
Diego F. Aranha
Alfred Menezes (Eds.)

 123

LN
CS

 8
89

5

Third International Conference on Cryptology
and Information Security in Latin America 
Florianópolis, Brazil, September 17–19, 2014
Revised Selected Papers

Progress in Cryptology – 
LATINCRYPT 2014



Lecture Notes in Computer Science 8895

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410


Diego F. Aranha • Alfred Menezes (Eds.)

Progress in Cryptology –
LATINCRYPT 2014
Third International Conference on Cryptology
and Information Security in Latin America
Florianópolis, Brazil, September 17–19, 2014
Revised Selected Papers

123



Editors
Diego F. Aranha
University of Campinas
Campinas
Brazil

Alfred Menezes
University of Waterloo
Waterloo, ON
Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-16294-2 ISBN 978-3-319-16295-9 (eBook)
DOI 10.1007/978-3-319-16295-9

Library of Congress Control Number: 2015934898

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)



Preface

Latincrypt 2014 was the Third International Conference on Cryptology and Informa-
tion Security in Latin America and took place during September 17–19, 2014 in
Florianópolis, Brazil. Latincrypt 2014 was organized by the Computer Security Lab-
oratory (LabSEC) – Universidade Federal de Santa Catarina, in cooperation with The
International Association for Cryptologic Research (IACR). The General Chairs of the
conference were Ricardo Custódio and Daniel Panario.

The conference received 48 submissions, of which 5 were withdrawn under various
circumstances (authors’ request, being identified, randomly generated, or already
published in another venue). Each submission was assigned to at least three committee
members. Submissions co-authored by members of the Program Committee were
assigned to at least five committee members. The reviewing process was challenging
due to the large number of high-quality submissions, and we are deeply grateful to the
committee members and external reviewers for their outstanding work. After careful
deliberation, the Program Committee, which was chaired by Diego F. Aranha and
Alfred Menezes, selected 19 submissions for presentation at the conference. In addition
to these presentations, the program also included two sessions of talks by graduate
students and four invited talks by Jacob Appelbaum, Claudia Diaz, J. Alex Halderman,
and Kristin Lauter. The articles in this volume include the accepted submissions and an
invited paper corresponding to Kristin Lauter’s invited talk.

The reviewing process was run using the WebSubRev software, written by Shai
Halevi from IBM Research and hosted on the IACR server. We are grateful to him for
setting up the reviewing website and providing invaluable support during the entire
process.

Finally, we would like to thank our sponsors CAPES, CNPq, FAPESC, CGI.br, and
NIC.br for their financial support as well as all the people who contributed to the
success of this conference. In particular, we are indebted to the members of the
Latincrypt Steering Committee and the General Chairs for their diligent work and for
making this conference possible. We would also like to thank Springer for accepting to
publish the proceedings in the Lecture Notes in Computer Science series. It has been a
great honor to be PC chairs for Latincrypt 2014 and we look forward to the next edition
in the conference series.

October 2014 Diego F. Aranha
Alfred Menezes



LATINCRYPT 2014

Third International Conference on Cryptology
and Information Security in Latin America

Florianópolis, Brazil
September 17–19, 2014

Organized by
Computer Security Laboratory (LabSEC), Departamento de Informática e

Estatística (INE) – Universidade Federal de Santa Catarina

In Cooperation with
The International Association for Cryptologic Research (IACR)

General Chairs

Ricardo Custódio Universidade Federal de Santa Catarina, Brazil
Daniel Panario Carleton University, Canada

Program Chairs

Diego F. Aranha Universidade Estadual de Campinas, Brazil
Alfred Menezes University of Waterloo, Canada

Steering Committee

Michel Abdalla École Normale Supérieure, France
Paulo Barreto Universidade de São Paulo, Brazil
Ricardo Dahab Universidade Estadual de Campinas, Brazil
Alejandro Hevia Universidad de Chile, Chile
Julio López Universidade Estadual de Campinas, Brazil
Daniel Panario Carleton University, Canada
Francisco Rodríguez-Henríquez CINVESTAV-IPN, Mexico
Alfredo Viola Universidad de la República, Uruguay

Program Commitee

Michel Abdalla École Normale Supérieure, France
Jean-Philippe Aumasson Kudelski Security, Switzerland
Paulo Barreto Universidade de São Paulo, Brazil
Lejla Batina Radboud University Nijmegen, The Netherlands
Joan Daemen STMicroelectronics, Belgium
Ricardo Dahab Universidade Estadual de Campinas, Brazil



Jeremie Detrey Inria, France
Orr Dunkelman University of Haifa, Israel
Joachim von zur Gathen Universität Bonn, Germany
Jeroen van de Graaf Universidade Federal de Minas Gerais, Brazil
Helena Handschuh Cryptography Research, USA

Katholieke Universiteit Leuven, Belgium
Nadia Heninger University of Pennsylvania, USA
Alejandro Hevia Universidad de Chile, Chile
Sorina Ionica Microsoft Research, USA
Tanja Lange Technische Universiteit Eindhoven,

The Netherlands
Patrick Longa Microsoft Research, USA
Julio López Universidade Estadual de Campinas, Brazil
Anderson Nascimento University of Brasília, Brazil
Gregory Neven IBM Zurich Research Laboratory, Switzerland
Kenny Paterson Royal Holloway, University of London, UK
Thomas Peyrin Nanyang Technological University, Singapore
Francisco Rodríguez-Henríquez CINVESTAV-IPN, Mexico
Peter Schwabe Radboud University Nijmegen, The Netherlands
Nicolas Sendrier Inria, France
Douglas Stebila Queensland University of Technology, Australia
Damien Stehle École Normale Supérieure de Lyon, France
Nicolas Thériault Universidad del Bío-Bío, Chile
Emmanuel Thomé Inria, France
Maribel Gonzalez Vasco Universidad Rey Juan Carlos de Madrid, Spain
Alfredo Viola Universidade de la República, Uruguay
Scott Yilek University of St. Thomas, USA

External Reviewers

Rodrigo Abarzúa
Gora Adj
Janaka Alawatugoda
Shi Bai
Guido Bertoni
Gaetan Bisson
Olivier Blazy
Johannes Blömer
Joan Boyar
Angelo De Caro
Jung Hee Cheon
Baris Ege
Georg Fuchsbauer
Steven Galbraith

Conrado P.L. Gouvêa
Andreas Hülsing
Philipp Jovanovic
Carmen Kempka
Anna Krasnova
Adeline Langlois
Moonsung Lee
Loíck Lhote
Daniel Loebenberger
Karina M. Magalhães
Eduardo M. Morais
Michael Naehrig
Erick Nascimento
Ruben Niederhagen

VIII LATINCRYPT 2014



Jesper Buus Nielsen
Michael Nüsken
Thomaz Oliveira
Louiza Papachristodolou
Kostas Papagiannopoulos
Luis J. Dominguez Perez
Kim Ramchen

Vanishree Hanumantha Rao
Boris Skoric
Antonio Vera
Hoeteck Wee
Erich Wenger
Konstantin Ziegler

Sponsoring Institutions

Coordination for the Improvement of Higher Education Personnel (CAPES)
National Council for Scientific and Technological Development (CNPq)
Universidade Federal de Santa Catarina (UFSC)
Computer Security Laboratory (LabSEC), UFSC
Departamento de Informática e Estatística (INE), UFSC
Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC)
The Brazilian Internet Steering Committee (CGI.br)
The Brazilian Networking Information Center (NIC.br)
Carleton University

LATINCRYPT 2014 IX



Contents

Invited Talks

Private Computation on Encrypted Genomic Data . . . . . . . . . . . . . . . . . . . . 3
Kristin Lauter, Adriana López-Alt, and Michael Naehrig

Cryptographic Engineering

Full-Size High-Security ECC Implementation on MSP430 Microcontrollers . . . 31
Gesine Hinterwälder, Amir Moradi, Michael Hutter, Peter Schwabe,
and Christof Paar

Efficient Integer Encoding for Homomorphic Encryption via Ring
Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Matthias Geihs and Daniel Cabarcas

TweetNaCl: A Crypto Library in 100 Tweets . . . . . . . . . . . . . . . . . . . . . . . 64
Daniel J. Bernstein, Bernard van Gastel, Wesley Janssen,
Tanja Lange, Peter Schwabe, and Sjaak Smetsers

High-Speed Signatures from Standard Lattices . . . . . . . . . . . . . . . . . . . . . . 84
Özgür Dagdelen, Rachid El Bansarkhani, Florian Göpfert, Tim Güneysu,
Tobias Oder, Thomas Pöppelmann, Ana Helena Sánchez,
and Peter Schwabe

Block Cipher Speed and Energy Efficiency Records on the MSP430:
System Design Trade-Offs for 16-Bit Embedded Applications . . . . . . . . . . . 104

Benjamin Buhrow, Paul Riemer, Mike Shea, Barry Gilbert,
and Erik Daniel

Side-Channel Attacks and Countermeasures

On Efficient Leakage-Resilient Pseudorandom Functions with Hard-to-Invert
Leakages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Fabrizio De Santis and Stefan Rass

RSA and Elliptic Curve Least Significant Bit Security . . . . . . . . . . . . . . . . . 146
Dionathan Nakamura and Routo Terada

Isogeny Volcanoes of Elliptic Curves and Sylow Subgroups. . . . . . . . . . . . . 162
Mireille Fouquet, Josep M. Miret, and Javier Valera

http://dx.doi.org/10.1007/978-3-319-16295-9_1
http://dx.doi.org/10.1007/978-3-319-16295-9_2
http://dx.doi.org/10.1007/978-3-319-16295-9_3
http://dx.doi.org/10.1007/978-3-319-16295-9_3
http://dx.doi.org/10.1007/978-3-319-16295-9_4
http://dx.doi.org/10.1007/978-3-319-16295-9_5
http://dx.doi.org/10.1007/978-3-319-16295-9_6
http://dx.doi.org/10.1007/978-3-319-16295-9_6
http://dx.doi.org/10.1007/978-3-319-16295-9_7
http://dx.doi.org/10.1007/978-3-319-16295-9_7
http://dx.doi.org/10.1007/978-3-319-16295-9_8
http://dx.doi.org/10.1007/978-3-319-16295-9_9


Privacy

Beating the Birthday Paradox in Dining Cryptographer Networks . . . . . . . . . 179
Pablo García, Jeroen van de Graaf, Alejandro Hevia, and Alfredo Viola

Private Asymmetric Fingerprinting: A Protocol with Optimal Traitor
Tracing Using Tardos Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Caroline Fontaine, Sébastien Gambs, Julien Lolive, and Cristina Onete

Anonymous Authentication with Shared Secrets . . . . . . . . . . . . . . . . . . . . . 219
Joël Alwen, Martin Hirt, Ueli Maurer, Arpita Patra, and Pavel Raykov

Cryptanalysis

On Key Recovery Attacks Against Existing Somewhat Homomorphic
Encryption Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Massimo Chenal and Qiang Tang

Practical Attacks on AES-like Cryptographic Hash Functions . . . . . . . . . . . . 259
Stefan Kölbl and Christian Rechberger

Key Recovery Attacks on Recent Authenticated Ciphers . . . . . . . . . . . . . . . 274
Andrey Bogdanov, Christoph Dobraunig, Maria Eichlseder,
Martin M. Lauridsen, Florian Mendel, Martin Schläffer,
and Elmar Tischhauser

Tuning GaussSieve for Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
Robert Fitzpatrick, Christian Bischof, Johannes Buchmann,
Özgür Dagdelen, Florian Göpfert, Artur Mariano, and Bo-Yin Yang

Analysis of NORX: Investigating Differential and Rotational Properties . . . . . 306
Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves

Cryptographic Protocols

Efficient Distributed Tag-Based Encryption and Its Application to Group
Signatures with Efficient Distributed Traceability . . . . . . . . . . . . . . . . . . . . 327

Essam Ghadafi

How to Leak a Secret and Reap the Rewards Too. . . . . . . . . . . . . . . . . . . . 348
Vishal Saraswat and Sumit Kumar Pandey

Extending Oblivious Transfer Efficiently: or - How to Get Active Security
with Constant Cryptographic Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

Enrique Larraia

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

XII Contents

http://dx.doi.org/10.1007/978-3-319-16295-9_10
http://dx.doi.org/10.1007/978-3-319-16295-9_11
http://dx.doi.org/10.1007/978-3-319-16295-9_11
http://dx.doi.org/10.1007/978-3-319-16295-9_12
http://dx.doi.org/10.1007/978-3-319-16295-9_13
http://dx.doi.org/10.1007/978-3-319-16295-9_13
http://dx.doi.org/10.1007/978-3-319-16295-9_14
http://dx.doi.org/10.1007/978-3-319-16295-9_15
http://dx.doi.org/10.1007/978-3-319-16295-9_16
http://dx.doi.org/10.1007/978-3-319-16295-9_17
http://dx.doi.org/10.1007/978-3-319-16295-9_18
http://dx.doi.org/10.1007/978-3-319-16295-9_18
http://dx.doi.org/10.1007/978-3-319-16295-9_19
http://dx.doi.org/10.1007/978-3-319-16295-9_20
http://dx.doi.org/10.1007/978-3-319-16295-9_20


Invited Talks



Private Computation on Encrypted
Genomic Data

Kristin Lauter1, Adriana López-Alt2, and Michael Naehrig1(B)

1 Microsoft Research, Redmond, USA
{klauter,mnaehrig}@microsoft.com

2 New York University, New York, USA
adrilopo@gmail.com

Abstract. A number of databases around the world currently host a
wealth of genomic data that is invaluable to researchers conducting a
variety of genomic studies. However, patients who volunteer their genomic
data run the risk of privacy invasion. In this work, we give a crypto-
graphic solution to this problem: to maintain patient privacy, we pro-
pose encrypting all genomic data in the database. To allow meaningful
computation on the encrypted data, we propose using a homomorphic
encryption scheme.

Specifically, we take basic genomic algorithms which are commonly
used in genetic association studies and show how they can be made
to work on encrypted genotype and phenotype data. In particular, we
consider the Pearson Goodness-of-Fit test, the D′ and r2-measures of
linkage disequilibrium, the Estimation Maximization (EM) algorithm for
haplotyping, and the Cochran-Armitage Test for Trend. We also provide
performance numbers for running these algorithms on encrypted data.

1 Introduction

As the cost of sequencing the human genome drops, more and more genomic
data will become available for scientific study. At the same time, researchers
are developing new methods for analyzing genomic data across populations to
look for patterns and find correlations. Such research may help identify genetic
risk factors for disease, suggest treatments, or find cures. But to make this data
available for scientific study, patients expose themselves to risks from invasion
of privacy [ADCHT13]. Even when the data is anonymized, individual patients’
genomic data can be re-identified [GMG+13,WLW+09] and can furthermore
expose close relatives to similar risks [HAHT13].

A number of databases to host genomic data for research have been created
and currently house a wealth of genomic data, for example the 1,000 Genomes
Project [TGP], the International Cancer Genome Consortium (ICGC) [ICG], and
the International Rare Diseases Research Consortium (IRDiRC) [IRD]. There are
also a number of shared research databases which house de-identified genomic

Adriana López-Alt—Research conducted while visiting Microsoft Research.

c© Springer International Publishing Switzerland 2015
D.F. Aranha and A. Menezes (Eds.): LATINCRYPT 2014, LNCS 8895, pp. 3–27, 2015.
DOI: 10.1007/978-3-319-16295-9 1



4 K. Lauter et al.

sequence data such as the eMERGE Network [MCC+11], the Database of Geno-
types and Phenotypes [dbG], the European Bioinformatics Institute [EBI], and
the DNA Databank of Japan [Jap].

Various approaches to protecting genomic privacy while allowing research on
the data include policy-based solutions, de-identification of data, approximate
query-answering, and technological solutions based on cryptography. Emerging
cryptographic solutions are quickly becoming more relevant. Encryption is a
tool which essentially allows one to seal data in a metaphorical vault, which can
only be opened by somebody holding the secret decryption key. Homomorphic
Encryption (HE) allows other parties to operate on the data without possession
of the secret key (metaphorically sticking their hands into the vault via a glove
box and manipulating the data). Fully Homomorphic Encryption (FHE) allows
the evaluation of any function on encrypted data but current implementations
are widely inefficient. More practical variants of HE schemes allow for only a fixed
amount of computation on encrypted data while still ensuring correctness and
security. In particular, practical HE schemes allow for evaluation of polynomials
of small degree.

In this work, we take basic genomic algorithms which are commonly used in
genome wide association studies (GWAS) and show how they can be made to
work on encrypted data using HE. We find a number of statistical algorithms
which can be evaluated with polynomials of small degree, including the Pearson
Goodness-of-Fit or Chi-Squared Test to test for deviation from Hardy-Weinberg
equilibrium, the D′ and r2 measures of linkage disequilibrium to test for asso-
ciation in the genotypes at two loci in a genome, the Estimation Maximization
(EM) Algorithm to estimate haplotype frequencies from genotype counts, and
the Cochran-Armitage Test for Trend (CATT) to determine if a candidate allele
is associated to a disease.

In our approach, these statistics are computed from encrypted genotype and
phenotype counts in a population. Thus for a database containing encrypted phe-
notypes and genotypes, we consider two stages: in the first stage encrypted
phenotype and genotype counts are computed using only simple additions. The
parameters of the encryption scheme, as well as the running time of the computa-
tion in this stage depend on the size of the population sample being considered.1

The second stage takes as input the encrypted genotype and phenotype counts
obtained in the first stage and computes the output of the statistical algorithms
mentioned above. In this stage the runtime of the statistical algorithms does not
depend on the size of the population sample and only depends on the parameter
set needed for the computation. Table 2 gives the timings to evaluate the statis-
tical algorithms on encrypted genotype and phenotype counts. For example, the
Cochran Armitage Test for Trend takes 0.94 s at the smaller parameter size and
3.63 s at the larger parameter size.
1 The running time is linear in the population size for a fixed parameter set. For larger

population sizes, parameters need to be increased and performance degrades, but not
by a large factor (see Table 1 for a comparison of the running times for two typical
parameter sets).



Private Computation on Encrypted Genomic Data 5

Genomic Databases: Hosted by a Trusted Party, Stored in an Untrusted Cloud. It
is important to note that in this work we are considering single-key homomorphic
encryption, which means that all data is encrypted under the same symmetric
or asymmetric encryption key. To see how this can be used to protect privacy
in genome databases as described above, consider the following scenario which
captures one of the challenges facing government and research organizations
currently deploying large-scale genomic databases for research.

A global alliance of government agencies, research institutes, and hospitals
wants to pool all their patients’ genomic data to make available for research.
A common infrastructure is required to host all these data sets, and to handle the
demands of distributed storage, providing a low cost solution which is scalable,
elastic, efficient, and secure. These are the arguments for using commercial cloud
computing infrastructure made by the Global Alliance [Glo13, p.17] in their
proposal. Thus we arrive at the following requirement: data collected by a trusted
host or hosts, such as a hospital or research facility, may need to be stored and
processed in an untrusted cloud, to enable access and sharing across multiple
types of boundaries. The mutually trusting data owners, i.e. the hospital or
hospitals, can encrypt all data under a single key using homomorphic encryption.
The cloud can then process queries on the encrypted data from arbitrary entities
such as member organizations, registered individual researchers, clinicians etc.
The cloud can return encrypted results in response to queries, and the trusted
party can provide decryptions to registered parties according to some policy
governing allowable queries. Note that the policy should not allow arbitrary
queries, since this would expose the data to the same re-identification risks that
an unencrypted public database faces. However, with a reasonable policy, this
would allow researchers to study large data sets from multiple sources without
making them publicly available to the researchers who query them.

Related Work. Much of the related work on genomic privacy focuses on the prob-
lem of pattern-matching for genomic sequences, which is quite different from the
statistical algorithms we analyze here. Actually the circuits for pattern matching
and edit distance are much deeper than those considered here, so less suitable as
an efficient application of HE. On the other hand, De Cristofaro et al. [DCFT13]
present an algorithm for private substring-matching which is extremely efficient.
In another approach, Blanton et al. [BAFM12] efficiently carry out sequence
comparisons using garbled circuits. Finally, Ayday et al. [ARH13] show how to
use additively homomorphic encryption to predict disease susceptibility while
preserving patient privacy.

Differential privacy techniques have also been investigated in several recent
papers [FSU11,JS13]. Fienberg et al. [FSU11] propose releasing differentially
private minor allele frequencies, chi-square statistics and p-values as well as a
differentially-private approach to penalized logistic regression (see e.g. [PH08]).
Johnson and Shmatikov [JS13] present a set of privacy-preserving data mining
algorithms for GWAS datasets based on differential privacy techniques.

Finally a recent line of work investigating practical applications of HE
to outsourcing computation on encrypted data has led to the present paper.



6 K. Lauter et al.

Lauter et al. [LNV11] introduce the idea of medical applications of HE, with
optimizations, concrete parameters, and performance numbers. Graepel et al.
[GLN13] apply HE to machine learning, both to train a model on encrypted
data, and to give encrypted predictions based on an encrypted learned model.
Bos et al. [BLN14] give optimized performance numbers for HE and a particular
application in health care to predictive analysis, along with an algorithm for
automatically selecting parameters. Yasuda et al. [YSK+13] give an application
of HE to secure pattern matching.

2 Statistical Algorithms in Genetic Association Studies

In this section, we detail common statistical algorithms used in genetic asso-
ciation studies. We consider the Pearson Goodness-Of-Fit test, which is used
to determine deviation from Hardy-Weinberg Equilibrium (HWE) (Sect. 2.1),
the D′ and r2 measures of linkage disequilibrium, as well as the Estimation-
Maximization (EM) algorithm for haplotyping (Sect. 2.2), and the Cochran-
Armitage Test for Trend (CATT) used in case-control studies (Sect. 2.3).

2.1 Hardy-Weinberg Equilibrium and the Pearson
Goodness-of-Fit Test

We begin by describing the Pearson Goodness-Of-Fit test, a test frequently used
to determine whether a gene is in Hardy-Weinberg Equilibrium (HWE). We first
review the notion of HWE and then describe the Pearson test.

Hardy-Weinberg Equilibrium (HWE). A gene is said to be in HWE if its allele
frequencies are independent. More specifically, suppose A and a are two alleles
of the gene being considered, and let NAA, NAa, Naa denote the observed pop-
ulation counts for genotypes AA, Aa, aa, respectively. Also let N be the total
number of people in the sample population; that is, N

def= NAA + NAa + Naa.
With this notation, the corresponding frequencies of the genotypes AA,Aa, aa
are given by

pAA
def=

NAA

N
, pAa

def=
NAa

N
, paa

def=
Naa

N
.

Moreover, the frequencies of the alleles A and a are given by

pA
def=

2NAA + NAa

2N
, pa

def=
2Naa + NAa

2N
= 1 − pA,

since each count of genotype AA contributes two A alleles, each count of geno-
type aa contributes two a alleles, each count of genotype Aa contributes one
A allele and one a allele, and the total number of alleles in a sample of N people
is 2N .



Private Computation on Encrypted Genomic Data 7

The gene is said to be in equilibrium if these frequencies are independent, or
in other words, if

pAA = p2A, pAa = 2pApa, paa = p2a.

When a gene is in equilibrium, its allele frequencies stay the same from gen-
eration to generation unless perturbed by evolutionary influences. Researchers
test for HWE as a way to test for data quality, and might discard loci that
deviate significantly from equilibrium.

Pearson Goodness-of-Fit Test. The main observation made by the Pearson
Goodness-of-Fit test is that if the alleles are independent (i.e. if the gene is
in equilibrium) then we expect the observed counts to be

EAA
def= Np2A, EAa

def= 2NpApa, Eaa
def= Np2a.

Thus, deviation from equilibrium can be determined by comparing the X2

test-statistic below to the χ2-statistic with 1 degree of freedom2:

X2 def=
∑

i∈{AA,Aa,aa}

(Ni − Ei)
2

Ei
.

2.2 Linkage Disequilibrium

Another important notion in genetic association studies is linkage disequilibrium
(LD). Linkage disequilibrium is an association in the genotypes at two loci in a
genome. Suppose A, a are possible alleles at locus 1 and B, b are possible alleles
at locus 2. In this case there are 9 possible genotypes: AABB,AABb,AAbb,
AaBB,AaBb,Aabb, aaBB, aaBb, aabb. For i, i′ ∈ {A, a} and j, j′ ∈ {B, b} we
use Nii′jj′ to denote the observed count of genotype ii′jj′. As before, let N be
the total size of the population sample:

N
def=

∑

i,i′∈{A,a}
j,j′∈{B,b}

Nii′jj′ .

We consider the population frequencies of alleles A, a,B, b:

pA
def=

∑
j,j′∈{B,b} 2NAAjj′ + NAajj′

2N
, pa

def=

∑
j,j′∈{B,b} 2Naajj′ + NAajj′

2N
,

pB
def=

∑
i,i′∈{A,a} 2Nii′BB + Nii′Bb

2N
, pb

def=

∑
i,i′∈{A,a} 2Nii′bb + Nii′Bb

2N
.

Moreover, there are exactly 4 haplotypes to consider: AB, Ab, aB, ab. For
i ∈ {A, a} and j ∈ {B, b}, we use Nij to denote the observed count for the
haplotype ij and consider the population frequencies

pAB
def=

NAB

2N
, pAb

def=
NAb

2N
, paB

def=
NaB

2N
, pab

def=
Nab

2N
.

2 1 degree of freedom = 3 genotypes − 2 alleles.



8 K. Lauter et al.

Under linkage equilibrium, we expect the allele frequencies to be independent.
In other words, we expect

pAB = pApB , pAb = pApb, paB = papB , pab = papb.

If the alleles are in linkage disequilibrium, the frequencies will deviate from
the values above by a scalar D, so that

pAB = pApB + D, pAb = pApb − D, paB = papB − D, pab = papb + D.

The scalar D is easy to calculate: D = pABpab − pAbpaB = pAB − pApB .
However, the range of D depends on the frequencies, which makes it difficult to
use it as a measure of disequilibrium. One of two scaled-down variants is used
instead, the D′-measure or the r2-measure.
D′-Measure. The D′-measure is defined as:

D′ def=
|D|

Dmax
where Dmax =

{
min {pApb, papB} if D > 0,
min {pApB , papb} if D < 0.

r2- Measure. The r2 measure is given by

r2
def=

X2

N
, where X2 def=

∑

i∈{A,a}
j∈{B,b}

(Nij − Eij)2

Eij
,

where Nij is the observed count and Eij
def= Npipj is the expected count. Using

the fact that |Nij − Eij | = ND, it can be shown that

r2 =
D2

pApBpapb
.

The range of both D′ and r2 is [0, 1]. A value of 0 indicates perfect equilibrium
and a value of 1 indicates perfect disequilibrium.

EM Algorithm for Haplotyping. Using the D′ and r2 LD measures described
above requires knowing the observed haplotype counts or frequencies. However,
haplotype counts (resp. frequencies) cannot be exactly determined from geno-
type counts (resp. frequencies). For example, consider 2 bi-allelic loci with alleles
A, a and B, b. An observed genotype AaBb can be one of two possible haplo-
types: (AB)(ab) or (Ab)(aB). In practice, the Estimation Maximization (EM)
algorithm can be used to estimate haplotype frequencies from genotype counts.

The EM algorithm starts with arbitrary initial values p
(0)
AB , p

(0)
Ab , p

(0)
aB , p

(0)
ab for

the haplotype frequencies, and iteratively updates them using the observed geno-
type counts. In each iteration, the current estimated haplotype frequencies are
used in an estimation step to calculate the expected genotype frequencies (assum-
ing the initial values are the true haplotype frequencies). Next, in a maximization
step, these are used to estimate the haplotype frequencies for the next iteration.
The algorithm stops when the haplotype frequencies have stabilized.



Private Computation on Encrypted Genomic Data 9

mth Estimation Step

E
(m)
AB/ab

def
= E

[
NAB/ab | NAaBb, p

(0)
AB , p

(0)
Ab , p

(0)
aB , p

(0)
ab

]
= NAaBb · p

(m−1)
AB p

(m−1)
ab

p
(m−1)
AB p

(m−1)
ab + p

(m−1)
Ab p

(m−1)
aB

E
(m)
Ab/aB

def
= E

[
NAb/aB | NAaBb, p

(0)
AB , p

(0)
Ab , p

(0)
aB , p

(0)
ab

]
= NAaBb · p

(m−1)
Ab p

(m−1)
aB

p
(m−1)
AB p

(m−1)
ab + p

(m−1)
Ab p

(m−1)
aB

mth Maximization Step

N
(m)
AB = 2NAABB + NAABb + NAaBB + E

(m)
AB/ab

N
(m)
ab = 2Naabb + NaaBb + NAabb + E

(m)
AB/ab

N
(m)
Ab = 2NAAbb + NAABb + NAabb + E

(m)
Ab/aB

N
(m)
aB = 2NaaBB + NAaBB + NaaBb + E

(m)
Ab/aB

2.3 Cochran-Armitage Test for Trend (CATT)

Finally, we consider the Cochran-Armitage Test for Trend (CATT), which is
used in case-control studies to determine if a candidate allele is associated to a
disease. We first describe the basic structure of case-control studies, and then
describe the CATT test.

Case-Control Studies. As mentioned above, a case-control study is used to deter-
mine if a candidate allele A is associated to a specified disease. Such a study com-
pares the genotypes of individuals who have the disease (cases) to the genotypes
of individuals who do not (controls). A 2 × 3 contingency table of 3 genotypes
vs. case/controls can be constructed with this information, as below, where the
Nij represent a number of individuals, Ri is the sum of the ith row, and Cj is the
sum of the jth column. For example, N10 is the number of individuals with geno-
type AA who present the disease (affected phenotype), R0 = N00 + N01 + N02,
C0 = N00 + N10, etc.

AA Aa aa Sum

Controls N00 N01 N02 R0

Cases N10 N11 N12 R1

Sum C0 C1 C2 N

Cochran-Armitage Test for Trend (CATT). Given a contingency table as above,
the CATT computes the statistic

T
def=

2∑

i=0

wi(N0iR1 − N1iR0),



10 K. Lauter et al.

where w
def= (w0, w1, w2) is a vector of pre-determined weights3, and the differ-

ence (N0iR1 − N1iR0) can be thought of as the difference N0i − N1i of controls
and cases for a specific genotype, after reweighing the rows in the table to have
the same sum.

The test statistic X2 is defined to be

X2 def=
T 2

Var (T )
,

where Var (T ) is the variance of T :

Var (T ) =
R0R1

N

⎛

⎝
2∑

i=0

w2
i Ci(N − Ci) − 2

k−1∑

i=1

k∑

j=i+1

wiwjCiCj

⎞

⎠.

To determine if a trend can be inferred, the CATT compares the test statistic
X2 to a χ2-statistic with 1 degree of freedom.

2.4 Linear Regression

Linear regression is used in cases when the phenotype or trait is a continuous
variable (e.g. tumor size) rather than a binary variable (e.g. whether a disease
is present or not). It assumes a linear relationship between trait values and the
genotype. The input data is a set of N pairs (yi,x i), where yi ∈ {0, 1, 2} is
a genotype4, and x i ∈ R

k is the vector of trait values corresponding to the
individual with genotype xi. Define

y def=

⎛

⎜⎝
y1
...

yN

⎞

⎟⎠, X def=

⎛

⎜⎝
x�
1
...

x�
N

⎞

⎟⎠

Linear regressing finds β ∈ R
k and ε ∈ R

N such that y = Xβ + ε.
Linear regression models can be found using the least squares approach, and

a solution to approximating least squares on homomorphically encrypted data is
considered by Graepel, et al. [GLN13, Sect. 3.1]. Their work focuses on Fisher’s
linear discriminant classifier, but as noted there, linear regression can be cast in
a similar framework. We refer the reader to their work for more details.

3 Practical Homomorphic Encryption

Fully homomorphic encryption (FHE) enables one to perform arbitrary compu-
tations on encrypted data, without first decrypting the data and without any
3 Common choices for the set of weights w = (w0, w1, w2) are: w = (0, 1, 2) for the

additive (co-dominant) model, w = (0, 1, 1) for the dominant model (A is dominant
over a), and w = (0, 0, 1) for the recessive model (A is recessive to allele a).

4 For a bi-allelic gene with alleles A and a, the value 0 corresponds to the genotype
AA, the value 1 corresponds to the genotype Aa and the value 2 corresponds to the
genotype aa.



Private Computation on Encrypted Genomic Data 11

knowledge of the secret decryption key. The result of the computation is given
in encrypted form and can only be decrypted by a legitimate owner of the pri-
vate decryption key. The first construction of FHE was shown by Gentry in
2009 [Gen09], and many improvements and new constructions have been pre-
sented in recent years [vDGHV10,BV11b,BV11a,BGV12,FV12,LTV12,Bra12,
BLLN13,GSW13,BV14].

Model of Computation. In Gentry’s initial work and many follow-up papers,
computation is modeled as a boolean circuit with XOR and AND gates, or
equivalently, as an arithmetic circuit over F2

5. The data is encrypted bit-wise,
which means that a separate ciphertext is produced for each bit in the message.
Addition and multiplication operations are then performed on the encrypted
bits. Unfortunately, breaking down a computation into bit operations can quickly
lead to a large and complex circuit, thus making homomorphic computation very
inefficient.

Luckily, most known constructions allow the computation to take place over
a larger message space. In particular, if the desired computation only needs to
compute additions and multiplications of integer values (as is (almost)6 the case
with all algorithms presented in Sect. 2), then the data does not necessarily need
to be expressed in a bitwise manner. Indeed, most known constructions allow the
integers (or appropriate encodings of the integers) to be encrypted and homo-
morphic additions and multiplications to be performed over these integer values.
The advantage of this approach is clear: a ciphertext now contains much more
information than a single bit of data, making the homomorphic computation
much more efficient.

It is important to note that in the latter approach, the only possible homo-
morphic operations are addition (equivalently, subtraction) and multiplication.
It is currently not known how to perform division of integer values without
performing an inefficient bitwise computation, as described above. For practical
reasons, in this work we limit homomorphic operations to include only addition,
subtraction, and multiplication.

Levels of Homomorphism. In all known FHE schemes, ciphertexts inherently
contain a certain amount of noise, which “pollutes” the ciphertext. This noise
grows during homomorphic operations and if the noise becomes too large, the
ciphertext cannot be decrypted even with the correct decryption key. A some-
what homomorphic encryption scheme is one that can evaluate a limited number
of operations (both addition and multiplication) before the noise grows large
enough to cause decryption failures. Somewhat homomorphic schemes are usu-
ally very practical.

In order to perform an unlimited number of operations (and achieve fully
homomorphic encryption), ciphertexts need to be constantly refreshed in order
to reduce their noise. This is done using a costly procedure called bootstrapping.
5 An arithmetic circuit over Ft has addition and multiplication gates modulo t.
6 The algorithms in Sect. 2 include divisions. In Sect. 4, we show how to get around

this issue.



12 K. Lauter et al.

A leveled homomorphic encryption scheme is one that allows the setting of
parameters so as to be able to evaluate a given computation. In other words,
given a fixed function that one wishes to compute, it is possible to select the
parameters of the scheme in a way that allows one to homomorphically compute
the specified function, without the use of the costly bootstrapping step. Leveled
homomorphic schemes enjoy the flexibility of fully homomorphic schemes, in that
they can homomorphically evaluate any function, and are also quite practical
(albeit not as practical as somewhat homomorphic schemes). The construction
we use in our implementation is a leveled homomorphic encryption scheme.

3.1 The Homomorphic Encryption Scheme

In our implementation we use a modified7 version of the homomorphic encryption
scheme proposed by López-Alt and Naehrig [LN14b], which is based on the
schemes [SS11,LTV12,Bra12,BLLN13]. The scheme is a public-key encryption
scheme and consists of the following algorithms:

– A key generation algorithm KeyGen(params) that, on input the system para-
meters params, generates a public/private key pair (pk, sk).

– An encryption algorithm Encrypt(pk,m) that encrypts a message m using the
public key pk.

– A decryption algorithm Decrypt(sk, c) that decrypts a ciphertext c with the
private key sk.

– A homomorphic addition function Add(c1, c2) that given encryptions c1 and c2
of m1 and m2, respectively, outputs a ciphertext encrypting the sum m1+m2.

– A homomorphic multiplication function Mult(c1, c2) that, given encryptions
c1 and c2 of m1 and m2, respectively, outputs a ciphertext encrypting the
product m1m2.

System Parameters. The scheme operates in the ring R
def= Z[X]/(Xn + 1),

whose elements are polynomials with integer coefficients of degree less than n.
All messages, ciphertexts, encryption and decryption keys, etc. are elements in
the ring R, and have this form. In more detail, an element a ∈ R has the
form a =

∑n−1
i=0 aiX

i, with ai ∈ Z. Addition in R is done component-wise in
the coefficients, and multiplication is simply polynomial multiplication modulo
Xn + 1.

The scheme also uses an integer modulus q. In what follows, we use the
notation [a]q to denote the operation of reducing the coefficients of a ∈ R modulo
q into the set

{−� q
2�, . . . , � q

2�}.

7 The only modification we make to the scheme of López-Alt and Naehrig is remov-
ing a step called “relinearization” or “key switching”, needed to make decryption
independent of the function that was homomorphically evaluated. In our imple-
mentation, decryption depends on the number of homomorphic multiplications that
were performed. We make this change for efficiency reasons, as relinearization is very
costly.



Private Computation on Encrypted Genomic Data 13

Finally, the scheme uses two probability distributions on R, χkey and χerr,
which generate polynomials in R with small coefficients. In our implementation,
we let the distribution χkey be the uniform distribution on polynomials with
coefficients in {−1, 0, 1}. Sampling an element according to this distribution
means sampling all its coefficients uniformly from {−1, 0, 1}. For the distribution
χerr, we use a discrete Gaussian distribution with mean 0 and appropriately
chosen standard deviation (see Sect. 4.4). For clarity of presentation, we refrain
from formally describing the specifics of this distribution and instead refer the
reader to any of [SS11,LTV12,Bra12,BLLN13,LN14b] for a formal definition.

The system parameters of the scheme are the degree n, modulus q, and
distributions χkey, χerr: params = (n, q, χkey, χerr).

Plaintext Space. The plaintext space of the scheme is the set of integers in the
interval M = [−2n, 2n]. For the scheme to work correctly, we assume that the
initial inputs, the output of the function evaluation, and all intermediate values
are all in M.

To encrypt an integer μ ∈ M, this integer is first encoded as a polynomial
m ∈ R. To do this, we take the bit-decomposition of μ and use these bits as
the coefficients in m. Formally, if μ =

∑

i

μi2i for μi ∈ {0, 1}, then we define

m =
∑

i

μiX
i.

Formal Definition. Below is a formal and detailed definition of the key genera-
tion, encryption, decryption, and homomorphic evaluation algorithms.

• KeyGen(params): On input the parameters params = (n, q, χkey, χerr), the key
generation algorithm samples polynomials f ′, g ← χkey from the key distrib-
ution and sets

f = [(X − 2)f ′ + 1]q.

If f is not invertible modulo q, it chooses a new f ′. Otherwise, it computes
the inverse f−1 of f in R modulo q. Finally, it outputs the key pair:

pk = h
def= [gf−1]q ∈ R and sk = f ∈ R.

• Encrypt(h, μ): To encrypt an integer μ ∈ M, the encryption algorithm first
encodes it as a polynomial m, as described above. Then, it samples small error
polynomials s, e ← χerr, and outputs the ciphertext

c
def= [Δm + e + hs]q ∈ R,

where

Δ
def= �qΥ � and Υ

def= −Xn−1 + 2Xn−2 + 4Xn−3 + . . . + 2n−1

2n + 1
∈ Q[X].

• Add(c1, c2): Given two ciphertexts c1 and c2, outputs the ciphertext cadd
def=

[c1 + c2]q.



14 K. Lauter et al.

• Mult(c1, c2): Given two ciphertexts c1 and c2, outputs cmult
def= [c1c2]q.

• Decrypt(f, c): Given the private decryption key f and a ciphertext c that is the
output of a degree-D function evaluation8, the decryption algorithm computes
f̃

def= fD ∈ R and

μ =
(⌊

(X − 2)
q

· [f̃ c]q

⌉
mod (X − 2)

)
mod 2n + 1.

We remark that if the function that will be homomorphically computed is
known in advance (or even only its degree), then the polynomial fD can be
precomputed when the secret key is generated, simplifying the decryption step
to a single polynomial multiplication and some modular operations.
We also note that the modular reduction modulo (X − 2) is mathematically
equivalent to the evaluation of the polynomial at the point X = 2.

4 Computation on Encrypted Data

In this section, we discuss how to run the statistical algorithms described in
Sect. 2 on genetic data encrypted using the homomorphic encryption scheme
described in Sect. 3. To this end, in Sect. 4.1 we describe how genetic data can
be encoded and encrypted. In Sect. 4.2 we discuss how to obtain the genotype and
phenotype frequencies that serve as input to the algorithms described in Sect. 2.
Additionally, given the constraints of homomorphic computation on encrypted
data, we must make some necessary modifications to the statistical algorithms;
we describe these in Sect. 4.3. Finally, in Sect. 4.4, we discuss how to choose the
parameters of the encryption scheme. In what follows, for a value a, we use â to
denote an encryption of a.

4.1 Encoding Genomic Data

Structure of the Data. Data used in genetic association studies consists of indi-
viduals’ genotypes and phenotypes. The data can be represented in 2 tables or
matrices, one for genotype information and the other for phenotype information.
In the genotypes table, each row contains information about a single person, and
each column specifies a DNA locus. An entry in this table specifies the person’s
genotype at the given locus. For a bi-allelic gene with alleles A, a, this can be one
of 4 possible values: the reference homozygote AA (value 0), the heterozygote
Aa (value 1), the non-reference homozygote aa (value 2) and “missing” if that
person’s genotype at the specified locus is not known.

Similarly, in the phenotypes table, each row contains information about a
single person, and each column specifies a single phenotype. An entry in this table
specifies the person’s given phenotype. For a disease phenotype, this can be one
of 3 possible values: unaffected (value 0), affected (value 1) and “missing” if that
8 Informally, a function has degree D if it can be represented as a (possibly multivari-

ate) polynomial of degree D. See Sect. 4.4 for more details.



Private Computation on Encrypted Genomic Data 15

person’s affection status is not known. For continuous phenotypes (e.g. tumor
size), the table entry contains a real number. We focus only on phenotypes
containing disease affection status.

Genotype Encoding. For each entry (i, j) in the genotype table, we compute
3 ciphertexts, one for each of the possible values 0,1,2 (ie. AA, Aa, aa); we
call these ciphertexts c

(i,j)
0 , c

(i,j)
1 , c

(i,j)
2 respectively. A ciphertext encrypts 1 if

the entry value is the same as the value it represents, and 0 otherwise. More
specifically, the 4 possible genotypes are encoded as follows:

AA (value 0) : c
(i,j)
0 ← Encrypt(pk, 1), c

(i,j)
1 ← Encrypt(pk, 0), c

(i,j)
2 ← Encrypt(pk, 0),

Aa (value 1) : c
(i,j)
0 ← Encrypt(pk, 0), c

(i,j)
1 ← Encrypt(pk, 1), c

(i,j)
2 ← Encrypt(pk, 0),

aa (value 2) : c
(i,j)
0 ← Encrypt(pk, 0), c

(i,j)
1 ← Encrypt(pk, 0), c

(i,j)
2 ← Encrypt(pk, 1),

missing : c
(i,j)
0 ← Encrypt(pk, 0), c

(i,j)
1 ← Encrypt(pk, 0), c

(i,j)
2 ← Encrypt(pk, 0).

Phenotype Encoding. For each entry (i, j) in the phenotype table, we com-
pute 2 ciphertexts, one for the “unaffected” phenotype (value 0) and one for
the“affected” phenotype (value 1); we call these ciphertexts c

(i,j)
0 , c

(i,j)
1 respec-

tively. A ciphertext encrypts 1 if the entry value is the same as the value it rep-
resents, and 0 otherwise. More specifically, the 3 possible genotypes are encoded
as follows:

unaffected (value 0) : z
(i,j)
0 ← Encrypt(pk, 1), z

(i,j)
1 ← Encrypt(pk, 0),

affected (value 1) : z
(i,j)
0 ← Encrypt(pk, 0), z

(i,j)
1 ← Encrypt(pk, 1),

missing : z
(i,j)
0 ← Encrypt(pk, 0), z

(i,j)
1 ← Encrypt(pk, 0).

4.2 Computing Genotype and Phenotype Counts

Recall that the statistical algorithms described in Sect. 2 take as input genotype
and phenotype frequencies or counts. While we are not able to obtain the geno-
type and phenotype frequencies9, we can obtain the counts using a few simple
homomorphic additions. Indeed, if the data is encrypted as described in Sect. 4.1,
computing the (encrypted) counts N̂

(j)
k of value-k genotypes at locus j can be

done by summing all the ciphertexts c
(i,j)
k in column j of the genotype table:

N̂
(j)
0 =

∑

i

c
(i,j)
0 , N̂

(j)
1 =

∑

i

c
(i,j)
1 , N̂

(j)
2 =

∑

i

c
(i,j)
2 .

Finally, we can compute the (encrypted) total number N̂ (j) of available (non-
missing genotypes) in column j by summing

N̂ (j) = N̂
(j)
0 + N̂

(j)
1 + N̂

(j)
2 .

9 Recall from Sect. 3 that we cannot perform homomorphic divisions.



16 K. Lauter et al.

4.3 Modified Algorithms

Unfortunately, since we are not able to compute the genotype and phenotype
frequencies, we must modify the statistical algorithms to use genotype and phe-
notype counts instead.

Pearson Goodness-of-Fit or Chi-Squared Test. Recall that for a single locus, the
Pearson test computes the test statistic

X2 =
2∑

i=0

(Ni − Ei)
Ei

,

where Ni is the observed genotype count, and Ei is the expected genotype count.
The expected counts can be computed as

E0 = N

(
2N0 + N1

2N

)2

, E1 = 2N

(
2N0 + N1

2N

)(
2N2 + N1

2N

)
, E2 = N

(
2N2 + N1

2N

)2

,

which can be simplified to

E0 =
(2N0 + N1)2

4N
, E1 =

(2N0 + N1)(2N2 + N1)

2N
, E2 =

(2N2 + N1)2

4N
.

The test statistic X2 can then be computed as

X2 =
(N0 − E0)

2

E0
+

(N1 − E1)
2

E1
+

(N2 − E2)
2

E2

=
(4N0N2 − N2

1 )2

2N

(
1

2(2N0 + N1)2
+

1

(2N0 + N1)(2N2 + N1)
+

1

2(2N2 + N1)2

)
.

