
Practical Attacks on AES-like Cryptographic
Hash Functions

Stefan Kölbl(B) and Christian Rechberger

Technical University of Denmark, Kongens Lyngby, Denmark
stek@dtu.dk

Abstract. Despite the great interest in rebound attacks on AES-like hash
functions since 2009, we report on a rather generic, albeit keyschedule-
dependent, algorithmic improvement: A new message modification tech-
nique to extend the inbound phase, which even for large internal states
makes it possible to drastically reduce the complexity of attacks to very
practical values for reduced-round versions. Furthermore, we describe new
and practical attacks on Whirlpool and the recently proposed GOST R
hash function with one or more of the following properties: more rounds,
less time/memory complexity, and more relevant model. To allow for easy
verification, we also provide a source-code for them.

Keywords: Hash functions · Cryptanalysis · Collisions · Whirlpool ·
GOST R · Streebog · Practical attacks

1 Introduction

Cryptographic hash functions are one of the most versatile primitives and have
many practical applications like integrity checks, message authentication, digital
signature or password protection. Often they are a critical part of more complex
systems whose security might fall apart if hash a function does not provide the
properties we expect it to have.

Cryptographic hash functions take as input a string of arbitrary finite length
and produce a fixed-sized output of n bits called hash. As a consequence, the
following main security requirements are defined for cryptographic hash func-
tions:

– Preimage Resistance: For a given output y it should be computationally
infeasible to find any input x′ such that y = h(x′).

– Second Preimage Resistance: For given x, y = h(x) it should be compu-
tationally infeasible to find any x′ �= x such that y = h(x′).

– Collision Resistance: It should be computationally infeasible to find two
distinct inputs x, x′ such that h(x) = h(x′).

For any ideal hash function with n-bit output size, we can find preimages or
second preimages with a complexity of 2n, and collisions with a complexity of
2n/2 using generic attacks.
c© Springer International Publishing Switzerland 2015
D.F. Aranha and A. Menezes (Eds.): LATINCRYPT 2014, LNCS 8895, pp. 259–273, 2015.
DOI: 10.1007/978-3-319-16295-9 14



260 S. Kölbl and C. Rechberger

IV f

m0

f

m1

f

m2

x1 x2 xn

f

mn

h

Fig. 1. Iterative construction for a cryptographic hash function.

Most cryptographic hash functions are constructed iteratively by splitting
the message into evenly sized blocks mi and using a compression function f to
update the state. We call the intermediate results xi chaining values and the
final output h hash value (Fig. 1).

The security proofs for the hash function rely on the difficulty of finding a
collision for this compression function, hence it is also of interest to consider the
properties of the compression function and find properties which distinguish it
from an ideal function.

– semi-free start collision: Find x,m,m′ such that f(x,m) = f(x,m′).
– free-start collision: Find x, x′,m,m′ such that f(x,m) = f(x′,m′).
– near collision: Find x,m,m′ such that f(x,m)⊕f(x,m′) has a low Hamming

weight.

To sum up the various types with respect to their relevance: a semi-free-start
collision is more interesting than a free-start collision, and a collision is more
interesting than a near-collision.

1.1 Motivation

Cryptanalytic attacks are often hard to verify. Cryptanalysts often concentrate
on the total running time of the attack, which is boiled down to a single number.
While one can argue about the exact transition point between cryptanalytic
attacks of practical and theoretical time complexity, it is often placed around an
equivalent of 264 calls to the primitive [1]. While this is a reasonable assumption
for state-level adversaries, it is out of reach for academic research labs. However,
the ability to fully implement and verify attacks is crucial, as this is often the
only way to make sure that all details are modelled correctly in the theoretical
analysis. In this paper we therefore aim at attacks that can actually be executed
(and verified) with limited budget computing resources.

