
ent components are not able to communicate one with the other, but are
able to propagate information (their actions) in the environment. Than they
are able to sense the environment changes (other components reactions) and
adapt their behavior due to these changes.

The EDLC and Best Practices for Collective Autonomic Systems 343

– SOTA description (Formal Behavior):

• Goals : GSC1 , GSC2 , . . . , GSCn

• Utilities : USC1 = USC2 = . . . = USCn

• Explanation: In the pattern each Service Component has a separated
goal, that is explicit only at the component level.
Regarding the utilities of the ensemble, they are the same of each SCs
that have to be shared by the components.

– Consequences: If the component is a proactive one, its behavior is defined
inside it with its internal goal. The behavior of the whole system cannot be
a priori defined. It emerges from the collective behavior of the ensemble. The
components do not require a large amount of knowledge. The reaction of each
component is quick and does not need other managers because adaptation
is propagated via environment. The interaction model is an entirely indirect
one.

– Related Patterns: Proactive Service Component.

Pattern: Centralised AM Service Components Ensemble Pattern.

– Name: Centralised Autonomic Manager (AM) Service Components Ensem-
ble.

– Classification: service-components-ensemble, edlc-requirements-engineering
– Intent: A Service Component necessitates an external feedback loop to

adapt. All the components need to share knowledge and the same adap-
tation logic, so they are managed by the same AM.

– Context: This patterns has to be adopted when:

• the components are simple and an AM is necessary to manage adapta-
tion;

• a direct communication between components is necessary;
• a centralised feedback loop is more suitable because a single AM has a

global vision on the system;
• there are few components composing the system.

– Structure: See Figure 5.
– Behavior: This pattern is designed around an unique feedback loop. All

the components are managed by a unique AM that “control” all the compo-
nents behavior and, sharing knowledge about all the components, is able to
propagate adaptation.

– SOTA description (Formal Behavior):
• Goals : G = GSC1 + GSC2 + . . . + GSCn + GAM

• Utilities : U = USC1 + USC2 + . . . + USCn + UAM

– Consequences: An unique AM is more efficient to manage adaptation over
the entire system, but it can became a node of failure.

– Related Patterns: Autonomic Service Component.

344 M. Hölzl et al.

Fig. 5. Centralised AM Service Components Ensemble

Pattern: P2P AMs Service Components Ensemble Pattern.

– Name: P2P AMs Service Components Ensemble.
– Classification: service-components-ensemble, edlc-requirements-engineering
– Intent: This pattern is designed around an explicit autonomic feedback

loop for each component. The components are able to communicate and
coordinate each other through their AMs. Each AM manages adaptation on
a single SC.

– Context: This pattern has to be adopted when:
• the components are simple and an external AM is necessary to manage

adaptation at the component level;
• the components need to directly communicate one with the other (throu

gh their AMs) to propagate adaptation.
– Structure: See Figure 6.

Fig. 6. P2P AMs Service Components Ensemble

The EDLC and Best Practices for Collective Autonomic Systems 345

– Behavior: Each component is managed by an AM and acts as an autonomic
component. Than the AMs directly communicate one with the other with a
P2P communication protocol. The communication made at the AM’s level
makes it easier to share not only knowledge about the components, but also
the adaptation logic.

– SOTA description (Formal Behavior):
• Goals : (GSC1 , GAM1)

⋃
(GSC2 , GAM2)

⋃
. . .

⋃
(GSCn , GAMn)

• Utilities : (USC1 , UAM1)
⋃

(USC2 , UAM2)
⋃

. . .
⋃

(USCn , UAMn)
The goal of the ensemble is composed of the goals of every single component.
Here a component is composed of a SC and an AM, so its goal is the goal of
the SC (if it is a proactive component), along with the goal of the AM.
At the same way the utilities of the ensemble are composed of the utilities of
every single component. In this scenario, it is not necessary that all the com-
ponents have the same utilities (same for goals), and also some components
may have no utilities at all.

– Consequences: The use of AMs to communicate between components makes
the adaptation management more simple because the components remain
simple and the knowledge necessary for adaptation is easily shared between
the AMs.

– Related Patterns: Autonomic Service Component.
– Applications: A lot of case studies about intelligent transportation systems

use this pattern. For example a traffic jam monitoring system case study is
presented in [4]. The intelligent transportation system consists of a set of in-
telligent cameras, which are distributed evenly along a highway. Each camera
(SC) has a limited viewing range and cameras are placed to get an optimal
coverage of the highway. Each camera has a communication unit to interact
with other cameras. The goal of the cameras is to detect and monitor traf-
fic jams on the highway in a decentralised way. The data observed by the
multiple cameras have to be aggregated, so each camera has an agent that
can play different roles in organizations. Agents exploit a distributed middle-
ware, which provides support for dynamic organizations. This middleware
acts as an AM; it encapsulates the management of dynamic evolution of
organizations offering different roles to agents, based on the current context.

Pattern: Knowledge-equipped Component.

– Name: Knowledge-equipped Component
– Classification: architecture, component, edlc-design, edlc-modeling
– Intent: Enable an autonomous component to operate in a context-sensitive

manner that potentially requires interaction with other components.
– Motivation: Various architectures exist that allow components and systems

to exhibit these kinds of complex, context-sensitive behaviors and interac-
tions. Knowledge-equipped Components are components with individual be-
haviors and knowledge repositories that can dynamically form aggregations.

346 M. Hölzl et al.

These components can often be arranged in a Flat Architecture to provide a
powerful and flexible, yet simple, architectural choice.

– Context: Knowledge-equipped Components are well-suited to ensembles in
which components need to act autonomously and interact with each other.
They can be used in different architectural styles such as Peer-to-peer or
Client/Server systems.
Components need to have at least a modest amount of computational power
and local storage; the pattern is not applicable for systems that rely on, e.g.,
pure stigmergy. Furthermore, if interaction is necessary, components must be
equipped with a communication mechanism that enables sender and receiver
to establish their identities and sufficient bandwidth must be available.

– Description: A knowledge-equipped component, is equipped with behaviors
and a knowledge repository. Behaviors describe the computations each com-
ponent performs. They are typically modeled as processes executing actions,
for example in the style of process calculi or in rewriting logic. In systems
using knowledge-equipped components, interaction between components is
achieved by allowing components to access the knowledge repositories of
other components; access restrictions are mediated by access policies.
Knowledge repositories provide high-level primitives to manage pieces of in-
formation coming from different sources. Knowledge is represented through
items containing either application data or awareness data. The former are
used for determining the progress of component computations, while the lat-
ter provide information about the environment in which the components are
running (e.g. monitored data from sensors) or about the actual status of an
autonomic component (e.g. its current location). This allows components to
be both context- and self-aware. The knowledge repository’s handling mech-
anism for knowledge-equipped components has to provide at least operations
for adding knowledge, as well as retrieving and withdrawing knowledge from
it.

– Implementation: SCEL (see Chapter I.1 [54]) defines primitives for mod-
eling and implementing Knowledge-equipped Components. An example for
the behavior of a component implemented in SCEL is the following monitor
for a garbage-collecting robot (which is a simplified version of the controller
analyzed in [62]):

s � get(item)@ctl.p

p � get(items , !x)@master .put(items , x + 1)@master .c

c � get(arrived)@ctl.put(dropped)@master .s + get(done)@ctl

This monitor waits until a tuple item becomes available in the knowledge
repository ctl, updates a counter in the knowledge repository master, and
then waits until either a tuple arrived or a tuple done is available in ctl. In
the first case the controller informs the repository master that it has dropped
an item and resumes from the beginning, if instead a tuple done is retrieved
from ctl the monitor stops.

The EDLC and Best Practices for Collective Autonomic Systems 347

This example also shows how several knowledge-equipped components can
interact via a shared knowledge repository master. Note that no further
synchronization primitives are necessary, even in the case where the master
repository is shared between different components, since the first compo-
nent to perform the action get(items , !x)@master removes the items-tuple
from this knowledge repository, and other components will block on their
get(items , !x)@master operations until the first component has put the up-
dated tuple back into master.

– Consequences: A knowledge-equipped component can exhibit complex be-
havior that relies on local or shared knowledge. It can adapt its behavior
flexibly to knowledge gathered while the ensemble is running. In some cases
(e.g., some swarm robotics scenarios with limited sensor input) it may not be
possible to extract the required knowledge from the available information.
In general knowledge-equipped components have relatively high processing
and storage requirements; shared knowledge repositories often require high
network bandwidth and low latency.

– Related Patterns: The coordination of interactions for knowledge-equipped
components is an example of Tuple-space Based Coordination; the interac-
tion between components can be performed using Attribute-based Commu-
nication. If the knowledge of the component is repeatedly or continuously
updated to correspond to the environment, the knowledge repository and
processes responsible for updating it form an Awareness Mechanism. An en-
semble containing multiple such components exhibits Distributed Awareness-
based Behavior.

Pattern: Statistical Model Checking.

– Name: Statistical Model Checking
– Classification: ensemble, validation, edlc-verification-and-validation
– Intent: Validate quantitative properties of a system at design time.
– Motivation: It is desirable to ascertain that a system can perform according

to specification as early as possible in the design process, and to validate
changes of the system design when requirements or environmental conditions
change. Traditional verification and validation techniques are often difficult
to scale to the size of ensembles.

– Context: Statistical Model Checking is applicable in many situations in
which quantitative properties of ensembles need to be validated at design
time. It is necessary to have (stochastic) models of the system and its envi-
ronment that match the actual behavior closely enough to ensure meaningful
results.
While it scales well when compared to many other validation techniques, the
computational and memory requirements of statistical model checking may
be too high for very large systems. Systems that include non-determinism
may pose problems for statistical model checkers, although advances in the
area of statistical model checking for, e.g., Markov Decision Procedures,
have recently been made. Statistical model checking provides only statistical

348 M. Hölzl et al.

assurances; it can therefore not be applied in situations where a proof of
correctness is required. Furthermore, statistical model checking cannot vali-
date properties that can only be established for infinite execution traces. In
cases where precise behavioral estimates are required, the effort for statistical
model checking may be prohibitive.

– Description: In contrast to traditional (numerical) model checking tech-
niques, statistical model checking runs simulations of the system, performs
hypothesis testing on these simulations and then uses statistical estimates
to determine whether the probability that the system satisfies the given hy-
potheses is above a certain threshold.

– Applications: Several examples for applying the Statistical Model Checking
pattern to validate properties of ensembles and choose between different
implementation strategies are presented in [29].

5 Related Work

In the literature we find several approaches for possible architectures or refer-
ence models for adaptive and autonomic systems. A well known approach is the
MAPE-K architecture introduced by IBM [30] which comprises a control loop
of four phases Monitor, Analyse, Plan, Execute. MAPE-K – in contrast to our
approach – focus only on the adaptation process at runtime and does not con-
sider the interplay of design and runtime phases. The second research roadmap
for self-adaptive systems [3] also suggests a life cycle based on MAPE-K and
proposes the use of a process modeling language to describe the self-adaptation
workflow and feedback control loops.

The approach of Inverardi and Mori [45] shows foreseen and unforeseen con-
text changes which are represented following a feature analysis perspective. Their
life cycle is also based on MAPE-K, focusing therefore on the runtime aspects.
A slightly different life cycle is presented in the work of Brun et al. [15] which
explores feedback loops from the control engineering perspective; feedback loops
are first-class entities and comprise the activities collect, analyse, decide and act.

Bruni et al. [17] presented a control data based conceptual framework for
adaptivity. In contrast to our pragmatic approach supporting the use of methods
and tools in the development life cycle, they provide a simple formal model for
the framework based on a labelled transition system (LTS). In addition, they
provide an analysis of adaptivity in different computational paradigms, such as
context-oriented and declarative programming from the control data point of
view.

After the original “Gang of Four” book [35] introduced design patterns for
object-oriented software development, pattern catalogues in various formats have
been proposed for a large and varied number of domains, and covering many ar-
eas also addressed in the ASCENS pattern catalogue, e.g., application architec-
ture [34,33], distributed computing [25,58,5], testing [12], resource-constrained
devices [36], cooperative interactions [51], or fault-tolerant software [38]. How-
ever, many of the specific features of ASCENS and the EDLC, e.g., the use of

The EDLC and Best Practices for Collective Autonomic Systems 349

formal methods or the integration of the design-time and runtime cycle are not
addressed in these pattern languages.

In the last years the interest in engineering self-adaptive and autonomic sys-
tems is growing, as shown by the number of recent surveys and overviews on
the topic [27,57]. However, a comprehensive and rationally-organized analysis of
architectural patterns for self-adaptation is still missing.

Salehie and Tahvildari [57] survey and classify the various principles under-
lying self-adaptation and the means by which adaptation ca be enforced in a
system, i.e., the different mechanisms to promote adaptation at the behavioral
and structural level. Similarly, Andersson et al. [4] propose a classification of
modeling dimensions for self-adaptive systems to provide the engineers with a
common set of vocabulary for specifying the self-adaptation properties under
consideration and select suitable solutions. However, and although both these
works emphasize the importance of feedback loops, nothing is said about the pat-
terns by which such feedback loops can be organized to promote self-adaptation.

Coming to work that have a more direct relation with ours, Brun et al. [14]
present a possible classification of self-adaptive systems with the emphasis on the
use of feedback loops as first-class entities in control engineering. They unfold the
role of feedback loops as a general mechanism for self-adaptation, essential for
understanding all types of self-adaptation. Taking inspiration for control engi-
neering, natural systems and software engineering, the authors present some self-
adaptive architectures that exhibit feedback loops. They also identify the critical
challenges that must be addressed to enable systematic and well-organized en-
gineering of self-adaptive and self-managing software systems. Their analysis of
different kinds of feedback loops is very relevant for our work, and in our effort
towards a comprehensive and complete taxonomy of patterns for feedback loops
we have partially built upon it.

Grounded on earlier works on architectural self-adaptation approaches, the
FORMS model [60] (FOrmal Reference Model for Self-adaptation) enables engi-
neers to describe, study and evaluate alternative design choices for self-adaptive
systems. FORMS defines a shared vocabulary of adaptive primitives that – while
simple and concise – can be used to precisely define arbitrary complex self-
adaptive systems, and can support engineers in expressing their design choices,
there included those related to the architectural patterns for feedback loops.
FORMS does not have the ambition to analyse and classify architectural self-
adaptation patterns, and rather has to be considered as a potentially useful
complement to our work.

6 Conclusions

In this work we presented a software development life cycle for collective auto-
nomic systems. Its aim is to support developers dealing with self-* properties of
ensembles, mainly self-awareness and self-adaptation talking into account envi-
ronmental situations. A distinguishing feature of the double-wheeled life cycle
is the feedback loop from runtime to design (in addition to the feedback loops

350 M. Hölzl et al.

at design and runtime provided by classical approaches for self-adaptive engi-
neering). It is also important to remark that our life cycle relies on foundational
methods used for the verification of the expected behavior; indeed this provides
a feedback loop that allows for improvement of an evolving software. We illus-
trated how the life cycle can be instantiated using a set of languages, methods
and tools developed within the ASCENS project.

A first proof of concept of the life cycle was performed for the e-mobility do-
main [24]. Future plans are the validation of our engineering approach with more
challenging scenarios of different application domains. A vision on future engi-
neering approaches should consider to have a look at other disciplines even those
that are not so directly related to computer science for ideas and technologies
for building collective autonomic systems.

In addition, we have presented a catalog of patterns to provide reusable
solutions for the development of collective autonomic systems. We included in
the catalog patterns at different levels of abstraction so that the pattern catalog
can also serve as introduction to certain development techniques. Therefore, it is
useful for developers who are not already experts in the EDLC and the various
technologies developed within the scope of the ASCENS project.

References

1. Abeywickrama, D.B., Zambonelli, F.: Model Checking Goal-Oriented Require-
ments for Self-Adaptive Systems. In: Proceedings of the 19th IEEE International
Conference and Workshops on Engineering of Computer-Based Systems, Apr.
2012, pp. 33–42 (2012)

2. Abeywickrama, D., Bicocchi, N., Zambonelli, F.: Sota: Towards a general model
for self-adaptive systems. In: IEEE 21st International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE 2012), June
2012, pp. 48–53 (2012)

3. de Lemos, R.: Engineering for Self-Adaptive Systems: A second Research
Roadmap. In: de Lemos, R., Giese, H., Müller, H., Shaw, M. (eds.) Software
Engineering for Self-Adaptive Systems. No. 10431 in Dagstuhl Seminar Proceed-
ings, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, Dagstuhl,
Germany (2011)

4. Andersson, J., de Lemos, R., Malek, S., Weyns, D.: Modeling dimensions of self-
adaptive software systems. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi,
P., Magee, J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp. 27–47. Springer,
Heidelberg (2009)

5. Babaoglu, O., Canright, G., Deutsch, A., Caro, G.A.D., Ducatelle, F., Gam-
bardella, L.M., Ganguly, N., Jelasity, M., Montemanni, R., Montresor, A., Urnes,
T.: Design patterns from biology for distributed computing. ACM Trans. Auton.
Adapt. Syst. 1(1), 26–66 (2006)

6. Basu, A., Bensalem, S., Bozga, M., Caillaud, B., Delahaye, B., Legay, A.: Statis-
tical abstraction and model-checking of large heterogeneous systems. In: Hatcliff,
J., Zucca, E. (eds.) FORTE 2010 and FMOODS 2010. LNCS, vol. 6117, pp. 32–46.
Springer, Heidelberg (2010)

7. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.H., Sifakis,
J.: Rigorous component-based design using the BIP framework. IEEE Software,

The EDLC and Best Practices for Collective Autonomic Systems 351

Special Edition – Software Components beyond Programming – from Routines to
Services 28(3), 41–48 (2011)

8. Basu, A., Bozga, M., Sifakis, J.: Modeling Heterogeneous Real-time Components
in BIP. In: SEFM, pp. 3–12. IEEE Computer Society Press, Los Alamitos (2006)

9. Bensalem, S., Bozga, M., Delahaye, B., Jegourel, C., Legay, A., Nouri, A.: Sta-
tistical Model Checking QoS Properties of Systems with SBIP. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 327–341. Springer,
Heidelberg (2012)

10. Bensalem, S., Bozga, M., Nguyen, T.H., Sifakis, J.: D-Finder: A Tool for Compo-
sitional Deadlock Detection and Verification. In: Bouajjani, A., Maler, O. (eds.)
CAV 2009. LNCS, vol. 5643, pp. 614–619. Springer, Heidelberg (2009)

11. Bensalem, S., Griesmayer, A., Legay, A., Nguyen, T.H., Peled, D.: Efficient Dead-
lock Detection for Concurrent Systems. In: Singh, S., Jobstmann, B., Kishinevsky,
M., Brandt, J. (eds.) MEMOCODE, pp. 119–129. IEEE Computer Society Press,
Los Alamitos (2011)

12. Binder, R.: Testing Object-Oriented Systems: Models, Patterns and Tools.
Addison-Wesley Professional, Reading (2000)

13. Bröckers, A., Lott, C.M., Rombach, H.D., Verlage, M.: MVP-L Language Report
Version 2. Tech. Rep. Technical Report Nr. 265/95, University of Kaiserslautern
(1995)

14. Brun, Y., Di Marzo Serugendo, G., Gacek, C., Giese, H., Kienle, H.M., Litoiu,
M., Müller, H., Pezzè, M., Shaw, M.: Engineering self-adaptive systems through
feedback loops. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee,
J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp. 48–70. Springer, Heidelberg
(2009)

15. Brun, Y., Di Marzo Serugendo, G., Gacek, C., Giese, H., Kienle, H.M., Litoiu,
M., Müller, H., Pezzè, M., Shaw, M.: Engineering self-adaptive systems through
feedback loops. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee,
J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp. 48–70. Springer, Heidelberg
(2009)

16. Bruni, R., Corradini, A., Gadducci, F., Hölzl, M., Lafuente, A.L., Vandin, A.,
Wirsing, M.: Reconciling White-Box and Black-Box Perspectives on Behavioral
Self-adaptation. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software
Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 163–184.
Springer, Heidelberg (2015)

17. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: A Concep-
tual Framework for Adaptation. In: de Lara, J., Zisman, A. (eds.) Fundamental
Approaches to Software Engineering. LNCS, vol. 7212, pp. 240–254. Springer,
Heidelberg (2012)

18. Bulej, L., Bureš, T., Gerostathopoulos, I., Horký, V., Keznikl, J., Marek, L.,
Tschaikowski, M., Tribastone, M., Tøuma, P.: Supporting Performance Awareness
in Autonomous Ensembles. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.)
Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp.
291–322. Springer, Heidelberg (2015)

19. Bulej, L., Bures, T., Horky, V., Keznikl, J., Tuma, P.: Performance Awareness in
Component Systems: Vision Paper. In: Proceedings of COMPSAC (2012)

20. Bulej, L., Bures, T., Keznikl, J., Koubkova, A., Podzimek, A., Tuma, P.: Captur-
ing Performance Assumptions using Stochastic Performance Logic. In: Proc. 3rd
Intl. Conf. on Performance Engineering (ICPE’12), Boston, MA, USA (2012)

352 M. Hölzl et al.

21. Bulej, L., Bureš, T., Keznikl, J., Koubková, A., Podzimek, A., Tůma, P.: Captur-
ing performance assumptions using stochastic performance logic. In: Proc. ICPE
2012, pp. 311–322. ACM Press, New York (2012)

22. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.:
DEECO: An Ensemble-Based Component System. In: Proceedings of the 16th
International ACM Sigsoft symposium on Component-based software engineering
(CBSE ’13), pp. 81–90. ACM Press, New York (2013)

23. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.: The
Invariant Refinement Method. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P.
(eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998,
pp. 405–428. Springer, Heidelberg (2015)

24. Bures, T., Nicola, R.D., Gerostathopoulos, I., Hoch, N., Kit, M., Koch, N.,
Monreale, G.V., Montanari, U., Pugliese, R., Serbedzija, N., Wirsing, M., Zam-
bonelli, F.: A life cycle for the development of autonomic systems: The e-mobility
showcase. 2013 IEEE 7th International Conference on Self-Adaptation and Self-
Organizing Systems Workshops 0, 71–76 (2013)

25. Buschmann, F., Henney, K., Schmidt, D.C.: A Pattern Language for Distributed
Computing. Pattern-Oriented Software Architecture, vol. 4. Wiley, Chichester
(2007)

26. Cabri, G., Puviani, M., Zambonelli, F.: Towards a Taxonomy of Adaptive Agent-
Based Collaboration Patterns for Autonomic Service Ensembles. In: Proceedings
of the 2011 International Conference on Collaboration Technologies and Systems,
May 2011, pp. 508–515. IEEE Computer Society Press, Los Alamitos (2011)

27. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J.,
Becker, B., Bencomo, N., Brun, Y., Cukic, B., Di Marzo Serugendo, G., Dustdar,
S., Finkelstein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M.,
Kramer, J., Litoiu, M., Malek, S., Mirandola, R., Müller, H.A., Park, S., Shaw,
M., Tichy, M., Tivoli, M., Weyns, D., Whittle, J.: Software engineering for self-
adaptive systems: A research roadmap. In: Cheng, B.H.C., de Lemos, R., Giese,
H., Inverardi, P., Magee, J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp.
1–26. Springer, Heidelberg (2009)

28. Combaz, J., Bensalem, S., Tiezzi, F., Margheri, A., Pugliese, R., Kofron, J.: Cor-
rectness of Service Components and Service Component Ensembles. In: Wirsing,
M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective
Autonomic Systems. LNCS, vol. 8998, pp. 107–159. Springer, Heidelberg (2015)

29. Combaz, J., Lafuente, A.L., Montanari, U., Pugliese, R., Sammartino, M., Tiezzi,
F., Vandin, A., von Essen, C.: Verification Results Applied to the Case Studies -
ASCENS Joint Deliverable JD3.1 (2013),
http://www.ascens-ist.eu/deliverables/JD31.pdf

30. IBM Corporation: An Architectural Blueprint for Autonomic Computing. Tech.
rep., IBM (2005),
http://researchr.org/publication/autonomic-architecture-2005

31. De Nicola, R., Ferrari, G.-L., Loreti, M., Pugliese, R.: A Language-Based Ap-
proach to Autonomic Computing. In: Beckert, B., Damiani, F., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 25–48. Springer, Hei-
delberg (2013)

32. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: SCEL: A Language for Auto-
nomic Computing. Tech. rep., IMT Lucca (January 2013)

33. Erl, T.: SOA Design Patterns, 1st edn. Prentice-Hall, Upper Saddle River (2009)
34. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley

Longman, Amsterdam (2002)

http://www.ascens-ist.eu/deliverables/JD31.pdf
http://researchr.org/publication/autonomic-architecture-2005

The EDLC and Best Practices for Collective Autonomic Systems 353

35. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Longman, Amsterdam
(1995)

36. Gay, D., Levis, P., Culler, D.: Software design patterns for TinyOS. Trans. on
Embedded Computing Sys. 6(4), 22 (2007)

37. Gomaa, H., Hashimoto, K.: Dynamic self-adaptation for distributed service-
oriented transactions. In: International Workshop on Software Engineering for
Adaptive and Self-Managing Systems, Zurich, Switzerland, pp. 11–20. IEEE, Los
Alamitos (2012)

38. Hanmer, R.: Patterns for Fault Tolerant Software. John Wiley & Sons, Chichester
(2007)

39. Hoch, N., Monreale, G.V., Montanari, U., Sammartino, M., Siwe, A.T.: From Lo-
cal to Global Knowledge and Back. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P.
(eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998,
pp. 185–220. Springer, Heidelberg (2015)

40. Hölzl, M.: APEX: The ASCENS Pattern Explorer. web site,
http://www.ascens-ist.eu/pattern

41. Hölzl, M.: The Poem Language (Version 2). Tech. Rep. 7, ASCENS (July 2013),
http://www.poem-lang.de/documentation/TR7.pdf

42. Hölzl, M., Gabor, T.: Reasoning and Learning for Awareness and Adaptation. In:
Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998, pp. 249–290. Springer, Heidelberg
(2015)

43. Hölzl, M., Koch, N.: D8.3: Third Report on WP8—Best Practices for SDEs (first
version) (November 2013)

44. Hölzl, M.M., Wirsing, M.: Towards a system model for ensembles. In: Agha, G.,
Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological
Systems. LNCS, vol. 7000, pp. 241–261. Springer, Heidelberg (2011)

45. Inverardi, P., Mori, M.: A Software Lifecycle Process to Support Consistent Evo-
lutions. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software En-
gineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 239–264. Springer,
Heidelberg (2013)

46. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003), doi:10.1109/MC.2003.1160055

47. Keznikl, J., Bures, T., Plasil, F., Gerostathopoulos, I., Hnetynka, P., Hoch, N.:
Design of Ensemble-Based Component Systems by Invariant Refinement. In: Pro-
ceedings of the 16th International ACM Sigsoft symposium on Component-based
software engineering (CBSE ’13), pp. 91–100. ACM Press, New York (2013)

48. Keznikl, J., Bures, T., Plasil, F., Kit, M.: Towards Dependable Emergent En-
sembles of Components: The DEECo Component Model. In: WICSA/ECSA, pp.
249–252. IEEE Computer Society Press, Los Alamitos (2012)

49. Klarl, A., Hennicker, R.: Design and Implementation of Dynamically Evolving En-
sembles with the HELENA Framework. In: Proceedings of the 23rd Australasian
Software Engineering Conference, pp. 15–24. IEEE Computer Society Press, Los
Alamitos (2014)

50. Marek, L., Villazón, A., Zheng, Y., Ansaloni, D., Binder, W., Qi, Z.: DiSL: a
domain-specific language for bytecode instrumentation. In: Proceedings of the
11th annual international conference on Aspect-oriented Software Development
(AOSD ’12), pp. 239–250. ACM Press, New York (2012)

http://www.ascens-ist.eu/pattern
http://www.poem-lang.de/documentation/TR7.pdf

354 M. Hölzl et al.

51. Martin, D., Sommerville, I.: Patterns of Cooperative Interaction: Linking Eth-
nomethodology and Design. ACM Trans. Comput.-Hum. Interact. 11(1), 59–89
(2004)

52. Morandini, M.: the use of the goal-oriented paradigm for system design and law
compliance reasoning. In: iStar 2010–4 th International i* Workshop, Hammamet,
Tunisia, p. 71 (2010)

53. Mylopoulos, J., Chung, L., Yu, E.S.K.: From Object-Oriented to Goal-Oriented
Requirements Analysis. Communications of the ACM 42(1), 31–37 (1999)

54. De Nicola, R., Latella, D., Lafuente, A.L., Loreti, M., Margheri, A., Massink, M.,
Morichetta, A., Pugliese, R., Tiezzi, F., Vandin, A.: The SCEL Language: Design,
Implementation, Verification. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P.
(eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998,
pp. 3–71. Springer, Heidelberg (2015)

55. Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992), doi:10.1007/3-540-55602-8 217

56. Puviani, M.: Catalogue of architectural adaptation patterns (2012),
http://mars.ing.unimo.it/wiki/papers/TR42.pdf

57. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. ACM Transactions on Autonomous and Adaptive Systems 4(2), 1–42
(2009)

58. Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Patterns for Concurrent
and Networked Objects. Pattern-Oriented Software Architecture, vol. 2. Wiley,
Chichester (2000)

59. Vassev, E., Hinchey, M.: Engineering Requirements for Autonomy Features. In:
Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998, pp. 379–403. Springer, Heidelberg
(2015)

60. Weyns, D., Malek, S., Andersson, J.: Forms: Unifying reference model for for-
mal specification of distributed self-adaptive systems. ACM Transactions on Au-
tonomous and Adaptive Systems 7(1), 8 (2012)

61. Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.): Software Engineering for
Collective Autonomic Systems. LNCS, vol. 8998. Springer, Heidelberg (2015)

62. Wirsing, M., Hölzl, M.M., Tribastone, M., Zambonelli, F.: ASCENS: Engineering
Autonomic Service-Component Ensembles. In: Beckert, B., Damiani, F., de Boer,
F.S., Bonsangue, M.M. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 1–24. Springer,
Heidelberg (2013)

http://mars.ing.unimo.it/wiki/papers/TR42.pdf

Chapter III.2

Methodological Guidelines for Engineering
Self-organization and Emergence�

Victor Noël and Franco Zambonelli

University of Modena and Reggio Emilia, Italy

Abstract. The ASCENS project deals with the design and development
of complex self-adaptive systems, where self-organization is one of the
possible means by which to achieve self-adaptation. However, to support
the development of self-organising systems, one has to extensively re-
situate their engineering from a software architectures and requirements
point of view. In particular, in this chapter, we highlight the importance
of the decomposition in components to go from the problem to the en-
gineered solution. This leads us to explain and rationalise the following
architectural strategy: designing by following the problem organisation.
We discuss architectural advantages for development and documenta-
tion, and its coherence with existing methodological approaches to self-
organisation, and we illustrate the approach with an example on the area
of swarm robotics.

Keywords: Self-organization, software architecture, problem decompo-
sition, swarm robotics

1 Introduction

Engineering complex software intensive systems made up of large ensembles of
components, and make them autonomic, requires a number of innovative models
and tools. As it has been deeply investigated in the context of the ASCENS
project, and is extensively reported in this book, these may include: new ap-
proaches to requirements engineering (as discussed in [1]), new programming
languages (see Chapter I.1 [39]), and new methodological guidelines (see Chap-
ter III.1 [31]).

In this chapter, we focus on a specific – yet very critical – methodological
problem related to the engineering of complex autonomic service ensembles. Al-
though the inherent goal of any software engineering approach is that to achieve
– by design – a specific predictable behavior of the system, the complexity of
large scale ensembles can sometimes undermine the possibility to fully achieve
such goal. Indeed, as the scale of a system grows, the presence of non-linear
interactions between its components and the lack of central control can make
the appearance of emergent behaviours at the system level [38].
� This work has been sponsored by the EU project ASCENS IP 257414 (FP7).

M. Wirsing et al. (eds.): Collective Autonomic Systems, LNCS 8998, pp. 355–378, 2015.
� Springer International Publishing Switzerland 2015

356 V. Noël and F. Zambonelli

In particular, those systems showing “organised complexity” are of interest:
their emergent behaviour can’t simply be understood using statistical tools and
it is the organisation of the elements that matters [46]. An important mecha-
nism governing complex systems is self-organisation: the autonomous change of
the elements organisation without external control [15]. With self-organisation
and emergence, complex systems are known for self-adaptivity: they adapt their
functioning as a response to internal and environmental changes [29].

Johnson [33] noted that the apparent paradox between emergence and engi-
neering stems from the confusion between emergence approached in a predictive
way (i.e., being equated to surprising and often undesirable behaviours of the
system) and emergence approached as a construct [27] (i.e., being equated to the
appearance of high-level behaviours resulting from low-level simpler rules). Here,
embracing the second vision, we assume (without arguing for the correctness of
this choice) that self-organisation is the principle followed to design the low-level
rules that lead to emergence.

Multi-Agent Systems (MAS) is one field where self-organisation and emer-
gence are studied and applied to engineer self-adaptive systems [16,42]. In such
systems, the various agents organise themselves in an autonomous and decen-
tralised way to change how the functionality of the system is realised or even to
change the functionality itself. Some aspects of the global behaviour are not ex-
plicitly pre-designed but emerge at runtime through this self-organising process
in an endogenous and bottom-up way: the agents are unaware of the organisation
as a whole [42].

Precisely, the general challenge tackled here is engineering self-adaptive self-
organising complex systems that exist in and modify a complex context while
meeting complex needs, in the continuation of [12] and [1]. Towards that goal,
we propose to look at practical methodological guidelines to accompany their
design. In the following, we use the term “Self-Organising MAS” (SOMAS) to
denote such engineered system.

The paper presents two strongly interrelated contributions. First, it proposes
a clear understanding, using a software architecture and requirements vocabu-
lary, of what it means to engineer a SOMAS. From that, it highlights and explains
the role that the decomposition design activity plays for such systems: it acts
as a design bridge between the problem and the emergent behaviour. Second,
it explains and rationalises an architectural design strategy stating that when
designing a SOMAS, the problem organisation can be exploited for decomposi-
tion: it is an enabler for emergent behaviours reached through self-organisation
to be adequate with respect to the problem. We also discuss implications for the
development and documentation of SOMAS in general.

This strategy is not a method by itself but a complement to existing ap-
proaches and methods: one of our objectives is to defend these contributions
so that they influence existing and future methodological approaches to self-
organisation and emergence as well as applications.

They are illustrated with an example taken from swam robotics IV.2 [43]:
bots exploring and securing victims in an unknown environment. This example

Engineering Self-organization and Emergence 357

was used to elicit and try-out the contributions but is not the focus of this paper.
Nevertheless, it is fully implemented and we propose a short comparison with
two other distributed algorithms to show the validity of applying the strategy
and illustrate the differences it implies.

In Section 2, we review self-organisation and emergence from a software ar-
chitecture and requirements points of view, and underline the importance of the
role played by decomposition in the design of SOMAS. In Section 3, we present
rationalise and discuss the defended strategy. In Section 4, we discuss in more
details the example from swarm robotics. In Section 5, we relate the contribu-
tions with existing works that can be used to engineer emergence. We conclude
in Section 6.

2 Emergence, Engineering and Decomposition

In this section, by interpreting the concepts of self-organisation and emergence
from an engineering, i.e., architectures and requirements, point of view, we un-
derline two important things: first, these approaches answer requirements but
also impose design constraints, and second, some requirements are answered by
the human designer while others are emergently answered at runtime. These
facts are of course not novel by themselves but are usually not explained with
an architecture and requirements vocabulary. This leads us to conclude on the
importance of the role that the decomposition plays in the design of SOMAS.

2.1 Self-organisation and Emergence

Emergence is considered present in a system if from two different point of view
on the system (hence it is an observer-relative property), the behaviour exhibited
by the first one — called high-level or macro-level — is determined (formally
“supervenes on” [36]) by the second one — called low-level or micro-level —, and
if the first one is easier to understand than the second one [13]. In other words, we
say that a macro-level behaviour emerges from the micro-level interactions, that
this macro-level behaviour is not contained in some elements of the micro-level
and that the macro-level behaviours we consider are those that are of interest
to the engineer of the system.

Even though this definition of emergence does not include self-organisation,
emergence most usually appears in self-organising systems. The main important
specificities of these systems are that they change their organisation (and thus
their behaviour) without external control [15]. Together, self-organisation and
emergence imply a decentralisation of control inside the system [29]: without
it, there can’t be emergence as the elements of the micro-level behaviour would
contain the macro-level behaviour.

Here, emergence is about the state of the system at a given moment while
self-organisation is about the dynamics that enable to reach this state. There
exist other understandings of these concepts (cf. [13, 15, 16, 33, 42]) but they
all describe the same reality: the global behaviour is found at runtime and not

358 V. Noël and F. Zambonelli

Fig. 1. Components and connectors view about the emergence of the global function
from local functions through self-organisation [22]

predefined in the elements or in the way they are composed. Figure 1 illustrates
well this principle: the emergent function results from the composition of the
local functions of the elements and can be changed by the latter by modifying
their function or their relations.

2.2 Software Architecture, Problems and Requirements

In terms of software architecture, and in line with the general component-based
approach of ASCENS (see Chapter I.2 [11]) the design activity of SOMAS fo-
cuses on producing components and connectors (C&C) views [5, 14] (i.e., the
description of the runtime elements, their behaviours and their relations) of the
solution to answer the requirements and the constraints of the problem tackled.
The components are the agents, their environment connects them together and
the relations between agents and with the environment are often dynamically
changing at runtime [3]. Figure 1 is thus a SOMAS C&C view. Another impor-
tant aspect of software architectures concerns modules views (i.e., the description
of units of implementation and their relations): while the design of SOMAS does
not usually directly cover them [3], as we will see in Section 3.6 the choices made
during their engineering still impact them.

Problems of Interest. What we call a problem to answer here is made of a
context and requirements [28]: engineering is about finding the software solution,
here the SOMAS, satisfying the requirements in that context.

As an example, in a robotics scenario (illustrated in Figure 2), we look at the
search and secure problem: bots must explore an unknown environment to look for
victims and then secure them (supposedly to rescue them, but this is not covered
in our example). The context is composed of the bots (controlled by the software to
build) with limited communication capabilities, the environment that have walls,
the victims that must each be secured by several bots. The requirements are to

Engineering Self-organization and Emergence 359

Fig. 2. Robotic scenario with bots, victims and environment to explore

search and secure victims, to secure them all, as fast as possible, to explore the
accessible space fairly, to completely explore the space in a non-random way, etc.

Some aspects of the problem won’t change in any of its instances (e.g., bots
capabilities), while some will be different (e.g., walls and victims positions, bots
communication distance) and may even change at runtime (e.g., failure of bots).
The type of SOMAS we want to be able to engineer must work in any situation
that conforms to such a class of problems.

Requirements and Underspecification. Requirements are usually meant
to be explicitly identified, quantified, etc, in order to derive from them precise
implementable specifications of the solution to be built. But with the type of
problems that interest us, it is often the case that requirements cannot be prac-
tically and completely specified at a global level because of the complexity of
the system and of its context, or because there is no implementable efficient
centralised solution. In other words, these problems can suffer from underspeci-
fication.

In the robotic example, it is not clear how to specify from the point of view
of each bots the global objective of efficiently exploring and securing all victims
as the bots cannot communicate across the whole environment, which they don’t
even know in advance.

From a software architecture point of view, it is known that using (SO)MAS
is an architectural response to a certain problems with requirements such as com-
plexity, distribution, dynamicity, scalability, or adaptation [3, 15, 47, 48]. These
are other ways of saying that the actual specification of what the system should
do changes at runtime and can’t be predefined. One way to tackle such under-
specification is the use of self-organisation as a way to make the actual solution
to the problem be found at runtime through emergence.

In the robotic example, depending on the state of the environment, the vic-
tim found and other contextual facts, the bots collective has to devise at runtime
the best exploration and securing strategies to follow. If victims are evenly dis-

360 V. Noël and F. Zambonelli

tributed, bots can disperse to secure them all, while if there is big groups of
victims, then more bots should dispatch themselves to them, while exploring as
much as possible.

Of course, not all requirements are answered through self-organisation and
emergence: some of them are answered in a more traditional way while others are
answered through emergence. The latter is really the focus here, but choosing
which ones should be emergent or not is out of scope of this paper. Nevertheless
in the following, we are going to see how to distinguish them when documenting
the built system.

Design Constraints. It is important to underline the difference between the
problem answered by the choice of using self-organisation and emergence, and the
constraints this choice implies: most of the works characterising self-organisation
and emergence tend to not make this distinction explicit [9, 15, 16, 42].

Indeed, the following can be part of the problem: to have self-adaptation, a
distributed deployment context, large-scale system, non-existence of an efficient
centralised solution or impossibility of expressing the global behaviour of the
system.

Inversely, as said in Section 2.1, the following are mandatory design con-
straints when embracing self-organisation: the decision must be distributed and
decentralised, the global macro-level behaviour and organisation can’t be prede-
fined or self-organisation must be a bottom-up process initiated locally by the
elements of the system.

Of course, some of these imposed constraints can also be part of the require-
ments (e.g., distribution of control), but even if they are not (e.g., the system
runs on only one computer), they must still be followed when designing a SO-
MAS.

2.3 Role of the C&C Decomposition Design Activity

In terms of C&C views, designing a SOMAS focuses on two main activities: de-
composing in runtime components (the agents) and giving them a self-organising
behaviour. For the engineer, these are the two main difficulties to overcome. Of-
ten experience and intuition are useful tools to design software systems, but it is
accepted that there exist architectural design strategies that can be followed to
build good software [4]. Depending on the problem, various strategies are avail-
able, and when a strategy is chosen, then it becomes a design constraint for the
engineer. We focus on the decomposition activity now.

Following a traditional reductionist approach to software design means to
define a global functionality answering the problem requirements, and then, a
decomposition in runtime components and their functionalities are chosen a pri-
ori through a top-down refinement of this predefined functionality. The control is
embedded in the way these sub-functionalities are composed: through structural
composition (e.g., dataflow components) or by being orchestrated by a central
element (e.g., service workflow).

Engineering Self-organization and Emergence 361

Because of the design constraints highlighted in Section 2.2, such an approach
cannot thus be followed if one wants to have adaptation through emergence:
the macro-level behaviour is self-designed by a bottom-up autonomous process,
and not by following a top-down human-driven process. This shifts of focus
from a traditional design choice as an answer to some requirements to a design
choice at the local level of elements to have them find the organisation (i.e., the
runtime composition) answering the requirements, is where the paradigm change
implied by self-organisation and emergence happens. And this is also where the
real difficulty rests: how one can engineer such a micro-level behaviour without
thinking about the macro-level behaviour? How to answer the requirements by
not directly answering them in our design?

We argue here that the decomposition plays the role of a design bridge be-
tween the problem and the emergent behaviour. Indeed, the decomposition in
agents implies to choose the local function they play in the system (as it was
depicted in the Figure 1): it is the runtime composition of such local functions
that makes up the global function, and it is the self-organising behaviour of the
agents that leads the system in the adequate composition of the local functions
for answering the requirements. Thus, the chosen decomposition constrains the
possible macro-level behaviours that can be found at runtime through the self-
organising process, and choosing the correct decomposition will determine the
success of the engineering of a SOMAS.

2.4 How Should the SOMAS Be Decomposed?

Figure 3 summarises all the relations between the concepts discussed in this
section.

It shows the different aspects of the problem answered at design time and
runtime by the engineered SOMAS. It shows the two main design activities of
decomposition and giving a self-organising behaviour to the agents of the SO-
MAS. It underlines that the engineer does not tackle at design the requirements
emergently answered, but that some constraints have to be followed by the de-
sign nevertheless. It also shows that the decomposition and local functions of the
agents constrain the possible macro-level behaviours that can emerge at runtime.
As the focus of the engineering of SOMAS is on the emergent solution of the
problem, we call the local function of the agents their “pre-solved” behaviour
because they are solved directly in the humanly designed agent and not emerg-
ing at runtime as the Figure shows (a similar differentiation of behaviours is
present in the AMAS approach [23] which calls them nominal and cooperative
behaviours: the difference is mainly on the adopted problem-oriented point of
view).

Finally it highlights the questions that this section raises: how should this
decomposition be done? What is a good or a bad decomposition? We give our
answer in the next section.

362 V. Noël and F. Zambonelli

Engineer
SOMAS

Designed SOMAS
(micro-level)

Design Constraints
of SOMAS

Problem

Macro-level
behaviour

Micro-level
behaviour

Underspecifiable
Requirements

Other Requirements,
Constraints and Context

Requirements or Constraints Engineering Activity Runtime BehaviourDesign (C&C) Artefact

Key:

Decompose

Design
self-organisation

Decomposition
and pre-solved

behaviour

Self-organising
behaviour

implies

has

has

exploits

conforms to

has

has

exhibits

has
has

 ???

answers at design

supervenes
on

constrains
possibilities

answers at runtime

results in

results in

relies
only on

Open
Question

Fig. 3. Relations between Problem, Design Activities and SOMAS

3 Following the Problem Organisation

From our experience in the design of SOMAS and the points discussed in the
previous section, we concluded that a strategy to follow when designing SOMAS
is to base the software solution on the problem organisation. While we defended
previously that decomposition is a design bridge between the problem and the
emergent macro-level behaviour, here we explain that following the problem
organisation during the decomposition activity is what can make the emergent
macro-level behaviour as adapted to the problem as it can be. In the following,
we first explain the strategy and present a rational for it. Then we situate it with
respect to existing methodological approaches to self-organisation, we underline
some open questions, draw lessons for documentation and show architectural
advantages for the development.

3.1 The Strategy

It is usual in software engineering to first model the problem space before entering
the solution space. However, here we advocate for directly mapping the problem
organisation to the solution decomposition, and for only relying on the problem
abstractions to design the agents behaviour.

From the Problem Organisation. . . By problem organisation, we mean the
identification of the various elements participating in it and of the role they play
with respect to the requirements.

In the robotic example, the elements participating in the problem are the
bots, but also the victims and the environment. Furthermore, in relation with the

Engineering Self-organization and Emergence 363

requirements, the elements play the following role in the problem: bots choose a
direction to go to, bots communicate with other bots, bots perceive victim, bots
perceive the walls, victims are situated, victims need a specific number of bots to
be secured, etc.

The Figure 4a shows such a decomposition of the problem in elements. We
call it the “organisation” to avoid confusion with the meaning usually associated
to a decomposition of the problem in sub-problems as shown in the Figure 4b.
The problem organisation can be imposed by the context (that the engineer
can’t control or modify, as in the robotic example) or must be chosen by the
engineer when building the system.

. . . to the Solution Decomposition. Based on this modelling of the problem,
we then advocate for a direct mapping between elements of the solution (soft-
ware agents) and the elements of the problem, and for giving them the same
capabilities (the local function) as in the problem domain and not more. Their
behaviour should be designed locally with respect to the relations elements have
in the problem. The decisions (including those of the self-organising behaviour)
they take should only rely on the problem domain abstractions and no higher-
level global abstractions should be introduced.

In the robotic example, bots must choose where is the best direction to go at
every given moment. For that, they can use what they directly see (victims and
explorable areas), and when they don’t know what to choose, they should rely on
information shared by other bots about the state of the world with respect to the
problem: where they are needed for victims or exploration. Hence, bots that see
victims or explorable areas advertise about it. This information can be propagated
by the bots and they can use it to decide where to go next.

Of course the complexity of the context and of the requirements (e.g., high
number of bots, unknown scattering of the victims or limited perception means)
are likely to make all these choices difficult. Correctly choosing the best action
to take is thus an important questions: we don’t pretend to answer it in this
paper, but, as said before, we argue that such decisions must rely on the prob-
lem domain abstractions. Still, we comment on this question when relating the
defended strategy with existing approaches to self-organisation, which propose
such guidelines, in the next section.

3.2 Relation to the Design of Self-organisation

The strategy presented in the previous section can thus be used to design a
SOMAS, but, as we highlighted it, is not enough by itself. In particular, a very
important point is the problem of taking the correct local decision for the agents.

Some approaches to self-organisation propose guidelines to design the micro-
level behaviour of the agents of the system. They propose local criteria to be
followed by the agents in order to drive the self-organisation. For example, the
work of Gershenson [25] and the AMAS theory [22, 23] are such approaches. In
the AMAS approach, the main strategy is that agents must have a cooperative

364 V. Noël and F. Zambonelli

Bot

Victim Environment

needs N goes in directions
perceives

communicates

situated in

(a) In elements (“organisation”).

Bot

Discover
Victims

Secure
Victims

communicates

Help Others
Secure

(b) In sub-problems.

Fig. 4. Different decompositions for the robotic problem example

social attitude: the whole approach rests on the theory that if the agents of a
system are cooperative with the system environment as well as internally, then
the system will behave adequately with respect to the objectives of the agents
and of their environment. In the work of Gershenson, the main strategy proposed
is to reduce frictions and increase synergy between the agents of the system. In
both, most of the actual engineering is about finding which local information
to share in order for the agents to act as cooperatively or synergistically as
possible. We detail the AMAS approach in the rest of this section (but the same
conclusions can be applied to the work of Gershenson) and discuss the coherence
of the defended strategy with it.

In the AMAS approach, by identifying local non-cooperative situations agents
can face, the engineer designs the agents so that they prevent or correct such
situations in order to put the system in a state as cooperative as possible. Usually,
a measure called criticality that is shared amongst agents is used to reflect the
importance of some state of the problem and to give an agent a way to decide
between several choices.

In the robotic example, a bot often has the choice between several directions
and do not see any victims. In order to take the most cooperative decision, he
needs some information about the state of the system: bots can advertise for
example about the direction they chose to go to and some measure (the criticality)
of how much more bots are needed in this direction. When a bot propagates this
information (because he chose the direction), it will update this criticality in
order to reflect his and others participations in the self-organisation process: its
choice means that this direction is a bit less critical now. Because bots assume
they are all cooperative, they know that a direction chosen by another bot is
presently the most important one to go to: choosing the most critical direction
amongst all the neighbouring advertisements is enough for a bot to decide where
to go next. Every decision taken will then influence how the bot computes this
criticality, and inversely.

Engineering Self-organization and Emergence 365

The way the self-organising process can be designed with this approach heav-
ily relies on the fact that the agents does not contain any pre-defined behaviour
in relation to the expected global behaviour, but only concepts manipulated in
the definition of the problem itself, which serves to base the local decision on. For
example, the criticality measure used in the AMAS approach reflects some aspect
of the problem state in a comparable form: no extra high-level characterisation
of what is or not a good global solution is used.

3.3 Rationale

The rationale behind the defended strategy, namely to follow the problem or-
ganisation when designing a SOMAS, derives from the points highlighted in Sec-
tion 2: the global behaviour must emerge, exploiting self-organisation imposes
some design constraints and decomposition plays an important role in what can
emerge. We discuss here two cases: why the solution shouldn’t be based on a
decomposition of the problem in sub-problems, and why the solution shouldn’t
be based on abstractions foreign from the problem organisation. As we are going
to see, we do not conclude that these ways of doing are wrong per se, but that
they have important implications that are usually overlooked.

Sub-problems. A problem decomposition in sub-problems calls for solving each
sub-problem separately (if it is not the case, then the decomposition in sub-
problems is useless for the design and this is out of the scope of the discussion
here). This means that the sub-solutions must then be integrated together, and
such integration is embedding the complexity of the problem.

In the robotic example, if the bots have a behaviour to explore and discover
victims, and another to go help other bots secure their discovered victims (as in
the Figure 4b), it becomes very difficult to handle at the agent level the choice
between going in a direction or not: it could be needed to secure a victim, but
there may be already other bots going there, so it must gather information about
that, and then it could not be needed because other bots are going, but then maybe
there is more to explore behind the victim, so it should go anyway, except in the
case where there is still enough bots going there for the same reason as it is, and
so on. . .

This puts back the complexity of solving the problem at the agent level
instead of making it the result of the collective behaviour: this is the very reason
why the paradigm shift proposed by self-organisation and emergence engineering
was proposed in the first place. This matter has been discussed many times in
the literature (the “complexity bottleneck” [30]) and we don’t pretend to bring
new arguments for it.

Foreign Abstractions. Even if the problem organisation is used to design the
SOMAS, the engineer can decide to introduce extra concepts that are foreign
to the problem organisation. This means that when facing local decisions, the
agents must translate their interpretation of the current state of the problem

366 V. Noël and F. Zambonelli

to the extra abstractions. Going far from the problem implies that we pre-set
how situations are interpreted by the agents: it prevents them from interpreting
correctly unforeseen situations because the concepts they manipulate can’t cap-
ture them. In other words, the farther the design is from the problem, the lesser
adaptive the system will be, and the lesser adequate behaviours can emerge.

In the robotic example, if the bots are designed so that to explore, they move
in the direction of a repulsion vector from other bots (this is a typical algorithm
for dispersing bots in an unknown environment), then part of the problem solved
is not about exploring while securing anymore, it is about dispersing bots in
an environment: for example in a hallway, a stopped bot securing a victim will
prevent other bots to go behind him. Inversely, if bots behave as we explained
before, when facing a situation where the collective would profit from dispersing,
then bots will disperse as a result of going in directions advertised by others
where the less bots are going and when facing a situation where there is only one
direction to go (e.g., a hallway), bots jut go there because it is the only advertised
direction.