Since we are unable to perform homomorphic divisions, we return encryptions
of α,N, β1, β2, β3, where

α
def
= (4N0N2 −N2

1 )
2, β1

def
= 2(2N0+N1)

2, β2
def
= (2N0+N1)(2N2+N1), β3

def
= 2(2N2+N1)

2.

From these, the test statistic can be computed as:

X2 =
α

2N

(
1
β1

+
1
β2

+
1
β3

)
.

EM Algorithm. To run the EM algorithm on genotypes at loci j and �, we need
the 9 genotype counts N

(j,�)
xy for x, y ∈ {0, 1, 2}. In other words, we need to know

the number of individuals N
(j,�)
x,y in the data set that have genotype x at locus

j and genotype y at locus �, for all combinations of x and y. The (encrypted)
counts can be computed as

N̂ (j,�)
xy =

∑

i

c(i,j)x · c(i,�)y .



Private Computation on Encrypted Genomic Data 17

Recall that the EM algorithm estimates the haplotype frequencies. As before,
we are unable to estimate frequencies since we cannot perform homomorphic
division, but we are able to estimate haplotype counts. Notice that since Nxy =
2N · pxy, this does not change the fraction in μ

(m)
AB/ab and μ

(m)
Ab/aB (essentially,

this change multiplies both the numerator and the denominator by 4N2). This
modifies the estimation step as follows.

mth Estimation Step

E
(m)
AB/ab = N11 · N

(m−1)
AB N

(m−1)
ab

N
(m−1)
AB N

(m−1)
ab + N

(m−1)
Ab N

(m−1)
aB

def=
α(m)

β(i)
,

E
(m)
Ab/aB = N11 · N

(m−1)
Ab N

(m−1)
aB

N
(m−1)
AB N

(m−1)
ab + N

(m−1)
Ab N

(m−1)
aB

def=
γ(m)

β(i)
.

We can also simplify the iteration so that at any given point, we need only
remember one numerator and one denominator. Define

ζAB
def= 2N22 + N21 + N12, ζab

def= 2N00 + N01 + N10,

ζAb
def= 2N20 + N21 + N10, ζaB

def= 2N02 + N12 + N01.

Then

N
(m)
AB = ζAB + E

(m)
AB/ab = ζAB +

α(m)

β(m)
=

ζAB · β(m) + α(m)

β(m)
,

N
(m)
ab = ζab + E

(m)
AB/ab = ζab +

α(m)

β(m)
=

ζab · β(m) + α(m)

β(m)
,

N
(m)
Ab = ζAb + E

(m)
Ab/aB = ζAb +

γ(m)

β(m)
=

ζAb · β(m) + γ(m)

β(m)
,

N
(m)
aB = ζaB + E

(m)
Ab/aB = ζaB +

γ(m)

β(m)
=

ζaB · β(m) + γ(m)

β(m)
.

Following the iteration, at the next estimation step we need to compute:

E
(m+1)
AB/ab

= N11 ·

(
ζAB ·β(m)+α(m)

β(m)

)(
ζab·β(m)+α(m)

β(m)

)

(
ζAB ·β(m)+α(m)

β(m)

)(
ζab·β(m)+α(m)

β(m)

)
+

(
ζAb·β(m)+γ(m)

β(m)

)(
ζaB ·β(m)+γ(m)

β(m)

)

= N11 ·

(
ζAB · β(m) + α(m)

) (
ζab · β(m) + α(m)

)
(

ζAB · β(m) + α(m)
) (

ζab · β(m) + α(m)
)
+
(

ζAb · β(m) + γ(m)
) (

ζaB · β(m) + γ(m)
)

def
=

α(m+1)

β(m+1)
.



18 K. Lauter et al.

and similarly,

E
(m+1)
Ab/aB

= N11 ·

(
ζAb · β(m) + γ(m)

) (
ζaB · β(m) + γ(m)

)
(

ζAB · β(m) + α(m)
) (

ζab · β(m) + α(m)
)
+
(

ζAb · β(m) + γ(m)
) (

ζaB · β(m) + γ(m)
)

def
=

γ(m+1)

β(m+1)
.

In other words, since the denominator β(m) always cancels out, we need only
remember the numerators. The numerators depend on β(m), so we still compute
it as part of the numerator computation, but do not need to store it after this
computation. Of course, at the last step we must divide by β(m) to maintain
correctness.

The modified estimation and maximization steps are described below.

mth Estimation Step

α(m) = N11 · N
(m−1)
AB N

(m−1)
ab , γ(m) = N11 · N

(m−1)
Ab N

(m−1)
aB ,

β(m) = N
(m−1)
AB N

(m−1)
ab + N

(m−1)
Ab N

(m−1)
aB .

mth Maximization Step

N
(m)
AB = ζAB · β(m) + α(m), N

(m)
ab = ζab · β(m) + α(m),

N
(m)
Ab = ζAb · β(m) + γ(m), N

(m)
aB = ζaB · β(m) + γ(m).

Measures of LD. The degree of linkage disequilibrium of two bi-allelic genes
can be determined by computing the scalar value D

def= pAB − pApB where A
and B are the reference alleles of the genes, pA and pB are their corresponding
population frequencies, and pAB is the population frequency of the haplotype
AB. Once more, we need to compute D as a function of counts rather than
frequencies, as we cannot compute the latter homomorphically. We have

D =
NAB

2N
− NA

2N
· NB

2N
=

2N · NAB − NANB

(2N)2
.

The haplotype count NAB is estimated using the EM algorithm, which out-
puts values α, β such that NAB = α/β. Thus,

D =
2N · α − βNANB

β(2N)2
=

2N · α − β(2NAA + NAa)(2NBB + NBb)
β(2N)2

.

Again, since we cannot perform homomorphic division, we return encryptions
of δ and β, where

δ
def= 2N · α − β(2NAA + NAa)(2NBB + NBb).



Private Computation on Encrypted Genomic Data 19

The scalar D can be computed as D = δ/(β(2N)2). To be able to calculate
the D′ and r2 statistics, we also return encryptions of NA, Na, NB , Nb, from
which they can be computed:

D′ =
δ

βDmax
, where Dmax =

{
min {NANb, NaNB} if D > 0,
min {NANB , NaNb} if D < 0

and

r2 =
δ2

β2NANaNBNb
.

Cochran-Armitage Test for Trend. To run the CATT algorithm on genotype at
locus j and phenotype �, we need the 6 genotype-phenotype counts N

(j,�)
x,y for

x ∈ {0, 1, 2} and y ∈ {0, 1}. In other words, we need to know the number of
individuals N

(j,�)
x,y in the data set that have genotype x at locus j and phenotype

� with value y, for all combinations of x and y. The (encrypted) counts can be
computed as

N̂ (j,�)
xy =

∑

i

c(i,j)x · z(i,�)y .

The test statistic can be computed as X2 = α/β where

α
def= N ·

(
2∑

i=0

wi(N0iR1 − N1iR0)

)2

,

β
def= R0R1 ·

⎛

⎝
2∑

i=0

w2
i Ci(N − Ci) − 2

k−1∑

i=1

k∑

j=i+1

wiwjCiCj

⎞

⎠ .

4.4 How to Set Parameters

In order to implement any cryptographic scheme efficiently and securely, one
needs to select suitable parameters. For the homomorphic encryption scheme in
this work, one needs to find a dimension n, an integer modulus q and the stan-
dard deviation σ of the error distribution χerr. These parameters have to satisfy
two conditions. The first one guarantees security, more precisely the parameters
need to guarantee a desired level λ of security against known attacks on the
homomorphic encryption scheme. This means that an attacker is forced to run
for at least 2λ steps in order to break the scheme. The second condition guar-
antees correctness. Given a desired computation, the encryption scheme must
be able to correctly evaluate the computation without the error terms in the
ciphertexts growing too large such that the result is decrypted correctly. Subject
to these two conditions, we aim to choose the smallest dimension and modulus
in order to make computations as efficient as possible. We follow the approach
described in [LN14a] for selecting parameters and refer the reader to this paper
for more details.



20 K. Lauter et al.

Security. One first picks a desired security level, common values are λ = 80 or
higher. Next, one chooses a dimension n and standard deviation σ. The analy-
sis in [LN14a] shows that, for fixed λ, n and σ, there is an upper bound on the
allowed modulus q to achieve the desired security level. In order to increase secu-
rity, one can either increase the dimension n, or increase the standard deviation
σ or a combination of both and then re-evaluate to obtain the new maximal
value for q.

Correctness. The correctness condition is in contrast to the security condition
in that given a dimension and standard deviation, it demands a lower bound
for the modulus q. The complexity of the planned computation and the size
of σ influence the error growth throughout the computation. To make correct
decryption possible, the relative size of the error compared to the modulus q
needs to be small enough, or in other words, q needs to be large enough to
accommodate the error that arises during the homomorphic operations.

Efficiency. To maximize the efficiency of our implementation, we select the
“smallest” parameter set amongst those that satisfy the security and correct-
ness criteria. Clearly, increasing n or q leads to a decrease in efficiency, so we are
interested to keep the dimension and modulus as small as possible. In general,
smaller security level and less complex computations allow for smaller parame-
ters, increasing the security and complexity leads to larger, less efficient para-
meters. In this work, we are contented with a security level of λ = 80.

5 Performance

In this section, we describe our experiments. We implemented the homomorphic
encryption scheme from Sect. 3 and the algorithms described in Sect. 4 in the
computer algebra system Magma [BCP97]. Note that specialized implementa-
tions in a language such as C/C++ may perform significantly better than our
proof-of-concept implementation in Magma. The exact speed-up depends on the
optimizations in such an implementation. For example, for the parameters used
in [BLLN13], we observe that our Magma implementation of the homomorphic
addition, multiplication, and decryption operations is roughly twice as slow as
the C/C++ implementation reported in [LN14a], which uses a general purpose
C/C++ library for the underlying arithmetic. The decryption operation in the
implementation in [LN14a] in turn is roughly twice as slow as the C implementa-
tion in [BLLN13]. A completely specialized and optimized implementation will
achieve even better efficiency.

Timings for the Scheme. Timings for the basic algorithms of the homomorphic
encryption scheme (key generation, encryption, addition, multiplication, and
decryption for several degree values D) are shown in Table 1. Timings for both
key generation and encryption include the sampling of small elements according
to the distributions described in Sect. 3. Depending on the specific implementa-
tion scenario, these steps could be precomputed and their cost amortized.



Private Computation on Encrypted Genomic Data 21

As mentioned in Sect. 3, our implementation does not perform relinearization
(a.k.a. key-switching) in homomorphic operations (see any of [BV11a,BGV12,
LTV12,Bra12,BLLN13,LN14b]). We choose not to perform this step as an opti-
mization (indeed, the timing for a single multiplication increased more than
50-fold when relinearization was included). The downside to our approach is
that decryption depends on the degree of the function that was homomorphi-
cally computed (recall from Sect. 3 that the decryption algorithm first computes
fD where f is the secret key and D is the degree of the computed function).
Thus, decryption timings depend on the degree of the evaluated function, albeit
only logarithmically. We remark that if the function is known in advance (or
even only an upper bound on its degree), the element fD can be precomputed.
In this case, the decryption time in all cases is the same and equivalent to the
decryption time for degree-1 ciphertexts.

Parameters. Table 1 provides timings for two different parameter sets. The first
set (I) uses smaller parameters and therefore produces faster timings. All algo-
rithms in this paper can be run correctly with the first parameter set except for
the EM algorithm for more than two iterations. The second set (II) uses larger
parameters that are suitable to run the EM algorithm for 3 iterations, but the
performance is worse due to the larger parameters. Both parameter sets provide
80 bits of security. We refer the reader to Sect. 4.4 for a detailed explanation of
how these parameter sets were selected.

In order to increase the security to 128 bits, we must adjust the parame-
ter sizes. For example, this can be done as follows. According to the analysis
in Sect. 4.4, when all other parameters are fixed, one can achieve the 128-bit
security level by decreasing the modulus q to 149 bits. Such a parameter set
can still be used to run the same algorithms as parameter set (I), except for
the LD algorithm. In order to run the LD algorithm, one needs to increase the
dimension n. If n is restricted to be a power of two, then n = 8192 as in para-
meter set (II). However, q needs to be smaller than in set (II). Arithmetic for
such parameters is the same as for the set (II) but with slightly faster arithmetic
modulo q. Therefore, the timings in Table 1 give a rough estimate for the upper
bound on the performance penalty when moving to 128-bit security.

Testing Correctness. To test the correctness of our homomorphic evaluations,
we implemented the statistical algorithms in their original form (as described
in Sect. 2) and unencrypted, as well as the modified algorithms described in
Sect. 4, also unencrypted. A third implementation ran the modified algorithms
(as in Sect. 4) on encrypted data and used the homomorphic operations of the
encryption scheme. In each test, we ran all versions of the algorithms and con-
firmed that their return values were equal.

Data Pre-processing. All algorithms being considered take as input genotype
and/or phenotype count tables. Because of this, once the encrypted tables have
been computed and appropriate parameters have been chosen, the running times



22 K. Lauter et al.

Table 1. Timings for the operations of the homomorphic encryption scheme. Mea-
surements were done in the computer algebra system Magma [BCP97] V2.17-8 on an
Intel(R) Core(TM) i7-3770S CPU @ 3.10 GHz, 8 sGB RAM, running 64-bit Windows
8.1. Values are the mean of 1000 measurements of the respective operation. Decryption
depends on the degree of the evaluated function, the timing differences are due to the
computation of the respective power of the secret key. Parameter sets are (I) n = 4096,
�log(q)� = 192 and (II) n = 8192, �log(q)� = 384, both use σ = 8 and provide 80-bit
security. A single ciphertext with parameter set (I) is of size slightly less than 100KB,
for parameter set (II), it is less than 400 KB.

Operation KeyGen Encrypt Add Mult Decrypt

deg 1 deg 2 deg 5 deg 10 deg 20

Parameters I 3.599 s 0.296 s 0.001 s 0.051 s 0.035 s 0.064 s 0.114 s 0.140 s 0.164 s

Parameters II 18.141 s 0.783 s 0.003 s 0.242 s 0.257 s 0.308 s 0.598 s 0.735 s 0.888 s

of the statistical algorithms are independent of the size of the population sam-
ple and depend only on the parameter set needed for the computation.10 Thus,
we separate our analysis into two phases: In the first phase, we construct the
encrypted genotype and phenotype tables. This includes encoding and encrypt-
ing genotype and phenotype data, as well as summing these encryptions (see
Sects. 4.1 and 4.2). In the second phase, we run the statistical algorithms on the
encrypted tables. Indeed, we view the first phase as a pre-processing of the data,
whose cost can be amortized over any number of computations. Moreover, this
data can be easily updated by subtracting encryptions if a person’s data is no
longer needed or desired, by adding new encryptions if new data is collected,
or by replacing specific encryptions as a person’s record needs to be updated
or modified. We emphasize the fact that there is no need to re-encode and re-
encrypt the entire data set when modifications are required. Necessary changes
will be proportional to the number of entries that need to be modified (inserted,
deleted, or updated).

The main cost in pre-processing the data is the computation of the 3 encryp-
tions for each genotype sample and the 2 encryptions for each phenotype sample
(see Sect. 4.1). This cost is linear in the size of the data set and can be easily com-
puted from the timings for encryption given in Table 1. For example, encoding
and encrypting 1000 genotype data points sequentially using parameter set (I)

10 Admittedly, the size of the parameters needed does depend on the magnitude of the
genotype and phenotype counts, which can be as large as the size of the population
sample. This is because the size of the message encrypted at any given time (i.e. the
size of the counts and all the intermediate values in the computation) cannot grow
too large relative to the modulus q. Therefore, larger population sizes (and therefore
larger counts) require a larger modulus q, which in turn requires a larger dimension
n for security. However, for a fixed parameter set, it is possible to compute an upper
bound on the size of the population sample and the homomorphic computations
detailed in this work do work correctly for any population sample with size smaller
than the given bound.



Private Computation on Encrypted Genomic Data 23

Table 2. Timings for statistical algorithms. Measurements were done in the computer
algebra system Magma [BCP97] V2.17-8 on an Intel(R) Core(TM) i7-3770S CPU @
3.10 GHz, 8GB RAM, running 64-bit Windows 8.1. Values are the mean of 100 mea-
surements of the respective algorithm.

Algorithm Pearson EM LD CATT

1 iteration 2 iterations 3 iterations

Parameters I 0.34 s 0.57 s 1.10 s − 0.19 s 0.94 s

Parameters II 1.36 s 2.29 s 4.54 s 6.85 s 0.74 s 3.63 s

takes roughly 15 min, and encoding and encrypting 1000 phenotype data entries
takes roughly 10 min.

Once all genotypes and phenotypes have been encoded and encrypted, we need
to construct 3 contingency tables (see Sects. 4.2 and 4.3). The first table contains
the genotype counts for a single locus and can be computed by sequential addition
of the genotype encryptions. Sequentially adding 1000 ciphertexts takes roughly
1 s; thus, computing all genotype counts for a single locus takes roughly 3 s.
Computing the 3× 3 contingency table for the counts of individuals having a cer-
tain genotype at one locus and another at a second locus requires one multipli-
cation and one addition per individual. Thus, for parameter set (I), each entry in
the table can be computed in roughly 1 min and the entire table can be computed
in roughly 9 min. Similarly, computing the 2 × 3 contingency table for the counts
of individuals with a certain genotype and a given phenotype requires one multi-
plication and one addition per individual. Thus, for parameter set (I), the entire
table can be computed in roughly 6 min.

Timings for the Statistical Algorithms. As mentioned above, once the data has
been processed and the genotype and phenotype tables have been computed, the
runtime of the statistical algorithms is independent of the size of the population
sample and only depends on the parameter set needed for the computation.
Table 2 contains performance numbers for the algorithms after the data has been
encoded and encrypted, and population counts have been computed. It includes
timings for both parameter sets described above.

Further Specialization. For the case that only one of the statistical algorithms
needs to be run, further optimizations are possible, decreasing storage space and
runtime significantly. For example, if we focus on running only the Pearson test,
we can change the encoding of genotypes from Sect. 4.1 to use only a single
ciphertext as follows: value 0 is encrypted as ci,j = Encrypt(pk, 1), value 1 as
ci,j = Encrypt(pk, x100), value 2 as ci,j = Encrypt(pk, x301) and missing values as
ci,j = Encrypt(pk, 0). By adding up all such ciphertexts, the genotype counts are
then contained in a single ciphertexts that encrypts N0 + N1x

100 + N2x
301. The

Pearson test has degree 4 in these counts and can be computed with only two
multiplication operations on this ciphertext. Note that needed values encoded



24 K. Lauter et al.

in the polynomials (N0 + N1x
100 + N2x

301)i for i ∈ {2, 4} can be shifted to the
constant coefficient by multiplying with suitable powers of x.

Using this optimization, the storage space for encrypted genotype data is
reduced by a factor 3, as is the encryption time. With parameter set (I), the
runtime of one Pearson test becomes less than 0.13s.

6 Conclusion and Future Work

In this paper we presented algorithms and proof-of-concept implementations for
computing on encrypted genomic data. We showed how to encode genotype and
phenotype data for encryption and how to apply the Pearson Goodness-of-Fit
test, the D′ and r2-measures of linkage disequilibrium, the Estimation Maxi-
mization (EM) algorithm for haplotyping, and the Cochran-Armitage Test for
Trend, to the encrypted data to produce encrypted results. These are standard
algorithms used in genome wide association studies and our proof-of-concept
implementation timings are reasonable. We showed that the timings for evaluat-
ing the statistical algorithms do not depend on the population size once the cor-
rect parameter sizes are fixed and the encrypted genotype or phenotype counts
are input. Timings at the smaller parameter size for the various algorithms vary
up to roughly 1 s on a standard PC, indicating that these computations are well
within reach of being practical for relevant applications and scenarios.

Homomorphic encryption may well be ripe for deployment, to achieve private
outsourcing of computation for simple algorithms such as those presented in this
paper when applied to modest-size data sets. That will require increased effort
and focus on high-performance implementations for a range of architectures. In
addition, many other interesting avenues for research remain. There is still much
work to be done to make homomorphic encryption more efficient at scale and to
expand the functionality. In addition, to solve a wide-range of practical privacy
problems which arise with cloud services, it will be important to consider various
cryptographic building blocks such as secure multiparty computation and other
more interactive solutions and the trade-offs between storage and interaction
costs. One should also consider how homomorphic encryption can be combined
with building blocks such as verifiable computation. Currently homomorphic
encryption does not provide a practical solution for operating on data encrypted
under multiple keys, for example in the setting of a public database where multi-
ple patients upload data under different keys. Finally, the practical homomorphic
encryption schemes presented here rely on hardness assumptions for a class of
new problems such as RLWE. It is crucial to continue to study the hardness of
these new assumptions and to attack the systems to accurately assess parameter
bounds to assure security.

Acknowledgments. We thank Tancrède Lepoint for suggesting the encoding in
Sect. 4.1.



Private Computation on Encrypted Genomic Data 25

References

[ADCHT13] Ayday, E., De Cristofaro, E., Hubaux, J.-P., Tsudik, G.: The Chills and
Thrills of Whole Genome Sequencing. Technical report (2013). http://
infoscience.epfl.ch/record/186866/files/survey.pdf

[ARH13] Ayday, E., Raisaro, J.L., Hubaux, J.-P.: Personal use of the genomic data:
Privacy vs. storage cost. In: Proceedings of IEEE Global Communications
Conference, Exhibition and Industry Forum (Globecom) (2013)

[BAFM12] Blanton, M., Atallah, M.J., Frikken, K.B., Malluhi, Q.: Secure and effi-
cient outsourcing of sequence comparisons. In: Foresti, S., Yung, M.,
Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 505–522.
Springer, Heidelberg (2012)

[BCP97] Bosma, W., Cannon, J., Playoust, C.: The magma algebra system. I. The
user language. J. Symbolic Comput. 24(3–4), 235–265 (1997). Computa-
tional algebra and number theory (London, 1993)

[BGV12] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic
encryption without bootstrapping. In: ITCS (2012)

[BLLN13] Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for
a ring-based fully homomorphic encryption scheme. In: Stam, M. (ed.)
IMACC 2013. LNCS, vol. 8308, pp. 45–64. Springer, Heidelberg (2013)

[BLN14] Bos, J.W., Lauter, K., Naehrig, M.: Private predictive analysis on
encrypted medical data. J. Biomed. Inform. 50, 234–243 (2014). MSR-
TR-2013-81

[Bra12] Brakerski, Z.: Fully homomorphic encryption without modulus switching
from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012)

[BV11a] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryp-
tion from (standard) LWE. In: Ostrovsky, R. (ed.) FOCS, pp. 97–106.
IEEE (2011)

[BV11b] Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic Encryption from
Ring-LWE and security for key dependent messages. In: Rogaway,
P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer,
Heidelberg (2011)

[BV14] Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE.
In: Naor, M. (ed.) ITCS, pp. 1–12. ACM (2014)

[dbG] Database of Genotypes and Phenotypes (dbGaP). http://www.ncbi.nlm.
nih.gov/gap/

[DCFT13] De Cristofaro, E., Faber, S., Tsudik, G.: Secure genomic testing with
size-and position-hiding private substring matching. In: Proceedings of
the 2013 ACM Workshop on Privacy in the Electronic Society (WPES
2013). ACM (2013)

[EBI] European Bioinformatics Institute. http://www.ebi.ac.uk/ (Accessed 30
October 2013)

[FSU11] Fienberg, S.E., Slavkovic, A., Uhler, C.: Privacy preserving GWAS data
sharing. In: 2011 IEEE 11th International Conference on Data Mining
Workshops (ICDMW), pp. 628–635. IEEE (2011)

[FV12] Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryp-
tion. IACR Cryptology ePrint Archive 2012, 144 (2012)

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In:
Mitzenmacher, M. (ed.) STOC, pp. 169–178. ACM (2009)

http://infoscience.epfl.ch/record/186866/files/survey.pdf
http://infoscience.epfl.ch/record/186866/files/survey.pdf
http://www.ncbi.nlm.nih.gov/gap/
http://www.ncbi.nlm.nih.gov/gap/
http://www.ebi.ac.uk/


26 K. Lauter et al.

[GLN13] Graepel, T., Lauter, K., Naehrig, M.: ML confidential: machine learning
on encrypted data. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012.
LNCS, vol. 7839, pp. 1–21. Springer, Heidelberg (2013)

[Glo13] Creating a global alliance to enable responsible sharing of genomic and
clinical data, White Paper (2013). http://www.broadinstitute.org/files/
news/pdfs/GAWhitePaperJune3.pdf

[GMG+13] Gymrek, M., McGuire, A.L., Golan, D., Halperin, E., Erlich, Y.: Identify-
ing personal genomes by surname inference. Science 339(6117), 321–324
(2013)

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: conceptually-simpler, asymptotically-faster, attribute-based.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol.
8042, pp. 75–92. Springer, Heidelberg (2013)

[HAHT13] Humbert, M., Ayday, E., Hubaux, J.-P., Telenti, A.: Addressing the
concerns of the lacks family: quantification of kin genomic privacy. In:
Proceedings of the 2013 ACM SIGSAC Conference on Computer & Com-
munications Security, pp. 1141–1152. ACM (2013)

[ICG] International cancer genome consortium (ICGC). http://www.icgc.org
[IRD] International rare diseases research consortium (IRDiRC). http://www.

irdirc.org
[Jap] DNA Data Bank Of Japan. http://www.ddbj.nig.ac.jp/

[JS13] Johnson, A., Shmatikov, V.: Privacy-preserving data exploration in
genome-wide association studies. In: Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 1079–1087. ACM (2013)

[LN14a] Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryp-
tion schemes FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT. LNCS, vol. 8469, pp. 318–335. Springer, Heidelberg
(2014)

[LN14b] López-Alt, A., Naehrig, M.: Large integer plaintexts in ring-based fully
homomorphic encryption. In preparation (2014)

[LNV11] Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryp-
tion be practical? In: Proceedings of the 3rd ACM Cloud Computing
Security Workshop, pp. 113–124. ACM (2011)

[LTV12] López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption.
In: Karloff, H.J., Pitassi, T. (eds.) STOC, pp. 1219–1234. ACM (2012)

[MCC+11] McCarty, C.A., Chisholm, R.L., Chute, C.G., Kullo, I.J., Jarvik, G.P.,
Larson, E.B., Li, R., Masys, D.R., Ritchie, M.D., Roden, D.M., et al.: The
emerge network a consortium of biorepositories linked toelectronic med-
ical records data for conducting genomic studies. BMC Med. Genomics
4(1), 13 (2011)

[PH08] Park, M.Y., Hastie, T.: Penalized logistic regression for detecting gene
interactions. Biostatistics 9(1), 30–50 (2008)

[SS11] Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems
over ideal lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 27–47. Springer, Heidelberg (2011)

[TGP] A map of human genome variation from population-scale sequencing.
Nature, 467:1061–1073. http://www.1000genomes.org

http://www.broadinstitute.org/files/news/pdfs/GAWhitePaperJune3.pdf
http://www.broadinstitute.org/files/news/pdfs/GAWhitePaperJune3.pdf
http://www.icgc.org
http://www.irdirc.org
http://www.irdirc.org
http://www.ddbj.nig.ac.jp/
http://www.1000genomes.org


Private Computation on Encrypted Genomic Data 27

[vDGHV10] van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homo-
morphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

[WLW+09] Wang, R., Li, Y.F., Wang, X.F., Tang, H., Zhou, X.: Learning your iden-
tity and disease from research papers: Information leaks in genome wide
association study. In: Proceedings of the 16th ACM Conference on Com-
puter and Communications Security, CCS 2009, pp. 534–544. ACM, New
York (2009)

[YSK+13] Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.:
Secure pattern matching using somewhat homomorphic encryption. In:
Proceedings of the 2013 ACM Cloud Computing Security Workshop, pp.
65–76. ACM (2013)



Cryptographic Engineering



Full-Size High-Security ECC Implementation
on MSP430 Microcontrollers

Gesine Hinterwälder1,2(B), Amir Moradi1, Michael Hutter3, Peter Schwabe4,
and Christof Paar1,2

1 Horst Görtz Institute for IT Security, Ruhr-University Bochum, Bochum, Germany
{gesine.hinterwaelder,amir.moradi,christof.paar}@rub.de

2 Department of Electrical and Computer Engineering, University of Massachusetts
Amherst, Amherst, USA

3 Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Graz, Austria

Michael.Hutter@iaik.tugraz.at
4 Digital Security Group, Radboud University Nijmegen, Nijmegen, The Netherlands

peter@cryptojedi.org

Abstract. In the era of the Internet of Things, smart electronic devices
facilitate processes in our everyday lives. Texas Instrument’s MSP430
microcontrollers target low-power applications, among which are wire-
less sensor, metering and medical applications. Those domains have in
common that sensitive data is processed, which calls for strong security
primitives to be implemented on those devices. Curve25519, which builds
on a 255-bit prime field, has been proposed as an efficient, highly-secure
elliptic-curve. While its high performance on powerful processors has
been shown, the question remains, whether it is suitable for use in embed-
ded devices. In this paper we present an implementation of Curve25519
for MSP430 microcontrollers. To combat timing attacks, we completely
avoid conditional jumps and loads, thus making our software constant
time. We give a comprehensive evaluation of different implementations of
the modular multiplication and show which ones are favorable for differ-
ent conditions. We further present implementation results of Curve25519,
where our best implementation requires 9.1 million or 6.5 million cycles
on MSP430Xs having a 16 × 16-bit or a 32 × 32-bit hardware multiplier
respectively.

Keywords: MSP430 ·Carry-save representation ·Karatsuba ·Operand-
caching multiplication · Curve25519

∗ This work was supported in part by the German Federal Ministry for Economic
Affairs and Energy (Grant 01ME12025 SecMobil), by the Netherlands Organisation
for Scientific Research (NWO) through Veni 2013 project 13114, and by the Austrian
Science Fund (FWF) under the grant number TRP251-N23. Permanent ID of this
document: 0b3f1ea83d48e400ad1def71578c4c66. Date: 2014-10-01.

c© Springer International Publishing Switzerland 2015
D.F. Aranha and A. Menezes (Eds.): LATINCRYPT 2014, LNCS 8895, pp. 31–47, 2015.
DOI: 10.1007/978-3-319-16295-9 2



32 G. Hinterwälder et al.

1 Introduction

Implantable medical devices execute services essential for a patient’s well-being.
Their power consumption must be very low, as they operate either entirely based
on harvested power, or contain a battery, which can only be replaced by surgery.
Many of them communicate wirelessly over an RF channel, which allows for
configuration of those devices without surgical intervention. However, the wire-
less channel also poses potential attack possibilities, as shown by Halperin et al.
in [12]. This calls for strong security mechanisms to be implemented on those
very constrained devices.

Texas Instruments designed MSP430 microcontrollers to target low-power
applications, and advertises the application of MSP430s in the domain of med-
ical devices [16]. MSP430s can be operated at low voltages (1.8 to 3.3 V). Newer
devices of the MSP430 family have AES hardware accelerators that support
256-bit AES. Yet, many security services that are desirable for wireless commu-
nication, especially in the domain of medical devices, rely on public-key cryptog-
raphy. This naturally raises the question about the performance of public-key
cryptography on MSP430 microcontrollers.

Bernstein introduced the Curve25519 elliptic-curve Diffie-Hellman key exch-
ange protocol in 2006 [2]. It uses a Montgomery curve defined over a 255-bit
prime field and achieves a security level of 128 bits. Montgomery curves are
known to allow for very efficient variable-base-point single-scalar multiplication,
which makes this curve attractive for elliptic-curve key-agreement schemes.

Our Contribution. In this paper, we present a full implementation of the
Curve25519 Diffie-Hellman key-agreement scheme on MSP430X microcon-
trollers1. We differentiate those MSP430Xs with a 16 × 16-bit and those with a
32 × 32-bit hardware multiplier and developed our code for both platforms. As
all previous implementations of Curve25519, we use projective coordinates for
the elliptic-curve point representation. The main performance bottleneck of the
variable-base-point single-scalar multiplication are thus modular multiplications
in the underlying prime field. We hence put our focus on optimizing the modular
multiplication on the MSP430 architecture, and give a comprehensive evaluation
of different implementation techniques for MSP430 microcontrollers.

We use the Montgomery powering ladder [24] to implement the scalar mul-
tiplication on the elliptic curve, since this is a highly regular algorithm, making
the executed computation independent of the scalar. Our software completely
avoids input-dependent loads and branches, thus executing in constant time and
thus inherently protecting against timing attacks such as [1] or [31].

We evaluate our implementation by executing it on Texas Instrument’s MSP-
EXP430FR5969 LaunchPad Evaluation Kit. This board integrates an MSP430-
FR5969 microcontroller [28] with a 32 × 32-bit hardware multiplier, which is
built into the WISP 5.0 UHF computational RFID tag2, a device that operates

1 The software is available at http://emsec.rub.de/research/publications/Curve25519
MSPLatin2014/.

2 http://wisp.wikispaces.com/WISP%205.0.

http://emsec.rub.de/research/publications/Curve25519MSPLatin2014/
http://emsec.rub.de/research/publications/Curve25519MSPLatin2014/
http://wisp.wikispaces.com/WISP%205.0


Full-Size High-Security ECC Implementation on MSP430 Microcontrollers 33

based on harvested power from the RF field. With a price of a few dollars, this
microcontroller is a suitable target for wireless sensor and medical applications.

Related Work. Curve25519 has been implemented on several platforms. In the
paper introducing Curve25519 [2], Bernstein presented implementation results
for several Intel Pentium and an AMD Athlon processor. In 2009, Costigan and
Schwabe presented Curve25519 software for the Cell Broadband Engine [7]. In
2012, Bernstein and Schwabe presented an implementation for ARM processors
with NEON vector instructions [5]. Recently, Sasdrich and Güneysu presented
an implementation on reconfigurable hardware in [26]. Another recent publica-
tion shows an implementation of Curve25519, that fits into 18 tweets [6,20]. So
far, only one implementation shows performance results of Curve25519 on con-
strained devices, namely the implementation for 8-bit AVR microcontrollers by
Hutter and Schwabe presented in [13]. No previous work has yet shown imple-
mentation results of Curve25519 for 16-bit microcontrollers.

There exist many publications on Elliptic Curve Cryptography (ECC) imple-
mentations on the MSP430 microcontroller architecture. One of the first pub-
lications of asymmetric cryptography on the MSP430 is by Guajardo, Blümel,
Krieger, and Paar in 2001 [11]. They presented an implementation of an elliptic
curve with a security level of 64 bits and show that a scalar multiplication can be
performed within 3.4 million clock cycles. In 2007, Scott and Szczechowiak pre-
sented optimizations for underlying ECC finite-field multiplications [27]. Their
160 × 160-bit (hybrid) multiplication method requires 1746 cycles. In 2009,
Szczechowiak, Kargl, Scott, and Collier presented pairing-based cryptography on
the MSP430 [29]. Similar results have been reported by Gouvêa and López in the
same year [9]. They reported new speed records for 160-bit and 256-bit finite-field
multiplications on the MSP430 needing 1586 and 3597 cycles, respectively. They
further presented an implementation of a 256-bit elliptic curve random scalar
multiplication needing 20.4 million clock cycles. In 2011, Wenger and Werner
compared ECC scalar multiplications on various 16-bit microcontrollers [33].
Their Montgomery-ladder based scalar multiplication needs 23.9 million cycles
using a NIST P-256 elliptic curve. Also in 2011, Pendl, Pelnar, and Hutter pre-
sented the first ECC implementation running on the WISP UHF RFID tag [25].
Their 192-bit NIST curve implementation achieves an execution time of around
10 million clock cycles. They also reported first multi-precision multiplication
results for 192 bits needing 2581 cycles. In 2012, Gouvêa, Oliveira, and López
reported new speed records for different MSP430 architectures. They improved
their results from [9], namely, for the MSP architecture (with a 16 × 16 multi-
plier) their 160-bit and 256-bit finite-field multiplication implementations need
1565 and 3563 cycles, respectively.

Also note that there exist recent works to extend the MSP430 with instruction-
set extensions. In 2013, Wenger, Unterluggauer, and Werner [32] presented an
MSP430 clone in hardware that implements a special instruction-set extension.
For a NIST P-256 elliptic curve, their Montgomery ladder implementation requires
9 million clock cycles – without instruction-set extensions (and to put these num-
bers in relation), their implementation needs 22.2 million cycles.



34 G. Hinterwälder et al.

There also exist several software libraries for the MSP430 that support ECC.
These libraries mainly target sensor nodes such as the Tmote Sky which are
equipped with an MSP430 microcontroller. Examples are the NanoECC [30],
TinyECC [22], and MIRACL [23] libraries, and the RELIC toolkit [8].

Under the common assumption that the execution time of ECC grows approx-
imately as a cubic function of the field size, our software significantly outperforms
all presented ECC implementations on MSP430 microcontrollers in speed, while
executing in constant time, thus providing security against timing attacks.

Organization. Section 2 describes specifics about the MSP430 architecture
important for our implementation. Section 3 describes general basics about the
implementation of Curve25519, Sect. 4 presents a detailed description of the
various implementation techniques for modular multiplications that we investi-
gated. Implementation and measurement results are presented in Sect. 5, and we
conclude our work with Sect. 6.

2 The MSP430X Microcontroller Architecture

We implemented the modular multiplication operation for MSP430X devices
that feature a 16 × 16-bit hardware multiplier as well as for those that feature
a 32 × 32-bit multiplier, and show which implementation technique is preferable
on either platform. We give cycle count estimations for the MSP430F2618 [19],
which has a 16×16-bit hardware multiplier, and cycle count estimations as well as
execution results for the MSP430FR5969 [28], which has a 32 × 32-bit hardware
multiplier. But, our results can be generalized to other microcontrollers from
the MSP430 family. This section describes specifics about the MSP430X archi-
tecture that are important for the discussion of the implementation techniques.
For more details about the MSP430X architecture, we refer the reader to the
MSP430x2xx user’s guide [18].

Processing Unit. Both MSP430 microcontrollers that we consider have a 16-bit
RISC CPU, with 27 core instructions and 24 emulated instructions. The CPU
has 16-bit registers, of which R0 to R3 are special-purpose registers and R4 to R15
are freely usable working registers. The execution time of all register operations
is one cycle, but the overall execution time for an instruction depends on the
instruction format and the addressing mode.

Addressing Mode. The CPU features 7 addressing modes. Our implemen-
tation uses the register mode, indexed mode, absolute mode, indirect auto-
increment mode, and immediate mode. It is important to note that while indirect
auto-increment mode saves one clock cycle on all operations compared to indexed
mode, only indexed mode can be used to store results back to RAM.

Hardware Multiplier. Both devices that we consider feature memory-mapped
hardware multipliers, which work in parallel to the CPU. Four types of multi-
plications, namely signed and unsigned multiply as well as signed and unsigned
multiply-and-accumulate are supported. The multiplier registers are peripheral



Full-Size High-Security ECC Implementation on MSP430 Microcontrollers 35

registers, which have to be loaded with CPU instructions. The result is stored in
two (in case of 16×16-bit multipliers) or four (in case of 32×32-bit multipliers)
16-bit registers. A register SUMEXT is available, which is similar to the status
register in the main CPU. This register shows for the multiply-and-accumulate
instructions, whether a multiplication has produced a carry bit. It is not possible
to accumulate carries in SUMEXT. The time that is required for the multiplication
is determined by the time it takes to load the multiplier registers.

3 Implementation of Curve25519

Curve25519 is an elliptic curve in Montgomery form. This curve has been carefully
chosen to provide very high performance for Diffie-Hellman key agreement at the
128-bit security level. It is defined by the equation y2 = x3 + 486662x2 + x over
the prime field F2255−19. For details about the choice of curve and security see [2].

The key-agreement scheme computes a 32-byte shared secret Qx from a
32-byte secret key n and a 32-byte public key Px. Here Qx and Px are x-coordinates
of points on the elliptic curve. At its core, the Curve25519 Diffie-Hellman key-
agreement scheme executes a variable-base-point single-scalar multiplication
on the elliptic curve, multiplying the public key Px with the secret key n, to
obtain the shared secret Qx. Special conditions are given for the secret scalar n,
namely that the 3 least significant bits and the most significant bit are set to
zero, and the second-most significant bit is set to 1 [4].

We follow the suggestions of [2] for implementing the variable-base-point
single-scalar multiplication on the elliptic curve. We used the Montgomery pow-
ering ladder [24] of 255 “ladder steps”. Each ladder step computes a differential
point addition and a point doubling. Starting with the points R1 and R2, in each
ladder step either R2 is added to R1 (R1 ← R1 + R2) and then R2 is doubled
(R2 ← 2 · R2), or R1 is added to R2 (R2 ← R2 + R1) and then R1 is doubled
(R1 ← 2 · R1). To avoid conditional load addresses that can lead to cache-timing
attacks, we execute the same operations (R1 ← R1+ R2 and R2 ← 2 · R2) in each
iteration, and swap the contents of R1 and R2 depending on the scalar bit b.

Note that for the conditional swap we do not use branch instructions. Instead,
this operation is implemented as follows: An unsigned variable b̂ is cleared. Then
b is subtracted from b̂ leading to b̂ being 0 or 0xffff, depending on whether b is
0 or 1. To swap the contents of x and y, an auxiliary variable is used to store
tswp = x ⊕ y. tswp is anded with the value stored in b̂, resulting in tswp = x ⊕ y
for b = 1 and tswp = 0 otherwise. Then tswp is xored with x and y leading to
either the original values being stored in x and y for b = 0, or the swapped values
for the case of b = 1. Together with the constant-time field arithmetic we thus
obtain a fully timing-attack protected constant-time implementation.

In [24] Montgomery presented x-coordinate-only doubling and differential-
addition formulas for points on a curve defined by an equation of the form By2 =
x3+Ax2+x. He showed the correctness of those formulas, which rely on standard-
projective-coordinate representation of the points, for the case of inputs not being
equal to the point at infinity. In [2] Bernstein extended the proof of correctness



36 G. Hinterwälder et al.

Algorithm 1. x-coordinate-only variable base-point single-scalar point
multiplication on Curve25519 based on the Montgomery powering ladder
[2, 7].
Input : n ∈ Z, Px, x-coordinate of point P .
Output: Qx, x-coordinate of point Q ← n · P .

1 X1 ← Px;X2 ← 1;Z2 ← 0;X3 ← Px;Z3 ← 1

2 for i = 254 downto 0 do
3 if ni �= ni−1 then
4 swap(X2, X3) /* This conditional swapping is implemented */

5 swap(Z2, Z3) /* in constant time (see Sect. 3). */

6 end
7 t1 ← X2 + Z2

8 t2 ← X2 − Z2

9 t3 ← X3 + Z3

10 t4 ← X3 − Z3

11 t6 ← t21
12 t7 ← t22
13 t5 ← t6 − t7
14 t8 ← t4 · t1
15 t9 ← t3 · t2
16 X3 ← (t8 + t9)

2

17 Z3 ← X1(t8 − t9)
2

18 X2 ← t6 · t7
19 Z2 ← t5(t7 + 121666t5)

2

20 end

21 if n0 == 1 then
22 swap(X2, X3) /* This conditional swapping is implemented */

23 swap(Z2, Z3) /* in constant time (see Sect. 3). */

24 end

25 Z2 ← 1/Z2

26 return (X2 · Z2)

to the case of an input being equal to the point at infinity. Using these formulas,
a differential addition of two points requires 4 multiplications and 2 squarings.
Point doubling requires 2 multiplications, 2 squarings, and one multiplication by
the constant (486662+2)/4 = 121666. The differential-addition formula requires
as input the difference of the input points. If the Z-coordinate of this difference
point is one, the addition formula can be reduced to require only 3 multiplications
and 2 squarings. Algorithm 1 summarizes the x-coordinate-only variable-base-
point single-scalar point multiplication on Curve25519 requiring 255 differential
additions and doublings (ladder steps), 255 conditional swaps, and one inversion
at the end to transform the result back to affine coordinates [2,7].



Full-Size High-Security ECC Implementation on MSP430 Microcontrollers 37

4 Implementation of Modular Multiplication in F2255−19

Many techniques have been proposed to improve the performance of multi-
precision multiplication implementations, especially for constrained devices. In
the following we describe which techniques we implemented for the MSP430X
architecture. To have a fair comparison, all methods were implemented in assem-
bly and were fully unrolled.

Representation of Big Integers. We use an unsigned radix-216 represen-
tation for the operand-caching [15] and the Karatsuba multiplication [14,21],
and a signed radix-2�255/26� representation for the carry-save implementation.
In unsigned radix-216 representation, an n-bit integer A is represented as an
array of m = �n/16� words in little-endian order as (a0, a1, . . . am−1), such that
A =

∑m−1
i=0 ai216i where ai ∈ {0, . . . , 216 − 1}. In the radix-2�255/26� representa-

tion an n-bit integer B is represented as an array of � = �26n/255� 16-bit words
in little-endian order as (b0, b1, . . . b�−1), such that B =

∑�−1
j=0 bj2�255j/26�, where

bj ∈ {−215, . . . , 215 −1}. Hence, in the radix-2�255/26� representation an element
in F2255−19 is represented using 26 16-bit words. Since inputs and outputs to
the scalar multiplication on Curve25519 are 32-byte arrays, conversions to and
from the used representations are executed at the beginning and the end of the
complete scalar multiplication.

4.1 Multiplication Using Carry-Save Representation

This implementation follows the fast arithmetic implementation presented in [2].
An integer is represented using the signed radix-2�255/26� representation. Bene-
ficial of this representation is that an addition or subtraction can be executed
without having to consider carry bits. It only requires pairwise addition or sub-
traction of the respective coefficients, as long as the result of coefficient additions
or subtractions does not exceed the word-length. An element in this representa-
tion looks as follows:

B = b0+b1210+b2220+b3230+b4240+b5250+b6259+b7269+b8279+· · ·+b252246.

