
High-Speed Signatures from Standard Lattices

Özgür Dagdelen1, Rachid El Bansarkhani1, Florian Göpfert1,
Tim Güneysu2, Tobias Oder2, Thomas Pöppelmann2(B),

Ana Helena Sánchez3, and Peter Schwabe3

1 Technische Universität Darmstadt, Darmstadt, Germany
oezguer.dagdelen@cased.de,

{elbansarkhani,fgoepfert}@cdc.informatik.tu-darmstadt.de
2 Horst Görtz Institute for IT-Security, Ruhr-University Bochum,

Bochum, Germany
thomas.poeppelmann@rub.de

3 Digital Security Group, Radboud University Nijmegen,
Nijmegen, The Netherlands

ahsanchez@cs.ru.nl, peter@cryptojedi.org

Abstract. At CT-RSA 2014 Bai and Galbraith proposed a lattice-based
signature scheme optimized for short signatures and with a security
reduction to hard standard lattice problems. In this work we first refine
the security analysis of the original work and propose a new 128-bit
secure parameter set chosen for software efficiency. Moreover, we increase
the acceptance probability of the signing algorithm through an improved
rejection condition on the secret keys. Our software implementation tar-
geting Intel CPUs with AVX/AVX2 and ARM CPUs with NEON vector
instructions shows that even though we do not rely on ideal lattices, we
are able to achieve high performance. For this we optimize the matrix-
vector operations and several other aspects of the scheme and finally
compare our work with the state of the art.

Keywords: Signature scheme · Standard lattices · Vectorization · Ivy
bridge

1 Introduction

Most practical lattice-based signatures [7,16,21], proposed as post-quantum [9]
alternatives to RSA and ECDSA, are currently instantiated and implemented
using structured ideal lattices [30] corresponding to ideals in rings of the form

P. Schwabe—This work was supported by the German Research Foundation
(DFG) through the DFG Research Training Group GRK 1817/1, by the Ger-
man Federal Ministry of Economics and Technology through Grant 01ME12025
SecMobil), by the Netherlands Organisation for Scientific Research (NWO) through
Veni 2013 project 13114, and by the German Federal Ministry of Education
and Research (BMBF) through EC-SPRIDE. Permanent ID of this document:
c5e2da3f0d05a056a5490a5c9b88baa9. Date: 2014-09-04.

c© Springer International Publishing Switzerland 2015
D.F. Aranha and A. Menezes (Eds.): LATINCRYPT 2014, LNCS 8895, pp. 84–103, 2015.
DOI: 10.1007/978-3-319-16295-9 5

High-Speed Signatures from Standard Lattices 85

Z[x]/〈f〉, where f is a degree-n irreducible polynomial (usually f = xn +1). With
those schemes one is able to achieve high speeds on several architectures as well
as reasonably small signatures and key sizes. However, while no attacks are
known that perform significantly better against schemes based on ideal lattices,
it is still possible that further cryptanalysis will be able to exploit the additional
structure1. Especially, if long-term security is an issue, it seems that standard
lattices and the associated problems—e.g., the Learning With Errors (LWE) [34]
or the Small Integer Solution (SIS) problem—offer more confidence than their
ring counterparts.

The situation for code-based cryptography [9] is somewhat similar. The use
of more structured codes, such as quasi-dyadic Goppa codes [31], has been the
target of an algebraic attack [15] which is effective against certain (but not all)
proposed parameters. This is an indication that the additional structure used to
improve the efficiency of such cryptosystems might be also used by adversaries
to improve their attack strategies. Moreover, basing a scheme on the plain LWE
or SIS problem seems much more secure than using stronger assumptions on top
of ideal lattices like the discrete-compact-knapsack (DCK) [21] or NTRU-related
assumptions [16] that have not been studied extensively so far.

While results for ideal-lattice-based signatures have been published recently
[11,22,32,33], currently no research is available dealing with implementation
and performance issues of standard-lattice-based signatures. While the large
keys of such schemes might prevent their adoption on constrained devices or
reconfigurable hardware, the size of the keys is much less an issue on current
multi-core CPUs which have access to large amounts of memory. In this context,
the scheme by Bai and Galbraith [6] (from now on referred to as BG signature)
is an interesting proposal as it achieves small signatures and is based on the
standard LWE and SIS problems.

An interesting question arising is also the performance of schemes based on
standard lattices and how to choose parameters for high performance. While
FFT-techniques have been used successfully for ideal lattices on various archi-
tectures [22,35] there are no fast algorithms to speed up the necessary matrix-
vector arithmetic. However, matrix-vector operations can be parallelized very
efficiently and there are no direct restrictions on the parameters (for efficiency
of ideal lattices n is usually chosen as power of two) so that there is still hope
for high speed. The only results currently available dealing with the implemen-
tation of standard lattice-based instantiations rely on arithmetic libraries [7,20]
and can thus not fully utilize the power of their target architectures.

An additional feature of the BG signature is that sampling of Gaussian noise
is only needed during the much less performance-critical key-generation phase
but not for signing2. While there was some progress on techniques for efficient

1 There exists sieving algorithms which can exploit the ideal structure, but the speed-
up is of no significance [24,36]. Some first ideas towards attacks with lower complexity
were sketched by Bernstein in his blog [8].

2 Omitting costly Gaussian sampling was also the motivation for the design of the
GLP signature [21].

86 Ö. Dagdelen et al.

discrete Gaussian sampling [16,17,33] it is still not known how to implement the
sampling efficiently3 without leaking information on the sampled values through
the runtime of the signing process (contrary to uniform sampling [22]).

While we cannot present a direct attack, careful observation of the runtime
of software implementations (even remotely over a network) has led to various
attacks in the past and thus it is desirable to achieve constant runtime or at
least a timing independent from secret data [13,25].