3.4 Open Questions

We now look at open questions but don’t answer them.
In the light of the discussion, how to make a good modelling of a problem

becomes an important question. The strategy and its rationale highlight the
impacts of such a decision, but there is many other things to say about it that
need more research.

Then, the relation between requirements answered at runtime and the agent’s
behaviour is not so clear: it seems that it pertains more to strategies for design-
ing the self-organising behaviour than the decomposition and the pre-solved
behaviour.

Next, it is obvious that some of the elements identified in the problem can’t
always be mapped to agents. That means that the other agents are responsible
of interpreting the state of such elements and can be many to do so: they must
most certainly thus use a common interpretation mechanism (either part of the
self-organising or of the pre-solved behaviour) and there may be ways to correctly
choose it.

In the robotic example, theoretically, an agent modelling a victim should be
responsible of advertising needs for more bots to secure him, but because victims
can’t be mapped to agents, this responsibility is distributed amongst the bots that
locally decide by themselves if they are needed next to a victim as part of their
pre-solved behaviour.

Another point is the practical application of the strategy during the design:
how much the choices made for the self-organising behaviour impacts the pre-
solved behaviour? Does it involve modifying the modelled problem organisation?

Engineering Self-organization and Emergence 367

3.5 Lessons for Documenting SOMAS

This design strategy and its rationale highlight several points pertaining to doc-
umentation and understanding of SOMAS. These “lessons” are useful in our
opinion not only when using the proposed strategy but more generally when
documenting SOMAS.

First, not following the problem domain and still using self-organisation
means that the problem solved is another problem derived from the original.
Second, whichever concept emanating from the problem organisation (including
the pre-solved behaviour) and used to design the self-organising behaviour has
to be considered as being foreseeable in the problem to solve. Taking these two
points into account, during the design and the documentation, is useful to better
understand what is actually emergently solved in a SOMAS, and what can be
adequately used to build SOMAS (including deciding what should be pre-solved
or not).

It is particularly relevant to document the relations between the behaviours
and the problem. Some parts of the problem are not solved through self-organisa-
tion but directly by the human engineer: they are sub-problems whose solution is
implemented by the pre-solved behaviour. The rest of the problem is not directly
solved at design, but at runtime by the self-organising behaviour that exploits
the state of the problem as well as the pre-solved behaviour capabilities to do
so.

In the robotic example, bots move in desired directions while avoiding walls,
interpret the needs of the victims they can see, exchange and interpret messages,
etc. All of this is pre-solved by the human designer either because there is no need
for emergence (for requirements) or because it is imposed as part of the problem
(constraints and context).

3.6 Architectural Advantages for Development

The defended strategy promotes some interesting advantages in terms of non-
functional requirements. Requirements pertaining to the software itself are well
studied in the literature, as seen in Section 2.2, but requirements related to the
organisation of the development are not so much. This can be explained by the
fact that the existing methodological guidelines in the literature do not directly
promote such advantages, while the strategy presented here does. Some of these
architectural advantages of the strategy were already identified in the context of
MAS [3]: here we improve their rationalisations by linking them to the proposed
strategy.

Separation of Concerns. First, a design based on the problem tightly re-
flects the existence of different types of developers of a SOMAS: the developers
taking care of the pre-solved behaviour are often expert of the problem domain
while those taking care of the self-organising behaviour are often researchers ex-
pert in self-organisation. This results in a separation in different implementation
modules and thus ease the organisation of the development work.

368 V. Noël and F. Zambonelli

In the robotic example, roboticians can focus on matters such as vision in-
terpretation, obstacle avoidances, while a self-organisation researcher can exploit
these high-level but problem-oriented abstractions.

Furthermore, this is very helpful to well distinguish what are the parts of the
behaviour that lead to emergence (the self-organisation behaviour and the aspect
of the model it can change) and those that pertain to traditional engineering.
The documentation is thus facilitated. Also it is much more difficult to confuse
these two aspects: this avoids making mistakes such as changing the problem to
be solved while trying to change the self-organising behaviour.

Maintenance and Incremental Design. The way the system is decomposed
in various agents that reflects the problem organisation and do not contain sub-
solutions to the problem eases the answering of new requirements, either because
of a planned incremental design, or unexpected emergent behaviours. Such way
of developing is very common from our experience, often because engineering
emergence is a bit of an experimental science due to the complexity of the way
the system work, and iteration must be done before the system is even in a basic
working state.

Handling a new requirement is changing the behaviour of every agents in the
same way and not redefining the decomposition in sub-functionality and thus
changing the whole architecture. The fact that the system follows directly the
problem organisation allows to closely follow the evolutions of the latter: the
effort for evolving the software is proportional to the quantity of changes in the
problem because of their closeness of structures.

Deployment. It is almost obvious that the correspondence between agents and
their deployment environment will be very close as the elements are modelled
on the problem, which includes the deployment context when there is one.

Rationalisation. Rationalising the choices taken during the design is very
important when following a proper software architecture approach to develop-
ment [14]: it is an important enabler for the longevity of a software system in
an industrial context for example.

As we presently rationalised the strategy of following the problem for design-
ing the system, this strategy can be used safely when rationalisation is needed,
on top of the fact that the advantages presented in this section and in Section 3.5
are useful for explaining and thus rationalising the design choices.

4 Engineering a Swarm of Bots

We now discuss the example with bots exploring and securing victims, which
originates from the ASCENS1 project (see Chapter IV.2 [43]). The proposed

1 Autonomic Service Component Ensembles: http://www.ascens-ist.eu/.

http://www.ascens-ist.eu/

Engineering Self-organization and Emergence 369

SOMAS enables bots to choose where to go and to distribute this decision by
exchanging relevant information.

It was fully implemented using the MASON simulator [37] and MAY2, a tool
for supporting the development of MAS using a component-based approach [40].
The sources as well as an executable version are available at the following url:
http://www.irit.fr/~Victor.Noel/unimore-ascens-saso-2015/.

The objective of this section is to illustrate the contributions and not to
present the best solution to this problem, but we still show a simple comparison
with two known algorithm in order to discuss the validity of the produced design.

4.1 Problem

Bots are situated in a 2D space where they can move in all direction at limited
speed. They can identify and localise other bots in their line of sight up to 20m
around 360� using a range-and-bearing (R&B) device. They localise victims in
their line of sight up to 6m around 360�. They estimate the distance to walls
up to 6m in 36 directions with proximity sensors. Finally, the R&B device can
advertise data (without size limit): this allows to share information in a local
way. All the numbers can be modulated for the sake of experimentation.

The requirements and context are described in Section 2.2. In terms of re-
quirements answered through emergence, while “exploring” isn’t something that
will emerge, as it is clear that even one bot is acting to explicitly explore, on
the other hand it is the collective way to share such exploration that is difficult
to achieve and for which no centralised solution exists. The same applies with
victims securing: when a bot sees a victim, securing it is not a problem, but
what is difficult to achieve is an efficient dispersion of the bots while securing
victims quickly as soon as they are found.

4.2 Proposed Design

The swarm exploration example is particularly interesting because, in our opin-
ion, it is not totally straightforward to see how the strategy can be applied:
even though it is easy to see that each bot is an agent, the choice of their self-
organising behaviour and the type of information it manipulates can lead to very
different solutions as highlighted in Section 3.3. It can thus profit from being ra-
tionalised, with respect to the arguments given in this paper, and documented
as with a proper software architecture approach to development.

Decomposition and Pre-solved Behaviour. This phase is done following
the strategy proposed in Section 3.1: see Figure 4a for a simple model of the
problem organisation.

The first design choice is about the pre-solved behaviour. Since the problem
is about exploring and securing, and since the bot can perceive directions where

2 Make Agents Yourself: http://www.irit.fr/MAY-en.

http://www.irit.fr/~Victor.Noel/unimore-ascens-saso-2015/
http://www.irit.fr/MAY-en

370 V. Noël and F. Zambonelli

he can go or not, this behaviour is about choosing a direction to go to, but also
about avoiding walls or evaluating state of victims (number of bots needed to
secure them). When a victim is seen, the bot will secure it if the number of
bots already on it is not enough for the victim’s need. When no victim is saw,
without any self-organising behaviour, that means choosing randomly one of the
available directions.

As we can notice, no prejudgement is done about how the problem (in terms
of requirements answered through emergence) is solved yet. Starting from that,
we now construct the self-organising behaviour that enables to tune this local
pre-solved behaviour.

Self-organising Behaviour. This phase is done following the AMAS approach
while respecting the defended strategy as presented in Section 3.2. Incrementally,
we add more and more cooperative behaviour to the agents so that they avoid
or correct what is called non-cooperative situations: local situation which are
uncooperative with respect to the goal of the agent (i.e., explore and secure).
For that they can base their decision on exchanged information, on locally ob-
servable information and also on their knowledge of the fact that other bots are
cooperative. We simplified the behaviour description to ease the understanding.

Selecting Directions to Consider Bots see walls and free directions around them:
since they have some information from bots in that direction, they do not con-
sider by themselves the directions where there is another bot but the advertised
direction instead (after translating and estimating the direction for their point
of view). Bots see victims, and must advertise about them, but if every bot that
sees a victim advertise about it, many bots will propagate duplicate and incor-
rect information: thus, a bot only advertise about victims without a bot closer
to them than it.

Sharing Information Since bots do not see far, they advertise their next move-
ment (a direction) using the R&B device: implicitly, because the bot will act
cooperatively, it means that this direction is the best place to go from his point
of view. To this direction they associate a measure of criticality as explained in
Section 3.2. To a direction with victims is associated a criticality proportional
to the number of bots needed in that direction. To an empty area is associated
a criticality of one. Hence, in a given instance of the problem, the criticality is
upper bounded by the number of bots needed by victims that can be seen in
a direction. Then criticality is decreased before being used and propagated in
order to take into account the fact that the bot and other bots are now going
into the chosen direction. This is not the best in terms of cooperation, but it is
enough to illustrate this paper.

Choosing between Directions As said before, they prefer going toward a visible
victim than a direction they see or shared by others. The rest of the time, they
always choose the most critical direction he knows about, but if there is a tie,
they choose the closest to their previous move.

Engineering Self-organization and Emergence 371

4.3 Observed Global Behaviour

A swarm of bots with these behaviours explores the environment and secure
victims. Their behaviour is such that only bots on the borders of the swarm ac-
tually consider new directions to explore, while those inside the swarm propagate
this information. They start as one set and any explorable direction attracts a
set of bots which separate when facing multiple directions. A victim attracts a
small number of bots which stay around it, without attracting too many bots
nor preventing them to continue exploration.

4.4 Discussion on the Strategy

In the example, once the problem is known, we kept all reasoning, decision
and exchanged information close to the concepts of “choosing a direction” and
perceived information to make that decision. We didn’t use other abstractions
to simplify the reasoning by making it less close to the problem.

The main illustration of that is the criticality that is driving the self-organisa-
tion of the system. Thanks to its dynamics, loops in the path of the information
exchanged are avoided as fresher information will always takes precedence. Fur-
thermore bots do not “pre-solve” the global problem for the others: the receiver
chooses what to do with all the information it receives, and not the sender.
Thus, the criticality as it is instantiated in this example is a constantly updated
local representation of the most critical aspects of the problem: it does not make
any assumption about what is a global solution to the problem and it enables a
runtime exploration of the problem space while solving it at the same time.

4.5 Evaluation: Brief Analysis

In order to show that the produced design is good enough to be seriously con-
sidered, we compared its performance with two other algorithms. All algorithms
(including ours) relies on the same mechanisms for what does not concern self-
organisation: wall avoidance, victim’s state interpretation and actual securing.
We can notice that this corresponds to the pre-solved behaviour of our solution.

Simple Disperse Behaviour. Bots consider other visible bots and compute
a repulsion vector from them.They do not consider other bots on a victim (the
only advertised information) to compute the repulsion vector: it is needed so that
stopped bots do not prevent other bots to explore behind them or help them
secure victims. They then choose the direction closest to this repulsion vector
amongst the directions they can go to. In case of a tie, the closest direction to
its previous move is chosen.

Levy Walks. As described in [7], bots randomly choose a direction, go in that
direction for a random amount of time and when the time is up or they hit a wall
or another bot (except if it is to secure a victim), they choose another direction.

372 V. Noël and F. Zambonelli

Comparisons. The performance we compare is time to secure victims (the more
secured, the more the algorithm is considered efficient). We ran the algorithms
by modulating various settings: communication range, number of bots, topology
of the map. We discuss just some interesting cases.

First, the Levy walks algorithm is bad everywhere (at least with the param-
eters we used). Then generally, our behaviour is equivalent to the dispersion one
when there is a lot of bots (aroung 200) or when the communication range is
very low (approx 3 meters). Securing after discovery happens faster with our
algorithm (as it is handled by the self-organising process). When the communi-
cation range increases too much, the disperse behaviour is less efficient (mainly
because bots are too much spaced out and can’t see victims in between) while
inversely, our behaviour’s efficiency increases with the communication range (as
they have better information but explore in the same way). When the number of
bots decreases, the disperse behaviour efficiency decreases (mainly because they
can’t cover enough space while staying in contact and thus miss some part of
the map) while our behaviour efficiency is more or less unchanged.

What is also interesting is that the design resulting from applying the strat-
egy is completely rationalised and form a coherent whole. With the dispersion
algorithm, we had to add some special cases to manage the fact that the repul-
sion vector was not adequate in some situations, such as when a bot was stopped
on a victim in a hallway: this would prevent other bots to go behind the stopped
one or helping to secure the victim it is on. Even with these special cases, there is
many situations where the disperse behaviour still gives strange results: solving
the complexity of the problem has to be done inside the bots behaviours and is
not the result of composing self-organising simple bots as with out behaviour.
The same comments apply to the Levy walks. Furthermore, the latter was very
hard to use because of the parameters that must be tuned by hand for each in-
stance of the problem: we simply didn’t succeed doing that, which may explain
its bad results.

5 Related Works and Discussion

There exists many research work that can be used to support the engineering of
SOMAS, we present and discuss them following various axis.

Applications. Some works apply self-organisation to specific problem in order
to build SOMAS: many of them can be for example found in the SASO (Self-
Adaptive and Self-Organizing systems) community3

They don’t provide methodological guidelines to help the design of SOMAS,
but recurrent practices or self-organising mechanisms can be extracted from
them [45]. Nevertheless, it is sometimes implicit in these works that the problem
organisation (as we understand it) plays an important role in their functioning:
it has even been highlighted in some [34].

3 See the SASO Conferences at http://www.saso-conferences.org.

http://www.saso-conferences.org

Engineering Self-organization and Emergence 373

Reuse and Generic Mechanisms. Some works propose self-organising mech-
anisms that were reused or developed specifically for a problem. Even if it is not
always explicitly said in all works on the matter, the idea is that such mecha-
nisms are generic and reusable: they enable to engineer emergence in different
contexts than those where the mechanisms were first applied. Many works take
inspiration from nature [18] to use well-studied self-organisation mechanisms (fa-
mous examples to solve optimisation problem are ant colony optimisation [19],
or particle swarm optimisation [35]). Also, some works propose generic (hence
reusable) frameworks handling and constraining the self-organising aspects of
the system [44], or generic external mechanism to adapt the functioning of the
agents at runtime [32].

All these works rely on approaches or mechanisms dependent on a certain
class of problems: they have the advantage to be easier to apply and to be reused
when possible, but in exchange it is needed to translate the concepts manipulated
in the problem to the abstractions of the solution reused. As highlighted in
Section 3.5, this means that part of the original problem is lost during that
translation: depending on the problem, this can be acceptable or not.

Methods and Modelling Approaches. Even though there exist many de-
velopment methods in the (SO)MAS field [8], very few tackle methodological
aspects of engineering emergence itself but focus on other questions not of in-
terest here. We still highlight a type of works that can be mistakenly considered
as similar to what is discussed in this paper: ways and models to decompose the
problem or the solution. For example, some methods approaches the design with
a focus on requirements engineering using goal-oriented notations: an example
is the Tropos method [26]. These approaches decompose the problem require-
ments in goals and sub-goals before attributing them to agents. For example the
decomposition shown in Figure 4b is typical in goal-oriented approaches. They
do not impose any decomposition in agents, or if they do, it is with a strategy
opposite to the one defended here that maps the sub-goals to agents. Another
example is role-based decomposition of MAS, used by many methods (the typ-
ical example is AgentUML [6]): roles enable to describe a SOMAS and explain
its functioning, but the contributions of these works are not about guidelines on
what is a good decomposition, which is the main subject of this very paper.

The Ensemble Development Life Cycle proposed within the ASCENS project
(see Chapter III.1 [31]), apparently shares a similar endeavour to the above de-
scribed methodological aspects. However, it has also been explicitly conceived so
as to make it possible to easily accommodated problem decomposition approach
as the one we have proposed in this chapter.

Design Strategies. As discussed in Section 3.2, there exists methodological
guidelines, or design strategies, to accompany the design of the self-organising
behaviour leading to the emergence of desired properties. For example we cited
the work of Gershenson [25] and the AMAS theory [23]. We also redirect the
reader to [17] that presents other such strategies. These works help to build the

374 V. Noël and F. Zambonelli

self-organisation mechanisms themselves as opposite to reuse them (but may of
course profit of reuse at other levels of the development), in exchange of a better
correspondence between the problem tackled and the built solution. As discussed
in Section3.5, this is what can make an emergent behaviour more adapted to a
problem.

While this type of works cover well the question of giving a self-organising
behaviour to the agents of a SOMAS, very few, if none, works propose clear and
rationalised strategies for tackling the decomposition. Nevertheless, the impor-
tance of the problem for the decomposition as been sometimes highlighted in
these works and as been noted as an important architectural feature of MAS [3].
In the work of Gershenson, an interesting clue is given when self-organisation
is defined: it says that “the elements need to divide, but also to integrate, the
problem”. Similarly, the ADELFE method [10], which supports the applying of
the AMAS approach, suggests that the problem domain should help the decom-
position in agents. But for all these works, no explanation nor rationalisation
are given to support these recommendations.

Experimental Engineering and Simulation. As highlighted in Section 3.6,
engineering SOMAS is very similar to an experimental science. Some works note
that the interleaving of design and simulation can be used to accompany the
engineering of emergence in order to iteratively adapt the design with respect to
the observed results: they call it “co-development” [2], “using the experimental
method” [20] or “disciplined exploration” [41]. Some goes farther with “living
design” [24]: designing while the system is running. The discourse of this paper
is well coherent with all these approaches, even though they sometimes adopt
a predictive understanding of emergence [33]. Nevertheless, our contributions
are of a different nature and show that it is possible to exploit the problem
organisation to reduce the development effort of SOMAS.

Problem-Orientation. In traditional software engineering, exploiting the prob-
lem domain is not a novel strategy to approach the development, in particular in
the Problem-Oriented Software Engineering (POSE) [28] and the Domain-Driven
Design (DDD) [21] fields. DDD is particularly successful in a large scale business
context: the focus on problem domain helps to better organise the development
and influences the implementation of the system. But complex functionalities
are separated from the elements modelling the problem and are often as input
on how to model the problem domain, while we advocate for the opposite (when
the objective is engineering emergence of course). POSE follows a more academic
and formal approach with the objective of helping the human designer to explore
the problem space, which is well separated from the solution space.

Thus, an important feature promoted by these works is to exploit the problem
space and to decompose it in sub-problems to then better explore the solution
space. As we have seen in Section 2, in SOMAS, this same problem space is
partially explored by the built system and the roles that the decomposition
plays influences the design in different ways. We can also note that some of the

Engineering Self-organization and Emergence 375

architectural advantages of the strategy presented in Section 3.6 were already
identified in these works on problem-orientation, but here we discussed their
specificities in the context of self-organisation and emergence. These approaches
are thus compatible with the discourse of this paper and a better characterisation
of the links with self-organisation would be beneficial to engineers of SOMAS.

6 Conclusion

By revisiting the concepts of self-organisation, emergence and engineering
through the lenses of the software architecture and requirements field, we high-
lighted that the design activity of decomposition in runtime elements plays the
role of a design bridge between the problem to solve and the emergent behaviour
of the engineered system. We defended the idea that it rationalises the strategy
of designing the system by following what we call the problem organisation, and
that it is an enabler for the emergent behaviour to be adapted to the require-
ments. Using the defended strategy gives much advantages, and not only for the
system itself but also for the organisation of the project, on top of being fitted
for the design constraints imposed by self-organisation and existing approaches.

Self-organisation and emergence are taking more and more important place
in today’s engineering of software system. The need for clearer and rationalised
strategies and methodological guidelines to approach the engineering of emer-
gence is in our opinion an important challenge. There exist many other issues
to explore on this subject, such as better way of documenting and distinguish-
ing between requirements answered by emergence from the others, ways to well
model the problem tackled with self-organisation or define more precisely how
the problem impacts the decentralised decision making.

References

1. Abeywickrama, D.B., Bicocchi, N., Zambonelli, F.: SOTA: Towards a general
model for self-adaptive systems. In: WETICE Conference, pp. 48–53. IEEE Com-
puter Society Press, Los Alamitos (2012)

2. Andrews, P., Stepney, S., Winfield, A.: Simulation as an experimental design pro-
cess for emergent systems. In: EmergeNET4 Workshop: Engineering Emergence
(2010)

3. Arcangeli, J.P., Noël, V., Migeon, F.: Software Architectures and Multiagent Sys-
tems. In: Oussalah, M. (ed.) Software Architectures, vol. 2, pp. 171–208. Wiley,
Chichester (2014)

4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn.
Addison-Wesley, Reading (2003)

5. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T., Sifakis,
J.: Rigorous component-based system design using the BIP framework. IEEE
Software 28(3), 41–48 (2011)

6. Bauer, B., Müller, J.P., Odell, J.: Agent uml: A formalism for specifying multia-
gent software systems. International Journal of Software Engineering and Knowl-
edge Engineering 11(3), 207–230 (2001)

376 V. Noël and F. Zambonelli

7. Beal, J.: Superdiffusive dispersion and mixing of swarms with reactive levy walks.
In: International Conference on Self-Adaptive and Self-Organizing Systems, pp.
141–148. IEEE Computer Society Press, Los Alamitos (2013)

8. Bernon, C., Cossentino, M., Pavón, J.: An Overview of Current Trends in Euro-
pean AOSE Research. Informatica 29, 379–390 (2005)

9. Berns, A., Ghosh, S.: Dissecting Self-* Properties. In: International Conference on
Self-Adaptive and Self-Organizing Systems, pp. 10–19. IEEE Computer Society
Press, Los Alamitos (2009)

10. Bonjean, N., Mefteh Mejri, W., Gleizes, M.P., Maurel, C., Migeon, F.: ADELFE
2.0. In: Cossentino, M., Hilaire, V., Molesini, A., Seidita, V. (eds.) Handbook on
Agent-Oriented Design Processes, pp. 19–64. Springer, Heidelberg (2013)

11. Bruni, R., Montanari, U., Sammartino, M.: Reconfigurable and Software-Defined
Networks of Connectors and Components. In: Wirsing, M., Hölzl, M., Koch, N.,
Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS,
vol. 8998, pp. 73–106. Springer, Heidelberg (2015)

12. Cabri, G., Puviani, M., Zambonelli, F.: Towards a taxonomy of adaptive agent-
based collaboration patterns for autonomic service ensembles. In: International
Conference on Collaboration Technologies and Systems, pp. 508–515. IEEE Com-
puter Society Press, Los Alamitos (2011)

13. Chalmers, D.: Strong and weak emergence. In: Clayton, P., Davies, P. (eds.) The
Re-Emergence of Emergence, Oxford University Press, Oxford (2006)

14. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R.,
Stafford, J.: Documenting Software Architectures: Views and Beyond, 2nd edn.
Addison-Wesley, Reading (2003)

15. De Wolf, T., Holvoet, T.: Emergence versus self-organisation: different concepts
but promising when combined. In: Brueckner, S.A., Di Marzo Serugendo, G.,
Karageorgos, A., Nagpal, R. (eds.) Engineering Self-Organising Systems. LNCS
(LNAI), vol. 3464, pp. 1–15. Springer, Heidelberg (2005)

16. Di Marzo Serugendo, G., Gleizes, M.P., Karageorgos, A.: Self-organisation and
emergence in mas: An overview. Informatica 30, 45–54 (2006)

17. Di Marzo Serugendo, G., Gleizes, M.P., Karageorgos, A. (eds.): Self-Organising
Software. Natural Computing. Springer, Heidelberg (2011)

18. Di Marzo Serugendo, G., Karageorgos, A., Rana, O.F., Zambonelli, F. (eds.): En-
gineering Self-Organising Systems. LNCS (LNAI), vol. 2977. Springer, Heidelberg
(2004)

19. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
20. Edmonds, B.: Using the experimental method to produce reliable self-organised

systems. In: Brueckner, S.A., Di Marzo Serugendo, G., Karageorgos, A., Nagpal,
R. (eds.) Engineering Self-Organising Systems. LNCS (LNAI), vol. 3464, pp. 84–
99. Springer, Heidelberg (2005)

21. Evans, E.: Domain-driven design: tackling complexity in the heart of software.
Addison-Wesley, Reading (2004)

22. Georgé, J.P., Edmonds, B., Glize, P.: Making Self-Organising Adaptive Multiagent
Systems Work. In: Bergenti, F., Gleizes, M.P., Zombonelli, F. (eds.) Methodolo-
gies and Software Engineering for Agent Systems, pp. 319–338. Kluwer Academic
Publishers, Dordrecht (2004)

23. Georgé, J.P., Gleizes, M.P., Camps, V.: Cooperation. In: Di Marzo Serugendo, G.,
Karageorgos, A., Rana, O.F., Zambonelli, F. (eds.) Engineering Self-Organising
Systems. LNCS (LNAI), vol. 2977, pp. 193–226. Springer, Heidelberg (2004)

Engineering Self-organization and Emergence 377

24. Georgé, J.P., Picard, G., Gleizes, M.P., Glize, P.: Living Design for Open Com-
putational Systems. In: International Workshop on Theory And Practice of Open
Computational Systems at WETICE, pp. 389–394. IEEE Computer Society Press,
Los Alamitos (2003)

25. Gershenson, C.: Towards a general methodology for designing self-organizing sys-
tems. In: Bogg, J., Geyer, R. (eds.) Complexity, Science and Society, Radcliffe
Publishing (2007)

26. Giorgini, P., Kolp, M., Mylopoulos, J., Castro, J.: Tropos: A requirements-driven
methodology for agent-oriented software. In: Henderson-Sellers, B., Giorgini, P.
(eds.) Agent-Oriented Methodologies, pp. 20–45. IGI Global (2005)

27. Goldstein, J.: Emergence as a construct: History and issues. Emergence 1(1), 49–
72 (1999)

28. Hall, J., Rapanotti, L., Jackson, M.: Problem-oriented software engineering: Solv-
ing the package router control problem. Transactions on Software Engineer-
ing 34(2), 226–241 (2008)

29. Heylighen, F.: The science of self-organization and adaptivity. The Encyclopedia
of Life Support Systems 5(3), 253–280 (2001)

30. Heylighen, F., Gershenson, C.: The meaning of self-organization in computing.
IEEE Intelligent Systems, Section Trends & Controversies 18(4), 72–75 (2003)

31. Hölzl, M., Koch, N., Puviani, M., Wirsing, M., Zambonelli, F.: The Ensemble De-
velopment Life Cycle and Best Practices for Collective Autonomic Systems. In:
Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998, pp. 325–354. Springer, Heidelberg
(2015)

32. Hudson, J., Denzinger, J., Kasinger, H., Bauer, B.: Dependable risk-aware effi-
ciency improvement for self-organizing emergent systems. In: International Con-
ference on Self-Adaptive and Self-Organizing Systems, pp. 11–20. IEEE Computer
Society Press, Los Alamitos (2011)

33. Johnson, C.: What are Emergent Properties and How do They Affect the Engi-
neering of Complex Systems? Reliability Engineering and System Safety 91(12),
1475–1481 (2006)

34. Jorquera, T., Georgé, J.P., Gleizes, M.P., Couellan, N., Noë, V., Régis, C.: A
Natural Formalism and a Multi-Agent Algorithm for Integrative Multidisciplinary
Design Optimization. In: International Workshop on Optimisation in Multi-Agent
Systems at AAMAS (2013)

35. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: International Con-
ference on Neural Networks, pp. 1942–1948. IEEE Computer Society Press, Los
Alamitos (1995)

36. Kim, J.: Making sense of emergence. Philosophical studies 95(1), 3–36 (1999)
37. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: Mason: A multi-

agent simulation environment. Simulation: Transactions of the society for Model-
ing and Simulation International (2005)

38. Mitchell, M.: Complexity: A guided tour. Oxford University Press, Oxford (2009)
39. De Nicola, R., Latella, D., Lafuente, A.L., Loreti, M., Margheri, A., Massink, M.,

Morichetta, A., Pugliese, R., Tiezzi, F., Vandin, A.: The SCEL Language: Design,
Implementation, Verification. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P.
(eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998,
pp. 3–71. Springer, Heidelberg (2015)

40. Noël, V.: Component-based Software Architectures and Multi-Agent Systems:
Mutual and Complementary Contributions for Supporting Software Development.
Ph.D. thesis, Paul Sabatier University (2012)

378 V. Noël and F. Zambonelli

41. Paunovski, O., Eleftherakis, G., Cowling, T.: Disciplined exploration of emergence
using multi-agent simulation framework. Computing and Informatics 28(3), 369–
391 (2009)

42. Picard, G., Hübner, J.F., Boissier, O., Gleizes, M.P.: Reorganisation and Self-
organisation in Multi-Agent Systems. In: International Workshop on Organiza-
tional Modeling, pp. 66–80 (2009)

43. Pinciroli, C., Bonani, M., Mondada, F., Dorigo, M.: Adaptation and Awareness in
Robot Ensembles: Scenarios and Algorithms. In: Wirsing, M., Hölzl, M., Koch, N.,
Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS,
vol. 8998, pp. 471–494. Springer, Heidelberg (2015)

44. Pitt, J., Schaumeier, J., Artikis, A.: Axiomatization of socio-economic principles
for self-organizing institutions: Concepts, experiments and challenges. Transac-
tions on Autonomous and Adaptive Systems 7(4), 1–39 (2012)

45. Snyder, P., Valetto, G., Fernandez-Marquez, J., Di Marzo Serugendo, G.: Aug-
menting the repertoire of design patterns for self-organized software by reverse en-
gineering a bio-inspired p2p system. In: International Conference on Self-Adaptive
and Self-Organizing Systems, pp. 199–204. IEEE Computer Society Press, Los
Alamitos (2012)

46. Weaver, W.: Science and complexity. American scientist 36(4), 536–544 (1948)
47. Weyns, D.: Architecture-Based Design of Multi-Agent Systems. Springer, Heidel-

berg (2010)
48. Weyns, D., Helleboogh, A., Steegmans, E., De Wolf, T., Mertens, K., Boucké, N.,

Holvoet, T.: Agents are not part of the problem, agents can solve the problem.
In: International Workshop on Agent-Oriented Methodologies at OOPSLA, pp.
101–102 (2004)

Chapter III.3

Engineering Requirements for
Autonomy Features�

Emil Vassev and Mike Hinchey

Lero–the Irish Software Engineering Research Center, University of Limerick,
Limerick, Ireland

Abstract. This chapter outlines an approach to Autonomy Require-
ments Engineering (ARE). ARE targets the integration and promotion
of autonomy in software-intensive systems by providing a mechanism and
methodology for elicitation and expression of autonomy requirements.
ARE relies on goal-oriented requirements engineering to elicit and de-
fine system goals, and uses the generic autonomy requirements model to
derive and define assistive and, eventually, alternative objectives. The
system may pursue these “self-* objectives” in the presence of factors
threatening the achievement of the initial system goals. Once identified,
the autonomy requirements are specified with the KnowLang language.
To demonstrate the ARE’s ability to handle autonomy requirements for
autonomic ensembles, the ARE’s application to the ASCENS Science
Clouds case study is presented and discussed in detail.

Keywords: autonomic computing, autonomy requirements, requirements engi-
neering, self-adaptive behavior

1 Introduction

Nowadays, requirements engineering for autonomous systems appears to be a
wide open research area with no definitive solution yet. The problem is that
the integration and promotion of autonomy in software-intensive systems is an
extremely challenging task. Among the many challenges engineers must over-
come are those related to elicitation and expression of autonomy requirements.
This chapter draws upon our experience with the Autonomy Requirements En-
gineering (ARE) [31,23] approach to present its ability to handle autonomy re-
quirements for self-adaptive systems such as ASCENS ensembles [2,33]. The
ARE approach has been developed by Lero, the Irish Software Engineering Re-
search Center, within the mandate of a joint project with ESA, the European
Space Agency. The approach is intended to help engineers tackle the integra-
tion and promotion of autonomy in software-intensive systems. ARE combines

� This research was supported by the European project IP 257414 (ASCENS).

M. Wirsing et al. (eds.): Collective Autonomic Systems, LNCS 8998, pp. 379–403, 2015.
c© Springer International Publishing Switzerland 2015

380 E. Vassev and M. Hinchey

generic autonomy requirements (GAR) with goal-oriented requirements engineer-
ing (GORE). Using this approach, software engineers can determine what auto-
nomic features to develop for a particular system as well as what artifacts that
process might generate (e.g., goals models, requirements specification, etc.). For
the ASCENS Project [2] in particular, ARE has helped us capture the autonomy
requirements for the ASCENS case studies, but also helped us derive efficient
and relevant knowledge models for these case studies.

The rest of this chapter is organized as follows. Section 2 introduces in detail
the ARE approach. Section 3 presents a proof-of-concept case study where ARE
is used to capture autonomy requirements for an autonomic cloud platform.
Section 4 presents related work and finally, Section 5 presents a brief conclusion
and future work.

2 ARE – Autonomy Requirements Engineering

2.1 Understanding ARE

The first step in developing any new software-intensive system is to determine the
system’s functional and non-functional requirements. The former requirements
define what the system will actually do, while the latter requirements refer to
its qualities, such as performance, along with any constraints under which the
system must operate. Despite differences in application domain and function-
ality, all autonomous systems extend upstream the regular software-intensive
systems with special self-managing objectives (self-* objectives). Basically, the
self-* objectives provide the system’s ability to automatically discover, diagnose,
and cope with various problems. This ability depends on the system’s degree
of autonomicity, quality and quantity of knowledge, awareness and monitoring
capabilities, and quality characteristics such as adaptability, dynamicity, robust-
ness, resilience, and mobility. Basically, this is the basis of the ARE approach
[31,23,26,25,24]: autonomy requirements are detected as self-objectives backed
up by different capabilities and quality characteristics outlined by the GAR
model.

The ARE approach starts with the creation of a goals model that represents
system objectives and their interrelationships. For this, we use GORE where
ARE goals are generally modeled with intrinsic features such as type, actor,
and target, with links to other goals and constraints in the requirements model.
Goals models might be organized in different ways copying with the system
specifics and engineers’ understanding about the system goals. Thus we may
have 1) hierarchical structures where goals reside different level of granularity;
2) concurrent structures where goals are considered as concurrent; etc. At this
stage, the goals models are not formal and we use natural language along with
UML-like diagrams to record them.

The next step in the ARE approach is to work on each one of the system
goals along with the elicited environmental constraints to come up with the
self-* objectives providing the autonomy requirements for this particular sys-
tem’s behavior. In this phase, we apply our GAR model to a system goal to

Engineering Requirements for Autonomy Features 381

derive autonomy requirements in the form of goal’s supportive and alternative
self-* objectives along with the necessary capabilities and quality characteristics.
In the first part of this phase, we record the GAR model in natural language.
In the second part though, we use a formal notation to express this model in a
more precise way. Note that, this model carries more details about the autonomy
requirements, and can be further used for different analysis activities, including
requirements validation and verification.

2.2 System Goals and Goals Models

Goals have long been recognized to be essential components involved in the
requirements engineering (RE) process [18]. To elicit system goals, typically, the
system under consideration is analyzed in its organizational, operational and
technical settings. Problems are pointed out and opportunities are identified.
High-level goals are then identified and refined to address such problems and
meet the opportunities. Requirements are then elaborated to meet those goals.

Goal identification is not necessarily an easy task [12,8,17]. Sometimes goals
can be explicitly stated by stakeholders or in preliminary material available to
requirements engineers. Often though, they are implicit so that goal elicitation
has to be undertaken. The preliminary analysis of the current system along with
the operational environment is an important source for goal identification. Such
analysis usually results in a list of problems and deficiencies that can be for-
mulated precisely. Negating those formulations yields a first list of goals to be
achieved by the system-to-be. In our experience, goals can also be identified sys-
tematically by searching for intentional keywords in the preliminary documents
provided, e.g., ASCENS case study description. Once a preliminary set of goals
and goal-related constraints is obtained and validated with stakeholders, many
other goals can be identified by refinement and by abstraction, just by asking
HOW and WHY questions about the goals/constraints already available [10].
Other goals are identified by resolving conflicts among goals or obstacles to goal
achievement. Further, such goals might be eventually defined as self-* objectives.

Goals are generally modeled by intrinsic features such as their type and at-
tributes, and by their links to other goals and to other elements of a requirements
model. Goals can be hierarchically organized and prioritized where high-level
goals (e.g., main system objectives) might comprise related, low-level, sub-goals
that can be organized to provide different alternatives of achieving the high-
level goals. In ARE, goals are registered in plain text with characteristics like
actors, targets and rationale. Moreover, inter-goal relationships are captured by
goals models putting together all goals along with associated constraints. ARE’s
goals models are presented in UML-like diagrams. Goals models can assist us in
capturing autonomy requirements in several ways [26,25,24,23]:

1. An ARE goals model might provide the starting point for capturing auton-
omy requirements by analyzing the environment for the system-to-be and by
identifying the problems that exist in this environment as well as the needs
that the system under development has to address to accomplish its goals.

382 E. Vassev and M. Hinchey

2. ARE goals models might be used to provide a means to represent alternative
ways where the objectives of the system can be met and analyze and rank
these alternatives with respect to quality concerns and other constraints, e.g.,
environmental constraints:
(a) This allows for exploration and analysis of alternative system behaviors

at design time.
(b) If the alternatives that are initially delivered with the system perform

well, there is no need for complex interactions on autonomy behavior
among autonomy components.

(c) Not all the alternatives can be identified at design time. In an open and
dynamic environment, new and better alternatives may present them-
selves and some of the identified and implemented alternatives may be-
come impractical.

(d) In certain situations, new alternatives will have to be discovered and
implemented by the system at runtime. However, the process of discovery,
analysis, and implementation of new alternatives at runtime is complex
and error-prone. By exploring the space of alternatives at design time,
we are minimizing the need for that difficult task.

3. ARE goals models might provide the traceability mechanism from design
to requirements. When a change in requirements is detected at runtime,
goal models can be used to re-evaluate the system behavior alternatives with
respect to the new requirements and to determine if system reconfiguration
is needed :
(a) If a change in requirements affects a particular goal in the model, it

is possible to see how this goal is decomposed and which parts of the
system implementing the functionality needed to achieve that goal are
in turn affected.

(b) By analyzing a goals model, it is possible to identify how a failure to
achieve some particular goal affects the overall objective of the system.

(c) Highly variable goals models can be used to visualize the currently se-
lected system configuration along with its alternatives and to communi-
cate suggested configuration changes to users in high-level terms.

4. ARE goals models provide a unifying intentional view of the system by re-
lating goals assigned to individual parts of the system (usually expressed
as actors and targets of a goal) to high-level system objectives and quality
concerns:
(a) High-level objectives or quality concerns serve as the common knowledge

shared among the autonomous system’s parts (or components) to achieve
the global system optimization. In this way, the system can avoid the
pitfalls of missing the globally optimal configuration due to only relying
on local optimizations.

(b) Goals models might be used to identify part of the knowledge require-
ments, e.g., actors or targets.

Moreover, goals models might be used to manage conflicts among multiple goals
including self-* objectives. Note that by resolving conflicts among goals or ob-
stacles to goal achievement, new goals (or self-* objectives) may emerge.

Engineering Requirements for Autonomy Features 383

2.3 Self-* Objectives and Autonomy-Assistive Requirements

Basically, the GAR (generic autonomy requirements) model follows the principle
that despite their differences in terms of application domain and functionality,
all autonomous systems are capable of autonomous behavior driven by one or
more self-management objectives [23] that drive the development process of such
systems. ARE uses goals models as a basis helping to derive self-* objectives per
a system goal by applying a model for generic autonomy requirements to any
system goal [25,23]. The self-* objectives represent assistive and eventually al-
ternative goals (or objectives) the system may pursue in the presence of factors
threatening the achievement of the initial system goals. The diagram presented
in Figure 1 depicts the process of deriving the self-* objectives from a goals model
of the system-to-be. Basically, a context-specific GAR model provides some ini-
tial self-* objectives, which should be further analyzed and refined in the context
of the specific system goal to see their applicability. As shown in Figure 1, in ad-

Fig. 1. The ARE Process of Deriving Self-* Objectives per System Goal

dition to the derived self-* objectives, the ARE process also produces autonomy
assistive requirements. These requirements (also defined as adaptation-assistive
attributes) are initially defined by the GAR model [31,26,23] and are intended
to support the achievements of the self-* objectives. The autonomy assistive
requirements outlined by GAR might be defined as following:

– Knowledge - basically data requirements that need to be structured to allow
efficient reasoning.

– Awareness - a sort of functional requirements where knowledge is used as
an input along with events and/or sensor signals to derive particular system
states.

– Resilience and robustness - a sort of soft-goals. For example, such require-
ments can be defined as “robustness: system is robust to communication

384 E. Vassev and M. Hinchey

latency” and “resilience: system is resilient to hardware failures, node dis-
appearances, or appearances”. These requirements can be specified as soft
goals leading the system towards “reducing and copying with communication
latency” and “keeping system’s performance optimal”. A soft goal is satisfied
rather than achieved. Note that specifying soft goals is not an easy task. The
problem is that there is no clear-cut satisfaction condition for a soft goal. Soft
goals are related to the notion of satisfaction. Unlike regular goals, soft goals
can seldom be accomplished or satisfied. For soft goals, eventually, we need
to find solutions that are “good enough” where soft goals are satisfied to a
sufficient degree. Thus, when specifying robustness and resilience autonomy
requirements we need to set the desired degree of satisfaction, e.g., by using
probabilities.

– Monitoring, mobility, dynamicity and adaptability - might also be defined as
soft-goals, but with relatively high degree of satisfaction. These three types
of autonomy requirements represent important quality requirements that the
system in question needs to meet to provide conditions making autonomicity
possible. Thus, their degree of satisfaction should be relatively high. Eventu-
ally, adaptability requirements might be treated as hard goals because they
determine what parts of the system in question can be adapted (not how).

2.4 Autonomy Needs and Requirements Chunks

To record autonomy requirements, ARE relies on both natural language and
formal notation. A natural language description of a self-* objective has the
following format [25]:

– Name of Self-* Objective: Rationale of this self-* objective.
• Assisting system goals: List of system goals assisted by this self-*

objective.
• Actors: Actors participating in the realization of this self-* objective.
• Targets: Targets of this self-* objective.

Note that this description is abstract and does not say how the self-* objective is
going to be achieved. Basically, as recorded the self-* objectives define the “au-
tonomy needs” of the system. How these needs are going to be met is provided by
more detailed description of the self-* objectives recorded as ARE Requirements
Chunks and/or specified formally.

In general, a more detailed description in a natural language may precede
the formal specification of the elicited autonomy requirements. Such description
might be written as a scenario describing both the conditions and sequence of ac-
tions needed to be performed in order to achieve the self-* objective in question.
Note that a self-objective could be associated with multiple scenarios. The com-
bination of a self-* objective and a scenario forms an ARE Requirements Chunk
(see Figure 2). A requirements chunk can be recorded in a natural language as
following:

Engineering Requirements for Autonomy Features 385

ARE Requirements Chunk

– Name of Self-* Objective: Rationale of this self-* objective.
• Assisting system goals: List of system goals assisted by this self-*

objective.
• Actors: Actors participating in the realization of this self-* objective.
• Targets: Targets of this self-* objective.

– Scenario: Description of a scenario how this self-* objective can be met by
performing the system’s functionality.

Fig. 2. Requirements Chunk - Goal & Scenario

Requirements chunks associate each goal with scenarios where the goal-scenario
pairs can be assembled together through composition, alternative and refinement
relationships (see Figure 2). The first two lead to AND and OR structures of
requirements chunks, whereas the last leads to the organization of the collection
of requirements chunks as a hierarchy of chunks of different granularity. AND re-
lationships among requirements chunks link complementary chunks in the sense
that everyone requires others to define a completely functioning scenario cover-
ing a main goal. Requirements chunks linked through OR relationships represent
alternative ways of fulfilling the same goal. Requirements chunks linked through
a refinement relationship are at different levels of abstraction. Internally, the
scenarios might introduce additional variability via conditional requirements de-
rived from the GAR’s requirements such as monitoring, adaptability, dynamicity,
resilience, and robustness.

2.5 Formal Specification

ARE relies on KnowLang for the formal specification of the elicited autonomy re-
quirements. Therefore, we use KnowLang to record these requirements as knowl-
edge representation in a Knowledge Base (KB) comprising a variety of knowledge

386 E. Vassev and M. Hinchey

structures, e.g., ontologies, facts, rules, and constraints. The self-* objectives are
specified with special policies associated with goals, special situations, actions
(eventually identified as system capabilities), metrics, etc. Thus, the self-* objec-
tives are represented as policies describing at an abstract level what the system
will do when particular situations arise. The situations are meant to represent
the conditions needed to be met in order for the system to switch to a self-*
objective while pursuing a system goal. Note that the policies rely on actions
that are a priori-defined as functions of the system. In case, such functions have
not been defined yet, the needed functions should be considered as autonomous
functions and their implementation will be justified by the ARE’s selected self-*
objectives. ARE does not state neither specify how the system will perform
these actions. This is out of the scope of the ARE approach. Basically, any re-
quirements engineering approach states what the software will do not how the
software will do it.

3 Capturing Autonomy Requirements for Science Clouds

To better understand the concepts behind ARE, in this section, we present an
example of using the ARE approach to capture autonomy requirements for an
autonomic ensemble described as the ASCENS Science Clouds case study (see
Chapter IV.3 [15]).

3.1 Science Clouds

Science Clouds is a cloud computing scientific platform for application execution
and data storage [14]. Individual users or universities can join a cloud to pro-
vide (and consume of course) resources to the community. A science cloud is a
collection of cloud machines - notebooks, desktops, servers, or virtual machines,
running the Science Cloud Platform (SCP). Each machine is usually running
one instance of the Science Cloud Platform (Science Cloud Platform instance or
SCPi). Each SCPi is considered to be a Service Component (SC) in the ASCENS
sense. To form a cloud, multiple SCPis communicate over the Internet by using
the IP protocol. Within a cloud, a few SCPis might be grouped into a Service
Component Ensemble (SCE), also called a Science Cloud Platform ensemble
(SCPe). The relationships between the SCPis are dynamic and the formation of
a SCPe depends mainly on the properties of the SCPis. The common charac-
teristic of an ensemble is SCPis working together to run one application in a
fail-safe manner and under consideration of the Service Level Agreement (SLA)
of that application, which may require a certain number of active SCPis, certain
latency between the parts, or have restrictions on processing power or memory.
The SCP is a platform as a service (PaaS), which provides a platform for ap-
plication execution [20]. Thus, SCP provides an execution environment where
special applications might be run by using the SCP’s application programming
interface (API) and SCP’s library [20]. These applications provide a software as

Engineering Requirements for Autonomy Features 387

a service (SaaS) cloud solution to users. The data storage service is provided in
the same manner, i.e., via an application.

Based on the rationale above, we may conclude that the Science Clouds’ main
objective is to provide a scientific platform for application execution and data
storage [14]. Being a cloud computing approach, the Science Clouds approach
extends the original cloud computing goal to provide services (or resources) to
the community of users. Note that cloud computing targets three main types of
service (or resource):

1. Infrastructure as a Service (IaaS): a solution providing resources such as
virtual machines, network switches and data storage along with tools and
APIs for management (e.g., starting VMs).

2. Platform as a Service (PaaS): a solution providing development and execu-
tion platforms for cloud applications.

3. Software as a Service (SaaS): a solution providing software applications as a
resource.

3.2 GORE for Science Clouds

The three different services provided by Science Clouds (see Section 3.1) can
be defined as three main goals of cloud computing, and their realization by
Science Clouds will define the main Science Clouds goals. Figure 3 depicts the
ARE goals model for Science Clouds where goals are organized hierarchically at
four different levels. In addition, from the rationale above we may conclude that
an underlying system goal is to optimize application execution by minimizing
resource usage along with providing a fail-safe execution environment.

As shown in Figure 3, the goals from the first three levels are main system
goals captured at different levels of abstraction. The 3rd level is resided by goals
directly associated with Science Clouds and providing a concrete realization of
the cloud computing goals outlined at the first two levels. Finally, the goals from
the 4th level are supporting and preliminary goals that need to be achieved be-
fore proceeding with the goals from the 3rd level. Figure 3 puts together all the
system goals by relating them via particular relationships such as inheritance
and dependency. Goals are depicted as boxes listing both goal actors and tar-
gets (note that targets might be considered as a distinct class of actors). The
ARE Goals Model for Science Clouds provides the traceability mechanism for
autonomy requirements. When a change in requirements is detected at runtime,
the goals model can be used to re-evaluate the system behavior with respect
to the new requirements and to determine if system reconfiguration is needed.
Moreover, the presented goals model provides a unifying intentional view of the
system by relating goals assigned to actors and involving targets. Some of the
actors can be eventually identified as the autonomy components providing a
self-adaptive behavior when necessary to keep up with the high-level system
objectives (the goals residing Level 3).

The following elements describe the system goals by goal levels as shown in
Figure 3:

388 E. Vassev and M. Hinchey

Fig. 3. Science Clouds Goals Model

Level 1 Goals:

– Provide Resources: A cloud computing system (cloud) shall provide com-
putational resources to the community of users.

• Actors: cloud (the cloud computing system), users
• Targets: resources

Level 2 Goals:

– Provide Infrastructure as a Service: The cloud shall provide resources
such as virtual machines, virtual network switches, and data storage. To man-
age this infrastructure, the cloud provides tools and APIs for management,
e.g., starting and stopping VMs or creating new virtual networks.

• Actors: cloud, operators
• Targets: virtual machines, network switches, data storage

– Provide Platform as a Service: The cloud shall provide development
and execution platforms for cloud applications, e.g., it may provide a frame-
work for writing applications (by developers), which can either be supplied
with adequate resources and distributed automatically, or request additional
resources.

• Actors: cloud, developers
• Targets: development platforms, execution platforms

Engineering Requirements for Autonomy Features 389

– Software as a Service: The cloud shall provide software applications that
can be run by users within the cloud. Some examples of such applications
could be e-mail service, word processor, etc. A good real-life example is
Google Apps.

• Actors: cloud, execution platform, users
• Targets: applications platforms

Level 3 Goals:

– Provide Zimory Cloud: This goal is to realize the Provide Infrastructure
as a Service cloud computing goal by running the Zimory Cloud. The Zimory
Cloud shall provide cloud infrastructure based on SCP by running SCPis
on virtual machines, as described by the rationale above. In addition, the
goal requires that the Zimoty Cloud provide both API and tools needed for
infrastructure management.

• Actors: Zimory Cloud, API, tools, SCP, SCPis, operators
• Targets: virtual machines, network switches, data storage, applications

– Provide SCP: This goal is to realize the Provide Platform as a Service
cloud computing goal by providing the Zimory Cloud’s SCP. The SCP must
ensure both development and execution platforms where cloud applications
can be developed and executed. Therefore, the platform must provide both
API and libraries used by developers.

• Actors: SCP, developers, scientists
• Targets: API, library, virtual machines, services, grid-like calculations,

data storage
– Provide Applications: This goal is to realize the Provide Software as a

Service cloud computing goal by providing applications running in the SCP
Cloud (or Zimory Cloud). The software applications can be run within a
SCPe by users using the SCP’s application programming interface (API)
and SCP’s library. Data storage services might be provided via applications
as well.

• Actors: SCP Cloud, SCPe, API, library, users
• Targets: applications, data storage

Level 4 Goals:

– Form SCPe: This goal is to form a dynamic SCPe that shall provide the
needed computational resources for the realization of either the Provide SCP
goal or Provide Applications goal, or both. The Form SCPe goal is support-
ive to these two goals (see the allows relationship in Figure 3). Moreover,
the achievement of this goal may initiate two more assistive goals: Provide
Fail-safe Execution and Optimize Resource Usage, which assist the Provide
Applications goal (see Figure 3). Note that this goal shall take into consider-
ation the Service Level Agreement constraint, which may impose restrictions
(or requirements) on the processing power, number of SCPis running within
the ensemble, communication latency, memory usage, etc.