Figure 1 presents the steps executed to compute the first 8 coefficients ri of
the multiplication r ← f × g. After transforming an integer to radix-2�255/26�

r7 r6 r5 r4 r3 r2 r1 r0

f7 g0 f6 g0 f5 g0 f4 g0 f3 g0 f2 g0 f1 g0 f0 g0

f6 g1 2 f5 g1 f4 g1 f3 g1 f2 g1 f1 g1 f0 g1 38 f24 g2

2 f5 g2 2 f4 g2 f3 g2 f2 g2 f1 g2 f0 g2 38 f25 g2 38 f23 g3

2 f4 g3 2 f3 g3 f2 g3 f1 g3 f0 g3 38 f25 g3 38 f24 g3 38 f22 g4

2 f3 g4 2 f2 g4 f1 g4 f0 g4 38 f25 g4 38 f24 g4 38 f23 g4 38 f21 g5

2 f2 g5 2 f1 g5 f0 g5 38 f25 g5 38 f24 g5 38 f23 g5 38 f22 g5 38 f20 g6

f1 g6 f0 g6 19 f25 g6 19 f24 g6 19 f23 g6 19 f22 g6 19 f21 g6 38 f19 g7

f0 g7 19 f25 g7 19 f24 g7 19 f23 g7 19 f22 g7 19 f21 g7 38 f20 g7 38 f18 g8

Fig. 1. Visualisation computation of coefficients for carry-save multiplication.



38 G. Hinterwälder et al.

representation, each coefficient bi of B is within (−29, 29) or (−210, 210). We
precompute 2f and 19g to easily realize constant multiplication with factors 2,
19, and 38. We use the product-scanning technique to compute the coefficients
ri, interleaving the multiplication with the reduction, i.e., we compute a coeffi-
cient and reduce it right away. For the computation of each ri, 26 products of
coefficients have to be added.

This type of implementation has two disadvantages on the MSP430X archi-
tecture. First of all the MSP430 has very few general-purpose registers, while the
inputs have to be loaded from four different arrays f, g, 2f and 19g. This makes
storing inputs in registers difficult, as different operands are loaded for compu-
tation of the various coefficients. Further, while we use indirect auto-increment
mode to access g and 19g, there is no indirect auto-decrement mode on the
MSP430 and we need to access the other inputs using the costly indexed mode.
The other disadvantage is the highly complex reduction of a coefficient, requiring
several shift operations, which are expensive on MSP430 devices.

Since we could not achieve good performance results with this type of imple-
mentation, we tried to speed things up relying on the refined Karatsuba formulas
presented in [3]. A problem occurs when trying to add the low and the high part
of B in signed radix-2�255/26� representation. For example computing the coef-
ficient of 240 cannot be done by adding b4 and b16 as b16 would be input to
exponent 239. Our solution to this was to represent elements using signed radix-
2�256/26� representation and rely on computations modulo 2256 − 38. Yet still,
the disadvantages of this type of implementation on the MSP430 architecture
dominate the advantages.

4.2 Operand-Caching Multiplication

Operand-caching was proposed by Hutter and Wenger in 2011 [15]. The idea
of this method is to reduce the number of load instructions by organizing the
operations in a way that allows the same input operands to be used for multiple
computations.

Figure 2 shows a toy-size example of the operand-caching multiplication. Here
the execution of computations is divided into the light gray and the dark gray
area. First the light gray block is computed followed by the dark gray area.

r15 r14 r13 r12 r11 r10 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0

f7 g0 f6 g0 f5 g0 f4 g0 f3 g0 f2 g0 f1 g0 f0 g0

f7 g1 f6 g1 f5 g1 f4 g1 f3 g1 f2 g1 f1 g1 f0 g1

f7 g2 f6 g2 f5 g2 f4 g2 f3 g2 f2 g2 f1 g2 f0 g2

f7 g3 f6 g3 f5 g3 f4 g3 f3 g3 f2 g3 f1 g3 f0 g3

f7 g4 f6 g4 f5 g4 f4 g4 f3 g4 f2 g4 f1 g4 f0 g4

f7 g5 f6 g5 f5 g5 f4 g5 f3 g5 f2 g5 f1 g5 f0 g5

f7 g6 f6 g6 f5 g6 f4 g6 f3 g6 f2 g6 f1 g6 f0 g6

f7 g7 f6 g7 f5 g7 f4 g7 f3 g7 f2 g7 f1 g7 f0 g7

Fig. 2. Visualisation of the operand-caching method for 2 elements consisting of 8
words.



Full-Size High-Security ECC Implementation on MSP430 Microcontrollers 39

The empty dark gray and light gray boxes represent space that is required for
carry-bits.

As we have 8 general-purpose registers available for storing operands during
the execution of the multiplication, we chose the row size to be 4. Since each input
array has 16 elements, 16/4 = 4 rows have to be computed. Many loads to the
hardware multiplier can be saved when loading operands in a special order. For
each operation of the hardware multiplier OP2 has to be loaded to start execution.
Yet, MAC does not have to be loaded each time. If it is not loaded, it uses the value
that had been loaded to MAC in the previous use of the hardware multiplier. For
example, if for the computation of r1, as the final step f0 was loaded to MAC and
g1 to OP2, then we start the computation of r2 by loading g2 to OP2.

In this multiplication we first multiply both inputs f and g, resulting in
a double-sized array and then reduce this result. Since reducing mod 2255 − 19
requires bit shifts, we chose to reduce intermediate results mod 2256−38 and only
reduce the final result mod 2255 − 19. We implemented two versions of operand-
caching multiplication, one making use of the 32×32-bit hardware multiplier (in
the following called 32-bit operand-caching) and the other only loading 16-bit
inputs to the multiplier (in the following called 16-bit operand-caching). Natu-
rally the implementation that makes use of the 32×32-bit hardware multiplier is
faster and also requires less code space, since fewer loads to the multiplier have
to be performed.

4.3 Karatsuba Multiplication

This section is based on a very recent paper on the implementation of multi-
precision multiplication on AVR microcontrollers [14]. Karatsuba presented a
sub-quadratic multiplication method that reduces the number of required word
multiplications for multi-precision multiplications [21]. The implementation by
Hutter and Schwabe [14] is based on this idea and first demonstrates that this
method is more advisable on AVRs even for very small input sizes starting from
48 bits. They implemented what they call subtractive Karatsuba. This method
avoids having to take extra carry bits into account by computing |Fl − Fh| and
|Gl − Gh| instead of Fl + Fh and Gl + Gh, which makes it easier to obtain a
constant-time implementation. In the following we report the method, as it was
presented in [14], adapting it to the case of a 16-bit architecture. The steps
for multiplying two n-byte numbers, where in our case n = 32, are described
in detail. Using a 16-bit architecture, we have to process arrays of n/2 = 16
elements. We split those arrays at k = 16/2 = 8.

– Write F = F� + 216kFh and G = G� + 216kGh

– compute L = F� · G�

– compute H = Fh · Gh

– compute M = |F� − Fh| · |G� − Gh| and
– set t = 0, if M = (F� − Fh) · (G� − Gh); t = 1 otherwise;
– compute M̂ = (−1)tM ; and
– obtain the result as FG = L + 216k(L + H − M̂) + 216n/2H.



40 G. Hinterwälder et al.

We use operand-caching multiplication for all multi-precision multiplications
within the Karatsuba multiplication, i.e., the computations of L, H, and M .
|F� − Fh| is computed as follows: first we subtract with borrow all elements in
Fh from those in F� and subtract with borrow from a register bF that was cleared
before. This results in bF = 0 for F� > Fh and bF = 0xffff otherwise. We XOR
bF with F� − Fh resulting in the ones-complement of F� − Fh. We then compute
tF = bF AND 1 add this to the ones-complement of F� −Fh and ripple the carry
through, resulting in the two’s complement of F�−Fh, which is equal to |F�−Fh|.
|G� − Gh| is computed similarly. The value t required for the computation of M̂
is obtained as t = tF ⊕ tG. The same technique that was used to compute the
absolute difference above is used for the computation of M̂ from M , leaving out
the initial subtraction part.

Again we computed the product of the inputs resulting in a double-sized
array and reduced the result mod 2256 − 38. Only at the end of the Curve25519
computation we reduced results mod 2255 − 19. In the following we will refer to
the implementation making use of the 32×32-bit multiplier as 32-bit Karatsuba
and the one for 16 × 16-bit multiplier as 16-bit Karatsuba. We further imple-
mented this method for 2-level Karatsuba, i.e. using subtractive Karatsuba for
the computation of L, H, and M . We will refer to those implementations as
2-Level 32-bit Karatsuba and 2-Level 16-bit Karatsuba, for using 32 × 32-bit
multiplier and 16 × 16-bit multiplier respectively.

5 Performance and Power Consumption Results

We used IAR Embedded Workbench for MSP430 IDE version 5.60.3 to develop
our code and compiled all source code by setting the compiler options to “low”.
This causes dead code, redundant labels and redundant branches to be elimi-
nated and achieves that variables live only as long as they are needed. It further
avoids common subexpression elimination, loop unrolling, function inlining, code
motion and type-based alias analysis [17]. Note that all functions implement-
ing arithmetic in F2255−19 were implemented in assembly, while the higher level
functions are implemented in C. This section describes our implementation and
measurement results.

We first present cycle-count estimates for the modular multiplication imple-
mentations given by IAR Embedded Workbench IDE. We compare these results
for two devices, namely MSP430FR5969 and MSP430F2618 having a 32×32-bit
and a 16 × 16-bit hardware multiplier, respectively. We further present numbers
for the required code space for the multiplication implementations.

For a device that has a 32 × 32-bit hardware multiplier (MSP430FR5969)
we executed the code and measured the execution time using the debugging
functionality of IAR Embedded Workbench IDE. We present the cycle count for
an execution of the Curve25519 variable-base-point single-scalar multiplication
on the MSP430FR5969 for the cases of having a 32 × 32-bit or a 16 × 16-bit
hardware multiplier on this target. Finally, we present our power measurement
results of the execution of different multiplication implementations and the scalar
multiplication on the MSP-EXP430FR5969 Launchpad Evaluation Kit.



Full-Size High-Security ECC Implementation on MSP430 Microcontrollers 41

Table 1. Simulated cycle count for modular multiplication (including reduction) on
MSP430F2618 and MSP430FR5969, given by IAR Embedded Workbench IDE version
5.60.3

MSP430FR5969 MSP430F2618

1 16-bit Operand-caching 3968 3949

2 32-bit Operand-caching 2505 -

3 16-bit Carry-save 7231 7228

4 16-bit Karatsuba 3666 3623

5 32-bit Karatsuba 2501 -

6 16-bit 2-level Karatsuba 3595 3554

7 32-bit 2-level Karatsuba 2705 -

Table 2. Code space (in bytes) required for modular multiplication implementations
(including reduction) on MSP430s.

Code Space (in bytes)

1 16-bit Operand-caching 4762

2 32-bit Operand-caching 2878

3 16-bit Carry-save 8448

4 16-bit Karatsuba 4316

5 32-bit Karatsuba 2826

6 16-bit 2-level Karatsuba 4270

7 32-bit 2-level Karatsuba 3144

5.1 Performance

First we simulated the cycle count and measured the required code space of
the different variants of implementation of the modular multiplication that we
implemented in IAR Embedded Workbench IDE. Table 1 presents the simulated
execution times for the two aforementioned microcontrollers, while Table 2 shows
the required code space for each implementation. It seems quite natural that
the version making use of the 32 × 32-bit hardware multiplier is faster and
requires less code space since fewer load (and store) operations to (and from)
the dedicated registers of the multiplier have to be executed.

We then measured the execution time of all multiplication implementations
on the MSP430FR5969 using the debugging functionality of IAR Embedded
Workbench IDE (Table 3). During this step we realized that wait cycles must
be included when the MSP430FR5969 runs at the frequency of 16 MHz. It is
due to the limited access frequency of FRAM, i.e., 8 MHz. So, the speed of
the implementation is not doubled by increasing the operation frequency from
8 MHz to 16 MHz. Table 3 displays these results. While in simulation the 32-bit
operand-caching multiplication seems to perform similar to the 32-bit Karatsuba



42 G. Hinterwälder et al.

implementation, it turns out that, when executing the implementations on the
board the 32-bit Karatsuba implementation performs a bit better compared to
32-bit operand-caching (cf. Table 3). This is due to the fact that IAR Embedded
Workbench IDE does not correctly simulate the execution time of the hardware
multiplier, i.e. the time it takes until the CPU can read out results from the hard-
ware multiplier. Interestingly, the improvement of using 2-level Karatsuba is only
given when making use of the 16 × 16-bit hardware multiplier (MSP430F2618).
When making use of the 32 × 32-bit multiplier, the overhead required for the
implementation of 2-level Karatsuba seems to dominate over the improvements
in timings. The lowest code space is achieved with 32-bit Karatsuba, but not far
from 32-bit operand-caching (Table 2).

Table 3. Execution time (i.e., cycle count) on MSP-EXP430FR5969 Launchpad Eval-
uation Kit, optimizations set to “low” when running the microcontroller at different
frequencies.

8 MHz 16 MHz

1 16-bit operand-caching 4045 4599

2 32-bit operand-caching 2529 2864

3 16-bit Carry-save 7230 8289

4 16-bit Karatsuba 3696 4203

5 32-bit Karatsuba 2488 2824

6 16-bit 2-level Karatsuba 3606 4119

7 32-bit 2-level Karatsuba 2684 3069

Further we implemented the variable-basepoint single-scalar multiplication
for the cases of having a 32×32-bit and having a 16×16-bit hardware multiplier.
For the implementation that makes use of the 32×32-bit hardware multiplier we
used 32-bit Karatsuba and for the implementation that only requires a 16 × 16-
bit hardware multiplier we used 2-level 16-bit Karatsuba, as those are the fastest
implementations for those cases according to Table 3. On the MSP430FR5969 the
x-coordinate-only variable-basepoint single-scalar multiplication, which makes
use of the 32 × 32-bit hardware multiplier, executes in 6,513,011 clock cycles
and requires 9.1 kB of code space, whereas the 16 × 16-bit hardware multiplier
version, executes in 9,139,739 clock cycles and requires 11.6 kB of code space.

Since there are no implementation results of the plain ECC point multi-
plication on an MSP430X with a 32 × 32-bit hardware multiplier given in the
literature, we compare the results given in the literature to our result for the
16 × 16-bit hardware multiplier (Table 4). Note that Gouvêa et al. obtain better
performance results for a 128-bit-secure elliptic-curve scalar multiplication on
an MSP430X microcontroller with a 32 × 32-bit hardware multiplier, albeit on
a different curve [10], but do not report performance results for the plain scalar
multiplication, but instead for the execution of several ECC-based protocols.



Full-Size High-Security ECC Implementation on MSP430 Microcontrollers 43

Table 4. Execution time (i.e., cycle count) of variable base-point single-scalar multipli-
cations on an elliptic curve providing a security level comparable to 128-bit symmetric
security on MSP430 microcontrollers.

Architecture Cycle count

Wenger et al. [33] MSP 23,973,000

Wenger et al. [32] MSP Clone w/o ISE 22,170,000

Gouvêa et al. [9] MSP 20,476,234

Our implementation MSPX 9,139,739

5.2 Power Consumption

We further examined our code in terms of power consumption on the MSP-
EXP430FR5969 Launchpad Evaluation Kit. We have implemented all multipli-
cations (e.g., listed in Table 1) in such a way that first two random operands
are selected then multiplied together by all multiplication algorithms one after
another. We also used an I/O pin of the MSP-EXP430FR5969 Launchpad Eval-
uation Kit to indicate the start and the end of each algorithm thereby being able
to identify at which period of time each algorithm is executed.

For the power measurements we made use of a LeCroy WaveRunner HRO 66Zi
digital sampling oscilloscope. As the MSP-EXP430FR5969 Launchpad Evalua-
tion Kit has been developed to facilitate power measurements, we could easily
place a 2.2 Ω shunt resistor at the Vdd path of the MSP430FR5969 microcontroller
while no stabilizing capacitor was placed between the measurement point and the
microcontroller. We powered the Evaluation Kit by an external stable power sup-
ply and monitored the current passing through the shunt resistor by means of a
LeCroy AP 033 differential probe at a sampling rate of 1 GS/s.

Figure 3(a) shows a sample power trace where the parts dedicated to each mul-
tiplication are marked. In Fig. 3(b) we also provide a zoomed view of this trace
to highlight several—non-periodic—high peaks which we have observed. We have
observed the same peaks (but periodic) for a couple of NOP operations as well.
The pattern of these high peaks actually differs for different sequence of opera-
tions. The source of this high power consumption peaks are not certainly clear to
us, but it seems that they are relevant to FRAM accesses. That is because fetching
the instructions from the code memory also needs to access the FRAM.

For 1 000 random operand pairs we collected 1000 traces, each of which cov-
ers the execution of all 7 multiplications with the same operands. Correspond-
ing to each multiplication, each trace is divided into 7 parts and the voltage
observed by the differential probe at each sample point is turned into instanta-
neous power as P = V 2/R, where R = 2.2Ω. Average of instantaneous power
values over the period of time corresponding to each multiplication gives us
the power consumption of the device for that operation. We also can turn this
value to amount of energy the device consumed by P · t, where t stands for the
duration of the multiplication. Figure 4 depicts the average of power and energy
consumption of the microcontroller for each multiplication. Note that since the



44 G. Hinterwälder et al.

0.5 1 1.5 2 2.5 3 3.5

3

5

7

9

11

Time [ms]

V
ol

ta
ge

 [
m

v]

 Op_caching_16 Carry_save_16 Karatsuba_32 2-L Kara_32

Op_caching_32 Karatsuba_16 2-L Kara_16

2.19 2.195 2.2 2.205 2.21 2.22 2.225 2.23 2.235 2.24

3

5

7

9

11

2.215 
Time [ms]

V
ol

ta
ge

 [
m

v]

(a) full trace

(b) zoomed view

Fig. 3. A sample power trace measured from MSP-EXP430FR5969 Launchpad Eval-
uation Kit when running 7 different multiplications

1 2 3 4 5 6 7
13

13.5

14

14.5

15

Multiplication Algorithm

Po
w

er
 [

µW
]

1 2 3 4 5 6 7
0

3

6

9

12

Multiplication Algorithm

E
ne

rg
y 

[n
J]

(a) (b)

Fig. 4. Average of (a) power and (b) energy consumption of different multiplications
(the indices for the algorithms fit to the same order shown in Table 1.)

MSP430FR5969 microcontroller on the Evaluation Kit operates by the internal
oscillator (8 MHz), the duration of each multiplication was not completely the
same for all 1000 measurements due to the small jitter of the oscillator.

As shown by the graphics, 32-bit operand-caching has the lowest power con-
sumption. However, 32-bit Karatsuba consumes less energy as it is the fastest
one (see Table 1). As stated above, using 32-bit Karatsuba the debugging func-
tionality of IAR Embedded Workbench IDE reports 6,513,011 clock cycles for
the execution of a scalar multiplication on Curve25519 on the board having a



Full-Size High-Security ECC Implementation on MSP430 Microcontrollers 45

MSP430FR5969. We verified this result measuring the length of the power trace.
Based on our practical measurements one full execution of the algorithm takes
around 821 ms with operation frequency of 8 MHz. This confirms the cycle count
measured with IAR debugging functionality. To measure its power consumption
we had to decrease the sampling rate to 200 MS/s due to the length of the
trace (825 ms). Based on 100 measurements for random operands, in average the
corresponding power consumption and energy consumption is 14.046µW and
11.623µJ respectively.

6 Conclusion

This paper is the first that presents a full constant-time implementation of
Curve25519 on different MSP430 microcontrollers. In order to evaluate and
improve the efficiency, we implemented and analyzed different finite-field multi-
plication techniques and compared them in terms of speed, code size, and power
consumption. Amongst all considered multiplication techniques, the subtractive
Karatsuba implementation proposed in [14] performs the best. It turned out that
2-level Karatsuba performs better than 1-level Karatsuba in case a 16 × 16-bit
hardware multiplier is available. This is however not the case if the MSP430 has
a 32×32-bit hardware multiplier. We further analyzed our implementation with
the MSP-EXP430FR5969 Launchpad Evaluation Kit. We presented numbers for
the average power and the energy consumption of Curve25519 on this platform.
We showed that with an energy consumption of 11.623µJ the execution of high-
security ECC is feasible on devices operated with battery or harvested power,
such as medical implants.

References

1. Acıiçmez, O., Brumley, B.B., Grabher, P.: New results on instruction cache
attacks. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225,
pp. 110–124. Springer, Heidelberg (2010). http://www.iacr.org/archive/ches2010/
62250105/62250105.pdf. 32

2. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–228.
Springer, Heidelberg (2006). http://cr.yp.to/papers.html#curve25519. 32, 33, 35,
36, 37

3. Bernstein, D.J.: Batch binary edwards. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 317–336. Springer, Heidelberg (2009). http://cr.yp.to/papers.
html#bbe. 38

4. Bernstein, D.J.: Cryptography in NaCl (2009). http://cr.yp.to/highspeed/
naclcrypto-20090310.pdf. 35

5. Bernstein, D.J., Schwabe, P.: NEON crypto. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 320–339. Springer, Heidelberg (2012).
http://cryptosith.org/papers/neoncrypto-20120320.pdf. 33

6. Bernstein, D.J., van Gastel, B., Janssen, W., Lange, T., Schwabe, P.,
Smetsers, S.: TweetNaCl: A crypto library in 100 tweets (to appear). Doc-
ument ID: c74b5bbf605ba02ad8d9e49f04aca9a2. http://cryptojedi.org/papers/#
tweetnacl. 33

http://www.iacr.org/archive/ches2010/62250105/62250105.pdf
http://www.iacr.org/archive/ches2010/62250105/62250105.pdf
http://cr.yp.to/papers.htmlcurve25519
http://cr.yp.to/papers.htmlbbe
http://cr.yp.to/papers.htmlbbe
http://cr.yp.to/highspeed/naclcrypto-20090310.pdf
http://cr.yp.to/highspeed/naclcrypto-20090310.pdf
http://cryptosith.org/papers/neoncrypto-20120320.pdf
http://cryptojedi.org/papers/#tweetnacl
http://cryptojedi.org/papers/#tweetnacl


46 G. Hinterwälder et al.

7. Costigan, N., Schwabe, P.: Fast elliptic-curve cryptography on the cell broadband
engine. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 368–385.
Springer, Heidelberg (2009). 33, 36

8. Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography
(2014). http://code.google.com/p/relic-toolkit/. Accessed 06 September 2014. 34

9. Gouvêa, C.P.L., López, J.: Software implementation of pairing-based cryptography
on sensor networks using the MSP430 microcontroller. In: Roy, B., Sendrier, N.
(eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 248–262. Springer, Heidelberg
(2009). http://conradoplg.cryptoland.net/files/2010/12/indocrypt09.pdf. 33, 43

10. Gouvêa, C.P.L., Oliveira, L.B., López, J.: Efficient software implementation
of public-key cryptography on sensor networks using the MSP430X microcon-
troller. J. Crypt. Eng. 2(1), 19–29 (2012). http://conradoplg.cryptoland.net/files/
2010/12/jcen12.pdf. 42

11. Guajardo, J., Blümel, R., Krieger, U., Paar, C.: Efficient implementation of elliptic
curve cryptosystems on the TI MSP430x33x family of microcontrollers. In: Kim,
K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 365–382. Springer, Heidelberg (2001). 33

12. Halperin, D., Heydt-Benjamin, T.S., Ransford, B., Clark, S.S., Defend, B., Morgan,
W., Fu, K., Kohno, T., Maisel, W.H.: Pacemakers and implantable cardiac defib-
rillators: Software radio attacks and zero-power defenses. In: IEEE Symposium on
Security and Privacy - IEEE S&P 2008d, pp. 129–142. IEEE Computer Society
(2008). http://www.secure-medicine.org/public/publications/icd-study.pdf. 32

13. Hutter, M., Schwabe, P.: NaCl on 8-Bit AVR microcontrollers. In: Youssef,
A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol.
7918, pp. 156–172. Springer, Heidelberg (2013). http://cryptojedi.org/papers/
avrnacl-20130220.pdf. 33

14. Hutter, M., Schwabe, P.: Multiprecision multiplication on AVR revisited (2014).
http://cryptojedi.org/papers/#avrmul. 37, 39, 45

15. Hutter, M., Wenger, E.: Fast multi-precision multiplication for public-key cryp-
tography on embedded microprocessors. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 459–474. Springer, Heidelberg (2011). https://online.
tugraz.at/tug online/voe main2.getvolltext?pCurrPk=58138. 37, 38

16. T.I. Incorporated: Enabling secure portable medical devices with TI’s MSP430
MCU and wireless technologies (2012). http://www.ti.com/lit/wp/slay027/
slay027.pdf. 32

17. T.I. Incorporated: MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and
MSP430FR69xx family user’s guide (2012). 40

18. T.I. Incorporated: MSP430x2xx family - user’s guide, July 2013. http://www.ti.
com/lit/ug/slau144j/slau144j.pdf. 34

19. T.I. Incorporated: MSP430F261x datasheet (rev. K) (2014). http://www.ti.com/
lit/ds/symlink/msp430f2618.pdf. 34

20. Janssen, W.: Curve25519 in 18 tweets. Bachelor’s thesis, Radboud University
Nijmegen (2014). http://www.cs.ru.nl/bachelorscripties/2014/Wesley Janssen
4037332 Curve25519 in 18 tweets.pdf. 33

21. Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata.
Soviet Physics Doklady, 7, 595–596 (1963). Translated from Doklady Akademii
Nauk SSSR, Vol. 145, No. 2, pp. 293–294, July 1962. 37, 39

22. Liu, A., Ning, P.: TinyECC: a configurable library for elliptic curve cryptog-
raphy in wireless sensor networks. In: International Conference on Informa-
tion Processing in Sensor Networks - IPSN 2008, pp. 245–256. IEEE (2008).
discovery.csc.ncsu.edu/pubs/ipsn08-TinyECC-IEEE.pdf. 34

http://code.google.com/p/relic-toolkit/
http://conradoplg.cryptoland.net/files/2010/12/indocrypt09.pdf
http://conradoplg.cryptoland.net/files/2010/12/jcen12.pdf
http://conradoplg.cryptoland.net/files/2010/12/jcen12.pdf
http://www.secure-medicine.org/public/publications/icd-study.pdf
http://cryptojedi.org/papers/avrnacl-20130220.pdf
http://cryptojedi.org/papers/avrnacl-20130220.pdf
http://cryptojedi.org/papers/#avrmul
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=58138
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=58138
http://www.ti.com/lit/wp/slay027/slay027.pdf
http://www.ti.com/lit/wp/slay027/slay027.pdf
http://www.ti.com/lit/ug/slau144j/slau144j.pdf
http://www.ti.com/lit/ug/slau144j/slau144j.pdf
http://www.ti.com/lit/ds/symlink/msp430f2618.pdf
http://www.ti.com/lit/ds/symlink/msp430f2618.pdf
http://www.cs.ru.nl/bachelorscripties/2014/Wesley_Janssen___4037332___Curve25519_in_18_tweets.pdf
http://www.cs.ru.nl/bachelorscripties/2014/Wesley_Janssen___4037332___Curve25519_in_18_tweets.pdf
http://discovery.csc.ncsu.edu/pubs/ipsn08-TinyECC-IEEE.pdf


Full-Size High-Security ECC Implementation on MSP430 Microcontrollers 47

23. C.U. Ltd.: MIRACL cryptographic SDK (2011). http://www.certivox.com/miracl/
(Accessed 06 September 2014). 34

24. Montgomery, P.L.: Speeding the pollard and Elliptic Curve methods of factoriza-
tion. Math. Comput. 48(177), 243–264 (1987). 32, 35

25. Pendl, C., Pelnar, M., Hutter, M.: Elliptic curve cryptography on the WISP UHF
RFID tag. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 32–47.
Springer, Heidelberg (2012). 33

26. Sasdrich, P., Güneysu, T.: Efficient elliptic-curve cryptography using
curve25519 on reconfigurable devices. In: Goehringer, D., Santambrogio,
M.D., Cardoso, J.M.P., Bertels, K. (eds.) ARC 2014. LNCS, vol. 8405,
pp. 25–36. Springer, Heidelberg (2014). https://www.hgi.rub.de/media/sh/
veroeffentlichungen/2014/03/25/paper arc14 curve25519.pdf. 33

27. Scott, M., Szczechowiak, P.: Optimizing multiprecision multiplication for public
key cryptography. Cryptology ePrint Archive, Report 2007/299 (2007). http://
eprint.iacr.org/2007/299/. 33

28. I. Systems: IAR C/C++ Compiler reference guide for texas instruments’ msp430
microcontroller family (2011). 32, 34

29. Szczechowiak, P., Kargl, A., Scott, M., Collier, M.: On the application of pair-
ing based cryptography to wireless sensor networks. In: Basin, D.A., Capkun, S.,
Lee, W. (eds.) Proceedings of the Second ACM Conference on Wireless Network
Security - WiSec 2009, pp. 1–12. ACM (2009). 33

30. Szczechowiak, P., Oliveira, L.B., Scott, M., Collier, M., Dahab, R.: NanoECC:
testing the limits of elliptic curve cryptography in sensor networks. In: Verdone,
R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 305–320. Springer, Heidelberg (2008).
http://www.ic.unicamp.br/ leob/publications/ewsn/NanoECC.pdf. 34

31. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and counter-
measures. J. Cryptol. 23(1), 37–71 (2010). http://www.tau.ac.il/tromer/papers/
cache-joc-20090619.pdf. 32

32. Wenger, E., Unterluggauer, T., Werner, M.: 8/16/32 shades of elliptic curve cryp-
tography on embedded processors. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT
2013. LNCS, vol. 8250, pp. 244–261. Springer, Heidelberg (2013). 33, 43

33. Wenger, E., Werner, M.: Evaluating 16-bit processors for elliptic curve cryptogra-
phy. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 166–181. Springer,
Heidelberg (2011). 33, 43

http://www.certivox.com/miracl/
https://www.hgi.rub.de/media/sh/veroeffentlichungen/2014/03/25/paper_arc14_curve25519.pdf
https://www.hgi.rub.de/media/sh/veroeffentlichungen/2014/03/25/paper_arc14_curve25519.pdf
http://eprint.iacr.org/2007/299/
http://eprint.iacr.org/2007/299/
http://www.ic.unicamp.br/leob/publications/ewsn/NanoECC.pdf
http://www.tau.ac.il/tromer/papers/cache-joc-20090619.pdf
http://www.tau.ac.il/tromer/papers/cache-joc-20090619.pdf


Efficient Integer Encoding for Homomorphic
Encryption via Ring Isomorphisms

Matthias Geihs1(B) and Daniel Cabarcas2

1 Technische Universität Darmstadt, Darmstadt, Germany
mgeihs@cdc.informatik.tu-darmstadt.de

2 Universidad Nacional de Colombia Sede Medelĺın, Medelĺın, Colombia

Abstract. Homomorphic encryption allows computation on encrypted
data at the cost of a significant loss in efficiency. In this paper we propose
a powerful integer encoding for homomorphic encryption. The proposed
encoding offers more efficient and convenient homomorphic computations
on integers compared to previously used methods. This is possible by
making the message space of the encryption scheme isomorphic to an
integer quotient ring. The encoding can be used across various lattice-
based homomorphic encryption schemes such as NTRU and various ring-
LWE based schemes. We analyse the efficiency of our proposed encoding,
which shows a significant gain compared to a naive integer encoding for
a ring-LWE based scheme.

Keywords: Integer encoding · Fully homomorphic encryption · Lattice
based cryptography · Privacy

1 Introduction

In 2009, Craig Gentry proposed the first fully homomorphic encryption scheme [7].
Generally speaking, homomorphic encryption allows performing operations on
encrypted data. The potential use of homomorphic encryption in privacy applica-
tions is huge [1,8,10,11,14,16]. But, despite numerous improvements over Gen-
try’s original framework [2–6,9,19,19–21], computing on encrypted data is still
much less efficient than directly computing on the data. For this technology to
become really practical, we need to squeeze as much computation as possible on
every single homomorphic computation cycle. In this paper we propose a way
to encode integers as plaintext of a homomorphic encryption scheme so that we
can perform integer operations efficiently in the encrypted domain.

Homomorphic encryption schemes do not operate on bits but rather on a
message space that is often a complex algebraic structure. A common message
space is the quotient ring R2 = Z2[x]/ 〈xn + 1〉. Meaningful data needs to be
encoded onto such a structure in order to compute homomorphically on it. It
is possible to encode a single bit in R2, but it would be wasteful. It is rather
desirable to encode several bits of information in a single message. However, care
must be taken because operations obey the algebraic rules of the message space.
c© Springer International Publishing Switzerland 2015
D.F. Aranha and A. Menezes (Eds.): LATINCRYPT 2014, LNCS 8895, pp. 48–63, 2015.
DOI: 10.1007/978-3-319-16295-9 3



Efficient Integer Encoding for Homomorphic Encryption 49

It is thus an important question how to encode as much information as possible
on a message space, in a way that the operations are meaningful.

We focus on how to encode a fundamental data type, the integer. Previously
proposed integer encodings are problematic because they operate on polynomials
of restricted coefficients and degree. Once an encoding polynomial’s coefficient
or degree grows too large, sensible decoding is not possible anymore.

We observe that it is possible to construct homomorphic encryption schemes
for which the message space is isomorphic to the ring Zt, for a large integer t. This
leads to an integer encoding that is efficient and convenient to use. Our encoding
assures that operations reside in Zt and hence computing on encoded integers is
similar to computing on log2(t)-bit integers. Furthermore, the proposed encoding
is better in computational complexity with O(l2 log l) compared to O(l3) for the
previously used encoding, where l is the number of layered multiplications.

The proposed encoding can also be enhanced to encode multiple integers
into a single message which allows for single instruction multiple data (SIMD)
style homomorphic computation [19]. We can also obtain an integer finite field
encoding by constructing a scheme whose message space is isomorphic to Zt,
where t is a prime. The encoding can be used across different homomorphic
encryption schemes whose message space is isomorphic to certain quotient rings.
For example, NTRU based schemes are supported [12,16], as well as a variety
of ring-LWE based schemes.

We show how to modify the ring-LWE scheme by Brakerski and Vaikun-
thanatan [6] (BV-RLWE) to allow our integer encoding. The message space of
BV-RLWE is a quotient ring of the form Rp = Z[x]/ 〈xn + 1, p〉, where p is an
integer. The key observation to achieve our encoding is that Rp is isomorphic
to an integer quotient ring Zt if we allow p to be a polynomial. Then, we can
encode integers using a straightforward mapping from the integer quotient ring
to the message space.

Choosing p to be a polynomial does not affect the security of the scheme,
and has only minor implications on its efficiency. In particular, we show that
modulus switching, the noise reduction technique proposed by Brakerski and
Vaikuntanathan [5], caries over to this setting. This makes the scheme much
more efficient, to the point that the size of the public key grows only linearly in
the depth of the circuits it can evaluate. Moreover, depending on the choice of p,
the scheme can be turned into a leveled fully homomorphic encryption scheme,
i.e., a scheme that can evaluate its decryption function homomorphically.

We develop a methodology to evaluate the efficiency of integer encodings.
Our approach consists on calculating the scheme parameters necessary to cor-
rectly evaluate a benchmark function. Using this methodology we compare our
encoding to the previously proposed integer encoding by Lauter et al. [14]. The
analysis yields that our encoding is significantly more efficient than the one by
Lauter et al.

1.1 Related Work

Another integer encoding was proposed by Lauter et al. [14], in which they
straightforwardly encode integer bits as polynomial coefficients. The message



50 M. Geihs and D. Cabarcas

space in their case is Zt[x]/〈xn+1〉, for a small integer t. They propose to encode
an integer a =

∑k
i=0 ai2i as a polynomial

∑k
i=0 aix

i. A major drawback of this
encoding is that the operations allowed are restricted by t and n. Additions
increase the size of the coefficients which must not reach t, while multiplications
also increase the degree k, which must not reach n. In Sect. 3 we give a more
detailed description of this encoding.

In another related work, Gentry et al. [10] propose an encoding for elements
in the finite field F28 . In their case, the message space is Z2[x]/〈Φm(x)〉, where
Φm(x) is the m-th cyclotomic polynomial. Their goal is to efficiently encode the
AES-128 state, which consists of 16 F28 elements. For that, they choose m so
that Φm(x) factors modulo 2 into k degree d polynomials, such that 8 divides
d. Thus Z2[x]/〈Φm(x)〉 is isomorphic to k copies of F2d , which contains F28 as
a subfield. By doing this they can encode k elements of F28 in a single message
and operate on them in parallel. Our encoding of integers is similar in the sense
that we can pack k integers in a single message and operate on them in parallel.
However, we use different structures and mappings to be able to encode integers.
The structure of the ring of integers cannot be efficiently emulated on a field of
the form F2d .

1.2 Organization

In Sect. 2 we describe the homomorphic encryption scheme BV-RLWE and ana-
lyze the conditions for its correctness. In Sect. 3 we present two integer encodings,
the one by Lauter et al. [14] and our isomorphism-based encoding. In Sect. 4 we
propose a methodology to evaluate the efficiency of integer encodings and com-
pare our proposed encoding to the one by Lauter et al.

2 BV-RLWE

We describe a modified version of the homomorphic encryption scheme originally
proposed by Brakerski and Vaikuntanathan [6]. We will later use this scheme for
evaluating efficiency of integer encodings.

2.1 Notation

The scheme, which is described in Sect. 2.2, relies on switching between cer-
tain quotient ring structures. In order to describe the scheme properly it is
important to describe how elements from one quotient ring are carried over to
another. We consider three types of quotient rings, which are R = Z[x]/ 〈xn + 1〉
and Rp = Z[x]/〈xn + 1, p〉, p ∈ N and Rx−a = Z[x]/ 〈xn + 1, x − a〉, a ∈ Z.
When carrying over an element from one ring to the other we will use a hybrid
unique representation of the element over the underlying polynomial ring Z[X].
For f(x) + 〈xn + 1〉 ∈ R, we denote by [f(x)]R ∈ Z[x] the unique polyno-
mial with [f(x)]R ≡ f(x) (mod xn + 1), and deg [f(x)]R < n. For f(x) +
〈xn + 1, p〉 ∈ Rp, we denote by [f(x)]Rp

∈ Z[x] the unique polynomial with



Efficient Integer Encoding for Homomorphic Encryption 51

[f(x)]Rp
=

∑
i fi ∗xi, [f(x)]Rp

≡ f(x) (mod xn +1, p), fi ∈ (−p/2, . . . , p/2], and
deg [f(x)]Rp

< n. For f(x)+〈xn + 1, x − a〉 ∈ Rx−a, we denote by [f(x)]Rx−a
∈ Z

the unique integer with [f(x)]Rx−a
≡ f(x) (mod xn +1, x−a), and [f(x)]Rx−a

∈
{0, . . . , |an + 1| − 1}.

Furthermore, sampling an element a from distribution χ over R is denoted
by a ←χ R and a ←$ R denotes sampling an element uniformly at random from
R. The infinity norm of a polynomial a =

∑
i ai∗xi ∈ Z[x] is denoted by ‖a‖∞ =

maxi |ai|. We say a distribution χ over R is bounded by B if ‖[a]R‖∞ ≤ B for
all a in the support of χ.

2.2 Scheme

The BV-RLWE homomorphic encryption scheme is parametrized by n, q ∈ N,
and p ∈ Z[x]. Note that in contrast to the original scheme, we allow p to be a
polynomial to support our proposed integer encoding later on. Plaintext space
and ciphertext space are derived from the quotient ring R := Z[x]/〈xn + 1〉.
The plaintext space is the quotient ring Rp := Z[x]/〈xn +1, p〉 and the ciphertext
space is the polynomial ring Rq[X] over the quotient ring Rq := Z[x]/〈xn + 1, q〉.
The scheme is also parametrized by an error distribution χ over R bounded by Bχ.

– Key Generation. Sample s, e ←χ R, a1 ←$ Rq and compute a0 :=
[−(a1 ∗ s + p ∗ e)]Rq

. The secret key is sk = s, the public key is pk = (a0, a1).
– Encryption. A message m ∈ Rp is encrypted using the public key pk =

(a0, a1). First, sample u, f, g ←χ R. Then, compute c0 := [a0 ∗u+p∗g+m]Rq

and c1 := [a1 ∗ u + p ∗ f ]Rq
. The ciphertext is ct := c0 + c1 ∗ X.

– Decryption. A ciphertext ct(X) ∈ Rq[X] is decrypted by computing m :=
[[ct(sk)]Rq

]Rp
.

We can easily check that the plaintext space (Rp,+, ∗) is somewhat homo-
morphic to the ciphertext space (Rq[X],+, ∗) by Enc : Rp → Rq[X] and
Dec : Rq[X] → Rp. We denote homomorphic evaluation of a function f on
ciphertexts ct1, . . . , ctl by Eval (f, ct1, . . . , ctl).

2.3 Noise Analysis

With the BV-RLWE scheme, decryption works as long as ciphertext noise is small.
However, homomorphic operations increase ciphertext noise. In this section we
give upper bounds on ciphertext noise for fresh ciphertexts and for ciphertexts
which result from homomorphic operations. The following lemma gives an upper
bound on polynomial coefficient size for multiplication over R = Z[x]/ 〈xn + 1〉.
Lemma 1. Let a, b ∈ Z[x], then ‖[a ∗ b]R‖∞ ≤ n ‖[a]R‖∞ ‖[b]R‖∞.

Proof. Write a =
∑n−1

i=0 aix
i, b =

∑n−1
i=0 bix

i. Using xn ≡ −1 (mod xn + 1) we
have

[a ∗ b]R =

⎡

⎣
n−1∑

i,j=0

γi,j ∗ a(i+j mod n) ∗ b(−j mod n) ∗ xi

⎤

⎦

R

,



52 M. Geihs and D. Cabarcas

with γi,j = 1 if i + j < n or else γi,j = −1. We realize that every term occurs
exactly n times. ��
For our noise analysis it is important to realize that a BV-RLWE ciphertext can
be written in the form

ct =

[
m + p ∗ e +

k∑

i=1

ci ∗ (Xi − si)

]

Rq

.

It is easy to check that this form is preserved upon ciphertext addition and
multiplication. Note that the decryption algorithm given the secret key sk = s
is based on the equality [ct(sk)]Rq

= [m + p ∗ e]Rq
. We next introduce the notion

of decryption noise which will be useful to describe noise properties of the scheme.
Decryption noise of a ciphertext ct is defined as

DN(ct) := ‖[m + p ∗ e]R‖∞ .

Decryption works as long as DN(ct) < q/2 because then it holds that

Decsk(ct) =
[
[m + p ∗ e]Rq

]

Rp

= [m + p ∗ e]Rp
= [m]Rp

.

Next, we evaluate how homomorphic operations affect decryption noise. We
state decryption noise of a ciphertext resulting from a homomorphic operation
as a function of the decryption noise of each of the input ciphertexts. For homo-
morphic addition, ctsum = ct1 + ct2, we have

DN(ctsum) = ‖[(m1 + p ∗ e1) + (m2 + p ∗ e2)]R‖∞
= ‖[m1 + p ∗ e1]R‖∞ + ‖[m2 + p ∗ e2]R‖∞
= DN(ct1) + DN(ct2) .

For homomorphic multiplication, ctprod = ct1 ∗ ct2, using Lemma 1 we obtain
an upper bound on decryption noise,

DN(ctprod) = ‖[(m1 + p ∗ e1) ∗ (m2 + p ∗ e2)]R‖∞≤ n ‖[m1 + p ∗ e1]R‖∞ ‖[m2 + p ∗ e2]R‖∞
= nDN(ct1)DN(ct2) .

2.4 Security

Security of the scheme is based on the Ring Learning With Errors problem [17].
More precisely, following the approach by Brakerski and Vaikuntanathan, it can
be shown that the scheme is secure assuming the PLWE assumption holds [6].
Choosing p to be a polynomial instead of an integer does not affect the security
argument as long as p and q are coprime in R. The argument boils down to the
PLWE assumption by noting that with s, e ←χ R, and a, u ←$ Rq, we have
that if (a, a ∗ s + e) is indistinguishable from (a, u) then (a, a ∗ s + p ∗ e) is
indistinguishable from (a, u).



Efficient Integer Encoding for Homomorphic Encryption 53

Choosing secure parameters is not trivial and depends on the best known
attack. We will not go into any details here, but simply give some recommenda-
tions mainly based on the works of Micciancio and Regev [18] and Lindner and
Peikert [15]. For more detailed information see also [6].

– The ring dimension parameter n must be a power of two.
– The ciphertext space modulus q must be a prime over Z.
– The message space modulus p must be coprime with q over R.
– The error distribution χ is the discrete Gaussian distribution DZn,σ.

According to Gentry et al. [10], a security of at least κ bits is achieved if

n > log
( q

σ

)
·
(

κ + 110
7.2

)
.

3 Integer Encoding

In order to use homomorphic encryption for meaningful computation on encryp-
ted data, we must encode data and operations onto the native message space of
the cryptosystem. The native message space to many of the recently proposed
homomorphic encryption schemes is the quotient ring Rp := Z[x]/ 〈xn + 1, p〉. If
we want to do efficient computation on encrypted data using such a scheme we
thus need to find an efficient encoding of data and operations onto the message
space Rp.

Here we focus on the encoding of integers, a fundamental data type in com-
putation. A commonly used integer encoding encodes an integer onto Rp by
reinterpreting its binary representation as a polynomial with binary coefficients
[14]. However, working with this encoding is problematic. When coefficients of
an encoding polynomial wrap around modulo p, the encoding polynomial cannot
be decoded to the correct integer anymore.

We present a powerful integer encoding utilizing the fact that we can choose
p ∈ Z[x] such that the quotient ring Z[x]/ 〈xn + 1, p〉 is isomorphic to an integer
quotient ring Zt, with t ∈ N. Previously, Hoffstein and Silverman used a similar
isomorphism for encoding binary data [13].

3.1 Bit Coefficient Encoding

For completeness we first present the bit coefficient encoding (BCE) by Lauter
et al. [14]. We describe the encoding and decoding steps and how integer oper-
ations on encoding elements are carried out. Note that for BCE the message
space is Rp = Z[x]/ 〈xn + 1, p〉, with p ∈ N.

m = BCE.Encode(z). We encode an z ∈ Z, with |z| < 2n, as a polynomial
m ∈ Rp using BCE. We first compute the binary representation |z| =

∑n−1
i=0 zi·2i,

with zi ∈ {0, 1}. The encoding message polynomial is

m := sign(z) ∗
n−1∑

i=0

zi ∗ xi .



54 M. Geihs and D. Cabarcas

z = BCE.Decode(m). We decode a polynomial m ∈ Rp to an integer z ∈ Z.
Write [m]Rp

=
∑n−1

i=0 mi ∗ xi, then compute

z :=
n−1∑

i=0

mi ∗ 2i .

Integer Operations. Addition and multiplication of encoded integers are eval-
uated by polynomial addition and multiplication of the encoding polynomials
over the message space Rp. It is easy to check that as long as deg (m) < n and
‖m‖∞ ≤ p/2, the encoding polynomial m decodes to the correct integer.