In this paper we show a new practical attack on a class of AES-like hash func-
tions. We show attacks on reduced round versions of the ISO/IEC 10118-3 stan-
dard Whirlpool [2] and the new Russian federal standard GOST R 34.11-2012
[3]. The model we consider is semi-free-start attacks on the compression func-
tion, which in contrast to the free-start attacks do not allow the attacker to
choose different chaining values in a pair of inputs. This reduced degree of free-
dom makes the task of cryptanalysts harder, but is more relevant as it is closer
to the actual use in the hash function.



Practical Attacks on AES-like Cryptographic Hash Functions 261

1.2 Contribution

Despite a lot of attention on rebound-attacks of AES and AES-like primitives,
we show that more improvements are possible in the inbound phase.

To the best of our knowledge, currently no practical attacks on reduced round
GOST R have been published. However, there exists a practical 4-round free-start
collision attack on the Whirlpool compression function [4]. It seems very hard
to apply this specific attack directly to GOST R due to the extra round in the key
schedule, which gives GOST R additional security against these free-start attacks.

In this paper we show a new method to carry out a 4-round practical attack on
the Whirlpool and GOST R compression function. Additionally, and in contrast
to many other attacks known on GOST R, we do not need the freedom to add
half a round at the end to turn a near-collision into a collision. As the full hash
function also does not end with a half round, we argue that a result on 4 rounds
can actually be more informative than a result on 4.5 rounds.

New message modification technique. The attack is based on the rebound
attack and start-in-the-middle techniques, and it carefully chooses the key input
to significantly reduce the complexity resulting in a very low complexity1. We are
also able to improve the results on 6.5 rounds by extending this attack. We give an
actual example for such a collision, and have the source code of both the attack and
the general framework publicly available to facilitate further research on practical
attacks2. The method is not specific to a particular primitive, but is an algorithmic
technique that however depends on two conditions in a primitive to hold (see also
Sect. 4).

1.3 Related Work

In Table 1 we summarize the practical results on Whirlpool and GOST R. As
the GOST R compression function uses a design similar to the Whirlpool hash
function [2], many of the previous results on Whirlpool can be applied to GOST R.
We would also like to note on adding half a round at the end for GOST R. This
does not always make an attack more difficult, and in some cases it makes it
easier, as it makes it possible to turn a near-collision into a collision, therefore
we distinguish for our attacks if it applies for both cases.

There have also been practical attacks on other AES-based hash functions
like Maelstroem (6 out of 10 rounds [7]), Grøstl (6 out of 10 rounds [8]) and
Whirlwind (4.5 out of 12 rounds [9]).

1.4 Rebound Attacks

The rebound attack is a powerful tool in the cryptanalysis of hash functions,
especially for finding collisions for AES-based designs [10,11]. The cipher is split

1 Naturally, the improvement is not applicable for constructions or modes that do not
allow modification of the key input.

2 The source-code can be found at https://github.com/kste/aeshash.

https://github.com/kste/aeshash


262 S. Kölbl and C. Rechberger

Table 1. Summary of attacks with a complexity up to 264 on AES-based hash func-
tions. Time is given in compression function calls and memory in bytes.

Function Rounds Time Memory Type Reference

GOST R 4.5 264 216 semi-free-start collision [5]

4.75 practical 28 semi-free-start near-collision [6]

4 219.8 216 semi-free-start collision this work

4.5 219.8 216 semi-free-start collision this work

5.5 264 264 semi-free-start collision [5]

6.5 264 216 semi-free-start collision this work

Whirlpool 4 225.1 216 semi-free-start collision this work

6.5 225.1 216 semi-free-start near-collision this work

4 28 28 free-start collision [5]

7 264 28 free-start collision [4]

into three sub-ciphers
E = Efw ◦ Ein ◦ Ebw

and the attack proceeds in two steps. First, the inbound phase which is an
efficient meet-in-middle in Ein using the available degree of freedom. This is
followed by a probabilistic part, the outbound phase in Efw and Ebw using the
solutions from the inbound phase. The basic 4-round rebound attack uses a
differential characteristic with 1 − 8 − 64 − 8 − 1 active bytes per round and has
a complexity of 264. There are many techniques extending and improving this
attack. Some can even improve this very basic and simple setting of a square
geometry, like start-from-the-middle [8], super S-Box [12,13] or solving three fully
active states in the middle [14,15]. Other generic extensions exploit additional
degrees of freedom or non-square geometries to improve results, like and using
multiple inbounds [12,16]. In these settings, improved list-matching techniques
[17,18] are also a generic improvement.