390 E. Vassev and M. Hinchey

• Actors: SCP Cloud, SCPis, application, communication, Service Level
Agreement

• Targets: SCPe
– Form SCP Cloud: This goal is to form the SCP Cloud (Zymory Cloud)

from the running SCPis joining their resources within that cloud. Note that
the cloud allows the individual SCPis voluntarily join in or opt out. In addi-
tion, any application that runs on a cloud’s SCPi is also added to the cloud
as a resource. Thus, the SCP Cloud is formed by both running SCPis and
applications (see Figure 3).

• Actors: SCP, SCPis, application, communication
• Targets: SCP Cloud

– Run SCPi: This goal is to run a SCPi as an instance of SCP hosted by
a virtual machine. Basically, this goal along with the Run Application goal
(both connected via AND relationship) might be considered as a sub-goal of
the Form SCP Cloud goal.

• Actors: SCP, virtual machine
• Targets: SCPi

– Run Application: This goal is to run an application on a SCPi using SCP’s
API and library. This goal must be achieved as part of the Form SCP Cloud
goal, i.e., it might be considered as a sub-goal of this goal.

• Actors: SCPi, API, library
• Targets: application

– Provide Fail-safe Execution: This goal is to ensure that running appli-
cations will continue working if a hosting SCPi fails. This policy must be
provided by a SCPe, eventually formed to provide a fail-safe execution en-
vironment. The Provide Fail-safe Execution goal is assistive to the Run Ap-
plication goal and it may be considered as a self-* objective providing fault
tolerance.

• Actors: applications, SCPis, SCPe
• Targets: fail-safe execution of applications

– Optimize Resource Usage: This goal is to ensure that running applica-
tions will use the cloud resources in the most optimal way. This policy must
be provided by a SCPe, eventually formed to provide an optimal use of par-
ticular cloud resources, e.g., memory, disk space, etc. The Optimize Resource
Usage goal is assistive to the Run Application goal and it may be considered
as a self-* objective providing self-optimization.

• Actors: applications, SCPis, SCPe, cloud resources
• Targets: optimized resource usage

3.3 GAR for Science Clouds

After completing the goals model for Science Clouds, the next step of the ARE
approach is to put the GAR model in the context of cloud computing to derive
a domain-specific GAR that can be applied to the goals captured by the goals
model for Science Clouds. To derive the domain-specific GAR we elaborated
on the Science Clouds features, issues and goals to come up with self-* objec-
tives and the consecutive autonomy-assistive requirements. For example, some
remarkable issues that eventually can turn to autonomy features are [14]:

Engineering Requirements for Autonomy Features 391

– fail-safe operation: An application should be available even its host SCPi
fails (see Provide Fail-safe Execution goal in Section 3.2).

– load balancing / throughput : Parallel execution of same applications to dis-
tribute the computational/resource overhead (load) when it is high, but not
before that.

– energy conservation: Shutting down virtual machines or de-configuring vir-
tual networks if not required (this feature requires IaaS support).

– SCPi fails, disappears, or appears: A failing SCPi attempts to notify other
SCPis, which need to take over responsibilities. If a new SCPi appears, it
should engage with applications execution.

– SCPi (or link) with high load, or idle: Move applications to another SCPi,
receive applications from another SCPi, or run a new SCPi on a virtual
machine. If a SCPi is idle, then engage with applications running already on
another SCPi, or simply shut down it.

To address these issues, SCPis must be monitored (including self-monitored)
along with the cloud environment to detect high computational loads (due to
applications), high communication latency, high memory usage, other SCPis that
join in or opt out, etc. Basically, monitoring shall go on three levels:

– network level : The SCPis forming a SCPe need to know each other and be
able to route between themselves.

– application level : The SCPis forming a SCPe need to know what applications
run on which SCPis.

– data level : When an application is deployed, the SCPis that can eventually
run that application need to have the application executable (immutable
data). Moreover, the SCPis running that application need to monitor the
application data (mutable data) and eventually store it through check points,
so the application can be resumed in case of a SCPi failure or the failure of
the application itself.

Addressing these issues in the context of the system goals (see Section 3.2) will
result into self-adaptive behavior realized by self-* objectives. These self-* objec-
tives along with the autonomy-assistive requirements form our domain-specific
GAR model for Science Clouds as following:

– self-* objectives (autonomicity):
• self-healing: If a SCPi fails or is shut down, the applications executing

on it must be made available on another SCPi in the SCPe hosting those
SCPis.

• self-configuring 1 : Each SCPi is aware about changes in its hosting SCPe
- new SCPis can be added to the hosting SCPe or other can voluntarily
leave of shut down. A SCPi should adapt itself to take into consideration
both the newly available resources and recently disappeared resources
provided by other SCPis.

• self-configuring 2 : A SCPi is aware about the performance of the hosted
applications. If an application is slowing down due to a lack of resources,
this application can be distributed among different SCPis (run/resumed
in parallel) if the application itself supports distributed execution.

392 E. Vassev and M. Hinchey

• self-optimizing 1 : If a SCPi reaches its capacity (e.g., consistent high
CPU load or swapping due to high memory usage), it may transfer some
of the computational load to another SCPi from the same SCPe.

• self-optimizing 2 : If the communication latency within a SCPe is rela-
tively high, due to overloaded links in the network, the SCPe may engage
new SCPis to reduce the communication traffic.

• self-optimizing 3 : If the communication latency within a SCPe is rela-
tively high, due to overloaded links in the network, the SCPe may reduce
the load transfer within the SCPe itself.

• self-optimizing 4 : If SCPis are no longer required, the hosting SCPe may
reconfigure to engage the idle SCPis in computational processes.

• self-optimizing 5 : If certain SCPis are no longer required, they may shut
down along with their hosting virtual machines to save energy.

• self-optimizing 6 : If the computational load in certain SCPes is relatively
high, due to overloaded application executions, the SCPe may start new
SCPis along with the hosting virtual machines (if necessary) to reduce
the computational overload.

– knowledge: cloud objectives; SCPes (engaged SCPis, ensemble’s applications,
ensemble’s virtual machines, service level agreement, states), SCPis (appli-
cations, CPU, memory, storage capacity, states); applications (needed re-
sources, distributiveness, states); communication links;

– awareness : application awareness (resource consumption, execution stage,
load distribution, data-transfer); SCPi self-awareness (applications, resources,
hosting virtual machine, user); SCPe awareness (participating SCPis, commu-
nication links, distributed applications, service level agreement); cloud aware-
ness (SCPes, SCPis); communication awareness (communicating SCPis, data-
transfer);

– monitoring: SCPi self-monitoring (running applications, CPU load, memory
usage, storage capacity); SCPe monitoring (ensemble’s SCPis, communica-
tion latency between SCPis, data transfer within SCPe);

– adaptability: adaptable load balancing; adaptable communication;
– dynamicity: dynamic communication links; dynamic SCPe formation;
– robustness : robust to SCPi failures; robust to data-transfer failures; robust

to application execution failures;
– resilience: resilient communication links (communication losses must be re-

pairable); network resilience (the routing needs to work in a dynamic envi-
ronment where SCPis voluntarily join in and opt out of SCPes); application
resilience; data resilience;

– mobility: data distribution; application distribution; SCPi mobility (SCPis
may run on different virtual machines);

3.4 ARE Requirements Chunks for Science Clouds

The next step is to merge the GORE model for Science Clouds with the GAR
model for science clouds, by applying the GAR model to the system goals cap-
tured in the first phase of the ARE process. Considering the fact that the Level 3

Engineering Requirements for Autonomy Features 393

goals (see Figure 3 and Section 3.2) present the main system goals, we applied
the GAR model to these goals to derive self-adaptive behavior supporting the
common Science Clouds behavior realized by the goals Provide Zimory Cloud,
Provide SCP, and Provide Applications. Note that not all the self-* objectives
derived by the GAR model in Section 3.3 are relevant to every one of these three
goals. In this section, we present the self-* objectives derived for these three
goals. The self-* objectives are presented as autonomy requirements chunks (see
Section 3.5).

For the Provide Zimory Cloud goal we derived the following self-* objectives:

– Self-optimizing 5: If certain SCPis are no longer required, they may shut
down along with their hosting virtual machines to save energy.

• Assisting system goals: Provide Zimory Cloud
• Actors: SCPis, virtual machines
• Targets: SCPis shut down
• Scenario: If a SCPi is in idle mode during a certain interval of time, then

it can autonomously shut down. If a hosting virtual machine detects
that it is not running any SCPis for a certain period of time, it can
autonomously shut down.

– Self-optimizing 6: If the computational load in a SCPe is relatively high,
due to overloaded application executions, the SCPe may start new SCPis
along with the hosting virtual machines (if necessary) to reduce the compu-
tational overload.

• Assisting system goals: Provide Zimory Cloud
• Actors: SCPe, SCPis, virtual machines, applications
• Targets: SCPis started,
• Scenario: If a SCPe detects a high computational load in the entire ensem-

ble of SCPis, i.e., all the engaged SCPis run heavy application executions,
then it may start new SCPis. If there is a lack of virtual machines that can
host SCPis, then such machines can be started as well.

For the Provide SCP goal we derived the following self-* objectives:

– Self-configuring 1: Each SCPi is aware about changes in its hosting SCPe
- new SCPis can be added to the hosting SCPe or other can voluntarily leave
of shut down. A SCPi should adapt itself to take into consideration both
the newly available resources and recently disappeared resources provided
by other SCPis.

• Assisting system goals: Provide SCP
• Actors: SCPe, SCPis, applications
• Targets: SCPis updated on changes in resource availability
• Scenario: If a SCPi detects absence of a previously active SCPi it stops

collaborating with that SCPi, i.e., it stops all the joint operations on
applications execution and data transferring. Moreover, the active SCPi
may need to reconsider the resource availability and eventually resched-
ule the controllable application executions to cope with the new situation.
If a SCPi detects presence of a new SCPi that recently joined the SCPe,
it shall reconsider the resource availability and eventually it may ask this
new SCPi share part of the computational workload.

394 E. Vassev and M. Hinchey

– Self-optimizing 1: If a SCPi reaches its capacity (e.g., consistent high CPU
load or swapping due to high memory usage), it may transfer some of the
computational load to another SCPi from the same SCPe.

• Assisting system goals: Provide SCP
• Actors: SCPe, SCPis, resources, applications
• Targets: application executions shared among SCPis
• Scenario: If a SCPi detects high resource usage (consistent high CPU

load or high swapping) it may ask another SCPi to take over some of
the application executions.

– Self-optimizing 2: If the communication latency within a SCPe is relatively
high, due to overloaded links in the network, the SCPe may engage new
SCPis to reduce the communication traffic.

• Assisting system goals: Provide SCP
• Actors: SCPe, SCPis, communication
• Targets: low communication latency
• Scenario: If a SCPi detects high communication latency while communi-

cating with another SCPi, it may start collaborating with other SCPis to
reduce the data transfer with the initial SCPi and consecutively, reduce
the communication latency.

– Self-optimizing 3: If the communication latency within a SCPe is relatively
high, due to overloaded links in the network, the SCPe may reduce the load
transfer within the SCPe itself.

• Assisting system goals: Provide SCP
• Actors: SCPe, SCPis, communication, transferred data
• Targets: low communication latency
• Scenario: If a SCPi detects high communication latency while commu-

nicating with another SCPi, it may reduce the amount of transferred
data.

– Self-optimizing 4: If SCPis are no longer required, the hosting SCPe may
reconfigure to engage the idle SCPis in computational processes.

• Assisting system goals: Provide SCP
• Actors: SCPe, SCPis, applications
• Targets: SCPis involved in application executions
• Scenario: If a SCPi stays in idle mode for a specific period of time, it may

request from other SCPis to take over some of the ongoing application
executions.

For the Provide Application goal we derived the following self-* objectives:

– Self-healing: If a SCPi fails or is shut down, the applications executing on
it must be made available on another SCPi in the SCPe hosting those SCPis.

• Assisting system goals: Provide Application
• Actors: SCPe, SCPis, applications
• Targets: applications transferred for execution to other SCPis
• Scenario: If a SCPi fails or is shut down while performing application

executions, other SCPis shall detect the SCPi failure and shall take over
the application executions carried by the failed SCPi.

Engineering Requirements for Autonomy Features 395

– Self-configuring 2: A SCPi is aware about the performance of the hosted
applications. If an application is slowing down due to a lack of resources,
this application can be distributed among different SCPis (run/resumed in
parallel) if the application itself supports distributed execution.

• Assisting system goals: Provide Application
• Actors: SCPe, SCPis, application, resources
• Targets: application distributed for execution to other SCPis
• Scenario: If a SCPi detects low performance in application executions

due to a lack of resources, the SCPi may request other SCPis to take
over some of the hosted application executions, which will eventually
release resources in the initial SCPi and improve the performance of its
still hosted applications.

Fig. 4. Science Clouds Goals Model with Self-* Objectives Assisting System Goals
from Level 3

396 E. Vassev and M. Hinchey

In addition to the self-* objectives derived from the context-specific GAR model,
more self-* objectives might be derived from the constraints associated with the
targeted system goal. Note that the analysis step in Figure 1 (see Section 2.3)
uses the context-specific GAR model and elaborates on both system goal and
constraints associated with that goal. Often environmental constraints introduce
factors that may violate the system goals and self-* objectives will be required to
overcome those constraints. Actually, such constraints might represent obstacles
to the achievement of a goal. Constructing self-* objectives from goal constraints
can be regarded as a form of constraint programming, in which a very abstract
logic sentence describing a goal with its actors and targets (it may be written
in a natural language as well) is extended to include concepts from constraint
satisfaction and system capabilities that enable the achievement of the goal. In
ARE, the capabilities are actually abstractions of system operations that need
to be performed to maintain the goal fulfillment along with constraint satisfac-
tion. In this approach, we need to query the provability of the targeted goal,
which contains constraints, and then if the system goal cannot be fulfilled due
to constraint satisfaction, a self-* objective is derived as an assistive system goal
preserving both the original system’s goal targets and constraint satisfaction.

An example demonstrating this process can be deriving self-* objectives from
the Service Level Agreement (SLA) constraints (see Section 3.2). SLA may im-
pose constraints on application execution, e.g., certain number of active SCPis,
certain latency between the communicating SCPis, or restrictions on process-
ing power or on memory [20]. In this exercise, we derived the following self-*
objectives copying with the SLA constraints:

– Self-engaging-SCPis: A SCPe formed for the execution of a certain appli-
cation may need a certain number of involved SCPis.

• Assisting system goals: Provide SCP
• Actors: SCPe, SCPis, application
• Targets: exact number of SCPis
• Scenario: If an application requires an exact number of SCPis to run,

then SCPe shall engage the exact number of SCPis needed for the exe-
cution of that application.

– Self-tuning-Latency: A SCPe formed for the execution of a certain appli-
cation may need a certain latency between the communicating SCPis needed
for the execution of that application.

• Assisting system goals: Provide SCP
• Actors: SCPe, SCPis, application, communication
• Targets: latency
• Scenario: If an application requires a certain communication latency

between the SCPis engaged to run that application, then each one of
these SCPis shall maintain its communication latency by either speed up
the communication (by applying the self-* objective Self-optimizing 3)
or slow it down (by introducing certain delay before sending the data
packages).

– Self-tuning-CPU-Usage: A SCPi executing a certain application might
be restricted by maximum CPU power allowed to this application.

Engineering Requirements for Autonomy Features 397

• Assisting system goals: Provide SCP
• Actors: SCPi, application
• Targets: CPU power
• Scenario: If an application is consuming more CPU power than the max-

imum allowed, then the hosting SCPi should slow down the application
execution to minimize the CPU usage.

– Self-tuning-Memory-Usage: ASCPi executing a certain application might
be restricted by maximum memory allowed to this application.

• Assisting system goals: Provide SCP
• Actors: SCPi, application
• Targets: memory
• Scenario: If an application is consuming more memory than the maxi-

mum allowed, then the hosting SCPi should enforce lower memory use
by this application.

Figure 4 depicts the Science Clouds Goals Model (shown in Figure 3), but en-
riched with the self-* objectives described above. As shown, these self-* objec-
tives (depicted in gray color) inherit the system goals they assist by providing
behavior alternatives with respect to these system goals. Note that, due to the
“inheritance” relationship, the targets of the assisted system goals are kept in all
of those self-* objectives. Note that the Science Clouds system switches to one of
the assisting self-* objectives when alternative autonomous behavior is required
(e.g., an SCPi fails to perform).

3.5 Formalizing Science Clouds with KnowLang

The next step after deriving the autonomy requirements per system goal is their
specification with KnowLang. Note that the autonomy requirements carry all
the necessary information that needs to be represented as knowledge for Science
Clouds. Therefore, by specifying the captured self-* objectives we build the nec-
essary knowledge model for Science Clouds, which is the ultimate goal of this
exercise. Specifying with KnowLang goes over a few phases:

1. Initial knowledge requirements gathering - involves domain experts to deter-
mine the basic notions, relations and functions (operations) of the domain
of interest.

2. Behavior definition - identifies situations and behavior policies as “control
data” helping to identify important self-adaptive scenarios.

3. Knowledge structuring - encapsulates domain entities, situations and behav-
ior policies into KnowLang structures like concepts, properties, functionali-
ties, objects, relations, facts and rules.

By applying the ARE approach to capture the autonomy requirements for Sci-
ence Clouds, we actually perform the first two phases, as described above.
KnowLang [28] is exclusively dedicated to knowledge specification where knowl-
edge is specified as a Knowledge Base (KB) comprising a variety of knowledge
structures, e.g., ontologies, facts, rules, and constraints. Here, in order to specify

398 E. Vassev and M. Hinchey

the autonomy requirements for Science Clouds, the first step is to specify the
KB representing the cloud, SCPes, SCPis, applications, etc. To do that, we need
to specify ontology structuring the knowledge domains of the cloud. Note that
these domains are described via domain-relevant concepts and objects (concept
instances) related through relations. To handle explicit concepts like situations,
goals, and policies, we grant some of the domain concepts with explicit state
expressions (a state expression is a Boolean expression over ontology) [28]. Note
that being part of the autonomy requirements, knowledge plays a very important
role in the expression of all the autonomy requirements: autonomicity, knowledge,
awareness, monitoring, adaptability, dynamicity, robustness, resilience, and mo-
bility outlined by GAR (see Section 2.3).

Note that a full presentation of the specified with KnowLang KB for Science
Clouds is beyond the scope of this chapter. For more information on the specified
KB, the interested reader is advised to consult Chapter II.3 [32].

4 Related Work

An autonomous system is able to monitor its behavior and eventually mod-
ify the same according to changes in the operational environment, thus being
considered as self-adaptation. As such, autonomous systems must continuously
monitor changes in its context and react accordingly. But what aspects of the
environment should such a system monitor? Clearly, the system cannot monitor
everything. And exactly what should the system do if it detects less than optimal
conditions in the environment? Presumably, the system still needs to maintain
a set of high-level goals that should be satisfied regardless of the environmental
conditions, e.g., mission goals of unmanned spacecraft used for space exploration.
But non-critical goals could be not that strict [27], thus allowing the system a
degree of flexibility during operation. These questions (and others) form the core
considerations for building autonomous systems.

Traditionally, requirements engineering is concerned with what a system
should do and within which constraints it must do it. Requirements engineering
for autonomous systems and self-adaptive systems, therefore, must address what
adaptations are possible and under what constrains, and how those adaptations
are realized. In particular, questions to be addressed include: 1) “What aspects of
the environment are relevant for adaptation?”; and 2) “Which requirements are
allowed to vary or evolve at runtime, and which must always be maintained?”.
Requirements engineering for autonomous systems must deal with uncertainty,
because the execution environment often is dynamic and the information about
future execution environments is incomplete, and therefore the requirements for
the behavior of the system may need to change (at runtime) in response to the
changing environment.

Requirements engineering for autonomous systems appears to be a wide open
research area with only a limited number of approaches yet considered. The
ASCENS Project approaches the requirements problem from a few angles. In
addition to ARE, ASCENS also considers a design method called Invariant Re-

Engineering Requirements for Autonomy Features 399

finement Method (IRM) (see Chapter III.4 [3]) and a generic approach called
SOTA (States Of The Affairs) [1] (see Chapter III.1 [9]). IRM relies on goal-based
requirements and refines system goals down to the responsibilities of individ-
ual components, component processes, and ensembles. IRM captures goals and
requirements as invariants that describe desired system states over time. The
SOTA approach proposes an extension of existing goal-oriented requirements
engineering approaches that integrates elements of dynamic systems modeling.
SOTA models the entities of a self-adaptive system as if they were immersed
in multi-dimensional space where each of the dimensions represents a specific
aspect of a particular situation involving the system and/or the environment.
While ARE provides a complete approach for capturing autonomy requirements,
both IRM and SOTA are rather complimentary to ARE approaches, which do
not provide mechanisms for determining the autonomy requirements, but rather
extend the options for handling some of the autonomy requirements, once these
have been identified.

The Autonomic System Specification Language (ASSL) [30,29,22] is a frame-
work providing for a formal approach to specifying and modeling autonomous
(autonomic) systems by emphasizing the self-* requirements. Cheng and Atlee [4]
report on work on specifying and verifying adaptive software. In [6,19], research
on runtime monitoring of requirements conformance is described. In [21], Sut-
cliffe, S. Fickas and M. Sohlberg demonstrate a method (called PC-RE) for per-
sonal and context requirements engineering that can be applied to autonomous
systems. In addition, some research approaches have successfully used goal mod-
els as a foundation for specifying the autonomic behaviour [13] and requirements
of adaptive systems [7].

A major breakthrough of the past decade in Software Requirements Engineer-
ing is the goal-oriented approach to capturing and analyzing stakeholder inten-
tions to derive functional and non-functional (hereafter quality) requirements
[5,16]. In essence, this approach has extended upstream the software develop-
ment process by adding a new phase (early requirements analysis) that is also
supported by engineering concepts, tools and techniques.

The fundamental concepts used to drive the goal-oriented form of analysis are
those of goal and actor. To fulfill a stakeholder goal, the Goal-Oriented Require-
ments Engineering (GORE) [11] approach provides for analyzing the space of
alternatives, which makes the process of generating functional and non-functional
(quality) requirements more systematic in the sense that the designer is explor-
ing an explicitly represented space of alternatives. It also makes it more rational
in that the designer can point to an explicit evaluation of these alternatives in
terms of stakeholder criteria to justify her choice.

ARE uses GORE as the first phase of the Autonomy Requirements Engi-
neering process. ARE uses GORE to build goal models that can help us derive
autonomy requirements in several ways:

1. Goal models can be used to capture and refine requirements for autonomic
systems. A goal model provides the starting point for the development of
such a system by analyzing the environment for the system-to-be and by

400 E. Vassev and M. Hinchey

identifying the problems that exist in this environment as well as the needs
that the system under development has to address. Thus, requirements goal
models can be used as a baseline for validating software systems.

2. Goal models provide a means to represent alternative ways in which the ob-
jectives of the system can be met and analyze and rank these alternatives
with respect to stakeholder quality concerns and other constraints. This al-
lows for exploration and analysis of alternative system behaviors at design
time, which leads to more predictable and trusted autonomic systems. It also
means that if the alternatives that are initially delivered with the system per-
form well, there is no need for complex social interactions among autonomic
elements. Of course, not all alternatives can be identified at design time. In
an open and dynamic environment, new and better alternatives may present
themselves and some of the identified and implemented alternatives may
become impractical. Thus, in certain situations, new alternatives will have
to be discovered and implemented by the system at runtime. However, the
process of discovery, analysis, and implementation of new alternatives at
runtime is complex and error-prone. By exploring the space of alternative
process specifications at design time, we are minimizing the need for that
difficult task.

3. Goal models provide the traceability mechanism from AC system designs to
stakeholder requirements. When a change in stakeholder requirements is de-
tected at runtime (e.g., a major change in the global mission goal), goal models
can be used to re-evaluate the system behavior alternatives with respect to the
new requirements and to determine if system reconfiguration is needed. For
instance, if a change in stakeholder requirements affected a particular goal in
the model, it is possible to see how this goal is decomposed and which compo-
nents/autonomic elements implementing the goal are in turn affected. By an-
alyzing the goal model, it is also easy to identify how a failure to achieve some
particular goal affects the overall objective of the system. At the same time,
highly variable goal models can be used to visualize the currently selected sys-
tem configuration along with its alternatives and to communicate suggested
configuration changes to users in high-level terms.

4. Goal models provide a unifying intentional view of the system by relating
goals assigned to individual autonomic elements to high-level system objec-
tives and quality concerns. These high-level objectives or quality concerns
serve as the common knowledge shared among the autonomic computing el-
ements to achieve the global system optimization. This way, the system can
avoid the pitfalls of missing the globally optimal configuration due to only
relying on local optimizations.

5 Conclusions

This chapter has presented an Autonomy Requirements Engineering approach,
used by the ASCENS project to capture the autonomy requirements for the
ASCENS case studies. A proof-of-concept example has been presented where we

Engineering Requirements for Autonomy Features 401

have applied the proposed ARE model to the ASCENS Science Clouds case study.
With this example, we have demonstrated how ARE can be used to both elicit
and express autonomy requirements for software-intensive, yet self-adaptive, sys-
tems. Note that ARE relies on Goal-Oriented Requirements Engineering (GORE)
to elicit and define the system goals, and uses a Generic Autonomy Requirements
(GAR) model to derive and define assistive and eventually alternative goals (or
objectives) of the system. The system may pursue these “self-* objectives” in
the presence of factors threatening the achievement of the initial system goals.
Once identified, the autonomy requirements including the self-* objectives have
been further specified with KnowLang.

Future work is mainly concerned with development of tools for our ARE
model. An efficient ARE Tool Suite incorporating an autonomy requirements
validation approach is the next logical step needed to complete the ARE Frame-
work. Moreover, an efficient ARE Framework shall adopt KnowLang as a formal
notation and provide tools for specification and validation of autonomy require-
ments. Runtime knowledge representation and reasoning shall be provided along
with monitoring mechanisms to support the autonomy behavior of a system
at runtime. We need to build an ARE Test Bed tool that will integrate the
KnowLang Reasoner and will allow for validation of self-* objectives based on
simulation and testing. This will help engineers validate self-* objectives by eval-
uating the system’s ability to perceive the internal and external environment
and react to changes. Therefore, with the ARE Test Bed tool, we shall be able
to evaluate capabilities that might manifest system awareness about situations
and conditions. Ideally, both the autonomy requirements model specified in the
form of knowledge representation and the reasoner, can be further implemented
in autonomous systems as an engine responsible for the adaptive behavior. Even-
tually, a code generator shall be able to generate stubs supporting the operations
of the KnowLang Reasoner. These stubs can be further used as a basis for the
real implementation of the mechanism controlling the autonomic behavior of the
system.

References

1. Abeywickrama, D., Bicocchi, N., Zambonelli, F.: SOTA: Towards a general model
for self-adaptive systems. In: The IEEE 21st International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE), June 2012,
pp. 48–53 (2012)

2. A.S.C.E.N.S.: ASCENS - Autonomic Service-Component Ensembles (2012),
http://www.ascens-ist.eu/

3. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.: The
Invariant Refinement Method. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P.
(eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998,
pp. 405–428. Springer, Heidelberg (2015)

4. Cheng, B., Atlee, J.: Research directions in requirements engineering. In: Proceed-
ings of the 2007 Conference on Future of Software Engineering (FOSE 2007), pp.
285–303. IEEE Computer Society Press, Los Alamitos (2007)

http://www.ascens-ist.eu/

402 E. Vassev and M. Hinchey

5. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sitions. Science of Computer Programming 20, 3–50 (1993)

6. Fickas, S., Feather, M.: Requirements monitoring in dynamic environments. In:
Proceedings of the IEEE International Symposium on Requirements Engineering
(RE 1995), pp. 140–147. IEEE Computer Society Press, Los Alamitos (1995)

7. Goldsby, H., Sawyer, P., Bencomo, N., Hughes, D., Cheng, B.: Goal-based mod-
eling of dynamically adaptive system requirements. In: Proceedings of the 15th
Annual IEEE International Conference on the Engineering of Computer Based
Systems (ECBS), IEEE Computer Society Press, Los Alamitos (2008)

8. Haumer, P., Pohl, K., Weidenhaupt, K.: Requirements elicitation and validation
with real world scenes. IEEE Transactions on Software Engineering – Special Issue
on Scenario Management, 1036–1054 (1998)

9. Hölzl, M., Koch, N., Puviani, M., Wirsing, M., Zambonelli, F.: The Ensemble
Development Life Cycle and Best Practices for Collective Autonomic Systems. In:
Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998, pp. 325–354. Springer, Heidelberg
(2015)

10. van Lamsweerde, A.: Requirements engineering in the year 00: A research per-
spective. In: Proceedings of the 22nd International Conference on Software Engi-
neering (ICSE’2000), pp. 5–19. ACM Press, New York (2000)

11. van Lamsweerde, A.: Requirements engineering in the Year 00: A research per-
spective. In: Proceedings of the 22nd IEEE International Conference on Software
Engineering (ICSE-2000), pp. 5–19. ACM Press, New York (2000)

12. van Lamsweerde, A., Darimont, R., Massonet, P.: Goal-directed elaboration of
requirements for a meeting scheduler: Problems and lessons learnt. In: Proceedings
of the 2nd International IEEE Symposium on Requirements Engineering, pp. 194–
203. IEEE Computer Society Press, Los Alamitos (1995)

13. Lapouchnian, A., Yu, Y., Liaskos, S., Mylopoulos, J.: Requirements-driven design
of autonomic application software. In: Proceedings of the 2006 Conference of the
Center for Advanced Studies on Collaborative Research (CASCON 2006), p. 7.
ACM Press, New York (2006)

14. Mayer, P., Klarl, A., Hennicker, R., Puviani, M., Tiezzi, F., Pugliese, R., Keznikl,
J., Bures, T.: The autonomic cloud: A vision of voluntary, peer-2-peer cloud com-
puting. In: Proceedings of the 3rd Workshop on Challenges for achieving Self-
Awareness in Autonomic Systems, Philadelphia, USA, September 2013, pp. 1–6
(2013)

15. Mayer, P., Velasco, J., Klarl, A., Hennicker, R., Puviani, M., Tiezzi, F., Pugliese,
R., Keznikl, J., Bureš, T.: The Autonomic Cloud. In: Wirsing, M., Hölzl, M.,
Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Sys-
tems. LNCS, vol. 8998, pp. 495–512. Springer, Heidelberg (2015)

16. Mylopoulos, J., Chung, L., Nixon, B.: Representing and using non-functional re-
quirements: a process-oriented approach. IEEE Transactions on Software Engi-
neering 18(6), 483–497 (1992)

17. Rolland, C., Souveyet, C., Achour, C.: Guiding goal-modeling using scenarios.
IEEE Transactions on Software Engineering – Special Issue on Scenario Manage-
ment, 1055–1071 (1998)

18. Ross, D., Schoman, K.: Structured analysis for requirements definition. IEEE
Transactions on Software Engineering 3(1), 6–15 (1977)

Engineering Requirements for Autonomy Features 403

19. Savor, T., Seviora, R.: An approach to automatic detection of software failures
in real-time systems. In: Proceedings of the IEEE Real-Time Technology and Ap-
plications Symposium, pp. 136–147. IEEE Computer Society Press, Los Alamitos
(1997)

20. Serbedzija, N., Reiter, S., Ahrens, M., Velasco, J., Pinciroli, C., Hoch, N., Werther,
B.: D7.1: First Report on WP7 Requirement Specification and Scenario Descrip-
tion of the ASCENS Case Studies, aSCENS Deliverable (2011)

21. Sutcliffe, A., Fickas, S., Sohlberg, M.: PC-RE a method for personal and con-
text requirements engineering with some experience. Requirements Engineering
Journal 11, 1–17 (2006)

22. Vassev, E., Hinchey, M.: ASSL: A software engineering approach to autonomic
computing. IEEE Computer 42(6), 106–109 (2009)

23. Vassev, E., Hinchey, M.: Autonomy requirements engineering. IEEE Com-
puter 46(8), 82–84 (2013)

24. Vassev, E., Hinchey, M.: Autonomy requirements engineering. In: Proceedings of
the 14th IEEE International Conference on Information Reuse and Integration
(IRI’13), pp. 175–184. IEEE Computer Society Press, Los Alamitos (2013)

25. Vassev, E., Hinchey, M.: Autonomy requirements engineering: A case study on
the BepiColombo Mission. In: Proceedings of the C* Conference on Computer
Science & Software Engineering (C3S2E’13), pp. 31–41. ACM Press, New York
(2013)

26. Vassev, E., Hinchey, M.: On the autonomy requirements for space missions.
In: Proceedings of the 16th IEEE International Symposium on Object/Compo-
nent/Service-oriented Real-time Distributed Computing Workshops (ISCORCW
2013), IEEE Computer Society Press, Los Alamitos (2013)

27. Vassev, E., Hinchey, M., Balasubramaniam, D., Dobson, S.: An ASSL approach to
handling uncertainty in self-adaptive systems. In: Proceedings of the 34th annual
IEEE Software Engineering Workshop (SEW 34), pp. 11–18. IEEE Computer
Society Press, Los Alamitos (2011)

28. Vassev, E., Hinchey, M., Montanari, U., Bicocchi, N., Zambonelli, F., Wirsing,
M.: D3.2: Second Report on WP3: The KnowLang Framework for Knowledge
Modeling for SCE Systems, aSCENS Deliverable (2012)

29. Vassev, E.: Towards a Framework for Specification and Code Generation of Au-
tonomic Systems. Ph.D. thesis, Computer Science and Software Engineering De-
partment, Concordia University, Quebec, Canada (2008)

30. Vassev, E.: ASSL: Autonomic System Specification Language - A Framework for
Specification and Code Generation of Autonomic Systems. LAP Lambert Aca-
demic Publishing, Germany (2009)

31. Vassev, E., Hinchey, M.: Autonomy Requirements Engineering for Space Missions.
NASA Monographs in Systems and Software Engineering. Springer, Heidelberg
(2014), doi:10.1007/978-3-319-09816-6

32. Vassev, E., Hinchey, M.: Knowledge Representation for Adaptive and Self-aware
Systems. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineer-
ing for Collective Autonomic Systems. LNCS, vol. 8998, pp. 221–247. Springer,
Heidelberg (2015)

33. Wirsing, M., Hölzl, M., Tribastone, M., Zambonelli, F.: ASCENS: Engineering
Autonomic Service-Component Ensembles. In: Beckert, B., Damiani, F., de Boer,
F.S., Bonsangue, M.M. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 1–24. Springer,
Heidelberg (2013), http://www.pst.ifi.lmu.de/~hoelzl/fmco-2011.pdf

http://www.pst.ifi.lmu.de/~hoelzl/fmco-2011.pdf

Chapter III.4

The Invariant Refinement Method�

Tomáš Bureš, Ilias Gerostathopoulos, Petr Hnetynka, Jaroslav Keznikl,
Michal Kit, and Frantisek Plasil

Charles University in Prague,
Faculty of Mathematics and Physics,

Department of Distributed and Dependable Systems,
Prague, Czech republic

Abstract. The chapter describes IRM, a method that guides the de-
sign of smart-cyber physical systems that are built according to the au-
tonomic service-component paradigm. IRM is a requirements-oriented
design method that focuses on distributed collaboration. It relies on the
invariant concept to model both high-level system goals and low-level
software obligations. In IRM, high-level invariants are iteratively decom-
posed into more specific sub-invariants up to the level that they can be
operationalized by autonomous components and component collabora-
tions (ensembles). We present the main concepts behind the method, as
well the main decomposition patterns that back up the design process,
and illustrate them in the ASCENS e-mobility case study.

Keywords: system design, dependability, self-adaptivity

1 Introduction

Business needs and technological breakthroughs have been recently pushing to-
wards the cost-effective and manageable development of increasingly complex,
software-intensive systems that feature close connection to the physical world
– so-called smart cyber-physical systems (CPS). Examples of such systems are
numerous: smart electric grids, emergency coordination systems, autonomous
robots, fleets of cooperating vehicles, smart spaces, to name just a few.

Within the ASCENS project, we have created a comprehensive software en-
gineering solution for the development of smart CPS. The solution takes the
form of a framework consisting of:

(i) a specialized software component model, based on the paradigm of auto-
nomic component ensembles (ACEs), with clear execution and interaction
semantics;

(ii) an execution environment that allows for distributed and decentralized
operation of systems composed of the specialized software components;

� This research was supported by the European project IP 257414 (ASCENS).

M. Wirsing et al. (eds.): Collective Autonomic Systems, LNCS 8998, pp. 405–428, 2015.
c© Springer International Publishing Switzerland 2015

406 T. Bureš et al.

Fig. 1. E-mobility case study: electric cars need to proactively re-plan according to the
availability of parking stations.

(iii) design-time and runtime analysis (e.g., timing analysis) based on a well-
defined computational model; and

(iv) a specialized requirements-oriented design method that focuses on dis-
tributed collaboration and complements (i).

In this chapter, we focus on the last element of our framework and present the
design method and associated model – the Invariant Refinement Method (IRM).
IRM features contractual design based on the iterative refinement of system-level
requirements, and provides both dependability in form of traceability of software
artifacts to system-level goals, and adaptability, as it captures the design alterna-
tives pertaining to different operational contexts/situations and translates them
into different system and component modes. From the overall perspective of the
Ensemble Development Life Cycle (see Chapter III.1 [13]), IRM thus serves as
a method to guide the transition from early high-level requirements (featured
by SOTA/GEM and ARE, see Chapters III.2 [20] and III.3 [23]) to software
architecture of autonomic components and ensembles.

The chapter is based on the authors’ papers [7,10,15] and technical reports
[6] and is structured as follows. Section 2 presents our running example and
illustrates the basic principles behind our ACEs-based component model. Sec-
tion 3 details on the limitations of traditional software engineering methods
when designing CPS via ACEs. Section 4 presents the basics of IRM, while Sec-
tions 5 details on the specific refinement patterns that can be employed in the
IRM-based design. Finally, Section 6 concludes the chapter and discusses the
yet-to-be-addressed challenges.

2 Running Example

To illustrate the IRM approach, we use a scenario taken from the ASCENS
e-mobility case study (Chapter IV.4 [12]). In this case study, a fleet of electric
vehicles (e-vehicles) is used to distribute people to their places of interest (POIs)

The Invariant Refinement Method 407

in a city. Due to their limited autonomy compared to conventional vehicles, e-
vehicles need to regularly stop at parking lots with energy charging capabilities
located in designated parking stations in the city. After recharging, e-vehicles
become again fully operational and join the rest of the fleet.

Careful planning is needed in order to avoid traffic bottlenecks and high
recharging times. The problem in such planning is threefold:

(i) The whole system is very dynamic, as vehicles change their routes ac-
cording to the passengers calendars (which can also change at runtime),
streets/parking stations can be temporarily closed, and the load of parking
stations is typically hard to predict as it changes according to the incoming
parking requests from the vehicles (which change as vehicles re-plan).

(ii) No central communication and coordination point is assumed. This results
into having an inherently scalable system which is harder to control, as
each vehicle plans its own route according to its partial view of the rest of
the system and independently of the rest of the vehicles.

(iii) Each element of the system may be in different modes (e.g., “low battery”
vs. “fully operational” for the e-vehicles) which prescribes also different
local actions to be taken. In combination with the fully decentralized op-
eration, local decision making based on partial views of the whole system
can introduce inconsistencies and oscillations.

As a running example, we use a simplified scenario from the above mentioned
case study. It is based on the following assumptions:

(i) drivers are bound to their vehicles, i.e., there is no car sharing or car pooling
possibility;

(ii) vehicles do not send parking requests to parking stations, but just use the
parking stations’ availability information in order to plan their trip (and
re-plan if needed);

(iii) when planning, vehicles consider parking at parking stations that are within
a fixed distance to the POIs in the driver’s calendar.

The last point is illustrated in Fig. 1, where a vehicle follows a route that leads
to two available parking stations close to its POIs (left hand-side); when one of
them becomes unavailable, the vehicle has to head to the next available parking
station within the radius of its first POI (right hand-side).

2.1 DEECo Model of the Running Example

The above scenario has been implemented in the DEECo component model
[5]. DEECo is a component model developed within ASCENS, that targets the
development and deployment of CPS following the paradigm of ACEs.

In DEECo, each component is an independent unit of development and de-
ployment. Examples of two DEECo components in the DEECo domain specific
language (DSL) are depicted in Listing 1. It consists of knowledge, i.e., compo-
nent’s data (e.g., lines 9-10 and 19), and one or more processes (e.g., lines 11-14

408 T. Bureš et al.

1 role AvailabilityConsumer:
2 calendar, availabilityList
3

4 role AvailabilityProvider:
5 position, availability
6

7 component Vehicle42 features AvailabilityConsumer:
8 knowledge:
9 calendar = {(WORK,09:00,(50.846232,49.469774)),...}, availabilityList = {(23,8),... },

10 plan = {(20m,LEFT),...}, planFeasibility = TRUE, ...
11 process computePlanWhenFarFromPOI(in calendar, in availabilityList, in planFeasibility, out plan):
12 plan← JourneyPlanner .computePlan(calendar,availabilityList, planFeasibility)
13 scheduling: periodic(6000ms) and triggered(changed(planFeasibility) ∨ changed(availabilityList))
14 mode: farFromPOI
15 ...
16

17 component ParkingStation23 features AvailabilityProvider:
18 knowledge:
19 position = {50.846296, 49.461009}, availability = 8, ...
20 process monitorAvailability(out availability):
21 availability← Sensors.getCurrentAvailability()
22 scheduling: periodic(3000ms)
23 mode: closeToPOI, farFromPOI
24 ...
25 ...
26 // updates Vehicles’ belief over the availability of relevant Parking Stations
27 ensemble UpdateAvailabilityWhenFarFromPOI:
28 coordinator: AvailabilityConsumer
29 member: AvailabilityProvider
30 membership:
31 ∃ poi ∈ coordinator.calendar: distance(member.position, poi.position) ≤ THRESHOLD
32 knowledge exchange:
33 coordinator.availabilityList← {m.availability | m ∈ members}
34 scheduling: periodic(6000ms)
35 mode: farFromPOI
36 ...

Listing 1. Example of a DEECo component and ensemble definition in DSL

and 20-23). Each process is essentially a thread that operates upon the knowl-
edge by reading the input knowledge, executing the process body and writing
the output knowledge. Process execution can be periodic (e.g., line 22), event-
based (where an event is a change in the knowledge of the component), or both
(e.g., line 13). Each process is bound to one (e.g., line 14) or more (e.g., line
23) modes and gets executed only if the containing component is in one of the
process’s modes. Finally, each component features one or more roles (e.g., line
7 and 17). A role is a collection of knowledge fields (e.g., lines 1-2 and 4-5).

In our running example, the two components depicted at the instance level
in Listing 1 are Vehicle and ParkingStation. The former features the role
of aggregating the parking availability information, which the later should pro-
vide. Among others, Vehicle comprises a process responsible for the computing
the Vehicle’s plan, while ParkingStation comprises a process responsible for
sensing the current availability (equivalently occupancy) of the station.

DEECo components do not have explicit bindings to each other and are not
allowed to communicate directly. Instead, communication in DEECo is implicit

The Invariant Refinement Method 409

and takes the form of knowledge exchange within emerging groups called ensem-
bles. Forming of ensembles is one of the tasks of the DEECo runtime framework.

An ensemble in DEECo DSL is an interaction template (e.g., Listing 1, lines
27-35) that consists of the specification of the roles of the interacting parts,
termed coordinator (line 28) and member (line 29), the specification of the con-
dition of interaction, termed membership (lines 30-31), and the specification of
the actual knowledge exchange function (lines 32-33). Similar to DEECo pro-
cesses, knowledge exchange within an ensemble is triggered in a periodic (e.g.,
line 34) or event-triggered fashion, and is bound to the mode of the evaluating
component (line 35).

In the running example, the UpdateAvailabilityWhenFarFromPOI ensemble
specifies that whenever two component that feature the roles of Availability-
Consumer and AvailabilityProvider and satisfy the condition of the latter
being close to one of the POI of the former (according to their knowledge valu-
ations), then the availability knowledge of the provider has to be copied to
the consumer side. This models the scenario of a car that communicates with a
parking station in order to obtain the station’s availability and plan accordingly.

In the rest of the chapter, we will focus on the problem of how to come up with
a specification of a DEECo-based system (such as the one depicted in Listing 1)
based on the initial requirements and domain assumptions. Throughout the rest
of the text, we illustrate the approach on the running example.

3 The Need for a Tailored Design Method for ACEs

Although DEECo provides a set of concepts (autonomous components, periodic
processes, ensembles) that effectively deal with the dynamicity and distribution
at a middleware level, the systematic design of CPS based on ACEs remains a sig-
nificant challenge. Contemporary design methods for complex systems typically
consist of the phases of (i) eliciting and analyzing the goals of the system-to-be,
i.e., what is to be achieved and why, (ii) translating them into requirements
specifications of the the system-to-be, and (iii) deriving the architecture of the
system-to-be by mapping each requirement to one or more runtime entities (usu-
ally referred to as components). KAOS [18,19] and Tropos [3,11] are two promi-
nent goal-oriented requirements engineering methodologies that are primarily
concerned with the first two design phases. SOTA [1] and ARE [22] are two re-
quirements modeling approaches developed within ASCENS and tailored to the
domain of autonomous and self-adaptive systems that also focus exclusively on
the first two design phases.

The underlying idea of KAOS is to use goals to capture the intent (the “why”)
behind the functionality of the system-to-be. Goals in KAOS are iteratively de-
composed into sub-goals until they reach the level where they can be mapped
to requirements or assumptions of the system-to-be. The process then continues
with assigning each requirement to an individual system agent. Goals in KAOS
can be formalized in real-time linear temporal logic (LTL) [2] and used to check
a requirements specification for consistency, completeness and pertinence. Al-

410 T. Bureš et al.

though KAOS is a well-established methodology in requirements engineering
with strong focus on formal specification and reasoning, its application in the
design of ACEs is not straightforward. The main issue is that, although there
have been preliminary efforts towards this [17], KAOS does not provide a smooth
alignment between requirements with architecture (third design phase mentioned
in the previous paragraph). For instance, if a goal in our running example is to
“maintain the availability of the parking stations up-to-date”, the way to reflect
this goal in system architecture is open to interpretation and heavily depends
on the underlying component model used for development and deployment.

Tropos is an agent-oriented methodology where goals, soft-goals, tasks and
dependencies are analyzed from the perspective of the individual agents in the
system-to-be. Tropos uses the i* notation [24] for producing goal and actor mod-
els, which are later mapped to agent architectures that follow the Belief-Desire-
Intention (BDI) reference model [21]. In this respect, it is more effective than
KAOS in aligning system requirements with system architecture and implemen-
tation. When applied to the design of ACEs, the main shortcoming of Tropos
is that it fails to address the special concerns of the ACEs domain, i.e., that of
distributed dynamic feedback loop-based systems. In such systems, it is impor-
tant to capture the relation of the system with the environment at every time
instant, as opposed to focus on future states (the case of goals in Tropos).

SOTA [1] is a requirements modeling approach for the domain of ACEs and
autonomic systems in general. The key idea of SOTA is to abstract the behavior
of a system with a single trajectory through a state space, which represents the
set of all possible states of the system at a single point of time. The requirements
of a system in SOTA are captured in terms of goals. A goal is an area of the SOTA
space that a system should eventually reach, and it can be characterized by its
pre-condition, post-condition, and utilities. Thus SOTA provides the means to
capture the early requirements of different component cooperation schemes, but
not to guide the requirements-driven design of ACEs. A mathematical formal-
ization of SOTA is provided by the General Ensemble Model (GEM) [14] The
GEM semantics of SOTA is based on timed streams of domain states which
closely corresponds to the higher-order predicate semantics of IRM (cf. Section
5). Chapter II.1 [4] in this volume discusses GEM in more detail.

Autonomy Requirements Engineering (ARE) (see Chapter III.3 [23] and [22])
is a methodology for elicitation and expression of autonomy requirements devel-
oped within ASCENS. ARE relies on goal-oriented requirements engineering
approaches (such as KAOS and Tropos) to elicit and define the system goals,
and uses a Generic Autonomy Requirements (GAR) model to derive and define
assistive and eventually alternative goals (or objectives) of the system. However,
similar to classical goal oriented approaches, ARE focuses on the requirements
phase and not on the mapping between requirements and architecture.

A key challenge in the design of ACEs is to provide a concept that, contrary
to the system goal, captures the operational normalcy at every time instant,
i.e., the property of being within certain limits that define the range of normal
operation of the system. The next challenge is to use this concept in order to

The Invariant Refinement Method 411

(1) All Vehicles meet their route/
parking calendar

(2) Up-to-date V::plan w.r.t.
knowledge from P reflecting
V::calendar is available

(4) An up-to-date plan can always
be followed and it always schedules
reaching the destination in time

(3) V::position is aligned
with the V::plan

P

+ position
+ calendar
+ plan
+ energy
+ availabilityList
+ planFeasibility

Vehicle

+ position
+ availability

Parking Station

[V]

[P]

1[V]

V::plan

Takes-role
R

Invariant Process
invariant

Exchange
invariant

Assumption AND
decomposit ion

Component

PX [R]

Knowledge
dependency

OR
decomposit ion

[V]
[P]

Fig. 2. Top-level design of the case study

systematically map situation-specific high-level goals to low-level artifacts of sys-
tem architecture (e.g., component processes, ensemble specifications, component
modes) so that the compliance of design decisions with the overall system goals
and requirements is explicitly captured and (if possible) formally verified.

4 Invariant Refinement Method

We have addressed the above challenge by introducing a novel design method
called IRM (Invariant Refinement Method), which specifically focuses on ACEs.
IRM builds on goal-based requirements elaboration as pioneered by [16]. Similar
to [16], IRM focuses on the system-to-be from a global perspective and reasons
about the goals and requirements of the system as whole. By gradual refinement
it allows refining these goals down to the responsibilities of individual compo-
nents, component processes, and ensembles.

IRM captures goals and requirements of the systems as invariants that de-
scribe the desired state of the system-to-be at every time instant. This corre-
sponds to the operational normalcy of the system-to-be and thus it aligns well
with the need of continuous operation of ACEs.

Fig. 2 illustrates an IRM refinement tree reflecting the running example. Each
rounded rectangle represents system’s requirements represented by an invariant
– e.g., the top-level invariant (1): “All Vehicles meet their route/parking
calendar”.

412 T. Bureš et al.

4.1 Invariants and Assumptions

The IRM tree employs first class entities – invariants, assumptions, and com-
ponents. A component is a primary functional entity of the system-to-be (e.g.,
Vehicle and Parking Station in Fig. 2). At the abstraction level of IRM,
each component comprises specific knowledge, i.e., its domain-specific data. The
valuation of components’ knowledge evolves over time as the result of their au-
tonomous behavior (i.e., execution of the associated component processes) and
knowledge exchange. Also, a component may take up a particular role (i.e., a
responsibility) in the system-to-be. This is a consequence of being referred to by
an invariant.

Technically, an invariant establishes a condition over the knowledge valua-
tion of a set of components. An invariant references components by role names –
e.g., in the invariant (1) the component Vehicle takes the role V while Parking
Station takes the role P. This way, an invariant captures the operational nor-
malcy of the system-to-be or its logical parts (i.e., groups of components).

Invariants need not only describe the responsibilities of components, but
they may also express assumptions about the environment. An assumption is
thus a condition that is expected to hold during knowledge evolution and is not
intended to be maintained explicitly by the system-to-be (in figures depicted as
yellow hexagon; e.g., (4) in Fig. 2).

4.2 Invariants vs. Computation Activities

The core idea of IRM is that each invariant which is not an assumption is
associated with a computation activity – an abstract computation that produces
output knowledge given a particular input knowledge such that the invariant
(over the input and output knowledge) is satisfied. This way, the computation
activity provides a dual view on the invariant – while the invariant reflects the
operational normalcy, the computation activity represents means for maintaining
it.

For instance, Fig. 3 provides the dual view of computation activities reflecting
the invariants in Fig. 2.

The duality of the invariants and computation activities gives a convenient
option of refer to invariants for the purpose of logic-based reasoning and refer to
computation activities when low-level implementation aspects are of concern.

An abstract computation activity can be related to an invariant at any level
in the IRM tree. The computation activity however gets a special significance
for the leaves of the IRM tree, where it corresponds to a component process or
a knowledge exchange. Thus, following the dual perspective, the goal of IRM is
to refine high-level invariants (i.e., the abstract activities) to the very concrete
invariants which via their computation activities lead to the design of component
processes and knowledge exchange.

Note that the activities associated with high-level system goals are abstract,
representing the whole system implementation. At this level of abstraction, not
all input knowledge can be precisely identified, this is exemplified in Fig. 3, where

The Invariant Refinement Method 413

(2) Vehicle keeps its V::plan
reflecting V::calendar up-to-date

w.r.t.knowledge from Parking lots

(3) V moves according to the
V::plan

V::plan

V::posi tion

V::calendar

P::?(1) The system-to-be drives all Vehicles
by using information from Parking lots so
that the Vehicles meet their V::calendar

V::plan

V::posi tionV::plan

V::calendar P::?