3.2 Ring Isomorphism Encoding

In the following we describe our proposed ring isomorphism integer encoding
(RIE). The encoding is established through an isomorphism between the message
space Z[x]/ 〈xn + 1, p〉, with p ∈ Z[x], and an integer quotient ring Zt, t ∈ N.
To encode an integer onto the message space we use a straightforward mapping
from the integer quotient ring Zt to the native message space Rp. Since the
message space is isomorphic to Zt, when using this encoding we can think of
computing on encrypted integers almost as if we were computing on log2(t)
bit integers. In contrast to BCE, we do not have to worry about coefficients
of encoding polynomials exceeding the modulus range p. When computing on
encoded integers using RIE, we are not just emulating an integer message space,
but we are in fact operating on a structure that truly behaves like one.

Theorem 1 establishes the isomorphism we use for the encoding. A slightly
different version of this theorem has already been proven by Hoffstein and Sil-
verman [13]. Here we present a slightly more general result.

Theorem 1. For a ∈ Z the map φ : Z[x]/ 〈xn + 1, x − a〉 → Z/ 〈an + 1〉 given by

f (x) + 〈xn + 1, x − a〉 → f (a) + 〈an + 1〉

is an isomorphism.

Proof. Consider the evaluation map φ′ : Z[x] → Z given by f(x) → f(a). The
map φ′ is clearly a surjective homomorphism. Moreover, since for all f(x) ∈
Z[x] we have f(x) ≡ f(a) (mod x − a), the kernel of φ′ is 〈x − a〉. Thus, by
the first isomorphism theorem Z[x]/〈x − a〉 is isomorphic to Z via the map
f(x) + 〈x − a〉 → f(a). Moreover, we have xn + 1 ≡ an + 1 (mod x − a) and
hence Z[x]/ 〈xn + 1, x − a〉 is isomorphic to Z/ 〈an + 1〉. ��
In the following we describe the encoding and decoding procedures in detail.
The choice of the modulus p = x − a is fundamental to the functioning of the
encoding because it determines the structure of the integer quotient ring we
will be working with. To demonstrate the ring isomorphism integer encoding we
make the convenient choice p = x− 2. However, different values for p may result



Efficient Integer Encoding for Homomorphic Encryption 55

in slightly more efficient encodings or might produce other interesting message
space properties, such as making the message space isomorphic to a finite field
or to a useful product ring (see Sect. 3.3 for an application of the latter).

According to Theorem 1, for p = x − 2 the map φ : Rp → Z/ 〈2n + 1〉,
f(x) + 〈xn + 1, p〉 → f(2) + 〈2n + 1〉 is an isomorphism. To efficiently encode
integers modulo 2n+1 as elements of Rp we choose the set of ternary polynomials
with degree less than n denoted by

Tn :=

{
a =

n−1∑

i=0

ai ∗ xi ∈ Z[x] : ai ∈ {−1, 0, 1}
}

.

Clearly, Tn suffices to represent the 2n + 1 elements of Z/ 〈2n + 1〉. However,
the mapping between Z/ 〈2n + 1〉 and Tn is not one-to-one. Thus, encoding an
integer does not yield an unique ternary polynomial. On the other hand, it is easy
to see that decoding a ternary polynomial yields indeed a unique integer modulo
2n + 1. In the following we describe the encoding and decoding algorithms.

m = RIE.Encode(z). We encode an integer z ∈ Z, with |z| ≤ 2n−1, as a
polynomial m ∈ Rp. Determine z0, . . . , zn−1 ∈ {−1, 0, 1} with z ≡ ∑n−1

i=0 zi · 2i

(mod 2n + 1), and
∑n−1

i=0 |zi| minimal. The encoding polynomial is

m :=
n−1∑

i=0

zi ∗ xi .

z = RIE.Decode(m). We decode a polynomial m ∈ Rp to an integer z ∈ Z.
Write m =

∑n−1
i=0 mi ∗ xi and compute

z′ :=

(
n−1∑

i=0

mi ∗ 2i

)
mod (2n + 1) .

The decoded integer is

z :=

{
z′ − (2n + 1) if z′ > 2n−1 ,

z′ otherwise.

Integer Operations. Since Rp
∼= Z2n+1, addition and multiplication over Rp

are isomorphically represented as addition and multiplication over Z2n+1.

3.3 SIMD

Using the Chinese Remainder Theorem, our proposed ring isomorphism integer
encoding can be enhanced in order to do single instruction multiple data (SIMD)
computation. Suppose an + 1 factors into pair-wise coprimes n1, . . . , nk. Then,
by the Chinese Remainder Theorem Zan+1 is isomorphic to Zn1 × · · · ×Znk

via
the map m+〈an + 1〉 → (m+〈n1〉 , . . . , m+〈nk〉). The inverse map is also known
and easy to compute. Hence, we can encode k integers into a single element of
our encryption scheme message space. A single homomorphic ciphertext space
operation would then correspond to k integer operations.



56 M. Geihs and D. Cabarcas

3.4 Modulus Switching

So far we described a somewhat homomorphic encryption (SWHE) scheme that
uses the plaintext modulus p = x − 2 to ease the encoding of integers. Unfortu-
nately, noise grows exponentially with the depth of the circuit, thus the scheme
can only perform a small number of prescribed operations. It would be desirable
to control the noise growth, to improve efficiency. Among different ways to con-
trol noise growth, the modulus switching technique, proposed by Brakerski and
Vaikuntanathan [5], is often preferred because there is no need for additional
assumptions [4]. Here, we adapt modulus switching to work in the case that
p = x − 2.

Modulus switching, as described by Brakerski et al. [4], transforms a cipher-
text c that decrypts under a modulus q into a ciphertext c′ that decrypts under a
smaller modulus q′, while the noise level essentially remains constant. To achieve
this, they propose a scale(c, q, q′, p) function (Definition 6 [4]) that returns c′ ≡ c
mod p close enough to (q′/q)c. We define a scaling function with equivalent prop-
erties suitable for the case p = x − 2.

Definition 1. Let c ∈ Z[x] be of degree less than n, p = x−2, and q′, q ∈ Z such
that q′ < q and q ≡ q′ ≡ 1 mod p. Let y = (q′/q)c ∈ Q[x]. Define scale(c, q, q′, p)
to be an algorithm that chooses c′ ∈ Z[x] such that c′ ≡ c mod 〈xn + 1, x − 2〉,
and as close as possible to y in the infinity norm.

Lemma 2. Let c ∈ Z[x] be of degree less than n, p = x − 2, and q′, q ∈ Z such
that q′ < q and q ≡ q′ ≡ 1 mod p. Then c′ = scale(c, q, q′, p) satisfies that c′ ≡ c
mod 〈xn + 1, x − 2〉 and ‖c′ − (q′/q)c‖∞ ≤ 1.5.

Proof. Let Tn be the set of all ternary polynomials of degree less than n. It is
easy to see that the projection map π : Z[x] → Rp maps Tn onto Rp. Moreover,
for y ∈ Q[x] of degree less than n, if we define the set

Sy =

{
n−1∑

i=0

hix
i | hi ∈ {�yi� − 1, �yi�, �yi� + 1}

}
,

then, also π maps Sy onto Rp. Therefore, it is possible to choose c′ ∈ Sy such that
c′ ≡ c mod 〈xn + 1, x − 2〉. Finally, notice that for c′ ∈ Sy, ‖c′ − (q′/q)c‖∞ ≤
1.5.

The previous result can easily be adapted to Z[x]-vectors, and thus be used to
establish a modulus switching procedure like the one described by Brakerski
et al. [4, Lemma 4]. It is also worth noting that in the simplified BV-RLWE
scheme presented above, the size of the ciphertext grows exponentially with the
depth of the circuit. This is easily fixed by relinearization [6] which is not affected
at all by the choice of p.

Therefore, through modulus switching, the BV-RLWE scheme equipped with
our efficient integer encoding, can be transformed into a leveled FHE scheme.
Modulus switching improves the efficiency so that the size of the public key is



Efficient Integer Encoding for Homomorphic Encryption 57

linear in the depth of the circuits that the scheme can evaluate. Moreover, our
proposed scheme evaluates depth L circuits of multiplications and additions in
the ring Z/ 〈an + 1〉, thus it compactly evaluate all depth L circuits of a complete
set of gates.

4 Integer Encoding Efficiency

We evaluate and compare efficiency of the integer encodings BCE and RIE des-
cribed in Sect. 3.2 when used with the BV-RLWE scheme described in Sect. 2.2.
In order to establish an efficiency measurement we consider two observations.

– There exist lower bounds on encryption scheme parameters n and q that guar-
antee the correct homomorphic evaluation of a chosen function with respect
to the employed scheme encoding configuration.

– Evaluation performance of BV-RLWE scales with the size of the parameters n
and q which define the ciphertext space Rq = Z[x]/ 〈xn + 1, q〉. More precisely,
the ciphertext size is linear in n and log2(q) and the time required to perform
ciphertext operations like addition and multiplication is at least linear in the
ciphertext size. We thus consider n log2(q) to be a reasonable indicator for
measuring homomorphic computation performance of different instances of
BV-RLWE.

Our approach to measure integer encoding efficiency uses a prototype bench-
mark function with respect to which we find scheme parameters such that the
employed scheme encoding is guaranteed to correctly evaluate the benchmark
function on encrypted inputs. We thereby obtain lower bounds on the parameters
n, q and hence a lower bound on the evaluation performance.

4.1 Benchmark Function

We choose a prototype benchmark function f that shall represent arbitrary inte-
ger functions involving a given number of layered additions and multiplications.
The benchmark function is parametrized by n1, ladd, lmul ∈ N, where n1 roughly
corresponds to the precision of input integers in bits and ladd, lmul correspond
to the number of involved integer additions and multiplications. The input inte-
ger space is chosen as Z/ 〈2n1 − 1〉 and input integers are assumed to lie in
{−(2n1−1 − 1), . . . , 2n1−1 − 1}. The benchmark function f is defined as

f : Zlmul×ladd
2n1−1 → Z ; (zi,j) →

lmul∏

i=1

ladd∑

j=1

zi,j .

4.2 Evaluating Lower Bounds

In the following, we find lower bounds on BV-RLWE parameters n, q, and p to
guarantee the successful evaluation of the benchmark function f on encrypted



58 M. Geihs and D. Cabarcas

inputs for BCE and RIE. More precisely, the lower bound on q guarantees suc-
cessful decryption and the lower bounds on n and p guarantee successful decod-
ing. More formally, we try to find encryption scheme parameters n, q, and p for
which

Decode(Decrypt(Eval(f, [cti,j ]))) = f([zi,j ])

with cti,j = Encrypt(Encode(zi,j)) holds and n log2 q is minimal.1 We first deter-
mine lower bounds on n and p separately for each of the encodings and then
evaluate a lower bound on q as a function of n and p.

BCE. Finding lower bounds on n and p for BCE is problematic because p
depends on the coefficient size of the resulting encoding polynomial mf =∏lmul

i=1

∑ladd
j=1 mi,j evaluated over Z[x], where mi,j = BCE.Encode (zi,j). We thus

first need to determine the maximum coefficient size of mf . According to
Sect. 3.1 we have ‖mi,j‖∞ ≤ 1 and deg(mi,j) < n1. In order to guarantee
BCE.Decode([mf ]Rp

) = f([zi,j ]) we need that n > deg(mf ) and p/2 > ‖mf‖∞.

Let for i = 1, . . . , lmul, mi =
∑ladd

j=1 mi,j . It clearly holds deg(mi) < n1 and

‖mi‖∞ ≤ ladd. Furthermore, since mf =
∏lmul

i=1 mi, it holds deg(mf ) ≤ lmul ·
(n1 − 1) and using Lemma 1 we obtain ‖mf‖∞ ≤ (n1)

lmul−1 · (ladd)
lmul . This

gives us the parameter lower bounds

n > lmul · (n1 − 1) , p > 2 · n1
lmul−1 · ladd

lmul .

RIE. For RIE lower bounds on parameters n, q can be obtained more easily and
precisely. Using RIE we work on integers {−2n−1, . . . , 2n−1} and thus we just
need to make sure that our computation result does not fall out of this range,
that is 2n−1 ≥

∣∣∣
∏lmul

i=1

(∑ladd
j=1 zi,j

)∣∣∣. Rewriting the expression we obtain a lower
bound on n given by

n > lmul · ((n1 − 1) + log2 ladd) .

Lower Bound on q. After estimating n and p, we are ready to compute a
lower bound on q. As described in Sect. 2.3, in order to guarantee the correct
decryption of the resulting ciphertext ctf = Eval(f, [cti,j ]), we need q > 2 ·
DN(ctf ). According to the decryption noise growth analysis in Sect. 2.3 we have
DN (ctf ) ≤ nlmul−1 · (Bfresh · ladd)

lmul . As a result, in order to guarantee correct
decryption we need to choose q such that

q > 2 · nlmul−1 · (Bfresh · ladd)
lmul ,

where Bfresh ≥ DN(Enc(m)) denotes a bound on the decryption noise of a
fresh ciphertext. It remains to estimate Bfresh. We have that DN(Enc(m)) =
‖m + p ∗ (−e ∗ u + g + f ∗ s)‖∞. We assume that the distributions from which
e, f , g, s, and u are sampled are all bounded by Bχ, hence

‖e‖∞ , ‖f‖∞ , ‖g‖∞ , ‖s‖∞ , ‖u‖∞ ≤ Bχ .

1 We use the notation [ai,j ] to represent a matrix of input values.



Efficient Integer Encoding for Homomorphic Encryption 59

Additionally, we know that a message polynomial m encoded with BCE or RIE
has ternary coefficients, hence ‖m‖∞ ≤ 1. We obtain

Bfresh = 1 + p′ · (
2 · n · B2

χ + Bχ

)
,

where2

p′ =

{
p if p ∈ N ,

3 if p = x − 2 .

4.3 Results

Based on our reasoning at the beginning of Sect. 4, as a performance indiciator to
measure encoding efficiency we use the lower bound on n log2 q. In the following
we will refer to this bound by �n log2 q�. We start with calculating the complexity
classes of �n log2 q� for each of the encodings using the results from Sect. 4.2. For
BCE we have �n� ∼ O(lmul · n1) and �p� ∼ O((ladd · n1)lmul). The complexity
class of the lower bound on log q as a function of lmul, ladd, n1 hence evaluates to

�log q�BCE ∼ O(
lmul · log(n · Bfresh · ladd)

)

∼ O(
lmul · log(lmul

2 · ladd
1+lmul · n1

2+lmul)
)

∼ O(
lmul

2 · log(ladd · n1)
)

.

For RIE we have �n� ∼ O(lmul · (n1 +log ladd)) and �p� ∼ O(1). Then for �log q�
we get

�log q�RIE ∼ O(
lmul · log(n · Bfresh · ladd)

)

∼ O(
lmul · log((lmul · (n1 + log ladd))

2 · ladd)
)

∼ O(
lmul · log(lmul · ladd · n1)

)
.

In summary, we obtain the resulting complexity classes for our performance
indicator �n · log q� as a function of lmul, ladd, and n1,

�n · log q�BCE ∼ O(
lmul

3 · n1 · log(ladd · n1)
)

,

�n · log q�RIE ∼ O(
lmul

2 · (n1 + log ladd) · log(lmul · ladd · n1)
)

.

The plots in Fig. 1 visualize how these differences in complexity reflect in
computation performance. In the three plots, the horizontal axis holds one of
the benchmark function parameters, that is ladd, lmul, or n1. The plots show
for both encodings how computation performance is affected by modifying the
supported number of additions, multiplications or the precision of input integers.
The vertical axis holds the resulting lower bound on n log2(q) for the given
parameters. Recall that this lower bound on n log2(q) is an indicator of the

2 We set p′ = 3 for p = x − 2 because for a ∈ R it holds that ‖[(x − 2) ∗ a]R‖∞ ≤
3 · ‖a‖∞.



60 M. Geihs and D. Cabarcas

1 6 11 16 21 26

0

2

4

·106

supported number of multiplications — lmul

ti
m

e,
sp

a
ce

—
�n

·lo
g
2
(q

)�

BCE

RIE

20 25 210 215 220 225
0

2

4

·105

supported number of additions — ladd

ti
m

e,
sp

a
ce

—
�n

·lo
g
2
(q

)�

BCE

RIE

8 16 32 64 128

0

1

2

·106

integer precision in bits — n1

ti
m

e,
sp

a
ce

—
�n

· lo
g
2
(q

)�

BCE

RIE

Fig. 1. Integer encoding efficiency of BCE versus RIE. Efficiency is measured in
terms of �n · log2(q)� as described in Sect. 4. The benchmark function is f([xi,j ]) =∏lmul

i=1

∑ladd
j=1 xi,j with inputs xi,j being integers of bitlength n1. If not stated differ-

ently, parameters are set to ladd = 210, lmul = 10, n1 = 16, and Bχ = 27.



Efficient Integer Encoding for Homomorphic Encryption 61

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·107

0

500

1,000

1,500

n log2(q)

m
il
li
se

co
n
d
s

Fig. 2. Computation time for the multiplication of two random elements over Rq.

runtime and memory required to do homomorphic computation as explained at
the beginning of Sect. 4.

The first plot shows how performance is affected when increasing the number
of supported multiplications. Here, RIE clearly outperforms BCE because of its
smaller lower bound complexity of O(lmul

2 log(lmul)) compared to O(lmul
3). In

the second plot we look at supported number of additions over performance.
For addition, BCE has complexity log(ladd) and BCE has complexity log2(ladd).
However, because we chose lmul = 10 as a default parameter value, this advantage
in efficiency of BCE over RIE is outruled by the effect of supporting a small
number of multiplications. The third plot then shows how performance behaves
for modifying the input integer precision n1. In this case complexity for both
encodings is the same, but we observe a difference in the slope of the two curves.
For the chosen parameter settings RIE performs better than BCE.

To give a better feeling what specific values for n log2(q) mean in terms of
real computation performance, in Fig. 2 we present timings for multiplying two
random elements over Rq as a function of n log2(q). In this plot each mark
represents a specific configuration of n and q. The black line represents a fit of
a linear function to the data using linear regression.3

It is worth mentioning that the efficiency of our encoding can further be
improved by modifying the RIE parameter a, which defines the plaintext space
quotient ring. For the sake of simplicity, we chose a = 2 and use encoding
polynomials with binary coefficients. If we choose a different value for a we
would adjust the coefficient range to (−|a|/2, |a|/2]. Increasing the coefficient
range obviously increases ciphertext noise, but we have also seen that the lower
bound on the ring dimension parameter n is given by n > lmul · loga(ladd ·2n1−1)
and thus decreases with increasing a. Hence, RIE efficiency can be fine tuned by
finding the optimal balance between the chosen plaintext quotient ring and the
evaluated functions.
3 Benchmarks were written in C++ using NTL, a library for doing number theory,

and run on a machine with an Intel Core i5-2557M CPU and 4GB of RAM.



62 M. Geihs and D. Cabarcas

References

1. Asharov, G., Jain, A., Wichs, D.: Multiparty computation with low communica-
tion, computation and interaction via threshold FHE. Cryptology ePrint Archive,
Report 2011/613 (2011). http://eprint.iacr.org/

2. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based
fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS,
vol. 8308, pp. 45–64. Springer, Heidelberg (2013)

3. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical gapSVP. Cryptology ePrint Archive, Report 2012/078 (2012). http://eprint.
iacr.org/

4. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. In: Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, ITCS 2012, pp. 309–325. ACM, New York (2012)

5. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: 2011 IEEE 52nd Annual Symposium on Foundations of Com-
puter Science (FOCS), pp. 97–106 (2011)

6. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

7. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009). crypto.stanford.edu/craig

8. Gentry, C., Goldman, K.A., Halevi, S., Julta, C., Raykova, M., Wichs, D.: Optimiz-
ing ORAM and using it efficiently for secure computation. In: De Cristofaro, E.,
Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 1–18. Springer, Heidelberg
(2013)

9. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 1–16. Springer, Heidelberg (2012)

10. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012)

11. Graepel, T., Lauter, K., Naehrig, M.: ML confidential: Machine learning on
encrypted data. Cryptology ePrint Archive, Report 2012/323 (2012). http://eprint.
iacr.org/

12. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

13. Hoffstein, J., Silverman, J.: Optimizations for NTRU. In: Public-Key Cryptogra-
phy and Computational Number Theory: Proceedings of the International Confer-
ence organized by the Stefan Banach International Mathematical Center Warsaw,
Poland, September 11–15, 2000, p. 77. De Gruyter (2001)

14. Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security
Workshop, CCSW 2011, pp. 113–124. ACM, New York (2011). http://doi.acm.org/
10.1145/2046660.2046682

15. Lindner, R., Peikert, C.: Better key sizes (and Attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://crypto.stanford.edu/craig
http://eprint.iacr.org/
http://eprint.iacr.org/
http://doi.acm.org/10.1145/2046660.2046682
http://doi.acm.org/10.1145/2046660.2046682


Efficient Integer Encoding for Homomorphic Encryption 63

16. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Proceedings of the
44th Symposium on Theory of Computing, STOC 2012, pp. 1219–1234. ACM, New
York (2012)

17. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010)

18. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J.,
Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191.
Springer, Heidelberg (2009)

19. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

20. Smart, N., Vercauteren, F.: Fully homomorphic SIMD operations. Cryptology
ePrint Archive, Report 2011/133 (2011). http://eprint.iacr.org/

21. Stehlé, D., Steinfeld, R.: Faster fully homomorphic encryption. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer, Heidelberg (2010)

http://eprint.iacr.org/


TweetNaCl: A Crypto Library in 100 Tweets

Daniel J. Bernstein1,2(B), Bernard van Gastel3, Wesley Janssen3,
Tanja Lange2, Peter Schwabe3, and Sjaak Smetsers3

1 Department of Computer Science, University of Illinois at Chicago,
Chicago, IL 60607–7053, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science,

Technische Universiteit Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

tanja@hyperelliptic.org
3 Digital Security Group, Radboud University Nijmegen,

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
B.vanGastel@cs.ru.nl, w.janssen@student.ru.nl,

peter@cryptojedi.org, s.smetsers@science.ru.nl

Abstract. This paper introduces TweetNaCl, a compact reimplemen-
tation of the NaCl library, including all 25 of the NaCl functions used by
applications. TweetNaCl is published on Twitter and fits into just 100
tweets; the tweets are available from anywhere, any time, in an unsuspi-
cious way. Distribution via other social media, or even printed on a sheet
of A4 paper, is also easily possible.

TweetNaCl is human-readable C code; it is the smallest readable
implementation of a high-security cryptographic library. TweetNaCl is
the first cryptographic library that allows correct functionality to be ver-
ified by auditors with reasonable effort, making it suitable for inclusion
into the trusted code base of a secure computer system. This paper uses
two examples of formally verified correctness properties to illustrate the
impact of TweetNaCl’s conciseness upon auditability.

TweetNaCl consists of a single C source file, accompanied by a single
header file generated by a short Python script (1811 bytes). The library
can be trivially integrated into a wide range of software build processes.

Portability and small code size come at a loss in efficiency, but Tweet-
NaCl is sufficiently fast for most applications. TweetNaCl’s cryptographic
implementations meet the same security and reliability standards as
NaCl: for example, complete protection against cache-timing attacks.

Keywords: Trusted code base · Source-code size · Auditability · Soft-
ware implementation · Timing-attack protection · NaCl · Twitter

This work was supported by the National Science Foundation under grant 1018836
and by the Netherlands Organisation for Scientific Research (NWO) under grant
639.073.005 and through Veni 2013 project 13114. Permanent ID of this document:
c74b5bbf605ba02ad8d9e49f04aca9a2. Date: 2014.10.04.

c© Springer International Publishing Switzerland 2015
D.F. Aranha and A. Menezes (Eds.): LATINCRYPT 2014, LNCS 8895, pp. 64–83, 2015.
DOI: 10.1007/978-3-319-16295-9 4



TweetNaCl: A Crypto Library in 100 Tweets 65

1 Introduction

OpenSSL is the space shuttle of crypto libraries. It will get you to
space, provided you have a team of people to push the ten thousand
buttons required to do so. NaCl is more like an elevator—you just
press a button and it takes you there. No frills or options.

I like elevators. —Matthew D. Green, 2012 [15]

Cryptographic libraries form the backbone of security applications. The Net-
working and Cryptography library (NaCl) [10], see www.nacl.cr.yp.to, is rapidly
becoming the crypto library of choice for a new generation of applications. NaCl
is used, for example, in BitTorrent Live [12]; in DNSCrypt [22] from OpenDNS;
in the secure mobile messaging app Threema [24]; and in the “new (faster and
safer) NTor” protocol [14], the new default for Tor [25].

There are several reasons that NaCl has attracted attention. NaCl presents
the developer with a high-level API: for example, all of the work necessary for
signing a message is integrated into NaCl’s crypto sign function, and all of the
work necessary for public-key authenticated encryption is integrated into NaCl’s
crypto box function. For each of these functionalities NaCl provides exactly one
default combination of cryptographic primitives selected for high security and
easy protection against timing attacks. For comparison, OpenSSL [23] provides
the implementor with a minefield of options, including many combinations that
are broken by timing attacks and many combinations that provide no security
at all.

NaCl is also much faster than OpenSSL. For example, on one core of a
2.5 GHz Intel Core i5-3210M Ivy Bridge CPU, OpenSSL’s RSA-2048 encryp-
tion takes 0.13 million cycles but RSA-2048 decryption takes 4.2 million cycles
and elliptic-curve encryption/decryption (DH) takes 0.7 million cycles. NaCl’s
elliptic-curve encryption/decryption takes just 0.18 million cycles. Both NaCl
and OpenSSL include optimized assembly-language implementations, but NaCl
uses state-of-the-art primitives that inherently allow higher speed than the primi-
tives included in OpenSSL: in this case, the Curve25519 elliptic curve rather than
the NIST P-256 elliptic curve or lower-security RSA-2048. This performance gap
is not limited to high-end Intel CPUs: see [11] for a performance analysis of the
same primitives on the ARM Cortex-A8 CPU core used in the iPad 1 and iPhone
4 three years ago and in the low-cost BeagleBone Black today.

However, NaCl’s performance comes at a price. A single NaCl function usu-
ally consists of several different implementations, often including multiple imple-
mentations in assembly optimized for different CPUs. NaCl’s compilation system
is correspondingly complicated. Auditing the NaCl source is a time-consuming
job. For example, four implementations of the ed25519 signature system have
been publicly available and waiting for integration into NaCl since 2011, but
in total they consist of 5521 lines of C code and 16184 lines of qhasm code.
Partial audits have revealed a bug in this software (r1 += 0 + carry should
be r2 += 0 + carry in amd64-64-24k) that would not be caught by random
tests; this illustrates the importance of audits. There has been some progress

www.nacl.cr.yp.to


66 D.J. Bernstein et al.

towards computer verification of formal proofs of correctness of software, but
this progress is still far from complete verification of a usable high-security cryp-
tographic library.

TweetNaCl: a small reimplementation of NaCl. This paper introduces
TweetNaCl (pronounced “tweet salt”), a reimplementation of all 25 C NaCl
functions used by applications. Each TweetNaCl function has exactly the same
interface and semantics as the C NaCl function by the same name. (NaCl also
includes an alpha-test networking component and support for languages other
than C; TweetNaCl does not attempt to imitate these features.)

What distinguishes TweetNaCl from NaCl, and from other cryptographic
libraries, is TweetNaCl’s conciseness. We have posted TweetNaCl at https://
twitter.com/TweetNaCl as a sequence of just 100 tweets. The tweets are also
shown in Appendix A of this paper. The tweets, plus 1 byte at the end of each
line, occupy a total of 13456 bytes.

What we actually wrote was a slightly less compact 809-line 16637-byte
tweetnacl.c. We then wrote a simple Python script, shown in Appendix B, to
remove unnecessary spaces and produce the tweet form of TweetNaCl shown in
Appendix A. Developers using TweetNaCl are expected to feed the tweet form
of TweetNaCl through any standard indentation program, such as the UNIX
indent program, to produce something similar to the original tweetnacl.c.

An accompanying 1811-byte Python script, shown in Appendix C, prints a
tweetnacl.h that declares all the functions in tweetnacl.c, together with the
same set of macros provided by NaCl. NaCl actually splits these declarations
and macros into a moderately large collection of .h files such as crypto box.h,
crypto box curve25519xsalsa20poly1305.h, etc.; we have a similar Python
script that creates the same collection of .h files, but switching to tweetnacl.h
is minimal effort for developers.

TweetNaCl is not “obfuscated C”: in indented form it is easily human-
readable. It does use two macros and five typedefs, for example to abbreviate
for (i = 0;i < n;++i) as FOR(i,n) and to abbreviate unsigned char as u8,
but we believe that these abbreviations improve readability, and any readers
who disagree can easily remove the abbreviations.

TweetNaCl is auditable. TweetNaCl is not merely readable; we claim that it
is auditable. TweetNaCl is short enough and simple enough to be audited against
a mathematical description of the functionality in NaCl such as [2]. TweetNaCl
makes it possible to comprehensively audit the complete cryptographic portion
of the trusted code base of a computer system. Of course, compilers also need
to be audited (or to produce proofs of correct translations), as do other critical
system components.

Section 6 explains how we have efficiently verified two memory-safety prop-
erties of TweetNaCl. Of course, this is far from a complete audit, but it already
illustrates the impact of TweetNaCl’s conciseness upon auditability: verifying
the same properties for NaCl would be beyond current technology, and verifying
the same properties for OpenSSL would be inconceivable.

https://twitter.com/TweetNaCl
https://twitter.com/TweetNaCl


TweetNaCl: A Crypto Library in 100 Tweets 67

TweetNaCl is secure and reliable. TweetNaCl is a C library containing the
same protections as NaCl against simple timing attacks, cache-timing attacks,
etc. It has no branches depending on secret data, and it has no array indices
depending on secret data. We do not want developers to be faced with a choice
between TweetNaCl’s conciseness and NaCl’s security.

TweetNaCl is also thread-safe, and has no dynamic memory allocation. Tweet-
NaCl, like C NaCl, stores all temporary variables in limited areas of the stack.
There are no hidden failure cases: TweetNaCl reports forgeries in the same way
as C NaCl, and is successful in all other cases.

TweetNaCl’s functions compute the same outputs as C NaCl: the libraries
are compatible. We have checked all TweetNaCl functions against the NaCl test
suite.

TweetNaCl is portable and easy to integrate. Another advantage of Tweet-
NaCl’s conciseness is that developers can simply add the files tweetnacl.c and
tweetnacl.h into their applications, without worrying about complicated con-
figuration systems or dependencies upon external libraries. TweetNaCl works
straightforwardly with a broad range of compilation systems, including cross-
compilation systems, and runs on any device that can compile C. We comment
that TweetNaCl also provides another form of portability, namely literal porta-
bility, while maintaining literal readability: TweetNaCl fits onto a single sheet
of paper in a legible font size, see Appendix A.

For comparison, the Sodium library from Denis [13] is a “portable, cross-
compilable, installable, packageable fork of NaCl, with a compatible API”; cur-
rent libsodium-0.6.0.tar.gz has 1546246 bytes and unpacks into 447 files
totaling 5525939 bytes. Many NaCl applications (e.g., DNSCrypt), and 26 NaCl
bindings for various languages, are actually using Sodium. TweetNaCl is similar
to Sodium in being portable, cross-compilable, installable, and packageable; but
TweetNaCl has the added advantage of being so small that it can be trivially
incorporated into applications by inclusion rather than by reference. We have
placed TweetNaCl into the public domain, and we encourage applications to
make use of it.

The first version of Sodium was obtained by reducing NaCl to its reference
implementations, removing all of the optimized implementations, and simplifying
the build system accordingly. We emphasize that this does not produce anything
as concise as TweetNaCl. Sections 2–5 of this paper describe the techniques we
used to reduce the complexity of the TweetNaCl code, compared to the NaCl
reference implementations.

TweetNaCl is fast enough for typical applications. TweetNaCl’s focus on
code size means that TweetNaCl cannot provide optimal run-time performance;
NaCl’s optimized assembly is often an order of magnitude faster. However, Tweet-
NaCl is sufficiently fast for most cryptographic applications. Most applications
can tolerate the 4.2 million cycles that OpenSSL uses on an Ivy Bridge CPU for
RSA-2048 decryption, for example, so they can certainly tolerate the 2.5 million
cycles that TweetNaCl uses for higher-security decryption (Curve25519). Note
that, at a typical 2.5 GHz CPU speed, this is 1000 decryptions per second per CPU



68 D.J. Bernstein et al.

core. One can of course find examples of busy applications that need the higher
performance of NaCl, but those examples do not affect the usability of TweetNaCl
in typical lower-volume cryptographic applications.

Of course, it would be better for compilers to turn concise source code into
optimal object code, so that there is no need for optimized assembly in the first
place. We leave this as a challenge for language designers and compiler writers.

TweetNaCl is also small after compilation. TweetNaCl remains reason-
ably small when compiled, even though this was not its primary goal. For exam-
ple, when TweetNaCl is compiled with gcc -Os on an Intel CPU, it takes only
11512 bytes. Small compiled code has several benefits: perhaps most importantly,
it avoids instruction-cache misses, both for its own startup and for other code
that would otherwise have been kicked out of cache. Note that typical crypto-
graphic benchmarks ignore these costs.

For some C compilers, putting all of TweetNaCl into a single .c file prevents
separate linking: the final binary will include all TweetNaCl functions even if
not all of those functions are used. Any developers who care about the penalty
here could comment out the unused code, but TweetNaCl is so small that this
penalty is negligible in the first place.

On some platforms, code is limited in total size, not just in the amount that
can be cached. This was the motivation for Hutter and Schwabe to reimplement
NaCl to fit into the limited flash storage and RAM available on AVR microcon-
trollers [18]. Their low-area implementation consists of several thousand lines
written in assembly and compiles to 17366 bytes; they also have faster imple-
mentations using somewhat more area. TweetNaCl compiles to somewhat more
code, 29682 bytes on the same platform, but is much easier to read and to verify,
especially since the verification work for TweetNaCl is shared across platforms.

TweetNaCl is a full library, not just isolated functions. In June 2013,
Green [16] announced a new contest to “identify useful cryptographic algorithms
that can be formally described in one Tweet.” TweetNaCl is inspired by, but not
a submission to, this contest. Unlike the submissions in that Twitter thread, later
submissions using #C1T on Twitter, or TweetCipher [1] (authenticated encryp-
tion in 6 tweets, but with an experimental cryptosystem cobbled together for
the sole purpose of being short), TweetNaCl provides exactly NaCl’s high-level
high-security cryptographic operations. TweetNaCl includes all necessary con-
versions to and from wire format, modular arithmetic from scratch, etc., using
nothing but the C language.

TweetNaCl provides extremely high source-code availability. In 1995,
at the height of the crypto wars, the United States government regarded crypto-
graphic software as arms and subjected it to severe export control. In response,
Zimmermann published the PGP software as a printed book [28]. The export-
control laws did not cover printed material, so the book could be shipped abroad.
Producing usable PGP software from the printed copies (see [27]) required hours
of volunteer work to OCR and proofread over 6000 pages of code.



TweetNaCl: A Crypto Library in 100 Tweets 69

TweetNaCl fits onto just 1 page. This conciseness opens up many new possi-
bilities for software distribution, ensuring the permanent availability of Tweet-
NaCl to users worldwide, even users living under regimes that have decided to
censor our 100 tweets. Of course, PGP is a full-fledged cryptographic application
rather than just a cryptographic library, but we expect TweetNaCl to enable a
broad spectrum of small high-security cryptographic applications.

Functions supported by TweetNaCl. Simple NaCl applications need only
six high-level NaCl functions: crypt box for public-key authenticated encryp-
tion; crypto box open for verification and decryption; crypto box keypair to
create a public key in the first place; and similarly for signatures (Fig. 1)
crypto sign, crypto sign open, and crypto sign keypair.

A minimalist implementation of the NaCl API would provide just these six
functions. TweetNaCl is more ambitious, supporting all 25 of the NaCl functions
listed in Table 1, which as mentioned earlier are all of the C NaCl functions used
by applications. This list includes all of NaCl’s “default” primitives except for
crypto auth hmacsha512256, which was included in NaCl only for compatibility
with standards and is superseded by crypto onetimeauth.

crypto_box = crypto_box_curve25519xsalsa20poly1305

crypto_box_open

crypto_box_keypair

crypto_box_beforenm

crypto_box_afternm

crypto_box_open_afternm

crypto_core_salsa20

crypto_core_hsalsa20

crypto_hashblocks = crypto_hashblocks_sha512

crypto_hash = crypto_hash_sha512

crypto_onetimeauth = crypto_onetimeauth_poly1305

crypto_onetimeauth_verify

crypto_scalarmult = crypto_scalarmult_curve25519

crypto_scalarmult_base

crypto_secretbox = crypto_secretbox_xsalsa20poly1305

crypto_secretbox_open

crypto_sign = crypto_sign_ed25519

crypto_sign_open

crypto_sign_keypair

crypto_stream = crypto_stream_xsalsa20

crypto_stream_xor

crypto_stream_salsa20

crypto_stream_salsa20_xor

crypto_verify_16

crypto_verify_32

Fig. 1. Functions supported by TweetNaCl.



70 D.J. Bernstein et al.

As mentioned earlier, the Ed25519 signature system has not yet been inte-
grated into NaCl, since the Ed25519 software has not yet been fully audited;
NaCl currently provides an older signature system. However, NaCl has announced
that it will transition to Ed25519, so TweetNaCl provides Ed25519.

In surveying NaCl applications we have found two main reasons that applica-
tions go beyond the minimal list of six functions. First, many NaCl applications
split (e.g.) crypto box into crypto box beforenm and crypto box afternm to
improve speed. Second, some NaCl applications are experimenting with varia-
tions of NaCl’s high-level operations but continue to use lower-level NaCl func-
tions such as crypto secretbox and crypto hash.

It is important for all of these applications to continue to work with Tweet-
NaCl. The challenge here is the code size required to provide many functions.
Even a single very simple function such as

int crypto_box_beforenm(u8 *k,const u8 *y,const u8 *x)
{

u8 s[32];
crypto_scalarmult(s,x,y);
return crypto_core_hsalsa20(k,z,s,sigma);

}

costs us approximately 1 tweet. We could use shorter function names internally,
but we would then need further wrappers to provide all the external function
names listed in Table 1. We have many such functions, and a limited tweet bud-
get, limiting the space available for actual cryptographic computations.

2 Salsa20, HSalsa20, and XSalsa20

NaCl encrypts messages by xor’ing them with the output of Bernstein’s Salsa20
[5] stream cipher. The Salsa20 stream cipher generates 64-byte output blocks
using the Salsa20 “core function” in counter mode. The main loop in NaCl’s refer-
ence implementation of this core function, crypto core/salsa20/ref/core.c,
transforms 16 32-bit words x0, x1, . . . , x15 as follows, where ROUNDS is 20:

for (i = ROUNDS;i > 0;i -= 2) {
x4 ^= rotate( x0+x12, 7); x8 ^= rotate( x4+ x0, 9);

x12 ^= rotate( x8+ x4,13); x0 ^= rotate(x12+ x8,18);
x9 ^= rotate( x5+ x1, 7); x13 ^= rotate( x9+ x5, 9);
x1 ^= rotate(x13+ x9,13); x5 ^= rotate( x1+x13,18);

x14 ^= rotate(x10+ x6, 7); x2 ^= rotate(x14+x10, 9);
x6 ^= rotate( x2+x14,13); x10 ^= rotate( x6+ x2,18);
x3 ^= rotate(x15+x11, 7); x7 ^= rotate( x3+x15, 9);

x11 ^= rotate( x7+ x3,13); x15 ^= rotate(x11+ x7,18);
x1 ^= rotate( x0+ x3, 7); x2 ^= rotate( x1+ x0, 9);
x3 ^= rotate( x2+ x1,13); x0 ^= rotate( x3+ x2,18);
x6 ^= rotate( x5+ x4, 7); x7 ^= rotate( x6+ x5, 9);
x4 ^= rotate( x7+ x6,13); x5 ^= rotate( x4+ x7,18);

x11 ^= rotate(x10+ x9, 7); x8 ^= rotate(x11+x10, 9);
x9 ^= rotate( x8+x11,13); x10 ^= rotate( x9+ x8,18);

x12 ^= rotate(x15+x14, 7); x13 ^= rotate(x12+x15, 9);
x14 ^= rotate(x13+x12,13); x15 ^= rotate(x14+x13,18);

}



TweetNaCl: A Crypto Library in 100 Tweets 71

Notice that this loop involves 96 x indices: x4, x0, x12, x8, x4, etc. TweetNaCl
handles the same loop much more concisely:

FOR(i,20) {
FOR(j,4) {

FOR(m,4) t[m] = x[(5*j+4*m)
t[1] ^= rotate(t[0]+t[3], 7); t[2] ^= rotate(t[1]+t[0], 9);
t[3] ^= rotate(t[2]+t[1],13); t[0] ^= rotate(t[3]+t[2],18);
FOR(m,4) w[4*j+(j+m)

}
FOR(m,16) x[m] = w[m];

}

We emphasize two levels of Salsa20 symmetry that appear in the Salsa20
specification and that are expressed explicitly in this TweetNaCl loop. First,
the 20 rounds in Salsa20 alternate between “column rounds” and “row rounds”,
with column rounds operating on columns of the 4 × 4 matrix

⎛

⎜⎜⎝

x[0] x[1]] x[2] x[3]
x[4] x[5] x[6] x[7]
x[8] x[9] x[10] x[11]
x[12] x[13] x[14] x[15]

⎞

⎟⎟⎠

and row rounds operating in exactly the same way on rows of the matrix. Tweet-
NaCl computes a row round as a transposition of the matrix followed by a column
round followed by another transposition; i.e., the 20 rounds consist of 20 itera-
tions of “compute a column round and transpose the output”. The transposed
result of each round is built in a separate array w to avoid overwriting the round
input; it is then copied from w back to x. One can easily see that the indices
4*j+(j+m)%4 for w are the transposes of the indices (5*j+4*m)%16 for x.

Second, the column round operates on the column down from x[0], operates
in the same way on the column down from x[5] (wrapping around to x[1]),
operates in the same way on the column down from x[10], and operates in the
same way on the column down from x[15]. TweetNaCl has j loop over the
4 columns; the x index (5*j+4*m)%16 is m columns down from the starting point
in column j.

For comparison, the indices in the second half of the NaCl loop shown above
are the transposes of the indices in the first half, and the indices in the first half
have these symmetries across columns. Verifying these 96 indices is of course
feasible but takes considerably more time than verifying the corresponding seg-
ment of TweetNaCl code—and this is just the first of many ways in which NaCl’s
reference implementations consume more code than TweetNaCl.

Stream generation and stream encryption. NaCl actually has two ways to
use Salsa20: crypto stream salsa20 produces any desired number of bytes of
the Salsa20 output stream; crypto stream salsa20 xor produces a ciphertext
from a plaintext. Both functions are wrappers around crypto core salsa20;
both functions handle initialization and updates of the block counter, and output
lengths that are not necessarily multiples of 64. The difference is that the second



72 D.J. Bernstein et al.

function xors each block with a plaintext block, moving along the plaintext
accordingly.

TweetNaCl’s implementation of crypto stream salsa20 calls the function
crypto stream salsa20 xor with a null pointer for the plaintext. This elimi-
nates essentially all duplication of code between these functions, at the expense
of three small tweaks to crypto stream salsa20 xor, such as replacing

FOR(i,64) c[i] = m[i] ^ x[i];

with

FOR(i,64) c[i] = (m?m[i]:0) ^ x[i];

to treat a null pointer m as if it were a pointer to an all-0 block.

XSalsa20 and HSalsa20. NaCl’s crypto stream actually uses Bernstein’s
XSalsa20 stream cipher (see [6]) rather than the Salsa20 stream cipher. The dif-
ference is that XSalsa20 supports 32 bytes of nonce/counter input while Salsa20
supports only 16 bytes of nonce/counter input. XSalsa20 uses the original
32-byte key and the first 16 bytes of the nonce to generate an intermediate
32-byte key, and then uses Salsa20 with the intermediate key and the remaining
16 bytes of nonce/counter to generate each output block.

The intermediate key generation, called “HSalsa20”, is similar to Salsa20
but slightly more efficient, and has a separate implementation in NaCl. For our
purposes this is a problem: it means almost doubling the code size.

TweetNaCl does better by viewing HSalsa20 as (1) generating a 64-byte
Salsa20 output block, (2) extracting 32 bytes from particular output positions,
and then (3) transforming those 32 bytes in a public invertible way. The transfor-
mation is much more concise than a separate HSalsa20 implementation, allow-
ing us to implement both crypto core salsa20 and crypto core hsalsa20 as
wrappers around a unified core function in TweetNaCl.

We do not claim novelty for this view of HSalsa20: the same structure is
exactly what allowed the proof in [6] that the security of Salsa20 implies the
security of HSalsa20 and XSalsa20. What is new is the use of this structure to
simplify a unified Salsa20/HSalsa20 implementation.

3 Poly1305

Secret-key authentication in NaCl uses Bernstein’s Poly1305 [3] authenticator.
The Poly1305 code in the NaCl reference implementation is already quite con-
cise. For elements of F2130−5 it uses a radix-28 representation; we use the same
representation for TweetNaCl.

The NaCl reference implementation uses a mulmod function for multiplication
in F2130−5, a squeeze function to perform two carry chains after multiplication
and a freeze function to produce a unique representation of an element of
F2130−5. Each of these functions is called only once in the Poly1305 main loop;
we inline those functions to remove code for the function header and the call.



TweetNaCl: A Crypto Library in 100 Tweets 73

The reference implementation also uses an add function which is called once in
the main loop, once during finalization and once inside the freeze function. We
keep the function, but rename it to add1305 to avoid confusion with the add
function used (as described in Sect. 5) for elliptic-curve addition.

We furthermore shorten the code of modular multiplication. NaCl’s reference
implementation performs multiplication of h by r with the result in hr as follows:

for (i = 0;i < 17;++i) {
u = 0;
for (j = 0;j <= i;++j)

u += h[j] * r[i - j];
for (j = i + 1;j < 17;++j)

u += 320 * h[j] * r[i + 17 - j];
hr[i] = u;

}

This piece of code exploits the fact that 2136 ≡ 320 (mod 2130 − 5) for mod-
ular reduction on the fly. TweetNaCl merges the two inner loops:

FOR (i, 17) {
x[i] = 0;
FOR (j, 17)

x[i] += h[j] * ((j <= i) ? r[i - j] : 320 * r[i + 17 - j]);
}

4 SHA-512

The default hash function in NaCl and the hash function used within the Ed25519
signature scheme (see Sect. 5) is SHA-512 [26]. The SHA-512 code in the NaCl
reference implementation consists of two main portions of code:

– The function crypto hash, which performs initialization of the hash value
with the IV and computation of message padding; and

– the crypto hashblocks function which performs hashing of full blocks.