2 Description of GOST R

This section gives a short description of the GOST R compression function as
we will use it for describing our attack in detail. As we are only looking at the
compression function, we leave out some details not relevant for the upcoming
attack in order to simplify the description. For a more detailed description of
GOST R we refer to [3].

The compression function g uses two 512-bit inputs (the message block m
and the chaining value h) to update the state in the following way (see Fig. 2)

gN (h,m) = E(L ◦ P ◦ S(h),m) ⊕ h ⊕ m (1)

where E is an AES-based block cipher using a state of 8 × 8 bytes and S, P, L
are the same functions as used in this block cipher (see below).



Practical Attacks on AES-like Cryptographic Hash Functions 263

E
SPL

mi

hi

hi+1

Fig. 2. An outline of the GOST R compression function. The chaining input is processed
through an additional round before entering E

If we want to find a collision for the compression function, the following
equation must hold

Δmi ⊕ Δhi ⊕ ΔE(hi,mi) = 0 (2)

2.1 Block Cipher E

The block cipher E takes two 512-bit inputs M and K0 and produces a 512-bit
output C. The state update consists of 12 rounds r and a final key addition.

L1 = L ◦ P ◦ S ◦ AK(M,K0)

Li+1 = L ◦ P ◦ S ◦ AK(Li,Ki) i = 1 . . . 11

C = AK(L12,K12)

The following four operations are used in one round (see Fig. 3):

– AK Adds the key byte-wise by XORing it to the state.
– S Substitutes each byte of the state independently using an 8-bit S-Box.
– P Transposes the state.
– L Multiplies each row by an 8 × 8 MDS matrix.

The 512-bit key input is expanded to 13 subkeys K0, . . . ,K12. This is done
similar to the state update but AK is replaced with the addition of a round-
dependent constant RCr.

Li+1 = L ◦ P ◦ S ◦ AK(K0, RC0) i = 0 . . . 11

K12 = AK(L12,K12)



264 S. Kölbl and C. Rechberger

K1

L0 AK1 S1 P1 L1

AK S P L

Fig. 3. The four operations used in one round of GOST R.

2.2 Notation

The notation we use for naming the states is:

– The state after applying the round function {AK,S, P, L} in round r is named
{AKr, Sr, P r, Lr}

– The byte at position x, y in state Xr is named Xr
x,y

– A row is denoted by Xr
∗,y and a column by Xr

x,∗
– and denote that there is a difference in a byte.
– and are used for highlighting values of a byte.

2.3 Differential Properties

The attacks in this paper are based on differential cryptanalysis, and the result-
ing complexity correlates with the differential properties of the round functions.
Therefore, to ease understanding, we give a short overview of the properties that
are relevant for our attack.

The linear layer L has a strong influence on the number of active S-Boxes.
There is no proof given that the linear layer L is MDS or has a branch number of
9 in the GOST R reference [3], but it was shown that this is the case in [19]. Hence,
if we have one active byte at the input we will get 8 active bytes at the output
with probability one. If we have a active bytes at the input the probability that
there will be b active bytes at the output under the condition a �= 0, b �= 0 and
a + b ≥ 9 is 2(b−8)8.

The properties of the S-Box have a strong influence on the complexity of our
attack, as will be seen later. Given a S-Box S : Fn

2 → F
n
2

{x | S(x) ⊕ S(x ⊕ a) = b} (3)

is the number of solutions for an input a and output difference b. Table 2 gives
the number of solutions for some S-Box designs used in practice.

To get a bound on the probability of the differential characteristics we are
interested in the maximum value of Eq. 3 which we will refer to as the maximum
differential probability (mdp) of an S-Box. A 4-round differential characteristic
has at least 81 active bytes due to the properties of the linear layer, therefore
any 4-round characteristic has a probability of ≤mdp81.