Our Contribution. The contribution of this paper is twofold. First, we study
the parameter selection of the BG signature scheme in more detail than in the
original paper and assess its security level4. Based on our analysis of the cur-
rently most efficient attack we provide a new 128-bit security parameter set
chosen for efficient software implementation and long-term security. We com-
pare the runtimes of several attacks on LWE with and without a limit on the
number of samples available. Since the behavior of the attacks in a suboptimal
attack dimension is not well understood at this point, our analysis may be of
independent interest for the hardness assessment of other LWE instances. Addi-
tionally, we introduce an optimized rejection sampling procedure and rearrange
operations in the signature scheme.

The second part of the paper deals with the implementation of this parameter
set on the ARM NEON and Intel AVX architectures optimized for high speed.
By using parallelization, interleaving, and vectorization we achieve on average
1203924 cycles for signing and 335072 cycles for verification on the Haswell
architecture. This corresponds to roughly 2824 signing and 10147 verification
operations per second on one core of a CPU clocked with 3.4 GHz. While we do
not set a speed record for general lattices, we are able to present the currently
fastest implementation of a lattice-bases signature scheme that relies solely on
standard assumptions and is competitive in terms of performance compared to
classical and post-quantum signature schemes.

Availability of Software. We will place all software described in this paper
into the public domain to maximize reusability of our results. We will submit
the software to the eBACS benchmarking project [10] for public benchmarking.

Road Map. The paper is organized as follows: In Sect. 3 we introduce the
original BG signature scheme and our modifications for efficiency. The security
analysis is revisited and appropriate parameters are selected in Sect. 4. In Sect. 5
we discuss our NEON and AVX software implementation and finish with results
and a comparison in Sect. 6.

3 A software implementation of a constant time discrete Gaussian sampler using
the Cumulative Distribution Table (CDT) approach was recently proposed by Bos
et al. [12]. However, even for the small standard deviation required for lattice-based
encryption schemes, the constant time requirement leads to a significant overhead.

4 We note here that there was some vagueness in the parameter selection in the original
work [6], also noticed later by the authors of the paper [5].

High-Speed Signatures from Standard Lattices 87

2 Preliminaries

Notation. We mainly follow the notation of [6] and denote column vectors by
bold lower case letters (e.g., v = (v1, . . . , vn)T where vT is the transpose) and
matrices by bold upper case letters (e.g., M). The centered discrete Gaussian
distribution Dσ for σ > 0 associates the probability ρσ(x)/ρσ(Z) to x ∈ Z for
ρσ(x) = exp(−x2

2σ2) and ρσ(Z) = 1 + 2
∑∞

x=1 ρσ(x). We denote by d
$← Dσ the

process of sampling a value d randomly according to Dσ. In case S is a finite
set, then s

$← S means that the value s is sampled according to a uniform
distribution over the set S. For an integer c ∈ Z, we define [c]2d to be the integer
in the set (−2d−1, 2d−1] such that c ≡ [c]2d mod 2d which is basically extraction
of the least significant bits. For c ∈ Z we define �c�d = (c − [c]2d)/2d to drop the
d least significant bits. Both operators can also be applied to vectors.

Lattices. A k-dimensional lattice Λ is a discrete additive subgroup of Rm cont-
aining all integer linear combinations of k linearly independent vectors b1, . . . ,bk

with k ≤ m and m ≥ 0. More formally, we have Λ = { B · x | x ∈ Z
k }.

Throughout this paper we are mostly concerned with q-ary lattices Λ⊥
q (A) and

Λq(A), where q = poly(n) denotes a polynomially bounded modulus and A ∈
Z

n×m
q is an arbitrary matrix. Λ⊥

q (A) resp. Λq(A) are defined by

Λ⊥
q (A) = {x ∈ Z

m | Ax ≡ 0 mod q}
Λq(A) = {x ∈ Z

m | ∃s ∈ Z
m s.t. x = A�s mod q} .

By λi(Λ) we denote the i-th successive minimum, which is the smallest radius
r such there exist i linearly independent vectors of norm r (typically l2 norm)
in Λ. For instance, λ1(Λ) = min

x�=0
||x||2 denotes the minimum distance of a lattice

determined by the length of its shortest nonzero vector.

The SIS and LWE Problem. In the following we recall the main problems
used in order to construct secure lattice-based cryptographic schemes.

Definition 1 (SIS-Problem). Given a matrix A ∈ Z
n×m
q , a modulus q > 0,

and a real β, the small-integer-solution problem (l-norm typically l = 2) SISn,m,β

asks to find a vector x such that Ax ≡ 0 mod q and ||x||l ≤ β .

Let χ be a distribution over Z. We define by As,χ the distribution of (a,a� ·
s + e) ∈ Z

n
q ×Zq for n, q > 0, where a $← Z

n
q is chosen uniformly at random and

e ← χ.

Definition 2 (LWE-Problem). For a modulus q = poly(n) and given vectors
(ai, bi) ∈ Z

n
q × Zq sampled according to As,χ the learning-with-errors problem

LWEχ,q asks to distinguish As,χ, where s is chosen uniformly at random, from
the uniform distribution on Z

n
q × Zq.

It is also possible to sample s according to the error distribution χn [3].

88 Ö. Dagdelen et al.

Departing from the original definition of LWE, that gives access to arbi-
trary many samples, an attacker has often only access to a maximum number
of samples. Typically, this number of samples is denoted by m. In this case, one
typically “collects” all samples ai, bi ∈ Z

n
q × Zq to A,b ∈ Z

m×n
q × Z

m
q , and the

LWE problem is to decide whether the entries of b were sampled uniformly at
random and independently from A or according to the LWE distribution.

3 The Bai-Galbraith Signature Scheme

The Bai-Galbraith digital signature scheme [6] (BG signature) is based on the
Fiat-Shamir paradigm which transforms an identification scheme into a signa-
ture scheme [18] and closely follows previous proposals by Lyubashevsky et al.
[16,21,28,29]. The hardness of breaking the BG signature scheme, in the random
oracle model, is reduced to the hardness of solving standard worst-case compu-
tational assumptions on lattices. The explicit design goal of Bai and Galbraith
is having short signatures.