Message padding. Outside of crypto hashblocks, message padding is the
most complex part of crypto hash. The reference padding code, with Tweet-
NaCl’s choices of variable names substituted for the original choices, is as follows:

for (i = 0;i < n;++i) x[i] = m[i];
x[n] = 0x80;
if (n < 112) {

for (i = n + 1;i < 119;++i) x[i] = 0;
x[119] = b >> 61;
x[120] = b >> 53; x[121] = b >> 45;
x[122] = b >> 37; x[123] = b >> 29;
x[124] = b >> 21; x[125] = b >> 13;
x[126] = b >> 5; x[127] = b << 3;
crypto_hashblocks(h,x,128);

} else {
for (i = n + 1;i < 247;++i) x[i] = 0;
x[247] = b >> 61;
x[248] = b >> 53; x[249] = b >> 45;



74 D.J. Bernstein et al.

x[250] = b >> 37; x[251] = b >> 29;
x[252] = b >> 21; x[253] = b >> 13;
x[254] = b >> 5; x[255] = b << 3;
crypto_hashblocks(h,x,256);

}

This segment handles two possibilities for processing the final partial block
of SHA-512 input: if the block has fewer than 112 bytes then it is padded to
128 bytes; otherwise it is padded to 256 bytes. The padding ends with a 9-byte
big-endian encoding of the number of message bits.

TweetNaCl simplifies this code in three ways. First, it eliminates the two sep-
arate lines of zero-padding x in favor of initializing the whole array to 0. Second,
elsewhere in TweetNaCl there is a ts64 function (used at the end of the SHA-512
compression function) that stores 64 bits in big-endian form; TweetNaCl reuses
this function inside the padding. Third, TweetNaCl merges the two branches,
reusing n (which has no later use) for the number of bytes in the padded block.
The final padding code is much more concise than the original:

FOR(i,256) x[i] = 0;
FOR(i,n) x[i] = m[i];
x[n] = 128;
n = 256-128*(n<112);
x[n-9] = b >> 61;
ts64(x+n-8,b << 3);
crypto_hashblocks(h,x,n);

Hashing blocks. SHA-512 performs 80 rounds of computation per block. The
NaCl reference implementation has 80 lines for these 80 rounds. Each round
is just one invocation of an F macro (interruped by invocations of an EXPAND
macro after every 16 rounds), but this still results in a significant amount of
code. TweetNaCl instead uses a loop over the 80 rounds. With such a “rolled”
loop there is only one invocation of each of the macros, so TweetNaCl inlines
those.

In NaCl the 16 64-bit message words are loaded into variables w0, w1, . . . ,
w15; the internal temporary state is kept in variables a, b, . . . , h. TweetNaCl
uses arrays u64 w[16] and u64 a[8] instead. This allows us to also roll all
initialization and copy loops. The final code for processing one 128-byte block is
the following:

FOR(i,16) w[i] = dl64(m + 8 * i);

FOR(i,80) {
FOR(j,8) b[j] = a[j];
t = a[7] + Sigma1(a[4]) + Ch(a[4],a[5],a[6]) + K[i] + w[i
b[7] = t + Sigma0(a[0]) + Maj(a[0],a[1],a[2]);
b[3] += t;
FOR(j,8) a[(j+1)
if (i

FOR(j,16)
w[j] += w[(j+9)

}

FOR(i,8) { a[i] += z[i]; z[i] = a[i]; }



TweetNaCl: A Crypto Library in 100 Tweets 75

Obviously there is still some complexity in this code, but this directly reflects
the inherent complexity of the SHA-512 function; the SHA-512 specification [26]
is easily verified to match TweetNaCl’s implementation. The functions Sigma1,
Ch, Sigma0, Maj, sigma0, and sigma1 are one-line implementations of the func-
tions Σ1, Ch, Σ0, Maj, σ0, and σ1 from the SHA-512 specification.

5 Curve25519 and Ed25519

Asymmetric cryptography in NaCl uses Bernstein’s Curve25519 elliptic-curve
Diffie-Hellman key exchange [4] and will use the Ed25519 elliptic-curve signa-
ture scheme from Bernstein, Duif, Lange, Schwabe, and Yang [7,8]. This section
explains the techniques we use for our compact implementation of these two
schemes.
Arithmetic in F2255−19. Both Curve25519 and Ed25519 require arithmetic in
the field F2255−19. We represent an element of this finite field as an array of 16
signed 64-bit integers (datatype signed long long) in radix 216:

typedef i64 gf[16];

Additions and subtractions do not have to worry about carries or modular reduc-
tion; they simply turn into a loop that performs 16 coefficient additions or sub-
tractions.

Multiplication performs simple “operand scanning” schoolbook multiplica-
tion in two nested loops. We then reduce modulo 2256 − 38:

i64 i,j,t[31];
FOR(i,31) t[i]=0;
FOR(i,16) FOR(j,16) t[i+j]+=a[i]*b[j];
FOR(i,15) t[i]+=38*t[i+16];
FOR(i,16) o[i]=t[i];

The 16 result coefficients in o are too large to be used as input to another
multiplication. We use two calls to a car25519 carry function to solve this prob-
lem. This carry function modifies the result o in place as follows:

FOR(i,16) {
o[i] += (1LL<<16);
c = o[i]>>16;
o[(i+1)*(i<15)] += c-1+37*(c-1)*(i==15);
o[i] -= c<<16;

}

Aside from carrying from one limb to the next, the function also adds 216

to each limb and subtracts 1 from the next highest limb before performing the
carry. This ensures that repeated application of the function brings all limbs
into the interval [0, 216 − 1]. Without this addition, repeated application of the
carry chain would bring all limbs into the interval [−216−1, 216 −1]. We use this
additional functionality to “freeze” field elements to a unique representation at
the very end of the Curve25519 or Ed25519 computations.



76 D.J. Bernstein et al.

We reuse the multiplication for squarings, but make squarings explicit by
spending a few bytes of source code for a separate function that simply calls
multiplication. This makes it easy during code audit to compare the code to
elliptic-curve addition formulas, for example from the Explicit Formulas Data-
base [9]. To match the notation of [9] we use the names M and S for functions
that multiply and square in the field F2255−19; we also use A for addition and Z
for subtraction.

Inversion uses Fermat’s little theorem and is implemented through exponen-
tation with 2255 − 21. We use a simple square-and-multiply algorithm and avoid
storing the exponent by making use of its special shape: it has all bits set but
the bits at position 4 and position 2. We perform the square-and-multiply loop
for inversion as follows:

for(a=253;a>=0;a--) {
S(c,c);
if(a!=2&&a!=4) M(c,c,i);

}

The square-root computation for point decompression in Ed25519 uses expo-
nentiation by 2252 − 3. See [7, Sect. 5]. Observe that this exponent has all bits
set but the bit at position 1; we use the same approach as for inversion.

Curve arithmetic. The typical Curve25519 implementation computes a Mont-
gomery ladder [20] on the Montgomery curve M : y2 = x3 + 486662x2 + x.
The Ed25519 signature scheme performs arithmetic on the birationally equiva-
lent twisted Edwards curve E : −x2 + y2 = 1 − 121665

121666x2y2. More specifically,
Ed25519 key generation and signing perform a fixed-basepoint scalar multipli-
cation; verification performs a double-scalar multiplication.

In principle, TweetNaCl could use the same scalar-multiplication code for
both Curve25519 and Ed25519. This would require conversion of points on M to
points on E and back. If we used the x-coordinate-based differential addition lad-
der of Curve25519 also for Ed25519, we would additionally need code to recover
the y-coordinate as described by Okeya and Sakurai in [21]. Conversion code
is not substantially shorter than the code required for the Curve25519 Mont-
gomery ladder, so we decided to not use the same code for scalar multiplication
in Curve25519 and Ed25519.

Curve25519 uses the same Montgomery ladder as the reference implementa-
tion, except that we do not use a dedicated function for multiplication by the
constant 121666. For Ed25519 we decided to use only one scalar-multiplication
routine that can be used in key generation, signing, and verification. We repre-
sent points on E in extended coordinates as described in [17] and implement the
complete addition law in an add function. We use this function for both addition
and doubling of points. The scalar multiplication then performs a ladder of 256
steps; each step performs an addition and a doubling:

set25519(p[0],gf0);
set25519(p[1],gf1);
set25519(p[2],gf1);



TweetNaCl: A Crypto Library in 100 Tweets 77

set25519(p[3],gf0);
for (i = 255;i >= 0;--i) {

u8 b = (s[i/8]>>(i&7))&1;
cswap(p,q,b);
add(q,p);
add(p,p);
cswap(p,q,b);

}

The first four lines set the point p to the neutral element. The cswap function
performs a constant-time conditional swap of p and q depending on the scalar bit
that has been extracted into b before. The constant-time swap calls sel25519
for each of the 4 coordinates of p and q. The function sel25519 is reused in
conditional swaps for the Montgomery ladder in Curve25519 and performs a
constant-time conditional swap of field elements as follows:

sv sel25519(gf p,gf q,int b) {
i64 t,i,c=~(b-1);
FOR(i,16) {

t = c & (p[i]^q[i]);
p[i] ^= t;
q[i] ^= t;

}
}

Arithmetic modulo the group order. Signing requires reduction of a 512-bit
integer modulo the order of the Curve25519 group, a prime p = 2252 + δ where
δ ≈ 2124.38. We store this integer as a sequence of limbs in radix 28. We eliminate
the top limb of the integer, say 2504b, by subtracting 2504b and also subtracting
2252δb; we then perform a partial carry so that 20 consecutive limbs are each
between −27 and 27. We repeat this procedure to eliminate subsequent limbs
from the top. This is considerably more concise than typical reduction methods:

for (i = 63;i >= 32;--i) {
carry = 0;
for (j = i - 32;j < i - 12;++j) {

x[j] += carry - 16 * x[i] * L[j - (i - 32)];
carry = (x[j] + 128) >> 8;
x[j] -= carry << 8;

}
x[j] += carry;
x[i] = 0;

}

We similarly eliminate any remaining multiple of 2252, leaving an integer
between −1.1 · 2251 and 1.1 · 2251. We then multiply the final carry bit by p and
add, obtaining an integer between 0 and p − 1, and carry in the traditional way
so that each limb is between 0 and 255.

6 Auditability: Two Case Studies

This section explains how we verified two memory-safety properties of Tweet-
NaCl: first, all of TweetNaCl’s array accesses are within bounds for all inputs



78 D.J. Bernstein et al.

whose lengths meet certain requirements; second, TweetNaCl makes no use of
uninitialized data. Most of this verification was formal (i.e., comprehensively
checked by the computer), except for small parts that were carried out by hand.

Our basic bounds-checking strategy is as follows. Recall that TweetNaCl,
like NaCl, protects against cache-timing attacks by avoiding all data flow from
input contents to pointers. Langley’s ctgrind tool [19] is adequate to verify this
property. Consequently all pointers are determined by input lengths. Systemat-
ically monitoring all pointers for a single input of each length, for example with
valgrind, is thus equivalent to monitoring all pointers for arbitrary inputs of
those lengths. (Of course, this is not the same as arbitary inputs of arbitrary
lengths. However, our main target is applications that cryptographically protect
every packet. These applications normally impose packet-length limits, such as
the 16384-byte limit imposed by TLS.)

We decided to use C++ overloading instead of valgrind, so that we would
have a framework for formally verifying further TweetNaCl properties beyond
valgrind’s capabilities. There are some C language features for which C++
broke compatibility with C, but TweetNaCl does not use any of those fea-
tures. We had to change some variable definitions and parameter definitions,
but because TweetNaCl is so concise this was easy to do by hand. TweetNaCl’s
declaration structure is highly regular, so scripting this translation would also
be straightforward without any compiler patches.

Specifically, we changed array definitions and pointer-parameter definitions
such as

int crypto_stream(u8 *c,u64 d,const u8 *n,const u8 *k)
{

u8 s[32];
...

}

to

int crypto_stream(a<u8> c,u64 d,const a<u8> n,const a<u8> k)
{

da<u8,32> s;
...

}

where a and da are defined as follows:

template <typename Primitive>
struct a {

Primitive *content;
int size;
mutable int index;

a(Primitive *content, int size, int index)
: content(content), size(size), index(index) {

assert(index <= size);
}



TweetNaCl: A Crypto Library in 100 Tweets 79

Primitive& operator[](int i) {
assert((index+i) >= 0 && (index+i) < size);
return content[index+i];

}
}

template <typename Primitive, int Size>
struct da {

mutable Primitive content[Size];

operator const a<Primitive>() const {
return a<Primitive>(&content[0], Size, 0);

}
}

This is only an illustrative excerpt from the complete definitions of a and da.
The complete definitions use two methods (one for mutables, one for constants)
for each pointer operation used in TweetNaCl. We note that

a operator+(int i) {
assert((index+i) < size);
return {content, size, index+i};

}

would have been too restrictive: there is no problem in C with using a pointer
just past the end of an array as long as the pointer is not dereferenced.

We used overloading in a similar way to check for uninitialized array elements.
We created an auxiliary structure with a flag for each array element stating
whether the element was initialized; initialized each flag to false; set each flag to
true upon write; and checked upon read whether the flag was true.

We close by emphasizing that TweetNaCl’s simplicity was essential for this
verification. We do not claim to have completed an audit of TweetNaCl, but we
do claim that a complete audit will be feasible, and that TweetNaCl is the first
cryptographic library for which this is true.

References

1. Aumasson, J.-P.: Tweetcipher! (crypto challenge) (2013). http://cybermashup.
com/2013/06/12/tweetcipher-crypto-challenge/. Accessed 06 Sept. 2014, 71

2. Bernstein, D.J.: Cryptography in NaCl. http://cr.yp.to/highspeed/naclcrypto-
20090310.pdf. Accessed 06 Sept. 2014, 66

3. Bernstein, D.J.: The Poly1305-AES message-authentication code. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg
(2005). http://cr.yp.to/papers.htmlpoly#1305, 72

4. Bernstein, D.J.: Curve25519: New Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006). http://cr.yp.to/papers.htmlcurve#25519, 75

5. Bernstein, D.J.: The Salsa20 family of stream ciphers. In: Robshaw, M., Billet,
O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer,
Heidelberg (2008). http://cr.yp.to/papers.htmlsalsafamily, 70

6. Bernstein, D.J.: Extending the Salsa20 nonce. In: Workshop Record of Symmetric
Key Encryption Workshop 2011 (2011). http://cr.yp.to/papers.html#xsalsa, 72

http://cybermashup.com/2013/06/12/tweetcipher-crypto-challenge/
http://cybermashup.com/2013/06/12/tweetcipher-crypto-challenge/
http://cr.yp.to/highspeed/naclcrypto-20090310.pdf
http://cr.yp.to/highspeed/naclcrypto-20090310.pdf
http://cr.yp.to/papers.htmlpoly1305
http://cr.yp.to/papers.htmlcurve25519
http://cr.yp.to/papers.htmlsalsafamily
http://cr.yp.to/papers.html#xsalsa


80 D.J. Bernstein et al.

7. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917,
pp. 124–142. Springer, Heidelberg (2011). See also full version 75, 76, 80

8. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. J. Cryptographic Eng. 2(2), 77–89 (2012). http://cryptojedi.
org/papers/#ed25519. See also short version 75, 80

9. Bernstein, D.J., Lange, T.: Explicit-formulas database. http://www.hyperelliptic.
org/EFD/ Accessed 06 Sept. 2014, 76

10. Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a
new cryptographic library. In: Hevia, A., Neven, G. (eds.) Latin-
Crypt 2012. LNCS, vol. 7533, pp. 159–176. Springer, Heidelberg (2012).
http://cryptojedi.org/papers/#coolnacl, 65

11. Bernstein, D.J., Schwabe, P.: NEON crypto. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 320–339. Springer, Heidelberg (2012).
http://cryptojedi.org/papers/#neoncrypto, 65

12. BitTorrent Live. http://live.bittorrent.com/. Accessed 06 Sept. 2014, 65
13. Denis, F.: Introducing Sodium, a new cryptographic library (2013). http://

labs.opendns.com/2013/03/06/announcing-sodium-a-new-cryptographic-library/.
Accessed 06 Sept. 2014, 67

14. Dingledine, R.: Tor 0.2.4.17-rc is out. Posting in [tor-talk] (2013). https://lists.
torproject.org/pipermail/tor-talk/2013-September/029857.html, 65

15. Green, M.: The anatomy of a bad idea (2012). http://blog.
cryptographyengineering.com/2012/12/the-anatomy-of-bad-idea.html. Accessed
06 Sept. 2014, 65

16. Green, M.: Announcing a contest: identify useful cryptographic algorithms that
can be formally described in one Tweet (2013). https://twitter.com/matthew d
green/status/342755869110464512. Accessed 06 Sept. 2014, 68

17. Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Twisted edwards curves revisited.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 326–343. Springer,
Heidelberg (2008). http://eprint.iacr.org/2008/522/, 76

18. Hutter, M., Schwabe, P.: NaCl on 8-Bit AVR microcontrollers. In: Youssef, A.,
Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp.
156–172. Springer, Heidelberg (2013). http://cryptojedi.org/papers/#avrnacl, 68

19. Langley, A.: ctgrind–checking that functions are constant time with Valgrind
(2010). https://github.com/agl/ctgrind, 78

20. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243–264 (1987). http://www.ams.org/journals/mcom/
1987-48-177/S0025-5718-1987-0866113-7/S0025--5718-1987-0866113-7.pdf, 76

21. Okeya, K., Sakurai, K.: Efficient elliptic curve cryptosystems from a scalar multipli-
cation algorithm with recovery of the y-coordinate on a montgomery-form elliptic
curve. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162,
p. 126. Springer, Heidelberg (2001). 76

22. Introducing DNSCrypt (preview release). http://www.opendns.com/technology/
dnscrypt/. Accessed 06 Sept. 2014, 65

23. OpenSSL: OpenSSL: The open source toolkit for SSL/TLS. http://www.openssl.
org/. Accessed 06 Sept. 2014, 65

24. Threema: seriously secure mobile messaging. https://threema.ch/en/. Accessed 06
Sept. 2014, 65

25. Tor project: Anonymity online. https://www.torproject.org/. Accessed 06 Sept.
2014, 65

http://cryptojedi.org/papers/#ed25519
http://cryptojedi.org/papers/#ed25519
http://www.hyperelliptic.org/EFD/
http://www.hyperelliptic.org/EFD/
http://cryptojedi.org/papers/coolnacl
http://cryptojedi.org/papers/neoncrypto
http://live.bittorrent.com/
http://labs.opendns.com/2013/03/06/announcing-sodium-a-new-cryptographic-library/
http://labs.opendns.com/2013/03/06/announcing-sodium-a-new-cryptographic-library/
https://lists.torproject.org/pipermail/tor-talk/2013-September/029857.html
https://lists.torproject.org/pipermail/tor-talk/2013-September/029857.html
http://blog.cryptographyengineering.com/2012/12/the-anatomy-of-bad-idea.html
http://blog.cryptographyengineering.com/2012/12/the-anatomy-of-bad-idea.html
https://twitter.com/matthew_d_green/status/342755869110464512
https://twitter.com/matthew_d_green/status/342755869110464512
http://eprint.iacr.org/2008/522/
http://cryptojedi.org/papers/avrnacl
https://github.com/agl/ctgrind
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025--5718-1987-0866113-7.pdf
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025--5718-1987-0866113-7.pdf
http://www.opendns.com/technology/dnscrypt/
http://www.opendns.com/technology/dnscrypt/
http://www.openssl.org/
http://www.openssl.org/
https://threema.ch/en/
https://www.torproject.org/


TweetNaCl: A Crypto Library in 100 Tweets 81

26. U.S. Department OF COMMERCE/National Institute of Standards and Tech-
nology. Secure Hash Standard (SHS) (2012). Federal Information Process-
ing Standards Publication 180–4. http://csrc.nist.gov/publications/fips/fips180-4/
fips-180-4.pdf, 73, 75

27. Ytteborg, S.S.: The PGPi scanning project. http://www.pgpi.org/pgpi/project/
scanning/. Accessed 06 Sept. 2014, 68

28. Zimmermann, P.: PGP Source Code and Internals. MIT Press, Cambridge (1995).
68

A The 100 Tweets

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://www.pgpi.org/pgpi/project/scanning/
http://www.pgpi.org/pgpi/project/scanning/


82 D.J. Bernstein et al.

B A Python script to convert tweetnacl.c into the 100
tweets



TweetNaCl: A Crypto Library in 100 Tweets 83

C A Python script to print tweetnacl.h



High-Speed Signatures from Standard Lattices

Özgür Dagdelen1, Rachid El Bansarkhani1, Florian Göpfert1,
Tim Güneysu2, Tobias Oder2, Thomas Pöppelmann2(B),

Ana Helena Sánchez3, and Peter Schwabe3

1 Technische Universität Darmstadt, Darmstadt, Germany
oezguer.dagdelen@cased.de,

{elbansarkhani,fgoepfert}@cdc.informatik.tu-darmstadt.de
2 Horst Görtz Institute for IT-Security, Ruhr-University Bochum,

Bochum, Germany
thomas.poeppelmann@rub.de

3 Digital Security Group, Radboud University Nijmegen,
Nijmegen, The Netherlands

ahsanchez@cs.ru.nl, peter@cryptojedi.org

Abstract. At CT-RSA 2014 Bai and Galbraith proposed a lattice-based
signature scheme optimized for short signatures and with a security
reduction to hard standard lattice problems. In this work we first refine
the security analysis of the original work and propose a new 128-bit
secure parameter set chosen for software efficiency. Moreover, we increase
the acceptance probability of the signing algorithm through an improved
rejection condition on the secret keys. Our software implementation tar-
geting Intel CPUs with AVX/AVX2 and ARM CPUs with NEON vector
instructions shows that even though we do not rely on ideal lattices, we
are able to achieve high performance. For this we optimize the matrix-
vector operations and several other aspects of the scheme and finally
compare our work with the state of the art.

Keywords: Signature scheme · Standard lattices · Vectorization · Ivy
bridge

1 Introduction

Most practical lattice-based signatures [7,16,21], proposed as post-quantum [9]
alternatives to RSA and ECDSA, are currently instantiated and implemented
using structured ideal lattices [30] corresponding to ideals in rings of the form

P. Schwabe—This work was supported by the German Research Foundation
(DFG) through the DFG Research Training Group GRK 1817/1, by the Ger-
man Federal Ministry of Economics and Technology through Grant 01ME12025
SecMobil), by the Netherlands Organisation for Scientific Research (NWO) through
Veni 2013 project 13114, and by the German Federal Ministry of Education
and Research (BMBF) through EC-SPRIDE. Permanent ID of this document:
c5e2da3f0d05a056a5490a5c9b88baa9. Date: 2014-09-04.

c© Springer International Publishing Switzerland 2015
D.F. Aranha and A. Menezes (Eds.): LATINCRYPT 2014, LNCS 8895, pp. 84–103, 2015.
DOI: 10.1007/978-3-319-16295-9 5



High-Speed Signatures from Standard Lattices 85

Z[x]/〈f〉, where f is a degree-n irreducible polynomial (usually f = xn +1). With
those schemes one is able to achieve high speeds on several architectures as well
as reasonably small signatures and key sizes. However, while no attacks are
known that perform significantly better against schemes based on ideal lattices,
it is still possible that further cryptanalysis will be able to exploit the additional
structure1. Especially, if long-term security is an issue, it seems that standard
lattices and the associated problems—e.g., the Learning With Errors (LWE) [34]
or the Small Integer Solution (SIS) problem—offer more confidence than their
ring counterparts.

The situation for code-based cryptography [9] is somewhat similar. The use
of more structured codes, such as quasi-dyadic Goppa codes [31], has been the
target of an algebraic attack [15] which is effective against certain (but not all)
proposed parameters. This is an indication that the additional structure used to
improve the efficiency of such cryptosystems might be also used by adversaries
to improve their attack strategies. Moreover, basing a scheme on the plain LWE
or SIS problem seems much more secure than using stronger assumptions on top
of ideal lattices like the discrete-compact-knapsack (DCK) [21] or NTRU-related
assumptions [16] that have not been studied extensively so far.

While results for ideal-lattice-based signatures have been published recently
[11,22,32,33], currently no research is available dealing with implementation
and performance issues of standard-lattice-based signatures. While the large
keys of such schemes might prevent their adoption on constrained devices or
reconfigurable hardware, the size of the keys is much less an issue on current
multi-core CPUs which have access to large amounts of memory. In this context,
the scheme by Bai and Galbraith [6] (from now on referred to as BG signature)
is an interesting proposal as it achieves small signatures and is based on the
standard LWE and SIS problems.

An interesting question arising is also the performance of schemes based on
standard lattices and how to choose parameters for high performance. While
FFT-techniques have been used successfully for ideal lattices on various archi-
tectures [22,35] there are no fast algorithms to speed up the necessary matrix-
vector arithmetic. However, matrix-vector operations can be parallelized very
efficiently and there are no direct restrictions on the parameters (for efficiency
of ideal lattices n is usually chosen as power of two) so that there is still hope
for high speed. The only results currently available dealing with the implemen-
tation of standard lattice-based instantiations rely on arithmetic libraries [7,20]
and can thus not fully utilize the power of their target architectures.

An additional feature of the BG signature is that sampling of Gaussian noise
is only needed during the much less performance-critical key-generation phase
but not for signing2. While there was some progress on techniques for efficient

1 There exists sieving algorithms which can exploit the ideal structure, but the speed-
up is of no significance [24,36]. Some first ideas towards attacks with lower complexity
were sketched by Bernstein in his blog [8].

2 Omitting costly Gaussian sampling was also the motivation for the design of the
GLP signature [21].



86 Ö. Dagdelen et al.

discrete Gaussian sampling [16,17,33] it is still not known how to implement the
sampling efficiently3 without leaking information on the sampled values through
the runtime of the signing process (contrary to uniform sampling [22]).

While we cannot present a direct attack, careful observation of the runtime
of software implementations (even remotely over a network) has led to various
attacks in the past and thus it is desirable to achieve constant runtime or at
least a timing independent from secret data [13,25].

Our Contribution. The contribution of this paper is twofold. First, we study
the parameter selection of the BG signature scheme in more detail than in the
original paper and assess its security level4. Based on our analysis of the cur-
rently most efficient attack we provide a new 128-bit security parameter set
chosen for efficient software implementation and long-term security. We com-
pare the runtimes of several attacks on LWE with and without a limit on the
number of samples available. Since the behavior of the attacks in a suboptimal
attack dimension is not well understood at this point, our analysis may be of
independent interest for the hardness assessment of other LWE instances. Addi-
tionally, we introduce an optimized rejection sampling procedure and rearrange
operations in the signature scheme.

The second part of the paper deals with the implementation of this parameter
set on the ARM NEON and Intel AVX architectures optimized for high speed.
By using parallelization, interleaving, and vectorization we achieve on average
1203924 cycles for signing and 335072 cycles for verification on the Haswell
architecture. This corresponds to roughly 2824 signing and 10147 verification
operations per second on one core of a CPU clocked with 3.4 GHz. While we do
not set a speed record for general lattices, we are able to present the currently
fastest implementation of a lattice-bases signature scheme that relies solely on
standard assumptions and is competitive in terms of performance compared to
classical and post-quantum signature schemes.

Availability of Software. We will place all software described in this paper
into the public domain to maximize reusability of our results. We will submit
the software to the eBACS benchmarking project [10] for public benchmarking.

Road Map. The paper is organized as follows: In Sect. 3 we introduce the
original BG signature scheme and our modifications for efficiency. The security
analysis is revisited and appropriate parameters are selected in Sect. 4. In Sect. 5
we discuss our NEON and AVX software implementation and finish with results
and a comparison in Sect. 6.

3 A software implementation of a constant time discrete Gaussian sampler using
the Cumulative Distribution Table (CDT) approach was recently proposed by Bos
et al. [12]. However, even for the small standard deviation required for lattice-based
encryption schemes, the constant time requirement leads to a significant overhead.

4 We note here that there was some vagueness in the parameter selection in the original
work [6], also noticed later by the authors of the paper [5].



High-Speed Signatures from Standard Lattices 87

2 Preliminaries

Notation. We mainly follow the notation of [6] and denote column vectors by
bold lower case letters (e.g., v = (v1, . . . , vn)T where vT is the transpose) and
matrices by bold upper case letters (e.g., M). The centered discrete Gaussian
distribution Dσ for σ > 0 associates the probability ρσ(x)/ρσ(Z) to x ∈ Z for
ρσ(x) = exp(−x2

2σ2 ) and ρσ(Z) = 1 + 2
∑∞

x=1 ρσ(x). We denote by d
$← Dσ the

process of sampling a value d randomly according to Dσ. In case S is a finite
set, then s

$← S means that the value s is sampled according to a uniform
distribution over the set S. For an integer c ∈ Z, we define [c]2d to be the integer
in the set (−2d−1, 2d−1] such that c ≡ [c]2d mod 2d which is basically extraction
of the least significant bits. For c ∈ Z we define �c�d = (c − [c]2d)/2d to drop the
d least significant bits. Both operators can also be applied to vectors.

Lattices. A k-dimensional lattice Λ is a discrete additive subgroup of Rm cont-
aining all integer linear combinations of k linearly independent vectors b1, . . . ,bk

with k ≤ m and m ≥ 0. More formally, we have Λ = { B · x | x ∈ Z
k }.

Throughout this paper we are mostly concerned with q-ary lattices Λ⊥
q (A) and

Λq(A), where q = poly(n) denotes a polynomially bounded modulus and A ∈
Z

n×m
q is an arbitrary matrix. Λ⊥

q (A) resp. Λq(A) are defined by

Λ⊥
q (A) = {x ∈ Z

m | Ax ≡ 0 mod q}
Λq(A) = {x ∈ Z

m | ∃s ∈ Z
m s.t. x = A�s mod q} .

By λi(Λ) we denote the i-th successive minimum, which is the smallest radius
r such there exist i linearly independent vectors of norm r (typically l2 norm)
in Λ. For instance, λ1(Λ) = min

x�=0
||x||2 denotes the minimum distance of a lattice

determined by the length of its shortest nonzero vector.

The SIS and LWE Problem. In the following we recall the main problems
used in order to construct secure lattice-based cryptographic schemes.

Definition 1 (SIS-Problem). Given a matrix A ∈ Z
n×m
q , a modulus q > 0,

and a real β, the small-integer-solution problem (l-norm typically l = 2) SISn,m,β

asks to find a vector x such that Ax ≡ 0 mod q and ||x||l ≤ β .

Let χ be a distribution over Z. We define by As,χ the distribution of (a,a� ·
s + e) ∈ Z

n
q ×Zq for n, q > 0, where a $← Z

n
q is chosen uniformly at random and

e ← χ.

Definition 2 (LWE-Problem). For a modulus q = poly(n) and given vectors
(ai, bi) ∈ Z

n
q × Zq sampled according to As,χ the learning-with-errors problem

LWEχ,q asks to distinguish As,χ, where s is chosen uniformly at random, from
the uniform distribution on Z

n
q × Zq.

It is also possible to sample s according to the error distribution χn [3].



88 Ö. Dagdelen et al.

Departing from the original definition of LWE, that gives access to arbi-
trary many samples, an attacker has often only access to a maximum number
of samples. Typically, this number of samples is denoted by m. In this case, one
typically “collects” all samples ai, bi ∈ Z

n
q × Zq to A,b ∈ Z

m×n
q × Z

m
q , and the

LWE problem is to decide whether the entries of b were sampled uniformly at
random and independently from A or according to the LWE distribution.

3 The Bai-Galbraith Signature Scheme

The Bai-Galbraith digital signature scheme [6] (BG signature) is based on the
Fiat-Shamir paradigm which transforms an identification scheme into a signa-
ture scheme [18] and closely follows previous proposals by Lyubashevsky et al.
[16,21,28,29]. The hardness of breaking the BG signature scheme, in the random
oracle model, is reduced to the hardness of solving standard worst-case compu-
tational assumptions on lattices. The explicit design goal of Bai and Galbraith
is having short signatures.

3.1 Description of the BG Signature Scheme

For easy reference, the key generation, signing, and the verification algorithm
of the BG signature scheme are given in Fig. 1. Our proposed parameter set is
summarized in Table 1. An analysis of the original parameter sets can be found in
the full online version of this paper. However, the algorithms have been simplified
and redundant definitions have been removed (e.g., we just use σ as standard
deviation and do not differentiate between σE, σS and set n = k).

During key generation two secret matrices S ∈ Z
n×n,E ∈ Z

m×n are sampled
from a discrete Gaussian distribution Dn×n

σ and Dm×n
σ , respectively. A rejection

condition Check E enforces certain constraints on E, which are necessary for
correctness and short signatures (see Sect. 3.2). Finally, the public key T =
AS + E and the secret key matrices S,E are returned where AS is the only
matrix-matrix multiplication necessary in the scheme. As we choose A ∈ Z

m×n

as a global constant, it does not have to be sampled during key generation and
is also not included in the public key and secret key.

For signing, the global constant A as well as secret keys S,E are required
(no usage of T in this variant). The vector y is sampled uniformly random from
[−B,B]n. For the instantiation of the random oracle H (using a hash function)
only the higher order bits of Ay are taken into account and hashed together
with the message μ. The algorithm F (c) takes the binary output of the hash
c and produces a vector c of weight ω (see [16] for a definition of F (c)). In
a different way than [6] w is computed following an idea that has also been
applied in [21]. Instead of computing w = Az − Tc ( mod q) we calculate
w = v − Ec ( mod q), where v = Ay ( mod q). This is also the reason why
E has to be included into the secret key sk = (S,E) ∈ Z

n×n × Z
m×n. Thus,

the large public key T ∈ Z
m×n is not needed anymore for signing and the

operations become simpler (see further discussion in Sect. 5). The test whether



High-Speed Signatures from Standard Lattices 89

Fig. 1. The BG signature scheme [6]; see Sect. 3.2 for implementations of check E.

|[wi]2d | > 2d−1−LBG (LBG = 7ωσ in [6]) ensures that the signature verification
will not fail on a generated signature (w is never released) and the last line
ensures that the signature is uniformly distributed within the allowed range
[−B + U,B − U ]n for U = 14 · σ

√
ω.

For verification the higher order bits of w = Az−Tc = Ay−Ec are hashed
and a valid signature (z, c) is accepted if and only if z is small, i.e., ||z||∞ ≤ B−U ,
and c = c′ for c′ := H(�w�d, μ). For the security proof and standard attacks we
refer to the original work [6].

3.2 Optimizing Rejection Sampling

In the original signature scheme [6] Check EBG restarts the key generation
if |Ei,j | > 7σ for any (i, j) and the rejection condition in Line 7 of Sign is
|[wi]2d | > 2d−1 − LBG for LBG = 7wσ. This ensures that it always holds that
�Ay�d = �Ay − Ec�d and thus verification works even for the short signature.
However, in practice the acceptance probability of (1− 14ωσ/2d)m has a serious
impact on performance and leaves much room for improvement. On first sight it
would seem most efficient to test during signing whether �Ay�d = �Ay − Ec�d

and just reject signatures that would not be verifiable. However, in this case the
proof structure given in the full version of [6] does not work anymore. In Game 1,
sign queries are replaced by a simulation (in the random oracle model) which is
not allowed to use the secret key and later on has to produce valid signatures
even for an invalidly chosen public key (Game 2).

Our optimization (similar to [16]) is to reject E during key generation only
if the error generated by Ec in �Ay�d = �Ay − Ec�d for the worst-case c is
larger than a threshold L. Thus, our Check Enew algorithm works the following:
Using maxk(·) which returns the k-th largest value of a vector we compute
thresholds th =

∑ω
k=1 maxk(|Eh|),∀h ∈ [0,m] where Eh is the h-th row of E

and reject if one or more th are larger than L. Thus the rejection probability



90 Ö. Dagdelen et al.

for the close-to-uniform w is independent of c and E and does not leak any
information. When L is chosen such that only a small percentage of secret keys
are rejected the LWE instances generated by the public key are still hard due
to the same argument on the bounded number of samples as in [6,16]. The
acceptance probability of w in Line 7 of Sign is (1 − 2L/2d)m. Table 1 shows
concrete values for our choice of Lnew and the original LBG.

4 Security Analysis and Parameter Selection

In the original work [6], Bai and Galbraith proposed five different parameter
sets to instantiate their signature scheme. In this section we revisit their secu-
rity analysis and propose a new instantiation that is optimized for software
implementations on modern server and desktop computers (Intel/AMD) and
also mobile processors (ARM). The security analysis has been refined due to
the following reasons: First, a small negligence in the assessment of the under-
lying LWE instances leads to a slightly wrong hardness estimation, which was
acknowledged by the authors after publication [5]. Second, an important attack,
namely the decoding attack, was not considered in [6]. We justify that indeed
the decoding attack is less efficient than the one considered if one takes into
account the limited number of samples m given to the attack algorithms.

In Table 1 we propose a parameter set for an instantiation of the signature
scheme from Sect. 3 with 128 bits of security, for which we provide evidence in
the next section.

4.1 Hardness of LWE

The decoding attack dates back to the nearest-plane algorithm by Babai [4]
and was further improved by Lindner and Peikert in [26] and Liu and Nguyen
in [27]. While it is often the fastest known approach, it turns out that it is not
very suitable for our instances, because an attacker has only access to a few
samples. Thus we concentrate on the embedding approach here and an analysis
of the behavior of the decoding attack can be found in Appendix A.

The embedding approach solves LWE via a reduction to the unique-shortest-
vector problem (uSVP). We will analyze two variants, the standard embedding
approach [26] and the variant that is very suitable for LWE instances with small
m that was already considered in [6]. Unfortunately, it is necessary to re-do
the analysis, because the hardness evaluation in the original work [6] set some
constant – namely τ – in the attack wrong yielding up to 17 bits more secu-
rity for their parameters than actually offered. We will focus on the security
of our parameter set in this section. Updated values for some of the parame-
ter sets proposed in the original paper can be found in the full version of this
paper.

Embedding Approach. Given an LWE instance (A,b) such that As = b
mod q, the idea of the embedding approach proposed in [19] is to use the



High-Speed Signatures from Standard Lattices 91

Table 1. The parameter set we use for 128 bits of security. Note that signature and
key sizes refer to fully compressed signature and keys. Our software uses slightly a
larger (padded) signature and keys to support faster loads and stores aligned to byte
boundaries.

embedding lattice Λq(Ae) defined as

Λq(Ae) = {v ∈ Z
m | ∃x ∈ Z

n : Ae · x = v mod q},

where Ae =
(
A b
0 1

)
. Throughout the paper the subscript stands for the tech-

nique used in an attack such as e denoting the standard embedding approach.
Since

Ae

(−s
1

)
=

(
A b
0 1

)(−s
1

)
=

( −As + b
0 · s + 1 · 1

)
=

(
e
1

)
=: v

is a very short lattice vector, one can apply a solver for uSVP to recover e. We
estimate the norm of v via ||v|| ≈ ||e|| ≈ √

mσE , and for the determinant of the
lattice we have det(Λq(Ae)) = qm+1−n with very high probability [9].

It is known that the hardness of uSVP depends on the gap between the first
and the second successive minimum λ1(Λ) and λ2(Λ), respectively. Gama and
Nguyen [19] claim that an attack with a lattice-reduction algorithm that achieves
Hermite factor δ succeeds with high probability if λ2(Λ)/λ1(Λ) ≥ τ · δdim(Λ),



92 Ö. Dagdelen et al.

Table 2. Security of our parameter set

Security level

Problem Attack Bit security

LWE Decoding [26] 271

Embedding [2] 192

Embedding [6] 130

SIS Lattice reduction [6] 159

where τ ≈ 0.4 is a constant that depends on the reduction algorithm used. In
fact, this factor is missing in the analysis by Bai and Galbraith, which causes
too optimistic (i.e., too large) runtime predictions.

The successive minima of a random lattice Λ can be predicted by the Gaussian
heuristic via

λi(Λ) ≈ Γ (1 + dim(Λ)/2)1/ dim(Λ)

√
π

det(Λ)1/ dim(Λ).

Consequently, a particular short vector v of length ||v|| = l can be found if

δdim(Λ) ≤ λ2(Λ)
λ1(Λ) · τ

≈ Γ (1 + dim(Λ)/2)1/ dim(Λ)

l · √
π · τ

det(Λ)1/ dim(Λ). (1)

We can therefore estimate the necessary Hermite delta to break LWE with the
embedding approach to be

δ ≈
(

Γ (1 + m+1
2 )1/(m+1)

√
π · m · τ · σE

q
m+1−n
m+1

)1/(m+1)

,

where the dimension is set to dim(Λq(Ae)) = m + 1. Note that it is possible
to apply this attack in a smaller subdimension. In fact, there exists an optimal
dimension that minimizes δ in Eq. (1). Our parameters, however, do not provide
enough LWE samples to allow an attack in the optimal dimension, and in this
case choosing the highest possible dimension seems to be optimal.

To achieve a small Hermite delta, it is necessary to run a basis-reduction
algorithm like BKZ [37] or its successor BKZ 2.0 [14]. Lindner and Peikert [26]
proposed the function

log2(T (δ)) = 1.8/ log2(δ) − 110

to predict the time necessary to achieve a given Hermite delta by BKZ. More
recently, Albrecht et al. [2] proposed the prediction

log2(T (δ)) = 0.009/ log2(δ)
2 − 27



High-Speed Signatures from Standard Lattices 93

based on data taken from experiments with BKZ 2.0 [27]. We will stick to this
estimation in the following, since it takes more recent improvements into consid-
eration. Combining it with the fact that they run their experiments on a machine
that performs about 2.3 · 109 operations per second, we estimate the number of
operations necessary to achieve a given Hermite factor with

T (δ) =
2.3 · 109

227
· 20.009/ log(δ)2 . (2)

We can therefore conclude that our LWE instance provides about 192 bits of
security against the embedding attack, which corresponds to a Hermite delta of
approximately 1.0048.

The efficacy of the standard embedding approach decreases significantly if
the instance does not provide enough samples for the attack to run in the optimal
dimension. Another attack, which is very suitable for LWE instances with few
samples, reduces LWE to an uSVP instance defined by the lattice Λ⊥

q (Ao) =
{v ∈ Z

m+n+1 | Ao · v = 0 mod q} for Ao =
[
A | I | b]

(we use the index
o because this attack runs in the lattice of the vectors that are orthogonal to
Ao). The main advantage of this attack is that it runs in dimension n + m + 1
(recall that the standard embedding approach runs in dimension m + 1). For
v =

(
s , e , −1

)T , we have Ao ·v = A · s+ e−b = 0 and therefore v ∈ Λ⊥
q (Ao)

is a small vector in the lattice. We estimate its length via ||v|| ≈ √||s||2 + ||e||2 ≈√
m + n · σ. Since det(Λq(Ao)) = qm with high probability [9], Eq. (1) predicts

the necessary Hermite delta to be approximately

δ ≈
(

Γ (1 + n+m+1
2 )1/(n+m+1)

√
n + mσ · √

π · τ
q

m
n+m+1

)1/(n+m+1)

.

Using Eq. (2), we can estimate the hardness of our instance against this attack
to be about 130 bits (the Hermite delta is close to 1.0059).

4.2 Hardness of SIS

Instead of recovering the secret key, which corresponds to solving an instance of
LWE, an attacker could also try to forge a signature directly and thus solve an
SIS instance. We predict the hardness of SIS for the well-known lattice-reduction
attack (see for example [9]) like it was done in [6]. This attack views SIS as a
variant of the (approximate) shortest-vector problem and finds the short vector
by applying a basis reduction. Forging a signature through this attack requires
to find a reduced basis with Hermite factor

δ = (D/qm/(m+n))1/(n+m+1), (3)

with D = (max(2B, 2d−1) + 2E′ω) for E′ satisfying (2E′)m+n ≥ qm2132. Apply-
ing Eq. (2), we estimate that a successful forger requires to perform about 2159

operations (see Table 2).



94 Ö. Dagdelen et al.

4.3 An Instantiation for Software Efficiency

Choosing optimal parameters for the scheme is a non-trivial multi-dimensional
optimization problem and our final parameter set is given in Table 1. Since the
probability that the encoding function F maps two random elements to the
same value must be negligible (i.e. smaller than 2−128), we choose ω such that
2ω

(
n
ω

) ≥ 2128. Since Sc is distributed according to a Gaussian distribution with
parameter

√
ωσ, we can bound its entries by 14

√
ωσ. Consequently, B−U is lower

bounded by 14
√

ωσ(n − 1) such that the acceptance probability of a signature
Pacc (Line 8 in Fig. 1) is at least

Pacc =
(

2(B − U) + 1
2B

)m

=
(

2 · 14
√

ωσ(n − 1) + 1
2 · 14

√
ωσn + 1

)m

≈
(

1 − 1
n

)m

≈ 1/e .

The next important choice to be made is the value for the parameter d. It has a
determining influence on the trade-off between runtime and key sizes: The success
probability in the signing algorithm (Line 7 in Fig. 1) is given by (1 − 2L/2d)m,
which means that large values for d lead to a high success probability, and
thereby to fewer rejections implying better running times. On the other hand,
the security proof requires (2B)nqm−n ≥ 2(d+1)m+κ to be satisfied, which means
that increasing d implies larger values for q, hence, worsening runtime and key
sizes.

Our goal is to come up with a parameter set that ensures at least 128 bits of
security. We will focus on n,m and σ in this paragraph, since the other parame-
ters depend on them. For easy modular reduction we choose a modulus slightly
smaller than a power of two (like 229−3). Furthermore, dimensions n resp. m are
multiples of 4 to support four parallel operations in vector registers. In a way, n
determines the overall security level, and the choice of σ and n can be used to
balance the security of the scheme and the size of the second-order parameters
q and B. Using our parameters we have set L = Lnew = 3ωσ and thus reject
a secret key with probability 0.025 and accept with probability (1 − 2L/2d)m

where we get ≈0.63 instead of ≈0.34 for LBG = 7σω.
For instance, Fig. 2 shows for n = 532 how the lower bound on q depends on σ

for various values of m. Since too small values of σ lead to LWE-instances that are
significantly easier than 128 bits, the best possible choice that allows q = 229 − 3
is m = 840 and σ = 43. We further choose n = 532 which leads to ω = 18. This
results in the lower bound log2(B) ≥ 20.4, which allows our choice B = 221 − 1.