Practical Attacks on AES-like Cryptographic Hash Functions 265

Table 2. Comparison of different 8-bit S-Box designs used in AES-based hash
functions.

Solutions AES Whirlpool GOST R

0 33150 39655 38235

2 32130 20018 22454

4 255 5043 4377

6 - 740 444

8 - 79 25

256 1 1 1

For the rebound attack it is also important to know the average number
of possible output differences, given a non-zero input difference. We will refer
to this as the average number of solutions (ANS) for an S-Box which can be
computed by constructing the differential distribution table (DDT). The ANS
corresponds to the average number of non-zero entries in each row of the DDT.

This property influences the complexity for the matching step in the inbound
phase and increases the costs of finding one solution. For the GOST R S-Box we
get on average 107.05 solutions.

3 Attack on GOST R

In this section we describe our 4-round practical attack in detail and also show
how it can be applied to more rounds. The description of the attack is split into
two parts. First, we find a differential characteristic leading to a collision. Then
we show how to construct a message pair following this characteristic in a very
efficient way.

AK0 AK1 AK2 AK3 AK4

S
P
L

AK

S
P
L

AK

S
P
L

AK

S
P
L

AK

Fig. 4. The 4-round differential characteristic used in our attack.

3.1 Constructing the Differential Characteristic

For our 4-round attack we use a characteristic of the form 1 − 8 − 64 − 8 − 1
(see Fig. 4). This truncated differential path has the minimal number of pos-
sible active S-Boxes for 4 rounds and is the starting point for many attacks.
Next, we will determine the values of the differences before continuing with the
construction of the message pair.



266 S. Kölbl and C. Rechberger

The approach we use for this is based on techniques from the rebound attack,
like the start-in-the-middle technique used in [8]. This approach would also give
us an efficient way to find both the characteristic and message pair for a char-
acteristic of the form 1 − 8 − 64 − 8. However this would still lead to a higher
attack complexity if extended to 4 rounds. Hence, we only use ideas from this
approach to determine the differential characteristic and do not assume the key
input as constant.

Precomputation. First we pre-compute the differential distribution table
(DDT) of the S-Box and we also construct a list Mlin. This list contains all
possible 255 non-zero values of P0,0 and the result after applying L (see Fig. 5).

P0 L1

L

Fig. 5. Computing list Mlin for all 255 values of P 0
0,0 (blue) to find all possible transi-

tions from 1 to 8 bytes. Gray bytes are set to zero (Color figure online).

Construction

1. Start with a random difference in AK4
0,0 and propagate it back to S2 through

the inverse round functions. For the linear steps this is deterministic, and for
propagating through the S-Box we choose a random possible input difference
to the given output difference. After this step we will have a full active state
in S2.

2. For each difference in S2 we look up the set of all possible input differences
from the DDT for each byte of the state.

3. Check for each row of AK2 whether there is a possible match with the rows
stored in Mlin (see Fig. 6).

– The probability that a single byte matches is 107.05/255 ≈ 2−1.252 there-
fore a row matches with a probability of 2−10.018.

– If we take into account that Mlin has 255 entries we expect to find a
match with a probability of 1 − (1 − 2−10.018)255 ≈ 2−2.2.

– Therefore the probability for a match of all 8 rows is given by

(2−2.2)8 = 2−17.6 (4)

After this step we have found a characteristic spanning from S1 to AK4.
Now we have to repeat the previous process for a single row to find the right
differences in AK1. This has a probability of 2−2.2 of succeeding. Hence we need
to repeat the whole process 219.8 times to obtain one solution.



Practical Attacks on AES-like Cryptographic Hash Functions 267

107.05 differences

255 possible rows Mlin

AK2 S2

S

Fig. 6. The matching step in the middle is done on each row individually. There are
28 possible values for each row AK2

∗,j for j = 0, 1, . . . , 7.