3.1 Description of the BG Signature Scheme

For easy reference, the key generation, signing, and the verification algorithm
of the BG signature scheme are given in Fig. 1. Our proposed parameter set is
summarized in Table 1. An analysis of the original parameter sets can be found in
the full online version of this paper. However, the algorithms have been simplified
and redundant definitions have been removed (e.g., we just use σ as standard
deviation and do not differentiate between σE, σS and set n = k).

During key generation two secret matrices S ∈ Z
n×n,E ∈ Z

m×n are sampled
from a discrete Gaussian distribution Dn×n

σ and Dm×n
σ , respectively. A rejection

condition Check E enforces certain constraints on E, which are necessary for
correctness and short signatures (see Sect. 3.2). Finally, the public key T =
AS + E and the secret key matrices S,E are returned where AS is the only
matrix-matrix multiplication necessary in the scheme. As we choose A ∈ Z

m×n

as a global constant, it does not have to be sampled during key generation and
is also not included in the public key and secret key.

For signing, the global constant A as well as secret keys S,E are required
(no usage of T in this variant). The vector y is sampled uniformly random from
[−B,B]n. For the instantiation of the random oracle H (using a hash function)
only the higher order bits of Ay are taken into account and hashed together
with the message μ. The algorithm F (c) takes the binary output of the hash
c and produces a vector c of weight ω (see [16] for a definition of F (c)). In
a different way than [6] w is computed following an idea that has also been
applied in [21]. Instead of computing w = Az − Tc (mod q) we calculate
w = v − Ec (mod q), where v = Ay (mod q). This is also the reason why
E has to be included into the secret key sk = (S,E) ∈ Z

n×n × Z
m×n. Thus,

the large public key T ∈ Z
m×n is not needed anymore for signing and the

operations become simpler (see further discussion in Sect. 5). The test whether

High-Speed Signatures from Standard Lattices 89

Fig. 1. The BG signature scheme [6]; see Sect. 3.2 for implementations of check E.

|[wi]2d | > 2d−1−LBG (LBG = 7ωσ in [6]) ensures that the signature verification
will not fail on a generated signature (w is never released) and the last line
ensures that the signature is uniformly distributed within the allowed range
[−B + U,B − U]n for U = 14 · σ

√
ω.

For verification the higher order bits of w = Az−Tc = Ay−Ec are hashed
and a valid signature (z, c) is accepted if and only if z is small, i.e., ||z||∞ ≤ B−U ,
and c = c′ for c′ := H(�w�d, μ). For the security proof and standard attacks we
refer to the original work [6].

3.2 Optimizing Rejection Sampling

In the original signature scheme [6] Check EBG restarts the key generation
if |Ei,j | > 7σ for any (i, j) and the rejection condition in Line 7 of Sign is
|[wi]2d | > 2d−1 − LBG for LBG = 7wσ. This ensures that it always holds that
�Ay�d = �Ay − Ec�d and thus verification works even for the short signature.
However, in practice the acceptance probability of (1− 14ωσ/2d)m has a serious
impact on performance and leaves much room for improvement. On first sight it
would seem most efficient to test during signing whether �Ay�d = �Ay − Ec�d

and just reject signatures that would not be verifiable. However, in this case the
proof structure given in the full version of [6] does not work anymore. In Game 1,
sign queries are replaced by a simulation (in the random oracle model) which is
not allowed to use the secret key and later on has to produce valid signatures
even for an invalidly chosen public key (Game 2).

Our optimization (similar to [16]) is to reject E during key generation only
if the error generated by Ec in �Ay�d = �Ay − Ec�d for the worst-case c is
larger than a threshold L. Thus, our Check Enew algorithm works the following:
Using maxk(·) which returns the k-th largest value of a vector we compute
thresholds th =

∑ω
k=1 maxk(|Eh|),∀h ∈ [0,m] where Eh is the h-th row of E

and reject if one or more th are larger than L. Thus the rejection probability

90 Ö. Dagdelen et al.

for the close-to-uniform w is independent of c and E and does not leak any
information. When L is chosen such that only a small percentage of secret keys
are rejected the LWE instances generated by the public key are still hard due
to the same argument on the bounded number of samples as in [6,16]. The
acceptance probability of w in Line 7 of Sign is (1 − 2L/2d)m. Table 1 shows
concrete values for our choice of Lnew and the original LBG.

4 Security Analysis and Parameter Selection

In the original work [6], Bai and Galbraith proposed five different parameter
sets to instantiate their signature scheme. In this section we revisit their secu-
rity analysis and propose a new instantiation that is optimized for software
implementations on modern server and desktop computers (Intel/AMD) and
also mobile processors (ARM). The security analysis has been refined due to
the following reasons: First, a small negligence in the assessment of the under-
lying LWE instances leads to a slightly wrong hardness estimation, which was
acknowledged by the authors after publication [5]. Second, an important attack,
namely the decoding attack, was not considered in [6]. We justify that indeed
the decoding attack is less efficient than the one considered if one takes into
account the limited number of samples m given to the attack algorithms.

In Table 1 we propose a parameter set for an instantiation of the signature
scheme from Sect. 3 with 128 bits of security, for which we provide evidence in
the next section.

4.1 Hardness of LWE

The decoding attack dates back to the nearest-plane algorithm by Babai [4]
and was further improved by Lindner and Peikert in [26] and Liu and Nguyen
in [27]. While it is often the fastest known approach, it turns out that it is not
very suitable for our instances, because an attacker has only access to a few
samples. Thus we concentrate on the embedding approach here and an analysis
of the behavior of the decoding attack can be found in Appendix A.

The embedding approach solves LWE via a reduction to the unique-shortest-
vector problem (uSVP). We will analyze two variants, the standard embedding
approach [26] and the variant that is very suitable for LWE instances with small
m that was already considered in [6]. Unfortunately, it is necessary to re-do
the analysis, because the hardness evaluation in the original work [6] set some
constant – namely τ – in the attack wrong yielding up to 17 bits more secu-
rity for their parameters than actually offered. We will focus on the security
of our parameter set in this section. Updated values for some of the parame-
ter sets proposed in the original paper can be found in the full version of this
paper.