5 Implementation Details

In this section we discuss our techniques used for high performance on modern
desktop and mobile CPUs with fast vector units. More specifically, we optimized
the signature scheme for Intel Ivy Bridge CPUs with AVX, for Intel Haswell
CPUs with AVX2 and for ARMv7 CPUs with NEON vector instructions. We first
describe various high-level (platform-independent) optimizations for signing and



High-Speed Signatures from Standard Lattices 95

20 25 30 35 40 45 50 55 60 65 70
0

1

2

3

4

5
·109

σ

lo
w

er
bo

un
d

on
q

m = 868
m = 840
m = 812

q = 229 − 3

Fig. 2. Lower bound on q for n = 532 and various values of m

verification and then detail the low-level implementation techniques for the three
target platforms. Our implementation only optimizes signing and verification
speeds; our implementation includes a (slow) routine for key generation but we
will not discuss key generation here.

5.1 High-Level Optimizations

Regarding platform independent high-level optimizations we follow the approach
from [22] and would like to emphasize the changes to the algorithm (adding E
to the private key and choosing A as global constant) and improved rejection
sampling (usage of Lnew) as discussed in Sect. 3. For uniform sampling of y $←
[−B,B]n during signing we rely on the hybrid approach of seeding the Salsa20
stream cipher using true randomness from the Linux random number [22]. As
B = 221−1 we sample 3n+68 uniform bytes at once using Salsa20 and construct
a sample r′ from 3 bytes each. By computing r = r′ mod 222 we bring r into the
range [0, 222 −1], reject if r = 222 −1 and return r− (222 −1). The probability to
discard an element is 2−22 and by oversampling 68 bytes it is highly unlikely that
we have to sample additional randomness. We also exploit that c is sparse with
weight ω. Thus, we store c not as a vector but as list with ω tuples containing
the position and sign bits of entries which are non zero. Additionally, when
multiplying c with S and E, only a small subset of coefficients from S,E is
actually needed. As a consequence, we do not unpack the whole matrices S,E
from the binary representation of the secret key (which is the usual approach) but
just the coefficients that are required in this case. Additionally, during signing



96 Ö. Dagdelen et al.

we perform rejection sampling on w before we actually compute v in order to
be able to abort as early as possible (without leaking timing information). For
hashing H(�v�d, μ) and H(�w�d, μ), respectively, we pack the input to the hash
function after extraction of higher-order bits in order to keep the input buffer to
the hash function as small as possible.

5.2 Low-Level Optimizations in AVX and AVX2

With the Sandy Bridge microarchitecture, Intel introduced the AVX instruction
set. AVX extends the 16 128-bit XMM vector registers of the SSE instruction set
to 256-bit YMM registers. Arithmetic instructions treat these registers either as
vectors of 4 double-precision or 8-single precision floating-point numbers. Each
cycle, the Intel Sandy Bridge and later Ivy Bridge CPUs can issue one addition
instruction and one multiplication instruction on those vectors. The power of
these vector-arithmetic units was exploited by [22] to achieve very high speeds
for GLP signatures. We also use these floating-point vector operations for our
software. With the Haswell microarchitecture, Intel introduced AVX2, which
extends the AVX instruction set. There are two notable additions. One is that
vector registers can now also be treated as vectors of integers (of various sizes);
the other is that Intel added floating-point multiply-accumulate instructions.
Haswell CPUs can issue two floating-point multiply-accumulate vector instruc-
tions per cycle.

The basic approach for our implementation is that all elements of Zq are rep-
resented as double-precision floating-point numbers. The mantissa of a double-
precision float has 53 bits and a 29-bit integer can thus obviously be represented
exactly. One might think that 53 bits are still not enough, because products of
elements of Zq do not fit into the mantissa. However, the signature scheme never
computes the product of two full-size field elements. The largest products appear
in the matrix-vector multiplications Ay and Az. The coefficients of A are full-
size Zq elements in the interval [−(q−1)/2, (q−1)/2], but the coefficients of y are
in [−B,B] and the coefficients of z are in [−(B − U), B − U ]. With B = 221 − 1
each coefficient multiplication in Ay produces a result of at most 49 bits.

Matrix-vector multiplication. The matrix-vector multiplications Ay and Az
are not only the operations which produce the largest intermediate results, they
are also the operations which dominate the cost for signing and verification,
respectively. The AVX and AVX2 implementations store the matrix A in trans-
posed form which allows more efficient access to the elements of A in vector
registers. One can think of the whole computation as a sequence of multiply-
accumulate instructions, where one factor is a vector register containing 4 coef-
ficients of A, the other factor is a vector register containing 4 copies of the same
coefficient of y (or z) and the accumulator is a vector register containing 4 result
coefficients. Loading the same coefficient of y into all 4 elements of a vector reg-
ister can be done efficiently through the vbroadcastsd instruction. Latencies
can be hidden by interleaving instructions from the computation of independent
vectors of result coefficients.



High-Speed Signatures from Standard Lattices 97

One might think that n ·m = 532 ·840 = 446880 multiplications and accumu-
lations translate into 111720 AVX and 55860 AVX2 cycles (because AVX handles
4 vectorized multiplications and 4 vectorized additions per cycle and AVX2 han-
dles 2× 4 vectorized multiply-accumulates per cycle), but this is not the case. It
turns out that arithmetic is not the bottleneck but access to matrix coefficients.
Note that if we store A as 446880 double-precision floats, the matrix occupies
about 3.5 MB of storage – way too much for the 32 KB L1 cache. Also note that
each matrix coefficient is used exactly once, which is the most cache-unfriendly
access pattern possible. We overcome this bottleneck to some extent by storing
the coefficients of A as 32-bit integers. We then load 4 coefficients (and con-
vert to double-precision floats on the fly) using the vcvtdq2pd instruction of
the AVX instruction set. An additional cost stems from reductions modulo q
of coefficients. We can use lazy-reduction, i.e., we do not have to reduce after
every multiply-accumulate. For example in the computation of Ay we have to
reduce after 16 multiply-accumulate operations. Our software is currently overly
conservative and reduces after 7 multiply-accumulates in both cases. We per-
form modular reduction of floating-point coefficients in the same way as [22]:
We produce a “carry” by multiplying by a floating-point approximation of q−1,
then use the vroundpd instruction to round that carry to the nearest integer,
multiply by q and then subtract the carry from the original value.

In total, the matrix-vector multiplication takes 278912 cycles on a Haswell
CPU and 488474 cycles on an Ivy Bridge CPU.

5.3 Low-Level Optimization in NEON

Fast vector units are not only present in large desktop and server CPUs but
also in mobile CPUs. Most ARM Cortex-A processors include the NEON vector
extensions. These extensions add 16 128-bit vector registers. The most powerful
arithmetic instructions are addition and subtraction of vectors of 4 32-bit integers
or 2 64-bit integers (one per cycle) and multiplication of vectors of 2 32-bit
integers producing as a result a vector of 2 64-bit integers (one every two cycles).
The NEON instruction set also includes multiply-accumulate at the same cost
of a multiplication.

For our optimized NEON implementation we represent elements of Zq as
32-bit signed integers. Products of coefficients in the matrix-vector multiplica-
tions Ay and Az are represented as 64-bit signed integers. Lazy reduction can
go much further than in AVX and AVX2; we only have to perform one reduction
modulo q at the very end of the computation.

In most aspects, the NEON implementation follows the ideas of the AVX and
AVX2 implementations, but two aspects are different. One aspect is that simply
storing the transpose of A is not sufficient for efficient vectorized access to the
elements of A. The reason is that the ARM-NEON addressing modes are by far
not as flexible as the Intel addressing modes. Therefore, we store the matrix A
such that each vector load instruction can simply pick up the next 4 coefficients
of A and then increment the pointer to A as part of the load instruction.



98 Ö. Dagdelen et al.

The other aspect is modular reduction. In NEON we are operating on integers
so the modular reduction technique we use for floats in AVX and AVX2 does not
work. This is where the special shape of q = 229 − 3 comes into play. Reduction
modulo q on integers can be achieved with various different approaches, we
currently use one shift, a logical and, and three additions to reduce modulo q.
Obviously we always reduce two coefficients in parallel using vector instructions.

The penalty for access to coefficients of A is even higher than on the Intel
platforms. Instead of 446880 cycles which one might expect from an arithmetic
lower bound, matrix-vector multiplication takes 2448008 cycles.

6 Results and Comparison

Our software follows the eBACS API [10] and we will submit the software to
eBACS for public benchmarking. In this section we do not report cycle counts
obtained by running the eBACS benchmarking framework SUPERCOP. The rea-
son is the same as in [22]: eBACS reports median cycle counts which is much too
optimistic for the signing procedure which includes rejection sampling. Instead,
we benchmark 10, 000 signature generations and report the average of those
measurements. Verification does not include any rejection sampling and we thus
report the more stable median of 10, 000 measurements.

We benchmarked our software on three machines, namely

– A machine with an Intel Core i7-4770K (Haswell) CPU running Debian GNU/
Linux with gcc 4.6.3. Compilation used compiler flags -msse2avx -march=
corei7-avx -O3 -std=gnu99.

– A machine with an Intel Core i5-3210M (Ivy Bridge) CPU running Ubuntu
GNU/Linux with gcc 4.6.3. Compilation used compiler flags -msse2avx
-march=corei7-avx -O3 -std=gnu99.

– A Beaglebone Black development board with a TI Sitara AM335x (ARM
Cortex-A8) CPU running Debian GNU/Linux with gcc 4.6.3. Compilation
used compiler flags -O3 -flto -march=armv7-a -Ofast
-funroll-all-loops -marm -mfpu=neon -fprefetch
-loop-arrays-mvectorize-with-neon-quad -mthumb-interwork
-mtune=cortex-a15.

All benchmarks were carried out on just one core of the CPU and we followed
the standard practice of turning off TurboBoost and hyperthreading.

Table 3 reports performance results of our software and compares it to pre-
vious implementations of lattice-based signatures. As an additional contribution
of this paper we improved the performance of the software presented in [22]. We
report both the original and the improved cycle counts in Table 3. For details on
the improvement we refer to the full version of this paper. Compared with our
work it becomes clear that usage of standard lattices only incurs a small perfor-
mance penalty. This is remarkable, as no efficient and quasi-logarithmic-runtime
arithmetic like the number-theoretic transform (NTT) is available for standard
lattices. Moreover, for a security level matching the security level of GLP we



High-Speed Signatures from Standard Lattices 99

expect our implementation to be much faster (m,n, q could be decreased). For
BLISS performance we rely on the implementation given in [16]. However, an
implementation of BLISS which uses techniques similar to those described in [22],
should be much faster due to smaller parameters and lower rejection rates than
in GLP. The main problem of BLISS is that it requires efficient (and secure)
sampling of Gaussian noise not only for key generation but also for signing. All
efficient techniques for Gaussian sampling rely heavily on secret branch condi-
tions or lookup tables, which are both known to create timing leaks (see [12]).

Table 3. Comparison of lattice-based-signature software performance

Conclusion and future work. With this work we have shown that the perfor-
mance impact of using standard lattices over ideal lattices for short digital sig-
natures is only small for signing and manageable for verification. Possible future
work might consist in evaluating the performance of an independent time imple-
mentation of vectorized BLISS or PASS. Moreover, NTRUsign might become
interesting again if it is possible to fix the security issues efficiently, as proposed
in [1].

Acknowledgment. We would like to thank Patrick Weiden, Rafael Misoczki, Shi Bai,
and Steven Galbraith for useful discussions. We would further like to thank the anony-
mous reviewers for their suggestions and comments.



100 Ö. Dagdelen et al.

References

1. Melchor, C.A., Boyen, X., Deneuville, J.-C., Gaborit, P.: Sealing the leak on clas-
sical NTRU signatures. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp.
1–21. Springer, Heidelberg (2014). 99

2. Albrecht, M.R., Fitzpatrick, R., Göpfert, F.: On the efficacy of solving LWE by
reduction to unique-SVP. Cryptology ePrint Archive, Report 2013/602 (2013).
http://eprint.iacr.org/2013/602/. 92

3. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
87

4. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica 6(1), 1–13 (1986). http://www.csie.nuk.edu.tw/∼cychen/Lattices/
Onlovaszlatticereductionandthenearestlatticepointproblem.pdf. 90, 102

5. Bai, S., Galbraith, S.: Personal communication and e-mail exchanges (2014). 86,
90

6. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp.
28–47. Springer, Heidelberg (2014). 85, 86, 87, 88, 89, 90, 92, 93, 102

7. El Bansarkhani, R., Buchmann, J.: Improvement and efficient implementation of
a lattice-based signature scheme. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 48–67. Springer, Heidelberg (2014). 84, 85, 99

8. Bernstein, D.J.: A subfield-logarithm attack against ideal lattices, Feb 2014. http://
blog.cr.yp.to/20140213-ideal.html. 85

9. Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post-Quantum Cryptography.
Mathematics and Statistics. Springer, Heidelberg (2009). 84, 85, 91, 93

10. Bernstein, D.J., Lange, T.: eBACS: ECRYPT benchmarking of cryptographic sys-
tems. http://bench.cr.yp.to. Accessed 25 Jan 2013. 86, 98

11. Boorghany, A., Jalili, R.: Implementation and comparison of lattice-based identi-
fication protocols on smart cards and microcontrollers. IACR Cryptology ePrint
Archive, 2014. http://eprint.iacr.org/2014/078/. 85

12. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. IACR Cryptology
ePrint Archive (2014). http://eprint.iacr.org/2014/599. 86, 99

13. Brumley, D., Boneh, D.: Remote timing attacks are practical. In: SSYM 2003
Proceedings of the 12th Conference on USENIX Security Symposium. USENIX
Association (2003). http://crypto.stanford.edu/dabo/pubs/papers/ssl-timing.pdf.
86

14. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011). 92

15. Couvreur, A., Otmani, A., Tillich, J.P.: Polynomial time attack on wild McEliece
over quadratic extensions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 17–39. Springer, Heidelberg (2014). 85

16. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). 85, 86, 88, 89, 99

17. Dwarakanath, N.C., Galbraith, S.D.: Sampling from discrete Gaussians for lattice-
based cryptography on a constrained device. Appl. Algebra Eng. Commun. Com-
put. 25(3), 159–180 (2014). 86

http://eprint.iacr.org/2013/602/
http://www.csie.nuk.edu.tw/~cychen/Lattices/Onlovaszlatticereductionandthenearestlatticepointproblem.pdf
http://www.csie.nuk.edu.tw/~cychen/Lattices/Onlovaszlatticereductionandthenearestlatticepointproblem.pdf
http://blog.cr.yp.to/20140213-ideal.html
http://blog.cr.yp.to/20140213-ideal.html
http://bench.cr.yp.to
http://eprint.iacr.org/2014/078/
http://eprint.iacr.org/2014/599
http://crypto.stanford.edu/dabo/pubs/papers/ssl-timing.pdf


High-Speed Signatures from Standard Lattices 101

18. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). 88

19. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). 90, 91

20. Göttert, N., Feller, T., Schneider, M., Buchmann, J., Huss, S.: On the design of
hardware building blocks for modern lattice-based encryption schemes. In: Prouff,
E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 512–529. Springer,
Heidelberg (2012). 85

21. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012). 84,
85, 88

22. Güneysu, T., Oder, T., Pöppelmann, T., Schwabe, P.: Software speed records for
lattice-based signatures. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932,
pp. 67–82. Springer, Heidelberg (2013). 85, 86, 95, 96, 97, 98, 99

23. Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W.: Practical sig-
natures from the Partial Fourier recovery problem. In: Boureanu, I., Owesarski, P.,
Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 476–493. Springer, Heidel-
berg (2014). 99

24. Ishiguro, T., Kiyomoto, S., Miyake, Y., Takagi, T.: Parallel Gauss Sieve algorithm:
solving the SVP challenge over a 128-Dimensional ideal lattice. In: Krawczyk, H.
(ed.) PKC 2014. LNCS, vol. 8383, pp. 411–428. Springer, Heidelberg (2014). 85

25. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). 86

26. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011). 90, 92, 102, 103

27. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013).
90, 93, 102, 103

28. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). 88

29. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). 88

30. Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with
Errors over Rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
1–23. Springer, Heidelberg (2010). 84

31. Misoczki, R., Barreto, P.S.L.M.: Compact McEliece keys from Goppa codes. In:
Jacobson Jr, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867,
pp. 376–392. Springer, Heidelberg (2009). 85

32. Oder, T., Pöppelmann, T., Güneysu, T.: Beyond ECDSA and RSA: Lattice-based
digital signatures on constrained devices. In: DAC 2014 Proceedings of the The 51st
Annual Design Automation Conference on Design Automation Conference, pp. 1–
6. ACM (2014). https://www.sha.rub.de/media/attachments/files/2014/06/bliss
arm.pdf. 85

https://www.sha.rub.de/media/attachments/files/2014/06/bliss_arm.pdf
https://www.sha.rub.de/media/attachments/files/2014/06/bliss_arm.pdf


102 Ö. Dagdelen et al.

33. Pöppelmann, T., Ducas, L., Güneysu, T.: Enhanced lattice-based signatures on
reconfigurable hardware. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS,
vol. 8731, pp. 353–370. Springer, Heidelberg (2014). 85, 86

34. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) STOC 2005 Proceedings of the Thirty-
Seventh Annual ACM Symposium on Theory of computing, pp. 84–93. ACM
(2005). http://www.cims.nyu.edu/∼regev/papers/qcrypto.pdf. 85

35. Roy, S.S., Vercauteren, F., Mentens, N., Chen, D.D., Verbauwhede, I.: Compact
ring-LWE cryptoprocessor. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS,
vol. 8731, pp. 371–391. Springer, Heidelberg (2014). 85

36. Schneider, M.: Sieving for shortest vectors in ideal lattices. In: Youssef, A., Nitaj,
A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 375–391.
Springer, Heidelberg (2013). 85

37. Schnorr, C.-P., Euchner, M.: Lattice basis reduction: Improved practical algo-
rithms and solving subset sum problems. Math. Program. 66, 181–199 (1994).
http://www.csie.nuk.edu.tw/∼cychen/Lattices/LatticeBasisReductionImproved
PracticalAlgorithmsandSolvingSubsetSumProblems.pdf. 92

A Decoding Attack

An approach for solving LWE that has not been considered in the original
work [6] is the decoding attack. It is inspired by the nearest plane algorithm pro-
posed by Babai [4]. For a given lattice basis and a given target vector, it returns
a lattice vector that is relatively close to the target vector. Hence, improving
the quality of the lattice basis yields a vector that is closer to the target vector.
Lindner and Peikert [26] proposed the nearest planes algorithm, a generaliza-
tion of the former that returns more than one vector and thereby enhances the
previous algorithm with a trade-off between its runtime and the probability of
returning the actual closest vector within the set of obtained vectors.

There is a continuous correspondence between the success probability of this
attack and the Hermite delta. We follow the approach proposed by Lindner and
Peikert [26] to predict this success probability. In short, they show how one can
use the Geometric Series Assumption (GSA) in order to predict the length of the
Gram-Schmidt vectors of a reduced basis, and this estimation in turn serves to
predict the success probability of the attack. Together with an estimation of the
running time of nearest plane – the authors propose 2−16 s – and the runtime
estimation for basis reduction (see Eq. (2)), it is possible to predict the runtime
and success probability of nearest planes.

Optimizing the trade-offs between the time spent on the attack and its suc-
cess probability is not trivial, but simulations of the attack show that it is in
most cases preferable to run multiple attacks with small success probabilities.
This technique is called randomization and was investigated by Liu and Nguyen
(see [27]), together with a further improvement called pruning. In comparison
to the big improvement achieved with randomization, pruning leads only to a
moderate speedup. The maximal speedup achieved in [27] is about 26, while

http://www.cims.nyu.edu/~regev/papers/qcrypto.pdf
http://www.csie.nuk.edu.tw/~cychen/Lattices/LatticeBasisReductionImprovedPracticalAlgorithmsandSolvingSubsetSumProblems.pdf
http://www.csie.nuk.edu.tw/~cychen/Lattices/LatticeBasisReductionImprovedPracticalAlgorithmsandSolvingSubsetSumProblems.pdf


High-Speed Signatures from Standard Lattices 103

randomization can reduce the cost by a factor of 232. Since it turned out that
the decoding-attack is outperformed by other attacks by far (and pruning is fur-
thermore very hard to analyze), we focused on the randomized version.

Briefly speaking, [26] provides the tools necessary to estimate the expected
runtime of the attack for a given set of attack parameters, and [27] proposed
to minimize the expected runtime (i.e. the time for one attack divided by the
success probability of the attack). We applied this technique to our instance (cf.
Table 2).



Block Cipher Speed and Energy Efficiency
Records on the MSP430: System Design

Trade-Offs for 16-Bit Embedded Applications

Benjamin Buhrow(B), Paul Riemer, Mike Shea, Barry Gilbert,
and Erik Daniel

Mayo Clinic, Rochester, MN, USA
{buhrow.benjamin,riemer.paul,shea.michael,

gilbert.barry,daniel.erik}@mayo.edu

Abstract. Embedded microcontroller applications often experience
multiple limiting constraints: memory, speed, and for a wide range of
portable devices, power. Applications requiring encrypted data must
simultaneously optimize the block cipher algorithm and implementation
choice against these limitations. To this end we investigate block cipher
implementations that are optimized for speed and energy efficiency, the
primary metrics of devices such as the MSP430 where constrained mem-
ory resources nevertheless allow a range of implementation choices. The
results set speed and energy efficiency records for the MSP430 device
at 132 cycles/byte and 2.18µJ/block for AES-128 and 103 cycles/byte
and 1.44µJ/block for equivalent block and key sizes using the lightweight
block cipher SPECK. We provide a comprehensive analysis of size, speed,
and energy consumption for 24 different variations of AES and 20 dif-
ferent variations of SPECK, to aid system designers of microcontroller
platforms optimize the memory and energy usage of secure applications.

Keywords: AES · SPECK · Lightweight · Encryption · MSP430 ·
Speed · Energy · Efficient · Measurements · Trade-offs

1 Introduction

Many lightweight block ciphers have been established in recent years in response
to the growing use of resource-constrained electronic devices in a wide variety
of embedded applications. Examples include TWINE [1], Piccolo [2], Lblock [3],
LED [4], PRESENT [5], SIMON, and SPECK [6], in addition to the mainstay
AES [7]. Lightweight block ciphers are largely targeted or optimized for small
hardware implementations although some are specifically architected to admit
software-friendly designs for microcontrollers (e.g., TWINE and SPECK).

Microcontroller based software applications occupy an interesting middle
ground: resources are very constrained relative to general purpose 32- or
64-bit processors but they are abundant relative to devices like RFID tags or
smart cards. For example, sensor nodes like the MicaZ [8] or TelosB [9] utilize

c© Springer International Publishing Switzerland 2015
D.F. Aranha and A. Menezes (Eds.): LATINCRYPT 2014, LNCS 8895, pp. 104–123, 2015.
DOI: 10.1007/978-3-319-16295-9 6



Block Cipher Speed and Energy Efficiency Records 105

microcontroller devices that offer enough ROM and RAM to implement large
lookup tables or to unroll program loops. Further, the programmable nature of
microcontrollers provides support for diverse applications, each with a different
set of resource requirements, of which the block cipher is typically only a small
part. Outside of choosing different block cipher algorithms, the ability to tailor
a particular algorithm to the device resources at hand is desirable; for example
when an algorithm provides exceptional security or energy efficiency.

Overall, many parameters of block ciphers are important to an embedded sys-
tem designer such as size, security, speed, and energy efficiency, depending on the
application. Varying a block cipher’s implementation strategy within embedded
devices is a relatively unexplored topic, and one that can provide much in the
way of trade-off data to designers. Survey authors do a thorough evaluation over
many different ciphers (e.g., [10–12]), but in many cases one implementation
strategy (e.g., small size versus high speed or C language versus assembly lan-
guage [hereafter, abbreviated to assembler]) is chosen per cipher without much
discussion. In this paper we quantitatively discuss this issue by measuring mul-
tiple implementations of two algorithms: AES and the lightweight block cipher
SPECK. These were chosen for two primary reasons: both are expected to have
good performance on the MSP430 [13] and each can be implemented in a variety
of ways on 16-bit platforms that trade off size for speed. We focus on SPECK
over other lightweight block ciphers because (1) it is a very recently proposed
cipher and its implementation has not been fully explored on the MSP430 plat-
form and (2) the wide range of block and key sizes in SPECK are interesting
from the standpoint of configurablity. The intent is not to promote one algorithm
as “better” or “worse” than the other - their designs are sufficiently different to
preclude such a comparison. Nor is the intent to provide security analysis of
either algorithm, other than by increasing key sizes. The goals are to provide
system designers data and analysis over a wider range of size, speed, and energy
efficiency than could be obtained from either block cipher alone, and to discuss
efficient implementations of each algorithm.

The primary contributions of this paper are the presentation of a matrix of
size, speed, and energy consumption data for 8 different implementation strate-
gies of AES coupled with its 3 different key sizes and a first look at similarly thor-
ough results for the entire family of 10 different SPECK parameterizations, for
both C and assembler implementations. The thorough analysis across AES imple-
mentation strategies on the MSP430 presented here is unavailable elsewhere in
the literature, to our knowledge. SPECK is a relatively new cipher and the
implementations here represent the most thorough to date. Our fastest 128-bit
implementations operate at 132 cycles/byte for AES-128 and 103 cycles/byte for
SPECK-128, both setting speed records for 128-bit block ciphers on the MSP430.
Measured energy of 2.18µJ/block for AES and 1.44µJ/block for SPECK fit in
at numbers 5 and 6 in Guneysu’s list of top energy efficient AES implementations
for any platform [14], but notably the results are considerably more efficient than
all other microcontroller platforms tested in that report.

In addition, we provide C and assembler implementation tactics for our AES
designs as well as a detailed review of SPECK implementations in C that improve



106 B. Buhrow et al.

performance relative to conventional approaches. None of the implementation
strategies used here for AES are new; however the 16-bit optimization of Gouvea
[15] is fairly recent and led to the record speed and energy efficiency results. For
all implementations we concentrate solely on encryption and omit decryption.

The remainder of the paper is organized as follows. In Sect. 2 we discuss
related work, in Sect. 3 the algorithms of study and their implementation vari-
ations, in Sect. 4 efficient implementation details, in Sect. 5 the experimental
setup, metrics, and results, and in Sect. 6 our conclusions.

2 Related Work

To a system designer choosing a block cipher for adoption in a microcontroller-
based application, several relevant works exist. As previously mentioned, many
lightweight block ciphers have been recently proposed and their authors typically
offer performance results and/or implementation tactics although the scope of
these efforts varies. Several surveys help distill the relative performance of these
lightweight and other block ciphers. For example Eisenbarth et al. in [10] provides
results of several ciphers on an 8-bit ATtiny45 device. The authors concentrate on
small size as a design goal and provide energy consumption data but the results
are of limited relevance to this study given the differences in target platform.
Law et al. in [11] compares block ciphers on an MSP430F149 device. They adopt
source code from public sources such as OpenSSL [16]. This approach ensures
quality code, but fixes the implementation strategy to that of the public source
that is not necessarily optimized for embedded devices. Cazorla et al. in [12]
compare 12 lightweight and 5 conventional block ciphers on an MSP430F1611
device. The authors compare many ciphers, but understandably chose a single
implementation for each and do not state any particular optimization goals.
Didla in [17] investigates implementation tactics of AES in a MSP430F1611
device; however, all are variations of AES for 8-bit platforms. Finally, in [18] the
authors compare AES with other block ciphers on both MSP430- and ATmega-
based platforms. They address the variable key size of AES but otherwise choose
a single implementation (unstated, but from their provided ROM size it appears
to be a table-based one).

Concerning speed records for AES on microcontroller devices, Hyncica in [19]
presents optimized AES results of 172 cycles/byte for the MSP430 platform that
is based on 32-bit table-based code ported from LibTomCrypt [20]. Gouvea [15]
first presented the 16-bit lookup table strategy for AES in which they reported
180 cycles/byte on a MSP430 platform. On an AVR device the current speed
record is described by Bos in [21], previously held by Poettering in [22].

Implementation and analysis results have begun to appear for SPECK. The
designers present implementation results for SPECK on Atmels ATmega128 8-bit
processor and the BLOC project [13] provides preliminary performance data on
the MSP430. Cryptanalysis of SPECK can be found in [23,24], and [25].



Block Cipher Speed and Energy Efficiency Records 107

3 Algorithms and Implementation Variations

3.1 AES

The AES algorithm uses a substitution-permutation approach and operates on
a block size of 128-bits organized as a 4x4 array of bytes [7]. Four basic trans-
formations are iteratively applied over a variable number of rounds (depending
on key size) to complete each block encryption. These operations are SubBytes,
ShiftRows, MixColumns, and AddRoundKey. Of these, MixColumns is the most
complex operation requiring multiplication of state bytes by constants over the
Galois Field GF(2)8. Most of the AES implementation variations in common use
concern themselves with optimizing this transformation.

Daemen and Rijmen in [26] discuss implementation aspects for both 8-bit and
32-bit processors. In the 8-bit approach, SubBytes, ShiftRows, and AddRound-
Key can be easily combined and executed byte-by-byte for each of the 16 input
bytes and the MixColumns step can also be implemented efficiently. In this paper
the 8-bit approach is implemented in 4 different ways. The first is optimized for
speed by unrolling all transformations within each round. It was adapted from
the implementation provided by Texas Instruments (TI) in [27]. The second also
follows [27], but condenses the transformations into nested loops to reduce ROM
size. The third and fourth variations further optimize for speed by introducing
extra 256-byte lookup tables to speed up the field multiplications within Mix-
Columns. In the sections below, these four 8-bit variations are referred to as
8-BIT-UNROLL, 8-BIT-LOOPED, 8-BIT-2T, and 8-BIT-2SBOX, respectively.

The 32-bit approach discussed by Daemen and Rijmen is also practical using
the 16-bit instruction set of the MSP430. The matrix formulation of the round
transformation can be used to define a set of four 256-entry 32-bit lookup tables,
known as T-tables, for a total of 4096 precomputed and stored bytes. One iter-
ation of the round function amounts to 16 table lookups and 16 XORs. Three
of the T-tables are byte rotations of the first T-table, thus as a space/speed
tradeoff, 1024 bytes of storage can be used together with cyclic 8-bit shifts of
the single table. Both of these 32-bit variations are implemented; in the sections
below they are referred to as 32-BIT-4T and 32-BIT-1T, respectively.

A new optimization was proposed by Gouvea [15] targeting 16-bit processors.
This new approach is a variation of the 32-bit table lookup approach where
4 tables of 16-bit entries are defined such that each of the original 32-bit tables
can be constructed by concatenating two of the 16-bit tables. This formulation
reduces the memory requirement by a factor of 2. After initial tests showed that
this variation was the best performing in terms of speed and energy consumption,
it was also implemented in assembler. In the sections below these variations are
referred to as 16-BIT-4T and 16-BIT-4T-ASM, respectively.

3.2 SPECK

SPECK is a family of lightweight block ciphers with a wide range of block
and key size choices and hence is potentially interesting to system designers



108 B. Buhrow et al.

Table 1. SPECK parameters

Block size Key size Word size Key words Rotation Rotation Rounds Version

2n mn n m α β T Name

32 64 16 4 7 2 22 32-BIT

48 72 24 3 8 3 22 48-BIT

96 4 23

64 96 32 3 8 3 26 64-BIT

128 4 27

96 96 48 2 8 3 28 96-BIT

144 3 29

128 128 64 2 8 3 32 128-BIT

192 3 33

256 4 34

desiring trade-offs between size, speed, and security. SPECK is a Feistel-like
algorithm that uses the map Rk : GF(2)N × GF(2)N → GF(2)N × GF(2)N ,
where k ∈ GF(2)N , defined by

Rk(x, y) = ((S−αx + y) ⊕ k, Sβy ⊕ (S−αx + y) ⊕ k) (1)

where ⊕ denotes bitwise XOR, + denotes addition modulo 2N , Sj , S−j denote
left and right circular shifts by j bits, and α, β are constants defined according
to the block size chosen.

The family of SPECK algorithms is defined according to Table 4.1 in [6],
reproduced here for convenience in Table 1. We implemented each of the 10
parameterizations of SPECK shown in Table 1 in both C and assembler. In
the sections below we refer to these implementations by the version name with
an -ASM or -C suffix for assembler or C, respectively.

4 Implementation Details

In all cases the interface to the block ciphers consists of two byte-pointer
arguments? to an array of bytes to be encrypted and to the expanded key,
respectively. We use IAR Embedded Workbench version 5.51 as a development
platform. The target device is the MSP430F5528.

4.1 AES 8-BIT

The first 8-bit version of AES, 8-BIT-UNROLL, is based on the implementation
by TI for the MSP430 [27] that makes use of the efficient 8-bit implementation
hints given in [26].



Block Cipher Speed and Energy Efficiency Records 109

The 8-BIT-LOOPED version replaces the unrolled MixColumns step with a
loop over the 4 columns of the state, and replaces the unrolled AddRoundKey
step with another loop over the 16 bytes of the state.

The 8-BIT-2T version replaces each AES GF(2)8 multiply-by-2, requiring
test, branch, shift, and XOR instructions with a single table lookup. The goal
with this version is to increase speed at the expense of program size, and increase
side-channel timing attack resistance (see Sect. 4.5).

The 8-BIT-2SBOX version precomputes the 256-byte table 2Sbox = 2 ⊗
Sbox[a], where ⊗ denotes multiplication in the Galois Field, for each input byte a.
To see how this is effective, recall that the MixColumns step computes a vector-
matrix multiplication, for example,

⎛

⎜⎜⎝

b0
b1
b2
b3

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞

⎟⎟⎠

⎛

⎜⎜⎝

Sbox[a0]
Sbox[a1]
Sbox[a2]
Sbox[a3]

⎞

⎟⎟⎠ (2)

Also recall that in multiplication over GF(2)8 we have that 3⊗SBox[ax] ==
(2⊗SBox[ax])⊕SBox[ax]. Therefore multiplication of Sbox[ax] by 1, 2, and 3 can
be done in a straightforward way by application of Sbox and 2Sbox. Once the row
shifts are folded into each column’s matrix-vector multiplication, clever ordering
of the resulting systems of equations yields a very efficient implementation, as
realized by Pottering in [22]. We adapted his 8-bit AVR assembler code for the
MSP430.

4.2 AES 32-BIT

The two 32-bit versions of AES use the T-table approach as described by Daemen
and Rijmen in Sect. 4.2 of [26]. On 8-bit architectures this approach may not be
practical because each of the 32-bit table lookups would require 4 byte-lookups.
In total, 64 byte-lookups and 64 XORs per round would be required, which is
comparable to the instruction count of a non-table-lookup approach. However on
16-bit architectures 32 word-lookups and 32 XORs per round are required, thus
the overall instruction count is reduced quite a bit compared to 8-bit approaches.

In our implementation, the input array of bytes to be encrypted is used
directly as the state matrix. The state bytes are used to index the table lookups
and the resulting new columns are stored in four temporary 32-bit variables.
These are XORed with a 32-bit pointer aliased to the expanded key byte-array.
The results are stored back into the state matrix using a 32-bit pointer aliased
to the state byte-array. Aliasing the pointer allows access to the same data bytes
at different granularity without use of temporary storage. Reducing temporary
storage is an important strategy in fast designs, (discussed further in Sect. 4.5).
Pointer aliasing is accomplished using casting, e.g.:

state32 = (uint32_t *)state;

32-BIT-1T is very similar to the above, except T1, T2, and T3 are replaced
with T0 and macros to perform left circular byte shifts by 1, 2, and 3 bytes
respectively.



110 B. Buhrow et al.

4.3 AES 16-BIT

As described by Gouvea in [15], the 32-bit lookup tables can be reduced to 16-bit
lookup tables such that concatenations of two of the 16-bit tables can produce
any of the original 32-bit tables. The pointer aliasing approach used in the 32-
bit case applies similarly to the 16-BIT-4T version. Of note, by directly using
16-bit operations on 16-bit data types the compiler is no longer relied upon to
synthesize 16-bit instructions from source code using 32-bit operations on 32-bit
data types. Compilers are not perfect in this regard, so in addition to reducing
the memory footprint by a factor of two, this approach was found to be faster as
well. There is no equivalent byte-rotation-based memory/speed tradeoff in the
16-bit approach as there is in the 32-bit approach.

After initial testing, the 16-BIT-4T version of AES was found to be the fastest
and lowest energy of all of the AES implementation variations tested. A complete
listing of 16-BIT-4T can be found in Listing A in the Appendix. To further
enhance the performance, 16-BIT-4T was also implemented in assembler, using
the IAR generated assembler as a starting point. In the generated assembler, the
compiler was unable to utilize the 12 general purpose registers (R4-R15 [28]) of
the MSP430 efficiently enough and thus required temporary data to be loaded
from and stored to the stack (in RAM). As discussed in Sect. 4.5, accessing
temporary data in RAM is detrimental to speed.

The following register scheme in our assembler version avoids storing tem-
porary data to RAM, thus increasing the speed and further reducing the energy
consumption of the 16-BIT-4T-ASM code version. Registers R4 through R11 are
used to hold the 8 temporary 16-bit column results, R12 and R13 hold point-
ers to the state array and expanded key respectively, R14 is the loop counter,
and R15 is used to compute offsets into the tables. An excerpt of the resulting
assembler round function is shown in the Appendix, Listing B.

It is likely that other AES versions implemented in assembly language would
also see performance improvements. For instance, an assembler implementation
of the 32-BIT-4T version could likely be made identical to the 16-BIT-4T-ASM
version, speed-wise, since in assembler the only difference would be different
offsets into the larger 32-bit tables. Based on the preceeding reasoning, we limit
our AES assembly language analysis to a single implementation variation; we
do not anticipate that 32-bit table-based variations re-implemented in assembly
language would exceed the performance of 16-BIT-4T-ASM.

4.4 SPECK

The round function of SPECK is very succinct; therefore all implementations
fully unroll the round function, leaving a single loop over the required number of
rounds. Beyond decisions like unrolling or not, or inlining or not, Beaulieu in [6]
provides no guidance on implementation of the round function. In this section
implementations in C and assembly language are discussed.

SPECK performs all operations modulo n, the word size. Whenever the C
data type (e.g., uint32 t or uint64 t) is larger than the 16-bit processor word size,



Block Cipher Speed and Energy Efficiency Records 111

then the compiler must translate XOR, addition (+), and shift operations within
C code into multi-precision operations over the native 16-bit instructions of the
MSP430 [28]. For example, let X = {X3,X2,X1,X0} and Y = {Y3, Y2, Y1, Y0}
be 64-bit integers composed of 16-bit words Xi and Yi (0 <= i < 4). Adding
X + Y in C would ideally result in the following sequence of operations in a
16-bit instruction set:

add X0, Y0 ; add X0 to Y0
adc X1, Y1 ; add X1 and previous carry to Y1
adc X2, Y2 ; add X2 and previous carry to Y2
adc X3, Y3 ; add X3 and previous carry to Y3

C implementations may be preferred by developers (e.g., to simplify the cod-
ing effort), and our particular compiler generated efficient multi-precision code
for the XOR and addition operations within SPECK. However, the generated
code for the circular shifts was not very efficient. Since at least one compiler
appears to have difficulty generating efficient code for the SPECK round func-
tion, we also implement the round function in assembler to quantify the trade-off.

The SPECK round function in most cases requires both a left circular shift
(LCS) by 3 bits and a right circular shift (RCS) by 8 bits. The LCS can be imple-
mented in an efficient way in assembler using three one bit circular shifts, as fol-
lows, where 64 bits of data are stored in the four 16-bit registers R4 through R7:

; assembly language 1-bit LCS
; each instruction takes one clock cycle
; (in register addressing mode)
rla r4 ; shift first 16-bit word
rlc r5 ; shift with carry second 16-bit word
rlc r6 ; shift with carry third 16-bit word
rlc r7 ; shift with carry second 16-bit word
adc r4 ; rotate final carry back to first word

The 8-bit RCS can be performed in assembler in an efficient way using swap-
byte and XOR operations, as shown in Listing C on a 64-bit word held in registers
R4-R7. Equivalent LCS and RCS operations in C were not as efficient. For
example the RCS implemented as x = (((x) << 56)|((x) >> 8)), did not use an
extra temporary register and final swap-byte/XOR, as in Listing C, instead using
two AND operations (in immediate mode), a swap-byte, and an OR operation.
(The immediate addressing mode is slower than the register addressing mode on
the MSP430, two clock cycles versus one [28].)

For developers who do not want to proceed to assembler there unfortunately
may be limited options to optimize the multi-precision LCS/RCS operations.
Typically there is not enough direct access to machine status words, for example
to access/modify carry flags, or access to specialized instructions like “rotate
left through carry” (rlc), from within high level languages such as C. Listing D
in the Appendix shows the full implementation of SPECK-128 in C. The listing
illustrates different ways to implement LCS and RCS that resulted in an 8 %
speedup over versions that used the C language methods shown above.



112 B. Buhrow et al.

4.5 MSP430 Features and Capabilities

Several features of the MSP430 family of microcontrollers have direct bearing
on the implementation results presented in Sect. 5. Chiefly, these are (1) the
instruction set, (2) the addressing modes, and (3) the register set. The MSP430
Family User Guide [28] provides detailed information on all of these features. In
this section, we offer comments on specific use of several of the features as they
pertain to SPECK and AES implementations.

Instructions on the MSP430 allow operations on either bytes or 16-bit words
(via .b or .w suffixes). The swap bytes (swpb) instruction is very useful to SPECK
implementations (for the RCS operation). Byte operations to registers clear the
most significant byte of the word; this effect is also used during the RCS opera-
tion (Appendix, Listing C).

The addressing modes of the MSP430 include register modes (operations on
data held in processor registers) and several memory modes (operations on data
held in processor memory, RAM or ROM). Operations on data held in memory
are generally much slower than data held in registers. For example, to XOR two
words held in processor registers takes one clock cycle, but to XOR two words
held in memory takes five or six clock cycles, depending on the specific addressing
mode employed. As such, whenever possible AES and SPECK code is structured
to attempt to minimize loading from and storing to memory. Unfortunately there
are only 12 general purpose registers (designated R4 through R15) in which to
hold data. A consequence of the limited register set is that temporary variables
must be used very sparingly in C code. As the compiler encounters “larger”
numbers of temporary variables (e.g., function locals) it will utilize stack memory
(physically stored in RAM) to hold them. Accessing these temporary values will
therefor incur a speed penalty due to slower memory addressing modes on the
MSP430. We do not attempt to quantify “larger” in this study, since detailed
examination of the compiler is not our goal (and will be different, for other
compilers). However, as the number of temporary variables grows it becomes
more difficult for the compiler to avoid temporary use of RAM-based stack.

The MSP430’s addressing modes have the advantage that memory accesses
are constant time. There are no cache hierarchy effects or interactions with
other concurrently running processes to worry about [29]. AES versions that
use table lookups thus do not have key- or input-dependent timing variability
and appear to have resistance to timing attacks on the MSP430. In our suite of
implementations, the only AES versions that do not use table lookups are 8-BIT-
UNROLL and 8-BIT-LOOPED. In these implementations, the computation of
multiply-by-2 over GF(2)8 depends on the input (a branch containing an extra
instruction may or may not be taken). We have not investigated the feasibility
of a timing attack on these AES implementations. The SPECK round function
involves no branches and on the MSP430 takes constant time. Based on the
constant time property of the round function, we expect SPECK to be resistant
to timing-based side-channel attacks on the MSP430, although this has not been
investigated.



Block Cipher Speed and Energy Efficiency Records 113

5 Results and Discussion

5.1 Experimental Setup and Procedure

The 8 variations of AES were evaluated for each of the 3 AES key sizes along
with the 20 variations of SPECK (10 in C and 10 in assembler). The metrics for
each test were speed of encryption, code size, and energy consumption. Speed
was measured using the IAR debugger and function profiler tools in simulation
mode. (Speed was also independently verified using timing information obtained
from the measured waveforms described below, running released code.) Code size
is provided by the IAR linker, broken down into CODE, DATA, and CONST
segment sizes. Since all CONST segment data is stored in ROM along with
the CODE segment, below we have grouped CODE and CONST together as a
total ROM size, reported along with total RAM size (DATA segments). Energy
consumption was calculated by first measuring the voltage drop across a 10 ohm
resistor in series with the MSP430 digital voltage supply, Vdvcc, on a custom
evaluation board (nominally Vdvcc = 2.85 V). Voltage drop was measured using
a National Instruments PXI-1024Q chassis, PXI-8108 controller, and PXI-4071
7 digit, 26-bit digitizer. Custom MATLAB scripts then converted the voltage to
current and performed integration of the current waveforms over the encryption
time-period to get charge, Q. Finally, energy is calculated as E = QVdvcc.

In every case key expansion was performed and all round keys were stored in
RAM (code to perform key expansion is included in our ROM figures; however,
we omit key expansion speed results). (In most cases the key expansion speed is
within a factor of 2 of the number of cycles for a block encryption.) Stack utiliza-
tion also consumes RAM; stack usage was determined by careful examination of
compiler generated code.

5.2 Results and Discussion

The results are shown in Figs. 1 through 5 below. Figure 1 shows the speed
data for each algorithm, arranged right-to-left from fastest to slowest. Figures 2
through 5 are presented in the same x-axis order as Fig. 1, i.e., all results are
sorted according to speed. Figures 2 through 5 show energy consumption per
byte, ROM size, RAM size, and a combined metric, the code size × cycle count
product normalized by block size [10]. In all figures smaller bars are better. In
the SPECK charts, “Small Key” refers to the smaller of the key options for each
block size shown in Table 1. Similarly, “Large Key” refers to the larger of the
key options. The 256-bit key only applies to the 128-bit block size.

For AES, the fastest and most energy efficient C implementation is the
16-BIT-4T variation at 152 cycles/byte and 2.46 µJ/block. The speedup obtained
over Gouvea’s implementation [30] is due to the avoidance of storing the state
matrix in temporary stack space. This was accomplished via the pointer alias-
ing technique discussed in Sect. 4.3: aliasing the input state array (uint8 t *),
used to index the lookup tables, with a word-array pointer (uint16 t *), used
for assignments to the state matrix. The 16 extra stack bytes in Gouvea’s round



114 B. Buhrow et al.

Fig. 1. Speed of AES (left) and SPECK (right) (Block encryption only) (44520)

Fig. 2. Energy consumption per byte of AES (left) and SPECK (right) (44522)

function implementation cause more data movement to and from RAM that in
addition to adding instructions, incurs the memory addressing mode cycle-count
penalty discussed in Sect. 4.5.