Note that we can only choose 255 differences for AK4
0,0, but we can also

freely choose from the set of possible differences when propagating from S3 to
AK3. This gives us an additional 107.05 choices for each row in S2 leading
to ≈ 254 possible values for the state S2. Hence, we have enough starting points
for finding our differential characteristic.

3.2 Finding the Message Pair

Now we want to find a message pair which follows the previously constructed
characteristic. At this point only the differences, but not the values of the state,
are fixed. We start by fixing the values of AK2 such that the 64 differential
transitions S2 = S(AK2) are fulfilled.

Next we use the key input to solve any further conditions on the active
S-Boxes in order to lower the complexity of our attack. This step is split into
solving the conditions on S1

∗,0 = S(AK1
∗,0) and S3

0,∗ = S(AK3
0,∗).

Solving Conditions at the Start. We have 8 conditions on S1
∗,0 which we need

to solve. These conditions can be solved row-wise by choosing the corresponding
values in K2 such that P−1(L−1(AK2 ⊕ K2)) = S1. We can do this step row-
wise by solving a linear equation. As there is only a single byte condition for

AC
S
P
L

AK1 S1 P1 L1

AK2 S2 P2 L2

AK S P L

AK S P L

K1

K2

Fig. 7. The values of AK2 are fixed. We solve 7 of the conditions on S1 by using the
freedom in K2 (bytes marked orange), which allows us to influence the values on the
bytes in S1 (orange slash pattern).



268 S. Kölbl and C. Rechberger

each row, we only need one byte in the corresponding row of K2 to solve the
equation (see Fig. 7). The remaining bytes are fixed to arbitrary values as we have
no further conditions to fulfill at this step. These bytes could be used to solve
more conditions for other differential characteristics or to construct additional
solutions, as we will do for extending the attack on more rounds.

In this step we can generate up to 256 solutions per row. Note that we only
do this step for 7 rows, as we need the last row in the next step.

Solving Conditions at the End. For solving the conditions S3 = S(AK3),
we can use the bytes in K2

∗,7. These bytes form a column in KP3
7,∗ (see Fig. 8),

which allows us to solve a single byte condition per row for AK3.

1. Assume that K2
∗,0−6 are fixed and propagate them forward to KP3.

2. We can now solve the conditions for each row individually. In each row there
are 7 bytes fixed in KP 3 and a single byte in K3 (from AK3). This gives us a
linear equation with one solution per row and allows us to solve all conditions
on AK3.

AC2 KS2 KP2 K2

AC3 KS3 KP3 K3

AC S P L

AC S P L

AK

AK

AK2

AK3

Fig. 8. Solving all the conditions on AK3. The orange values are fixed from the previous
step and the purple values are used to fulfill the conditions on AK3.

Remaining Conditions. We still need to solve one byte condition on S1
0,7,

which can be done by repeating the previous procedure 28 times. The bytes
which are used to solve the conditions on AK3 form a row in K2 and influence
the values of L1 resp. P 1 and S1 (see Fig. 11 in Appendix A). This implies that
we can change the value of S1

0,7 by constructing different solutions for K2
∗,7.

The only remaining condition is ΔAK0
0,0 = ΔAK4

0,0, which can again be
solved by repeating the previous steps 28 times. It follows that we need to repeat
the algorithm shown in Sect. 3.2 about 216 times.

Complexity. We can construct the differential characteristic with a complexity
of 219.8. Finding a message pair following this characteristic requires 216 steps
using our message modification technique. Hence, the total complexity of the
attack is ≈ 219.9. We have implemented this attack and verified our results.
The un-optimized proof-of-concept implementation in Python is publily available
[20]. An example for a 4-round collision can be found in AppendixB.



Practical Attacks on AES-like Cryptographic Hash Functions 269

3.3 Extending the Attack

As we only need to control 15 bytes of the key, we can extend the attack on 6.5
rounds by using a characteristic of the form 8 − 1 − 8 − 64 − 8 − 1 − 8. In this
case we would use the same approach to find the differential characteristic for 4
rounds and in the message modification part we would construct more solutions
by using the additional freedom in the key. This will influence the differences at
the input/output of the 6.5 rounds. The complexity of this attack is ≈264, as
the 8-byte difference at the input/output needs to be equal (Fig. 9).