Embedding Approach. Given an LWE instance (A,b) such that As = b
mod q, the idea of the embedding approach proposed in [19] is to use the

High-Speed Signatures from Standard Lattices 91

Table 1. The parameter set we use for 128 bits of security. Note that signature and
key sizes refer to fully compressed signature and keys. Our software uses slightly a
larger (padded) signature and keys to support faster loads and stores aligned to byte
boundaries.

embedding lattice Λq(Ae) defined as

Λq(Ae) = {v ∈ Z
m | ∃x ∈ Z

n : Ae · x = v mod q},

where Ae =
(
A b
0 1

)

. Throughout the paper the subscript stands for the tech-

nique used in an attack such as e denoting the standard embedding approach.
Since

Ae

(−s
1

)

=
(
A b
0 1

)(−s
1

)

=
(−As + b

0 · s + 1 · 1

)

=
(
e
1

)

=: v

is a very short lattice vector, one can apply a solver for uSVP to recover e. We
estimate the norm of v via ||v|| ≈ ||e|| ≈ √

mσE , and for the determinant of the
lattice we have det(Λq(Ae)) = qm+1−n with very high probability [9].

It is known that the hardness of uSVP depends on the gap between the first
and the second successive minimum λ1(Λ) and λ2(Λ), respectively. Gama and
Nguyen [19] claim that an attack with a lattice-reduction algorithm that achieves
Hermite factor δ succeeds with high probability if λ2(Λ)/λ1(Λ) ≥ τ · δdim(Λ),

92 Ö. Dagdelen et al.

Table 2. Security of our parameter set

Security level

Problem Attack Bit security

LWE Decoding [26] 271

Embedding [2] 192

Embedding [6] 130

SIS Lattice reduction [6] 159

where τ ≈ 0.4 is a constant that depends on the reduction algorithm used. In
fact, this factor is missing in the analysis by Bai and Galbraith, which causes
too optimistic (i.e., too large) runtime predictions.

The successive minima of a random lattice Λ can be predicted by the Gaussian
heuristic via

λi(Λ) ≈ Γ (1 + dim(Λ)/2)1/ dim(Λ)

√
π

det(Λ)1/ dim(Λ).

Consequently, a particular short vector v of length ||v|| = l can be found if

δdim(Λ) ≤ λ2(Λ)
λ1(Λ) · τ

≈ Γ (1 + dim(Λ)/2)1/ dim(Λ)

l · √
π · τ

det(Λ)1/ dim(Λ). (1)

We can therefore estimate the necessary Hermite delta to break LWE with the
embedding approach to be

δ ≈
(

Γ (1 + m+1
2)1/(m+1)

√
π · m · τ · σE

q
m+1−n
m+1

)1/(m+1)

,

where the dimension is set to dim(Λq(Ae)) = m + 1. Note that it is possible
to apply this attack in a smaller subdimension. In fact, there exists an optimal
dimension that minimizes δ in Eq. (1). Our parameters, however, do not provide
enough LWE samples to allow an attack in the optimal dimension, and in this
case choosing the highest possible dimension seems to be optimal.

To achieve a small Hermite delta, it is necessary to run a basis-reduction
algorithm like BKZ [37] or its successor BKZ 2.0 [14]. Lindner and Peikert [26]
proposed the function

log2(T (δ)) = 1.8/ log2(δ) − 110

to predict the time necessary to achieve a given Hermite delta by BKZ. More
recently, Albrecht et al. [2] proposed the prediction

log2(T (δ)) = 0.009/ log2(δ)
2 − 27

High-Speed Signatures from Standard Lattices 93

based on data taken from experiments with BKZ 2.0 [27]. We will stick to this
estimation in the following, since it takes more recent improvements into consid-
eration. Combining it with the fact that they run their experiments on a machine
that performs about 2.3 · 109 operations per second, we estimate the number of
operations necessary to achieve a given Hermite factor with

T (δ) =
2.3 · 109

227
· 20.009/ log(δ)2 . (2)

We can therefore conclude that our LWE instance provides about 192 bits of
security against the embedding attack, which corresponds to a Hermite delta of
approximately 1.0048.

The efficacy of the standard embedding approach decreases significantly if
the instance does not provide enough samples for the attack to run in the optimal
dimension. Another attack, which is very suitable for LWE instances with few
samples, reduces LWE to an uSVP instance defined by the lattice Λ⊥

q (Ao) =
{v ∈ Z

m+n+1 | Ao · v = 0 mod q} for Ao =
[
A | I | b]

(we use the index
o because this attack runs in the lattice of the vectors that are orthogonal to
Ao). The main advantage of this attack is that it runs in dimension n + m + 1
(recall that the standard embedding approach runs in dimension m + 1). For
v =

(
s , e , −1

)T , we have Ao ·v = A · s+ e−b = 0 and therefore v ∈ Λ⊥
q (Ao)

is a small vector in the lattice. We estimate its length via ||v|| ≈ √||s||2 + ||e||2 ≈√
m + n · σ. Since det(Λq(Ao)) = qm with high probability [9], Eq. (1) predicts

the necessary Hermite delta to be approximately

δ ≈
(

Γ (1 + n+m+1
2)1/(n+m+1)

√
n + mσ · √

π · τ
q

m
n+m+1

)1/(n+m+1)

.

Using Eq. (2), we can estimate the hardness of our instance against this attack
to be about 130 bits (the Hermite delta is close to 1.0059).

4.2 Hardness of SIS

Instead of recovering the secret key, which corresponds to solving an instance of
LWE, an attacker could also try to forge a signature directly and thus solve an
SIS instance. We predict the hardness of SIS for the well-known lattice-reduction
attack (see for example [9]) like it was done in [6]. This attack views SIS as a
variant of the (approximate) shortest-vector problem and finds the short vector
by applying a basis reduction. Forging a signature through this attack requires
to find a reduced basis with Hermite factor

δ = (D/qm/(m+n))1/(n+m+1), (3)

with D = (max(2B, 2d−1) + 2E′ω) for E′ satisfying (2E′)m+n ≥ qm2132. Apply-
ing Eq. (2), we estimate that a successful forger requires to perform about 2159

operations (see Table 2).