The assembler implementation 16-BIT-4T-ASM gives a further 14 % speedup
and 12 % decrease in energy usage over the C implementation, to 132 cycles/byte
and 2.18 µJ/block. This improvement is again a direct consequence of improv-
ing register utilization (and thus reducing the memory addressing mode cycle-
count penalty). The register utilization scheme that was employed is discussed
in Sect. 4.3.

Of the lighter weight 8-bit AES versions, 8-BIT-2SBOX is the fastest at
194 cycles/byte but has the disadvantage of needing an assembler implementa-
tion to realize its performance. The 8-BIT-2T version is 25 % slower but much
simpler to implement. The combined metric shows that 8-BIT-LOOPED pro-
vides very good overall performance due to its reasonable throughput and small
code size, 8-BIT-2SBOX is exceptional for the same reason, and 16-BIT-4T is
also good due to its high speed. Figure 4 shows that table-driven C versions of
AES consume slightly more RAM (beyond that required to hold the expanded
key) because of temporary storage to the stack; however the 16-BIT-4T-ASM
version does not require stack as discussed in Sect. 4.3. The ROM size of AES



Block Cipher Speed and Energy Efficiency Records 115

Fig. 3. ROM usage of AES (left) and SPECK (right) (Including key schedule code)
(44521)

Fig. 4. RAM usage of AES (left) and SPECK (right) (44523)

Fig. 5. Combined metric of AES (left) and SPECK (right) (code size cycle count/block
size) (44524)

increases slightly for 256-bit key versions because the compiler optimizes away
the portion of the AES key schedule that is only valid for 256-bit keys (see, for
example, Sect. 5.2 of [7]). Energy consumption generally tracks speed quite well.



116 B. Buhrow et al.

Table 2. Related work comparison

Slightly varying average current levels for different implementations (not shown
here) is a second order effect, confirming the observations of other authors [11].

For SPECK, the fastest C implementation is the 64-BIT block size version
at 116 cycles/byte (0.74µJ/block) and the fastest assembler implementation
was the 32-BIT version at 87 cycles/byte (0.31µJ/block). Of note, all of the
assembler implementations are faster than the fastest C implementation. The
speed-up from C to assembler is due to two factors. First, in assembly language
the multi-precision rotation operations can be implemented more efficiently (as
shown in Sect. 4.4). And second, in the C implementation of the larger block
size versions of SPECK (96- and 128-bit) there is inefficient register utilization.
The two temporary variables x and y (shown in Listing D) fill 8 of 12 available



Block Cipher Speed and Energy Efficiency Records 117

general purpose registers. This was enough to cause some temporary storage to
stack (RAM) with an associated speed penalty. The assembly implementations
were able to avoid use of extra RAM and the associated speed penalty.

Larger key sizes for similar versions of SPECK use incrementally more code
and energy. However the effect is much less pronounced than in AES. In AES,
the number of extra rounds increases from 10 to 14 when going from 128-bit
keys to 256-bit keys (a 40 % increase) while in SPECK the number of rounds
increases from 32 to 34 (just over 6 %). Block size has a much stronger impact
than key size on both ROM and RAM, as seen in Figs. 3 and 4.

Although we chose to limit our in-depth study to the two tailorable block
ciphers AES and SPECK, related work provides figures on AES and other block
ciphers for the MSP430 platform that can be compared to our results. Related
work is summarized in Table 2. In Table 2, implementations are first sorted by
block size and then by the combined metric, to facilitate comparison of overall
performance between ciphers of similar block size. Note that comparisons such
as these can be difficult to interpret due to differing measurement conditions
or techniques. Our measurement conditions are stated at the beginning of this
section; we have indicated known differences between our approach and the
various references as footnotes to Table 2. In cases where the reference indicated
that the authors implemented both encrypt and decrypt, but provided only one
code size result, the ROM for encrypt only is estimated by dividing the reported
ROM by 2.

6 Conclusions

We have implemented and measured 24 different variations of AES and 20 dif-
ferent variations of the new lightweight block cipher SPECK on the low power
MSP430 platform, in both C and assembler. Many of these implementations
represent records for speed and energy efficiency among lightweight and tradi-
tional block ciphers on that device, e.g. 132 cycles/byte and 2.18µJ/block for
AES and 103 cycles/byte and 1.44µJ/block for SPECK, both with 128-bit block
and key sizes. The 32-bit block size of SPECK with a 64-bit key produced even
lower numbers at 87 cycles/byte and 0.31µJ/block. We provide implementa-
tion tactics for both AES and SPECK in both C and assembler for the 16-bit
MSP430 platform. Finally, we provide a thorough analysis of measured results
across algorithm, implementation strategy, and key size to aid system designers
needing to incorporate block ciphers into their designs.

References

1. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: Twine: a lightweight block
cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS,
vol. 7707, pp. 339–354. Springer, Heidelberg (2013)

2. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)



118 B. Buhrow et al.

3. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

4. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

5. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

6. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, June 2013. http://eprint.iacr.org/2013/404

7. National Institute of Standards and Technology (NIST). FIPS-197: Advanced
Encryption Standard (AES) (2001). http://www.csrc.nist.gov/publications/ps/
ps197/ps-197.pdf

8. MICAz wireless measurement system. http://www.memsic.com/userfiles/files/
Datasheets/WSN/micaz datasheet-t.pdf

9. TelosB Platform. http://www.memsic.com/userfiles/files/Datasheets/WSN/
telosb datasheet.pdf

10. Eisenbarth, T., Gong, Z., Güneysu, T., Heyse, S., Indesteege, S., Kerckhof, S.,
Koeune, F., Nad, T., Plos, T., Regazzoni, F., Standaert, F.-X., van Oldeneel
tot Oldenzeel, L.: Compact implementation and performance evaluation of block
ciphers in ATtiny devices. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT
2012. LNCS, vol. 7374, pp. 172–187. Springer, Heidelberg (2012)

11. Law, Y.W., Doumen, J., Hartel, P.: Survey and benchmark of block ciphers for
wireless sensor networks. ACM Trans. Sens. Netw. (TOSN) 2(1), 65–93 (2006).
ACM, New York

12. Cazorla, M., Marquet, K., Minier, M.: Survey and benchmark of lightweight block
ciphers for wireless sensor networks. In: Proceedings of the 10th International Con-
ference on Security and Cryptography, SECRYPT 2013, pp. 543–548. SciTePress,
Reykjavk, Iceland, 29–31 July (2013)

13. BLOC project performance evaluations, June 2014. http://bloc.project.citi-lab.fr/
library.html

14. Guneysu, T.: Implementing AES on a bunch of processors. ECRYPT AES day,
Bruges, Belgium (2012). https://www.cosic.esat.kuleuven.be/ecrypt/AESday/
slides/AES-DAY-Gueneysu.pdf

15. Gouvêa, C.P.L., López, J.: High speed implementation of authenticated encryption
for the MSP430X microcontroller. In: Hevia, A., Neven, G. (eds.) LatinCrypt 2012.
LNCS, vol. 7533, pp. 288–304. Springer, Heidelberg (2012)

16. OpenSSL Cryptography and SSL/TLS toolkit. http://www.openssl.org/
17. Didla, S., Ault, A., Bagchi, S.: Optimizing AES for embedded devices and wireless

sensor networks. In: Proceedings of the 4th International Conference on Testbeds
and research infrastructures for the development of networks and communities
(TridenCOM), Article No. 4, 2008. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), Brussels, Belgium (2008)

18. Lee, J., Kapitanova, K., Son, S.H.: The price of security in wireless sensor networks.
Comput. Netw. 54(17), 2967–2978 (2010). Elsevier, New York

19. Hyncica,O.,Kucera, P., Honzik, P., Fiedler, P.: Performance evaluation of symmetric
cryptography in embedded systems. In: Proceedings of the 6th International Confer-
ence on Intelligent Data Acquistion and Advanced Computing Systems: Technology
and Applications, pp. 277–282, Prague (2011)

http://eprint.iacr.org/2013/404
http://www.csrc.nist.gov/publications/ps/ps197/ps-197.pdf
http://www.csrc.nist.gov/publications/ps/ps197/ps-197.pdf
http://www.memsic.com/userfiles/files/Datasheets/WSN/micaz_datasheet-t.pdf
http://www.memsic.com/userfiles/files/Datasheets/WSN/micaz_datasheet-t.pdf
http://www.memsic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.pdf
http://www.memsic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.pdf
http://bloc.project.citi-lab.fr/library.html
http://bloc.project.citi-lab.fr/library.html
https://www.cosic.esat.kuleuven.be/ecrypt/AESday/slides/AES-DAY-Gueneysu.pdf
https://www.cosic.esat.kuleuven.be/ecrypt/AESday/slides/AES-DAY-Gueneysu.pdf
http://www.openssl.org/


Block Cipher Speed and Energy Efficiency Records 119

20. St. Denis, T., LibTomCrypt (source code). http://libtom.org/?page=features&
newsitems=5&whatfile=crypt

21. Osvik, D.A., Bos, J.W., Stefan, D., Canright, D.: Fast software AES encryption.
In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 75–93. Springer,
Heidelberg (2010)

22. Poettering, B.: AVRAES: The AES block cipher on AVR controllers (2006). http://
point-at-infinity.org/avraes/

23. Abed, F., List, E., Wenzel, J., Lucks, S.: Differential cryptanalysis of round-reduced
SIMON and SPECK. In: FSE 2014. LNCS (2014, to appear)

24. Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers SIMON
and SPECK. In: FSE 2014. LNCS (2014, to appear)

25. Dinur, I.: Improved differential cryptanalysis of round-reduced speck. In: Joux, A.,
Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 147–164. Springer, Heidelberg
(2014)

26. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Berlin (2002)
27. Kretzschmar, U.: AES software support for encryption and decryption. MSP430

Systems. http://www.ti.com/litv/zip/slaa397a
28. MSP430 Family, Instruction Set Summary. http://www.ti.com/sc/docs/products/

micro/msp430/userguid/as 5.pdf
29. Bernstein, D.J.: Cache-timing attacks on AES (2005). http://cr.yp.to/antiforgery/

cachetiming-20050414.pdf
30. Gouvea, C.: Authenticated Encryption on the MSP430 (source code). http://

conradoplg.cryptoland.net/software/authenticated-encryption-for-the-msp430/

http://libtom.org/?page=features&newsitems=5&whatfile=crypt
http://libtom.org/?page=features&newsitems=5&whatfile=crypt
http://point-at-infinity.org/avraes/
http://point-at-infinity.org/avraes/
http://www.ti.com/litv/zip/slaa397a
http://www.ti.com/sc/docs/products/micro/msp430/userguid/as_5.pdf
http://www.ti.com/sc/docs/products/micro/msp430/userguid/as_5.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://conradoplg.cryptoland.net/software/authenticated-encryption-for-the-msp430/
http://conradoplg.cryptoland.net/software/authenticated-encryption-for-the-msp430/


120 B. Buhrow et al.

7 Appendix A Code Listings



Block Cipher Speed and Energy Efficiency Records 121



122 B. Buhrow et al.



Block Cipher Speed and Energy Efficiency Records 123



Side-Channel Attacks
and Countermeasures



On Efficient Leakage-Resilient Pseudorandom
Functions with Hard-to-Invert Leakages

Fabrizio De Santis1(B) and Stefan Rass2

1 Technische Universität München, Munich, Germany
desantis@tum.de

2 Alpen-Adria Universität, Klagenfurt, Austria

Abstract. Side-channel attacks have grown into a central threat to
the security of nowadays cryptographic devices. The set of implementa-
tion countermeasures constantly competes with the set of known attack
strategies, however, systematic ways to protect against information leak-
age are uncommon. Despite many achievements in the field of secure
implementations, side-channel countermeasures only offer ad-hoc reme-
dies which do not conform to the idea of provably secure cryptosys-
tems. On the other side, leakage-resilient constructions often hinge on
assumptions which can be hardly translated into practice. This work
is an attempt to provide a theoretical, yet practical, modeling of side-
channels that aids in identifying spots and making design choices towards
a comprehensive side-channel security treatment from theoretical proofs
down to hardware implementations. More precisely, we illustrate a simple
sufficient condition for building physically secure hardware that follows
directly from the decomposition of the side-channel into an algorithmic-
related part and a physical-related part, and hardness of inversion. We
put forward that our simple modeling allows to commit clear security
goals to cryptographers and hardware designers and preserve the secu-
rity of theoretical constructions all the way down to final chip fabrication.
As a showcase application, we consider the security of the Goldwasser-
Goldreich-Micali (GGM) construction scheme for efficient pseudorandom
functions with and without leakages. These security proofs have been left
open in previous literature and here serve to demonstrate the feasibility
of our modeling approach.

1 Introduction

Guarding against side-channel information leakage is a notoriously difficult and
challenging engineering task, as conflicting constraints such as performance and
security have to be met simultaneously. The standard adversarial model in the
physical setting assumes an adversary with physical access to a cryptographic
device, from which it seeks to extract secret data based on the observation of side-
channel information gathered during (possibly adaptively many) usages of the
device. The way this information is gathered (e.g., power consumption or electro-
magnetic field radiation), in connection with the number of observed variables,
the amount of available observations and how the inference towards secret data
c© Springer International Publishing Switzerland 2015
D.F. Aranha and A. Menezes (Eds.): LATINCRYPT 2014, LNCS 8895, pp. 127–145, 2015.
DOI: 10.1007/978-3-319-16295-9 7



128 F. De Santis and S. Rass

is done differentiates competing attack strategies [5,6,12,22,27,30]. Over the last
two decades, several ad-hoc implementation countermeasures have been devel-
oped to protect cryptographic hardware against known side-channel attacks.
These countermeasures can be roughly classified into three categories depending
on their abstraction level: (1) logic-level countermeasures, such as masked logic
styles [17,25,29] protect the logic gates of the physical layer, (2) algorithmic-level
countermeasures, such as secret sharing schemes [7,15,23,26] break the process-
ing of secrets into multiple shares and (3) protocol-level countermeasures, such as
fresh re-keying schemes [2,3,20] wrap cryptographic algorithms into side-channel
resistant protocols by frequent key-updates. Common to any such practice is the
attempt to either hide or make the side-channel information independent from
the internal secret information, in order to thwart inference attacks [19]. A com-
plementary approach to prevent side-channel attacks has been taken only in
recent years by leakage-resilient cryptography [9] to devise cryptographic prim-
itives which are secure even in presence of side-channel information leakage.
Unfortunately, the theoretical security proofs of leakage-resilient primitives often
become void upon transition to real-world implementations, as this approach
typically fails to capture realistic physical models of computation [31].

The crux of this work is to show a simple sufficient criterion for side-channel
security that allows to preserve the validity of theoretical security proofs all the
way down to hardware implementations. Our criterion is built upon the logical
decomposition of the side-channel leakages into an algorithmic function f , which
is specified by the particular cryptographic algorithm, and a physical function �
which depends on the physical properties of the technology realizing the consid-
ered cryptographic device. In this decomposed view, we require that the composi-
tion of the two functions f and � is hard-to-invert, i.e., we can allow information
flow through either one of them, but not through both. We put forward that our
explicit leakage modeling is advantageous for at least three reasons: First, it allows
to preserve the security of theoretical proofs by committing the hardness of inver-
sion across lower abstraction levels until the final implementation in a clearly
defined way. Second, it allows to identify and assign precise roles in the devel-
opment of secure cryptographic hardware devices: theoreticians are in charge of
devising secure constructions and provide security proofs from hardness of inver-
sion, while cryptographers, hardware and physical designers are committed to
preserve this property until final physical fabrication, by acting on the design of
cryptographic algorithms, hardware architectures and the final physical chip lay-
out, respectively. Third, it outlines a valuable asset (degree of freedom) in the
development of secure cryptographic devices: in such cases where it is difficult to
achieve hard-to-invert physical functions (modeled by the � function), our security
condition can be met by proper algorithm and hardware design (the f function),
or by a combination thereof. Conversely, if the algorithmic step f cannot be pre-
vented from leaking information, then stronger hardware protection in the phys-
ical layer are demanded (e.g., secure logic and layout design [17]). To illustrate
our modeling, we look at Standaert et al.’s [33] efficient construction of leakage-
resilient pseudorandom functions as showcase application. Their proposal is an
efficiency-improved version of the well-known GGM-tree construction for



On Efficient Leakage-Resilient Pseudorandom Functions 129

pseudorandom functions due to Goldreich et al. [14]. This particular use-case is
interesting in a double mean: First, the security proofs for Standaert et al.’s effi-
cient GGM-tree were omitted in previous work [33], which we now present here
based on our new modeling, together with its concrete security analysis [4].
Second, GGM-tree hardware implementations [3,21] still provide today an excep-
tional example of implementations with super-exponentially hard-to-invert leak-
ages which support our modeling arguments.

Organization. We start introducing the necessary technical background in
Sect. 2. Then, we introduce our leakage model based upon the logical decomposi-
tion between algorithmic and leakage functions in Sect. 3. We continue discussing
the assumptions and limitations of different approaches to security in presence of
leakage, which finally culminate in the hardness of inversion property, defined in
Sect. 4. Towards a demonstration of our modeling, we prove security of efficient
GGM-tree PRFs with and without leakages in Sect. 5. Conclusions are drawn in
Sect. 6.

2 Background

Before going into concrete constructions, we use this section to briefly introduce
the concepts necessary to soundly and consistently explain what follows in the
next sections.

2.1 Pseudorandom Generators

Informally, a pseudorandom generator (PRG) is an efficient deterministic func-
tion that expands a short and truly random seed into a polynomially long pseudo-
random sequence, which cannot be efficiently distinguished from a truly random
one. Throughout this work, we use κ ∈ N to denote the security parameter that
is used to set up all the cryptographic engines. By x

$← Uκ, we denote a uni-
formly random draw of a bitstring x ∈ {0, 1}κ. The bitlength of a string y is
written as |y|.
Definition 1 (Pseudorandom Generator (PRG)). Let an integer κ ∈ N be
given, and take ε, τ > 0. A function G : {0, 1}κ → {0, 1}s(κ) is an (s, τ, ε)-secure
PRG if:

1. G is computable in deterministic polynomial time in the input length κ. [Effi-
ciency]

2. There exists a polynomial s, called the stretch, such that: [Regular stretch]
– s(κ) > κ
– |G(x)| = s(κ) for all strings x ∈ {0, 1}κ.

3. The distribution {x
$← Uκ : G(x)} is computationally indistinguishable from

the uniform distribution Us(κ) on s(κ)-bit strings to any efficient adversary
A(x) running in time at most τ : [Pseudorandomness]

|Pr[x $← Uκ : A(G(x)) = 1] − Pr[x $← Us(κ) : A(x) = 1]| ≤ ε (1)



130 F. De Santis and S. Rass

2.2 Pseudorandom Functions

Informally, a pseudo-random function (PRF) is a function that is computationally
indistinguishable from a random function in the sense that no efficient adversary
can distinguish a PRF from a truly random function. Let a PRF family be denoted
as F , where k

$← Uκ is an integer key that selects a random member from F ,
being a function Fk : {0, 1}m → {0, 1}n, where m,n are fixed input and output
sizes. The security of pseudorandom functions can be defined in a gamed-based
fashion, where an adversary A is asked to distinguish between the output of a
pseudorandom function Fk and a truly random value. More precisely, the game
asks an adversary A, which is composed of two algorithms (A1, A2), to take a
decision by running two formal experiments ExpPRF-IND-0

A and ExpPRF-IND-1
A .

The two experiments consist of a profiling phase, where the algorithm A1 adap-
tively generates the input values for which PRF evaluations are collected, and a
decision phase, where the algorithm A1 outputs yet another fresh input to Fk

and the algorithm A2 is requested to distinguish between the evaluation of the
PRF on this last input value and a truly random value. The two experiments
are formalized in Definition 1. Notice that the two experiments are identical up
to the point where the final response in the decision phase is generated (the
difference is bold-printed for convenience of the reader).

Definition 2 (Pseudorandomfunction(PRF)). AfunctionfamilyF is(q, τ, ε)-
secure if anadversaryA = (A1, A2) that runs in time τ , givenanoracle fora function
Fk andallowed tomakeatmost q queries toFk hasadvantageatmost ε in distinguish-
ing the output of Fk from random:

Adv(ExpPRF-IND
A ) :=

∣∣Pr(ExpPRF-IND-0
A = 1) − Pr(ExpPRF-IND-1

A = 1)
∣∣ < ε

(2)

Exp
PRF-IND-0
A : Exp

PRF-IND-1
A :

k
$← {0, 1}κ

k
$← {0, 1}κ

[Initialization]

S, I ← ∅ S, I ← ∅
for i = 1, 2, . . . , q for i = 1, 2, . . . , q [Profile with at most q queries]

xi ← A1(S, I) xi ← A1(S, I) [Generate inputs]

S ← S ∪ {xi} S ← S ∪ {xi} [Collect inputs in S ]

I ← I ∪ {(xi, Fk(xi))} I ← I ∪ {(xi, Fk(xi))} [Collect input/output pairs in I ]

endfor endfor

xq+1 /∈ S ← A1(S, I) xq+1 /∈ S ← A1(S, I) [Generate a new challenge]

z ← Fk(xq+1) z
$← Uκ [Generate response]

b ← A2(xq+1, z, I) b ← A2(xq+1, z, I) [Take a decision]

return b return b



On Efficient Leakage-Resilient Pseudorandom Functions 131

3 The Leakage Model

In this section, we describe the leakage model considered in this work. Similar
to [24], we model the computation of cryptographic primitives by the means
of abstract machines (e.g., Turing-machines, circuits, or similar) with an aux-
iliary function that provides some information about the internal configuration
of the computational device whenever it becomes active. A configuration here is
understood as the entirety of internal data (Turing-machine tape contents and
state, current logical states of all circuit wires and gates, etc.) that is processed
in each step (or stage) of a computation. A state is generally represented by a
word {0, 1}ν e.g., a string whose length ν is polynomial in the security parameter
κ of the algorithm, while the transition from one state to the next is called a
step. In this view, the computation of a cryptographic primitive is split up into
a sequence of n (fixed) steps fn−1 ◦ fn−2 ◦ · · · ◦ f1 ◦ f0, each one computing an
intermediate function fi and emitting some information on its input and output
values through a physical function �. Let us now detail more about our assump-
tions on such functions and the adversary capabilities to obtain a representative
modeling of physical reality:

Adjustable Granularity. The specific look of intermediate functions fi is deter-
mined by the given cryptographic instance and the granularity of its security
analysis, where by granularity, we mean the number of steps into which the prim-
itive can be broken up, meaningfully. In practice, when a complexity-theoretic
approach to security is taken, intermediate functions correspond to the invoca-
tion of a primitive underlying the analyzed construction, say a PRG for the analy-
sis of PRFs [10]. When concrete hardware implementations are considered, then
intermediate functions may correspond to very simple functions, say a b-bit S-box
for the analysis of a block-cipher mode of operation, depending on the particular
hardware architecture. This different level of abstraction actually represents the
main gap between security proofs obtained in the complexity-theoretic approach
and the actual security margins achieved by real-world implementations [31].

Only Computation Leaks Information. This axiom has been originally given
in [24] and states that a cryptographic device can leak information only on the
data which are manipulated during a transition step. This assumption is widely
used in literature [1,11,24,33,35] and implies that no leakage can occur on data
which are stored in memory or on data which has not been manipulated yet.

Physical functions. In accordance with physical experience, we assume that phys-
ical functions are fixed, deterministic and cannot be adaptively chosen by the
adversary [1,11,33,35]. This last condition is a necessary in all the practical cases
where the adversary has (stateless) reinitialization capabilities [35], whereas oth-
erwise the adversary could extract a “bit of secret information” in every iter-
ation by adaptively choosing the leakage function accordingly. Notice that no
constraints on the specific form of physical functions are set.

Hard-to-Invert Leakages. Early constructions in leakage-resilient cryptography
[9,28], imposed quantitative bounds on the amount of leaked information to



132 F. De Santis and S. Rass

show that, e.g., the output of a PRG is indistinguishable from a distribution
with high min-entropy even in presence of λ bit of information [9]. Unfortunately,
prior works did not spend many words on the practical interpretation of these
bounds. Yet understanding how to achieve such conditions by proper algorithm
and hardware design is hard to translate in practice. In this work, we achieve
leakage-resiliency by requiring that the composition of intermediate functions
and physical functions is hard-to-invert. So, we allow information leaking through
any one of the two functions, but not through both, so that no advantage is
obtained by the adversary from observing the composition only. We stress that,
no matter which abstraction level is chosen in the security analysis, we require
the composition of intermediate and physical functions to remain hard-to-invert.
Notice that hard-to-invert leakages were introduced in [8] without the explicit
decomposition given by our modeling. We believe that hardness of inversion and
the logical decomposition of leakages is one important conceptual contribution
and a necessary step towards closing the gap to practice.

(q, s)-Limited Gaussian Adversary. We limit the adversary to a bounded number
of noisy leakages s obtained from a bounded number of queries q to the crypto-
graphic device operating on the same secret [33,34]. This practically models an
attacker who can only (passively) monitor some varying (physical) property of
a cryptographic device over a side-channel (e.g., power consumption or electro-
magnetic (EM) field radiation), which is naturally affected by Gaussian measure-
ment noise (s practically quantifies the estimation effort necessary for properly
estimating the leakage distribution on a given input [32], that is, the adversary
may require more than one single observation to learn a certain leakage).

Global Adversary. Finally, we assume that the adversary obtains the leakages
associated to the entirety of data which are processed and not to any of its
subpart, that is, the leakage is a function of all the data which are active in a
transition step and the adversary is not able to tell them apart (e.g., observe
the leakages associated with the computation of just a few bits). This models
the vast majority of attackers who can observe the global activity of a crypto-
graphic device (e.g., the global power consumption of a cryptographic device),
but it does not include attackers that can observe the activity of small portions of
the circuitry, hence focusing only on the processing of small portions of the active
state (e.g., by the means of localized electro-magnetic field measurements [16]).

4 Security with Leakages

In this section, we take a step-by-step approach towards reaching a practically
useful property for leakages (hardness of inversion) that allows transferring theo-
retical security proofs down to implementations and aiding secure cryptographic
algorithm- and hardware-design. To this end, we give a series of “approaches”
that – in different ways – extend classical security notions by providing the
adversary with some additional leakage information, and could be made into
security definitions. We let each approach to be followed by arguments outlining



On Efficient Leakage-Resilient Pseudorandom Functions 133

its peculiarities. This line of arguments will eventually culminate in the definition
of hard-to-invert leakages (Definition 4).

Following the classical road to security, one would first aim at defining secu-
rity in a leakage model in its broadest acceptation as “indistinguishable compu-
tations despite leakages”, in the very same way as security in the standard model
can be rested on outputs indistinguishability. Since the leakage is a property of
physical cryptographic implementations, we think of an implementation as a pair
P = (Fk,Lk), where Fk is a PRF instance and Lk is the concatenation of the leak-
ages {�(fi)} produced by its execution. Informally, the concept “indistinguisha-
bility despite leakages” can be understood as: the output of a leakage-resilient
PRF looks like random even if the adversary has access to some leakage informa-
tion. This security definition is formally defined by Approach 1, which basically
updates the experiments ExpPRF-IND-b

A,P of Definition 2 as ExpLRPRF-IND-b
A,P by

including the leakage obtained via oracle calls to Lk in the profiling phase. It is
worth noting that no leakages can be actually generated in the response phase,
so to avoid trivial distinguishing in the decision phase based upon e.g., the iden-
tification of known plaintext/ciphertext values in the leakages as shown in [33].

Approach 1 (Indistinguishability despite Leakages). A function family
F is (q, s, τ, ε)-secure leakage-resilient PRF if an adversary A = (A1, A2) that
runs in time at most τ , given access to a physical implementation P = (Fk,Lk)
and allowed to make at most q queries to Fk and repeat at most s queries to Lk,
has advantage at most ε in distinguishing the output of Fk from random:

Adv(ExpLRPRF-IND
A,P ) :=

∣∣∣Pr(ExpLRPRF-IND-0
A,P = 1) − Pr(ExpLRPRF-IND-1

A,P = 1)
∣∣∣ < ε

This approach captures practically relevant side-channel attacks such as non-
profiled attacks [5,12]. However, this plain formulation does not cover profiled
side-channel attacks [6,30], as the adversary can only sample the leakages from
Lk (for a random unknown key k), but it can not perform a profiling phase of
the leakage distribution using a key of its choice k∗, that is, sampling from Lk∗

in the profiling phase of experiments. This issue could be solved by providing
the adversary with oracle access to the whole family of leakage functions L.
We observe that Approach 1 requires establishing the same implication that
yields semantic security of encryptions from ciphertext indistinguishability via
recycling standard hybrid arguments on the leakages (as available in [13]). In
other words, this approach, just as its counterpart without leakages, only states
that the leakages should not contain any information which enable distinguishing
pseudorandomness from true randomness.

A more recent and practical variation of “indistinguishability despite leak-
ages” has been recently proposed in [32]. Their work introduces the concept
of simulatable leakage, calling for a “simulator” that produces indistinguishable
leakages when provided with the same input-output values on different keys.
This concept models the practical case of adversaries who own identical copies
of the cryptographic device under attack and therefore have the opportunity
to get the leakages for different keys. This updated definition is formalized by



134 F. De Santis and S. Rass

Approach 2, where the experiments ExpLRPRF-SIM-b
A,P,SL update the previous exper-

iments ExpLRPRF-IND-b
A,P by considering the leakages produced by the simulator

during the profiling and decision phase (cf. [32, Sect. 2.1]).

Approach 2 (Simulatable Leakages). A function family F has (sS ,
τS , sA, τA, ε) q-simulatable leakages if there is a simulator S = (F,L) running
in time at most τs and making at most sS queries to the leakage function L,
yielding a distinguishing advantage at most ε for any adversary A running in
time at most τA and making no more than sA queries to L:

Adv(ExpLRPRF-SIM
A,S ) :=

∣∣∣Pr(ExpLRPRF-SIM-0
A,S = 1) − Pr(ExpLRPRF-SIM-1

A,S = 1)
∣∣∣ < ε

Interestingly, this setting is empirically verifiable by hardware designers
which can reproduce and anticipate the adversary working conditions during
the development of cryptographic devices by running “simulations” to verify the
side-channel security of their implementations. It is worth noting that this app-
roach demands indistinguishability against every efficient adversary, but only for
specific bounded simulators. Therefore, this approach actually poses the problem
of how to meaningfully instantiate good simulators to verify contingent security
claims for a cryptographic device.

Yet a more practical approach consists to consider generic key-recovery attacks
having additional access to the information obtained by physical observations of
a cryptographic device, as follows:

Approach 3 (Key-Recovery Attacks with Leakages). A function family
F is a (q, s, τ, ε)-secure PRF implementation if an adversary A running in time
at most τ , given access to a physical implementation P = (Fk,Lk) and allowed to
make at most q queries to P and to repeat at most s queries to Lk, has advantage
at most ε in recovering the secret k:

∣∣∣ Pr(k ← AP({x1, . . . , xq})) − Pr(k $← Uκ)
∣∣∣ ≤ ε.

This approach basically extends the black-box security model by considering
the success probability of generic key-recovery attacks exploiting the input-output
characteristic of Fk (black-box model) as well as the information associated to its
physical leakages Lk (leakage model). Similarly to before, this approach defines
security against generic non-profiled distinguishers A by stating that no informa-
tion about the key can be recovered either from the input-output characteristic of
Fk nor from its associated leakages Lk.

This leads us now to introduce the hardness of inversion property that estab-
lishes a formal relationship to the auxiliary leakage model of Dodis et al. [8]:

Definition 3 (Hardness of Inversion). We say that a function f is (τ, ε)-
hard to invert, if every algorithm A, of running time ≤ τ , on input of a value
y ∈ Range(f) satisfies

Pr[x′ ← A(y) : y = f(x′)] < ε.



On Efficient Leakage-Resilient Pseudorandom Functions 135

For rigor, we provide now the following lemma stating that, given two func-
tions f and g, the hardness to invert either of f or g implies difficulties in the
inversion of their composition f(g(·)):
Lemma 1. Let f be (τ1, ε1)-hard to invert, and let g be (τ2, ε2)-hard to invert.
Furthermore, let f, g both be computable in time no more than μ. Then the
composition h(x) := f(g(x)) is (τ − μ, ε)-hard to invert, where τ = min {τ1, τ2}
and ε = max {ε1, ε2}.
Proof. Assume the opposite, i.e., let there be an algorithm A that runs in time
< τ − μ, having success-rate of p > ε = max {ε1, ε2} to output a pre-image x to
a given image h = h(x) = f(g(x)). A preimage to f is obtained by computing
a guess x = g(A(x)) in time < τ − μ + μ = τ , which with probability p > ε
corresponds to a pre-image y that satisfies f(y) = h for given h. Hence, we
can invert f in time τ < τ1 with probability > ε. It remains to show that g
must as well be easy to invert: to this end, let y be given, compute h = f(y)
in time μ and run A(h) to obtain a value x in total time τ − μ + μ = τ < τ2.
By construction, with probability p > ε, the pre-image x satisfies g(x) = y, as
f(g(x)) = f(y) = h, and the inversion of g is again easy. �

Lemma 1 lead us to conclude that, given a cryptographically secure primitive
(in a mathematical sense), we can achieve leakage resiliency in our considered
leakage model if either one between the physical functions or the intermediate
algorithmic functions, or the combination thereof, is hard-to-invert. We capture
this security notion by the following definition:

Definition 4 (Hard-to-Invert Leakages). A function family F has (s, q, τ, ε)-
hard-to-invert leakages if any adversary A running in time at most τ , given
access to a physical implementation P = (Fk,Lk) and allowed to make q queries
to Fk, repeat at most s queries to Lk, has advantage at most ε in inverting the
leakages:

Pr[k ← AP({y1, . . . , yq}) : {yi = Lk(xi)}q
i=1] < ε.

Definition 4 provides a simple, clear and sufficient criterion to side-channel secu-
rity by stating that the composition of intermediate and physical functions must
be hart-to-invert to achieve security in presence of leakages. We put forward that,
despite many achievements in the field of secure layout and logic style design,
designing secure physical functions basically reduces to the design of constant
switching logic styles and some more ad-hoc layout protections to secure the
chip die. These solutions are typically unsatisfactory as they are error-prone
and too expensive to realize. Furthermore, the task of designing hard-to-invert
physical functions belongs completely to the engineering domain and therefore
out-of-scope in the context of (leakage-resilient) cryptography, whereas interme-
diate functions should be considered indeed. This fact directly translates into
committing cryptographers and hardware designers to the task of designing and
implementing cryptographic algorithmic, whose intermediate states remain hard-
to-invert in our (realistic) leakage model. In this way, we (possibly) relieve phys-
ical designers from the complex task of designing hard to invert circuits and



136 F. De Santis and S. Rass

allow for the fabrication of cryptographic device using standard cell libraries
and layout rules without affecting the final physical security. In other words,
although standard fabrication processes might lead to simple physical functions
(such as the Hamming- weight or distance), the resistance to physical attacks is
preserved as long as their combination with algorithmic functions yield hard-to-
invert leakages by careful design and implementation of intermediate functions
and hardware architectures.

5 Efficient Pseudorandom Functions

Having defined the leakage model and our approach to side-channel security
(Definition 4), let us illustrate how we can work with it, using the efficient
GGM construction as our showcase. For the sake of self-containment, we use the
next paragraphs to refresh the reader’s memory about GGM-trees for pseudo-
random functions.

In practice, GGM-trees PRFs can be instantiated from any length doubling
PRG using the binary tree construction [14] or the more efficient b-ary tree con-
struction [33], as formalized by Definition 5. The interest for efficient pseudo-
random function constructions lies in the reduced number of PRG evaluations
which reduces the computational burden down to more practicable levels (m/b
evaluations on the b-ary tree as opposed to m evaluations of the original binary
tree construction).

Definition 5 (Efficient GGM-tree PRF). Let κ be a security parameter and
G : {0, 1}κ → {0, 1}2bκ be a (2bκ, τ, ε)-secure PRG. Let gj(x) denote the (j +1)th

κ-bit block of G(x) for j = 0, . . . , 2b − 1, and fix a positive constant m ∈ N.
Let x ∈ {0, 1}m be an input message, partitioned into b-bit blocks x1, . . . , xn

(m = nb) and k ∈ {0, 1}κ a secret value. A PRF F : {0, 1}κ × {0, 1}m → {0, 1}κ

is constructed as follows, using the efficient GGM:
⎧
⎨

⎩

y0 = k [Initialization]
yi = gxi

(yi−1) i = 1, . . . , n [Iteration]
Fk(x) := yn [Output]

(3)

5.1 Concrete Security Analysis

In this section, we define the concrete security of efficient GGM constructions
in terms of time complexity τ and data complexity q, but without considering
any leakage information yet. The purpose of this analysis is to formalize the
security versus performance trade-off as a function of the efficiency parameter b
and input size m in a theoretical setting.

We partition the output of the PRG G : {0, 1}κ → {0, 1}2bκ into 2b blocks.
This defines 2b functions g1, . . . , g2b : {0, 1}κ → {0, 1}κ, so that G(x) = g1(x)‖
g2(x)‖ . . . ‖g2b(x), where ‖ denotes the string concatenation (or more gener-
ally, any encoding from which the individual parts can be extracted uniquely



On Efficient Leakage-Resilient Pseudorandom Functions 137

and efficiently). We claim that if G is a (2bκ, ε, τ)-secure PRG, then F is a
(q, τ − q · tPRF,m/bε)-secure PRF, when constructed according to the efficient
GGM construction of Definition 5. Hence, the security of F can be traded for
performance by convenient tuning of its input size m and the efficiency parame-
ter b, being the adversary’s advantage actually regulated by the ratio m/b.

Definition 6. Let δAτ (X,Y ) denote the advantage of an adversary A running in
time at most τ in distinguishing X from Y as:

δAτ (X,Y ) := |Pr[x $← X : A(x) = 1] − Pr[y $← Y : A(y) = 1]|.
The computational distance is defined as

δτ (X, Y ) := max
A

δAτ (X, Y ) = max
A

∣∣∣Pr[x
$← X : A(x) = 1] − Pr[y

$← Y : A(y) = 1]
∣∣∣

Lemma 2. Let G : {0, 1}κ → {0, 1}2bκ be an (2bκ, τ, ε)-secure PRG, and let
gi(x) denote the (i + 1)th κ-bit block of the output G(x). Then each gi satisfies

δτ (gi(Uκ),Uκ) ≤ ε.

Proof. Assume the opposite, i.e., for some 1 ≤ i ≤ 2b there is an algorithm A
for which δAτ (gi(Uκ),Uκ)) > ε. From A, we can construct an algorithm A′ that
distinguishes G(Uκ) from U2bκ, by extracting the i-th b-bit block from its input
(either G(Uκ) or U2bκ), feeding it into A′ and outputting whatever A computes.
Observe that extracting the same i-th b-bit block from U2bκ yields another uni-
formly distributed random variable Uκ. So, by construction, δA

′
τ (G(Uκ),U2bκ) =

δAτ (gi(Uκ),Uκ) > ε, thus contradicting the (2bκ, τ, ε)-security of G. �

Proposition 1 (Concrete Security of Efficient GGM-tree PRF). If G :
{0, 1}κ → {0, 1}2bκ is a (2bκ, τ, ε)-secure PRG, then F : {0, 1}κ × {0, 1}nb →
{0, 1}κ, constructed according to the efficient GGM-tree construction, is a (q, τ −
q · tPRF,mε/b)-secure PRF, where tPRF is the (constant) time to evaluate any
member of the PRF family F induced by the efficient GGM-tree construction.

Proof By the hypothesis and Lemma 2, we have

δτ (gxi
(Uκ),Uκ) ≤ ε (4)

for i = 1, 2, . . . , 2b. Since F(k, x) = gxn
(gxn−1(· · · gx2(gx1(k)) · · · )), we can repeat-

edly apply (4) n = m/b times to infer that

δτ (F(Uκ, x),Uκ) ≤ m

b
ε for all x. (5)

Suppose towards a contradiction that F would not be a (q, τ −q · tPRF,mε/b)-
secure PRF, i.e., there are (adaptively chosen) values x∗

1, x
∗
2, . . . , x

∗
q , x

∗
q+1 and an

algorithm A2 with the property that
∣∣Pr(A2(x∗

q+1,F(k, x∗
q+1), I

∗) = 1) − Pr(A2(x∗
q+1,Uκ, I∗) = 1)

∣∣ >
m

b
ε,



138 F. De Santis and S. Rass

where I∗ := {(x∗
i , F (k, x∗

i ))|i = 1, 2, . . . , q}. We define an algorithm A′
2(z) :=

A2(x∗
q+1, z, I∗). The complexity of A′

2 is τ , since it first recovers I∗ by q evalua-
tions of Fk = F(k, ·), each in tPRF steps, and finally invokes A2 in time τ −q ·tPRF.
By construction, we have

∣∣Pr(A′
2(F(k, x∗

q+1)) = 1) − Pr(A′
2(Uκ) = 1)

∣∣ >
m

b
ε,

and therefore1 also

δτ (F(Uκ, x∗
q+1),Uκ) = max

A
δAτ (F(Uκ, x∗

q+1),Uκ)

= max
A

∣∣Pr(A(F(Uκ, x∗
q+1)) = 1) − Pr(A(Uκ) = 1)

∣∣

≥ ∣∣Pr(A′
2(F(Uκ, x∗

q+1)) = 1) − Pr(A′
2(Uκ) = 1)

∣∣ >
m

b
ε,

thus contradicting (5). �

5.2 Theoretical Analysis with Hard-to-Invert Leakages

In this section, we extend the security assertion of Proposition 1 to security
under hard-to-invert compositions of leakages and algorithmic functions in the
sense of Lemma 1 and Definition 3.

Similarly to [10], every algorithmic step in the analysis corresponds to a
PRG invocation, so that the intermediate functions fi correspond to the functions
gi, as defined in Lemma 2. Assuming that the leakages draws information at the
point where some secret goes into the transformation (input leakage), and at the
point where the information is used in the algorithm (output leakage), the total
leakage for a efficient GGM construction upon the input x = x1‖x2‖ · · · ‖xn and
the secret key k specializes to {�(fi−1(x, k), fi(x, k)) = �(ki−1, gxi

(ki))} for all
i = 1, 2, . . . , n. Therefore, as per Definition 5, the evaluation of a PRF Fk with
leakage Lk amounts to the following chain:

[k0 = k] → [k1 = gx1(k0)] → [k2 = gx2(k1)] → · · · → [gxn
(kn−1) = Fk(x)]

� � �

�(k0, gx1(k0)) �(k1, gx2(k1)) · · · �(kn−1, gxn
(kn−1))

(6)

Next, we demonstrate that the proof of [33, Theorem 2] remains valid under
the even weaker condition of hardness of inversion (which implies Standaert
et al.’s symmetric seed-preserving condition). This is especially interesting as
hardness of inversion, unlike symmetric seed-preservation, is not limited to the
particular application to 2PRGs and can be applied to general transformations
like 2bPRGs to deduce security. This generalization is enabled by the observation
that 2bPRGs do not actually compute the fully stretched 2bκ-bit output when
1 Note that the computational distance satisfies the triangle inequality, i.e., δτ (X, Y ) ≤

δτ (X, Z) + δτ (Z, Y ).



On Efficient Leakage-Resilient Pseudorandom Functions 139

plugged into the GGM-tree PRF, rather they only compute the κ-bit output
necessary for the next iteration. Hence, there is no leakage occurring on the
(2b − 1)κ-bit portion of the output which is not either computed or given to the
adversary.

Proposition 2 (Leakage Resilience of Efficient GGM-tree PRF). A PRF
constructed upon a (2bκ, τ, ε/(p ·(n+1)))-secure 2bPRG according to the efficient
GGM-tree construction (m = nb) and having (τ +(q+1) · tPRF , ε/(2bp ·(n+1)))-
hard-to-invert leakages is a (q, s, τ, ε)-secure efficient leakage-resilient PRF in
the following sense: an adversary A2bPRG = (A1, A2) that runs in time at most
τ , given access to a physical implementation P = (Fk,Lk) and an (additional)
access to 2bPRG and allowed to make at most q queries to Fk, repeat at most s
queries to Lk and make at most p queries to 2bPRG, has advantage at most ε in
distinguishing the output of Fk from random:

Adv(ExpLRPRF-IND

A2bPRG,P ) :=
∣∣∣Pr(ExpLRPRF-IND-0

A2bPRG,P = 1) − Pr(ExpLRPRF-IND-1

A2bPRG,P = 1)
∣∣∣ < ε

Our proof partially works along analogous lines as the proof of Theorem 2
in [33], by showing that upon a given set of q independent instances of the
form �(ki−1, gxi

(ki−1)), where the challenge is to recover ki, an attacker with
significant advantage in ExpLRPRF-IND

A2bPRG,P could invert at least one of the given
instances with significant probability > ε/(2bp(n + 1)). Please note that differ-
ently from [33]: (1) our proof rests on the hardness of inversion2, instead of the
stronger symmetric seed-preserving definition, (2) it is valid for the more generic
case of 2bPRGs, rather than for the specific case of 2PRG only and (3) our argu-
ment is concrete rather than asymptotic.

Proof. By construction, the outcome of ExpLRPRF-IND-0
A2bPRG,P is the output of A2

(when A2bPRG,P = (A1, A2)) with the first q adaptive queries to (Fk,Lk), and
the (q + 1)th query to Fk alone. Let us denote this fact by A

(Fk,Lk)[1:q],(Fk,∅)
2 .

The random function R is constructed using the same chain structure as (6),
except that all values ki are chosen independently and uniformly at random.
The output of R is the last random value kn

$← Uκ. By the triangle inequality,
we have

Adv(ExpLRPRF-IND
A2bPRG,P ) =

∣∣∣Pr[A(Fk,Lk)[1:q],(Fk,∅)
2 = 1] − Pr[A(Fk,Lk)[1:q],(R,∅)

2 = 1]
∣∣∣

≤
∣∣∣Pr[A(Fk,Lk)[1:q],(Fk,∅)

2 = 1] − Pr[A(R,LR)[1:q],(R,∅)
2 = 1]

∣∣∣

+
∣∣∣Pr[A(R,LR)[1:q],(R,∅)

2 = 1] − Pr[A(Fk,Lk)[1:q],(R,∅)
2 = 1]

∣∣∣

≤
∣∣∣Pr[A(Fk,Lk)[1:q+1]

2 = 1] − Pr[A(R,LR)[1:q+1]
2 = 1]

∣∣∣

+
∣∣∣Pr[A(R,LR)[1:q]

2 = 1] − Pr[A(Fk,Lk)[1:q]
2 = 1]

∣∣∣ ,

2 Our proof exclusively uses the compositions of intermediate and physical functions
in their arguments. Hence by Lemma 1, we are safe to assume at least one of them
is hard to invert.