V l

+ position
+ calendar
+ plan
+ energy
+ availabilityList
+ planFeasibility

Vehicle

+ position
+ availability

Parking Station

Activity refinementComputation
activity

Knowledge
flow

Knowledge
dependencyComponent

Fig. 3. Dual, activity-based view on the top-level design of the case study from Fig. 2

the input knowledge of the activity associated with (1) comprises V::calendar
and potentially some knowledge of parking lots, which is not yet clear, thus
denoted by P::?. The output knowledge comprises V::position, which is the
knowledge the evolution of which the system can effectively control by the ac-
tivity.

The relations between component knowledge and input/output knowledge of
activities are captured as knowledge flows on the IRM diagram. For example,
Fig. 3 shows the knowledge flow between the Vehicle and the activity asso-
ciated with (3) (with V::plan, resp., V::position as its input, resp., output
knowledge).

4.3 Invariant Refinement

The basic process in IRM is a systematic, gradual refinement of a higher-level
invariant by means of its decomposition (i.e., structural elaboration) into a con-
junction or disjunction of lower-level sub-invariants, i.e., Ip � Is1 ∧ . . .∧ Isn and
Ip � Is1 ∨ . . . ∨ Isn.

Formally, decomposition of a parent invariant Ip into a conjunction of sub-
invariants Is1,...,Isn is a refinement if the conjunction of the sub-invariants entails
the parent invariant, i.e., if it holds that:

Is1 ∧ . . . ∧ Isn ⇒ Ip (entailment)
Is1 ∧ . . . ∧ Isn �⇒ false (consistency)

414 T. Bureš et al.

(2) Up-to-date V::plan w.r.t.
knowledge from P reflecting
V::calendar is available

(5) V::planFeasibility w.r.t.
V::position, V::energy and
V::calendar is determined

(6) Up-to-date V::plan, w.r.t.
P::availability and V::planFeasibility,
reflecting V::calendar is available

(9) V::energy is
monitored within 6 secs

P

(8) V::planFeasibility w.r.t. the
monitored V::position,
V::energy and V::traffic is
determined within 12 secs

P

(7) V::position is
monitored within 6 secs

P

(10) P::availability is
monitored within 6 secs

P

(13) distance(V::position,
V::calendar.nextPOI.position) <= 5km

(12) V::availabilityList - V’s belief over
P::availability of trip-relevant parking lots
- is up-to-date within 6 secs

X

(11) Up-to-date V::plan, w.r.t.
V::availabilityList and
V::planFeasibility, reflecting
V::calendar is available within 6 secs

P
(16) distance(V::position,
V::calendar.nextPOI.position) > 5km(14) Up-to-date V::plan, w.r.t.

V::availabilityList and
V::planFeasibility, reflecting
V::calendar is available within 12 secs

P

+ position
+ calendar
+ plan
+ energy
+ availabilityList
+ planFeasibility

Vehicle

+ position
+ availability

Parking Station

[V]

[P]

1[V]

1[P]

*[P]

V::planFeasibility

V::availabilityList
V::availabilityList

V::energy
V::energy

(15) V::availabilityList - V’s belief over
P::availability of trip-relevant parking lots
- is up-to-date within 12 secs

X

Fig. 4. Invariant refinement of “Up-to-date V::plan w.r.t. knowledge from P
reflecting V::calendar is available”

This definition follows the classical interpretation of refinement, where the
composition of the children exhibits all the behaviors expected from the parent
and (potentially) some more.

Similarly, the OR-decomposition of a parent invariant Ip into the sub-invar-
iants Is1,...,Isn is a refinement if it holds that:

Is1 ∨ . . . ∨ Isn ⇒ Ip (alternative entailment)
Is1 ∨ . . . ∨ Isn �⇒ false (alternative consistency)

The refinement via AND- and OR-branching is applied recursively. This starts
with high-level invariants that reflect the overall system goals and involve a
number of components and ends with low-level invariants that involve a single
component or an ensemble of components.

To keep the semantics of the refinement, only the components that take a role
in the parent invariant may also take a role in the sub-invariants. However, as
the refinement also leads to concretization of the problem and its solutions, new
knowledge can be added to the components that take a role in the sub-invariants
(e.g., V::planFeasibility in Fig. 4).

The process of refinement is demonstrated in Fig. 2. As a design decision the
invariant (1) is refined into a conjunction of three sub-invariants: (2) having an
up-to-date plan, (3) keeping the vehicle’s position in alignment with the plan,
and (4) an assumption that an up-to-date plan can always be followed by the
vehicle (i.e., the environment dynamics – traffic, parking availability, etc. – will

The Invariant Refinement Method 415

never prevent the car from following an up-to-date plan) and that it always
schedules reaching the destination in time. The refinement further continues in
Fig. 4, where the invariant (2) is further refined, up to the leaves.

Note the OR-decomposition below the invariant (6). Formally, the IRM re-
finement allows only AND-refinement or OR-refinement, but not a combination
of both. If a combination is necessary, it has to be formally modeled by intro-
duction of synthetic invariants following the abstract-syntax tree of the desired
formula. As these synthetic invariants do not provide any additional knowledge,
the graphical notation used in the figure omits them and permits direct connec-
tion of refinement symbols.

Seeing the refinement from the dual perspective of computation activities,
the computation activity of a parent is formed by parallel execution of its sub-
activities. In case of AND-refinement, this involves all sub-activities. In case of
OR-refinement, this involves executing exactly one sub-activity. To help deter-
mine which sub-activity of an OR-refinement to execute, the design practice is to
equip each OR-branch with an assumption which acts as a guard to the branch
(see assumptions (13) and (16) in Fig. 4).

4.4 Leaves of Refinement

As the rule of thumb the refinement is finished when each leaf invariant of the re-
finement tree is either an assumption or is a computation activity corresponding
to a process or knowledge exchange (see Section 2.1). In particular, the invari-
ant corresponds to a process if it captures the operational normalcy of a single
component (technically it means that it refers only to knowledge of a single com-
ponent). Such an invariant is called a process invariant (in diagrams marked by
P, e.g., (3) in Fig. 2).

Similarly, an invariant corresponds to knowledge exchange (called exchange
invariant) if it captures the fact that the knowledge of one component is in
certain relationship (typically in “identity” relationship) to knowledge of another
component. Invariant (12) in Fig. 4 is in example of an exchange invariant.
Exchange invariants are marked by X.

Generally, it is possible to refine invariants where several components take
a role (e.g., (5)) to process and exchange invariants which are eventually asso-
ciated with “real” computation activities. This typically involves a number of
refinement steps in which (a) the invariants are gradually split by roles and (b)
exchange invariants are introduced that collect needed knowledge.

Specifically, to refine an invariant Ip, referencing the components C1,...,Cm

into sub-invariants Is1,...,Isn we introduce the belief of C1 over the knowledge
of C2,...,Cm . In this context, the belief BC2,...,Cm

C1
(K) is knowledge of C1 that

represents C1’s snapshot of a part K of the knowledge of C2,...,Cm. For in-
stance, in Fig. 4, the belief V::availabilityList of Vehicle over the knowl-
edge P::availability of Parking Stations is an example of such a knowledge
snapshot (denoted as V::availabilityList=BParkingStation

Vehicle (P::availabili-
ty)).

416 T. Bureš et al.

Thus, Is1 formulates the normalcy properties of BC2,...,Cm

C1
, whereas Is2,...,Isn

refine Ip while substituting the references to the knowledge of C2,...,Cm by refer-
ences to BC2,...,Cm

C1
. Note that BC2,...,Cm

C1
is a new knowledge introduced into C1.

For example, (15) formulates the condition on creating the belief V::availabi-
lityList=BParkingStation

V ehicle (P::availability), whereas (14) refines (6) while
substituting the references to P::availability by references to V::availabi-
lity-List.

Furthermore, Is2,...,Isn are potentially process/exchange invariants, since, in
general, the number of components taking a role in Is2,...,Isn is, compared to
Ip, decreased at least by one due to references to the belief BC2,...,Cm

C1
(such as

when comparing (6) and (14)).

4.5 From Invariants to Final Architecture

Once the refinement reaches the level of process and exchange invariants, the
design continues to the implementation level by refining each process invariant
into a component process and each exchange invariant into an ensemble. For
example, in Listing 1 Vehicle is reified by Vehicle42, while (14) is refined into
the Vehicle42’s computePlanWhenFarFromPOI process, and (15) is refined into
the UpdateAvailabilityWhenFarFromPOI ensemble. Thus, determined by the
invariant refinement, this step yields the final architecture of the system. The
details are beyond the scope of this text; we refer the interested reader to [8].

5 IRM Abstraction Levels and Invariant Patterns

There is a significant abstraction gap between the high-level and low-level in-
variants. The former ones capture general operational normalcy while the latter
ones reflect architectural elements and thus capture the ACEs-specific aspects.
In this section we provide a detailed description of bridging the gap during the in-
variant refinement, i.e., during generation of low-level invariants from high-level
ones. We have identified five patterns of invariants that reflect the way opera-
tional normalcy is captured at four adjacent abstraction levels that are covering
the abstraction gap. With these patterns we can precisely set out the rules and
guidelines for refinement of the invariants on the same/adjacent abstraction lev-
els. The rules/guidelines allow for iterative refinement to continuously lower the
level of abstraction until the architectural elements level is reached.

In particular, the patterns are as follows (from the most abstract to the least
abstract):

1. general invariants,
2. present-past invariants,
3. activity invariants,
4. process invariants, and
5. exchange invariants (patterns 4. and 5. are at the same level of abstraction).

The Invariant Refinement Method 417

(5) (6)

(9)
P

(10)
P

(13)
(16)

(1)

(2) (4)

G
en

er
al

In
va

ria
nt

s

Pr
es

en
t-p

as
t

In
va

ria
nt

s /
As

su
m

pt
io

ns
Ac

tiv
ity

In
va

ria
nt

s
Pr

oc
es

s/
En

se
m

bl
e

In
va

ria
nt

s

(14)
P

(15)
X

(3)
P

(8)
P

(7)
P

(11)
P

(12)
X

Fig. 5. Patterns of invariants in the case study

The patterns of invariants in the case study are illustrated in Fig. 5.
In the rest of the section we use a predicate formalization of the invariants in

order to allow their precise definition and, in particular, to highlight the differ-
ences between the patterns. In principle, an invariant expresses the operational
normalcy in terms of a condition to be maintained during knowledge evolution
in time. Using this formalization, it is possible to refer to timed sequences of the
knowledge values, and thus it allows for viewing the complete knowledge value
evolution in time. An important aspect of ACEs-based systems is that they are
inherently asynchronous. Thus, the formalization has to capture the evolution in
terms of asynchrony and delays. As an example, the knowledge evolution shown
in Fig. 6 can be assumed. In it, we are interested in a formalization of the form
“The value of V::pAvailable always equals the value of P::available that is not
older than the period” rather than in “V::pAvailable equals P::available” (which
does not always hold).

5.1 Formalization

We formalize the invariants as follows.

Definition 1. Time is represented by a non-negative real number, i.e., T
def
= R

+
0 .

418 T. Bureš et al.

Fig. 6. Example of knowledge evolution in time when employing (periodic) knowledge
exchange

Definition 2. Knowledge is a set K = k1, ..., kn of knowledge elements, where
the domain of ki is denoted as Vi.

Definition 3. Knowledge valuation of element ki is a function T → Vi which
for a time t yields a value of ki (denoted as ki[t]).

Definition 4. Invariant is a predicate (in a higher-order predicate logic with
arithmetic) over knowledge valuations and time.

Of course, the invariant definition above is not the only possible one. For ex-
ample, real-time LTL [2] can be used too. Nevertheless, we use the proposed
formalization as our primary goal is not model checking but rather a description
of invariant refinement. For it, we believe the formalization is more suitable and
allows for straightforward formulating and proving relevant theorems.

In the rest of this section, we detail the identified invariant patterns and
provide formal definitions as well as macros to ease their usage.

5.2 General Invariants

General invariants are defined at the top-level of abstraction and they capture
the operational normalcy by relating the past and current knowledge valuations
to a future knowledge valuation.

An example of this pattern is the invariant (1): “All Vehicles meet their
route/parking calendar”, which can be formalized as follows (for the sake of
brevity, it assumes only the calendar with a single POI not changing in time):

∃t ∈ T, t ≤ DEADLINE : v.pos[t] = DEST

Importantly, the invariant does not refer to current time; instead, it refers to a
particular time instant in the future.

The Invariant Refinement Method 419

5.3 Present-Past Invariants

On the lower level of abstraction, there are present-past invariants that cap-
ture the operational normalcy employing the current and/or past knowledge
valuations. This corresponds with the fact that software systems can work with
current and/or past data and cannot depend on future data. This fact has been
abstracted away at the level of general invariants. To limit the amount of needed
past data, the lag of a present-past invariant is defined as the maximal distance
in the past that is needed to formulate the operational normalcy of the invariant.
As in real-time software control systems, it is assumed that the smaller the lag,
the bigger precision and robustness and vice-versa. An idealized and unreachable
case is the zero lag, which would mean that the beliefs of all components are
always up-to-date and their actions are instant.

Importantly, when a general invariant is refined into present-past invariants
(or more precisely into a conjunction of them), assumptions have to be added
that guarantee that maintaining the operational normalcy based on the cur-
rent/past knowledge valuation will eventually result in reaching the operational
normalcy based on a future knowledge valuation. An example of such an as-
sumption is the assumption (4) in Fig. 2.

Definition 5. (Present-past invariants) For a predicate P capturing the relation
between valuation of knowledge elements I1, . . . , In and O1, . . . , Om, and the lag
L, the expression PL

p−p[I1, . . . , In][O1, . . . , Om] denotes the following present-past
invariant:

∀t ∈ T, ∃t1, . . . , tn : 0 ≤ t − ti ≤ L, i ∈ 1..n :
P (I1[t1], . . . , In[tn], O1[t], . . . , Om[t])

In this context, we call I1, . . . , In “input” variables and O1, . . . , Om “output”
variables of the invariant so as to denote the correspondence of these variables
to the inputs/outputs of the computation that is responsible for maintaining the
invariant.

Invariant (2): “Up-to-date V::plan, w.r.t. knowledge from P, reflecting V::calen-
dar is available” is an example of a present-past invariant. For parking lots
P1..Pn and lag L it can be formalized as follows:

“At any time, for the current valuation of V::plan there is a valuation of
knowledge of P1, ..., Pn and V::calendar not older than the lag L such that
they together meet the condition expressed by the UpToDatePlan predicate.”

In the predicate logic, it can be captured as follows:

∀tcur ∈ T, ∃t1, ..., tn, tcal ∈ T, 0 ≤ tcur − ti ≤ L, i ∈ 1..n, cal :
UpToDateP lan(P1[t1], ..., Pn[tn], V ::calendar[tcal], V ::plan[t])

In this predicate, if the lag L greater than zero, it means that the V::plan is
outdated regarding the current knowledge of the parking lots (the greater L ⇒
more outdated parking-lot knowledge valuation). The zero lag would mean the
plan is up-to-date at any moment.

420 T. Bureš et al.

Using the shortcut introduced in Definition 5, we can rewrite the expression
as:

UpToDateP lanL
p−p[P1, ..., Pn, V ::calendar][V ::plan]

Such an shortcut can be also used during invariant refinement for introducing
new present-past invariants. It would serve as a “macro” that transforms a time-
oblivious predicate (e.g., UpToDatePlan) into a formalized present-past invariant
of the above-described structure.

5.4 Activity Invariants

Frequently, properties of a (soft) real-time activity have to be assumed. A com-
monly used property is then that each output knowledge valuation is based
on the same or newer input knowledge valuation than the previous one. Fig. 7
illustrates this.

≤L ≤L ≤L

Fig. 7. Illustration of a valid knowledge valuation with respect to an activity where
the output O represents the sum of inputs I1 and I2, while meeting lag L.

An activity invariant expresses the fact that the output knowledge valuation
changes only as a result of performing the activity. Moreover, the activity never
exceeds the corresponding time limit (the lag). More rigorously, at any time the
output knowledge valuation corresponds to the outcome of the activity applied
on input knowledge valuation not older than the lag. Plus, each output is based
on the same or newer inputs than the previous output.

Definition 6. (Activity invariant) For a predicate P reflecting the post-condition
of an activity with inputs I1, . . . , In and outputs O1, . . . , Om, and for lag L, the
expression PL

act[I1, . . . , In][O1, . . . , Om] denotes the following activity invariant:

∃a1, . . . , an : T → T, ∀t ∈ T, 0 ≤ t − ai(t) ≤ L, ai non-decreasing, i ∈ 1..n :
P (I1[a1(t)], . . . , In[an(t)], O1[t], . . . , Om[t])

The Invariant Refinement Method 421

where the non-decreasing function ai gives for each time t the corresponding
time t′ such that the valuation of Ii at t′ was “used to compute” the valuation
of O1, . . . , Om at t, as shown in Fig. 7.

Invariant (6) can serve as an example of the activity invariant: “Up-to-date
V::plan, w.r.t. P::availability and V::planFeasibility, reflecting V::calendar is
available”. For parking lots P1..Pn and lag L it can be formalized as follows:

“There is an execution of the planning activity maintaining the condition
UpToDatePlan such that at any time the valuation of V::plan corresponds to
the outcome of the activity applied on the valuation of the input knowledge
P::availability, V::planFeasibility, and V::calendar not older than lag
L. Moreover, each valuation of V::plan is based on newer valuation of the input
knowledge than the previous one.”

Using the predicate logic, it can be expressed as follows:

∃a1, ..., an, apF , acal : T → T,
0 < x − ai(x) ≤ L, ∀i ∈ {1..n, pF, cal},

ai(x) ≤ ai(y), ∀x, y : x ≤ y, ∀i ∈ {1..n, pF, cal},

UpToDateP lan

⎛
⎜⎜⎜⎜⎜⎜⎝

P1::availability[an(t)],...

Pn::availability[an(t)],
V ::planFeasibility[apF(t)],

V ::calendar[acal(t)],
V ::plan[t]

⎞
⎟⎟⎟⎟⎟⎟⎠

The aspect that V::plan may change only as the result of an execution of a
planning activity is captured by the usage of the non-decreasing function ai :
T → T rather than a particular ti ∈ T. The ai function also captures the read
consistency.

Similarly as in the previous invariant, the lag greater than zero means that
the outdated valuation of P::availability and V::planFeasibility is con-
sidered. The zero lag reflects the case where the valuation of V::plan is at each
time instant up-to-date with respect to the current valuation of P::availabili-
ty of the parking lots and V::planFeasibility of the vehicle (i.e., the activity
computes infinitely fast and infinitely often).

Using the shortcut introduced in Definition 6, we can write the formalization
of invariant (6) as:

UpToDateP lanL
act

⎡
⎢⎢⎢⎢⎢⎢⎣

P1::availability[an(t)],...

Pn::availability[an(t)],
V ::planFeasibility[apF(t)],

V ::calendar[acal(t)],
V ::plan[t]

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣V ::plan

⎤
⎦

422 T. Bureš et al.

5.5 Process Invariants

Process invariants are in the leaves of invariant decomposition, i.e., at the lowest
level of abstraction. Such an invariant captures a periodic real-time component
process. Into it, an activity invariant capturing local computation (while assum-
ing read consistency) is refined.

Contrary to the activity invariants, the process invariant adds a constraint
that the activity is executed exactly once in every period. Therefore, the period
can be seen as a refinement of the activity lag and the output knowledge evalu-
ation is determined by the release time (time at which a task becomes ready for
execution) and finish time in each period [9].

Specifically, such an invariant captures that if the current time is before the
finish time of the process in the current period, then the outputs are the same as
in the previous period (i.e., they correspond to the inputs used in the previous
period). Otherwise, the outputs correspond to the inputs at the release time of
the process in this period.

Definition 7. (Process invariant) For a predicate P reflecting the post-condition
of a periodic real-time process with inputs I1, . . . , In, outputs O1, . . . , Om, and
period L, the expression PL

proc[I1, . . . , In][O1, . . . , Om] denotes the following pro-
cess invariant:

∀x ∈ N, ∃R, F : N → T : E(x − 1) ≤ R(x) < F (x) < E(x),
∀p ∈ N, ∀t ∈ 〈E(p − 1), E(p)) :

t < F (p) ⇒ P (I1[R(p − 1)], . . . , In[R(p − 1)], O1[t], . . . , Om[t])
t ≥ F (p) ⇒ P (I1[R(p)], . . . , In[R(p)], O1[t], . . . , Om[t])

where E : N0 → T and E(n) = n · L, i.e., the end of the n-th period. R(n)
and F (n) denote the release and finish time of the real-time process in the n-th
period.

In contrast to the activity invariant, there is the same R for every input I. It
reflects the fact that at the release time, all the inputs are read by the process
atomically.

The invariant (11) can be taken as an example of the process invariant:
“Up-to-date V::plan, w.r.t. V::availabilityList and V::planFeasibility, reflecting
V::calendar is available”. For period L, it can be formalized as follows:

“If the current time is before the finish time of the process in the current pe-
riod, then the V::plan valuation is the same as in the previous period; i.e., it cor-
responds to the outcome of the process w.r.t. the inputs V::availabilityList,
V::planFeasibility, and V::calendar at the release time of the process in the
previous period. Otherwise, V::plan corresponds to the outcome of the process
w.r.t. the inputs at the release time in this period.”

In the predicate logic, it can be captured as follows:

The Invariant Refinement Method 423

∀x ∈ N, ∃R, F : N → T, E(x − 1) ≤ R(x) < F (x) < E(x),
∀p ∈ N, ∀t ∈ 〈E(p − 1), E(p)) :

t < F (p) ⇒ UpToDateP lan

⎛
⎜⎜⎝

V ::availabilityList[R(p − 1)],
V ::planFeasibility[R(p − 1)],

V ::calendar[R(p − 1)],
V ::plan[t]

⎞
⎟⎟⎠

t ≥ F (p) ⇒ UpToDateP lan

⎛
⎜⎜⎝

V ::availabilityList[R(p)],
V ::planFeasibility[R(p)],

V ::calendar[R(p)],
V ::plan[t]

⎞
⎟⎟⎠

where E : N0 → T and E(n) = n · L, i.e., the end of the n-th period. R(n)
and F (n) denote the release and finish time of the real-time process in the n-th
period, as per Definition 7.

In the process invariant case, the zero L means that the V::plan is at each
time instant infinitely close to the up-to-date plan with respect to the current
V::availability, V::planFeasibility, and V::calendar of the vehicle.

With the help of the shortcut from Definition 7, the formalization of (11) can
be shortened as:

UpToDateP lanL
proc

⎡
⎣V ::availabilityList,

V ::planFeasibility,
V ::calendar

⎤
⎦

⎡
⎣V ::plan

⎤
⎦

5.6 Exchange Invariants

The activity invariants that capture the establishment of a belief (that can be
addressed by ensemble knowledge exchange) while assuming distributed read
consistency, are refined into exchange invariants, which capture periodic knowl-
edge exchange of an ensemble.

In contrast to process invariants, the input values in exchange invariants can
be obtained at different times (but the times still have to belong to the same
period), as the input values are potentially distributed. Additionally, knowledge
propagation delays are also considered. These delays can arise for example from
delays in network communication.

In summary, the exchange invariants depict a composite activity composed
of knowledge transfer and periodic evaluation of the knowledge exchange and
membership condition.

Importantly, each component processes the incoming knowledge exchange by
itself. The required input knowledge is sent asynchronously by other components.
If the knowledge transfer time is larger than the knowledge exchange period, the
composite activities may partially overlap.

Definition 8. (Exchange invariant) Let P be a predicate reflecting the post-
condition of a periodic knowledge exchange with inputs I1,. . . , In, outputs O1, . . . ,

424 T. Bureš et al.

Om, and period L. Provided that it takes at most T for the knowledge to be-
come available at the component executing the knowledge exchange, the expres-
sion PL,T

exc [I1, . . . , In][O1, . . . , Om] denotes the following exchange invariant:

∃a1, . . . , an : T → T, ∀t ∈ T, 0 ≤ t − ai(t) ≤ T, ai non-decreasing, i ∈ 1..n :
∃R, F : N → T : E(x − 1) ≤ R(x) < F (x) < E(x) ∀x ∈ N,

∀p ∈ N, ∀t ∈ 〈E(p − 1), E(p)) :
t < F (p) ⇒ P (I1[a1(R(p − 1))], . . . , In[an(R(p − 1))], O1[t], . . . , Om[t])

t ≥ F (p) ⇒ P (I1[a1(R(p))], . . . , In[an(R(p))], O1[t], . . . , Om[t])

where E : N0 → T and E(n) = n · L, i.e., the end of the n-th period. R(n)
and F (n) denote the release and finish time of the real-time knowledge exchange
in the n-th period. Finally, ai gives for each time t the corresponding time t′

such that the valuation of Ii that was available to the component executing the
knowledge exchange at t was sent to the component at t′.

For every input Ii, the ai can be a different value as the component executing
the knowledge exchange can receive the inputs at different times. On the other
hand, the knowledge exchange is assumed to be unidirectional. It means that
that the exchange is written into the knowledge of a single component only, and
therefore these writes can be atomic. Thus, for every output Oi there is the
same t.

The invariant (12) of the running example can taken as a representative of
the exchange invariant: “V::availabilityList – V’s belief over P::availability of
trip-relevant parking lots – is up-to-date”. For parking lots P1..Pn, period L,
and upper bound for knowledge transfer T it can be formalized as follows:

“If the current time is before the finish time of the knowledge exchange for
V in the current period, then the V::availabilityList valuation is the same
as in the previous period. Otherwise, V::availabilityList equals the set of
P::availability for all relevant Pi as available at V at the release time in
this period. It takes at most T for the knowledge of Pi to become available at V.
Further always the newest knowledge of Pi is taken into account.”

The predicate logic can capture it as follows:

∃a1, ..., an : T → T, 0 < x − ai(x) ≤ T, ∀i ∈ {1..n},
∃R, F : N → T, E(x − 1) ≤ R(x) < F (x) < E(x),
∀p ∈ N, ∀t ∈ 〈E(p − 1), E(p)) :

t < FV (p) ⇒ EqualsRelevant

⎛
⎜⎜⎝

P1::availability[a1(R(p − 1))],...

Pn::availability[an(R(p − 1))],
V ::availabilityList[t]

⎞
⎟⎟⎠

t ≥ FV (p) ⇒ EqualsRelevant

⎛
⎜⎜⎝

P1::availability[a1(R(p))],...

Pn::availability[an(R(p))],
V ::availabilityList[t]

⎞
⎟⎟⎠

The Invariant Refinement Method 425

In this case, zero L means that, at each time instant, the V::availability-
List is infinitely close to the set of the current P::availability of all the
relevant parking lots.

With the help of the shortcut from Definition 8, the invariant (12) can be
formalized as:

EqualsRelevantL,T
exc

⎡
⎣ P1::availability,...

Pn::availability,

⎤
⎦

⎡
⎣V ::availabilityList

⎤
⎦

5.7 Refinement Between Invariant Patterns

With the invariant patterns described, we can now introduce the guidelines for
decomposition at the corresponding levels of abstraction. The goal of these guide-
lines is to guarantee the refinement between invariants following the patterns.
The guidelines are presented here informally only; the formal definitions and
proofs are in [7].

General → Present-past. As already mentioned in section 5.3, when a general
invariant is refined into (a conjunction of) present-past invariants, assumption
invariants have to be introduced (e.g., invariant (4) in Fig. 2). From the formal
point of view, this refinement is the most demanding one as it is necessary to
proof each case separately.

Present-past → Present-past. When a single present-past invariant is refined
into a conjunction of other present-past invariants, the combined lag of the sub-
invariants is not greater that the parent’s lag. The combination is figured out by
the knowledge dependencies among the sub-invariants. (By knowledge depen-
dency, we mean here a situation, when an invariant uses knowledge produced by
the activity associated with another invariant.)

Present-past → Activity. It holds that the activity invariant pattern is a strict
refinement of the present-past invariant pattern; i.e., PL

act[I][O] ⇒ PL
p−p[I][O] for

each P , I, and O.

Activity → Activity. As in the case of present-past → present-past invariant
refinement, an activity invariant can also refined into a conjunction of other
activity invariants. For our predicate formalization, it is possible to determine
this form of refinement solely based on the time-oblivious skeletons of the invari-
ants and the structure of the decomposition (i.e., without interpreting the full
invariants via a theorem prover).

Activity → Process. It holds that the process invariant pattern is a refinement
of the activity invariant pattern with lag equal twice the period of the process
invariant pattern; i.e., PL

proc[I][O] ⇒ P 2L
act[I][O] for each P , I, and O. This com-

plies with the well-known fact in the area of real-time scheduling: in order to

426 T. Bureš et al.

achieve a particular end-to-end response time with a real-time periodic process
with relative deadline equal to period, the period needs to be at most half of the
response time [9].

Activity → Exchange. Similarly, it holds that the exchange invariant pattern is
a refinement of the activity invariant pattern with lag equal twice the period
of the exchange invariant pattern plus the time for distributed transfer of the
knowledge; i.e., PL,T

exc [I][O] ⇒ P 2L+T
act [I][O] for each P , I, and O.

Impact of IRM Design on the Case Study. By identifying invariants in the case
study, classifying them into the available invariant patterns (Sections 5.2-5.6),
and subsequently refining them using the above guidelines, we systematically
constructed the IRM tree of the case study. This can be used in turn to derive
the DEECo specification of the case study (Listing 1 in Section 2.1).

6 Conclusions

In this chapter, we have presented IRM – a requirements elicitation and archi-
tectural design method that guides the design of ACEs. With respect to the
Ensemble Development Life Cycle (cf. Chapter III.1 [13]), IRM lies in the tran-
sition between the Requirements Engineering and the Modeling Phase of the
design wheel. IRM takes similar approach as found in goal-oriented require-
ments engineering, but specifically focuses on “maintain” goals, as these are
critical for continuously running systems that constantly interact and control
their environment (such as cyber-physical systems).

The core idea of IRM is to describe the variability of a system by AND and
OR invariant decompositions that capture the required functionality of the sys-
tem under different runtime situations. IRM establishes systematic refinement
between high-level requirements and low-level architectural concepts, i.e., com-
ponents, component processes, and knowledge exchange functions as defined in
the DEECo component model. This directly allows deriving an architecture of
ACEs and brings about strong traceability.

References

1. Abeywickrama, D.B., Bicocchi, N., Zambonelli, F.: SOTA: Towards a General
Model for Self-Adaptive Systems. In: Proc. of WETICE ’12, pp. 48–53. IEEE
Computer Society Press, Los Alamitos (2012)

2. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of Real-Time Properties. In:
Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272.
Springer, Heidelberg (2006)

3. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos:
An Agent-Oriented Software Development Methodology. Autonomous Agents and
Multi-Agent Systems 8(3), 203–236 (2004)

The Invariant Refinement Method 427

4. Bruni, R., Corradini, A., Gadducci, F., Hölzl, M., Lafuente, A.L., Vandin, A., Wirs-
ing, M.: Reconciling White-Box and Black-Box Perspectives on Behavioral Self-
adaptation. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engi-
neering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 163–184. Springer,
Heidelberg (2015)

5. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.:
DEECo – an Ensemble-Based Component System. In: Proc. of CBSE’13, pp. 81–90.
ACM Press, New York (2013)

6. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil,
F., Plouzeau, N.: Adaptation in Cyber-Physical Systems: from System Goals
to Architecture Configurations. Tech. rep., D3S-TR-2014-01, Dep. of Dis-
tributed and Dependable Systems, Charles University in Prague (Jan 2014),
http://d3s.mff.cuni.cz/publications/download/D3S-TR-2014-01.pdf

7. Bures, T., Gerostathopoulos, I., Keznikl, J., Plasil, F., Tuma, P.: Formalization
of Invariant Patterns for the Invariant Refinement Method. To appear in Springer
LNCS volume dedicated to Wirsing-Festschrift (2015), preliminary version avail-
able at http://d3s.mff.cuni.cz/publications/download/D3S-TR-2013-04.pdf

8. Bures, T., Gerostathopoulos, I., Horky, V., Keznikl, J., Kofron, J., Loreti, M.,
Plasil, F.: Language Extensions for Implementation-Level Conformance Checking,
ASCENS deliverable 1.5 (Nov. 2012), http://www.ascens-ist.eu/deliverables

9. Buttazo, G., Lipari, G., Abeni, L., Caccamo, M.: Soft Real-Time Systems: Pre-
dictability vs Efficiency. In: Computer Science, Springer, Heidelberg (2005)

10. Gerostathopoulos, I., Bures, T., Hnetynka, P.: Position Paper: Towards a
Requirements-Driven Design of Ensemble-Based Component Systems. In: Proc.
of HotTopiCS workshop at ICPE ’13, pp. 79–86. ACM Press, New York (2013)

11. Giorgini, P., Kolp, M., Mylopoulos, J., Pistore, M.: The Tropos Methodology: An
Overview. In: Methodologies and Software Engineering for Agent Systems, pp.
89–106. Kluwer Academic Publishers, Dordrecht (2004)

12. Hoch, N., Bensler, H.-P., Abeywickrama, D., Bures, T., Montanari, U.: The E-
mobility Case Study. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Soft-
ware Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 513–533.
Springer, Heidelberg (2015)

13. Hölzl, M., Koch, N., Puviani, M., Wirsing, M., Zambonelli, F.: The Ensemble
Development Life Cycle and Best Practices for Collective Autonomic Systems.
In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for
Collective Autonomic Systems. LNCS, vol. 8998, pp. 325–354. Springer, Heidelberg
(2015)

14. Hölzl, M.M., Wirsing, M.: Towards a System Model for Ensembles. In: Agha, G.,
Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological
Systems. LNCS, vol. 7000, pp. 241–261. Springer, Heidelberg (2011)

15. Keznikl, J., Bures, T., Plasil, F., Gerostathopoulos, I., Hnetynka, P., Hoch, N.:
Design of Ensemble-Based Component Systems by Invariant Refinement. In: Proc.
of CBSE ’13, pp. 91–100. ACM Press, New York (2013)

16. Lamsweerde, A.V.: Goal-Oriented Requirements Engineering: A Guided Tour. In:
Proc. of RE’01, pp. 249–262. IEEE Computer Society Press, Los Alamitos (2001)

17. van Lamsweerde, A.: From System Goals to Software Architecture. In: Bernardo,
M., Inverardi, P. (eds.) SFM 2003. LNCS, vol. 2804, pp. 25–43. Springer, Heidelberg
(2003)

18. Lamsweerde, A.V.: Requirements Engineering: From Craft to Discipline. In: Proc.
of SIGSOFT ’08/FSE-16, pp. 238–249. ACM Press, New York (2008)

http://d3s.mff.cuni.cz/publications/download/D3S-TR-2014-01.pdf
http://d3s.mff.cuni.cz/publications/download/D3S-TR-2013-04.pdf
http://www.ascens-ist.eu/deliverables

428 T. Bureš et al.

19. Lamsweerde, A.V.: Requirements Engineering: From System Goals to UML Models
to Software Specifications. John Wiley and Sons, Chichester (2009)

20. Noël, V., Zambonelli, F.: Methodological Guidelines for Engineering Self-
organization and Emergence. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.)
Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 355–
378. Springer, Heidelberg (2015)

21. Rao, A., Georgeff, M.P.: BDI Agents: From Theory to Practice. In: Proc. of ICMAS
’95, pp. 312–319 (1995)

22. Vassev, E., Hinchey, M.: Autonomy Requirements Engineering. IEEE Com-
puter 46(8), 82–84 (2013)

23. Vassev, E., Hinchey, M.: Engineering Requirements for Autonomy Features. In:
Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998, pp. 379–403. Springer, Heidelberg
(2015)

24. Yu, E.: Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering, pp. 226–235. IEEE Computer Society Press, Los Alamitos (1997)

Chapter III.5

Tools for Ensemble Design and Runtime�

Dhaminda B. Abeywickrama2,6, Jacques Combaz10, Vojtěch Horký1,
Jaroslav Keznikl1, Jan Kofroň1, Alberto Lluch Lafuente3, Michele Loreti5,
Andrea Margheri5, Philip Mayer4, Valentina Monreale7, Ugo Montanari7,

Carlo Pinciroli8, Petr Tůma1, Andrea Vandin3, and Emil Vassev9

1 MFF, Charles University, Czech Republic
2 FOKUS, Fraunhofer-Gesellschaft, Germany

3 SySMA, Institute for Advanced Studies Lucca, Italy
4 PST, Ludwig-Maximilians-Universität München, Germany

5 CMG, Università di Firenze, Italy
6 APCG, Università di Modena e Reggio Emilia, Italy

7 DI, Università di Pisa, Italy
8 IRIDIA, Université Libre de Bruxelles, Belgium

9 LERO, University of Limerick, Ireland
10 DCS, VERIMAG Laboratory, France

Abstract. The ASCENS project deals with designing systems as en-
sembles of adaptive components. Among the outputs of the ASCENS
project are multiple tools that address particular issues in designing the
ensembles, ranging from support for early stage formal modeling to run-
time environment for executing and monitoring ensemble implementa-
tions. The goal of this chapter is to provide a compact description of
the individual tools, which is supplemented by additional downloadable
material on the project website.

Keywords: tools, software development, adaptive systems, autonomic
systems

1 Introduction

The ASCENS project tackles the challenge of building systems that are open
ended, highly parallel and massively distributed. Towards that goal, the AS-
CENS project considers designing systems as ensembles of adaptive components.
Properly designed, such ensembles should operate reliably and predictably in
open and changing environments. Among the outputs of the ASCENS project
are multiple tools that address particular issues in designing the ensembles.

The ASCENS tool landscape reflects the ASCENS approach to the software
development lifecycle, illustrated on Figure 1 and described in detail in Chap-
ter III.1 [30].

� This research was supported by the European project IP 257414 (ASCENS).

M. Wirsing et al. (eds.): Collective Autonomic Systems, LNCS 8998, pp. 429–448, 2015.
c© Springer International Publishing Switzerland 2015

430 D.B. Abeywickrama et al.

Design Runtime

Deployment Deployment

Feedback

Fig. 1. ASCENS Ensemble Software Development Life Cycle

On the design cycle side, ASCENS provides several early stage formal mod-
eling tools – the jSAM stochastic model checker (Section 2.1) for the modeling
approaches that rely on process algebras and the Maude Daemon Wrapper (Sec-
tion 2.2) for the modeling approaches that rely on rewriting logic – three tools that
rely on Maude, MAIA (Section 2.5), MESSI (Section 2.3) and MISSCEL (Sec-
tion 2.4), have also been developed. The SimSOTA tool (Section 2.6) can evalu-
ate the behavior of complex feedback driven adaptation mechanisms using simu-
lation. The FACPL framework (Section 2.7) can be used to capture policies that
regulate interaction and adaptation of SCEL components. The KnowLang Toolset
(Section 2.8) serves to describe knowledge models which are then compiled into a
binary knowledge base, to be used for subsequent knowledge reasoning tasks.

Tools for transition from modeling to programming include the BIP compiler
(Section 2.9) for the approaches that rely on correctness by construction, and two
frameworks that reify the formal modeling concepts for manual implementation,
namely jRESP (Section 3.2) and jDEECo (Section 3.3).

Because the manual implementation approaches do not guarantee preserving
the correspondence between the model and the code, we also examine methods
and tools to verify whether code complies to models. For C code, we have devel-
oped the GMC model checker (Section 2.10), for Java code, we have integrated
the JPF model checker in jDEECo (Section 3.3).

On the runtime cycle side, our tool support focuses on simulation and mon-
itoring. Our simulation environment for the robotic swarms is ARGoS (Sec-
tion 3.1), a simulation environment that provides built in observation and in-
trospection capabilities. For the cloud case study, we have similarly developed
the Science Cloud Platform (Section 3.5). Two generic runtime environments for
ensemble prototypes are jRESP (Section 3.2) and jDEECo (Section 3.3).

Visualisation support for ensemble structure and component state is provided
by AVis (Section 3.4). Additional ensemble introspection capabilities rely on the

Tools for Ensemble Design and Runtime 431

DiSL instrumentation framework [35], which has enough flexibility to observe
most Java applications. On top of DiSL, the SPL evaluation tool (Section 3.6)
is used to reason about performance.

The next sections contain a brief description of each of the tools, arranged
in two large groups following the ASCENS development lifecycle. In Section 2,
we place tools that deal mostly with the design cycle side, such as the modeling
activities. Section 3 contains tools that provide runtime frameworks for executing
either ensembles or simulations. Of necessity, the classification categories are not
entirely distinct – some tools would fall into both groups. Such tools are listed
only once, but the tool description reflects the complete purpose of the tool.

For access to the tools, the reader is encouraged to consult the ASCENS
project website at http://www.ascens-ist.eu. For most tools, links to sources,
installation and documentation is provided (depending on licensing).

2 Design Cycle Tools

The design phase of the ASCENS development lifecycle focuses on require-
ments engineering, modeling and programming, and verification and validation.
The prototype tools developed for the design phase focus on connection to the
mathematical foundations of the proposed approaches from Chapters I.1 [41],
I.2 [14] and I.3 [20], together with knowledge representation as described in
Chapter II.3 [53].

2.1 jSAM: Java Stochastic Model-Checker

jSAM is an Eclipse plugin integrating a set of tools for stochastic analysis of
concurrent and distributed systems specified using process algebras. More specif-
ically, jSAM provides tools that can be used for interactively executing specifica-
tions and for simulating their stochastic behaviors. Moreover, jSAM integrates a
statistical model-checking algorithm [17,26,47] that permits verifying if a given
system satisfies a CSL-like [7,8] formula.

jSAM does not rely on a single specification language, but provides a set of
basic classes that can be extended in order to integrate any process algebra. One
of the process algebras that are currently integrated in jSAM is StoKlaim [22].
This is the stochastic extension of Klaim, an experimental language aimed at
modeling and programming mobile code applications. Properties of StoKlaim
systems can be specified by means of the mobile stochastic logic MoSL [23].
This is a stochastic logic inspired by CSL that, together with qualitative proper-
ties, permits specifying time-bounded probabilistic reachability properties, such
as the likelihood to reach a goal state within t time units while visiting only legal
states is at least p. MoSL is also equipped with operators that permit describing
properties resulting from resource production and consumption. In particular,
state properties incorporate features for resource management and context veri-
fication. Context verification allows the verification of assumptions on resources

http://www.ascens-ist.eu

432 D.B. Abeywickrama et al.

Fig. 2. A jSAM specification (left) and the result of model-checking (right)

and processes in a system at the logical level, i.e. without having to change the
model to investigate the effect of each assumption on the system behavior.

As its input, jSAM accepts a text file containing a system specification. For
instance, Figure 2 (left) contains a portion of a StoKlaim system. The results of
stochastic analyses (both simulation and model-checking) are plotted in graphs,
see Figure 2 (right).

On-The-Fly Model Checking. Model checking approaches can be divided into
two broad categories: global approaches that determine the set of all states in
a model M that satisfy a temporal logic formula Φ, and local approaches in
which, given a state s in M, the procedure determines whether s satisfies Φ.
When s is a term of a process language, the model-checking procedure can be
executed on-the-fly, driven by the syntactical structure of s. For certain classes of
systems, e.g. those composed of many parallel components, the local approach
is preferable because, depending on the specific property, it may be sufficient
to generate and inspect only a relatively small part of the state space. In [34]
an efficient, on-the-fly, PCTL model checking procedure that is parametric with
respect to the semantic interpretation of the language has been proposed. The
proposed model checking algorithm has been integrated in jSAM together with
a module for supporting specification and analysis of systems via the PRISM
language.

FlyFast Model Checker. Typical self-organising collective systems consist of a
large number of interacting objects that coordinate their activities in a decen-
tralised and often implicit way. Design of such systems is challenging and requires
suitable, scalable analysis tools to check properties of proposed system designs
before they are put into operation. The exploitation of mean field approximation
in model-checking techniques seems a promising approach to overcome scalability

Tools for Ensemble Design and Runtime 433

issues raised by the size of such collective systems. In [32,33] we have presented
a scalable, on-the-fly model-checking procedure to verify bounded PCTL prop-
erties of selected individuals in the context of very large systems of independent
interacting objects. The proposed procedure combines on-the-fly model check-
ing techniques with deterministic mean-field approximation in discrete time. A
prototype implementation of the model-checker, named FlyFast, has been inte-
grated into jSAM and used to verify properties of a selection of simple and more
elaborate case studies.

SCEL Development. To support design, analysis and deployment of autonomous
and adaptive systems developed in SCEL, jSAM integrates a plug-in that enables
the use of selected formal tools by relying on the jRESP simulation environment.
The plug-in takes a SCEL specification as input and automatically generates the
Java classes used to simulate and execute the considered system.

2.2 Maude Daemon Wrapper

Maude [19] is a high-performance reflective language and system supporting
both equational and rewriting logic specification and programming for a wide
range of applications. It is a flexible and general framework for giving executable
semantics to a wide range of languages and models of concurrency, and has
been also used to develop several tools comprising theorem provers and model
checkers. Maude is used within the ASCENS project as a convenient formal-
ism for modeling and analysis of self-adaptive systems, as outlined for example
in [10,13,9]. Maude can be used to prototype semantic models and then either
execute or check them. Maude can also be used as a semantic framework for
SCEL dialects, for instance to develop interpreters or analysis tools for SCEL
specifications. Maude can also be used to model the case studies. Sections 2.3
and 2.4 present two tools that pursue these research lines.

The Maude Daemon Wrapper is a plugin integrating the Maude framework
in the SDE environment. Our tool is a minimal wrapper for the Maude Daemon
plugin, an existing Eclipse plugin which embeds the Maude framework into the
Eclipse environment by encapsulating a Maude process into a set of Java classes.
The Maude Daemon plugin provides an API to use and control a Maude process
from a Java program, allowing to programmatically configure the Maude process,
to execute it, send commands to it, and get the results from it.

2.3 MESSI: Maude Ensemble Strategies Simulator and Inquirer

Maude has been used to model and analyze self-assembly robotic strategies pro-
posed by IRIDIA [42], outlined in [12,10,13,11]. The resulting implementation
is a framework named MESSI (Maude Ensemble Strategy Simulator and In-
quirer) [10,13,39] that helps model, debug and analyze scenarios where s-bots
self-assemble to solve tasks (e.g. crossing holes or hills). Debugging is done via an-
imated simulations, while analysis can be done by exploiting the Maude toolset,

434 D.B. Abeywickrama et al.

and in particular the distributed statistical analyzer and statistical model checker
PVeStA [5,51], or via recently proposed MultiVeStA [50], which extends PVeStA.

The inputs of MESSI are the initial configuration and the self-assembly strat-
egy, provided as Maude modules. The former provides information about the
environment (an arena), specifying the presence of obstacles and targets (e.g.
particular sources of light), and about the numbers and positions of the robots.
The latter specifies the behaviour of the robots in the form of a finite state
machine, which will be independently executed by each robot. Figures 3 and
4 provide a pictorial view of the two inputs. Figure 3 depicts an initial con-
figuration with 9 robots distributed in an arena. The robots have to reach the
target (the orange circle) situated behind a hole too large to be crossed by any
single robot. Figure 4 depicts the basic self-assembly response strategy (BSRS)
proposed in [42]. The strategy specifies the possible states (each circle is a bird-
eye view of a robot) of the robots (i.e. the different mode of operation that the
robots have) and the status of the robots LED signals (used to communicate
with other robots) in each state. The transitions among the states provide the
conditions that trigger a change of state of a robot, i.e., an adaptation.

MESSI provides a library of predefined basic behaviours (e.g. move towards
light, or search a given color emission and grab its source), thus a self-assembly
strategy is specified by just providing the list of states, the correspondence be-
tween the states and the basic behaviours, the status of the LED signals in
each state, and a conditional rewrite rule for each transition of the finite state
machine, with the condition as the label of the transition.

Given an initial configuration and a self-assembly strategy, MESSI allows to
generate probabilistic simulations. As discussed, such simulations can be used
to debug the strategy, or to measure its performance via statistical quantitative
analysis.

2.4 MISSCEL: A Maude Interpreter and Simulator for SCEL

The SCEL language comes with solid semantics foundations laying the basis
for formal reasoning. MISSCEL is a rewriting-logic-based implementation of the
SCEL operational semantics. MISSCEL is written in Maude, which allows to

Fig. 3. A pictorial representation of an initial configuration for MESSI

Tools for Ensemble Design and Runtime 435

Fig. 4. A pictorial representation of a self-assembly strategy for MESSI

execute rewrite theories – what we obtain is an executable operational seman-
tics for SCEL, that is, an interpreter. Given a SCEL specification, thanks to
MISSCEL it is possible to use the rich Maude toolset [19] to perform (i) auto-
matic state-space generation, (ii) qualitative analysis via Maude invariant and
LTL model checkers, (iii) debugging via probabilistic simulations and anima-
tions generation, (iv) statistical quantitative analysis via the recently proposed
MultiVeStA [50] statistical analyser that extends PVeStA [5,51].

With MISSCEL, SCEL specifications can be intertwined with raw Maude
code, exploiting its great expressiveness. This allows to obtain cleaner specifica-
tions in which SCEL is used to model behaviours, aggregations, and knowledge
manipulation, leaving scenario-specific details like environment sensing abstrac-
tions or robot movements to Maude.

Among the features of MISSCEL, the state space of a SCEL specification can
be generated by exploiting the Maude search command (these can also be just
the states satisfying boolean conditions definable as Maude operations on SCEL
configurations). After the generation of the state space, it is possible to obtain
the path that generated one of the returned states, or the whole search graph
(similar to a labelled transition system). Moreover, it is possible to model-check
SCEL specifications, resorting to the LTL model checker. Finally, by resorting
to a set of schedulers that we defined to transform the non-determinism of SCEL
in probabilistic choices, it is possible to generate probabilistic simulations of a
SCEL specification. We have also defined an exporter from SCEL configurations
to DOT terms [6], using which we can obtain images from SCEL configurations
and animate the simulations.

2.5 MAIA

Inspired by white-box approaches to adaptation [12], the ASCENS project has
presented a model of adaptable transition systems [11], based on earlier founda-
tional models of component based systems [4,3]. The key feature of adaptable
transition systems are control propositions, a subset of the atomic propositions
labelling the states of our transtion systems, imposing a clear separation be-
tween ordinary, functional behaviours and adaptive ones. Control propositions

436 D.B. Abeywickrama et al.

can be exploited in the specification and analysis of adaptive systems, focusing
on various notions like adaptability, control loops, and control synthesis.

The cited model of adaptive transition systems was instantiated on Inter-
face Automata (IA) [4,3], yielding Adaptable Interface Automata (AIA) [11].
MAIA is an implementation of AIA in Maude that can be used to specify and
draw an AIA and to perform operations on AIA such as product, composition,
decomposition and control synthesis (an AIA is specified as a Maude term).

2.6 SimSOTA

The SimSOTA tool supports modeling, simulating and validating of self-adaptive
systems with multiple interacting feedback loops [1,2]. The tool adopts the
model-driven development process to model and simulate complex self-adaptive
architectural patterns, and to automate the generation of Java implementation
code for the patterns. Our work integrates both decentralized and centralized
feedback loop techniques to exploit their benefits.

The SimSOTA tool provides a set of pattern templates for the key SOTA
patterns, depicted on Figure 5. This facilitates general-purpose and application-
independent instantiation of models for complex systems based on feedback
loops. The SimSOTA tool applies model transformations to automate the ap-
plication of UML architectural design patterns and generate infrastructure code
for the patterns in Java. The generated Java files of the SOTA patterns can be
further adjusted by the engineer to derive a complete implementation for the
patterns. To assist this process, we provide a set of context-independent Java
templates, which can be instantiated to a particular domain.

Fig. 5. SOTA pattern templates available to facilitate modeling

Tools for Ensemble Design and Runtime 437

FACPL
policies

<<generates>>

<<generates>>

<<uses>><<uses>>

Translation
rules

FACPL
library

XML

< / >

Policy
developer

<<interacts>>

FACPL IDE

XACML
policies

JAVA

y

JARXtend

XML

< / >

XACML
policies

<<generates>>

FACPL CODE

Fig. 6. FACPL Toolchain

2.7 FACPL: Policy IDE and Evaluation Library

FACPL [37] is a policy language for writing policies and requests. It has a mathe-
matically defined semantics and canbe used to regulate interaction and adaptation
of SCEL components. FACPL provides user-friendly, uniform, and comprehensive
linguistic abstractions for policing various aspects of system behaviour, as e.g. ac-
cess control, resource usage, and adaptation. The result of a request evaluation is
an authorisation decision (e.g. permit or deny), which may also include some obli-
gations, i.e. additional actions to be executed for enforcing the decision.