94 Ö. Dagdelen et al.

4.3 An Instantiation for Software Efficiency

Choosing optimal parameters for the scheme is a non-trivial multi-dimensional
optimization problem and our final parameter set is given in Table 1. Since the
probability that the encoding function F maps two random elements to the
same value must be negligible (i.e. smaller than 2−128), we choose ω such that
2ω

(
n
ω

) ≥ 2128. Since Sc is distributed according to a Gaussian distribution with
parameter

√
ωσ, we can bound its entries by 14

√
ωσ. Consequently, B−U is lower

bounded by 14
√

ωσ(n − 1) such that the acceptance probability of a signature
Pacc (Line 8 in Fig. 1) is at least

Pacc =
(

2(B − U) + 1
2B

)m

=
(

2 · 14
√

ωσ(n − 1) + 1
2 · 14

√
ωσn + 1

)m

≈
(

1 − 1
n

)m

≈ 1/e .

The next important choice to be made is the value for the parameter d. It has a
determining influence on the trade-off between runtime and key sizes: The success
probability in the signing algorithm (Line 7 in Fig. 1) is given by (1 − 2L/2d)m,
which means that large values for d lead to a high success probability, and
thereby to fewer rejections implying better running times. On the other hand,
the security proof requires (2B)nqm−n ≥ 2(d+1)m+κ to be satisfied, which means
that increasing d implies larger values for q, hence, worsening runtime and key
sizes.

Our goal is to come up with a parameter set that ensures at least 128 bits of
security. We will focus on n,m and σ in this paragraph, since the other parame-
ters depend on them. For easy modular reduction we choose a modulus slightly
smaller than a power of two (like 229−3). Furthermore, dimensions n resp. m are
multiples of 4 to support four parallel operations in vector registers. In a way, n
determines the overall security level, and the choice of σ and n can be used to
balance the security of the scheme and the size of the second-order parameters
q and B. Using our parameters we have set L = Lnew = 3ωσ and thus reject
a secret key with probability 0.025 and accept with probability (1 − 2L/2d)m

where we get ≈0.63 instead of ≈0.34 for LBG = 7σω.
For instance, Fig. 2 shows for n = 532 how the lower bound on q depends on σ

for various values of m. Since too small values of σ lead to LWE-instances that are
significantly easier than 128 bits, the best possible choice that allows q = 229 − 3
is m = 840 and σ = 43. We further choose n = 532 which leads to ω = 18. This
results in the lower bound log2(B) ≥ 20.4, which allows our choice B = 221 − 1.

5 Implementation Details

In this section we discuss our techniques used for high performance on modern
desktop and mobile CPUs with fast vector units. More specifically, we optimized
the signature scheme for Intel Ivy Bridge CPUs with AVX, for Intel Haswell
CPUs with AVX2 and for ARMv7 CPUs with NEON vector instructions. We first
describe various high-level (platform-independent) optimizations for signing and

High-Speed Signatures from Standard Lattices 95

20 25 30 35 40 45 50 55 60 65 70
0

1

2

3

4

5
·109

σ

lo
w

er
bo

un
d

on
q

m = 868
m = 840
m = 812

q = 229 − 3

Fig. 2. Lower bound on q for n = 532 and various values of m

verification and then detail the low-level implementation techniques for the three
target platforms. Our implementation only optimizes signing and verification
speeds; our implementation includes a (slow) routine for key generation but we
will not discuss key generation here.

5.1 High-Level Optimizations

Regarding platform independent high-level optimizations we follow the approach
from [22] and would like to emphasize the changes to the algorithm (adding E
to the private key and choosing A as global constant) and improved rejection
sampling (usage of Lnew) as discussed in Sect. 3. For uniform sampling of y $←
[−B,B]n during signing we rely on the hybrid approach of seeding the Salsa20
stream cipher using true randomness from the Linux random number [22]. As
B = 221−1 we sample 3n+68 uniform bytes at once using Salsa20 and construct
a sample r′ from 3 bytes each. By computing r = r′ mod 222 we bring r into the
range [0, 222 −1], reject if r = 222 −1 and return r− (222 −1). The probability to
discard an element is 2−22 and by oversampling 68 bytes it is highly unlikely that
we have to sample additional randomness. We also exploit that c is sparse with
weight ω. Thus, we store c not as a vector but as list with ω tuples containing
the position and sign bits of entries which are non zero. Additionally, when
multiplying c with S and E, only a small subset of coefficients from S,E is
actually needed. As a consequence, we do not unpack the whole matrices S,E
from the binary representation of the secret key (which is the usual approach) but
just the coefficients that are required in this case. Additionally, during signing

96 Ö. Dagdelen et al.

we perform rejection sampling on w before we actually compute v in order to
be able to abort as early as possible (without leaking timing information). For
hashing H(�v�d, μ) and H(�w�d, μ), respectively, we pack the input to the hash
function after extraction of higher-order bits in order to keep the input buffer to
the hash function as small as possible.

5.2 Low-Level Optimizations in AVX and AVX2

With the Sandy Bridge microarchitecture, Intel introduced the AVX instruction
set. AVX extends the 16 128-bit XMM vector registers of the SSE instruction set
to 256-bit YMM registers. Arithmetic instructions treat these registers either as
vectors of 4 double-precision or 8-single precision floating-point numbers. Each
cycle, the Intel Sandy Bridge and later Ivy Bridge CPUs can issue one addition
instruction and one multiplication instruction on those vectors. The power of
these vector-arithmetic units was exploited by [22] to achieve very high speeds
for GLP signatures. We also use these floating-point vector operations for our
software. With the Haswell microarchitecture, Intel introduced AVX2, which
extends the AVX instruction set. There are two notable additions. One is that
vector registers can now also be treated as vectors of integers (of various sizes);
the other is that Intel added floating-point multiply-accumulate instructions.
Haswell CPUs can issue two floating-point multiply-accumulate vector instruc-
tions per cycle.