AK0 AK1 AK5 AK6 P6

S
P
L

AK

S
P
L

AK

S
P
L

AK

S
P
L

AK

S
P
L

AK

S
P

4-round attack

Fig. 9. The 4-round attack is extended by one round in the beginning and one round
in the end to mount an attack on 6.5 rounds.

4 Application to Other AES-based Hash Functions

The message modification technique presented is not specific to GOST R, but
requires a few criteria to be met. First the transposition layer has to have
the property that every byte of a single row/column is moved to a different
row/column (see Fig. 10). This is true for all AES-based hash functions we con-
sider in this paper, as it is a desired property against other attacks.

The second criteria is that there is a key addition in every round, hence our
attack is applicable to both Whirlpool and GOST R. Permutation-based designs
like Grøstl do not have this property. The attacker has less control of the input
for each round, which makes the hash function more resistant against these types
of attacks.

The complexity of the attack depends on the choice of the S-Box, as this
directly influences the costs of constructing the differential characteristic. Given
the average number of solutions s for Δout = S(Δin) with a fixed value Δin,
this directly gives the complexity for the matching step of the attack(

1 −
(

1 − s

255

)255
)8

(5)

Whirlpool

1 2 3 4 5 6 7 8 1
2

3
4

5
6

7
8

SC

GOST R

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

P

Fig. 10. The transposition layer used in Whirlpool and GOST R.



270 S. Kölbl and C. Rechberger

Table 3. Comparing the maximum differential probability (MDP) and average number
of solutions (ANS) for different 8-bit S-Boxes in AES-based designs.

S-Box MDP ANS Matching Costs #S2

AES 2−6 127 26.42 255.91

Whirlpool 2−5 101.49 225.10 253.32

GOST-R 2−5 107.05 219.77 253.94

and the number of possible states for S2 is ≈ s 8. A comparison of the different
S-Boxes used in AES-based hash functions is given in Table 3.

5 Conclusion

In this paper, we have shown new practical attacks for both the Whirlpool
and GOST R compression function. We presented a 4-round attack with very
low complexity of 225.10 resp. 219.8. Importantly, the attack is fully verified and
source-code for it is available. In the case of GOST R the attack can be extended
to find collisions for 6.5 rounds with a complexity of 264 and for Whirlpool we
can extend it to construct a near-collision in 50 bytes with a complexity of 225.10

for 6.5 rounds of the compression function. The difference in the results for GOST
R and Whirlpool is due to the ShiftColumns operation which does not align the
bytes to lead to a collision for the differential characteristic we use.

Our attack is applicable to all AES-based primitives where it is possible for
the attacker to control the key input for a few rounds. This significantly reduces
the complexity of previous attacks and might be useful to speed up other attacks
on AES-based hash-function designs.

References

1. Biryukov, A., Dunkelman, O., Keller, N., Khovratovich, D., Shamir, A.: Key recov-
ery attacks of practical complexity on AES-256 variants with up to 10 rounds. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 299–319. Springer,
Heidelberg (2010)

2. Barreto, P., Rijmen, V.: The Whirlpool hashing function. In: First open NESSIE
Workshop, Leuven, Belgium, vol. 13, p. 14 (2000)

3. Dolmatov, V., Degtyarev, A.: GOST R 34.11-2012: Hash Function (2013). http://
tools.ietf.org/html/rfc6986

4. Sasaki, Y., Wang, L., Wu, S., Wu, W.: Investigating fundamental security require-
ments on whirlpool: improved preimage and collision attacks. In: Wang, X., Sako,
K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 562–579. Springer, Heidelberg
(2012)

5. Wang, Z., Yu, H., Wang, X.: Cryptanalysis of GOST R Hash Function. Cryptology
ePrint Archive, Report 2013/584 (2013). http://eprint.iacr.org/

http://tools.ietf.org/html/rfc6986
http://tools.ietf.org/html/rfc6986
http://eprint.iacr.org/