The development and the enforcement of FACPL policies is supported by an
Integrated Development Environment (IDE), in the form of an Eclipse plugin,
and a Java implementation library. Figure 6 shows the toolchain supporting the
use of the language. The policy designer can use the IDE for writing the de-
sired policies in FACPL syntax, by taking advantage of the supporting features
provided, e.g. code completion and syntax checks. Then, the tool automatically
produces a set of Java classes implementing the FACPL code by using the spec-
ification classes defined in the FACPL library. The library, according to the
rules defining the language semantics, implements the request evaluation pro-
cess, given as input a set of Java-translated policies and the request to evaluate.

The policy and request specification is made through a graphical interface,
shown on Figure 7. Alternatively, FACPL code can be also automatically cre-
ated starting from policies and requests written in XACML. The IDE can also
generate XML code compliant with the XACML 3.0 syntax corresponding to a
given FACPL code.

2.8 KnowLang Toolset

The KnowLang Toolset is a comprehensive environment that delivers tools for
creating and reasoning with the KnowLang notation – a suite of editors, parsers,
compilers and checkers. The KnowLang knowledge representation (KR) can be
written using either text editing tools or visual modeling tools, and then checked
for syntactic integrity and model consistency.

438 D.B. Abeywickrama et al.

Fig. 7. FACPL Eclipse IDE

Fig. 8. KnowLang Specification Processor

The KnowLang Toolset organizes its tools in five distinct components (or
modules), outlined in Figure 8. These are the KnowLang Editor (which com-
bines both the Text Editor and the Visual Editor), the Grammar Compiler,
the KnowLang Parser, the Consistency Checker and the Knowledge Base (KB)
Compiler. These components are linked together to form a special Know Lang
Specification Processor that checks and compiles the KR models specified in
KnowLang into a KnowLang Binary. As the output of the KnowLang Toolset, the
KnowLang Binary is a compiled form of the specified KB which the KnowLang
Reasoner (a distinct KnowLang component to be integrated within the system
that uses KR) operates upon.

Figure 8 presents an abstract view where the KnowLang Toolset operation is
broken down into the data source group (KnowLang Editor + KnowLang Gram-
mar Compiler), which prepares the input data (grammar and specification), the
analysis group (KnowLang Parser + Consistency Checker), which performs the

Tools for Ensemble Design and Runtime 439

lexical analysis, syntax analysis and semantic analysis, and the synthesis group
(KnowLang KB Compiler), which is responsible for generating output.

2.9 BIP Compiler

The BIP (behaviour, interaction, priority) component framework supports the
construction of composite, hierarchically structured components from atomic
components characterised by their behaviour and interfaces. It lets developers
compose components by layered application of interactions and priorities. Archi-
tecture is a first-class concept in BIP, with well-defined semantics that system
designers can analyse and transform.

BIP is model-based, describing an entire system with a single semantic model.
This maintains the overall coherency of the design flow by guaranteeing that a
description at step n+1 meets the essential properties of a description at step n.
BIP is component-based, providing a family of operators for building composite
components from simpler components. This overcomes the poor expressiveness
of theoretical frameworks based on a single operator, such as the product of
automata or a function call. BIP provides correctness by construction, avoiding
monolithic a posteriori verification as much as possible.

The BIP framework is supported by a toolchain including model-to-model
transformations and code generators, outlined on Figure 9. The BIP compiler is
organized in Java packages in a modular way, allowing a dynamic invocation of
model-to-model transformers and backends.

Fig. 9. The BIP Compiler tool-chain

2.10 Gimple Model Checker

Gimple Model Checker (GMC) is an explicit-state code model checker for C and
C++ programs, useful especially for revealing errors that manifest themselves
in rare thread interleavings that are hard to find via testing. In ASCENS, GMC

440 D.B. Abeywickrama et al.

can check certain ensemble related properties, such as particular sequences of
accesses to the ensemble knowledge (using custom assertion statements).

On the technical side, GMC detects low-level programming errors such as
invalid memory usage (buffer overflows, memory leaks, use-after-free defects,
uninitialized memory reads), null-pointer dereferences, and assertion violations.
GMC understands not only the pthread library [46], but also offers means to
add support for other thread libraries based on the same principles.

Similar to other explicit model checkers, GMC requires that the actions
(steps) of the verified program are revertible. When this is not the case (for
example when accessing hardware or external services), the user can provide
models that describe how a given action modifies the program state and how to
revert the action. GMC already contains models for the basic functions from the
standard C library.

The input of GMC is the source code of a complete program. The source code
is processed via an extended GCC compiler [25], which dumps a GIMPLE file
– the intermediate representation of the program used in GCC. The serialized
GIMPLE representation is passed to the model checker, which interprets it and
exhaustively searches for errors. If an error is found, GMC dumps a brief error
description and an error trace which leads to the error.

3 Runtime Cycle Tools

The runtime phase of the ASCENS development lifecycle focuses on monitoring,
awareness and adaptation. The prototype tools developed for the runtime phase
focus on providing ensemble implementation environments whose features closely
correspond to the theoretical ensemble abstractions. In particular, the tools are
used to execute or simulate case studies from Chapters IV.1 [52], IV.2 [44],
IV.3 [38] and IV.4 [28].

3.1 ARGoS

ARGoS [45] is a physics-based multi-robot simulator. ARGoS aims to simulate
complex experiments involving large swarms of robots of different types in the
shortest time possible. It is designed around two main requirements: efficiency,
to achieve high perfomance with large swarms, and flexibility, to allow the user
to customize the simulator for specific experiments.

To marry efficiency and flexibility, ARGoS is based on a number of novel de-
sign choices. First, in ARGoS, it is possible to partition the simulated space into
multiple sub-spaces, managed by different physics engines running in parallel.
Second, ARGoS architecture is multi-threaded, thus designed to optimize the
usage of modern multi-core CPUs. Finally, the architecture of ARGoS is highly
modular. Based on advanced concepts from C++ templates, it allows users to
extend any aspect of ARGoS without touching the core, add custom features
(enhancing flexibility) and allocate computational resources where needed (thus
decreasing run-time and enhancing efficiency).

Tools for Ensemble Design and Runtime 441

To use ARGoS, the user provides an XML configuration file and user code
compiled into a library. The XML configuration file contains complete informa-
tion required to set up the simulation arena, the individual robots, the physics
engines, the controllers, and so on. The user code includes the robot controllers
and, optionally, hook functions to be executed in various parts of ARGoS to
interact with the running experiment. ARGoS can also interface with external
controllers written in the Lua scripting language, experimental extensions in-
clude integration with the MultiVeStA distributed statistical analyzer [50].

Screenshots, as well as an example of use are reported in Chapter IV.2 [44].
ARGoS is open-source software released under the MIT license. It can be down-
loaded at http://iridia.ulb.ac.be/argos.

3.2 jRESP: Runtime Environment for SCEL Programs

jRESP is a runtime environment that provides Java programmers with a frame-
work for developing autonomic and adaptive systems based on the SCEL con-
cepts. SCEL [21,40] identifies the linguistic constructs for modelling the control
of computation, the interaction among possibly heterogeneous components, and
the architecture of systems and ensembles. jRESP provides an API that permits
using the SCEL paradigm in Java programs.

In SCEL, some specification aspects, such as the knowledge representation,
are not fixed but can be customized depending on the application domain or
the taste of the language user. Other mechanisms, for instance the underlying
communication infrastructure, are not considered at all and remain abstracted
in the operational semantics. For this reason, the entire jRESP framework is
parametrised with respect to specific implementations of these particular fea-
tures. To simplify the integration of new features, recurrent patterns are largely
used in jRESP.

The jRESP communication infrastructure has been designed to avoid any
centralised control. A SCEL program typically consists of a set of (possibly
heterogeneous) components, equipped with a knowledge repository. The com-
ponents execute and cooperate in a highly dynamic environment, where the
underlying communication infrastructure is not fixed, but can change dynami-
cally during the computation. To simplify the integration with other tools and
frameworks, jRESP communication infrastructure relies on open data inter-
change technologies, including JSON. These technologies simplify interactions
between heterogeneous network components and provide the basis on which dif-
ferent runtimes for SCEL programs can cooperate.

Policies can be used in jRESP to authorise local actions and to regulate the
interactions among components. Policies can authorise or prevent the execution
of an action, and possibly adapt the agent behaviour by returning additional
actions to be executed. jRESP can integrate different policy types, including
stateful policies based on policy automata and FACPL.

To support analysis of adaptive systems specified in SCEL, jRESP also pro-
vides a set of classes that permit simulating jRESP programs. These classes

http://iridia.ulb.ac.be/argos

442 D.B. Abeywickrama et al.

allow the execution of virtual components over a simulation environment that is
able to control component interactions and to collect relevant simulation data.

Based on the simulation environment, jRESP also supports statistical model-
checking. Following this approach, a randomized algorithm is used to verify
whether the implementation of a system satisfies a specific property with a cer-
tain degree of confidence. The statistical model-checker is parameterized with
respect to a given tolerance ε and error probability p. The used algorithm guar-
antees that the difference between the value computed by the algorithm and the
exact one is greater than ε with a probability that is less than p. The model-
checker included in jRESP can be used to verify reachability properties. These
permit evaluating the probability of reaching, within a given deadline, a config-
uration where a given predicate on collected data is satisfied.

To simplify the development process and to simplify the use of formal tools,
jRESP extends the concepts provided in SCEL by more conventional program-
ming constructs (e.g. control flow constructs, such as while or if-then-else, or
structured data types). The constructs are supported by a high-level extension
of SCEL, the jRESP code is generated automatically by an XText transforma-
tion.

3.3 jDEECo: Java Runtime Environment for DEECo Applications

jDEECo is a Java-based implementation of the DEECo component model [16]
runtime framework. It allows for convenient management and execution of
jDEECo components and ensemble knowledge exchange.

The main tasks of the jDEECo runtime framework are providing access to
the knowledge repository, storing the knowledge of all the running components,
scheduling execution of component processes (either periodically or when a trig-
gering condition is met), and evaluating membership of the running ensembles
and, in the positive case, carrying out the associated knowledge exchange (also
either periodically or when triggered). The jDEECo runtime framework allows
both local and distributed execution (currently, the distribution is achieved on
the level of knowledge repository). The local version of jDEECo also supports
verification of application properties using Java PathFinder.

The jDEECo runtime framework can be initialized and executed either man-
ually, via its Java API, or inside the OSGi infrastructure [27]. In the latter case,
the modules of the jDEECo runtime framework are managed as regular OSGi
services (building upon the OSGi Declarative Services).

The input of the jDEECo runtime framework is a set of definitions of the
components and ensembles to be executed. In general, such definitions are rep-
resented as specifically annotated Java classes [16]. Thus, technically, the input
of the jDEECo runtime framework is either a set of Java class files, a JAR file
containing the class files, or a set of class objects (in case the jDEECo runtime is
accessed directly via its Java API). Thanks to the OSGi integration, component
and ensemble definitions may be also packaged into OSGi bundles, each contain-

Tools for Ensemble Design and Runtime 443

ing any number of the definitions. This way, component and ensemble data can
be automatically loaded whenever the bundle is deployed in an OSGi context.

For realistic simulation of ensemble communication, jDEECo can be con-
nected with the OMNeT++ network simulation framework and the MATSim
transport simulator.

3.4 AVis

Awareness Visualizer (AVis) is an Eclipse plugin for tracing the awareness and
adaptation capabilities of an application executing in the jRESP runtime envi-
ronment. The AVis plugin has been developed as a rich client application with
Graphical Editing Framework (GEF) capabilities. Figure 10 shows how the AVis
plugin connects to the jRESP runtime to facilitate monitoring and visualization
of changes to the awareness data of an autonomic system at runtime.

1

2

3 4

5

6

Fig. 10. AVis plug-in system architecture and jRESP

The monitored awareness attributes are extracted at runtime from the knowl-
edge information encapsulated in jRESP nodes. The visualization relies on a
standard visual graph representation and can highlight features such as node
types or adaptation states, which help investigate the ensemble adaptation be-
havior.

3.5 Science Cloud Platform

The Science Cloud Platform (SCP) is the software system developed as part of
the autonomic cloud case study of ASCENS, described in Chapter IV.3 [38]. SCP
is a PaaS cloud computing infrastructure prototype which enables users to run
applications when node participation is voluntary, data is stored redundantly,
and applications are moved according to current load and availability of node

444 D.B. Abeywickrama et al.

resources. When available, SCP can also take advantage of an IaaS platform such
as the Zimory Cloud [54]. In this case, new virtual machines running the SCP
can be started on demand, and shut down to conserve energy when no longer
needed.

The role of SCP is to serve as the main technical demonstrator for the cloud
case study of ASCENS, integrating many of the newly researched methods and
techniques into one software system. Outside the project, SCP can act as a
prototype platform for experiments.

The network layer of SCP is based on the Pastry peer-to-peer substrate [48],
and the accompanying data exchange protocols, specifically the PAST hash-
table [49] and the Scribe publish/subscribe middleware [18]. On top of these lay-
ers, a variant of the ContractNET [24] protocol is used for application failover.
An alternative implementation for communication on the application level inte-
grates a gossip (endemic) strategy, which uses dedicated roles at each node as
specified in the Helena approach [31]. This solution increases scalability, because
it does not depend on global broadcasts, and serves to structure the implemen-
tation along role-based lines.

3.6 SPL

SPL is a Java framework for implementing application adaptation based on ob-
served or predicted application performance [15]. The framework relies on the
Stochastic Performance Logic, a many-sorted first-order logic with inequality
relations among performance observations. The logic allows to express assump-
tions about program performance ; the purpose of the SPL framework is to give
software developers an elegant way to use the logic to express rules controlling
program adaptation.

Internally, the SPL framework consists of three parts that work together,
but each can be (partially) used independently. The first part is a Java agent
that instruments the application at runtime and collects performance data. The
agent uses the Java instrumentation API [43], the byte code transformation is
done using DiSL [36]. The second part of the framework offers an API to access
the collected data and evaluate SPL formulas. The third part of the framework
implements the interface between the application and the SPL framework – this
API is used for the actual adaptation.

The purpose of the SPL framework is to support the adaptation of an ap-
plication, however, the adaptation itself happens through means provided by
the application. The framework itself does not add the actual ability to adapt,
instead it focuses on providing performance monitoring and evaluation features.

4 Summary

The ASCENS tools provide a collection of features that cover multiple phases of
the software development lifecycle from Chapter III.1 [30]. The tools also reflect

Tools for Ensemble Design and Runtime 445

the explorative character of the ASCENS project – as the mathematical foun-
dations of ensembles developed, so did the tools change. Thus, the tools should
not be viewed as definite products, but as research prototypes that encourage
further experiments.

This chapter focuses on those tools that have reached a reasonable maturity
level. The reader is invited to visit the ASCENS project website, which contains
not only the tools described in this chapter, but also links to additional software
such as the framework for adaptation through reasoning that was outlined in
Chapter II.4 [29], or the role based adaptation framework from Chapter IV.3 [38].

References

1. Abeywickrama, D.B., Hoch, N., Zambonelli, F.: SimSOTA: Engineering and sim-
ulating feedback loops for self-adaptive systems. In: Proceedings of the 6th Inter-
national C* Conference on Computer Science & Software Engineering (C3S2E’13)
(In Press), ACM Press, New York (2013)

2. Abeywickrama, D.B., Zambonelli, F., Hoch, N.: Towards simulating architec-
tural patterns for self-aware and self-adaptive systems. In: Proceedings of the 2nd
Awareness Workshop co-located with the SASO’12 Conference, IEEE Computer
Society Press, Los Alamitos (2012)

3. de Alfaro, L.: Game models for open systems. In: Dershowitz, N. (ed.) Verification:
Theory and Practice. LNCS, vol. 2772, pp. 269–289. Springer, Heidelberg (2004)

4. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/SIGSOFT FSE
2001. ACM SIGSOFT Software Engineering Notes 26(5). ACM (2001)

5. AlTurki, M., Meseguer, J.: pVeStA: A parallel statistical model checking and
quantitative analysis tool. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO
2011. LNCS, vol. 6859, pp. 386–392. Springer, Heidelberg (2011)

6. AT&T Labs, Inc.: Graphviz: Graph visualization software, http://graphviz.org
7. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model checking continuous time

Markov chains. Transations on Computational Logic 1(1) (2000)
8. Baier, C., Katoen, J.P., Hermanns, H.: Approximate symbolic model checking of

continuous-time Markov chains.
9. Belzner, L., De Nicola, R., Vandin, A., Wirsing, M.: Reasoning (on) service com-

ponent ensembles in rewriting logic. In: Iida, S., Meseguer, J., Ogata, K. (eds.)
Specification, Algebra, and Software. LNCS, vol. 8373, pp. 188–211. Springer,
Heidelberg (2014)

10. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: Modelling
and analyzing adaptive self-assembly strategies with Maude. In: Durán, F. (ed.)
WRLA 2012. LNCS, vol. 7571, pp. 118–138. Springer, Heidelberg (2012)

11. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: Adaptable
transition systems. In: Mart́ı-Oliet, N., Palomino, M. (eds.) WADT 2012. LNCS,
vol. 7841, pp. 95–110. Springer, Heidelberg (2013)

12. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: A con-
ceptual framework for adaptation. In: de Lara, J., Zisman, A. (eds.) Fundamental
Approaches to Software Engineering. LNCS, vol. 7212, pp. 240–254. Springer,
Heidelberg (2012)

13. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: Modelling
and analyzing adaptive self-assembly strategies with Maude. Science of Computer
Programming (2013)

http://graphviz.org

446 D.B. Abeywickrama et al.

14. Bruni, R., Montanari, U., Sammartino, M.: Reconfigurable and Software-Defined
Networks of Connectors and Components. In: Wirsing, M., Hölzl, M., Koch, N.,
Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS,
vol. 8998, pp. 73–106. Springer, Heidelberg (2015)

15. Bulej, L., Bures, T., Horky, V., Keznikl, J., Tuma, P.: Performance awareness in
component systems: Vision paper. COMPSAC ’12 (2012)

16. Bures, T., Gerostathopoulos, I., Horky, V., Keznikl, J., Kofron, J., Loreti, M.,
Plasil, F.: Language extensions for implementation-level conformance checking.
ASCENS Deliverable D1.5 (2012)

17. Calzolai, F., Loreti, M.: Simulation and analysis of distributed systems in Klaim.
In: Clarke, D., Agha, G. (eds.) COORDINATION 2010. LNCS, vol. 6116, pp.
122–136. Springer, Heidelberg (2010)

18. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.I.: SCRIBE: A large-
scale and decentralized application-level multicast infrastructure. IEEE Journal
on Selected Areas in Communications 20(8) (2002)

19. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

20. Combaz, J., Bensalem, S., Tiezzi, F., Margheri, A., Pugliese, R., Kofron, J.: Cor-
rectness of Service Components and Service Component Ensembles. In: Wirsing,
M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective
Autonomic Systems. LNCS, vol. 8998, pp. 107–159. Springer, Heidelberg (2015)

21. De Nicola, R., Ferrari, G., Loreti, M., Pugliese, R.: Languages primitives for
coordination, resource negotiation, and task description. ASCENS Deliverable
D1.1 (September 2011), http://rap.dsi.unifi.it/scel/

22. De Nicola, R., Katoen, J.P., Latella, D., Loreti, M., Massink, M.: Klaim and its
stochastic semantics. Tech. rep., Dipartimento di Sistemi e Informatica, Università
di Firenze (2006), http://rap.dsi.unifi.it/~loreti/papers/TR062006.pdf

23. De Nicola, R., Katoen, J.P., Latella, D., Loreti, M., Massink, M.: Model checking
mobile stochastic logic. Theoretical Computer Science 382(1) (2007)

24. Foundation for Intelligent Physical Agents: FIPA contract net interaction protocol
specification (March 2013),
http://www.fipa.org/specs/fipa00029/SC00029H.html

25. GNU compiler collection, http://gcc.gnu.org/
26. Younes, H., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. statistical

probabilistic model checking. International Journal on Software Tools for Tech-
nology Transfer 8(3) (June 2006)

27. Hall, R., Pauls, K., McCulloch, S., Savage, D.: Osgi in Action: Creating Modular
Applications in Java. Manning Pubs Co Series. Manning Publications (2011)

28. Hoch, N., Bensler, H.-P., Abeywickrama, D., Bures, T., Montanari, U.: The E-
mobility Case Study. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Soft-
ware Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 513–
533. Springer, Heidelberg (2015)

29. Hölzl, M., Gabor, T.: Reasoning and Learning for Awareness and Adaptation. In:
Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998, pp. 249–290. Springer, Heidelberg
(2015)

http://rap.dsi.unifi.it/scel/
http://rap.dsi.unifi.it/~loreti/papers/TR062006.pdf
http://www.fipa.org/specs/fipa00029/SC00029H.html
http://gcc.gnu.org/

Tools for Ensemble Design and Runtime 447

30. Hölzl, M., Koch, N., Puviani, M., Wirsing, M., Zambonelli, F.: The Ensemble De-
velopment Life Cycle and Best Practices for Collective Autonomic Systems. In:
Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998, pp. 325–354. Springer, Heidelberg
(2015)

31. Klarl, A., Mayer, P., Hennicker, R.: Helena@work: Modeling the science cloud
platform. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part I. LNCS, vol. 8802,
Springer, Heidelberg (2014)

32. Latella, D., Loreti, M., Massink, M.: On-the-fly fast mean-field model-checking.
In: Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, Springer,
Heidelberg (2014)

33. Latella, D., Loreti, M., Massink, M.: On-the-fly fast mean-field model-checking:
Extended version. CoRR abs/1312.3416 (2013)

34. Latella, D., Loreti, M., Massink, M.: On-the-fly probabilistic model checking. In:
Lanese, I., Lluch-Lafuente, A., Sokolova, A., Vieira, H.T. (eds.) Proceedings 7th
Interaction and Concurrency Experience, ICE 2014, Berlin, Germany, 6th June
2014. EPTCS, vol. 166 (2014)

35. Marek, L., Villazón, A., Zheng, Y., Ansaloni, D., Binder, W., Qi, Z.: DiSL: a
domain-specific language for bytecode instrumentation. In: AOSD ’12: Proceed-
ings of the 11th International Conference on Aspect-Oriented Software Develop-
ment (2012)

36. Marek, L., Zheng, Y., Ansaloni, D., Binder, W., Qi, Z., Tuma, P.: DiSL: An
extensible language for efficient and comprehensive dynamic program analysis.
In: Proc. 7th Workshop on Domain-Specific Aspect Languages (DSAL ’12), ACM
Press, New York (2012)

37. Margheri, A., Masi, M., Pugliese, R., Tiezzi, F.: A formal software engineering
approach to policy-based access control. Tech. rep., DiSIA, Univ. Firenze (2013),
http://rap.dsi.unifi.it/facpl/research/Facpl-TR.pdf

38. Mayer, P., Velasco, J., Klarl, A., Hennicker, R., Puviani, M., Tiezzi, F., Pugliese,
R., Keznikl, J., Bureš, T.: The Autonomic Cloud. In: Wirsing, M., Hölzl, M.,
Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Sys-
tems. LNCS, vol. 8998, pp. 495–512. Springer, Heidelberg (2015)

39. Modelling, M.S., Lucca, A.I.: Maude ensemble strategies simulator and inquirer,
http://sysma.lab.imtlucca.it/tools/ensembles/

40. De Nicola, R., Ferrari, G.-L., Loreti, M., Pugliese, R.: A language-based approach
to autonomic computing. In: Beckert, B., Damiani, F., de Boer, F.S., Bonsangue,
M.M. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 25–48. Springer, Heidelberg (2013)

41. De Nicola, R., Latella, D., Lafuente, A.L., Loreti, M., Margheri, A., Massink, M.,
Morichetta, A., Pugliese, R., Tiezzi, F., Vandin, A.: The SCEL Language: Design,
Implementation, Verification. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P.
(eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998,
pp. 3–71. Springer, Heidelberg (2015)

42. O’Grady, R., Groß, R., Christensen, A.L., Dorigo, M.: Self-assembly strategies in
a group of autonomous mobile robots. Autonomous Robots 28(4) (2010)

43. Oracle: java.lang.instrument (Java platform, standard edition 6, API speci-
fication) (2012), http://docs.oracle.com/javase/6/docs/api/java/lang/
instrument/package-summary.html

44. Pinciroli, C., Bonani, M., Mondada, F., Dorigo, M.: Adaptation and Awareness in
Robot Ensembles: Scenarios and Algorithms. In: Wirsing, M., Hölzl, M., Koch, N.,
Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS,
vol. 8998, pp. 471–494. Springer, Heidelberg (2015)

http://rap.dsi.unifi.it/facpl/research/Facpl-TR.pdf
http://sysma.lab.imtlucca.it/tools/ensembles/
http://docs.oracle.com/javase/6/docs/api/java/lang/instrument/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/lang/instrument/package-summary.html

448 D.B. Abeywickrama et al.

45. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M.,
Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella,
L.M., Dorigo, M.: ARGoS: a modular, parallel, multi-engine simulator for multi-
robot systems. Swarm Intelligence 6(4), 271–295 (2012)

46. Information technology - portable operating system interface (POSIX). ISO/IEC/
IEEE 9945 (First edition 2009-09-15) (2009)

47. Quaglia, P., Schivo, S.: Approximate model checking of stochastic COWS. In:
Wirsing, M., Hofmann, M., Rauschmayer, A. (eds.) TGC 2010. LNCS, vol. 6084,
pp. 335–347. Springer, Heidelberg (2010)

48. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, p. 329. Springer, Heidelberg (2001)

49. Rowstron, A., Druschel, P.: Storage management and caching in PAST, a large-
scale, persistent peer-to-peer storage utility. In: ACM SIGOPS Operating Systems
Review, vol. 35, ACM Press, New York (2001)

50. Sebastio, S., Vandin, A.: MultiVeStA: Statistical model checking for discrete event
simulators, submitted., http://eprints.imtlucca.it/1798

51. Sen, K., Viswanathan, M., Agha, G.A.: VESTA: A statistical model-checker and
analyzer for probabilistic systems. In: Baier, C., Chiola, G., Smirni, E. (eds.)
QEST 2005, IEEE Computer Society Press, Los Alamitos (2005)

52. Šerbedžija, N.: The ASCENS Case Studies: Results and Common Aspects. In:
Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998, pp. 451–469. Springer, Heidelberg
(2015)

53. Vassev, E., Hinchey, M.: Knowledge Representation for Adaptive and Self-aware
Systems. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineer-
ing for Collective Autonomic Systems. LNCS, vol. 8998, pp. 221–247. Springer,
Heidelberg (2015)

54. Zimory Software: Zimory cloud suite. (August 2014), http://www.zimory.com/

http://eprints.imtlucca.it/1798
http://www.zimory.com/

Part IV:
Case Studies: Challenges and Feedback

Any method, technique, or tool proposed for the development of software systems
needs to be evaluated in the context of realistic case studies, which in turn
also feed and challenge the research process according to the expectation of the
concrete application domain. Thus, this last part of the book discusses three case
studies which cover a large spectrum of autonomous systems: swarm robotics,
autonomic cloud computing, and electrically-powered vehicle ensembles.

The first chapter introduces the three ASCENS case studies and describes
the role they played in the project. While it is easy to see the differences, the
case studies also contain many similarities and common abstract characteristics
in the domain of knowledge-based, self-aware and adaptive behaviors, which are
highlighted in this chapter.

Adaptation and awareness in robot ensembles are described in the second
chapter. This domain is studied using a disaster recovery scenario in which a
search-and-rescue operation must be performed by robots in a hazardous en-
vironment. The scenario has been used throughout ASCENS as a reference to
coordinate the study of distributed algorithms for robot ensembles, and has
led to the demonstration of awareness on the ensemble level without requiring
awareness on the level of individual robots.

The third chapter discusses the autonomic cloud, which is a cloud providing
a platform-as-a-service computing infrastructure formed by a loose collection of
voluntarily provided heterogeneous nodes. The individual nodes communicate in
a peer-to-peer manner and need to work together in the presence of problems
such as failing or disappearing nodes to keep applications running. This re-
quires a certain degree of self-awareness, monitoring, and self-adaptation, which
is achieved by the ASCENS ideas and methods.

Finally, the last chapter of this part and the book discusses electro-mobility
(e-mobility), one of the promising technologies for replacing combustion engines
as a means of propulsions for automobiles. In particular, this case study deals
with characteristics and challenges that arise when people travel with privately
owned electric vehicles in a resource-constrained road environment. Predictive
environment information such as traffic information and car park availability is
used to make travel decisions which affect the environment and, in turn, future
predictions. As in the other cases, the challenges are addressed by a combination
of ASCENS approaches.

M. Wirsing et al. (eds.): Collective Autonomic Systems, LNCS 8998, p. 449, 2015.
c© Springer International Publishing Switzerland 2015

Chapter IV.1

The ASCENS Case Studies: Results and
Common Aspects�

Nikola Šerbedžija

Fraunhofer FOKUS, Berlin, Germany

Abstract. This chapter focuses on pragmatic aspects of the ASCENS
project illustrating the role and significance of the three major applica-
tion domains (swarm robotics, cloud computing and e-mobility) that mo-
tivate and pragmatically justify the approach to construct autonomous
systems. A special insight is given into similarities and differences of the
ASCENS case studies and their common abstract characteristics that
led to a general-purpose methodology for expressing, evaluating and de-
ploying knowledge-based, self-aware and adaptive behaviors. From this
perspective selected ASCENS tools and methods to support the system
development lifecycle are further discussed and illustrated on concrete
examples. Finally future plans are given pointing out to the use and
further evolvement of the ASCENS technology.

Keywords: application of collective adaptive systems, service compo-
nent ensembles, software development life cycle, real-life systems

1 Introduction

The application domain, represented by three major case studies, namely swarm
robotics, science cloud and e-mobility, played a central role in the ASCENS
project1. They provide a source of motivation for the ASCENS technology and
a treasury of trial examples upon which ASCENS solutions could be tested in
practice. Case studies also served as a gravity for joint work among different
partners and work packages as the whole spectrum of results had to be put
together and applied on the case studies scenarios. This constant interaction
between theory and practice made the ASCENS highly theoretical approach
unified, pragmatic and well suited for a range of application domains, far beyond
the specific areas of the ASCENS case studies.

The ASCENS project deals with the development and deployment of au-
tonomous systems with special attention paid to technical awareness and adap-
tive behavior of the underlying systems on one side and to rigorous and formal
reasoning about the correct system functioning on the other. In the early project

� This work has been sponsored by the EU project ASCENS IP 257414 (FP7).
1 ASCENS website: http://www.ascens-ist.eu/

M. Wirsing et al. (eds.): Collective Autonomic Systems, LNCS 8998, pp. 451–469, 2015.
c© Springer International Publishing Switzerland 2015

http://www.ascens-ist.eu/

452 N. Šerbedžija

phase the development lifecycle for autonomous systems has been proposed (see
Chapter III.1 [16] of this book) tracing the methodology and the roadmap for
system design and development. A number of distinct phases of the development
process have been identified and many tools have been developed to support the
modeling and development in each of the lifecycle stages. Due to a highly non-
deterministic character of the autonomous systems, whose behavior is dynamic
and sensitive to unpredicted situation, system validation and verification plays
an important role in the project.

Contrary to the majority of computing systems now in use, autonomous
systems’ behavior is highly dynamic and reactive to unexpected situation. This
makes the system verification process extremely difficult as the system alters its
behavior at run-time replying to changes of the state of the environment and
to new knowledge acquired about its own state. Those circumstances cannot be
predicted in advance and a system cannot be fully tested and debugged before
it is used. Furthermore, when an autonomous system is deployed, its variable
behavior is a run-time response to a live situation and it is hard to distinguish
correct behavior from malfunctioning. The ASCENS response to such difficulties
is to verify and validate the system in all of its development and deployment
phases applying rigorous methodologies and formal methods, from requirement
analyses and modeling up to the run-time monitoring.

Having all these challenges in mind, ASCENS strategy was to demonstrate
its methodology throughout the development process with the concrete and non-
trivial applications. That makes the role of ASCENS case studies manifold:

– Inspirational
– Experimental
– Verifiable
– Pragmatic

From the very beginning of the project, initial concepts for requirement spec-
ification, awareness, adaptation and overall system modeling have been taken
from the problem-rich application domains of swarm robotics, cloud computing
and e-mobility. Both typical examples from the application domain and con-
crete trial scenarios were thoroughly studied. Inspired and motivated by a wide
problem space of ASCENS case studies, a number of new methods have been
developed, almost from scratch, and a number of existing methods were modified
to reply to these challenges. Out of thorough problem specification, a structured
knowledge representation in form of KnowLang [31] approach has been designed
allowing for a sound (self-) awareness definition based on knowledge. Further
system modeling could use this knowledge to exercise awareness rich behavior,
making a system aware of its functional and non-functional requirements. It fur-
thermore led to development of a unique adaptation model called SOTA [1] that
defines adaptation as a system journey in a multidimensional space where the
coordinates are awareness aspects of the system. By deploying SOTA on case
studies a general-purpose catalog of adaptation patterns have been defined that
help designer express and exercise with adaptive behavior.

The ASCENS Case Studies: Results and Common Aspects 453

The SCEL language [10] (see also Chapter I.1 [25]) is another ASCENS pillar
that allows for system modeling and reasoning on their behavior. It offers means
for defining a system as a set of service components extended with local knowl-
edge to express awareness and adaptive policies for predicate-based bindings to
express autonomous behavior. The Helena approach [21] has been further de-
veloped for modeling collaborations using a UML-like notation focusing on the
description of the behavior at individual and collective (ensemble) level. Further
design steps from high-level strategic goals (requirements, adaptation patterns)
to their low-level system architecture realization (components and ensembles)
are supported by the Invariant Refinement Method (IRM) (see chapter III.4 [7]
and [19]).

Experimental significance of the case studies could be seen through numer-
ous pragmatic examples which were used to model and verify corresponding
system behavior. Each concrete problem from the case studies domain has been
modeled, and analyzed by the corresponding ASCENS tool, testing simultane-
ously the analytical power of the tool itself and the pragmatic significance of the
solution. Throughout the project this interaction between theory and practice
contributed to achieve (1) sound and usable methodology and (2) useful prag-
matic results for the application domain and industrial partners. The ASCENS
work has been characterized by this interaction and mutual influence that enrich
both the theory and the practice. Two major software tools developed from the
scratch and for the specific needs of the project were used to deploy and test
ASCENS case studies in practice. The two tools are JRESP [18] and JDEECO
[20] and are both based on SCEL’s linguistic abstractions and integrate also
other softwares developed within the ASCENS project.

Verifiable significance of the case studies is present in all the development
phases. The case studies offered realistic, pragmatic and complex examples of
use, making the highly theoretical validation/verification means both sound and
pragmatic. Each concept developed within ASCENS has been first validated in
its generic form and then applied on a concrete example from the application
domain for further evaluation. For example, SOTA adaptation patterns allow for
high-level reasoning and proofs for adaptive behavior and appropriate selection
of the adaptation patterns for each of pragmatic problem. High level modeling led
to further reasoning on important system properties like safety (e.g. proving that
e-vehicles will never deadlock while using common resources e.g. parking lots or
charging station) and liveness (e.g. proving that the system will really find the
optimal route for a vehicle respecting major constraints e.g. battery level, timing
etc.). D-Finder [4] tool has been used for the compositional verification. Further
examples of validating coordination and collaboration algorithms and local vs.
global goal optimization are taken from a rich problem space of swarm robotics,
cloud computing and e-mobility (e.g. guaranteeing that each e-vehicle obtains a
parking place nearby its target destination, taking into account that the garage
needs to satisfy the needs of hundreds of other e-vehicles. The ASCENS approach
also integrates existing BIP (Behavior, Interaction, Priority [3]) framework and

454 N. Šerbedžija

its analysis tools with ASCENS novel tools to perform quantitative/qualitative
verification (see chapter I.3 [9]).

The rest of the chapter further elaborates on a mutual influence between
theory and practice by detailing the application challenges (section 2) that are
used to motivate and develop a common approach (section 3) to model, develop
and deploy autonomous systems. The set of ASCENS generic tools (section 4)
re-visits a wide spectrum of developed means to support the use of ASCENS
approach in solving concrete pragmatic problems illustrating ASCENS results
and solutions in real application deployments (section 5). Finally, the conclusion
(section 6) summarizes the results and discusses a wider pragmatic significance
and influence that the ASCENS project has in the domain of adaptive and
autonomous systems.

2 Application Challenges

A thorough analysis of the application problem space is crucial, both for suc-
cessful application design and development and for assessing the impact of the
ASCENS methods. This dual role of the case studies has been especially impor-
tant at the beginning of the project, when the ASCENS approach was defined
and developed. The approach has been to decompose the application fields to
low-level details, provide partial solutions and to compose those solutions into
harmonized methodology that defines complete development lifecycle for au-
tonomous systems.

2.1 Application Overview

To explore the system requirements for autonomous systems, three complex ap-
plication domains have been closely examined: swarm robotics, cloud computing
and e-mobility. The overall strategy has been to analyze separate application
domains, find out the characteristics that make these system knowledge aware
and autonomous, and finally to generalize these characteristics into a possi-
bly common set of joint features that could be modeled according to a general
methodology.

Swarm robotics application domain deals with creation of multi-robot sys-
tems that through interaction and coordination among participating simple
robots and their environment can accomplish a common goal, which would be
impossible to achieve by a single robot. The basic idea behind the application
scenario is to organize and control a rescue operation in an emergency situation.
Figure 1 illustrates a multi-robot system containing two types of robots with
circles showing possible different grouping (ensemble building) among different
or similar robot type.

Cloud computing is an approach that exploits Internet to make computing
resources available to users in a service-oriented way. By sharing computing re-
sources among many users, significant throughput can be achieved leading to
energy and costs savings. This approach to providing computing resources calls

The ASCENS Case Studies: Results and Common Aspects 455

Fig. 1. Swarm robotics

for novel techniques that guarantee the offer of highly dynamic and secure vir-
tual resources that would maintain throughput and efficiency high, wile reducing
the number of used resources. Fulfillment of these requirements ensure enormous
reduction in energy consumption and computing costs, making powerful comput-
ing resources available to everyone. Figure 2 illustrates a collection of computing
resources brought together to form a cloud that further offer its services to the
users.

E-mobility is a vision of future transportation by means of a network of elec-
tric vehicles allowing people to fulfill their individual mobility needs in an envi-
ronmental friendly manner (decreasing pollution, saving energy, sharing vehicles,
etc). Due to limited battery capacity, e-vehicles cannot cover long distances, as
it is the case with traditional vehicles (and re-filling energy lasts much longer).
The ultimate goal of e-mobility is to overcome that problem by offering a range
of supporting activities that would allow energy-aware passengers to master dis-
tances in required time. Figure 3 illustrates a fleet of e-vehicles with indicated
parking lots and charging stations.

2.2 Common Characteristics

A closer examination the three application areas reveals that, although very
different in nature, they share a number of characteristics.

456 N. Šerbedžija

Fig. 2. Cloud Computing

Unique simple entities with clearly identified individual goals. In swarm
robotics, those are elementary robots with their simple functionality and single
role (e.g. a foraging robot moves and explores the area until it finds the target
or come too far away from other robots – then it stops). In cloud computing,
elements are specific computing resources with their characteristics (e.g. a CPU
with its energy consumption, execution speed, throughput etc.). In e-mobility,
elements are e-vehicles, parking and/or charging stations and traffic conditions
(e.g. a parking lot has its location, price and availability/occupation schedule).
Obviously, all three applications can be described by a huge number of (1) single
entities with (2) unique individual goals.

Distribution and grouping around global goal. In swarm robotics, simple
elements are grouped into multi-robot system in order to perform the function
that individual robots cannot do alone. In cloud computing, more CPUs could
be grouped together to offer more computational power. In e-mobility, multiple
resources like charging station and parking lots can be combined to provide
better overall service. Further characteristics are existence of (3) global goals, (4)
grouping principles to express these global goals and (5) massive interaction that
exploits these principles of sharing and collectiveness in order to (6) coordinate
and harmonize local and global goals.

Awareness and knowledge are characteristics which are pre-conditions for
autonomous behavior. Maintaining the knowledge of their own functional and
operational capabilities make both single units and their collections self-aware
and capable of runtime dynamic responsiveness. Multi-robot system is aware
of location and functionality of neighboring robots so that groups of robots can

The ASCENS Case Studies: Results and Common Aspects 457

Fig. 3. E-mobility

coordinate along the common interest. Cloud computing deals with dynamic (re-
)scheduling of available (not fully used) computing resources. Maximal utiliza-
tion can only be achieved if the cloud is aware of the users’ processing needs and
the on-going states of the deployed cloud resources. Only with such knowledge, a
cloud can make a good utilization of computers while serving at best individual
users’ needs. E-mobility can support coordination only if e-vehicles know their
own restrictions (battery state), destinations of users, re-charging possibilities,
parking availabilities, the state of other e-vehicles nearby. With such knowledge
collective behavior may take place, respecting individual goals, energy consump-
tion and environmental requirements. Consequently, (7) self-awareness allows
for knowledge-rich (8) adaptation and (9) optimization within the three case
studies.

Robustness and continuous operation are crucial features of real-life sys-
tems, where an application needs to run non-interrupted, despite possible mal-
functioning. A multi-robot system does not stop when one robot is down. The
cloud computing is, by definition, a set of boundless resources that can over-
come the failure of a single component. E-mobility aims at operating non-stop
while overcoming the restrictions imposed by battery life-time making (10) the
robustness a major aim of the overall concept.

When taking into account all the above mentioned common characteristics,
it can be seen that all together they contribute to make a target system behave
(11) autonomously, which is the ultimate goal of the ASCENS approach. All the
mentioned generic common features (with their interpretations within all three
case studies) are summarized in the table 1.

458 N. Šerbedžija

Table 1. Common features of the ASCENS case studies

Common feature Swarm Robots Cloud computing E-Mobility
Single entities Different types of

robots
Computing re-
sources

E-vehicles , parking
lot, charging station,
infrastructure

Individual goals Find the victim,
carry the obejct, ...

compute, store, ... reach the destina-
tion, charge the bat-
tery, ...

Global goals Build the wall, ... increase throughput,
...

allocate all parking
lots, ...

Grouping principles “All foraging robots
close to the target”,
...

“Connect idle proc-
cessors”, ...

All available park-
ing lots in radius of
500m of the meeting
place, ...

Massive interaction Among robots, ... Among computing
resources, ...

Among vehicles,
parking lots, charg-
ing stations, ...

Coordination Coordinate search
algorithm, ...

Coordinate free re-
sources, ...

Coordinate park lot
allocation, ...

Self-awareness “About battery
state”, ...

“About its usage”,
...

“About own loca-
tion”, ...

Optimization Time, energy, per-
formance, ...

Availability, compu-
tational task execu-
tion, ...

Arriving in time, ve-
hicle/infrastructure
usage, ...

Adaptation To changing plans,
single robot mal-
function, ...

To resource failure,
...

To traffic situation,
battery shortage ...

Robustness Sensory noise, lim-
ited sensory range
and battery life, ...

Failing resources,
sudden intense
computing require-
ments, ...

Range limitation,
battery shortage,
infrastructure prob-
lems,...

Autonomous behav-
ior

Run-time plan
change,

Decentralised deci-
sion making, global
optimization, ...

Changing the route,
re-allocate parking
lot, ...

3 Common Approach

This spectrum of common features serves as a basis for modeling of massively
distributed behaviors leading to a generic framework for developing and deploy-
ing complex autonomic systems [17]. To behave autonomously, a control system
needs to maintain knowledge about itself (specific objectives, capabilities, exe-
cution state and restrictions) and about its environment. Such knowledge yields
awareness of a specific component about its functionality and about the effects it
has on the environment which enable adaptive behavior. Being capable of operat-
ing according to the principles of knowledge, awareness, adaptation, a system can
re-configure, re-tune and act appropriately and thus to behave autonomously.

The ASCENS Case Studies: Results and Common Aspects 459

The ASCENS approach breaks up a complex control problem into its basic
constituents. It deals with complications at a bottom level, solving issues at a
lower scale and then harmonizing these solutions at a more global level. Lo-
calization and de-centralization is the fourth major principle of the approach.
Service components with clearly defined elementary objectives are basic system
elements. They gather in larger symbiosis called ensembles in order to fulfill
collective goals. As the controlled situation changes, e.g. goals are (partially)
fulfilled, re-grouping takes place and the symbiosis re-structures. The criteria to
construct an ensemble of service-components is the result of joint interests which
can be expressed as a logical sentence, e.g. “connect all robots that can carry
up to 4kg and are in the radius of 100m with the aim to cooperatively transport
25kg heavy object” or “select all free parking lots in the radius of 300m that
have a charging plug”. That makes the very useful resorting to communication
mechanisms that select partners implicitly by resorting to predicates. Connec-
tions are established at run-time, and depend on the live situation at particular
instant. These logical rules for highly dynamic grouping are further used for
formal reasoning on optimization and coordination among distributed elements.

The overall system development life cycle consists of the following phases: rig-
orous design (requirement specification, modeling and validation/verification),
deployment (programming) and run-time monitoring (live examination of aware-
ness, adaptation and autonomous behavior). A number of tools have been devised
that support the development process at each step, thus guiding and facilitating
the whole development process. Requirement specification is a phase where the
dissection of the problem to be solved takes place (requirement engineering is
described in the Chapter III.1 [16] of this book). Each system element is sepa-
rately defined both functionally (what to do) and non-functionally (how to do)
yielding a set of goals that embrace the terms of functioning and description of
environment. The knowledge required for system awareness and adaptation is
used as a major attribute repository for system construction (formal approach
to knowledge awareness and adaptation is described in the Chapters II.1 [6],
II.2 [13], II.3 [32] and II.4 [15] of this book). The SCEL (service-component en-
sembles language) [10] has been developed for high-level system modeling with
service components and their ensembles. Both service-components and ensem-
bles have local knowledge used to express their goals. SCEL is parametric with
respect to the way of representing knowledge. In its simple instance the knowl-
edge repositories of SCEL components are nothing more than multi set of tuples
that can be read, added or withdrawn. The final aim is representing components’
knowledge as ontologies that contain hierarchical and meaningful description of
system properties and system goals. The goals are described as rules i.e. logical
expressions with system properties. A simple version of the SCEL language, its
design, implementation and verification is described in the Chapter I.1 [25] of
this book.

The adaptation phenomenon is formally modeled as a progress in a multi-
dimensional space where each axis represents one orthogonal aspect of system
awareness (facts about its own functional, operational, or any other necessities

460 N. Šerbedžija

defined within requirement specification phase). Adaptation actually happens
when the system state moves from one position to another within a predefined
space according to the pre and post- conditions on each of its awareness- dimen-
sions. Adaptation is a continuous process where a system acts appropriately, i.e.,
in harmony with components capabilities and the observed environment. The
SOTA adaptation model is used to extract major application requirements and
offer appropriate adaptation patterns that effectively control system dynamics
with numerous feedback-loops. In order to guarantee correct and timely behav-
ior in such demanding and highly dynamic circumstances this approach relies on
formal methods. The major safety and liveness properties are formally proved
using SCEL (e.g. prove that two e-vehicles will never block each other while
competing for a free charging station, or prove that the foraging algorithm of a
robot converges in a given time). Further validation and verification of specific
optimization algorithms are performed in order to guarantee correct system be-
havior in early design phase (e.g. prove that the optimization method will deliver
the most energy-efficient route for a given multi-routing problem). Once the sys-
tem is rigorously modeled and validated, the actual deployment may take place
sewing together the different components. The jRESP and jDEECo deployment
tools offer direct Java programming support for the SCEL and SOTA models.
Other modeling tools, such as the POEM language [14], are used to specify deep
logical and stochastic functioning that describe the system behavior.

Due to a seamless functioning of autonomous systems, where system changes
are means for appropriate behavior, possible malfunctions are difficult to dis-
cover. Therefore, a number of tools have been developed for run-time monitoring
where internal system knowledge and topology (ensemble construction) as well
as awareness and adaptive characteristics are observed. For example, the mon-
itoring tools can visualize how the robots, close to the target and with enough
battery-charge, are grouped into ensemble to perform joint transport of a heavy
object. Once the task is performed, the ensembles are dismantled freeing robots
for another assignment. Monitoring inspects and displays major system princi-
ples: knowledge, awareness and adaptation, offering a visualization of dynamic
ensemble building criteria, thus directly observing autonomous behavior. If some
malfunctioning is discovered at run-time, a system modification is considered
by going back to modeling and design system development phases. Monitoring
is performed by means of the following tools: ARGoS [27], AVis Plug-in2 and
POEM for swarm robotics; the Zimory cloud platform [35] and SCP for science
cloud; and jDEECo and IRM for e-mobility.

The detailed description of ensemble development life cycle and ASCENS
best practice for collective adaptive system is given in the Chapter I.1 [25] of
this book.

2 see the ASCENS User Guide

The ASCENS Case Studies: Results and Common Aspects 461

Fig. 4. ASCENS development and deployment tools

4 Generic Set of Common Tools

The set of common features, as described in the previous section, served as a
basis for further work and experimenting in each of the case studies. At the
same time it led to a generic set of common tools that could be used and tested
within scenarios from the case studies domains. Figure 4 shows some of the
generic tools which are available in the rich ASCENS tool repository. Most of
them are newly developed or adjusted to the ASCENS purposes. The cyclic
arrows indicates a multi-level feedback loop - present in all development phases,
as described in the ASCENS development life cycle. On one side, the project
has given rise to a comprehensive set of generic tools that could be used in any
deployment scenario (fully independent from the ASCENS application domain),
on the other side, these tools were tested and fine-tuned using complex practical
problems with real data.

The tool integration has been allocated to a separate work package whose
aim has been to generate a standard integrated development environment where
the modeling and editing tools are placed together with profilers and debuggers,
making it possible to practically follow the whole development life cycle as de-
scribed in the previous chapter of this book. All of the tools previously described
are stored in a common repository making it a common place to apply ASCENS
technology and follow ASCENS development life cycle.

All mentioned tools were separately tested in a theoretical context, or us-
ing single problems from the case studies domains. Once fully tested, the tools
were applied on a large scale practical scenarios from the ASCENS case studies.

462 N. Šerbedžija

Table 2. ASCENS tools used for the case studies development

EDLC Phase Swarm Robots Cloud computing E-Mobility
Requirements Engi-
neering

SOTA, Gem, POEM Knowlang, IRM simSOTA, IRM

Modeling/ Program-
ming

SCEL, jRESP, Poem SOTA, SCEL,
KnowLang

SCEL, SCLP

Verification/ Valida-
tion

BIP, jRESP jRESP jDEECO

Deployment ARGoS SCP SPL, Java, Zi-
mory

jDEECo. Java, Mat-
Sim

Monitoring ARGoS, AVI Plug-
In Tool

Zimory, SCP jDEECO/DiSL/SPL
MatSim

Awareness POEM, ARGoS,
AVI

SCP jDEECo

Self-adaptation ARGoS, AVI,
POEM

Zimory, SCP jDEECo, IRM

Feedback POEM SPL MatSim

Table 2 describes which ones of the the main ASCENS tools have been used
within each of the case study according to the EDLC (Ensemble Development
Life Cycle).

The ASCENS tool repository with numerous deployment examples has played
an important and dual role: (1) tools were tested in a real and large scale appli-
cation domain - proving a wide applicability and a strong practical orientation
of the ASCENS approach, (2) the end users and corresponding industrial parties
could see the benefits (and challenges) of a fully scientific approach to construct
and deploy large practical systems, insuring their reliable and correct function-
ing.

5 Application Deployments

From the very beginning, the project theoretical development has been inter-
leaved with practical exercising, taking various examples from the main AS-
CENS application areas. Most of these practical results were reported in the
theoretical project deliverables. Nevertheless, three major applications served as
a pragmatic guideline during the project and they were specified, modeled and
developed step-wise during the project (in a separate work package). The task
structure of the case study work package is similar to the ASCENS development
life cycle and had a following major subtasks:

– Requirements analysis and specification
– Model synthesis
– Integration and simulation
– Implementation and evaluation/validation

The ASCENS Case Studies: Results and Common Aspects 463

In the first project year a thorough requirement analyses took place, first in
an informal way and then using a rich set of ASCENS tools for knowledge
expression, self-awareness and adaptive behavior. In the second project stage,
major system modeling took place synthesizing most of the modeling techniques
developed within project. The third stage has been characterized by numerous
integration effort, interfacing different tools and languages as well as undertaking
numerous simulations in order to pre-check the system behavior before doing
final implementations. In the last project stage, the three ASCENS case studies
were deployed, tested, monitored and evaluated.

This sections only gives a short reference to the case studies developments,
as each of the case study is fully described in the following chapters (IV.2 [26],
IV.3 [23] and IV.4 [12]) of this book. However, one further special example
is described here: a robot race exhibition, presented at the ICT conference in
Vilnius in November 2013. The significance of the exhibition was not only to
demonstrate pragmatic ASCENS technology by having real robots performing
in real-life settings. It also justified the ASCENS complete ensemble development
life cycle as numerous concrete theoretical tools were demonstrated on a concrete
example.