The basic approach for our implementation is that all elements of Zq are rep-
resented as double-precision floating-point numbers. The mantissa of a double-
precision float has 53 bits and a 29-bit integer can thus obviously be represented
exactly. One might think that 53 bits are still not enough, because products of
elements of Zq do not fit into the mantissa. However, the signature scheme never
computes the product of two full-size field elements. The largest products appear
in the matrix-vector multiplications Ay and Az. The coefficients of A are full-
size Zq elements in the interval [−(q−1)/2, (q−1)/2], but the coefficients of y are
in [−B,B] and the coefficients of z are in [−(B − U), B − U]. With B = 221 − 1
each coefficient multiplication in Ay produces a result of at most 49 bits.

Matrix-vector multiplication. The matrix-vector multiplications Ay and Az
are not only the operations which produce the largest intermediate results, they
are also the operations which dominate the cost for signing and verification,
respectively. The AVX and AVX2 implementations store the matrix A in trans-
posed form which allows more efficient access to the elements of A in vector
registers. One can think of the whole computation as a sequence of multiply-
accumulate instructions, where one factor is a vector register containing 4 coef-
ficients of A, the other factor is a vector register containing 4 copies of the same
coefficient of y (or z) and the accumulator is a vector register containing 4 result
coefficients. Loading the same coefficient of y into all 4 elements of a vector reg-
ister can be done efficiently through the vbroadcastsd instruction. Latencies
can be hidden by interleaving instructions from the computation of independent
vectors of result coefficients.

High-Speed Signatures from Standard Lattices 97

One might think that n ·m = 532 ·840 = 446880 multiplications and accumu-
lations translate into 111720 AVX and 55860 AVX2 cycles (because AVX handles
4 vectorized multiplications and 4 vectorized additions per cycle and AVX2 han-
dles 2× 4 vectorized multiply-accumulates per cycle), but this is not the case. It
turns out that arithmetic is not the bottleneck but access to matrix coefficients.
Note that if we store A as 446880 double-precision floats, the matrix occupies
about 3.5 MB of storage – way too much for the 32 KB L1 cache. Also note that
each matrix coefficient is used exactly once, which is the most cache-unfriendly
access pattern possible. We overcome this bottleneck to some extent by storing
the coefficients of A as 32-bit integers. We then load 4 coefficients (and con-
vert to double-precision floats on the fly) using the vcvtdq2pd instruction of
the AVX instruction set. An additional cost stems from reductions modulo q
of coefficients. We can use lazy-reduction, i.e., we do not have to reduce after
every multiply-accumulate. For example in the computation of Ay we have to
reduce after 16 multiply-accumulate operations. Our software is currently overly
conservative and reduces after 7 multiply-accumulates in both cases. We per-
form modular reduction of floating-point coefficients in the same way as [22]:
We produce a “carry” by multiplying by a floating-point approximation of q−1,
then use the vroundpd instruction to round that carry to the nearest integer,
multiply by q and then subtract the carry from the original value.

In total, the matrix-vector multiplication takes 278912 cycles on a Haswell
CPU and 488474 cycles on an Ivy Bridge CPU.

5.3 Low-Level Optimization in NEON

Fast vector units are not only present in large desktop and server CPUs but
also in mobile CPUs. Most ARM Cortex-A processors include the NEON vector
extensions. These extensions add 16 128-bit vector registers. The most powerful
arithmetic instructions are addition and subtraction of vectors of 4 32-bit integers
or 2 64-bit integers (one per cycle) and multiplication of vectors of 2 32-bit
integers producing as a result a vector of 2 64-bit integers (one every two cycles).
The NEON instruction set also includes multiply-accumulate at the same cost
of a multiplication.

For our optimized NEON implementation we represent elements of Zq as
32-bit signed integers. Products of coefficients in the matrix-vector multiplica-
tions Ay and Az are represented as 64-bit signed integers. Lazy reduction can
go much further than in AVX and AVX2; we only have to perform one reduction
modulo q at the very end of the computation.

In most aspects, the NEON implementation follows the ideas of the AVX and
AVX2 implementations, but two aspects are different. One aspect is that simply
storing the transpose of A is not sufficient for efficient vectorized access to the
elements of A. The reason is that the ARM-NEON addressing modes are by far
not as flexible as the Intel addressing modes. Therefore, we store the matrix A
such that each vector load instruction can simply pick up the next 4 coefficients
of A and then increment the pointer to A as part of the load instruction.

98 Ö. Dagdelen et al.

The other aspect is modular reduction. In NEON we are operating on integers
so the modular reduction technique we use for floats in AVX and AVX2 does not
work. This is where the special shape of q = 229 − 3 comes into play. Reduction
modulo q on integers can be achieved with various different approaches, we
currently use one shift, a logical and, and three additions to reduce modulo q.
Obviously we always reduce two coefficients in parallel using vector instructions.

The penalty for access to coefficients of A is even higher than on the Intel
platforms. Instead of 446880 cycles which one might expect from an arithmetic
lower bound, matrix-vector multiplication takes 2448008 cycles.

6 Results and Comparison

Our software follows the eBACS API [10] and we will submit the software to
eBACS for public benchmarking. In this section we do not report cycle counts
obtained by running the eBACS benchmarking framework SUPERCOP. The rea-
son is the same as in [22]: eBACS reports median cycle counts which is much too
optimistic for the signing procedure which includes rejection sampling. Instead,
we benchmark 10, 000 signature generations and report the average of those
measurements. Verification does not include any rejection sampling and we thus
report the more stable median of 10, 000 measurements.

We benchmarked our software on three machines, namely

– A machine with an Intel Core i7-4770K (Haswell) CPU running Debian GNU/
Linux with gcc 4.6.3. Compilation used compiler flags -msse2avx -march=
corei7-avx -O3 -std=gnu99.

– A machine with an Intel Core i5-3210M (Ivy Bridge) CPU running Ubuntu
GNU/Linux with gcc 4.6.3. Compilation used compiler flags -msse2avx
-march=corei7-avx -O3 -std=gnu99.