Practical Attacks on AES-like Cryptographic Hash Functions 271

6. AlTawy, R., Kircanski, A., Youssef, A.M.: Rebound Attacks on Stribog. Cryptology
ePrint Archive, Report 2013/539 (2013). http://eprint.iacr.org/

7. Kölbl, S., Mendel, F.: Practical attacks on the maelstrom-0 compression func-
tion. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 449–461.
Springer, Heidelberg (2011)

8. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved cryptanalysis of
the reduced Grøstl compression function, ECHO permutation and AES block cipher.
In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol.
5867, pp. 16–35. Springer, Heidelberg (2009)

9. Barreto, P.S.L.M., Nikov, V., Nikova, S., Rijmen, V., Tischhauser, E.: Whirlwind:
a new cryptoaphic hash function. Des. Codes Crypt. 56(2–3), 141–162 (2010)

10. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The rebound attack:
cryptanalysis of reduced whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

11. Lamberger, M., Mendel, F., Schläffer, M., Rechberger, C., Rijmen, V.: The rebound
attack and subspace distinguishers: application to whirlpool. J. Cryptol., 1–40
(2013)

12. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound
Distinguishers: Results on the Full Whirlpool Compression Function. [21] 126–143

13. Gilbert, H., Peyrin, T.: Super-Sbox cryptanalysis: improved attacks for AES-like
permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365–
383. Springer, Heidelberg (2010)

14. Jean, J., Naya-Plasencia, M., Peyrin, T.: Improved rebound attack on the finalist
Grøstl. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 110–126. Springer,
Heidelberg (2012)

15. Jean, J., Naya-Plasencia, M., Peyrin, T.: Improved cryptanalysis of AES-like per-
mutations. J. Cryptology 27(4), 772–798 (2014)

16. Matusiewicz, K., Naya-Plasencia, M., Nikolic, I., Sasaki, Y., Schläffer, M.: Rebound
Attack on the Full Lane Compression Function. [21] 106–125

17. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient dissection of composite
problems, with applications to cryptanalysis, knapsacks, and combinatorial search
problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 719–740. Springer, Heidelberg (2012)

18. Naya-Plasencia, M.: How to improve rebound attacks. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 188–205. Springer, Heidelberg (2011)

19. Kazymyrov, O., Kazymyrova, V.: Algebraic Aspects of the Russian Hash Standard
GOST R 34.11-2012. Cryptology ePrint Archive, Report 2013/556 (2013). http://
eprint.iacr.org/

20. https://github.com/kste/aeshash
21. Matsui, M. (ed.): ASIACRYPT 2009. LNCS, vol. 5912. Springer, Heidelberg (2009)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
https://github.com/kste/aeshash


272 S. Kölbl and C. Rechberger

A Solving Conditions

AC
S
P
L

AC
S
P
L

AK1 S1 P1 L1

AK2 S2 P2 L2

AK3 S3 P3 L3

AK S P L

AK S P L

AK S P L

K1

K2

K3

Fig. 11. Solving both conditions on S1 and AK3. The bytes marked purple solve the
conditions on AK3 and a single condition on S1, whereas the orange bytes solve 7
conditions on S1.

B Colliding Message Pair

Here a colliding message pair (M,M ′) and the chaining value are given. The
message pair has been found by using the 4-round characteristic and the dif-
ference in the messages is ΔAK0

0,0 = ΔAK4
0,0 = fc. All values are given in

hexadecimal notation.



Practical Attacks on AES-like Cryptographic Hash Functions 273


	Practical Attacks on AES-like Cryptographic Hash Functions
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Related Work
	1.4 Rebound Attacks

	2 Description of GOST R
	2.1 Block Cipher E
	2.2 Notation
	2.3 Differential Properties

	3 Attack on GOST R
	3.1 Constructing the Differential Characteristic
	3.2 Finding the Message Pair
	3.3 Extending the Attack

	4 Application to Other AES-based Hash Functions
	5 Conclusion
	References
	A Solving Conditions
	B Colliding Message Pair