5.1 ASCENS Case Studies

The ASCENS project took three major application domain as a major pragmati-
cal inspiration domain: swarm robotics, cloud computing and e-mobility. Each of
the area is complex per se, up to date and a subject of many other contemporary
research and developments.

Swarm Robotics. The swarm robotics case study deals with a disaster re-
covery scenario. Numerous separate problems from the scenario were separately
specified, modeled and verified during the project work. A special attention has
been paid to local vs. global behaviors [34] and distributed algorithms which rep-
resent typical class of problems within swarm robotics theory. An engineering
approach to apply EDLC in designing a multi-robot system is described in [29]
and a separate chapter (Chapter IV.2 [26]) of this book has been fully dedicated
to the swarm robotics case study.

Science Cloud. The science cloud case study deals with a vision of an auto-
nomic cloud, providing a platform-as-a-service computing infrastructure, which
is created and maintained by a free collection of ad hoc connected heterogeneous
voluntary computers forming a peer-to-peer network. The science cloud has been
developed from scratch fully deploying ASCENS ensemble development lifecycle
[22,28]. A special focus in science cloud case study is on self* features, making the
cloud fully aware of its functional and operational state, thus autonomously pro-
viding resilience, data redundancy, and failover mechanisms. A separate chapter
(Chapter IV.3 [23]) of this book has been fully dedicated to science cloud.

464 N. Šerbedžija

E-mobility. The e-mobility case study deals with a vision of a future trans-
portation that will include more and more e-vehicles as means of transporta-
tion, posing a whole range of problems that need to be solved in order to ensure
the transition and better acceptance of the new generation of e-vehicles. The e-
mobility case study was engineered by strictly applying ASCENS methodology
[30,8]. A special attention in the case study has been paid to finding optimal
energy routes [11], and overcoming the local vs. global goal optimization, using
constraint logic programming techniques [24]. A separate chapter (Chapter IV.4
[12]) of this book has been fully dedicated to e-mobility.

Fig. 5. Robot race

5.2 Robot Race

The challenges of controlling the robot behavior in performing certain task can
be better understood if seen from the robot perspective. The complexity does
not primarily come from the task itself, but rather from the interaction that
goes on between the robot sensory system, environment and self-directed robot
performance. To illustrate that, an exhibition has been organized at the well
attended ICT conference (Vilnius, November 2013) where ASCENS autonomous
robot competed with a human-controlled robot3. The task given to the robots
was to find building blocks in a closed area, grab them (one by one), and carry
them to the place where a wall should be constructed. The competition arena4.
3 See the ASCENS blog “Beauty is in the eye of the beholder” at: http://blog.
ascens-ist.eu/2013/11/beauty-is-in-the-eye-of-the-beholder/.

4 A video clip of the exhibition is available at: http://www.aware-project.eu/2013/
ascens-ict-2013/ from ICT Conference is illustrated in Figure 5.

http://blog.ascens-ist.eu/2013/11/beauty-is-in-the-eye-of-the-beholder/
http://blog.ascens-ist.eu/2013/11/beauty-is-in-the-eye-of-the-beholder/
http://www.aware-project.eu/2013/ascens-ict-2013/
http://www.aware-project.eu/2013/ascens-ict-2013/

The ASCENS Case Studies: Results and Common Aspects 465

The ASCENS robot was fully autonomous and a “competitor robot” was
operated by a joystick which could move the robot left/right; forward/backwards
and instruct it to grab/release the building blocks (the competitor robot had no
knowledge on how to find, grab and carry objects and relied completely on the
human operator). Both robots belong to the marXbot robot generation [5], a
modular and easily re-configurable robots equipped with numerous devices that
allow for sensing and acting in the deployed environment. The tasks allocated
to the robots seemed trivial to the audience, so that most of the competitors
believed that ASCENS autonomous robot does not stand a chance, against the
robot controlled by a human. That proved to be wrong. Most people lost; only
a couple of young, joystick-virtuous, competitors won.

But for those who could outperform the ASCENS autonomous robot, a “fair-
play” rule has been introduced: since the robots sensory system is less sophis-
ticated than ours, the vision of the human competitor has been reduced to the
visual system of the robot (a competitor was not supposed to look to the compet-
ing arena with own eyes, but rather to the screen which mirror “what robot sees”
(in the left-upper corner of the Figure 5 a screen shot of the robot vision is illus-
trated). That gave the competitors equal chances. When both competitors have
exactly the same information about environment, ASCENS robot performed
much better. That shows how seemingly simple assignment (from human point
of view) is actually complex for a fully autonomous robot. Taking into account
relatively primitive robot sensory system, the robot performance has been quite
good and reliable.

Showing ASCENS results at well attended congress with several thousand
visitors provided a great audience for the ASCENS demo which attracted more
than a hundred competitors (people who really competed with the ASCENS
robot). The significance of the demonstration at the Vilnius exhibition has been
multifold:

1. ASCENS pragmatic approach has been demonstrated in a vivid and suc-
cessful error free settings. It has been one of most attended stall at the

Fig. 6. Elements of the ASCENS EDLC

466 N. Šerbedžija

congress and the ASCENS robots has been running 3 days non-stop from
early morning to late evening

2. ASCENS theoretical work has also been demonstrated through several model
descriptions, simulation and verification tools. Figure 6 contains three posters
from the conference illustrating the specification, modeling and verification
phase of the “robot race” demo. It has been a unique situation to discuss
the high-level tools in front of the running example, who used those tools.

3. ASCENS evaluation and monitoring approach has been illustrated by the
design architecture of the monitoring tool, as shown on Figure 7. The AVI
monitoring can show the internal awareness structures of the running exam-
ple, monitoring and analyzing properties used for ensemble creation.

Fig. 7. Monitoring tool

6 Conclusion

This chapter has presented the ASCENS achievements as a continuous balanc-
ing between theory and practice. At one side, a number of scientists put their
efforts together to make abstract and generic high-level methods and tools to
model, analyze, validate and develop autonomous systems. At another side, prag-
matic and business driven partners kept the ASCENS achievements applicable
and down to deployment terrain. This constant interaction between theory and
practice have been beneficial for both sides: theoreticians got real problems and
numerous practical data descriptions that they traditionally do not have, so that
their work has been confronted with real world problems. Industrial partners,
at another side, were in the position to directly influence the theoretical work
and tailor its solution towards pragmatic goals, which could be used to improve
products and achieve results which could not be achievable without such collab-
oration.

The ASCENS Case Studies: Results and Common Aspects 467

A wider significance and influence of the ASCENS outcomes is expected
also in other application domains. Namely, the ASCENS generic results are ap-
plicable in any area where autonomic control is needed. Further exploitation
activities like planned summer school and publication of project results on sci-
entific journals and conferences should re-enforce already well known ASCENS
methodology. Pragmatic exploitation of ASCENS results is guaranteed by the
project industrial partners. Moreover, for encouraging a wider use, a tool reposi-
tory (see the Chapter III.5 [2] of this book) and an ASCENS user’s manual have
been made available on-line to any interested party. A close collaboration with
other EU projects, especially within collective adaptive initiative opens further
perspectives of continuing the development and deployment of the work done in
the ASCENS project.

Acknowledgements. All the achievements described here are the results of
the common work of the whole ASCENS project team. A special thanks go to
the reviewers, Saddek Bensalem and Rocco De Nicola for numerous constructive
criticism and text improvement suggestions.

References

1. Abeywickrama, D., Bicocchi, N., Zambonelli, F.: Sota: Towards a general model
for self-adaptive systems. In: IEEE 21st International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE 2012), June
2012, pp. 48–53 (2012)

2. Abeywickrama, D.B., Combaz, J., Horký, V., Keznikl, J., Kofroň, J., Lafuente,
A.L., Loreti, M., Margheri, A., Mayer, P., Monreale, V., Montanari, U., Pinciroli,
C., Tůma, P., Vandin, A., Vassev, E.: Tools for Ensemble Design and Runtime. In:
Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998, pp. 429–448. Springer, Heidelberg
(2015)

3. Basu, A., Bozga, M., Sifakis, J.: Modeling Heterogeneous Real-time Components
in BIP. In: SEFM, pp. 3–12. IEEE Computer Society Press, Los Alamitos (2006)

4. Bensalem, S., Bozga, M., Sifakis, J., Nguyen, T.-H.: Compositional verification
for component-based systems and application. In: Cha, S(S.), Choi, J.-Y., Kim,
M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 64–79.
Springer, Heidelberg (2008)

5. Bonani, M., Longchamp, V., Magnenat, S., Rétornaz, P., Burnier, D., Roulet, G.,
Vaussard, F., Bleuler, H., Mondada, F.: The marXbot, a miniature mobile robot
opening new perspectives for the collective-robotic research. In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 4187–4193. IEEE Press, Piscataway, NJ (2010)

6. Bruni, R., Corradini, A., Gadducci, F., Hölzl, M., Lafuente, A.L., Vandin, A.,
Wirsing, M.: Reconciling White-Box and Black-Box Perspectives on Behavioral
Self-adaptation. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software
Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 163–184.
Springer, Heidelberg (2015)

468 N. Šerbedžija

7. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.: The
Invariant Refinement Method. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P.
(eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998,
pp. 405–428. Springer, Heidelberg (2015)

8. Bures, T., Nicola, R.D., Gerostathopoulos, I., Hoch, N., Kit, M., Koch, N., Mon-
reale, G.V., Montanari, U., Pugliese, R., Serbedzija, N., Wirsing, M., Zambonelli,
F.: A life cycle for the development of autonomic systems: The e-mobility show-
case. In: 2013 IEEE 7th International Conference on Self-Adaptation and Self-
Organizing Systems Workshops, pp. 71–76 (2013)

9. Combaz, J., Bensalem, S., Tiezzi, F., Margheri, A., Pugliese, R., Kofron, J.: Cor-
rectness of Service Components and Service Component Ensembles. In: Wirsing,
M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective
Autonomic Systems. LNCS, vol. 8998, pp. 107–159. Springer, Heidelberg (2015)

10. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A Formal Approach to Auto-
nomic Systems Programming: The SCEL Language. TAAS 9(2), 7 (2014)

11. Hoch, N., Zemmer, K., Werther, B., Siegwarty, R.Y.: Electric Vehicle Travel Opti-
mization - Customer Satisfaction Despite Resource Constraints. In: Proc. of IEEE
IVS, IEEE Computer Society Press, Los Alamitos (2012)

12. Hoch, N., Bensler, H.-P., Abeywickrama, D., Bures, T., Montanari, U.: The E-
mobility Case Study. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Soft-
ware Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 513–
533. Springer, Heidelberg (2015)

13. Hoch, N., Monreale, G.V., Montanari, U., Sammartino, M., Siwe, A.T.: From Lo-
cal to Global Knowledge and Back. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P.
(eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998,
pp. 185–220. Springer, Heidelberg (2015)

14. Hölzl, M.: The Poem Language (Version 2). Tech. Rep. 7, ASCENS (July 2013),
http://www.poem-lang.de/documentation/TR7.pdf

15. Hölzl, M., Gabor, T.: Reasoning and Learning for Awareness and Adaptation. In:
Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998, pp. 249–290. Springer, Heidelberg
(2015)

16. Hölzl, M., Koch, N., Puviani, M., Wirsing, M., Zambonelli, F.: The Ensemble De-
velopment Life Cycle and Best Practices for Collective Autonomic Systems. In:
Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998, pp. 325–354. Springer, Heidelberg
(2015)

17. Hölzl, M.M., Wirsing, M.: Towards a system model for ensembles. In: Agha, G.,
Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological
Systems. LNCS, vol. 7000, pp. 241–261. Springer, Heidelberg (2011)

18. jRESP Java Run-time Environment for SCEL Programs (2012)
19. Keznikl, J., Bures, T., Plasil, F., Gerostathopoulos, I., Hnetynka, P., Hoch, N.:

Design of Ensemble-Based Component Systems by Invariant Refinement. In: Pro-
ceedings of the 16th International ACM Sigsoft symposium on Component-based
software engineering (CBSE ’13), pp. 91–100. ACM Press, New York (2013)

20. Keznikl, J., Bures, T., Plasil, F., Kit, M.: Towards Dependable Emergent En-
sembles of Components: The DEECo Component Model. In: WICSA/ECSA, pp.
249–252. IEEE Computer Society Press, Los Alamitos (2012)

http://www.poem-lang.de/documentation/TR7.pdf

The ASCENS Case Studies: Results and Common Aspects 469

21. Klarl, A., Hennicker, R.: Design and Implementation of Dynamically Evolving En-
sembles with the HELENA Framework. In: Proceedings of the 23rd Australasian
Software Engineering Conference, pp. 15–24. IEEE Computer Society Press, Los
Alamitos (2014)

22. Mayer, P., Klarl, A., Hennicker, R., Puviani, M., Tiezzi, F., Pugliese, R., Keznikl,
J., Bures, T.: The autonomic cloud: A vision of voluntary, peer-2-peer cloud com-
puting. In: 2013 IEEE 7th International Conference on Self-Adaptation and Self-
Organizing Systems Workshops (SASOW), Sep. 2013, pp. 89–94 (2013)

23. Mayer, P., Velasco, J., Klarl, A., Hennicker, R., Puviani, M., Tiezzi, F., Pugliese,
R., Keznikl, J., Bureš, T.: The Autonomic Cloud. In: Wirsing, M., Hölzl, M.,
Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Sys-
tems. LNCS, vol. 8998, pp. 495–512. Springer, Heidelberg (2015)

24. Monreale, G.V., Montanari, U., Hoch, N.: Soft Constraint Logic Programming for
Electric Vehicle Travel Optimization. CoRR abs/1212.2056 (2012)

25. De Nicola, R., Latella, D., Lafuente, A.L., Loreti, M., Margheri, A., Massink, M.,
Morichetta, A., Pugliese, R., Tiezzi, F., Vandin, A.: The SCEL Language: Design,
Implementation, Verification. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P.
(eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998,
pp. 3–71. Springer, Heidelberg (2015)

26. Pinciroli, C., Bonani, M., Mondada, F., Dorigo, M.: Adaptation and Awareness in
Robot Ensembles: Scenarios and Algorithms. In: Wirsing, M., Hölzl, M., Koch, N.,
Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS,
vol. 8998, pp. 471–494. Springer, Heidelberg (2015)

27. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M.,
Mathews, N., Ferrante, E., Caro, G.D., Ducatelle, F., Stirling, T.S., Gutiérrez, Á.,
Gambardella, L.M., Dorigo, M.: ARGoS: A modular, multi-engine simulator for
heterogeneous swarm robotics. In: IROS, pp. 5027–5034. IEEE Computer Society
Press, Los Alamitos (2011)

28. Serbedzija, N., Mayer, P., Klarl, A.: Constructing Autonomous Systems: Major
Development Phases. International Journal on Advances in Intelligent Systems
6(4) (December 2013)

29. Serbedzija, N.: Constructing Autonomous Multi-Robot System. In: The Third
International Conference on Intelligent Systems and Applications, Sevilla, Spain
(June 2013)

30. Serbedzija, N., Bures, T., Keznikl, J.: Engineering Autonomous Systems. In:
PCI’13 Proceedings of the 17th Panhellenic Conference on Informatics, Thesal-
loniki, Greece, September 2013, pp. 128–135 (2013)

31. Vassev, E., Hinchey, M.: Autonomy Requirements Engineering. IEEE Com-
puter 46(8), 82–84 (2013)

32. Vassev, E., Hinchey, M.: Knowledge Representation for Adaptive and Self-aware
Systems. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineer-
ing for Collective Autonomic Systems. LNCS, vol. 8998, pp. 221–247. Springer,
Heidelberg (2015)

33. Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.): Software Engineering for
Collective Autonomic Systems. LNCS, vol. 8998. Springer, Heidelberg (2015)

34. Yamins, D.: Towards a theory of local to global in distributed multi-agent systems
(i). In: Kudenko, D., Kazakov, D., Alonso, E. (eds.) AAMAS 2004, pp. 183–190.
ACM Press, New York (2005)

35. Zimory Software: Zimory Cloud Suite (August 2014), http://www.zimory.com/

http://www.zimory.com/

Chapter IV.2

Adaptation and Awareness in Robot Ensembles:
Scenarios and Algorithms�

Carlo Pinciroli1, Michael Bonani2, Francesco Mondada3, and Marco Dorigo1

1 Université Libre de Bruxelles, Belgium
2 Association Mobsya, Switzerland

3 École Polytechnique Fédérale de Lausanne, Switzerland

Abstract. This chapter presents a disaster recovery scenario that has
been used throughout the ASCENS project as a reference to coordinate
the study of distributed algorithms for robot ensembles. We first intro-
duce the main traits and open problems in the design of behaviors for
robot ensembles. We then present the scenario, highlighting its generality
as a framework to compare algorithms and methodologies for distributed
robotics. Subsequently, we summarize the main results of the research
conducted in ASCENS that used the scenario. Finally, we describe an
example algorithm that solves a selected problem in the scenario. The
algorithm demonstrates how awareness at the ensemble level can be ob-
tained without requiring awareness at the individual level.

Keywords: swarm robotics, mobile robotics, autonomous robotics

1 Introduction

Large multi-robot systems (robot swarms) [2] have the potential to display de-
sirable properties, such as robustness to individual failures through redundancy,
and enhanced performance through parallelism and cooperation [11,20]. Realiz-
ing such potential is challenging because of the lack of sound design methodolo-
gies [5].

In the literature, coordination among multiple robots has been achieved in
several ways. Existing approaches span from complete centralization to complete
decentralization, with hybrid centralized-decentralized systems in between. With
complete centralization, a master system must collect the data from the robots,
analyze it and send the actions to perform to each robot. In many applications,
the advantages of this approach do not counterbalance its drawbacks. Although
centralized control is usually simpler to design and can result in a globally op-
timized behavior, it suffers from poor robustness (the master system is a single
point of failure) and poor scalability (the master system’s CPU and network
connectivity are shared resources), and it requires global sensing and communi-
cation (which is not always available).
� This research was supported by the European project IP 257414 (ASCENS).

M. Wirsing et al. (eds.): Collective Autonomic Systems, LNCS 8998, pp. 471–494, 2015.
c© Springer International Publishing Switzerland 2015

472 C. Pinciroli et al.

In contrast, completely distributed coordination algorithms do not exploit
any kind of master system, global knowledge, or planning. Instead, coordination
is the result of the parallel pairwise interactions of the system’s components.
Completely distributed coordination algorithms achieve scalability through local
sensing and communication, and achieve robustness and high performance by
leveraging the natural parallelism and redundancy of the system. However, it is
very hard to design effective coordination algorithms of this kind [10].

To date, the design of swarm robotics systems follows two general types of
approaches: behavior-based and automatic methods. Behavior-based methods [1]
are typically bottom-up design methods whereby the designer gradually refines
the individual robot behaviors until the desired global (i.e., ensemble-level) be-
havior is achieved. The results obtained with behavior-based methods strongly
depend on the experience and ingenuity of the designer. The lack of methodolo-
gies above mentioned is partially circumvented by taking inspiration from models
of biological systems that display some form of swarm intelligence [3,13], such as
colonies of ants, bees and termites. However, the complexity currently achieved
by these methods is limited, and very far from that of the natural models which
inspire the design.

In automatic methods, such as reinforcement learning [36] evolutionary ro-
botics [28], and optimization-based approaches [15], the individual robot behav-
ior is regulated by a set of parameters that are set by a suitable algorithm. These
methods allow the designer to focus efforts more on the task to solve, rather than
on the individual robot behavior. However, the performance of these methods is
known to scale poorly with the complexity of the task to solve and of the robot
interactions.

A promising approach to the design of swarm robotics systems is a combi-
nation of behavior-based (compositional, pattern-based) aspects and automatic
procedures (not restricted to optimization methods). The work in the ASCENS
project followed the line of research that leads to the definition of such a com-
bined approach.

In this chapter, we describe the research activities we conducted to apply
the ASCENS concepts to state-of-the-art problems in swarm robotics. These
activities involved two primary tasks:

1. The definition of a class of application scenarios that provides sufficient
complexity to motivate the ASCENS research;

2. The development of algorithms that solve selected problems in the appli-
cation scenario, in order to nurture and showcase ASCENS techniques and
tools.

This chapter is structured as follows. In Section 2, we discuss the mapping of the
concept of service component ensemble to robot swarms, introduce the robotic
platform employed for experimentation, and present the scenario and its variants.
In Section 3, we discuss awareness and adaptation in robot swarms, illustrating
the work we made throughout the project. In Section 4 we present two algo-
rithms that demonstrate some of the concepts studied in ASCENS. We conclude

Adaptation and Awareness in Robot Ensembles 473

the paper in Section 5, summarizing our work and proposing ideas for future
investigation.

2 Scenario: Disaster Recovery

In this section, we present the application scenario on which we based the
robotics case study. In Section 2.1 we discuss the mapping between the concepts
of service component ensemble and robot swarms. In Section 2.2 we present the
robotic platform we employed for the work in this case study. In Section 2.3
we provide a general description of the scenario. In Section 2.4 we illustrate the
possible variants of the robotics scenario.

2.1 Robot Swarms as Service Component Ensembles

Robots swarms can be cast as service component ensembles in several ways,
depending on the focus of the designer.

A first approach is to consider a single robot as a service component and
robot swarms as service component ensembles. In this case, the design neglects
the internals of the robot, which becomes a black box that exposes a set of
functionalities. The focus of the design is set on the coordination of the robot
swarm as a whole and on the correctness of the individual actions with respect
to a common goal.

Alternatively, one might represent a single robot as a distributed system
composed of a collection of microprocessors. Each microprocessor is responsible
for the control of a subset of the available devices. To achieve coordination, the
microprocessors communicate. Under this light, in ASCENS parlance each mi-
croprocessor is a service component, and a robot is a service component ensem-
ble. Robot swarms, in turn, become ensembles of service component ensembles.
Thus, the focus of the design spans two layers: at the lower layer, the design
must ensure that each robot device behaves correctly; at the higher layer, the
common goal of the swarm must be achieved.

The choice between these two approaches is ultimately dictated by the re-
quirements of the algorithm under development. Considering individual robots
as SCEs does not fit the scope of the ASCENS project, in that SC do not join
or leave the system dynamically. Moreover, this approach increases considerably
the complexity of system design and analysis. Thus, for the purposes of the AS-
CENS project, we chose to limit our scope to the first approach—considering
single robots as service components. In this way, we could target the most inter-
esting aspects of ensemble coordination directly.

A particularly important aspect for ASCENS is the fact that robot swarms
possess a dual nature. Being physical objects acting in an environment, robots
can be modeled through classical mechanics as bodies interacting through forces
(e.g. motion, collisions, assembly, transport). At the same time, a robot swarm
can be seen as a classical communication network, in which robots exchange
messages to achieve coordination.

474 C. Pinciroli et al.

This dual nature of robot swarms affects every phase of the ensemble develop-
ment life cycle. Requirement specification, for instance, might include statements
regarding the correctness of the swarm state throughout an experiment. Such
statement might include spatial aspects, such as moving while maintaining a co-
hesive formation (also known as flocking [30]), as well as network aspects, such
as achieving consensus on the direction to follow. By the same token, modeling
might need to consider the position of each robot at any time during an exper-
iment (space), as well as the opinion of each robot on the direction to follow
(network) [32].

The duality of robot swarms is apparent also in the so-called global-to-local
problem [39,40]. The goals of a swarm, as well as its properties, are typically ex-
pressed and analyzed at the global (i.e., swarm) level. However, the actions that
realize the dynamics of a swarm are executed at the local level (i.e., by each robot
individually). A principled methodology to map local actions to global properties
is currently an open problem, for which research is ongoing [10,16,34,19].

The design of the robotics scenario for ASCENS follows these considerations.
The primary aim of the scenario was to expose the ASCENS researchers to
complex, real-world problems for which partial or no solutions exist today.

2.2 The marXbot Robot

The marXbot [4] is a mobile robot developed during the Swarmanoid project [12]
and the ASCENS project.4 The marXbot is equipped with several devices that
allow it to sense and act in the environment. The marXbot’s modular architec-
ture renders it easy to add new devices and configure the robot to suit the needs
of particular experiments.

Lower Module. The marXbot is a non-holonomic, differential-drive robot
equipped with a combination of wheels and tracks named treels. The treels allow
the marXbot to move on mildly rough terrain while maintaining good stability.
A ring of 24 equally-spaced infrared sensors placed around the lower module of
the robot body double as proximity sensors and light sensors. Through these
sensors, the marXbot can be programmed to avoid close obstacles and to detect
the direction to a light source. The lower module also offers two sets of ground
sensors. The first set is composed of 4 sensors located close to the treel motors,
which allow the marXbot to detect 255 levels of gray on the ground. The second
set, composed of 8 sensors intertwined with the infrared sensors, provides the
robot with binary information to detect the presence or absence of holes on the
ground.

LED-Gripper Module. Above the lower module, the marXbot houses a multi-
purpose module. It is designed to allow two marXbots to dock into each other

4 The robot is also called foot-bot to highlight its capabilities with respect to the other
Swarmanoid robots, the hand-bot and the eye-bot.

Adaptation and Awareness in Robot Ensembles 475

Fig. 1. The marXbot robot is a modular robot that can be configured to suit the needs
of the experimenter. License: Creative Commons 3.0.

to form complex multi-robot assemblies. To this aim, the module is composed
of a gripper designed to lock inside the same module of a kin robot. The gripper
can be rotated freely around the yaw axis of the robot, making it possible for
complex assemblies to move while connected. Another important feature of this
module is the presence of 8 RGB LED embedded in the module frame. The color
of each LED can be set independently and is detectable through the cameras.
With these LEDs, a robot can convey its state or encode directional information
for other robots.

Range-and-Bearing Module. The range-and-bearing communication sys-
tem [33] is located above the LED-gripper module. This device allows two
marXbots to exchange 12 bytes of data every 100ms. The particularity of this
device is that each robot, upon receipt of a message, also detects the location
(distance and angle) of the message sender with respect to its own reference
frame. This device realizes the notion of situated communication, an important
communication modality to achieve coordination in swarm systems [35].

Distance Scanner Module. The marXbot also offers a long-range rotating
distance scanner, which can be used to map the surroundings and to localize the
robot in a static environment [25].

Top Module. The top module equips the marXbot with two cameras: (i) an
omni-directional camera, whose images are analyzed to detect colored blobs

476 C. Pinciroli et al.

around the robot; and (ii) a perspective camera, that can be oriented frontally
or towards the ceiling to detect objects. The top module also offers a beacon,
a high-power RGB LED that can be used in combination with the cameras to
highlight the position of a robot and convey its state through specific colors.
Finally, the top module is also home to the Linux board of the robot, equipped
with a 512MHz ARM7 processor and 256Mb of RAM.

2.3 General Scenario Description

The application scenario can be summarized as disaster recovery. We imagine
that a disaster happened, such as the catastrophic failure of a nuclear plant,
or a major fire in a large building. We also imagine that an activity of search-
and-rescue must be performed. For instance, people may be trapped inside the
building and they must be found and brought to safety. Given the high danger of
operating in such environment, it is realistic to think that an ensemble of robots
could be used to perform the most dangerous activities. Among these activities,
two are the focus of our attention: exploring the environment and finding targets
to rescue.

The screenshot in Figure 2 depicts an instantiation of the essential elements of
the scenario. The environment is a large rectangular area structured by several
walls. The victims to find are scattered throughout the environment. For the
purposes of the ASCENS project, there was no real need to design a specific
object to be retrieved. Thus, we used a marXbot that we suppose unable to
move. This choice enabled us to test variants of the scenario in which the object
is able to signal its location to nearby robots, and variants in which the object
is completely passive. The robots are initially deployed in the deployment area
marked in gray in Figure 2.

An important constraint is the fact that robots possess limited battery life-
time. The exhaustion of battery power is as critical an hazard as exposure to
radiations. In fact, in low battery power conditions, various sensors tend to pro-
vide noisy or wrong readings, which in turn affect a robot’s performance. The
complete exhaustion of battery power is equivalent to the loss of a robot.

2.4 Parameters

The scenario can be formalized in a matrix of parametric activities with “tun-
able” complexity as illustrated in Table 1. Within ASCENS, the aim of such
complexity matrix was not to enumerate the entire set of possibilities we in-
tended to tackle—such set is too wide and general to be studied realistically.
Rather, complexity tuning enabled us to isolate the relevant aspects of a cer-
tain problem, and develop new algorithms in a manageable, step-by-step pro-
cess whereby further complexity was introduced gradually. In the following, we
present the main features of the complexity matrix.

Adaptation and Awareness in Robot Ensembles 477

nest

victims

Fig. 2. The environment in which we studied collective exploration. Screenshot taken
with the ARGoS robot simulator.

Exploration. To rescue the victims, the robots must first find them. Explo-
ration serves this purpose. Exploration complexity depends on a number of fac-
tors related to the environment. Depending on the number of robots, a small
environment is easier to navigate than a large one. Navigation is also easier in an
obstacle-free environment than in a cluttered one. Typically, in a small, obstacle-
free environment the best exploration strategy is diffusion through random walk.
In a large, maze-like environment, more complex strategies are necessary. Anal-
ogously, navigation is simpler on a flat terrain than on a rough one. Another
important aspect is whether the robots can exploit a map of the environment or
not. The easiest situation is when a map is available beforehand. In this case,
the robots can use this information to locate themselves and the interesting
points in the environment, making navigation easier. Alternatively, a map could
be constructed during the experiment through SLAM (simultaneous localization
and mapping) techniques. The third and most challenging option is that the
robots do not possess nor construct a map, but navigate in a cooperative way.
An algorithm demonstrating the latter option is presented in Section 4.

Task Allocation. Task allocation is the activity of assigning robots to specific
tasks [17]. In this scenario, tasks can be manifold. For instance, some robots
could be explorers, other transporters. Transport, in turn, could require co-

478 C. Pinciroli et al.

Table 1. Complexity matrix for the robotics case study scenario

Activity Parameter Alternatives

Exploration

Environment size Small/Large
Environment structure Obstacle-free/Cluttered
Terrain Flat/Rough
Map Available/Computable/Not available

Task allocation

Task-robot mapping STSR/STMR
Task dependency Independent/Sequential/Complex
Task assignment Instantaneous/Time-extended
Task dynamics Simple/Complex
Task distribution Simple/Complex

operation by many robots. In general, we can distinguish between single- and
multi-robot tasks, and between single- and multi-task robots. Single-robot tasks
can be executed by a robot individually, while multi-robot tasks require coop-
eration of a group of robots. Single-task robots can execute only one task at a
time, while multi-task robots can execute more than one in parallel. In our com-
plexity matrix, we consider only the following two cases: single-task-single-robot
(STSR), and single-task-multi-robot (STMR). An example of a task that can
be declined in these variants is transport. STSR transport is when an object is
light enough for a robot to move it. If the object requires many robots to move
it, transport is STMR. Furthermore, in a realistic scenario, tasks may possess
activation dynamics, i.e., each task must be executed in certain time periods [8].
We can model this by defining a function Ti(t) such that its value over time
t is 1 when task i ∈ [1, K] is active, and 0 otherwise. In general, Ti(t) takes
the form of a square wave function, i.e., a task undergoes periods of activation
and periods of de-activation. Task activation periods can be correlated to each
other, for instance when some tasks are dependent on other tasks (e.g., task i
must be executed before task j). Furthermore, assignment of tasks to robots can
be time-extended or instantaneous. In time-extended assignment, Ti(t) (or an
approximation of it) is assumed known and tasks are assigned to robots accord-
ing to a pre-calculated schedule. Instantaneous assignment refers to methods in
which Ti(t) is not known. Another important aspect in task allocation is the
distribution of tasks in the environment. Task distribution has consequences on
the efficiency of task discovery and execution by the robots. Task distribution is
linked to the organization of the environment, i.e., how cluttered or structured
the environment is. When dealing with robot swarms, in general a task must be
executed by a certain number of robots, called quota. In practical problems, quo-
tas are rarely precise. For example, moving a heavy object requires a minimum
number of robots to compensate for the object weight. Employing more robots
usually results in better performance (i.e., the object is transported faster or with
less effort by the robots’ motors). However, above a certain number of robots,
coordination becomes an issue that negatively impacts performance. Therefore,
typically quotas can be expressed as ranges [min,max].

Adaptation and Awareness in Robot Ensembles 479

3 The Robotics Scenario and the EDLC

The Ensemble Development Life Cycle (EDCL) introduced in Chapter III.1 [22]
is composed of several phases. In this section, we report on the main findings
regarding each phase. A case study relating several phases can be found in [38].

3.1 Requirement Engineering

Property-Driven Design. As explained in Section 2.1, the dynamics of a robot
ensemble comprises two levels—the ensemble level and the individual level. The
requirements are typically expressed at the ensemble level, but the mechanisms
that realize the wanted behavior are executed at the individual level. A natural
approach to reconcile the two levels is to work in step-by-step fashion, gradually
refining the ensemble requirements by expressing them in more detailed forms
that, eventually, lead to a practical implementation. This idea is the core of the
work of Brambilla et al. [6], who demonstrated their approach on typical swarm
behaviors such as aggregation and foraging.

Engineering Self-organization and Emergence. In Chapter III.2 [27], Noël
and Zambonelli illustrate a number of methodological guidelines to engineer the
basic self-organization mechanisms that lead to coordinated ensemble behaviors.
The author demonstrate their approach through a variant of the scenario in
which the robots must spread in an unknown environment and find victims.

3.2 Modeling/Programming and Verificaton/Validation

SCEL Modeling. In Chapter I.1 [26], De Nicola et al. present a complete SCEL
model of a scenario variant in which robots must find and rescue victims. The
robots can take the role of explorers or rescuers. Explorers search for victims;
when a robot detects a victim, it becomes a rescuer. A rescuer, beside assisting
a victim, informs other robots of the victim’s position, thus attracting more
rescuers. The SCEL model considers also the possibility that the battery charge
reaches a low level, in which case the robots pause their activity and turn to the
battery charging state. The authors describe two models: one based on PSCEL
(a SCEL variant which includes policies), and one based on StocS (a stochastic
extension of the SCEL semantics).

jRESP Implementation. In Chapter I.1 [26], De Nicola et al. also describe
an implementation of the SCEL model in the jRESP framework, a Java run-
time environment that realizes the SCEL paradigm. The remarkable aspect of
this exercise is that the primitive concepts of jRESP closely resemble those of
SCEL. Thus, through jRESP, an abstract model of a distributed algorithm for
robotics can find a direct, practical implementation whose performance can be
studied and characterized. In fact, jRESP programs can be simulated and ana-
lyzed through a statistical model checker. De Nicola et al. report the results of

480 C. Pinciroli et al.

such an analysis on the robotics scenario, studying the probability that a victim
is rescued within a given time using different numbers of robots.

Maude Implementation. Another contribution of Chapter I.1 [26] is an anal-
ysis of a specific aspect of the scenario modeled in SCEL through a tool called
MISSCEL (Maude Interpreter and Simulator for SCEL). MISSCEL is an im-
plementation of SCEL in the Maude framework, a software for model checking.
De Nicola et al. focus on collision avoidance, a basic behavior the robots per-
form while exploring the environment. In particular, they analyze the efficiency
of collision avoidance when the robots are informed (i.e., can use the proximity
sensors) and uninformed (i.e., they choose their direction at random).

Physics-Based Modeling and Implementation. A common technique to
study behaviors in robotics is employing physics-based simulation. The advan-
tage of this kind of simulation is the close resemblance of the simulated system
dynamics with respect to its real counterpart. Physics-based simulation typically
include every relevant aspect that affects the behavior of the robot ensemble—
body collisions, network communication errors, etc. For the work in ASCENS,
we employed the ARGoS multi-robot simulator [31], a state-of-the-art software
capable of accurately simulating experiments involving thousands of robots in a
fraction of real time. An example experiment developed with ARGoS is presented
in Section 4.

SMC-BIP Verification. In Chapter I.3 [9], Combaz et al. present an approach
to the verification of distributed robot behaviors based on the BIP statistical
model checker. The main advantage of BIP over other modeling techniques is
that BIP models can be transformed into executable programs automatically,
making it possible to link modeling and implementation seamlessly. The authors
model the scenario variant described in detail in Section 4, analyzing the effects
of several alternatives for each robot behavior on the overall system performance.

3.3 Awareness and Adaptation

The notion of awareness and adaptation in robot swarms can manifest them-
selves at the individual level and at the ensemble level. For the purposes of
ASCENS, our primary focus is modeling and achieving ensemble-level aware-
ness and adaptation. However, the two levels are deeply intertwined—a study of
ensemble awareness/adaptation cannot neglect the individual level. Individual
awareness and adaptation can be defined as the ability of the robot to estimate
its own state, as well as a relevant portion of the ensemble state, and react
effectively to state changes. By relevant portion, here we mean that the robot
must be capable of retrieving enough information about the ensemble state to
make decisions leading to correct ensemble behaviors. Ensemble awareness and
adaptation refer to the capability of the ensemble to behave as a coherent unit,
by distributing information correctly and acting in a coordinated fashion.

Adaptation and Awareness in Robot Ensembles 481

Environment

Robot

Behavior

(a) A robot, its behavior, and the interac-
tion with the environment

Environment

Robot Robot

Behavior Behavior

Coordinator

(b) Centralized coordination

Environment

Robot Robot

Behavior Behavior

(c) Direct communication
Environment

Robot Robot

Behavior Behavior

(d) Environment-mediated communication

Fig. 3. Coordination patterns for groups of robots. The solid lines indicate generic
interactions among entities. The dashed lines indicate coordination-aimed interactions
among entities.

The relationship between the individual and the ensemble levels is complex.
For instance, a high degree of individual awareness is not required to produce
complex ensemble behaviors which display high degrees of awareness [24]. Re-
search on social insects show that individuals following simple rules based on
short-range information about the environment are capable of highly complex
and efficient behaviors such as nest construction and food foraging. The algo-
rithm described in Section 4 is an example of an individual behavior based on
short-range information and little individual awareness that result in a complex
ensemble behavior.

Adaptation Patterns. In the robotics case study, each individual robot is
considered as a Service Component (SC). Each SC is associated to a program
that controls its actions, here referred to as behavior (see Figure 3a). Groups
of connected robots (physically or networked) form Service Component Ensem-
bles. To achieve adaptation in robot ensembles, we identify four general patterns.
These adaptation patterns can be expressed following the approach described in
Chapter III.1 [22] for the mapping between SCs and autonomic managers. In this
context, the robots are proactive service components, and the concept of robot
behavior coincides with that of internal autonomic manager. The adaptation
patterns can be classified into two general categories: (i) patterns that include
an element of centralization, and (ii) fully distributed patterns. In patterns that
include an element of centralization, such element is typically meant as dedicated
SCs that collect information from the robot SCE, make decisions, and instruct

482 C. Pinciroli et al.

the robots accordingly (see Figure 3b). In the approach of Chapter III.1 [22] this
SC is an external autonomic manager. In fully distributed adaptation patterns,
the main coordination means is inter-robot communication. Communication can
occur in two ways: either directly (a robot explicitly sends a message to another
robot, Figure 3c), or indirectly (a robot reacts to the changes in the environment
made by other robots, Figure 3d). Indirect, or environment-mediated communi-
cation, is also known as stigmergy [18].

Black-Box and White-Box Adaptation. In Chapter II.1 [7], Bruni et al.
employ the robotics scenario depicted in Figure 2 as a testbed to validate a
unified approach to both black-box adaptation (i.e., adaptation behaviors as
they appear to an outside viewer) and white-box adaptation (i.e., adaptation
mechanisms that affect the internal behavior of the system).

Reasoning and Learning for Awareness and Adaptation. In Chapter II.4
[21], Hölzl et al. propose a modeling approach called Extended Behavor Trees
(XBTs). This approach targets hierarchical, concurrent behaviors that interleave
reasoning, learning, and actions. XBTs can be translated into SCEL, thus in-
tegrating the EDLC and enriching its scope. The approach is validated on a
variant of the proposed scenario.

4 Implementation and Demonstration

In this section, we present a fully distributed algorithm for collective exploration.
The algorithm works under the assumption that the robots are initially unaware
of the whereabouts of the victims and of the structure of the environment. The
concepts of awareness and adaptation play a fundamental role in this application.

In terms of awareness, as discussed in Section 3.3, the most important re-
quirement is that the ensemble as a whole is capable of representing the current
knowledge regarding the structure of the environment. The ultimate purpose of
exploration is to allow a second set of robots, the rescuers, to reach the victims
that need assistance.

To achieve this result, one could endow each robot with an algorithm for
simultaneous localization and mapping (SLAM) [37] and let the robots integrate
each others’ maps through communication. With this approach, the represen-
tation of the whole environment is a composition of the individual representa-
tions of each robot. While this approach is effective, it requires adequate sensing
and computation capabilities on the robots, which are mostly lacking on the
marXbot. Moreover, this approach does not target the intrinsically distributed
nature of the systems we studied throughout the project—in principle, a robot
could solve the exploration task alone, given sufficient time and resources.

In this section we focus on an alternative solution, in which the robots con-
struct a coherent collective representation of the environment without requiring

Adaptation and Awareness in Robot Ensembles 483

(a) An explorer robot (b) Victims are simulated with robots

Fig. 4. The robots involved in the exploration scenario. Screenshot taken with the
ARGoS robot simulator.

SLAM capabilities. In terms of awareness, this algorithm demonstrates how little
(or even zero) individual awareness can result in effective and coherent ensemble
awareness.

4.1 Scenario Instantiation

The scenario consists of a structured environment of width W and depth D,
initially unknown to the robots. As reported in Figure 2, the structure of the
environment mimics that of a building floor. A team of R robots called explorers
(Figure 4a) is deployed in a special area called the nest within the environment.
The size of the nest is always assumed sufficient to house the entire explorer
ensemble.

We imagine that a number V of victims (Fig. 4b) are scattered throughout
the environment and must be found by the robots. The robots construct a rep-
resentation of the environment such that a second robot ensemble, the rescuers,
can promptly reach the victims.

4.2 Algorithm Structure

The core idea behind the algorithm is to employ the robots as landmarks. A
landmark robot occupies a specific location of the environment and maintains
communication with a number of immediate neighboring landmarks. Upon re-
ceipt of a request for direction to a specific victim by a wandering robot, two
situations can occur:

1. The landmark can see the victim directly: in this case, the landmark sends
the direction to the victim;

2. The landmark cannot see the victim: in this case, the landmark propagates
the request to its neighbors, and then picks the shortest suggested path.

484 C. Pinciroli et al.

start

Wander
First

Out of Nest

Stable
Landmark

Exit Nest

Explore Temporary
Landmark

Victim
Landmark

Fig. 5. A finite state machine representation of the exploration algorithm. Double-
bordered nodes represent final behaviors, i.e., behaviors after which no further transi-
tion is possible.

The algorithm presented here concentrates on the creation of the network of
landmarks and is inspired to the approach of Nouyan et al. [29]. For an algo-
rithm that uses the landmark network to guide robots to their destination, see
Ducatelle et al. [14].

A diagrammatic representation of the algorithm is reported in Fig. 5, while
the main phases of a typical execution of this behavior are illustrated in Figure 6.
In the rest of this section, we will present the main behaviors along with a snippet
of their implementation in the Lua language.

Wander. The robots are initially deployed in the nest. Their first task is to
find the exit of this area, which leads to the environment to explore. This first
behavior makes the robot navigate randomly following an adapted version of the
diffusion algorithm of Howard et al. [23]. To facilitate the detection of the nest
exit, we color-coded the ground. The nest ground is gray, while the rest of the
environment is white. Through its ground sensors, a marXbot can monitor the
floor color, thus detecting when it exits the nest.

Adaptation and Awareness in Robot Ensembles 485

function rescuer:wander()
-- State transition logic
if rescuer:should_exit () then

-- The robot should exit the nest because there is
-- a landmark nearby , or because other robots are
-- already exiting
rescuer:switch_to_exiting ()
return

end
-- If we get here , the robot is out of the nest , nobody
-- else is exiting , and no landmark is nearby
if rescuer:is_out_of_nest () then

-- The robot just exited the nest
-- It’s the first , so become a landmark
rescuer:set_state (RESCUER_STATE__FIRST_LANDMARK ,

rescuer. first_landmark)
return

end
-- State logic
-- Get vector to escape from obstacles
local repulsion = rescuer:repulsion_vector ()
if(repulsion .x * repulsion .x +

repulsion .y*repulsion .y > 0.001) then
rescuer:vector_to_wheel_velocity_noscale(repulsion)

else
robot.wheels.set_velocity (5,5)

end
end

First Out of Nest. A robot switches to this behavior when its ground sensors
detect white and no robot in range is in this behavior nor in any landmark-
related behaviors. When a robot is in this behavior, it keeps moving for a few
seconds to free space in front of the nest exit. Subsequently, the robot switches
to Stable Landmark. It is not strictly necessary to ensure that a single robot
is the ‘first out of nest’. The probability that more than one robot follow this
behavior is related to the ease with which a robot can find the exit of the nest
(e.g., the width of the exit, the initial position and the sensor range of the robot).

function rescuer:first_landmark ()
-- State transition logic
rescuer.counter = rescuer.counter + 1
-- If 15 seconds have expired , become landmark
if rescuer.counter > 150 then

-- Become a stable landmark
rescuer:set_state (RESCUER_STATE__STABLE_LANDMARK ,

rescuer.stable_landmark)
rescuer.landmark_data .mark = 1
-- Stop the robot
robot.wheels.set_velocity (0,0)

486 C. Pinciroli et al.

-- Change LED color to green , for visual confirmation
robot.leds.set_all_colors (" green")
-- Set the mark for the current landmark
robot.range_and_bearing .

set_data (3, rescuer.landmark_data .mark)
robot.debug.message = robot.debug.message .. "(1)"
return

end
-- State logic
-- Just keep going straight
robot.wheels.set_velocity (5,5)

end

Stable Landmark. A stable landmark is a robot that occupies a specific lo-
cation of the environment and acts as a node in the communication network. A
stable landmark receives requests for direction, propagates them to neighbors,
and returns an answer to the robot which issued the request. For the purposes
of this algorithm, once a robot has become a stable landmark, it simply acts as
a beacon signalling its own position.

Exit Nest. The robots that are following the Wandering behavior close to
the nest exit detect when the first stable landmark appears. Upon detecting
this event, a robot switches to the Exit Nest behavior. In this behavior, the
robot propagates the information about the direction to the exit throughout its
neighbors. In this way, the robots that cannot detect the first landmark directly
are informed of its presence and switch to this behavior as well. To exit the nest,
a robot follows the direction to the landmark, if directly visible, or to the closest
robot that is aware of such direction. When a robot exits the nest, it switches
to the Explore behavior.

function rescuer:exit_nest ()
-- Buffer for the averaged sum of contributions of exiting
-- robots nearby
local exiting = { count = 0, accum = {x = 0, y = 0} }
-- Buffer for the direction to the closest landmark
local landmark = {

direct = false ,
dist = INF_DISTANCE ,
angle = 0 }

-- The current RAB message being processed
local msg
-- Go through RAB messages
for i=1,# robot.range_and_bearing do

msg = robot.range_and_bearing [i]
if (msg.data [2] >= RESCUER_STATE__TEMPORARY_LANDMARK) and

(msg.range < landmark .dist) then
-- Landmark detected , and it’s the closest so far

Adaptation and Awareness in Robot Ensembles 487

landmark .dist = msg.range
landmark .angle = msg.horizontal_bearing
landmark .direct = true

elseif msg.data [2] == RESCUER_STATE__EXIT_NEST then
-- Exiting robot detected
exiting.count = exiting.count + 1
-- Calculate distance to landmark of this robot
local land_dist =

msg.data [4] + msg.data [3] * 256 + msg.range
if land_dist < landmark .dist then

-- Found the robot who knows the closest way to a
-- landmark
landmark .dist = land_dist
landmark .angle = msg.horizontal_bearing
landmark .direct = false

end
-- Calculate the contribution of this robot
local lj = rescuer:lennard_jones (

msg.range ,
RESCUER_EXITING_DISTANCE ,
RESCUER_EXITING_GAIN)

local contr = {
x = lj * math.cos(msg.horizontal_bearing),
y = lj * math.sin(msg.horizontal_bearing)

}
exiting.accum.x = exiting.accum.x + contr.x
exiting.accum.y = exiting.accum.y + contr.y

end
end
-- State transition logic
-- If you can see the landmark directly and you ’re out
-- of the nest , explore
if landmark .direct and rescuer:is_out_of_nest () then

rescuer:switch_to_explore ()
return

end
-- State logic
-- Postprocess the data collected
-- Take the average of the exiting robot interaction
if(exiting.count > 1) then

exiting.accum.x = exiting.accum.x / exiting.count
exiting.accum.y = exiting.accum.y / exiting.count

end
-- Calculate the LJ interaction to the landmark
local landmark_contr = { x = 0, y = 0 }
if landmark .dist < INF_DISTANCE then

magnitude = 2
if landmark .dist < 1.5 * RAB_RANGE then

magnitude = rescuer:lennard_jones (
landmark .dist ,

488 C. Pinciroli et al.

RESCUER_LANDMARK_DISTANCE ,
RESCUER_LANDMARK_GAIN)

end
landmark_contr .x = magnitude * math.cos(landmark .angle)
landmark_contr .y = magnitude * math.sin(landmark .angle)
-- Send around the closest direction to landmark known
robot.range_and_bearing .set_data (3, landmark.dist / 256)
robot.range_and_bearing .set_data (4, landmark.dist % 256)

else
robot.range_and_bearing .set_data (3, 256)
robot.range_and_bearing .set_data (4, 256)

end
-- Calculate the direction
local direction = {

x = exiting.accum.x + landmark_contr .x,
y = exiting.accum.y + landmark_contr .y

}
-- Actuate wheels
rescuer: vector_to_wheel_velocity_scale(direction)

end

Explore. A robot in this behavior performs random walk in the environment.
While wandering, the robot keeps track of the closest landmark detected. If the
distance to this landmark becomes too high (i.e., more than 80% of the maximum
range of the range-and-bearing system), the exploring robot stops and becomes
a Temporary Landmark.

function rescuer:explore ()
-- State transition logic
if rescuer:is_out_of_nest () then

-- Get the landmarks around
local landmarks = rescuer:landmarks_in_range ()
if landmarks then

-- Get the data of the closest landmark
local dist = RAB_RANGE
local marker
local is_victim_landmark = false
for i = 1, #landmarks do

if landmarks [i].range < dist then
dist = landmarks [i]. range
marker = landmarks [i]. data [3]
is_victim_landmark =

(landmarks [i]. data [2] ==
RESCUER_STATE__VICTIM_LANDMARK)

end
end
-- Are we getting too far from the closest?
if (not is_victim_landmark) and

(dist > 0.8 * RAB_RANGE) then

Adaptation and Awareness in Robot Ensembles 489

-- The closest landmark is getting too far
-- Become a landmark !
rescuer:become_landmark (marker)
return

end
end

else
-- Explorer got back to the nest
-- Switch back to exiting state
rescuer:switch_to_exiting ()
return

end
-- State logic
-- Wander in the environment
local repulsion = rescuer:repulsion_vector ()
if(repulsion .x * repulsion .x +

repulsion .y * repulsion .y > 0.001) then
rescuer:vector_to_wheel_velocity_noscale(repulsion)

else
robot.wheels.set_velocity (5,5)

end
end

Temporary Landmark. When a robot switches to this behavior, it stops its
motion and waits for a few seconds while monitoring the environment for other
nearby landmarks. If a nearby landmark is located and is too close, the robot
switches back Explore. Otherwise, at the end of the monitoring period, the
robot switches to Stable Landmark or Victim Landmark, depending on
whether a victim is visible or not. The rationale for this behavior is to opti-
mize the diffusion of landmarks across the environment. The motion of explorers
around a temporary landmark might hide (for a short period) the presence of
other stable landmarks; the monitoring period is designed to allow the robot
to collect information and discover nearby landmarks despite the motion of the
explorers.

function rescuer:temporary_landmark ()
-- Increase counter
rescuer.counter = rescuer.counter + 1
-- Switch green LEDs depending on how far we are from
-- making a decision
if (rescuer.counter %

RESCUER_TEMPORARY_PROGRESS_PERIOD) == 0 then
robot.leds.set_single_color (

rescuer.counter / RESCUER_TEMPORARY_PROGRESS_PERIOD ,
"green")

end
-- Collect data
-- Go through the messages
if #robot.range_and_bearing > 0 then

490 C. Pinciroli et al.

-- local msg
for i = 1, #robot.range_and_bearing do

local msg = robot.range_and_bearing [i]
if msg.data [1] == ROLE__VICTIM then

-- Detected a victim in range
rescuer.landmark_data .victim_nearby = true

elseif msg.data [2] >=
RESCUER_STATE__TEMPORARY_LANDMARK then

-- Detected a landmark in range
if rescuer.landmark_data . dist_to_closest_landmark >

msg.range then
rescuer.landmark_data .

dist_to_closest_landmark = msg.range
end
if msg.data [2] == RESCUER_STATE__VICTIM_LANDMARK then

rescuer.landmark_data . victim_landmark_nearby = true
end

end
end

end
-- If 10 seconds have expired , make a decision
if rescuer.counter > RESCUER_TEMPORARY_PERIOD then

if rescuer.landmark_data .victim_nearby and
(not rescuer.landmark_data . victim_landmark_nearby) then
-- There ’s a victim and no victim landmark
-- Become victim landmark
rescuer:set_state (RESCUER_STATE__VICTIM_LANDMARK ,

rescuer.victim_landmark)
robot.debug.message =

robot.debug.message .. "(" ..
rescuer.landmark_data .mark .. ")"

-- Set the mark for the current landmark
robot.range_and_bearing .

set_data (3, rescuer.landmark_data .mark)
elseif (not rescuer.landmark_data .victim_nearby) and

(rescuer.landmark_data . dist_to_closest_landmark >
0.3 * RAB_RANGE) then

-- No victim around and no landmark is too close
-- Become a stable landmark
rescuer:set_state (RESCUER_STATE__STABLE_LANDMARK ,

rescuer.stable_landmark)
robot.debug.message =

robot.debug.message .. "(" ..
rescuer.landmark_data .mark .. ")"

-- Set the mark for the current landmark
robot.range_and_bearing .

set_data (3, rescuer.landmark_data .mark)
else

-- Either there ’s both a victim nearby and a victim
-- landmark , or there ’s no victim but a landmark is too
-- close. Either case , go back exploring

Adaptation and Awareness in Robot Ensembles 491

(a) The first explorer exits the nest and
becomes a stable landmark.