– A Beaglebone Black development board with a TI Sitara AM335x (ARM
Cortex-A8) CPU running Debian GNU/Linux with gcc 4.6.3. Compilation
used compiler flags -O3 -flto -march=armv7-a -Ofast
-funroll-all-loops -marm -mfpu=neon -fprefetch
-loop-arrays-mvectorize-with-neon-quad -mthumb-interwork
-mtune=cortex-a15.

All benchmarks were carried out on just one core of the CPU and we followed
the standard practice of turning off TurboBoost and hyperthreading.

Table 3 reports performance results of our software and compares it to pre-
vious implementations of lattice-based signatures. As an additional contribution
of this paper we improved the performance of the software presented in [22]. We
report both the original and the improved cycle counts in Table 3. For details on
the improvement we refer to the full version of this paper. Compared with our
work it becomes clear that usage of standard lattices only incurs a small perfor-
mance penalty. This is remarkable, as no efficient and quasi-logarithmic-runtime
arithmetic like the number-theoretic transform (NTT) is available for standard
lattices. Moreover, for a security level matching the security level of GLP we

High-Speed Signatures from Standard Lattices 99

expect our implementation to be much faster (m,n, q could be decreased). For
BLISS performance we rely on the implementation given in [16]. However, an
implementation of BLISS which uses techniques similar to those described in [22],
should be much faster due to smaller parameters and lower rejection rates than
in GLP. The main problem of BLISS is that it requires efficient (and secure)
sampling of Gaussian noise not only for key generation but also for signing. All
efficient techniques for Gaussian sampling rely heavily on secret branch condi-
tions or lookup tables, which are both known to create timing leaks (see [12]).

Table 3. Comparison of lattice-based-signature software performance

Conclusion and future work. With this work we have shown that the perfor-
mance impact of using standard lattices over ideal lattices for short digital sig-
natures is only small for signing and manageable for verification. Possible future
work might consist in evaluating the performance of an independent time imple-
mentation of vectorized BLISS or PASS. Moreover, NTRUsign might become
interesting again if it is possible to fix the security issues efficiently, as proposed
in [1].

Acknowledgment. We would like to thank Patrick Weiden, Rafael Misoczki, Shi Bai,
and Steven Galbraith for useful discussions. We would further like to thank the anony-
mous reviewers for their suggestions and comments.

100 Ö. Dagdelen et al.

References

1. Melchor, C.A., Boyen, X., Deneuville, J.-C., Gaborit, P.: Sealing the leak on clas-
sical NTRU signatures. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp.
1–21. Springer, Heidelberg (2014). 99

2. Albrecht, M.R., Fitzpatrick, R., Göpfert, F.: On the efficacy of solving LWE by
reduction to unique-SVP. Cryptology ePrint Archive, Report 2013/602 (2013).
http://eprint.iacr.org/2013/602/. 92

3. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
87

4. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica 6(1), 1–13 (1986). http://www.csie.nuk.edu.tw/∼cychen/Lattices/
Onlovaszlatticereductionandthenearestlatticepointproblem.pdf. 90, 102

5. Bai, S., Galbraith, S.: Personal communication and e-mail exchanges (2014). 86,
90

6. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp.
28–47. Springer, Heidelberg (2014). 85, 86, 87, 88, 89, 90, 92, 93, 102

7. El Bansarkhani, R., Buchmann, J.: Improvement and efficient implementation of
a lattice-based signature scheme. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 48–67. Springer, Heidelberg (2014). 84, 85, 99

8. Bernstein, D.J.: A subfield-logarithm attack against ideal lattices, Feb 2014. http://
blog.cr.yp.to/20140213-ideal.html. 85

9. Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post-Quantum Cryptography.
Mathematics and Statistics. Springer, Heidelberg (2009). 84, 85, 91, 93

10. Bernstein, D.J., Lange, T.: eBACS: ECRYPT benchmarking of cryptographic sys-
tems. http://bench.cr.yp.to. Accessed 25 Jan 2013. 86, 98

11. Boorghany, A., Jalili, R.: Implementation and comparison of lattice-based identi-
fication protocols on smart cards and microcontrollers. IACR Cryptology ePrint
Archive, 2014. http://eprint.iacr.org/2014/078/. 85

12. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. IACR Cryptology
ePrint Archive (2014). http://eprint.iacr.org/2014/599. 86, 99

13. Brumley, D., Boneh, D.: Remote timing attacks are practical. In: SSYM 2003
Proceedings of the 12th Conference on USENIX Security Symposium. USENIX
Association (2003). http://crypto.stanford.edu/dabo/pubs/papers/ssl-timing.pdf.
86

14. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011). 92

15. Couvreur, A., Otmani, A., Tillich, J.P.: Polynomial time attack on wild McEliece
over quadratic extensions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 17–39. Springer, Heidelberg (2014). 85

16. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). 85, 86, 88, 89, 99

17. Dwarakanath, N.C., Galbraith, S.D.: Sampling from discrete Gaussians for lattice-
based cryptography on a constrained device. Appl. Algebra Eng. Commun. Com-
put. 25(3), 159–180 (2014). 86

http://eprint.iacr.org/2013/602/
http://www.csie.nuk.edu.tw/~cychen/Lattices/Onlovaszlatticereductionandthenearestlatticepointproblem.pdf
http://www.csie.nuk.edu.tw/~cychen/Lattices/Onlovaszlatticereductionandthenearestlatticepointproblem.pdf
http://blog.cr.yp.to/20140213-ideal.html
http://blog.cr.yp.to/20140213-ideal.html
http://bench.cr.yp.to
http://eprint.iacr.org/2014/078/
http://eprint.iacr.org/2014/599
http://crypto.stanford.edu/dabo/pubs/papers/ssl-timing.pdf

High-Speed Signatures from Standard Lattices 101

18. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). 88

19. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). 90, 91

20. Göttert, N., Feller, T., Schneider, M., Buchmann, J., Huss, S.: On the design of
hardware building blocks for modern lattice-based encryption schemes. In: Prouff,
E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 512–529. Springer,
Heidelberg (2012). 85

21. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012). 84,
85, 88

22. Güneysu, T., Oder, T., Pöppelmann, T., Schwabe, P.: Software speed records for
lattice-based signatures. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932,
pp. 67–82. Springer, Heidelberg (2013). 85, 86, 95, 96, 97, 98, 99

23. Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W.: Practical sig-
natures from the Partial Fourier recovery problem. In: Boureanu, I., Owesarski, P.,
Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 476–493. Springer, Heidel-
berg (2014). 99

24. Ishiguro, T., Kiyomoto, S., Miyake, Y., Takagi, T.: Parallel Gauss Sieve algorithm:
solving the SVP challenge over a 128-Dimensional ideal lattice. In: Krawczyk, H.
(ed.) PKC 2014. LNCS, vol. 8383, pp. 411–428. Springer, Heidelberg (2014). 85

25. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). 86

26. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011). 90, 92, 102, 103

27. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013).
90, 93, 102, 103

28. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). 88

29. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). 88

30. Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with
Errors over Rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
1–23. Springer, Heidelberg (2010). 84

31. Misoczki, R., Barreto, P.S.L.M.: Compact McEliece keys from Goppa codes. In:
Jacobson Jr, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867,
pp. 376–392. Springer, Heidelberg (2009). 85

32. Oder, T., Pöppelmann, T., Güneysu, T.: Beyond ECDSA and RSA: Lattice-based
digital signatures on constrained devices. In: DAC 2014 Proceedings of the The 51st
Annual Design Automation Conference on Design Automation Conference, pp. 1–
6. ACM (2014). https://www.sha.rub.de/media/attachments/files/2014/06/bliss
arm.pdf. 85

https://www.sha.rub.de/media/attachments/files/2014/06/bliss_arm.pdf
https://www.sha.rub.de/media/attachments/files/2014/06/bliss_arm.pdf

102 Ö. Dagdelen et al.

33. Pöppelmann, T., Ducas, L., Güneysu, T.: Enhanced lattice-based signatures on
reconfigurable hardware. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS,
vol. 8731, pp. 353–370. Springer, Heidelberg (2014). 85, 86

34. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) STOC 2005 Proceedings of the Thirty-
Seventh Annual ACM Symposium on Theory of computing, pp. 84–93. ACM
(2005). http://www.cims.nyu.edu/∼regev/papers/qcrypto.pdf. 85

35. Roy, S.S., Vercauteren, F., Mentens, N., Chen, D.D., Verbauwhede, I.: Compact
ring-LWE cryptoprocessor. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS,
vol. 8731, pp. 371–391. Springer, Heidelberg (2014). 85

36. Schneider, M.: Sieving for shortest vectors in ideal lattices. In: Youssef, A., Nitaj,
A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 375–391.
Springer, Heidelberg (2013). 85

37. Schnorr, C.-P., Euchner, M.: Lattice basis reduction: Improved practical algo-
rithms and solving subset sum problems. Math. Program. 66, 181–199 (1994).
http://www.csie.nuk.edu.tw/∼cychen/Lattices/LatticeBasisReductionImproved
PracticalAlgorithmsandSolvingSubsetSumProblems.pdf. 92

A Decoding Attack

An approach for solving LWE that has not been considered in the original
work [6] is the decoding attack. It is inspired by the nearest plane algorithm pro-
posed by Babai [4]. For a given lattice basis and a given target vector, it returns
a lattice vector that is relatively close to the target vector. Hence, improving
the quality of the lattice basis yields a vector that is closer to the target vector.
Lindner and Peikert [26] proposed the nearest planes algorithm, a generaliza-
tion of the former that returns more than one vector and thereby enhances the
previous algorithm with a trade-off between its runtime and the probability of
returning the actual closest vector within the set of obtained vectors.

There is a continuous correspondence between the success probability of this
attack and the Hermite delta. We follow the approach proposed by Lindner and
Peikert [26] to predict this success probability. In short, they show how one can
use the Geometric Series Assumption (GSA) in order to predict the length of the
Gram-Schmidt vectors of a reduced basis, and this estimation in turn serves to
predict the success probability of the attack. Together with an estimation of the
running time of nearest plane – the authors propose 2−16 s – and the runtime
estimation for basis reduction (see Eq. (2)), it is possible to predict the runtime
and success probability of nearest planes.

Optimizing the trade-offs between the time spent on the attack and its suc-
cess probability is not trivial, but simulations of the attack show that it is in
most cases preferable to run multiple attacks with small success probabilities.
This technique is called randomization and was investigated by Liu and Nguyen
(see [27]), together with a further improvement called pruning. In comparison
to the big improvement achieved with randomization, pruning leads only to a
moderate speedup. The maximal speedup achieved in [27] is about 26, while

http://www.cims.nyu.edu/~regev/papers/qcrypto.pdf
http://www.csie.nuk.edu.tw/~cychen/Lattices/LatticeBasisReductionImprovedPracticalAlgorithmsandSolvingSubsetSumProblems.pdf
http://www.csie.nuk.edu.tw/~cychen/Lattices/LatticeBasisReductionImprovedPracticalAlgorithmsandSolvingSubsetSumProblems.pdf

High-Speed Signatures from Standard Lattices 103

randomization can reduce the cost by a factor of 232. Since it turned out that
the decoding-attack is outperformed by other attacks by far (and pruning is fur-
thermore very hard to analyze), we focused on the randomized version.

Briefly speaking, [26] provides the tools necessary to estimate the expected
runtime of the attack for a given set of attack parameters, and [27] proposed
to minimize the expected runtime (i.e. the time for one attack divided by the
success probability of the attack). We applied this technique to our instance (cf.
Table 2).

	High-Speed Signatures from Standard Lattices
	1 Introduction
	2 Preliminaries
	3 The Bai-Galbraith Signature Scheme
	3.1 Description of the BG Signature Scheme
	3.2 Optimizing Rejection Sampling

	4 Security Analysis and Parameter Selection
	4.1 Hardness of LWE
	4.2 Hardness of SIS
	4.3 An Instantiation for Software Efficiency

	5 Implementation Details
	5.1 High-Level Optimizations
	5.2 Low-Level Optimizations in AVX and AVX2
	5.3 Low-Level Optimization in NEON

	6 Results and Comparison
	References