(b) The other robots exit the nest.

(c) The explorers navigate the environ-
ment, occasionally becoming stable land-
marks.

(d) Explorers that are close to a victim
become victim landmarks.

Fig. 6. The essential phases of the exploration behavior. Screenshots taken with the
ARGoS robot simulator

rescuer:switch_to_explore ()
end

end
end

Victim Landmark. When a robot is eligible to become a stable landmark, it
checks for the presence of nearby victims. If at least a victim is detected, the robot
becomes a victim landmark. This behavior is similar to a stable landmark in that
a robot becomes part of the communication network, receiving and replying
requests from the rescuers. However, the role of a victim landmark is to act as
the leaf node of the network when the direction to a victim in range is requested.
For the purposes of this algorithm, once a robot has become a victim landmark,
it simply acts as a beacon signalling its own position.

492 C. Pinciroli et al.

5 Conclusions

In this chapter, we presented the robotics scenario used throughout the ASCENS
project. The scenario imagines that a disaster happened in an area whose struc-
ture is unknown. Victims are assumed scattered at unknown locations. A robot
ensemble is deployed to the area and must save the victims.

We decoupled the scenario in a number of parametric phases, allowing the
ASCENS researchers to “tune” the complexity of the desired aspects at will.

The choice of this scenario stemmed from the need to expose ASCENS re-
searchers to real-world coordination problems for robot ensembles. These prob-
lems proved useful to foster several studies spanning modeling, design, require-
ment specification, verification, adaptation, and awareness.

We presented an implementation that demonstrates a possible, albeit simple,
solution for the scenario. This implementation has been used throughout the
project as a reference, allowing researchers to analyze its properties and improve
on its limitations.

References

1. Arkin, R.C.: Behavior-Based Robotics. MIT Press, Cambridge (1998)
2. Beni, G.: From Swarm Intelligence to Swarm Robotics. Swarm Robotics 3342,

1–9 (2005)
3. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to

Artificial Systems. Santa Fe Institute Studies in the Sciences of Complexity. Ox-
ford University Press, New York (1999)

4. Bonani, M., Longchamp, V., Magnenat, S., Rétornaz, P., Burnier, D., Roulet, G.,
Vaussard, F., Bleuler, H., Mondada, F.: The marXbot, a miniature mobile robot
opening new perspectives for the collective-robotic research. In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 4187–4193. IEEE Press, Piscataway (2010)

5. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intelligence 7(1), 1–41 (2013)

6. Brambilla, M., Pinciroli, C., Birattari, M., Dorigo, M.: Property-driven design
for swarm robotics. In: Proceedings of the 11th International Conference on Au-
tonomous Agents and Multiagent Systems, pp. 139–146. International Foundation
for Autonomous Agents and Multiagent Systems (2012)

7. Bruni, R., Corradini, A., Gadducci, F., Hölzl, M., Lafuente, A.L., Vandin, A.,
Wirsing, M.: Reconciling White-Box and Black-Box Perspectives on Behavioral
Self-adaptation. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software
Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 163–184.
Springer, Heidelberg (2015)

8. Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., Dorigo, M.: Self-organized task
allocation to sequentially interdependent tasks in swarm robotics. Autonomous
Agents and Multi-Agent Systems 28(1), 101–125 (2014)

9. Combaz, J., Bensalem, S., Tiezzi, F., Margheri, A., Pugliese, R., Kofron, J.: Cor-
rectness of Service Components and Service Component Ensembles. In: Wirsing,
M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective
Autonomic Systems. LNCS, vol. 8998, pp. 107–159. Springer, Heidelberg (2015)

Adaptation and Awareness in Robot Ensembles 493

10. Crespi, V., Galstyan, A., Lerman, K.: Top-down vs bottom-up methodologies in
multi-agent system design. Autonomous Robots 24(3), 303–313 (2008)

11. Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463
(2014)

12. Dorigo, M., Floreano, D., Gambardella, L., Mondada, F., Nolfi, S., Baaboura, T.,
Birattari, M., Bonani, M., Brambilla, M., Brutschy, A., Burnier, D., Campo, A.,
Christensen, A., Decugnière, A., Di Caro, G., Ducatelle, F., Ferrante, E., Förster,
A., Guzzi, J., Longchamp, V., Magnenat, S., Martinez Gonzales, J., Mathews, N.,
Montes de Oca, M., O’Grady, R., Pinciroli, C., Pini, G., Rétornaz, P., Roberts, J.,
Sperati, V., Stirling, T., Stranieri, A., Stützle, T., Trianni, V., Tuci, E., Turgut,
A., Vaussard, F.: Swarmanoid: a novel concept for the study of heterogeneous
robotic swarms. IEEE Robotics & Automation Magazine 20(4), 60–71 (2013)

13. Dorigo, M., Birattari, M.: Swarm intelligence. Scholarpedia 2(9), 1462 (2007)
14. Ducatelle, F., Di Caro, G., Förster, A., Bonani, M., Dorigo, M., Magnenat, S.,

Mondada, F., O’Grady, R., Pinciroli, C., Rétornaz, P., Trianni, V., Gambardella,
L.M.: Cooperative navigation in robotic swarms. Swarm Intelligence 8(1), 1–33
(2014)

15. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe:
A novel approach to the automatic design of control software for robot swarms.
Swarm Intelligence, 1–24 (2014)

16. Gazi, V., Fidan, B.: Coordination and control of multi-agent dynamic systems:
Models and approaches. In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds.) SAB
2006. LNCS, vol. 4433, pp. 71–102. Springer, Heidelberg (2007)

17. Gerkey, B.P., Matarić, M.J.: A formal analysis and taxonomy of task allocation
in multi-robot systems. The International Journal of Robotics Research 23(9),
939–954 (2004)

18. Grassé, P.: La reconstruction du nid et les coordinations inter-individuelles chez
bellicositermes natalensis et cubitermes sp. la théorie de la stigmergie: Essai
d’interprétation des termites constructeurs. Insects Sociaux 6, 41–83 (1959)

19. Hamann, H.: Towards swarm calculus: Urn models of collective decisions and
universal properties of swarm performance. Swarm Intelligence 7(2-3), 145–172
(2013)

20. Hinchey, M.G., Sterritt, R., Rouff, C.: Swarms and swarm intelligence. Com-
puter 40(4), 111–113 (2007)

21. Hölzl, M., Gabor, T.: Reasoning and Learning for Awareness and Adaptation. In:
Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998, pp. 249–290. Springer, Heidelberg
(2015)

22. Hölzl, M., Koch, N., Puviani, M., Wirsing, M., Zambonelli, F.: The Ensemble De-
velopment Life Cycle and Best Practices for Collective Autonomic Systems. In:
Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998, pp. 325–354. Springer, Heidelberg
(2015)

23. Howard, A., Matarić, M., Sukhatme, G.: Mobile sensor network deployment using
potential fields: A distributed, scalable solution to the area coverage problem. In:
Proceedings of the International Symposium on Distributed Autonomous Robotic
Systems (DARS), pp. 299–308. Springer, New York (2002)

24. Self-organized, M.G.J.C.W.L.T.J.D.R.G.: aggregation without computation. In-
ternational Journal of Robotics Research 33(8), 1145–1161 (2014)

494 C. Pinciroli et al.

25. Magnenat, S., Longchamp, V., Bonani, M., Rétornaz, P., Germano, P., Bleuler, H.,
Mondada, F.: Affordable slam through the co-design of hardware and methodol-
ogy. In: 2010 IEEE International Conference on Robotics and Automation (ICRA
2010), pp. 5395–5401. IEEE Press, Piscataway (2010)

26. De Nicola, R., Latella, D., Lafuente, A.L., Loreti, M., Margheri, A., Massink, M.,
Morichetta, A., Pugliese, R., Tiezzi, F., Vandin, A.: The SCEL Language: Design,
Implementation, Verification. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P.
(eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998,
pp. 3–71. Springer, Heidelberg (2015)

27. Noël, V., Zambonelli, F.: Methodological Guidelines for Engineering Self-
organization and Emergence. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P.
(eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998,
pp. 355–378. Springer, Heidelberg (2015)

28. Nolfi, S., Floreano, D.: Evolutionary robotics. MIT Press, Cambridge (2000)
29. Nouyan, S., Campo, A., Dorigo, M.: Path formation in a robot swarm. Swarm

Intelligence 2(1), 1–23 (2008)
30. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and the-

ory. IEEE Transactions on Automatic Control 51(3), 401–420 (2006)
31. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M.,

Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella,
L.M., Dorigo, M.: ARGoS: a modular, parallel, multi-engine simulator for multi-
robot systems. Swarm Intelligence 6(4), 271–295 (2012)

32. Ren, W., Beard, R.: Distributed consensus in multi-vehicle cooperative control:
theory and applications. Springer, Berlin (2007)

33. Roberts, J., Stirling, T., Zufferey, J.C., Floreano, D.: 2.5d infrared range and
bearing system for collective robotics. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2009), IEEE Press, Piscataway (2009)

34. Schmickl, T.: How to engineer robotic organisms and swarms? In: Bio-Inspired
Self-Organizing Robotic Systems, pp. 25–52. Springer, Berlin (2011)

35. Støy, K.: Using situated communication in distributed autonomous mobile robots.
In: Proceedings of the 7th Scandinavian Conference on Artificial Intelligence, pp.
44–52. IOS Press, Amsterdam (2001)

36. Sutton, R.S., Barto, A.G.: Introduction to reinforcement learning. MIT Press,
Cambridge (1998)

37. Thrun, S., Leonard, J.J.: Simultaneous localization and mapping. In: Springer
handbook of robotics, pp. 871–889. Springer, Heidelberg (2008)

38. Wirsing, M., Hölzl, M., Tribastone, M., Zambonelli, F.: ASCENS: Engineering
Autonomic Service-Component Ensembles. In: Beckert, B., Damiani, F., de Boer,
F.S., Bonsangue, M.M. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 1–24. Springer,
Heidelberg (2013), http://www.pst.ifi.lmu.de/~hoelzl/fmco-2011.pdf

39. Yamins, D.: Towards a theory of local to global in distributed multi-agent systems
(i). In: Proceedings of the fourth international joint conference on autonomous
agents and multiagent systems (AAMAS’04), pp. 183–190. ACM Press, New York
(2005)

40. Yamins, D.: Towards a theory of local to global in distributed multi-agent systems
(ii). In: Proceedings of the fourth international joint conference on autonomous
agents and multiagent systems (AAMAS’04), pp. 191–198. ACM Press, New York
(2005)

http://www.pst.ifi.lmu.de/~hoelzl/fmco-2011.pdf

CHAPTER IV.3

The Autonomic Cloud�

Philip Mayer1, José Velasco2, Annabelle Klarl1, Rolf Hennicker1,
Mariachiara Puviani3, Francesco Tiezzi4, Rosario Pugliese5, Jaroslav Keznikl6, and

Tomáš Bureš6

1 Ludwig-Maximilians-Universität München, Germany
2 Zimory Software, Berlin, Germany

3 Università di Modena e Reggio Emilia, Italy
4 IMT Institute for Advanced Studies Lucca, Italy

5 Università degli Studi di Firenze, Italy
6 Charles University in Prague, Faculty of Mathematics and Physics, Czech Republic

Abstract. The cloud case study within ASCENS explores the vision of an au-
tonomic cloud, which is a cloud providing a platform-as-a-service computing
infrastructure which, contrary to the usual practice, does not consist of a well-
maintained set of reliable high-performance computers, but instead is formed by
a loose collection of voluntarily provided heterogeneous nodes which are con-
nected in a peer-to-peer manner. Such an infrastructure must deal with network
resilience, data redundancy, and failover mechanisms for executing applications.
As such, the autonomic cloud thus requires a certain degree of self-awareness,
monitoring, and self-adaptation to reach its goals, which has been achieved with
the integration of ASCENS methods and techniques.

Keywords: case study, cloud computing, voluntary computing, peer-to-peer com-
puting, awareness, monitoring, adaptation

1 Introduction

Cloud computing is a recent trend in large scale computing that involves the provision-
ing of IT resources in a dynamic and on-demand fashion. It supports both conventional
scenarios such as scaleout, in which companies opt to extend locally available, internal
resources with additional external capacities from a cloud temporarily or for a longer
period of time, and new cloud-specific usage scenarios like purely cloud-based applica-
tions that may be offered in a cost-efficient, demand-driven way.

Cloud computing services are usually classified into three layered solutions, which
are Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-
a-Service (SaaS). The first is the lowest level and refers to the provisioning of virtual
machines; the second is one step higher and provides a development and execution

� This research was supported by the European project IP 257414 (ASCENS).

M. Wirsing et al. (eds.): Collective Autonomic Systems, LNCS 8998, pp. 495–512, 2015.
c© Springer International Publishing Switzerland 2015

496 P. Mayer et al.

platform regardless of the actual machine, and the last involves the provisioning of
complete applications on an on-demand basis.

The goal of the Autonomic Cloud case study of ASCENS — also called the Sci-
ence Cloud case study due to its envisioned use within the scientific community — is
building a cloud system whose components are self-aware, self-monitoring, and able to
self-adapt in the face of problems. As such, this cloud is built following the concepts
of a Platform-as-a-Service, that is, it provides a development and runtime platform for
applications. However, the scenario where this cloud will be deployed and the parts it
consists of are very different from that of a classical cloud implementation. In particular,
the nodes forming this cloud will not be well-maintained and secured servers. Instead,
the cloud relies on autonomic nodes — machines and software which will be provided
on a case-by-case basis, mostly voluntarily, and can be withdrawn or change in load at
any time.

This environment necessitates a different way of organizing application execution,
resilience, data storage, and communication — the autonomic cloud computing plat-
form must be able to execute applications in the presence of difficulties such as leaving
and joining nodes, fluctuating load, and hard- and software requirements of applica-
tions which some of the nodes may not be able to fulfill. This vision has been achieved
with the integration of key ASCENS concepts and methods in the implementation of
this case study, where the basic nodes of the cloud are realized using service com-
ponents (also called SCPi, for Science Cloud Platform instance). Those components
which work together to execute an application dynamically form a service component
ensemble (called an SCPe, or Science Cloud Platform ensemble).

Although the cloud relies on voluntarily provided nodes, participation of centrally-
controlled entities such as IaaS providers is by no means prevented. In fact, parts of
the autonomic cloud may run on IaaS solutions which enables it to spawn new virtual
machines or shut them down again. This additional functionality is used to balance load
or to conserve energy, and has been integrated into the commercial cloud infrastructure
of the ASCENS partner Zimory [28].

This chapter describes the autonomic cloud case study, its origins, use of ASCENS
methods, implementation, and evaluation. The next section will discuss influencing ar-
eas of computing for the case study (Section 2). In Section 3, we will discuss handling
awareness and adaptation in the cloud by means of the ASCENS methods. The imple-
mentation of the cloud is discussed in Section 4, followed by an evaluation in Section 5.
We conclude in Section 6.

This chapter presents an extended version of the publication “The Autonomic Cloud:
A Vision of Voluntary, Peer-2-Peer Cloud Computing”, previously published at the
2013 AWARENESS workshop [18].

2 Influencing Areas of Computing

Before delving into the deeper details of the cloud, we discuss the three major comput-
ing areas which have been influential for realizing the autonomic cloud vision, which
are cloud computing, voluntary computing, and peer-to-peer computing.

The Autonomic Cloud 497

2.1 Cloud Computing

Firstly and obviously, we deal with cloud computing [20]. Cloud computing refers to
provisioning resources such as virtual machines, storage space, processing power, or
applications to consumers “on the net”: Consumers can use these resources without
having to install hardware or software themselves and can dynamically add and remove
resources.

There are three commonly accepted levels of provisioning in cloud computing,
which are infrastructure, platform, and software. In the first, low-level resources such
as virtual machines are offered. In the second, a platform for executing custom client
software is provided. On the third level, complete applications (such as an office suite)
are provided, mostly directly to end users. In any case, clouds are usually offered from
one or more centrally managed locations; the servers providing the infrastructure run in
a well-maintained data center and are under the control of a single entity.

In the ASCENS cloud computing case study, we will be concerned with a Platform-
as-a-Service (PaaS) solution. The goal of the case study is providing a software sys-
tem (called the Science Cloud Platform, SCP) which will, installed on multiple virtual
or non-virtual machines, form a cloud providing a platform for application execution
(these applications in turn providing SaaS solutions). The applications running on top
of the platform are assumed to have requirements similar to Service Level Agreements
(SLAs), which includes where they can and want to be run (regarding CPU speed, avail-
able memory, or even closeness in network terms such as latency to other applications
or nodes).

2.2 Voluntary Computing

The second area is voluntary computing. This term usually refers to solutions in which
individuals (consumers) offer part of their computing power to take part in a larger com-
puting effort. The classic examples are the @home programs, of which SETI@Home
[15] where personal computers are used in the search for extra-terrestrial intelligence
is probably the most famous. Usually, voluntary computing is focused on computation;
it depends on an agency which provides a centralized infrastructure into which people
may plug-in, get their data from, perform calculations, and report back.

In the ASCENS cloud computing case study, we adopt the voluntary computing
approach insofar as we imagine individual entities (which includes natural persons, but
universities as well) to voluntarily provide computing power in the form of cloud nodes
which they can add or remove at any time as they see fit; i.e. nodes can come and
go without warning, and their load may change outside of cloud concerns. They may
include vastly different hardware, which includes CPU speed, available memory, and
also specialized hardware as, for example, graphics processing chips.

2.3 Peer-to-Peer Computing

Finally, the last area is peer-to-peer computing [2]. First popularized in the infamous
area of file sharing, the basic idea of peer-to-peer computing is the lack of a centralized
structure. There is no single node in the network on which the functionality of the

498 P. Mayer et al.

overall system depends; rather, a decentralized communication approach is used which
ideally is stable through the process of nodes coming and going, and offers no single
point of failure, or single point of attack.

The ASCENS cloud computing case study is based on this idea; i.e. there is no
centralized component in this cloud and nodes have to use some protocol to agree, in
a decentralized manner, on where and what to execute. As already discussed above in
the voluntary computing part, nodes may thus come and go without having to inform a
central entity.

2.4 Bringing It All Together

Thus, all in all, we have a voluntary, peer-to-peer based platform-as-a-service solution.
Such an infrastructure requires autonomic nodes which are (self-)aware of changes in
load (either from cloud applications or from applications external to the cloud) and of
the network structure (i.e. nodes coming and going) which requires self-healing prop-
erties (network resilience). Another issue is data redundancy in case nodes drop out of
the system, which requires preparatory actions. Finally, executing applications in such
an environment requires a fail-over solution, i.e. self-adaptation of the cloud to provide
what we may call application execution resilience.

To sum up in one sentence, the goal of the SCP is to deploy and run user-defined
applications on the p2p-connected web of voluntarily provided machines which form
the cloud.

3 Handling Awareness and Adaptation

The ASCENS project has contributed many techniques and methods to the area of self-
aware and self-adapting systems. In this section, we will focus on four important areas
which have been influential for the design of the Adaptive Cloud, and in turn have been
validated on the Science Cloud Platform implementation.

The first of these are adaptation patterns which serve as a way of structuring the
cloud on an architectural level (section 3.1). Following this, we discuss modeling of en-
semble behavior in a rigorous way by using the Helena approach (section 3.2). System
specification is best executed using specifically developed language primitives, namely
from the SCEL language (section 3.3). The nodes in the autonomic cloud may be per-
sonal computers and as such may be mobile. Issues relating to this fact have been in-
vestigated in the DEECo approach (section 3.4).

Other ASCENS methods have been used on the cloud case study as well, which are
not described in detail here due to space limitations. We discuss an overview of these,
including the lifecycle which ASCENS defines for the development of autonomous
systems, in section 3.5.

3.1 Adaptation Patterns

A common approach to understanding, categorizing, and designing IT systems is the use
of patterns, i.e. descriptions of characteristics which have proven to be beneficial for the

The Autonomic Cloud 499

implementation of a system. Within ASCENS, a catalog of architectural design patterns
has been developed [7] which are intended to be used to build adaptive components and
systems. The design patterns have been studied with regard to the cloud case study. In
this section, we will discuss two patterns which have been used in the cloud.

Firstly, we need to discuss individual cloud nodes (which we call SCPis, for Science
Cloud Platform instances). In this regard, the proactive service component pattern [21]
best captures the behavior of such a node. This pattern enables the SCPi, which is a
Service Component (SC) in the terms of ASCENS and the adaptation pattern itself,
to have an internal feedback loop, or, in other words, implicitly contain an Autonomic
Manager (AM) which is responsible for driving the adaptation through this feedback
loop. These kinds of components are used because nodes in the cloud are goal-oriented
in nature and actively try to adapt their behavior, even without an external call (e.g. for
saving energy). A visualization of such a component is shown in Fig. 1.

In the cloud, one such node uses its sensor to read environmental values such as
CPU speed, current load, etc.; effectors may be used to configure an IaaS solution.
Inputs and outputs refer to a user interacting with deployed applications. The control
and emitter ports are used for ensemble adaptation (see below).

By using the proactive service component pattern, individual SCP nodes are self-
aware and able to self-adapt, each following the goal of achieving best performance for
deployed apps while saving energy. The internal feedback loop created through the AM
part of the node is used for checking these conditions and adapting properly.

Fig. 1. Proactive Service Component

Furthermore, multiple nodes work together to execute applications. On this level,
the p2p negotiation service components ensemble pattern [21] is a fitting description
of this behavior, since each node (potentially) communicates with every other node
for adaptation, there is no central coordinator, and each node follows a goal (which in
this case is the same for each node, though with different data depending on deployed

500 P. Mayer et al.

apps). The use of this pattern is also possible because the components that form the
ensemble are proactive and need to communicate with others to propagate adaptation.
This is done, as indicated above, through the control and emitter interfaces of the service
component.

Using this pattern, multiple SCP nodes work together: For each application, one
ensemble consisting of a subset of the overall cloud nodes is formed which is then
responsible for executing the application (which includes deployment, finding an ex-
ecutor, executing, and monitoring). We call such an ensemble an SCPe (Science Cloud
Platform ensemble).

Obviously, there are also other ways in which a cloud can be organized. In [21], the
applicability of the centralized AM service components ensemble pattern was discussed
as well. This pattern proposes a completely different setup which does not use a peer-
to-peer ogranization but instead uses a centralized autonomic manager. Dynamically
adapting the cloud to such a structure might be advisable in the case of a partial blackout
of the cloud, that is, a large percentage of the cloud goes down. If only a few nodes
remain, switching to a centralized mode in which one AM coordinates many individual
nodes (which give up their own adaptivity mechanisms for the time being) might prove
to be more effective. Nevertheless, this pattern can only be applied as long as its context
of applicability is the same as in the observed case. When the context changes again,
the pattern has to be changed as well.

3.2 Modeling Ensemble Behavior

Modeling the behavior of the individual components and the ensembles which imple-
ment the cloud functionality is challenging due to the complexity and dynamics of the
participating ensembles. In ASCENS, existing techniques such as component-based
software engineering ([25,22]) have thus been augmented with features that focus on
the particular characteristics of ensembles. Among these is the fact that ensembles are
dynamically formed on demand, realizing collective, goal-oriented behavior through
communication between the individual participants; furthermore, multiple ensembles
may run concurrently using the same basic resources, but dealing with different tasks
on a higher level. To be able to model these issues on a first-class basis, the Helena
approach [12] has been developed, which uses a UML-like notation for collaborations
founded on a rigorous formal semantics.

A particular property of ensembles is the fact that although the platform on which
ensembles run may itself be plain component-based, each component can take part in
different ensembles and in the course of doing so take up different, ensemble-specific
roles. A service component may play different roles at the same time, both in one
ensemble and in different, concurrently running ensembles; it may also dynamically
change its role(s) in order to adapt to new situations.

The Helena approach is centered on this notion of roles and the collaboration of
roles in ensembles for pursuing the ensemble goal. In the present case study, there
may be multiple such ensembles; one for each of the applications which are executed
within the cloud. Each ensemble has the goal of deploying the application, finding an
execution target node, executing, and finally monitoring the application execution. This
is illustrated in Fig. 2.

The Autonomic Cloud 501

Fig. 2. Ensembles in the Helena approach

The first or basic level (on the bottom of the figure) shows the pool of all SCPi
nodes which are, in principle, able to provide resources to the cloud. In the figure,
these are the four nodes labeled i1 to i4, which may be physical or virtual machines on
which instances of the science cloud platform (SCPis) are running. Each of these may
participate in ensembles for executing an application.

As indicated in the figure, executing an application requires different responsibilities
taken up by different roles in the ensemble; in total, there are six roles of which four are
shown in this overview figure. These are the deployer (node from which the application
originates), the initiator (leading the search for an execution node), the actual executor,
and a stopper which deals with application shutdown. As an example, the figure shows
two different ensembles, each executing one application, where nodes concurrently play
different roles or do not participate at all.

Helena allows the fine-grained specification of the role interactions as well as the
description of the behavior of each role (for details, see [14]). These descriptions are
given a rigorous formal foundation, which can then be exploited for ensuring that the
ensemble behavior actually reaches the desired goal. We believe that the analysis of
ensembles of collaborating roles is beneficial to developers due to the reduction of the
complexity of the models, since the combination of all roles within one service com-
ponent must only be integrated into a component-based architecture in the following
implementation phase.

This phase is discussed in the next section, where a language is presented to which
a systematic transition from Helena is currently being investigated.

3.3 System Specification in SCEL

The challenge for language designers posed by autonomic systems is to devise appropri-
ate abstractions and linguistic primitives to deal with the large dimension of systems, to

502 P. Mayer et al.

guarantee adaptation to (possibly unpredicted) changes of the working environment, to
take into account evolving requirements, and to control the emergent behaviors result-
ing from complex interactions. To face this challenge, starting from existing formalisms
for specifying distributed and interacting systems, in ASCENS a new language has been
designed that supports programming context-awareness, self-awareness, adaptation and
ensemble-wide interactions. This language, called SCEL (Software Component Ensem-
ble Language) [10], provides a complete set of linguistic abstractions for specifying the
behavior of autonomic components and the formation of their ensembles, and for con-
trolling the interaction among autonomic components.

SCEL is, somehow, minimal; its syntax fully specifies only a small set of constructs
for specifying autonomic systems naturally, avoiding the intricacies due to encoding in
lower level languages. SCEL can be thought of as a “kernel” language based on which
different full-blown languages can be designed. In particular, here we consider PSCEL
(see Chapter I.1 [19]), the instantiation of SCEL obtained by using tuple spaces for
managing components’ knowledge and the language FACPL for expressing the policies
regulating components’ behaviour.

In the rest of this section, we consider the PSCEL specification of a scenario in
the cloud where an SCPi is overloaded, i.e. the CPU load exceeds a certain threshold,
and an application needs to be moved to a different node. This scenario requires the
use of an IaaS solution, as it demands the ability to dynamically spawn a new virtual
machine and move the application there (indeed, it also prescribes that the application
is a singleton). The full specification of the scenario can be found in [17]. Here we only
outline the general idea.

The SCPi where the application is initially running is a PSCEL component of the
form I[K, Π, P]. The interface I makes available information about the component it-
self in terms of attributes. K is the knowledge of the SCPi. Π is the policy regulating the
component behaviour. P is the set of concurrent processes running in the component.

SCPis follow the proactive service component pattern (described in Section 3.1).
Thus, the application logic, implemented as part of process P , uses a group-oriented
action to retrieve an application from a member of the SCPe within a given geographical
area. This ensemble is dynamically determined when the action is executed and consists
of all components that expose in their interface the location attribute with the given
value (indeed, the notion of ensemble in SCEL matches the notion of SCPe, as both are
based on components’ attributes). Then, the process sends the retrieved application for
execution.

The adaptation logic (i.e., when to adapt) is implemented by the policy Π . Indeed,
the component’s interface I exposes the attribute CPULoad, whose value (i.e., a per-
centage of load) is a context information sensed by the component from the underlying
infrastructure. The policy Π then detects when the attribute value is over a given thresh-
old (e.g., 90%) and, in that case, triggers a self-adaptive behaviour. More specifically,
the policy states that a new application can be retrieved as long as CPULoad is less than
the threshold. If the process running in the component attempts to retrieve a new appli-
cation and the threshold is exceeded, then the policy evaluation returns an obligation
action for spawning a new SCPi.

The Autonomic Cloud 503

An interesting aspect in this context is that in a dynamically created SCPi K, Π and
P are the same as those of the creating SCPi. However, the application logic, which is
part of P , may only be executed on one SCPi at a time (because, due to the scenario
requirements, no two instances of the application can run simultaneously). To ensure
such behavior, the component relies on a policy automaton, whose states are policies
and transitions represent adaptation events. In this way, the policy in force at the com-
ponent can be dynamically switched according to adaptation events. In our example,
the policy automaton ensures that whenever a new component has been created and
the application is moved there, if the run-time value of the attribute CPULoad of the
‘old’ component decreases and becomes less than 90%, the application instance running
there cannot resume its execution.

3.4 Supporting Mobile Nodes with jDEECo

An interesting aspect of the case study is the fact that the individual nodes can be per-
sonal computers. As such, the concept also includes mobile nodes: laptops, tablets, or
even smartphones. Mobile devices have some noteworthy properties in addition to stan-
dard nodes. They are devices (a) whose neighbors – in the sense of network proximity
– may change, (b) whose battery capacity is limited, and (c) whose computing capacity
may be (severely) limited as well.

Applications running on top of the autonomic cloud may want to take those prop-
erties into consideration. In fact, we can imagine that applications intended to run on
mobile devices be effectively split into two components, or smaller applications, com-
municating with one another. In one scenario, they may both run on one SCPi — if the
node is powerful enough and access to power is not an issue; in another, they may be
split between two SCPis, one on a mobile node (which handles UI) and another on a sta-
tionary node (which handles the computationally extensive background work). In order
to keep the user interface responsive, the network latency between the two nodes may
not exceed a certain threshold, which becomes problematic in the presence of (physical)
node mobility.

This scenario has been investigated as described in [5] and is further detailed in
Chapter II.5 [4]. It uses the jDEECo framework of ASCENS, which is described in
Chapter III.4 [6]. The envisioned solution for this case uses a specialized adaptation
architecture which, through two components, takes care of the planning and monitoring
involved.

The first component involved is the monitor, which works within an application and
can operate in one of two modes:

Observation mode. In observation mode, the monitor executes as part of a run-
ning application, i.e. it reflects the actual deployment. The monitor gathers data about
the current node, which includes the performance and battery life. This non-functional
properties data (NFPData) is used by the planner (see below) to decide on adaptation.

Predictive Mode. A monitor may also be detached from its application and spawned
on a different node where it runs in predictive mode, testing the performance of the
node with the performance model of the application (MonitorDef) in mind, but without
actually moving the whole application. Again, NFPData is generated which can be used
by the planner.

504 P. Mayer et al.

The second component is the planner. The planner provides the SCPi with Moni-
torDefs for the monitors involved, which the SCPi can distribute to interesting nodes
for gathering NFPData. Based on information about the application, which is included
in a deployment plan, the planner is able to restrict which nodes are interesting; for
example, this may include nodes which are a limit of two hops away. Based on the
information in the NFPData from affected nodes, the planner instructs the underlying
SCPi(s) to deploy the applications appropriately given the data.

A particular advantage of the monitor approach with predictive modes is the avail-
ability of real data: The monitor deployed on remote nodes is able to report, based on its
MonitorDef, precisely those measurements which are relevant for the application. As
usual, the nodes which may take part in the execution of an application form an ensem-
ble with the specific task to figure out the best configuration for all entities involved.

Fig. 3 shows a simplified definition of such an ensemble.

1 ensemble PlannerToDevice:
2 coordinator: Planner
3 member: Device
4 membership: HopDistance(Planner.device, Device) ≤ 2
5 knowledge exchange:
6 Device.monitorDef[Planner.app] := Planner.monitorDef
7 scheduling: periodic(15s)

Fig. 3. Ensemble Definition

All in all, the adaptation architecture based on planners and (mock) monitors allows
for a very flexible awareness of the network environment. While this approach is useful
for all kinds of nodes the SCP may run on, it is particularly helpful in the presence of
mobile nodes.

3.5 The EDLC and Other ASCENS Methods

The ASCENS project defines a lifecycle for the development of ensembles, which is
called the EDLC (see Chapter III.1 [13]). This lifecycle, which consists of eight phases,
describes how to use the various methods defined in ASCENS in the design of a system
such as the autonomic cloud. The EDLC consists of two cycles; the first (the design cy-
cle) includes the activities requirements engineering, modeling/programming, and veri-
fication/validation; the second (the runtime cycle) consists of the activities monitoring,
awareness, an self-adaptation.

The two cycles are connected by the deployment activity (from design to runtime)
and the feedback activity (from runtime to design); in the cloud, both are handled by
the Science Cloud Platform (SCP) implementation.

Each method of ASCENS is associated with a different activity in the EDLC. In the
following, we discuss methods of ASCENS which have been applied to the case study,
and their place in the EDLC. We first discuss the design time cycle.

The Autonomic Cloud 505

Requirements Analysis with ARE The first phase in the Ensemble Development Life
Cycle (EDLC), which is about requirements engineering, is supported by ARE (Auton-
omy Requirements Engineering). The ARE method has been used to provide detailed
requirements for the autonomous cloud and is described in Chapter III.3 [27].

Adaptation Patterns in the Cloud Following requirements engineering, the architecture
of the system can be designed in the modeling phase of the EDLC by choosing the cor-
rect adaptation patterns for the cloud implementation. This technique has been shown
in section 3.1.

Modeling with Helena An important aspect of service components and ensembles is the
fact that components may play different roles in different ensembles, which has been
shown in section 3.2 and is used in the modeling activity in the EDLC.

System Specification in SCEL One level down, we can specify the system in terms of the
processes which service components run, and the attribute-based dynamic identification
of ensembles as discussed in section 3.3; this activity is part of the programming activity
in the EDLC.

Analysis of Denial-Of-Service Attacks In the verification step of the EDLC, we have
investigated the problem of distributed Denial-of-Service (dDoS) attacks which are rel-
evant for all connected systems. Two formal patterns have been identified which can
serve as defenses against such attacks (this method is described in [9]).

Verification of Routing Procedures in Pastry The network layer of the science cloud
implementation, Pastry, has been modeled in κNCPi. The specific emphasis here has
been put on formalizing the conditions for ensuring that messages reach their target
within Pastry; again, this technique is part of the verification phase in the EDLC. It is
described in chapter I.2 [3].

Secondly, we discuss the runtime cycle.

Performance Monitoring and Prediction with SPL On the runtime side of the EDLC,
the interactions of running ensembles and service components come into play; a key
requirement is monitoring which is the first activity in the runtime cycle. Monitoring
and prediction regarding performance are described in Chapter II.5 [4].

Supporting Mobile Nodes with jDEECo An interesting aspect of the autonomic cloud
is that the nodes may not be servers stored in a data center, but personal machines
which may include mobile nodes. This brings into play the dimension of spatial lo-
cation, which is considered by the jDEECo monitoring approach as discussed in sec-
tion 3.4. In the EDLC, this affects again the monitoring phase.

Cooperative Distributed Task Execution A cooperative approach to task execution by
distributed nodes in a cloud has has been investigated in a simulation approach, test-
driving the awareness and self-adaptation activities. This method is described in [8].

506 P. Mayer et al.

4 Implementation

As identified in the previous sections, the cloud system is implemented in a peer-to-peer
manner with a heavy focus on being aware of changes in the available nodes and the
load of each node.

On a technical level, our implementation is based on the existing peer-to-peer sub-
strate Pastry [24] and accompanying protocols, and uses a gossip-style protocol for
communication on the application level. This is discussed in section 4.1. The SCP also
uses the Zimory IaaS cloud platform to start and stop virtual machines on demand as re-
quired for ensuring application uptime as well as energy conservation (see section 4.2).

4.1 Implementing an Autonomic Cloud

The implementation is split into three layers: a network layer, which implements rout-
ing and message passing along with network self-healing properties; a data layer which
handles data storage, including redundancy, and an application layer, which handles ex-
ecution and fail-over of applications. The layer-based organization is shown in Figure 4.

P2P / Message-Based Com.
 (Networking Layer)

Code and Data Storage
 (Data Layer)

App Execution
 (Application Layer)

App1 App2 ...

Pastry

PAST

Gossip
Communication

SCP UI

Adaptivity
Algorithm

Knowledge
Base

App
Engine

TCP/
IP

OSGi
Container

Redundant
Storage

Fig. 4. Science Cloud Platform Implementation

On the network level, the nodes which form the science cloud need to know about
one another and be able to pass messages, either to single nodes (unicast), a group of
nodes (multi- or anycast), or all nodes (broadcast). Given that the network can poten-
tially become large, it is advisable that not all nodes need to know all other nodes.
Furthermore, routing needs to be stable under adverse conditions (i.e. nodes that are
part of the autonomic cloud leave, or new nodes are added).

We use the existing protocol Pastry [24] in the form of the FreePastry implemen-
tation [11] as the basis of this layer, which is in turn based on standard networking

The Autonomic Cloud 507

protocols (i.e. TCP/IP). The inner workings of Pastry are similar to that of classic Dis-
tributed Hash Tables (DHTs), that is, each node is assigned a unique hash and nodes
are basically organized in a ring structure, with appropriate shortcuts for faster rout-
ing. The protocol has built-in network resilience (self-healing). These properties have
been formally analyzed in [16]. The SCP uses a gossip-style protocol for passing on
information about individual nodes, which works along the usual epidemic paths.

The second layer handles data. When an application is deployed, the code needs to
be available to all nodes which can possibly execute it; furthermore, application data
needs to be stored in such a way that resuming an application, after a node which ran
it failed, is possible. We thus need data storage with data redundancy, not only of im-
mutable data (application code) but also of mutable data (application data). Data is
handled on top of Pastry using gcPAST, which is an implementation of the PAST proto-
col [23] with support for mutable data. PAST basically implements a DHT and includes
a data redundancy mechanism which works by keeping k copies of a data package in
the nodes surrounding the primary storage node (which is the one the data package hash
is closest to). Application code is stored as Java byte code, and the OSGi container is
used to inject this code at runtime into the Java virtual machine.

The final layer, and the one implementing the actual platform-as-a-service idea,
is the application layer. This layer first of all implements a Knowledge Base in the
KnowLang [26] style which keeps track of the knowledge about its own and all other
nodes. An App(lication) Engine, again based on OSGi, is responsible for starting and
stopping applications in the form of OSGi bundles. Finally, adaptivity is implemented
by different roles (such as initiator or executor), based on the Helena principles outlined
above. Since applications can only run on some machines (based on requirements),
these must first be found in the network. Every user of the cloud runs (at least) one
instance of an SCPi and uses this instance both for deploying and using applications.

Deploying an application first means simply storing the executable code (as an
OSGi bundle), which is based on the primary storage node idea introduced above. The
primary storage node assumes an initiator role which is responsible for finding an ex-
ecutor based on the requirements of the application and, once an executor is found,
for monitoring its continued existence. If the executor fails, another will take its place,
preserving data of the application through redundant storage. Likewise, if the initiator
fails, another node (which is closest to the hash of the application) will take over.

4.2 Integrating Zimory IaaS

The company Zimory, an ASCENS partner, provides the Zimory Cloud Suite [28], a full
Infrastructure-as-a-Service (IaaS) solution which facilitates end-to end management of
the Virtual Machine (VM) lifecycle: VMs can be created, started, killed, backed-up and
destroyed via the Zimory Manage component. Having such management of the VM
lifecycle provides two main advantages: instantiation of SCPs through the use of VMs
and starting and stopping of VMs as needed (supporting the “joining at will” principle
in the Autonomic Cloud).

The Zimory platform provides the ability to store blueprints for VMs which are
called appliances. An appliance is a preconfigured virtual machine which can be de-
ployed to the cloud in order to start it; likewise, it can be undeployed. For the autonomic

508 P. Mayer et al.

cloud, one such appliance was created which includes the Science Cloud Platform in-
stallation which is triggered to automatically launch when the VM is started.

The process of starting a new virtual machine and stopping those no longer needed
for energy conservation is integrated into the core SCP logic. A fallback mechanism is
triggered if none of the available non-virtual SCPs is able to execute an application —
whether due to lack of nodes which can handle the application requirements or because
the load of existing nodes is too high. In this case, the initiator contacts the Zimory
platform and creates a new deployment from the preconfigured appliance discussed
above. As soon as the appliance is started, the SCP running on it will register with
the autonomic cloud and take over execution of the application. Likewise, integration
of a virtual machine shutdown is achieved by monitoring apps running on virtualized
machines and checking for possible non-virtualized executors, which are chosen over
virtualized ones when available. Again, idle virtualized nodes are instructed to shut
down via the API.

Both processes are integrated into the role-based mechanism of starting and stop-
ping apps with two new roles (DeploymentCreator and DeploymentStopper) [1].

5 Evaluation and Demonstrator

As shown in the previous sections, many ideas of the ASCENS project have been inte-
grated into the working implementation of the Science Cloud Platform, and vice versa.
A full prototype implementation has been created which makes use of the Zimory IaaS
and can be instrumented for test-driving and investigating the supported functionality.

For allowing researchers as well as students to interact with the software, a monitor-
ing server has been created which visualizes the network structure, which, being based
on peer-to-peer principles, can not otherwise be observed in a centralized manner. The
monitoring server includes options for instrumenting the network to produce particular
results, for example, forcing the creation of a new virtual machine.

As an example, we show how the start of a virtual machine is triggered in a network
and then used for executing an application. The first step is shown in Figure 5, which
shows a Pastry ring of eight nodes, each running one instance of the Science Cloud
platform. The caption on the left shows the meaning of the colors and shapes; in par-
ticular, there is no virtualized node at the moment and all of the nodes are overloaded
(CPU over 80% load, as shown by the red background in the CPU line). Furthermore,
the lower left shows a variety of buttons with which to instrument the platform.

The node 2D5EC1 in the lower center has the Initiator role for the application
Exchange (a collaboration platform), as well as the Main Storage role. The node
has futhermore already determined that no node in the network is able to execute this
application and thus has instantiated an instance of the Deployment Creator role
which instructs the underlying Zimory platform to start a new node.

A short time later, a new node is up and running and has been selected to run the
application, as is shown in Figure 6. As can be seen, the new virtualized node 96A591
is executing the application. The figure also shows that the CPU load on node AEF29E
has fallen below 80%, which the initiator is bound to notice in a short while.

The Autonomic Cloud 509

Fig. 5. Science Cloud Platform Demo — Step 1

Fig. 6. Science Cloud Platform Demo — Step 2

510 P. Mayer et al.

Fig. 7. Science Cloud Platform Demo — Step 3

Since AEF29E is able to execute the application (based on the application require-
ments, and since it is not overloaded) the virtualized node is no longer required. Thus,
it is shut down and the application execution is moved to the new node, as shown in
Figure 7. In this example, the initiator node has stayed the same.

6 Summary

The autonomic cloud case study has been used within ASCENS as a test case for an
autonomic cloud, i.e. a platform-as-a-service infrastructure intended to run customer
applications in the presence of certain difficulties such as voluntarily provided nodes.
In this report, we have detailed several interesting hand-picked results of applying AS-
CENS methods to the cloud. Our implementation of an autonomic cloud uses these
results, thus showing their applicability in a working system.

The Science Cloud Platform (SCP), including the monitor server, is available on
the ASCENS web site for download7. Since some of the demonstration functionality
requires the Zimory platform, we have also created videos showing the starting and
stopping of virtual machines within the visualization; these are available online as well.

7 http://www.ascens-ist.eu/cloud/

http://www.ascens-ist.eu/cloud/

The Autonomic Cloud 511

Acknowledgements. The authors would like to thank all ASCENS members who con-
tributed to the autonomic cloud case study. Furthermore, thanks go out to Alexander
Dittrich, Ansgar Zeblin, and Elias Englmeier who contributed to the implementation of
the SCP.

References

1. Dittrich, A.: Integration einer Virtualisierungslösung in Peer-to-Peer Cloud Computing,
Bachelor Thesis, Ludwig-Maximilians-Universität München (2014)

2. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distribution tech-
nologies. ACM Comput. Surv. 36(4), 335–371 (2004)

3. Bruni, R., Montanari, U., Sammartino, M.: Reconfigurable and Software-Defined Networks
of Connectors and Components. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.)
Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 73–106.
Springer, Heidelberg (2015)

4. Bulej, L., Bureš, T., Gerostathopoulos, I., Horký, V., Keznikl, J., Marek, L., Tschaikowski,
M., Tribastone, M., Tůma, P.: Supporting Performance Awareness in Autonomous Ensem-
bles. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collec-
tive Autonomic Systems. LNCS, vol. 8998, pp. 291–322. Springer, Heidelberg (2015)

5. Bulej, L., Bures, T., Horký, V., Keznikl, J.: Adaptive deployment in ad-hoc systems using
emergent component ensembles: vision paper. In: Proceedings of the 4th ACM/SPEC In-
ternational Conference on Performance Engineering (ICPE ’13), pp. 343–346. ACM Press,
New York (2013)

6. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.: The Invari-
ant Refinement Method. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software
Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 405–428. Springer,
Heidelberg (2015)

7. Cabri, G., Puviani, M., Zambonelli, F.: Towards a Taxonomy of Adaptive Agent-based Col-
laboration Patterns for Autonomic Service Ensembles. In: Proc. of CTS, May 2011, pp. 508–
515. IEEE Computer Society Press, Los Alamitos (2011)

8. Celestini, A., Lluch Lafuente, A., Mayer, P., Sebastio, S., Tiezzi, F.: Reputation-based coop-
eration in the clouds. In: Zhou, J., Gal-Oz, N., Zhang, J., Gudes, E. (eds.) Trust Management
VIII. IFIP Advances in Information and Communication Technology, vol. 430, pp. 213–220.
Springer, Heidelberg (2014), doi:10.1007/978-3-662-43813-8 15

9. Combaz, J., Lluch Lafuente, A., Montanari, U., Pugliese, R., Sammartino, M., Tiezzi, F.,
Vandin, A., von Essen, C.: Software engineering for self-aware sces. Tech. rep., ASCENS
Project, deliverable JD3.1 (2013)

10. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A Formal Approach to Autonomic Systems
Programming: The SCEL Language. TAAS 9(2), 7 (2014)

11. Druschel, P., Haeberlen, A., Hoye, J., Iyer, S., Mislove, A., Nandi, A., Post, A., Singh,
A., Castro, M., Costa, M., Kermarrec, A.M., Rowstron, A., Iyer, S., Wallach, D., Hu,
Y.C., Jones, M., Theimer, M., Wolman, A., Mahajan, R.: FreePastry. (March 2013),
http://www.freepastry.org/

12. Hennicker, R., Klarl, A.: Foundations for Ensemble Modeling – The HELENA Approach.
In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Software. LNCS,
vol. 8373, pp. 359–381. Springer, Heidelberg (2014)

13. Hölzl, M., Koch, N., Puviani, M., Wirsing, M., Zambonelli, F.: The Ensemble Development
Life Cycle and Best Practices for Collective Autonomic Systems. In: Wirsing, M., Hölzl, M.,
Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS,
vol. 8998, pp. 325–354. Springer, Heidelberg (2015)

http://www.freepastry.org/

512 P. Mayer et al.

14. Klarl, A., Mayer, P., Hennicker, R.: Helena@work: Modeling the science cloud platform. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part I. LNCS, vol. 8802, pp. 99–116. Springer,
Heidelberg (2014)

15. Korpela, E., Werthimer, D., Anderson, D., Cobb, J., Lebofsky, M.: Seti@home-massively
distributed computing for seti. Computing in Science and Engineering 3(1), 78–83 (2001)

16. Lu, T., Merz, S., Weidenbach, C.: Towards verification of the pastry protocol using TLA+.
In: Bruni, R., Dingel, J. (eds.) FORTE 2011 and FMOODS 2011. LNCS, vol. 6722, pp.
244–258. Springer, Heidelberg (2011)

17. Margheri, A., Pugliese, R., Tiezzi, F.: Linguistic Abstractions for Programming and Polic-
ing Autonomic Computing Systems. In: 10th International Conference on Autonomic and
Trusted Computing, UIC/ATC, pp. 404–409. IEEE Computer Society Press, Los Alamitos
(2013)

18. Mayer, P., Klarl, A., Hennicker, R., Puviani, M., Tiezzi, F., Pugliese, R., Keznikl, J., Bures,
T.: The autonomic cloud: A vision of voluntary, peer-2-peer cloud computing. In: 2013 IEEE
7th International Conference on Self-Adaptation and Self-Organizing Systems Workshops
(SASOW), Sep. 2013, pp. 89–94 (2013)

19. De Nicola, R., Latella, D., Lafuente, A.L., Loreti, M., Margheri, A., Massink, M., Morichetta,
A., Pugliese, R., Tiezzi, F., Vandin, A.: The SCEL Language: Design, Implementation, Ver-
ification. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for
Collective Autonomic Systems. LNCS, vol. 8998, pp. 3–71. Springer, Heidelberg (2015)

20. Mell, P., Grance, T.: The NIST Definition of Cloud Computing, Special Publication 800-145,
NIST - National Institute of Standards and Technology (2011)

21. Puviani, M., Frei, R.: Self-management for cloud computing. In: SAI Conference, London,
UK (2013)

22. Rausch, A., Reussner, R., Mirandola, R., Plášil, F. (eds.): The Common Component Model-
ing Example. LNCS, vol. 5153. Springer, Heidelberg (2008)

23. Rowstron, A., Druschel, P.: Storage management and caching in past, a large-scale, persistent
peer-to-peer storage utility. In: ACM SIGOPS Operating Systems Review, vol. 35, pp. 188–
201. ACM Press, New York (2001)

24. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for
large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218,
pp. 329–350. Springer, Heidelberg (2001)

25. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd edn.
Addison-Wesley, Boston (2002)

26. Vassev, E., Hinchey, M.: Implementing artificial awareness with knowlang. In: 2013 IEEE
International Systems Conference (SysCon), April 2013, pp. 580–586 (2013)

27. Vassev, E., Hinchey, M.: Engineering Requirements for Autonomy Features. In: Wirsing,
M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic
Systems. LNCS, vol. 8998, pp. 379–403. Springer, Heidelberg (2015)

28. Zimory Software: Zimory Cloud Suite. (August 2014), http://www.zimory.com/

http://www.zimory.com/

Chapter IV.1

The E-mobility Case Study�

Nicklas Hoch1, Henry-Paul Bensler1, Dhaminda Abeywickrama2, Tomáš
Bureš3, and Ugo Montanari4

1 Volkswagen AG,
Corporate Research Group, Wolfsburg, Germany,

2 Fraunhofer FOKUS,
Berlin, Germany

3 Charles University Prague,
Faculty of Mathematics and Physics,

Department of Distributed and Dependable Systems,
Prague, Czech Republic

4 Università di Pisa,
Dipartimento di Informatica, Pisa, Italy

Abstract. Electro-mobility (e-mobility) is one of the promising tech-
nologies being considered by automotive OEMs as an alternative to in-
ternal combustion engines as a means of propulsion. The e-mobility case
study provides a novel example of a relevant industry application within
the ASCENS framework. An overview of the system design is given which
describes how e-mobility is conceptualized and then transformed using
the ensemble development life cycle (EDLC) approach into a distributed
autonomic (i.e self-aware, self-adaptive) component-based software sys-
tem. The system requirements engineering is based on the state-of-the-
affairs (SOTA) approach and the invariant refinement method (IRM)
which are both revisited and applied. Regarding the implementation and
deployment of the system, a dependable emergent ensembles of compo-
nents (DEECo) approach is utilized. The DEECo components and en-
sembles are coded and deployed using the Java-based jDEECo runtime
environment. The runtime environment integrates the multi-agent trans-
port simulation tool (MATSim), which is used to predict the effects of
the physical interactions of users, vehicles and infrastructure resources.
jDEECo handles multiple MATSim instances to allow for different belief
states between components and ensembles.

Keywords: software engineering methodologies, requirements analysis,
autonomic systems, self-organization, ensemble-oriented systems, sche-
duling

� This research was supported by the European project IP 257414 (ASCENS).

M. Wirsing et al. (eds.): Collective Autonomic Systems, LNCS 8998, pp. 513–533, 2015.
c© Springer International Publishing Switzerland 2015

514 N. Hoch et al.

1 Introduction

This chapter describes the characteristics and challenges arising when people
travel with privately owned electric vehicles (EVs) in a resource constraint road
environment. In particular, it addresses the dual problem of decision making in
transportation systems, where drivers use predictive environment information
(PEI), such as traffic information and car park availability, to make travel deci-
sions (e.g. route choice, parking choice), and in return, these decisions influence
the PEI on which the drivers base their decisions. The challenges give rise to the
various ASCENS approaches, which collectively enable an efficient coordination
of travelers and resources. The scenario is referred to as electric vehicle travel
problem (EVTP).

The transportation system involves a large number of nodes and complex in-
teractions between them. It is open-ended, not allowing for a precise definition of
the number of vehicles entering and exiting a reference area. Most importantly,
the system involves highly dynamic decision making and information distribu-
tion, with the additional challenge that decisions and information are mutually
dependent (dual problem). All of these characteristics give rise to important soft-
ware design challenges, which include the question of knowledge distribution, the
efficient handling of timeliness of information and the management of different
belief states of the entities of the system.

The software design challenges can be addressed in different ways, comprising
(1) a centralized approach, where a single coordinator controls the system behav-
ior of all nodes, and (2) a decentralized agent-based approach, where reasoning
capabilities are distributed across software agents and where system states are
emerging from the interaction of the agents.

In a first step, a centralized system was implemented; although the approach
was well-suited for simulation purposes, it was not real-world applicable, which
was due to its scaling characteristics over the large number of nodes in the real-
world traffic environment. In a second step, an agent-based system was devel-
oped which is described in [12]. This approach produced very promising results,
but showed that agent-based systems require ensemble engineering approaches,
where components with congruent goals group in ensembles in order to coordi-
nate knowledge exchange on a group-level. The ASCENS approach is the third
step, which addresses the shortcomings of the aforementioned centralized and
decentralized approaches.

The application of the general ASCENS theory to EVTP real-world chal-
lenges is shown in this chapter. A conceptualization of the EVTP is presented in
Section 2.1. The ASCENS life cycle for the development of autonomic systems
is shown in Section 2.2. The design loop of the ASCENS life cycle comprises the
design of distributed system architecture and the design of distributed reasoning.
The design of distributed reasoning for EVTP is discussed in greater detail in
Chapter II.2 [11]. The design of the distributed architecture is discussed in Sec-
tion 3, where a discussion of functional and non-functional system requirements
is given. Architecture design involves the state-of-the-affairs (SOTA) approach
and the invariant refinement method (IRM). As to the runtime loop of the AS-

A Life Cycle for the Development of Autonomic Systems: An Application 515

CENS life cycle, the distributed emergent ensembles of components (DEECo)
approach is described in Section 4, giving rise to the jDEECo runtime envi-
ronment, as described in Section 5. The runtime environment interfaces with a
MATSim traffic simulator, which models the real-world physical interactions of
vehicles, users and road network resources.

2 System Design

The goals of this section are to provide a conceptualization of the real-world prob-
lem being considered and to discuss how this is transformed into a distributed,
autonomous software system.

A conceptualization of a real-world problem can be understood as an ab-
stract ontology, describing stakeholders and their relations within the given sys-
tem boundaries. It is the highest abstraction level and is not yet confined to
a specific software engineering approach. Section 2.1 presents a conceptualizing
of the real-world electric vehicle travel problem (EVTP). The characteristics of
the software system are determined during system design, which involves require-
ments specification, modeling, validation and verification approaches. Section 2.2
describes the ASCENS specific design approach and how it is used to transform
the EVTP concept to a distributed, autonomous software system.

2.1 Conceptualizing E-mobility

A transportation system can be understood as a market where infrastructure
resources reflect the supply side and people that take advantage of the infras-
tructure resources represent the demand side. In general, transportation systems
allow for modal shifts. This study considers the case of individual motorized
travel; more specifically, it assumes that people exclusively travel with privately
owned electric vehicles.

These electric vehicles are competing for infrastructure resources of the trans-
portation system. Infrastructure resources such as parking lots, roads and charg-
ing stations are constrained thereby imposing restrictions on travel demand. The
cost for a vehicle to use infrastructure resources is variable. It may change with
scale, time and location or dynamically depend on the market situation. Situa-
tions exist in which demand exceeds resource availability, at least locally. The
ASCENS approach addresses these situations both from a driver and operator
perspective.

Departing from the local perspective of the driver, each driver has a set of ap-
pointments A = {A1, . . . , An}, where each appointment is defined by a location
Li, a starting time it

A
S and a duration id

A. A route alternative from appointment
Ai to appointment Ai+1 is denoted as iRD. It connects the departure location
Li and the destination location Li+1 and is defined in terms of time and energy
consumption. The departure time is denoted as it

D
S and the arrival time as it

D
E .

The electric vehicle (EV) battery level at departure is denoted as ie
D
S , while ie

D
E

defines the battery energy level at the time of arrival. The user must arrive in

516 N. Hoch et al.

time at the appointment location, so it is required that it
D
E ≤ it

A
S . The vehicle

should never run out of energy, so that it is required that ie
D
E > 0. A charging

event may be scheduled during appointment duration. It is assumed that a set of
charging stations exists, where each one is defined by a name CSname. The num-
ber of available charging spots at a location L is defined as SpotsNum. Given
this notation, the local travel problem is presented in [17,13] and is described in
greater detail in Chapter II.2 [11].

Continuing now from the local perspective of an infrastructure operator, each
operator has individual interests such as achieving a specific capacity usage or
profit margin. Private operators of parking lots (resp. car parks) and charging
stations generally aim at maximum capacity usage. In order to achieve their
objective, they provide incentives such as specific price scales. In contrast, public
road operators want to avoid traffic congestion and therefore avoid limit capacity
usage. Their objective is a road capacity usage around the free flow limit.

From a group-level perspective, individually optimal solutions of the drivers
and infrastructure operators may conflict, giving rise to a local-global optimiza-
tion of the transportation system. As human behavior is not entirely determin-
istic, it cannot be expected that a transportation system is fully controllable,
giving rise to contingency situations. State-of-the art approaches which han-
dle local-global optimization and contingency situations have major drawbacks.
First off on a functional level, they do not provide adequate adaptation mecha-
nisms to ensure goal satisfaction in contingency situations; secondly, they do not
effectively compromise the local traveler and global resource perspective; and
thirdly, they do not allow for different belief states amongst travelers or groups
of travelers. On a non-functional level, up-to-date approaches are not real-time
capable and do not provide the means to adequately cope with the failure of
individual nodes. The ASCENS approach addresses the aforementioned short-
comings of state-of-the art approaches through adequate architecture and logic
design, which is discussed in greater detail in the subsequent sections.

The key challenge of an ASCENS conceptualization is the identification of
stakeholder goals, their awareness and their adaptation capabilities. The main
stakeholders of the system are drivers, vehicles, and operators, encompassing
both public road operators and private parking (resp. charging station) opera-
tors.

Drivers are assumed to travel with private vehicles only. A driver and a ve-
hicle are therefore treated as a single stakeholder, denoted in the following as a
vehicle. A vehicle is aware of its current position, battery energy level, current
traffic information, route alternatives, points-of-interest (e.g. parking lots, charg-
ing stations) and the traveler’s sequence of appointments A = {A1, . . . , An} and
the adherence thereof. Adaptation actions of the vehicle comprise a departure
time change, route change and a change of parking lot and charging strategy.

A road operator manages a predefined reference area. Given the reference
area, the operator is aware of the current traffic level, the projected travel de-
mand, the vehicles entering and leaving the boundaries of the reference area
and their alternative travel options. Adaptation actions of the road operator

A Life Cycle for the Development of Autonomic Systems: An Application 517

comprise of road pricing and requesting vehicles to change plans which implies
choosing a different route out of the vehicle’s set of route alternatives.

A parking operator (resp. charging station operator) manages a predefined
set of entities. Given the predefined set, the operator is aware of its capacity,
the current capacity usage, future requests, the vehicles entering and leaving the
car parks (resp. charging stations) and their alternative parking (resp. charg-
ing) options. Adaptation actions of the parking operator (resp. charging station
operator) comprise of pricing changes and requesting vehicles to change plans;
this implies choosing a different parking lot (resp. charging station) out of the
vehicle’s set of alternatives.

2.2 Software Development Life Cycle

The design of distributed, autonomous software systems is cross-inspired from
multiple disciplines, comprising of agent-based systems (e.g. [21], [22]), control
engineering (e.g. [9]), artificial intelligence (e.g. [20]) and operations research. In
the view of these existing approaches, this section presents a conceptual discus-
sion of the design stage of a distributed, autonomous software system, explaining
both EVTP and ASCENS specific concepts and highlighting the links between
them.

ASCENS provides a general framework for the structured design and devel-
opment of autonomous, distributed systems, in particular their self-awareness
and self-adaptation properties. The framework is denoted as ensemble develop-
ment life cycle (EDLC) and is discussed in [4] and revisited in Chapter III.1
[14]. The EDLC comprises of two loops: a design loop which describes the offline
engineering tasks, and a runtime loop which defines the online engineering tasks.
The design loop is an iterative process, departing from requirements engineering,
going on to modeling and programming and arriving at verification and valida-
tion. The design loop results in system deployment, giving rise to the runtime
loop. The runtime loop includes the activities corresponding to runtime moni-
toring, awareness and self-adaptation. The engineering activities in the design
loop and the runtime loop are distinguished from traditional approaches in that
they focus on the aspects of self-awareness and self-adaptation.

Self-awareness and self-adaptation enable the system to continuously infer
decisions that guarantee goal adherence. In tangible terms, self-awareness de-
scribes the capability to interpret information with respect to a given goal and
self-adaptation describes the capability to manipulate knowledge or execute real-
world actions in order to achieve the goal. Self-awareness and self-adaptation
define knowledge processes, namely, perception, communication and reasoning
processes. Knowledge processes occur at two levels: the intra-component and
the inter-component level. The intra-component level defines processes within
the component. The inter-component level defines processes between the com-
ponents. An ASCENS ensemble can technically be understood as an inter-
component process which controls the knowledge exchange between its members;
it thereby manipulates the belief states and decisions of its members.

518 N. Hoch et al.

Given this context, the objective of the design stage is two-fold: (1) design
an architecture of components and ensembles that allows for efficient knowledge
distribution, and (2) design reasoning that allows the knowledge processes to
efficiently manipulate the environment in order to reach the system goals.

As is depicted in Figure 1, the design objective is solved in two loops: the loop
of architecture design and the loop of reasoning design. The loop of architecture
design evolves from the EDLC requirements engineering stage, while the loop
of reasoning design is part of the EDLC modeling stage, with the EDLC being
discussed in chapter III.1 [14]. Architecture design departs from a conceptual-

Fig. 1. Designing knowledge architecture and knowledge processes for electric vehicle
travel planning

ization of the EVTP. It then uses the state-of-the-affairs (SOTA) approach, as
discussed in Chapter III.1 [14], and the invariant refinement method (IRM), as
discussed in Chapter III.4 [6], to infer both functional and non-functional system
requirements. Components and ensembles are derived and a set of feedback loops
connecting them. Feedback loops are described in terms of autonomic managers
(AMs) and super autonomic managers (SAMs).

IRM and SOTA are partly converse approaches. While SOTA takes a dy-
namic systems engineering perspective, IRM is a top-down approach with a
goal-refinement perspective. Yet, both SOTA and IRM infer a system architec-
ture of the system-to-be, departing from the same conceptualization and arriving
at the level of components, ensembles and AMs/SAMs. The analogy of the two
partly converse approaches allows for an iterative improvement of the system
specification, by using one approach to correct the other.

A Life Cycle for the Development of Autonomic Systems: An Application 519

While architecture design requires an understanding of the flow of control
data at the input/output level, it does not require an understanding of the inner
control logic. Control logic is designed by the reasoning loop. Multiple levels
of control logic are distinguished, namely, control logic within-subsystems of a
component (level1), control logic between-subsystems of a component (level2)
and control logic between-components, respectively within-ensembles (level3).
Level1 mostly employs conventional control engineering approaches, where the
control path is described by a set of differential equations as a closed-form expres-
sion. Level1 logic is developed for EVTP entities, yet, the discussion is beyond
the scope of this chapter. Level2 logic can be understood as local component
reasoning, which is embedded in the knowledge processes of a component and
is architecturally represented by AMs. Level3 logic can be understood as group-
level reasoning, which is embedded in the ensemble processes and is architec-
turally represented by SAMs. Both level2 and level3 logic use approaches from
operations research and artificial intelligence, such as the dynamic programming
strategy in Chapter II.2 [11].

As described in [4], the EDLC design loop defines a programming stage. Here
the programming step is implicit in the sense that IRM by definition results
in a DEECo specification (a component-based reification of SCEL concepts –
see Chapter I.1 [18]), which can be directly mapped to a jDEECo program.
The jDEECo program inherits the architecture defined in the architecture loop,
and inherits the reasoning processes defined in the reasoning loop. While some
reasoning processes are directly coded in jDEECo, others are called externally
such as the EV planning modules and the MATSim traffic simulator.

3 Goal-Oriented Requirements Engineering for
Self-adaptive Autonomic Systems

With reference to the previous discussion, SOTA is an approach, which is inspired
from dynamic systems modeling. IRM is a top-down approach, which is inspired
from goal-refinement. This section demonstrates how the combination of the two
approaches improves the specification of the system-to-be.

Section 3 is organized in the following manner. Section 3.1 discusses require-
ments engineering using SOTA. Section 3.2 revises requirements engineering us-
ing IRM. Section 3.3 explains how an iterative requirements engineering process
involving SOTA and IRM improves system design.

3.1 High-Level Requirements Engineering with SOTA

SOTA is designed for goal-oriented requirements engineering of self-adaptive sys-
tems. It adapts a dynamical systems modeling approach to model feedback loops,
which are used to control service component (SC) goal achievement in autonomic
distributed systems [4]. Conventional approaches to model and control systems
use closed-form models, which comprise of a set of differential equations that
are solved at every time step in order to minimize the error between the actual

520 N. Hoch et al.

behavior and the intended behavior of a system. If a closed-form model does not
exist, as is the case for complex agent-based systems, conventional approaches
do not hold.

In SOTA a state space S is defined by the state variables of the SCs and
the operational environment. Given the state space representation, a SC goal
is described by a point in the state space, whereby a SC evolution is described
as a vector in the state space. The evolution of SCs has to satisfy constraints,
which are denoted by utilities. The optimal SC evolution over time satisfying all
utilities is defined by the goal trajectory U . A SC is activated to strive for a goal,
respectively follow U , once a precondition is met, which is defined as a region
in S. Self-adaptation actions are initiated once the deviation of a SC trajectory
from the optimal goal trajectory U exceeds a critical threshold, respectively
satisfies an adaptation condition.

Self-adaptation is defined by the feedback control loops, which define a set
of actions that allow a component to reach its goal. A complex system inherits
multiple interacting control loops. They support adaptation mechanisms either
on an intra-loop level or an inter-loop level. Intra-loops are encapsulated within
a component. Inter-loops coordinate adaptation across components, whereby
three mechanisms of inter-loop coordination are distinguished, namely, hierarchy,
stigmergy and direct interaction. Feedback control loops can be classified by
structural properties and assigned to categories, denoted by patterns, giving rise
to a taxonomy of hierarchical patterns as presented in [7].

Requirements engineering with SOTA involves two major tasks: first, the
identification of the dimensions of the SOTA state space, and second, the de-
sign of feedback control loops by the help of the mentioned patterns. The key
adaptation patterns are conceptually described in [19]. For selected patterns,
Abeywickrama et al. [1] presented both platform-independent UML template
models and platform-independent Java template models. In particular, the au-
thors describe two SC related patterns, namely the autonomic SC pattern and
the parallel AMs SC pattern, and one ensemble related pattern, namely the cen-
tralized service component ensemble (SCE) pattern. The autonomic SC pattern
inherits one autonomic manager (AM) that implements one local feedback loop,
thereby controlling a single adaptation aspect of the SC. The parallel AMs SC
pattern comprises multiple autonomic managers, each controlling a local adapta-
tion aspect of the SC. As an example, Figure 2 shows the UML pattern template
model of the parallel AMs SC pattern and Figure 3 presents the respective Java
pattern template model. For a detailed description of the remaining template
models, the reader may refer to [1]. As previously mentioned, the interaction
of the feedback loops is coordinated with inter-loop mechanisms either through
hierarchy, stigmergy or direct interaction. The centralized SCE pattern uses a
hierarchical control structure to coordinate the interaction of multiple super-
vised SCs. It employs a single super autonomic manager (SAM), implementing
a single global feedback loop.

For the purpose of engineering and simulating feedback loops for self-adaptive
systems, SimSOTA was developed. It is an Eclipse plug-in providing tool sup-

A Life Cycle for the Development of Autonomic Systems: An Application 521

Fig. 2. UML pattern template model of the parallel AMs SC pattern [1]

522 N. Hoch et al.

Fig. 3. Java pattern template model of the parallel AMs SC pattern [1]

port to the designer. SimSOTA is conceptually described in [2,3] and models the
adaptation patterns with UML 2.2, whereby the pattern’s structural and behav-
ioral information are modeled using activity, sequence and composite structure
diagrams. SimSOTA animates the composite structure of the adaptation pat-
terns and verifies system behavior by using model-level debugging with detailed
control of execution. A more detailed description can be found in [2].

The platform-independent UML and Java descriptions of the design patterns
are applied to the e-mobility system from Section 2. From this the platform-
specific models are obtained. Models are animated with SimSOTA producing
an activity model as presented in Figure 4, and a composite structure model as
shown in Figure 5.

Summarizing, SOTA provides a structured requirements engineering process
for self-adaptive systems. Departing from a conceptualization of the system of
interest, SOTA infers SC/SCE goals and a SOTA state space description. SOTA
employs a pattern catalog, comprising of feedback loop templates, to assign feed-
back loops to SCs and SCEs. Within-component feedback loops are expressed in
terms of autonomic mangers (AMs). Between-component feedback loops, which
are equivalent to within-ensemble feedback-loops, are reflected by super auto-
nomic managers (SAMs). The behavior of the system is modeled and checked

A Life Cycle for the Development of Autonomic Systems: An Application 523

Fig. 4. Patterns simulated as a domain-specific activity model [1]

524 N. Hoch et al.

Fig. 5. Patterns simulated as a domain-specific composite structure model [2]

A Life Cycle for the Development of Autonomic Systems: An Application 525

with the eclipse-plugin SimSOTA. Given the final system model, pattern tem-
plates are used to derive a UML representation of the system, which is mapped
to Java templates with the help of model transformations5. SOTA is useful not
only to define functional properties from goals but also non-functional properties
via utilities.

3.2 Low-Level Requirements Engineering with the Invariant
Refinement Method

The invariant refinement method (IRM), which is presented in [15], transforms
high level system goals into low-level concepts of system architecture, namely
components, component processes and ensembles of the system. IRM builds a
hierarchy of invariants through gradual refinement, whereby invariants describe
the desired state of the system-to-be as a function of time [15,4]. SOTA and IRM
are partially redundant and partially complementary. This fact can be exploited
during requirements engineering, as will be discussed later in Section 3.3.

The IRM approach defines an invariant as a condition on the knowledge
valuation of a set of components that captures the operational normalcy to be
maintained by the system-to-be [15]. In dynamical systems engineering, an in-
variant represents a control objective. In terms of system conceptualization, it
reflects a goal. IRM departs from the most general system goal, as defined by the
conceptualization. The decomposition process subdivides parent invariants into
mutually exclusive and commonly exhaustive child invariants. The invariants
belong to either one of three categories: (1) process invariants which describe
within-component processes, (2) exchange invariants which describe between-
component processes, respectively ensemble processes, and (3) high-level invari-
ants (e.g. general invariants, present-past invariants) which do not yet define a
low-level process. A process invariant can be understood as an intra-component
feedback loop that manipulates the component’s knowledge. An exchange invari-
ant can be understood as an inter-component feedback loop, which controls the
adaptation mechanisms across multiple components. The decomposition process
terminates once all high-level invariants are represented by either process in-
variants or exchange invariants. As a side effect of the decomposition process,
assumptions are defined. An assumption describes an environment condition
that is to be guaranteed but is not explicitly controlled by the processes. The
resulting IRM decomposition graph of the e-mobility scenario is shown in Figure
6. Adherence to child invariants guarantees adherence to parent invariants. In
the limit, adherence to leaf invariants guarantees all high-level system goals to
be fulfilled.

3.3 Iterative Requirements Engineering with SOTA and IRM

Finally, the question remains to be answered how the combination of the two ap-
proaches, namely the requirements engineering with SOTA and the top-down re-
5 The Fork/Join framework of Java SE7 is employed to represent adaptation patterns

in Java.

526 N. Hoch et al.

Fig. 6. IRM system level graph of the e-mobility scenario [4]

quirements engineering with IRM, improves the design of autonomic distributed
systems.

Recall that in accordance with a dynamical systems engineering perspective,
SOTA uses a state space representation of the system to model both within-
component and between-component feedback loops. Within-component feedback
loops are represented by AMs and between-component feedback loops are rep-
resented by SAMs. The design of the feedback loops is supported by a patterns
catalog of adaptation templates. The resulting hierarchy of feedback loops de-
scribes the complex interplay of adaptation actions in the system. In terms of
IRM, AMs represent functional within-component processes, while SAMs rep-
resent functional between-component (resp. ensemble) processes. The modeled
processes can be most easily compared at the Java/jDEECo level. Discrepan-
cies in the processes, modeled by IRM and SOTA, point at potential modeling
errors.

4 Implementation and Deployment

The result of the iterative requirements engineering loop which involves SOTA
and IRM (see Section 3), is a low-level specification of the system-to-be. The low-
level description of the system architecture is formulated in terms of the DEECo
[5] component model which comprises of (1) DEECo components and (2) DEECo

A Life Cycle for the Development of Autonomic Systems: An Application 527

1 component Vehicle features AvailabilityAggregator:
2 knowledge:
3 batteryLevel = 90%,
4 position = GPS(...),
5 calendar = [POI(WORKPLACE, 9AM−1PM), POI(MALL, 2PM−3PM), ...],
6 availabilities = [],
7 plan = { route = ROUTE(...), isFeasible = TRUE }
8 process computePlan:
9 in plan.isFeasible, in availabilities, in calendar, inout plan.route

10 function:
11 if (!plan.isFeasible) plan.route ← planner(calendar, availabilities)
12 scheduling: periodic(5000ms)
13 ...
14 ensemble UpdateAvailabilityInformation:
15 coordinator: AvailabilityAggregator
16 member: AvailabilityAwareParkingLot
17 membership:
18 ∃ poi ∈ coordinator.calendar:
19 ‘ distance(member.position, poi.position) ≤ THRESHOLD &&
20 isAvailable(poi, member.availability)
21 knowledge exchange:
22 coordinator.availabilities← { (m.id, m.availability) | m ∈ members }
23 scheduling: periodic(2500ms)

Fig. 7. Example of DEECo SCs and SCEs in e-mobility modeling [4]

ensembles. As to (1), a DEECo component is defined by three elements: first,
local component knowledge, second, knowledge processes that operate on the
local component knowledge, and third, interfaces which define the subsets of the
local component knowledge that are exposed once the component becomes part
of an ensemble. A DEECo knowledge process implements an IRM process invari-
ant. As to (2), a DEECo ensemble is defined as a process that encapsulates the
communication between the components of an ensemble. A DEECo ensemble
implements the IRM exchange invariant. The assignment of components to an
ensemble is controlled via a membership condition. While the knowledge pro-
cesses of a component control local component knowledge, an ensemble controls
the group-level knowledge exchange between its members and its coordinator.
An example of DEECo components and DEECo ensembles is shown in Figure 7.

As described in [4], the reification of the DEECo component model in Java
is called jDEECo. Components are intuitively represented as annotated Java
classes. Component knowledge is mapped to class fields. Component processes
are mapped to class methods. Appropriately annotated classes represent DEECo
ensembles. Once the necessary components and ensembles are coded, they are
deployed using the jDEECo runtime framework, which takes care of process and
ensemble scheduling, as well as low-level distributed knowledge manipulation.
Figure 8 shows a simplified description of the jDEECo class fields (component
knowledge) and class methods (component processes) of the e-mobility scenario.
Figure 9 illustrates a jDEECo ensemble.

528 N. Hoch et al.

1 @Component
2 public class PLCS {
3 public LatLon location;
4 public Map<String, ReservationRequest> reservationRequests;
5 public Map<String, ReservationResponse> reservationResponses;
6 public Map<Long, Integer> occupancy;
7 public Integer maxCapacity;
8 public String id;
9 ...

10 /∗∗
11 ∗ Processes reservation requests and produce appropriate reservation
12 ∗ responses. As all the vehicles follow the optimal assignment of the
13 ∗ PLCSSAM it is not possible to overbook the PLCS. Nevertheless the check
14 ∗ is performed and the appropriate response is generated.
15 ∗
16 ∗ In the ”occupancy” knowledge we store the map that translates the hourly
17 ∗ intervals into the space occupancy. If the request cannot be satisfied
18 ∗ (i.e. the maximum capacity has been reached for the requested time) the
19 ∗ negative response is created.
20 ∗/
21 @Process
22 @PeriodicScheduling(period = DEFAULT PERIOD)
23 public static void processReservations(
24 @In(”id”) String id,
25 @In(”reservationRequests”) Map<String, ReservationRequest> reservationRequests,
26 @InOut(”reservationResponses”) ParamHolder<Map<String, ReservationResponse>>
27 reservationResponses,
28 @InOut(”occupancy”) ParamHolder<Map<Long, Integer>> occupancy,
29 @In(”maxCapacity”) Integer maxCapacity) {
30 ReservationResponse response;
31 for (ReservationRequest rr : reservationRequests.values())
32 if (!reservationResponses.value.containsKey(rr.id)) {
33 //Generate response
34 response = new ReservationResponse(rr.id, book(rr.fromHour,
35 rr.toHour, occupancy.value, maxCapacity), rr.vehicleId, id);
36 reservationResponses.value.put(rr.id, response);
37 System.out.println(id + ” reservation response : ” + response);
38 }
39 }
40 ...
41 }

Fig. 8. Description of a ParkingLotChargingStation (PLCS) component in jDEECo,
where component knowledge is represented by class fields and component processes are
represented by class methods

5 Runtime Simulation

The e-mobility case study employs the jDEECo runtime environment to handle
monitoring, awareness and self-adaptation during runtime. The e-mobility spe-
cific implementation of the jDEECo components (e.g. PLCS component) and
the jDEECo ensembles (e.g. vehicle-PLCS SAM) is shown in Section 4.

jDEECo embeds a Multi-Agent Transport Simulation (MATSim) which is an
execution environment implementing the physical interaction of drivers, vehicles
and infrastructure resources. MATSim implements general concepts of trans-
portation modeling, which is briefly discussed in Section 5.1. The coupling of
jDEECo and MATSim is presented in Section 5.2.

A Life Cycle for the Development of Autonomic Systems: An Application 529

1 @Ensemble
2 @PeriodicScheduling(period = 1000)
3 public class VehiclePLCS {
4

5 @Membership
6 public static boolean membership(
7 @In(”coord.reservationRequest”) ReservationRequest reservationRequest
8 @In(”member.id”) String plcsId) {
9 if (reservationRequest == null || reservationRequest.plcsId == null) return false;

10 return reservationRequest.plcsId.equals(plcsId);
11 }
12

13 @KnowledgeExchange
14 public static void exchange(
15 @In(”coord.id”) String vehicleId,
16 @In(”coord.reservationRequest”) ReservationRequest reservationRequest
17 @InOut(”coord.reservationResponse”) ParamHolder<ReservationResponse>
18 reservationResponse
19 @In(”member.reservationResponses”) Map<String, ReservationResponse>
20 plcsReservationResponses,
21 @InOut(”member.reservationRequests”) ParamHolder<Map<String, ReservationRequest>>
22 plcsReservationRequests) {
23 plcsReservationRequests.value.put(vehicleId, reservationRequest);
24 reservationResponse.value = plcsReservationResponses.get(reservationRequest.id);
25 }
26 }

Fig. 9. Description of a jDEECo ensemble, exchanging data between a vehicle and a
PLCS. The vehicle transfers the reservation request to PLCS’s knowledge. The PLCS
transfers the request response to the vehicle’s knowledge.

5.1 MATSim Transportation Modeling

MATSim is a microscopic traffic simulator. It is used to simulate individual travel
patterns and predict aggregate travel demand. It is based on the underlying
theory of transportation science which is discussed in [8] and [10]. MATSim
specific publications can be found in [16].

MATSim simulates physical interactions of drivers, vehicles and infrastruc-
ture resources. In MATSim, a driver is represented as a software agent, which
inherits travel preferences and a daily activity chain. A driver agent schedules
and executes a day plan, which is defined as a sequence of travel stages (e.g.
walking stage, driving stage) that connect the daily activity chain. Driver deci-
sions represent the demand side of transportation, while infrastructure resources
reflect the supply side.

Driver decisions produce a demand for infrastructure resources (e.g. road,
parking space, charging station). The ratio of supply and demand influences
the cost of resource usage (e.g. traffic induced travel time, parking cost), and
hence, assigns a utility to driver decisions. Drivers generally aim to find the set
of decisions that maximize utility.

MATSim addresses the dual problem of decision making, where drivers use
information about the transportation network (e.g. traffic information, parking
fee) to make travel decisions (e.g. route choice, parking choice), and in return,
these decisions influence the state of the transportation network. MATSim em-

530 N. Hoch et al.

Fig. 10. Coupling of jDEECo and MATSim

ploys an optimization loop to solve the dual problem of transportation. In a
first step, agents execute day plans. This produces a travel demand, which for a
given supply, determines the cost of resource usage. In a second step, a scoring
module computes the generalized cost of the set of travel decisions. In a third
step, agents modify travel decisions in order to minimize the generalized cost of
travel (resp. maximize the utility). The set of actions of an agent comprises of
(i) shifting departure time, (ii) changing travel mode and (iii) changing route.
Step 1-3 are iteratively executed until an equilibrium is reached. The loop of
optimization is executed in every simulation step.

The e-mobility case study requires several extensions to MATSim. First,
mode choice is confined to electric vehicle travel. Second, the optimization loop
additionally respects parking choice and charging station choice. Third, vehi-
cles consume energy and they are range restricted, which introduces a need to
monitor and manage vehicle energy budgets.

5.2 Integration of jDEECo and MATSim

The jDEECo runtime framework integrates MATSim in order to simulate the
states of the traffic environment (e.g. road traffic, parking space availability) and
monitor the states of the components, in particular, the state of the vehicle com-
ponent (e.g. battery capacity, location). MATSim information can be grouped
into two categories: (1) current information xs(t0), capturing the state of the
traffic system at the current time slice t0, and (2) predictive information xs(t1),
describing the state of the traffic system at any consecutive time slice ti, with
i > 0 and i ∈ N.

In case of the (1) current information, jDEECo connects all components to
an instance of MATSim (see Figure 10). Internally, each jDEECo component
is reflected in MATSim by a dedicated instance of MATSim’s mobility agent
(denoted as “jDEECo agent” in the figure).

A Life Cycle for the Development of Autonomic Systems: An Application 531

As for (2) predictive information, the prediction can be understood as a
function f(xs(t0), ti, A), which maps the current state of the traffic system xs(t0)
to a future state ti, given a set of actions A, thereby describing the effects
of current actions. The particular ASCENS characteristics allow for different
perceptions of the same current information xs(t0), reflecting a different belief
of the current system state. The particular ASCENS characteristics also allow for
different future beliefs xs(t1), given the same current belief. Consider an example,
where a first component uses a prediction logic defined by f1(xs(t0), ti, A), which
differs from the prediction logic f2(xs(t0), ti, A) of a second component, thereby
predicting a different effect from the same set of actions. In order to account for
component specific belief states, each jDEECo component contains a separate
instance of the MatSim simulation.

In concluding, MATSim is used to predict the effects of the physical interac-
tions of users, vehicles and infrastructure resources. jDEECo assigns MATSim
instances to jDEECo components and handles these instances in a way that al-
lows for different belief states between components and potentially synchronized
belief states within ensembles.

6 Summary

The e-mobility case study in ASCENS provided a novel example of a relevant
industry application. A conceptualization of the e-mobility case study was shown
and was used as a basis for the application of the EDLC approach for distributed
autonomic software systems. Concerning the requirements engineering phase of
the EDLC, the case study utilized the IRM and SOTA approach. Considering
the implementation and deployment of the system, DEECo was used for model-
ing purposes, while jDEECo was used as the runtime environment. The system
simulation was performed by using the runtime environment integrated with
the MATSim traffic simulator. The combined approach of this study provided a
novel method for the simulation of physical interactions between users, e-vehicles
and infrastructure resources in a decentralized ensemble-based manner.

References

1. Abeywickrama, D.B., Hoch, N., Zambonelli, F.: Engineering and implementing
software architectural patterns based on feedback loops. International Journal for
Parallel and Distributed Computing, Special Issue on Enabling Technologies for
Collaboration to appear, 19 (2015)

2. Abeywickrama, D.B., Hoch, N., Zambonelli, F.: Simsota: engineering and simulat-
ing feedback loops for self-adaptive systems. In: International C* Conference on
Computer Science & Software Engineering (C3S2E13), Porto, Portugal, July 10 -
12 (2013)

3. Abeywickrama, D.B., Zambonelli, F., Hoch, N.: Towards simulating architectural
patterns for self-aware and self-adaptive systems. In: Sixth IEEE International
Conference on Self-Adaptive and Self-Organizing Systems Workshops, SASOW,
Lyon, France, September 10-14 (2012)

532 N. Hoch et al.

4. Bures, T., De Nicola, R., Gerostathopoulos, I., Hoch, N., Kit, M., Koch, N., Mon-
reale, G.V., Montanari, U.: Pugliese, Rosario Serbedzija, N.B., Wirsing, M., Zam-
bonelli, F.: A life cycle for the development of autonomic systems: The e-mobility
showcase. In: 7th IEEE International Conference on Self-Adaptation and Self-
Organizing Systems Workshops (SASOW), Philadelphia, PA, USA, September 9-13
(2013)

5. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.:
Deeco: An ensemble-based component system. In: Proceedings of the 16th Interna-
tional ACM Sigsoft Symposium on Component-based Software Engineering (CBSE
’13), pp. 81–90. ACM Press, New York (2013)

6. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.: The
Invariant Refinement Method. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P.
(eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998,
pp. 405–428. Springer, Heidelberg (2015)

7. Cabri, G., Puviani, M., Zambonelli, F.: Towards a taxonomy of adaptive agent-
based collaboration patterns for autonomic service ensembles. In: 2011 Interna-
tional Conference on Collaboration Technologies and Systems (CTS), May 2011,
pp. 508–515 (2011)

8. Cascetta, E.: Transportation Systems Analysis - Models and Applications, 2nd
edn. Springer, Heidelberg (2009)

9. Geering, H.P.: Regelungstechnik. Springer, Heidelberg (2004)
10. Hall, R.W.: Handbook of Transportation Science, 2nd edn. International Series in

Operations Research & Management Science, vol. 56. Springer, Heidelberg (2003)
11. Hoch, N., Monreale, G.V., Montanari, U., Sammartino, M., Siwe, A.T.: From Local

to Global Knowledge and Back. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P.
(eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998,
pp. 185–220. Springer, Heidelberg (2015)

12. Hoch, N., Werther, B., Bensler, H.P., Masuch, N., Luetzenberger, M., Hessler, A.,
Albayrak, S., Siegwart, R.Y.: A user-centric approach for efficient daily mobility
planning in e-vehicle infrastructure networks. In: Meyer, G., Valldorf, J. (eds.)
Advanced Microsystems for Automotive Applications 2011. VDI-Buch, pp. 185–
198. Springer, Heidelberg (2011)

13. Hoch, N., Zemmer, K., Werther, B., Siegwart, R.Y.: Electric vehicle travel
optimization-customer satisfaction despite resource constraints. In: 2012 IEEE In-
telligent Vehicles Symposium IV, Alcal de Henares, Madrid, Spain, June 3-7 (2012)

14. Hölzl, M., Koch, N., Puviani, M., Wirsing, M., Zambonelli, F.: The Ensemble
Development Life Cycle and Best Practices for Collective Autonomic Systems.
In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for
Collective Autonomic Systems. LNCS, vol. 8998, pp. 325–354. Springer, Heidelberg
(2015)

15. Keznikl, J., Bures, T., Plasil, F., Gerostathopoulos, I., Hnetynka, P., Hoch, N.:
Design of ensemble-based component systems by invariant refinement. In: Proc. of
the 16th International ACM SIGSOFT Symposium on Component Based Software
Engineering (CBSE ’13), ACM, Vancouver, Canada (2013)

16. MATSim: Multi-Agent Transport Simulation (MATSim) (August 2014),
http://www.matsim.org/

17. Monreale, G.V., Montanari, U., Hoch, N.: Soft constraint logic programming for
electric vehicle travel optimization. CoRR abs/1212.2056, 17 (2012)

18. De Nicola, R., Latella, D., Lafuente, A.L., Loreti, M., Margheri, A., Massink, M.,
Morichetta, A., Pugliese, R., Tiezzi, F., Vandin, A.: The SCEL Language: Design,

http://www.matsim.org/

A Life Cycle for the Development of Autonomic Systems: An Application 533

Implementation, Verification. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.)
Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 3–
71. Springer, Heidelberg (2015)

19. Puviani, M., Cabri, G., Zambonelli, F.: A taxonomy of architectural patterns for
self-adaptive systems. In: Proceedings of the International C* Conference on Com-
puter Science and Software Engineering (C3S2E ’13), pp. 77–85. ACM Press, New
York (2013)

20. Russell, S., Norvig, P.: Artificial Intelligence - a modern approach, 2nd edn.
Prentice-Hall, Englewood Cliffs (2002)

21. Wooldridge, M.: An Introduction to MultiAgent Systems, 2nd edn. Wiley, Chich-
ester (2009)

22. Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. Knowl-
edge Engineering Review 10(2), 115–152 (1995)

Author Index

Abeywickrama, Dhaminda B. 429, 513

Bensalem, Saddek 107
Bensler, Henry-Paul 513
Bonani, Michael 471
Bruni, Roberto 73, 163
Bulej, Lubomı́r 291
Bureš, Tomáš 291, 405, 495, 513

Combaz, Jacques 107, 429
Corradini, Andrea 163

De Nicola, Rocco 3
Dorigo, Marco 471

Gabor, Thomas 249
Gadducci, Fabio 163
Gerostathopoulos, Ilias 291, 405

Hennicker, Rolf 495
Hinchey, Mike 221, 379
Hnetynka, Petr 405
Hoch, Nicklas 185, 513
Hölzl, Matthias 163, 249, 325
Horký, Vojtěch 291, 429

Keznikl, Jaroslav 291, 405, 429, 495
Kit, Michal 405
Klarl, Annabelle 495
Koch, Nora 325
Kofroň, Jan 107, 429

Lafuente, Alberto Lluch 3, 163, 429
Latella, Diego 3

Loreti, Michele 3, 429

Marek, Lukáš 291
Margheri, Andrea 3, 107, 429
Massink, Mieke 3
Mayer, Philip 429, 495
Mondada, Francesco 471
Monreale, Giacoma Valentina 185, 429
Montanari, Ugo 73, 185, 429, 513
Morichetta, Andrea 3

Noël, Victor 355

Pinciroli, Carlo 429, 471
Plasil, Frantisek 405
Pugliese, Rosario 3, 107, 495
Puviani, Mariachiara 325, 495

Sammartino, Matteo 73, 185
Šerbedžija, Nikola 451
Siwe, Alain Tcheukam 185

Tiezzi, Francesco 3, 107, 495
Tribastone, Mirco 291
Tschaikowski, Max 291
Tůma, Petr 291, 429

Vandin, Andrea 3, 163, 429
Vassev, Emil 221, 379, 429
Velasco, José 495

Wirsing, Martin 163, 325

Zambonelli, Franco 325, 355

	Preface
	Table of Contents
	Part I:Language and Verification for Collective
Autonomic Systems
	The SCEL Language: Design, Implementation, Verification
	1
Introduction
	2 The Parametric Language SCEL
	2.1 Design Principles
	2.2 Syntax
	2.3 Operational Semantics

	3
Knowledge Management
	3.1 Tuple Spaces
	3.2 Constraints
	3.3 External Reasoners

	4
A Policy Language
	4.1 Policies and Their Syntax
	4.2 Semantics of the Policy Language

	5 A Full-Fledged SCEL Instance
	5.1 PSCEL: Policed SCEL
	5.2 PSCEL at Work

	6
A Runtime Environment for SCEL
	6.1 Programming Constructs
	6.2 Policing Constructs
	6.3 Exploitation

	7
Quantitative Variants of SCEL
	7.1 StocS: Stochastic SCEL
	7.2 Semantics of a StocS Fragment

	8
Verification
	8.1 Simulation and Analysis via jRESP
	8.2 Maude-Based Verification
	8.3 Spin-Based Verification

	9
Concluding Remarks
	References

	Reconfigurable and Software-Defined Networks of Connectors and Components
	1
Introduction
	2
 Software-Defined and Overlay Networks
	3
Network Conscious -Calculus (NCPi)
	3.1 Illustrative Example
	3.2 Syntax and Semantics
	3.3 Concurrent NCPi(κNCPi)
	3.4 Coalgebraic Semantics of NCPi

	4
Formal Definition and Properties of the PASTRY Distributed Hash Table System
	4.1 Peer Model
	4.2 DHT Model

	5
Networks of Connectors and Components
	6
Connector Algebras for Petri Nets
	6.1 Petri Nets with Boundaries
	6.2 Petri Calculus

	7
From BI(P) to Petri Nets and Vice Versa
	7.1 BI(P): BIP Without Priorities
	7.2 Structural Mapping from BI(P) to Nets with Boundaries
	7.3 Encoding Nets with Boundaries into BI(P)

	8
Reconfigurable and Dynamic BIP
	8.1 Reconfigurable BI(P)
	8.2 Dynamic BI(P)

	9
Concluding Remarks
	References

	Correctness of Service Components and Service Component Ensembles
	1
Introduction
	2
Verification Techniques for BIP Models
	2.1 Compositional Verification
	2.2 Application of SMC-BIP to a Robotics Scenario
	2.3 Model-Driven Information Flow Security for SCEs

	3
Alternative Approaches to Ensure System Correctness
	3.1 Quantitative Synthesis and Verification Framework
	3.2 Access Control, Resource Usage, and Adaptation Policies for a
Cloud Scenario
	3.3 jDEECo Verification

	4
Conclusion
	References

	Part II:Modeling and Theory of Adaptive and
Self-aware Systems
	Reconciling White-Box and Black-Box Perspectives on Behavioral Self-adaptation
	1
Introduction
	2
A Robot Rescue Case Study
	3
Black-Box and White-Box Adaptation
	3.1 A Black-Box Perspective on Adaptive Systems
	3.2 A White-Box Perspective on Adaptive Systems

	4
Reconciling Black-Box and White-Box Adaptation
	4.1 Trace-Based Reconciliation
	4.2 A Game-Based Reconciliation

	5
Related Work
	6
Conclusion
	References

	From Local to Global Knowledge and Back
	1
Introduction
	2
Constraints Programming
	2.1 Constraint Satisfaction Problems
	2.2 CSP and Dynamic Programming
	2.3 Constraint Logic Programming

	3
E-mobility Optimization Problems
	3.1 Trip Level and Journey Level Optimization Problems
	3.2 Coordination of Local and Global Optimization: The Parking
Problem
	3.3 Dynamic Programming

	4
Smart GRIDS for Renewable Electrical Power Production/Consumption
	4.1 ADDRESS: An Integrated Power Management System
	4.2 Decentralized Prosumer Based Solution for Smart Energy
Production/Consumption
	4.3 The DEZENT Electrical Market Model and Its Reinforcement
Learning Adaptation Model
	4.4 Background on Reinforcement Learning
	4.5 Periodic Reinforcement Learning in DEZENT
	4.6 Optimal Prosumer Profiling via Dynamic Programming
	4.7 BGM as Prosumers in DEZENT
	4.8 Comparison: DEZENT’s Aggregator versus ADDRESS’s
Aggregator

	5
Conclusion and Future Work
	5.1 Related Work
	5.2 Future Work

	References

	Knowledge Representation for Adaptive and Self-aware Systems
	1
Introduction
	2
KnowLang – Language for Knowledge Representation of Self-adaptive Systems
	2.1 Multi-tier Specification Model
	2.2 Knowledge Representation for Self-adaptive Behavior
	2.3 Case Study: Knowledge Representation for Autonomic Clouds
	2.4 Science Clouds
	2.5 Formalizing Science Clouds with KnowLang

	3
KnowLang Reasoner
	3.1 ASK and TELL Operators
	3.2 The ASK BEHAVIOR Operator

	4
Awareness in Software-Intensive Systems
	4.1 Classes of Awareness
	4.2 Structuring Awareness
	4.3 Implementing Awareness with KnowLang

	5
Related Work
	6
Conclusions
	References

	Reasoning and Learning for Awareness and Adaptation
	1
Introduction
	2 Awareness and Self-expression
	2.1 Classifying Awareness and Self-expression

	3
Extended Behavior Trees
	3.1 Behavior Trees
	3.2 Extended Behavior Trees
	3.3 SCEL Semantics

	4
Reinforcement Learning
	4.1 Single-Agent Learning
	4.2 Hierarchical and Multi-agent Learning

	5
Passing Knowledge to Other Components: Teacher-Student Learning
	6
Related Work
	7
Conclusions and Future Work
	References

	Supporting Performance Awareness in Autonomous Ensembles
	1
Introduction
	2
Instrumentation for Performance Monitoring
	3
Expressing Performance Properties
	3.1 Stochastic Performance Logic
	3.2 Logic Interpretations
	3.3 Handling Initial Transient Conditions
	3.4 Parametric Mean Value Interpretation
	3.5 Non-parametric Mean Value Interpretation

	4
Coding for Performance Awareness
	4.1 Performance Data Sources
	4.2 Language Integration Support
	4.3 Integrating Predictive Models

	5
Modeling Performance
	5.1 Fluid Process Algebra
	5.2 Aggregation Error

	6
Performance Aware Ensembles
	6.1 Scenario Description
	6.2 Adaptation Architecture Components
	6.3 Adaptation Architecture Ensembles
	6.4 Adaptation Interaction Example

	7 Designing Performance-Based Adaptation
	7.1 Scenario Description
	7.2 Transforming Design into Code

	8
Summary
	References

	Engineering Techniques for Collective
Autonomic Systems

	Part III:
Engineering Techniques for CollectiveAutonomic Systems
	The Ensemble Development Life Cycle and Best Practices for Collective Autonomic Systems
	1
Introduction
	2
Software Development Life Cycle for Ensembles
	3
Engineering Feedback Control Loops
	4
A Pattern Language for Ensemble Development
	5
Related Work
	6
Conclusions
	References

	Methodological Guidelines for Engineering Self-organization and Emergence
	1
Introduction
	2
Emergence, Engineering and Decomposition
	2.1 Self-organisation and Emergence
	2.2 Software Architecture, Problems and Requirements
	2.3 Role of the C&C Decomposition Design Activity
	2.4 How Should the SOMAS Be Decomposed?

	3 Following the Problem Organisation
	3.1 The Strategy
	3.2 Relation to the Design of Self-organisation
	3.3 Rationale
	3.4 Open Questions
	3.5 Lessons for Documenting SOMAS
	3.6 Architectural Advantages for Development

	4
Engineering a Swarm of Bots
	4.1 Problem
	4.2 Proposed Design
	4.3 Observed Global Behaviour
	4.4 Discussion on the Strategy
	4.5 Evaluation: Brief Analysis

	5
Related Works and Discussion
	6
Conclusion
	References

	Engineering Requirements for Autonomy Features
	1
Introduction
	2 ARE – Autonomy Requirements Engineering
	2.1 Understanding ARE
	2.2 System Goals and Goals Models
	2.3 Self-* Objectives and Autonomy-Assistive Requirements
	2.4 Autonomy Needs and Requirements Chunks
	2.5 Formal Specification

	3
Capturing Autonomy Requirements for Science Clouds
	3.1 Science Clouds
	3.2 GORE for Science Clouds
	3.3 GAR for Science Clouds
	3.4 ARE Requirements Chunks for Science Clouds
	3.5 Formalizing Science Clouds with KnowLang

	4
Related Work
	5
Conclusions
	References

	The Invariant Refinement Method
	1
Introduction
	2
Running Example
	2.1 DEECo Model of the Running Example

	3
The Need for a Tailored Design Method for ACEs
	4
Invariant Refinement Method
	4.1 Invariants and Assumptions
	4.2 Invariants vs. Computation Activities
	4.3 Invariant Refinement
	4.4 Leaves of Refinement
	4.5 From Invariants to Final Architecture

	5
IRM Abstraction Levels and Invariant Patterns
	5.1 Formalization
	5.2 General Invariants
	5.3 Present-Past Invariants
	5.4 Activity Invariants
	5.5 Process Invariants
	5.6 Exchange Invariants
	5.7 Refinement Between Invariant Patterns

	6
Conclusions
	References

	Tools for Ensemble Design and Runtime
	1
Introduction
	2
Design Cycle Tools
	2.1 jSAM: Java Stochastic Model-Checker
	2.2 Maude Daemon Wrapper
	2.3 MESSI: Maude Ensemble Strategies Simulator and Inquirer
	2.4 MISSCEL: A Maude Interpreter and Simulator for SCEL
	2.5 MAIA
	2.6 SimSOTA
	2.7 FACPL: Policy IDE and Evaluation Library
	2.8 KnowLang Toolset
	2.9 BIP Compiler
	2.10 Gimple Model Checker

	3
Runtime Cycle Tools
	3.1 ARGoS
	3.2 jRESP: Runtime Environment for SCEL Programs
	3.3 jDEECo: Java Runtime Environment for DEECo Applications
	3.4 AVis
	3.5 Science Cloud Platform
	3.6 SPL

	4
Summary
	References

	Part IV:
Case Studies: Challenges and Feedback
	The ASCENS Case Studies: Results and Common Aspects
	1
Introduction
	2
Application Challenges
	2.1 Application Overview
	2.2 Common Characteristics

	3
Common Approach
	4
Generic Set of Common Tools
	5
Application Deployments
	5.1 ASCENS Case Studies
	5.2 Robot Race

	6
Conclusion
	References

	Adaptation and Awareness in Robot Ensembles: Scenarios and Algorithms
	1
Introduction
	2
Scenario: Disaster Recovery
	2.1 Robot Swarms as Service Component Ensembles
	2.2 The marXbot Robot
	2.3 General Scenario Description
	2.4 Parameters

	3
The Robotics Scenario and the EDLC
	3.1 Requirement Engineering
	3.2 Modeling/Programming and Verificaton/Validation
	3.3 Awareness and Adaptation

	4
Implementation and Demonstration
	4.1 Scenario Instantiation
	4.2 Algorithm Structure

	5
Conclusions
	References

	The Autonomic Cloud
	1
Introduction
	2
Influencing Areas of Computing
	2.1 Cloud Computing
	2.2 Voluntary Computing
	2.3 Peer-to-Peer Computing
	2.4 Bringing It All Together

	3
Handling Awareness and Adaptation
	3.1 Adaptation Patterns
	3.2 Modeling Ensemble Behavior
	3.3 System Specification in SCEL
	3.4 Supporting Mobile Nodes with jDEECo
	3.5 The EDLC and Other ASCENS Methods

	4
Implementation
	4.1 Implementing an Autonomic Cloud
	4.2 Integrating Zimory IaaS

	5
Evaluation and Demonstrator
	6
Summary
	References

	The E-mobility Case Study
	1
Introduction
	2
System Design
	2.1 Conceptualizing E-mobility
	2.2 Software Development Life Cycle

	3
Goal-Oriented Requirements Engineering for Self-adaptive Autonomic Systems
	3.1 High-Level Requirements Engineering with SOTA
	3.2 Low-Level Requirements Engineering with the InvariantRefinement Method
	3.3 Iterative Requirements Engineering with SOTA and IRM

	4
Implementation and Deployment
	5
Runtime Simulation
	5.1 MATSim Transportation Modeling
	5.2 Integration of jDEECo and MATSim

	6
Summary
	References

	Author Index