140 F. De Santis and S. Rass

so, we can reduce the problem to show the indistinguishability between (Fk,Lk)
and (R,LR). Towards a contradiction, assume that there were an attackerA2bPRG,P

with oracle (physical) access to the 2bPRG, who queries the pseudorandom gen-
erator at most p times and his (Fk,Lk)-oracle no more than q times, and over a
maximal running time of τ has an advantage of

Adv(ExpLRPRF-IND
A2bPRG,P ) > ε (7)

in distinguishing the PRF output in ExpLRPRF-IND
A2bPRG,P from random, by taking

advantage from the leakages. From such an attacker, we will construct an algo-
rithm that extracts the unknown ki−1 from at least one out of a system of q
equations of the form yi = �(ki−1, gxi

(ki−1)) for some x. We consider hybrids
(H0, L0), . . . , (Hn, Ln), where each pair (Hj , Lj) is constructed using the chain

(6) in ExpLRPRF-IND-0
A2bPRG,P , with random intermediate values ki

$← Uκ for i < j, and
the remaining intermediate values kj are computed by invocations of 2bPRG,
whenever Fk is evaluated in the experiment. We set Hj as the final output Fk,
and Lj is the collection of all leakages (formerly denoted as Lk) along the (so-
modified) computation of Fk, including those obtained from the q queries during
the learning phase. It is easy to see that (H0, L0) equals (Fk,Lk) and (Hn, Ln)
equals (R,LR). Notice that (7) implies that there must be at least one pair of
consecutive hybrids (Hj , Lj), (Hj+1, Lj+1) that A2bPRG,P can distinguish with an
advantage of at least > ε/(n + 1), for otherwise, we would have a total advan-
tage of ≤ ε, contradicting (7). Call

{
k′
1, k

′
2, . . . , k

′
p

}
the intermediate values that

A2bPRG,P obtains internally over its computation with at most p invocations of
its oracle. Call Lk(x) = {�(ki−1, gxi

(ki−1))}n
i=1 the entirety of leakages harvested

from the computation of Fk(x). Assume that, given Lk, none of A2bPRG,P’s interim
results would match any intermediate value the real computation of Fk, i.e.,

{
k′
1, k

′
2, . . . , k

′
p

} ∩ {k0, k1, . . . , kn} = ∅. (8)

Then, every of the p invocations of 2bPRG on the values k′
1, k

′
2, . . . , k

′
p (note that

there are no other values to which A2bPRG,P could query 2bPRG on) is indistin-
guishable from random (by the security of the 2bPRG and Lemma 2), thus giving
an advantage of no more than δ = ε/(p · (n+1)) over a computation that would
not use this helping oracle. Moreover, we stress that (Hj , Lj) and (Hj+1, Lj+1)
are identically distributed for anyone without access to 2bPRG. Hence, any such
algorithm would have zero advantage. However, we could replace A2bPRG,P by
another algorithm A′ that avoids oracle-access to 2bPRG by using random val-
ues wherever A2bPRG,P would invoke 2bPRG, and whose advantage differs from
that of A2bPRG,P by a magnitude of no more than p · δ, thus implying that the
advantage of A2bPRG,P is less than p · δ = pε/(p(n + 1)) = ε/(n + 1), which is
a contradiction to the ε/(n + 1) advantage implied by (7). Hence, (8) cannot
hold, and A2bPRG,P must obtain its ε/(n + 1) advantage by the ability of invert-
ing at least one of the leakage values along the chain. In that case, it simply



On Efficient Leakage-Resilient Pseudorandom Functions 141

completes the chain by completing the computation of Fk and verifies whether
or not the outcome corresponds to Hj . Now, given q independent instances
yi = �(ki−1, gxi

(ki−1)) for i = 1, 2, . . . , q, with the challenge to recover ki, an
inversion algorithm Inv that solves one of these instances can be constructed
as follows from (Hj , Lj), (Hj+1, Lj+1) and A2bPRG,P: notice that (Hj , Lj) and
(Hj+1, Lj+1) differ only at the j-th position, where we have

(H
j
,
L

j
)

⎧
⎪⎪⎨
⎪⎪⎩

[r0
$← Uκ] → · · · → [kj = gxj

(rj−1)] → [kj+1 = gxj+1
(kj)] → · · · → [gxn (kn−1) = Fk(x)]

� � �

�(rj−1, gxj
(rj−1)) �(kj, gxj+1

(kj)) · · · �(kn−1, gxn (kn−1))

(H
j
+

1
,
L

j
+

1
)

⎧
⎪⎪⎨
⎪⎪⎩

[r0
$← Uκ] → · · · → [kj = gxj

(rj−1)] → [kj+1 = gxj+1
(rj)] → · · · → [gxn (kn−1) = Fk(x)]

� � �

�(rj−1, gxj
(rj−1)) �(rj, gxj+1

(rj)) · · · �(kn−1, gxn (kn−1))

The inversion algorithm Inv simulates the hybrids in time ≤ (q + 1) · tPRF ,
and in each of the q + 1 rounds (taking ≤ n executions of 2bPRG) within
the experiment ExpLRPRF-IND

A2bPRG,P , and puts another of the input instances yi =
�(ki−1, gxi

(ki−1)) (for i = 1, 2, . . . , q) in place of the j-th leakage yj in both, Hj

and Hj+1, giving the modified hybrids for a replacement yj ← yi (the i-th input
to Inv) among q input instances,

(H
j
,
L

′j
)

⎧
⎪⎪⎨
⎪⎪⎩

[r0
$← Uκ] → · · · → [kj = gxj

(rj−1)] → [kj+1 = gxj+1
(kj)] → · · · → [gxn (kn−1) = Fk(x)]

� �

�(rj−1, gxj
(rj−1)) yi · · · �(kn−1, gxn (kn−1))

(H
j
+

1
,
L

′j
+

1
)

⎧⎪⎪⎨
⎪⎪⎩

[r0
$← Uκ] → · · · → [kj = gxj

(rj−1)] → [kj+1 = gxj+1
(rj)] → · · · → [gxn (kn−1) = Fk(x)]

� �

�(rj−1, gxj
(rj−1)) yi · · · �(kn−1, gxn (kn−1))

Notice that replacing �(rj , gxj+1(rj)) by an input instance yi = �(ki−1, gxi
(ki−1))

is possible, if xj+1 exactly selects the given gxi
(happens with probability Pr{0,1}b

[xj+1 = xi] = 2−b), and that this substitution does not change the distribution
of (Hj , Lj), (Hj+1, Lj+1), as we could equivalently and coincidentally have cho-
sen rj = ki−1 as the pre-image to the leakage in first place already. Now, Inv
asks A2bPRG,P to distinguish (Hj+1, L

′
j+1) from (Hj , L

′
j), which by construction

succeeds with probability > ε/(n + 1) in time τ + (q + 1) · tPRF (considering
the additional effort for simulation of the hybrids), and in the course of which
at least one of the leakages must have been inverted along no more than p
queries to 2bPRG (as argued above). The algorithm Inv then simply records all
queries submitted by A2PRG,P, and returns a randomly chosen one as the final
output. Hence, the overall probability for a particular input �(ki, gxi+1(ki)) to
have become inverted then comes to ≥ ε/(2b · p · (n + 1)), which contradicts the
assumed hardness of inversion. �



142 F. De Santis and S. Rass

5.3 Hardware Implementations with Super-Exponential Leakages

In this section, we recap the cryptographic and implementation criteria of efficient
pseudorandom functions with the aim of illustrating how hardness of inversion can
be preserved at implementation level by careful design choices (we refer to [3,21]
for concrete hardware implementations and side-channel analysis). To this end,
we consider block-ciphers efficient GGMbased PRFimplementations [3,28,32,33].
This particular choice turns aPRF into a block-cipher mode of operation which can
be seen as the traversal of the GGM b-ary tree construction, as formally described
in Definition 7. Note that in general a PRFwould map into {0, 1}n for some fixed n,
which we set equal to the security parameter κ in our treatment. This is especially
convenient in cases where the PRF is constructed from block-ciphers in the form
BC : {0, 1}κ × {0, 1}κ → {0, 1}κ as they allow for more regular hardware design.

Definition 7 (Block-cipher based GGM-tree PRF). Let κ be a security para-
meter and BC : {0, 1}κ × {0, 1}κ → {0, 1}κ be a SP-based block-cipher with b-bit
S-boxes. Let x ∈ {0, 1}m be an input message, partitioned into b-bit blocks x1, . . . , xn

(m = nb) and k ∈ {0, 1}κ a secret value. A PRF F : {0, 1}κ × {0, 1}m → {0, 1}κ is
constructed as follows, using the efficient GGM-tree construction:

⎧
⎨

⎩

y0 = k [Initialization]
yi = BCyi−1(x1

i ||x2
i ||...||xκ/b

i ) i = 1, . . . , n [Iteration]
Fk(x) := yn [Output]

(9)

It is easy to see that the hardness of inversion to some extent relies on (implies)
high complexity: given that a function fi is bijective and deterministic, it is neces-
sary for fi to have a large image (or, equivalently pre-image) space, so as to avoid
brute-force pre-image search. For example, if the pre-image space has a cardinal-
ity that is polynomial in the security parameter, then a plain search by trial-and-
error will – in polynomial time – dig up a pre-image. This requirement practically
translates into demanding large intermediate values, say κ = 128, as well as large
datapath in the corresponding hardware architecture (ideally, this is steered by κ
as well). Indeed, it is easy to verify that serialized hardware architectures, which
only process a small amount of data at a time (say, 8-bit), would lead to easy
invertible computations in the initial and final computations, if no additional resis-
tance is ensured by hard-to-invert physical functions. On the other side, it can be
noted that the requirement of having a large image alone is still insufficient to
achieve hardness of inversion in practice. Namely, if the intermediate functions
fi : {0, 1}κ × {0, 1}κ → {0, 1}κ can be viewed as the concatenation of smaller
(independent) functions, then the adversary can address those individual parts
independently and break the “large image” requirement. This is practically the
case of standard SP-based block-ciphers when e.g., the initial or the final state are
processed by small-size independent additions and S-box functions. In this case,
the adversary can take a divide-and-conquer approach and would require only a
slightly increased effort to get rid of the so called algorithmic noise induced by the
excluded functions [18]. However, the implementation of leakage-resilient PRF, as



On Efficient Leakage-Resilient Pseudorandom Functions 143

provided in Definition 7, ensures the dependency of such functions by splitting
the inputs into words of size b, which are then replicated to fit the block cipher
input length κ. This careful choice of the inputs (which limits the data complexity
to 2b by construction) together with our realistic modeling assumptions given in
Sect. 3 lead now to super-exponential leakages for the adversary. Indeed, in the
worst case, the adversary has to enumerate all the (κ/b)! permutations of κ/b
keywords to fully recover the secret state back, once the κ/b individual keywords
are (in the best case) successfully recovered by classical divide-and-conquer side-
channel means [21].

6 Conclusion

In this work, we made an attempt to provide a constructive critique to secure
hardware design aimed at bridging the gap between theoretical leakage-resilient
constructions and practical side-channel resistant implementations of efficient
GGM-tree PRFs. We put forward how hard-to-invert leakages can provide a unified
approach to embrace security in presence of leakages from both theoretical
and practical sides. In fact, if from one side it has been often observed that stan-
dard cell libraries and layout rules typically lead to physical functions with very
limited complexity, like the Hamming-weight or the Hamming-distance, on the
other side, it seems natural to focus the attention on the design and implemen-
tation of algorithmic steps to achieve hard-to-invert leakages. This fact outlines
how theoreticians, cryptographers and hardware designers can collaborate at dif-
ferent levels of abstraction, but on a common ground with clearly defined goals, to
devise leakage-resilient constructions, cryptographic algorithms and implementa-
tion criteria to ultimately build physically secure cryptographic devices.

Acknowledgment. The authors would like to thank the reviewers for the constructive
and helpful comments.

References

1. Abdalla, M., Beläıd, S., Fouque, P.-A.: Leakage-resilient symmetric encryption via
re-keying. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp.
471–488. Springer, Heidelberg (2013)

2. Abdalla, M., Bellare, M.: Increasing the lifetime of a key: a comparative analysis
of the security of re-keying techniques. In: Okamoto, T. (ed.) ASIACRYPT 2000.
LNCS, vol. 1976, p. 546. Springer, Heidelberg (2000)

3. Belaid, S., De Santis, F., Heyszl, J., Mangard, S., Medwed, M., Schmidt, J.M.,
Standaert, F.X., Tillich, S.: Towards fresh re-keying with leakage-resilient PRFs:
cipher design principles and analysis. J. Cryptogr. Eng. 4, 1–15 (2014)

4. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: Proceedings of the 38th Annual Symposium on Founda-
tions of Computer Science, p. 394. FOCS, IEEE Computer Society, Washington,
DC, USA (1997)



144 F. De Santis and S. Rass

5. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

6. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, Ç.K.,
Paar, C. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2002.
LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003)

7. Coron, J.-S., Goubin, L.: On boolean and arithmetic masking against differential
power analysis. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, p. 231.
Springer, Heidelberg (2000)

8. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: Pro-
ceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 621–
630. STOC 2009. ACM, New York, NY, USA (2009)

9. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2008, pp. 293–302.
IEEE Computer Society, Philadelphia, PA, USA (2008)

10. Faust, S., Pietrzak, K., Schipper, J.: Practical leakage-resilient symmetric cryptog-
raphy. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 213–
232. Springer, Heidelberg (2012)

11. Faust, S., Pietrzak, K., Schipper, J.: Practical leakage-resilient symmetric cryptog-
raphy. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 213–
232. Springer, Heidelberg (2012)

12. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

13. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, New York (2004)

14. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

15. Goubin, L.: A sound method for switching between boolean and arithmetic masking.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, p. 3.
Springer, Heidelberg (2001)

16. Heyszl, J., Mangard, S., Heinz, B., Stumpf, F., Sigl, G.: Localized electromagnetic
analysis of cryptographic implementations. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 231–244. Springer, Heidelberg (2012)

17. Kirschbaum, M.: Power analysis resistant logic styles - design, implementation, and
evaluation. Ph.D. thesis (2011)

18. Mangard, S.: Hardware countermeasures against DPA – a statistical analysis of their
effectiveness. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 222–235.
Springer, Heidelberg (2004)

19. Mangard, S., Oswald, M.E., Popp, T.: Power Analysis Attacks - Revealing the
Secrets of Smart Cards. Springer, Heidelberg (2007)

20. Medwed, M., Standaert, F.-X., Großschädl, J., Regazzoni, F.: Fresh re-keying: secu-
rity against side-channel and fault attacks for low-cost devices. In: Bernstein, D.J.,
Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 279–296. Springer,
Heidelberg (2010)

21. Medwed, M., Standaert, F.-X., Joux, A.: Towards super-exponential side-channel
security with efficient leakage-resilient PRFs. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 193–212. Springer, Heidelberg (2012)

22. Messerges, T.S.: Using second-order power analysis to attack DPA resistant soft-
ware. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, p. 238. Springer,
Heidelberg (2000)



On Efficient Leakage-Resilient Pseudorandom Functions 145

23. Messerges, T.S.: Securing the AES finalists against power analysis attacks. In:
Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, p. 150. Springer, Heidelberg (2001)

24. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

25. Moradi, A., Kirschbaum, M., Eisenbarth, T., Paar, C.: Masked dual-rail precharge
logic encounters state-of-the-art power analysis methods. IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 20, 1578–1589 (2012)

26. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of non-linear
functions in the presence of glitches. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008.
LNCS, vol. 5461, pp. 218–234. Springer, Heidelberg (2009)

27. Peeters, E., Standaert, F.-X., Donckers, N., Quisquater, J.-J.: Improved higher-
order side-channel attacks with FPGA experiments. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 309–323. Springer, Heidelberg (2005)

28. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)

29. Popp, T., Kirschbaum, M., Zefferer, T., Mangard, S.: Evaluation of the masked logic
style MDPL on a prototype chip. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 81–94. Springer, Heidelberg (2007)

30. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–
46. Springer, Heidelberg (2005)

31. Standaert, F.-X.: How leaky is an extractor? In: Abdalla, M., Barreto, P.S.L.M.
(eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 294–304. Springer, Heidelberg
(2010)

32. Standaert, F.-X., Pereira, O., Yu, Y.: Leakage-resilient symmetric cryptogra-
phy under empirically verifiable assumptions. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 335–352. Springer, Heidelberg (2013)

33. Standaert, F.X., Pereira, O., Yu, Y., Quisquater, J.J., Yung, M., Oswald, E.:
Leakage resilient cryptography in practice. In: Sadeghi, A.R., Naccache, D. (eds.)
Towards Hardware-Intrinsic Security. Information Security and Cryptography, pp.
99–134. Springer, Heidelberg (2010)

34. Vaudenay, S.: Decorrelation: a theory for block cipher security. J. Cryptol. 16(4),
249–286 (2003)

35. Yu, Y., Standaert, F.X., Pereira, O., Yung, M.: Practical leakage-resilient pseudo-
random generators. In: Proceedings of the 17th ACM Conference on Computer
and Communications Security, CCS 2010, pp. 141–151. ACM, New York, NY, USA
(2010)



RSA and Elliptic Curve
Least Significant Bit Security

Dionathan Nakamura and Routo Terada(B)

Computer Science Department, University of São Paulo, São Paulo, Brazil
{nakamura,rt}@ime.usp.br

Abstract. The security of the least significant bit (LSB) of the secret key
in the Elliptic Curve Diffie-Hellman protocol (and of the message in the
RSA) is related to the security of the whole key (and of the whole message,
respectively). Algorithms to invert these cryptographic algorithms, mak-
ing use of oracles that predict the LSB, have been published. We imple-
ment two of these algorithms, identify critical parameters, and modify the
sampling to achieve a significant improvement in running times.

Keywords: RSA · Elliptic curve · Diffie-Hellman · Least significant
bit · Oracle · Integer factorization · Discrete log problem

1 Introduction

Cryptographic algorithms are based on some computational problems that are
considered to be hard, i.e., there is no known polynomial algorithm to solve them.
For example, the Discrete Logarithm Problem (DLP) and the Integer Factor-
ization Problem (IFP). The relation among cryptographic algorithms and their
problems are frequent subjects of research, such as the security levels between
two algorithms and their related problems.

In cryptography there is a constant need for pseudo-random number gen-
erators, and many efforts have been made to ensure that these pseudo-random
number generators (PRNGs) are cryptographically secure.

Cryptographic algorithms and their corresponding problems are related to
cryptographically secure pseudo-random number generators [5]. We can mention
the Blum, Blum, Shub [4] pseudo-random number generator as an example of a
cryptographically secure PRNG based on the Rabin encryption [20]. It iteratively
uses several Rabin encryptions and uses the LSB of each encryption to com-
pose the generated number. A similar PRNG based on RSA [21] is described in
[19, Algorithm 5.35].

Many interesting studies relate the security of cryptographic schemes with
the bits of the secret key, or with the bits of the ciphertext, especially with the
LSB [1,3,6,7,11,13–16,22].

D. Nakamura—Partially funded by Coordenadoria de Aperfeiçoamento de Pessoal
de Nı́vel Superior (CAPES).
R. Terada—Partially funded by Fundação de Amparo à Pesquisa (FAPESP) grant
2011/50761-2.

c© Springer International Publishing Switzerland 2015
D.F. Aranha and A. Menezes (Eds.): LATINCRYPT 2014, LNCS 8895, pp. 146–161, 2015.
DOI: 10.1007/978-3-319-16295-9 8



RSA and Elliptic Curve Least Significant Bit Security 147

These studies analyze the RSA scheme and the elliptic curve Diffie-Hellman
(ECDH) scheme [12]. For RSA the interest is in the plaintext LSB, and for ECDH
the interest is in the exchanged private key LSB. Since RSA and Rabin schemes
are very similar, their studies are conducted almost interchangeably. To verify the
LSB security is equivalent to verifying the security of pseudo-random numbers
generated by the previously mentioned PRNGs.

Alexi et al. [1] showed it is possible to invert RSA using an LSB oracle with
probability (1/2 + ε), such that ε > 0 is small, but non-negligible. This paper is
referred to as ACGS.

Boneh et al. [6] showed the LSB of the exchanged point’s abscissa is unpre-
dictable, i.e., the existence of an LSB oracle would imply breaking ECDH. This
paper is referred to as BS.

Fischlin et al. [13] showed how the running times of those algorithms can
be very high, sometimes even exceeding the brute force complexity. This fact
motivated this paper. The published papers on this subject take a theoretical
approach, so the behaviour in software implementations and experiments was the
goal to achieve. Despite the fact that their algorithms showed a theoretical con-
vergence, our goal was to verify if they still converged with our existing PRNG,
and also to verify if the running times were reasonable, even with restricted
computational resources.

We implement ACGS for the RSA and BS for ECDH. During the implemen-
tations we identified the parameters that significantly impact the running times.,
and found where the errors were overestimated in previous papers. The number
of oracle queries and running times were minimized.

The main contributions of this paper are:

– An implementation of the RSA LSB attack;
– An implementation of the ECDH LSB attack;
– Identification of the most relevant parameters for the running time;
– A reduction of the parity function bound;
– A significant reduction in the number of oracle queries;
– ACGS became faster than IFP for practical values.

We verified empirically that, if an adversary has access to an LSB oracle,there
is an imbalance between the running times of the RSA LSB and ECDH LSB
attacks. We give evidences of how large this imbalance is in Sect. 4. For example,
given access to an LSB oracle, to invert RSA-1024 with the implementations in
this work, 138.4 × 103 years (see Table 3) are needed, while to invert ECC-160,
80 × 106 years are needed (see Table 5).

Theoretical analysis given in previous published papers compare security
levels of RSA and ECC, but without an LSB oracle. For example, Bos et al. [8]
compare RSA-1024 and ECC-160 and Lenstra et al. [18] compare RSA-1825 and
ECC-160.

Paper Organization. In Sect. 2 we present preliminary concepts. In Sect. 3 we
describe the algorithms and the techniques for their implementations. Our results
are shown and explained in Sect. 4. In Sect. 5 we present concluding remarks and
suggestions for future research.



148 D. Nakamura and R. Terada

2 Preliminaries

We consider elliptic curves E over a finite field F of prime characteristic char(F) =
p, p �= 2, p �= 3, where p is relatively large. We represent an elliptic curve E/F
in the form of a simplified Weierstrass equation E : y2 = x3 + ax + b, where
a, b ∈ F, ∞ is the point at infinity, and the discriminant Δ = 4a3 + 27b2 �= 0.

Suppose we have ciphertext y ≡ xe mod N = RSA(x) and we wish to obtain
z ≡ (cx)e mod N = RSA(cx) for some constant c. The RSA multiplicative
(homomorphic) property is:

RSA(cx) = RSA(c).RSA(x)

Note that if c and RSA(x) are known, it is possible to obtain the value of
RSA(cx) without knowing the original message x. Likewise, it is possible to
obtain RSA(2−1cx). Another important fact: the division by 2 in the modular
arithmetic is just the product of the multiplicative inverse of 2 modulus N .
The multiplicative property and the division by 2 are used in ACGS. Similar
computations are made with points of elliptic curves.

The modulus N is denoted by an upper case letter N and its length in bits
n = �lg N� + 1 is denoted by lower case letter n. If x is an integer, then the
remainder of x modulus N is denoted by [x]N , that is, [x]N = x mod N .

2.1 BKGCD Algorithm

A variation of the GCD (Greatest Common Divisor) algorithm called “binary
GCD” is detailed in Sect. 4.5.2 (Algorithm B), page 321 of [17].

It uses the following properties by Stein [24]:

– if |b| and |c| are both even, then GCD(b, c) = 2 · GCD( b
2 , c

2 );
– if |b| is even and |c| odd, then GCD(b, c) = GCD( b

2 , c)
– if |b| and |c| are both odd, then GCD(b, c) = 2 · GCD( b+c

2 , b−c
2 );

– in the last case, either b+c
2 or b−c

2 is divisible by 2.

The above properties of the binary GCD are used to develop a modified
binary GCD in [3], and a similar algorithm by Brent and Kung [9] is used in
Algorithm 3.1 on page 152. From now on, this binary GCD is called BKGCD.

2.2 PAR() Function

The PAR() function is a parity function. For example, PAR(b, y) returns the
parity of [bx]N (y = xemodN). It is shown as Algorithm 2.1, on page 149.

PAR() queries an oracle ON with advantage ε > 0 that guesses the LSB
of the RSA plaintext x with modulus N . Suppose this advantage is equal to
ε : 0 < ε ≤ 1

2 , where ε is small, but non-negligible. Then, the probabil-
ity of the oracle to guess the LSB(x) is, formally, as follows: Advx

e,N (ON ) =∣∣Pre,N [ON (e,N) = LSB(x)] − 1
2

∣∣ > ε > 0.



RSA and Elliptic Curve Least Significant Bit Security 149

Algorithm 2.1. Parity function PAR(d, y).
Input: factor d∈ZN (In Algorithm 3.1 d = a or d = b or d = (a + b)/2),

y = RSA(x).
Output: the LSB(absN (dx)).

1 // Definition of absN () on page 149.
2 begin
3 counter0 ← 0;
4 counter1 ← 0;
5 for i ← 1 to m do
6 choose randomly ri∈RZN ;
7 if ON (RSA(rix)) = ON (RSA(rix + dx)) then
8 counter0 ← counter0 + 1;

9 else
10 counter1 ← counter1 + 1;

11 if counter0 > counter1 then
12 return 0 ;
13 else return 1 ;

The PAR() function is a voting scheme that draws m samples to compute
the parity of dx. The amount of votes are added to the variables counter0 and
counter1, representing even and odd numbers, respectively. The result, parity
bit 0 or 1, is determined by the majority of votes: counter0 versus counter1.

Each parity vote is obtained by verifying if LSB(rx) = LSB(rx + dx). The
equality holds iff dx is even, because an even number doesn’t change the parity
of another number by addition.

A modular reduction (also called overlapping or wraparound) may happen to
the sum rx + dx and, since N is odd, the vote is inverted. To avoid overlapping,
the choices of a and b should lead to small [ax]N and [bx]N . Here, [ax]N small
means absN (ax) < ε

2N , where:

absN (x)
def
=

{
[x]N if [x]N < N/2
N − [x]N otherwise

This way, if [dx]N is small then the probability of a modular reduction to
occur in rx + dx is also small, namely, ( ε

2 ).
Next, we describe how, with the voting scheme of the PAR() function, it is

possible to build an almost perfect parity function, for sufficiently large m (the
sample size) to achieve successful convergences.

In Line 7 of Algorithm 2.1 two oracle queries are made. To avoid one of the
two queries, ACGS uses the parity PAR() function in a way that the oracle is
only queried for the right side of equality, (rx + dx). On the left side, (rx), the
LSB is computed by dividing the set of integers modulus N in intervals, and
applying an hypothesis technique on them, as described next.



150 D. Nakamura and R. Terada

1. choose k, l ∈ ZN

2. compute m values [rix]N such that [rix]N ≡ [(k + il)x]N for i = 1, 2, ...m
3. let t = [kx]N and z = [lx]N , so that [rix]N ≡ t + iz mod N
4. for ε > 0, 0 ≤ j < 4/ε, assume t in one of the following 4ε−1 intervals is

known: [
j
εN

4
, (j + 1)

εN

4

]

5. for 0 ≤ j′ < 4m
ε , assume z in one of the following 4mε−1 intervals is known:

[
j′ εN

4m
, (j′ + 1)

εN

4m

]

6. assume LSB(t) and LSB(z) are known
7. with the knowledge from (4), (5), and (6), it is easy to compute LSB(rix)

Note that by the hypothesis technique described above, we have 2 · 4ε−1 · 2 ·
4mε−1 = 26mε−2 intervals.

We run Algorithm 2.1 with each of these alternatives and in only one of
them the LSB(rix) is computed correctly, and we call this instance the correct
alternative.

3 Methods and Implementations

Two cryptographic schemes are analyzed, RSA and ECDH. In this section
we present methods that use oracles to try to (probabilistically) invert these
schemes. We also give details about the implementation of such methods.

3.1 RSA Algorithm

In this section we summarize the RSA LSB attack of Alexi et al. [1].
Let RSA(x) = xemodN . Next, we describe how the PAR() function and

BKGCD are used in ACGS to (probabilistically) invert RSA. The detailed
description is shown as Algorithm 3.1 on page 152, that is briefly explained
in the following paragraphs.

Part 1 of Algorithm 3.1 (Line 2), randomly chooses a, b ∈ ZN with uniform
distribution and independently.

Part 2 (Lines 3–27) computes two random values [ax]N and [bx]N , it makes
sure that [ax]N is odd1 and then computes the GCD([ax]N , [bx]N ) using the
Brent and Kung’s GCD algorithm [9], as explained in Sect. 2.1. The PAR()
function (defined in Sect. 2.2) verifies if the parity of the two arguments is the
same or not. Note that as the while-loops in Part 2 evolves, the intermediate
values [ax]N and [bx]N remain small, because of the way the PAR() function is
defined.
1 This requirement is NOT explicitly written in [1].



RSA and Elliptic Curve Least Significant Bit Security 151

Part 3 (Lines 28–30) In Line 31, RSA(ax) is computed using the RSA
homomorphism mentioned in Sect. 2. In Line 32, the chosen [ax]N and [bx]N are
expected to be coprime, thus GCD([ax]N , [bx]N ) = 1. Since RSA(1) is always
1, GCD(RSA([ax]N ), RSA([bx]N )) = RSA([cx]N ) = 1 for some constant c, and
[cx]N = 1. Line 32 is such that RSA(ax) = ±1, so that c ≡ a mod N and
x ≡ a−1 mod N . If RSA(ax) �= ±1, the algorithm returns to Line 2 and chooses
a and b again expecting the chosen values [ax]N and [bx]N to be coprime.

From a theorem by Dirichlet [17, Sect. 4.5.2 Theorem D p. 324], the probabil-
ity that two random integers in the interval [−K,K] are coprime converges to
6

π2 as K → ∞. This is around 60, 8%. So with only two random attempts of a
and b, [ax]N and [bx]N are expected to be coprime.

On the Bounds m (sample size) and GCDlimit. A condition that makes
Algorithm 3.1 return to Line 2 is the variable GCDlimit, a bound to BKGCD
(Lines 10,11,16,17,25,26 of Algorithm 3.1). This bound is for the case the PAR()
function (Lines 7, 13, 21) fails and the algorithm gets into an infinite loop.

In the correct alternative, as defined in Sect. 2.2, ACGS recovers the original
message.

Alexi et al. [1] used the Chebyshev’s inequality to estimate the error prob-
ability of PAR() function to be Pr(PAR to err) = 4

mε2 . From this estimation,
a sufficiently large sample size m for the parity function to be almost perfect can
be derived. So, m

def
= 64nε−2 was chosen in [1] (so that Pr(PAR to err) ≤ 1

16n ),
and the PAR() function converged successfully. In our experiments we con-
firmed that with an error probability of 1

16n , the PAR() function, on average,
runs without any error in all function calls made by BKGCD (with a maximum
of GCDlimit = 6n + 3).

We run additional experiments and noticed that, on average, the bound
GCDlimit for BKGCD can be less than 6n + 3. We observed that even half
of it, (6n+3)/2, is enough to assure convergence. Details of this observation are
described in Sect. 4.1.

The ACGS running time corresponds to ε−2 attempts to obtain small ax and
bx, times two attempts to guarantee that they are coprime, (since by Dirichlet’s
theorem, π2

6 that is < 2), times the running time of 26mε−2 alternatives, 6n + 3
calls to the PAR() function, and m samples. Altogether we have the following
total running time:

ε−2 · 2 · 26mε−2 · (6n+3) ·m ≈ 3 · 28ε−4nm2 ≈ 3 · 28ε−4n

(
64n

ε2

)2

≈ 3 · 220ε−8n3

= O(ε−8n3)

Experimental results are presented in Sect. 4.1.

3.2 ECDH Algorithm

In this section we summarize the ECDH LSB attack of Boneh et al. [6].
The BS algorithm makes an adaptation of ACGS to be used for ECDH.

Consider a cyclic group of prime order curve E(Fp) with a generator G of prime



152 D. Nakamura and R. Terada

Algorithm 3.1. ACGS Invertion of RSA. (Alexi et al. [1])
Input: y = RSA(x) = xe mod N , modulus N and the encryption exponent e.
Output: original message x.

1 begin
// Part 1: Randomization

2 Choose a, b∈RZN uniformly and independently;
// Part 2: BKGCD - Brent-Kung’s GCD of [ax]N and [bx]N

3 α ← n;
4 β ← n;
5 GCDlimit ← 0;
6 // GCDlimit and PAR() are explained in Sections 33 and 33
7 while PAR(a, y) = 0 do
8 a ← [a/2]N ;
9 α ← α − 1;

10 GCDlimit ← GCDlimit + 1;
11 if GCDlimit > 6n + 3 then GoTo(2);
12 ;

13 repeat
14 while PAR(b, y) = 0 do
15 b ← [b/2]N ;
16 β ← β − 1;
17 GCDlimit ← GCDlimit + 1;
18 if GCDlimit > 6n + 3 then GoTo(2);
19 ;

20 if β ≤ α then
21 Swap(a,b);
22 Swap(α,β);

23 if PAR(a+b
2

, y) = 0 then
24 b ← [(a + b)/2]N ;
25 else
26 b ← [(a − b)/2]N ;

27 GCDlimit ← GCDlimit + 1;
28 if GCDlimit > 6n + 3 then GoTo(2);
29 ;

30 until b = 0;
// Part 3: Inversion

31 if RSA(ax) �= ±1 then GoTo(2);
32 // GCD([ax]N , [bx]N ) = 1 = [ax]N ,x = a−1 mod N c ← [±a−1]N ;
33 return c ; /* c is the original message x */

order q and two private keys a, b ∈ [1, q−1]. We define the secret of Diffie-Hellman
function DHE,G(aG, bG) = abG as the x coordinate of the point abG, [abG]x.
In this section we suppose the existence of an oracle Op for [abG]x, such that
for a, b uniformly distributed in [1, q − 1], Op is an oracle with advantage ε > 0



RSA and Elliptic Curve Least Significant Bit Security 153

of guessing correctly the LSB of [abG]x of the Diffie-Hellman function. Then, we
denote Advx

E,G(Op) =
∣∣Pra,b[Op(E,G, aG, bG) = LSB([abG]x)] − 1

2

∣∣ > ε > 0.
Let E(Fp) be an elliptic curve over Fp by the Weierstrass equation y2 =

x3+Ax+B. For a λ ∈ F
∗
p, define φλ(E) to be the elliptic curve Y 2 = X3+Aλ4X+

Bλ6, called twisted elliptic curve. Since 4(Aλ4)3+27(Bλ6)2 = (4A3+27B2)λ12 �=
0, φλ(E) is an elliptic curve for any λ ∈ F

∗
p. It is easy to verify that these twists

are in fact isomorphisms. So, for points Q,R, S ∈ E, with Q = (x, y), we have
(Q)λ = Qλ = (λ2x, λ3y) ∈ φλ(E) and for Q + R = S, we have Qλ + Rλ = Sλ

(homomorphic property). Yet, with these twists, we define, for an initial curve
E0, a family of isomorphic curves φλ(E0)λ∈F∗

p
.

Informally, the BS algorithm is as follows. Let Kab be the agreed upon point
of ECDH over the curve E0 with the public keys PKa and PKb. The x coordi-
nate of Kab is the secret key. The same way we did with ACGS, we choose a′

and b′ (we denote a′, b′ in order to avoid confusing them with the private keys
a, b) expecting [a′x]p and [b′x]p to be small. Similarly to BKGCD, a′ and b′ gen-
erate values d, that we call λ, and a query to the parity function is made with
PAR(λ, PKa, PKb). The queries for the LSB is different. The PAR() function is
queried for the LSB of λ2x, because (Kab)λ = (λ2x, λ3y). So, the query is made
to a point that is on another curve, different from E0.

Boneh et al. [6] consider an oracle Op with advantage ε > 0 in predicting
the LSB in the curve E0. That means that Op doesn’t have advantage in every
curve of the family φλ(E0)λ∈F∗

p
. By definition, Op keeps this advantage for at

least a fraction δ of the curves in the isomorphic family.
A problem to overcome is that BS queries the PAR() function with many

λ values. To solve this problem a new oracle Bp is constructed in [6] such that
its success probability inside and outside the fraction δ of the curves is known,
equal to εδ/8.

Next a brief description of the BS algorithm is given.

1. Input is 〈E,G, PKa, PKb〉, where PKa = aG and PKb = bG and G of prime
order q. The goal is to compute the point C = abG;

2. As a and b are fixed and unknown, we randomize the process by defining
PKra = araG and PKrb = brbG, for ar, br ∈ [1, q−1], hoping that the values
ara and brb lead to a case that the oracle Bp has non-negligible advantage;

3. Let DHE,G(PKra, PKrb) = D. The goal is to compute D to obtain C,
because C = cr · D, where cr ≡ (arbr)−1 mod q;

4. Now, an algorithm similar to ACGS is executed with the Bp oracle,
as described informally above. Please see the BS Algorithm below.

5. To make sure that the desired values ara and brb are found, it might be
necessary to repeat the process 8

εδ times.

By the end of the BS execution, a list of candidates C for the point abG
is obtained. But, unlike ACGS, we cannot automatically identify the correct
alternative. This fact forces us to execute all alternatives and try to identify the
correct one at the end. This identification is possible thanks to an algorithm by
Shoup [23, Theorem 7]. Informally, it is shown by Shoup [23] that an algorithm



154 D. Nakamura and R. Terada

Algorithm 3.2. BS Algorithm (Boneh et al. [6]).
Input: E(Fp), G, PKa, PKb, where PKa = aG, PKb = bG .
Output: x-coordinate of C = abG.

1 begin
// Part 1: Randomization

2 Choose ar, br∈R[1, q − 1] uniformly and independently;
// Part 2: Brent-Kung’s GCD

3 α ← length(q);
4 β ← length(q);
5 GCDlimit ← 0;
6 while PAR((ar)

2, PKa, PKb) = 0 do
7 ar ← ar/2;
8 α ← α − 1;
9 GCDlimit ← GCDlimit + 1;

10 if GCDlimit > 6n + 3 then GoTo(2);
11 ;

12 repeat
13 while PAR((br)

2, PKa, PKb) = 0 do
14 br ← br/2;
15 β ← β − 1;
16 GCDlimit ← GCDlimit + 1;
17 if GCDlimit > 6n + 3 then GoTo(2);
18 ;

19 if β ≤ α then
20 Swap(ar,br);
21 Swap(α,β);

22 if PAR( (ar+br)
2

4
, PKa, PKb) = 0 then

23 br ← (ar + br)/2;
24 else
25 br ← (ar − br)/2;

26 GCDlimit ← GCDlimit + 1;
27 if GCDlimit > 6n + 3 then GoTo(2);
28 ;

29 until br = 0;
// Part 3: Inversion of x-coordinate

30 if arPKa = (xa, ya) �= (±1, ya) then GoTo(2);
31 // here, x-coordinate of C is ±a−1

r mod(q − 1)
32 Cx ← ±a−1

r mod(q − 1);
33 return Cx ; /* x coordinate of C = abG is the desired goal */

that outputs a list of candidates for the Diffie-Hellman function can be easily
converted into an algorithm that computes the Diffie-Hellman function.

Experimental results are presented in Sect. 4.2.



RSA and Elliptic Curve Least Significant Bit Security 155

3.3 Relic Cryptographic Library

To implement the ACGS and BS algorithms, we used the C programming lan-
guage and the Relic Toolkit version 0.3.0 [2] cryptographic library.

We used SECG P160 and NIST P224 curves of the library for ECDH. For
RSA, we used 1024, 2048 and 5000 bits modulus, and also a 128 bits theoretical
modulus, to register the most demanding running times. We chose 1024 and
5000 bits because of [13], and 2048 bits because of the current NIST recommen-
dation2. Moreover, because of the equivalence of the security level [8], we chose
160 and 224 bits for elliptic curves.

Regarding the oracle implementations, the answer for an ECDH query is
quick, requiring just a few computations. For RSA, a decryption is required for
each and every query, resulting in a much greater running time.

The PRNG built inside Relic is the FIPS 185-2 based on SHA1. Relic library
already has timing functions (benchmark) to record the running times, and we
used the most accurate version of these timing functions (HPROC). For the
simulation of the algorithms and the running time data collection, we used an
Intel core 2 Duo T5450 of 1,66 Ghz with 2 GB RAM.

4 Results

In this section we present our results of ACGS for RSA and BS for ECDH.

4.1 ACGS Results

The success of the ACGS algorithm depends on either a and b resulting in a small
ax and bx (absN (ax) < εN

2 ), and also a and b being coprime. For reasonable
running times, we implemented the algorithm in a way that those conditions are
almost always met, as we describe next.

With these initial conditions met, and the algorithm always running with the
correct input alternative (as defined in Subsect. 2.2), we registered the running
times of ACGS. However, running and observing the output of ACGS for 1024
bits takes a very long time, and further longer for small advantages, ε < 0.05.
So we decided to compute the running time for the correct input alternative of
RSA-128.

Figure 1 shows the running times of a 128 bits RSA with m samples. Note
that as the sample size doubles, the running time also doubles.

Arithmetic operations in the algorithm have a variable time, that is related
to the number of bits of the computed numbers. The exponentiation time with
256 bits numbers is greater than with 128 bits numbers, and the exponentiation
time of 512 bits is greater than with 256 bits numbers, and so on. Figure 2 shows
the running time of each call to the PAR() function with respect to the size
of the operands; the PAR() function makes 16 oracle queries. Note that the

2 http://csrc.nist.gov/groups/ST/toolkit/key management.html.

http://csrc.nist.gov/groups/ST/toolkit/key_management.html


156 D. Nakamura and R. Terada

0

10

20

30

40

50

60

70

16 32 64 128 256 512 1024

T
im

e
(s

ec
.)

Samples

0.997 2.088 4.355
8.034

16.146

35.270

66.092

Fig. 1. ACGS running time and the number of samples for RSA-128

running time for 5000 bits is only indicated by an arrow in order not to interfere
with the graphic proportions.

On the bounds m (sample size) and GCDlimit. Now we describe how we
obtained more efficient running times for the ACGS algorithm.

The sampling number m is a critical parameter. In the original ACGS it is
m

def
= 64n

ε2 by definition. That way, the value of m depends only on the length of
the modulus N and the oracle advantage ε. In Table 1 we show some examples
of sample size and distinct pairs n, ε.

We noticed that even for values of m smaller than adopted by the original
ACGS algorithm, it is successful in many cases. Our experiments showed that
the value m

def
= 4

ε2 does not affect successful convergences. Consequently the
running time was reduced substantially. An interesting observation is that if we

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

128 256 512 1024 2048 5000

T
im

e
(s

ec
.)

Operands length (bits)

8.554

0.003 0.007 0.023

0.111

0.685

Fig. 2. Running time of the PAR() function in ACGS and operands length (m = 16).



RSA and Elliptic Curve Least Significant Bit Security 157

Table 1. Sample size and oracle advantage

128 bits 1024 bits 5000 bits

0.4 51,200 409,600 2,000,000

0.3 91,023 728,178 3,555,556

0.2 204,800 1,638,400 8,000,000

0.1 819,200 6,553,600 32,000,000

0.05 3,276,800 26,214,400 128,000,000

0.01 81,920,000 655,360,000 3,200,000,000

replace m
def
= 4

ε2 in the theoretical upperbound Pr(PAR to err) < 4
mε2 , we get

Pr(PAR to err) <
4

4
ε2 ε2

= 1

that indicates this upperbound is not tight.
Figure 3 shows the examples for our new sampling method. This figure shows

only the advantage, since in this new method the modulus length does not inter-
fere with the sample size. It is worth comparing 4/ε2 with the values in Table 1:
they are much smaller. E.g., for 128 bits and ε = 0.1, it is around 2,000 times
smaller.

Using this new sampling, we ran ACGS for RSA-128. The algorithm was suc-
cessful in successive executions. We observed the following results: ε = 0.4: ran
66 times and then stopped; ε = 0.3: ran 33 times and then stopped; ε = 0.2: ran
53 times and then stopped; ε = 0.1: ran 44 times and then stopped; ε = 0.05:
ran 29 times and then stopped; ε = 0.01: ran 2 times and then continued.

For ε = 0.01, it ran successfully twice, but we had to abort since each test took
about 40 min to complete. For ε = 0.2 and ε = 0.05, with m = 100 and m = 1600
respectively, we had some problems, since the tests were failing very shortly.

0

500

1000

1500

2000

0.01 0.05 0.10 0.20 0.30 0.40

S
a
m

p
le

s

Advantage (ε)

40000

1600

400

100 44 25

Fig. 3. Oracle advantage and sample size, for RSA-128



158 D. Nakamura and R. Terada

However, by adding just one unit in the sampling the results were achieved
(m = 101,m = 1601).

We observed a particular effect running ACGS with the correct input alter-
native (as defined in Subsect. 2.2). For a 128 bits RSA, in 200 runs, the BKGCD
function made between 324 and 368 calls to the PAR() function, i.e., between
2.53n and 2.88n. No run with more than 3n calls to the PAR() function with
the correct input alternative happened.

The BKGCD function bound is defined as GCDlimit = 6n+3, but according
to our observations, this value could be lowered to GCDlimit = 3n without
affecting the convergence success. Note that this reduction affects not only the
correct alternative, but also all other alternatives, offering a reduction of the
ACGS running time by half.

That way, the new running time includes the initial conditions time (ε−2 ·2),
every alternatives time (26mε−2),the BKGCD function time (3n), the PAR()
function time (m) and the oracle time (1, we consider it to be constant): (ε−2)(2)
(26mε−2)(3n)(m)(1) = 3 · 211ε−8n.

Table 2 shows the new complexity measures together with the original esti-
mates. We also added the running time of IFP algorithm [10] as in [13]. Note
that ACGS is now faster than IFP.

Table 2. Comparison of existing complexities

Estimate 1024 bits 2048 bits 5000 bits

IFP exp(1,9(ln N)
1
3 (ln ln N)

2
3 ) 6.409 · 1025 5.817 · 1034 3.755 · 1050

Orig. ACGS 3 · 220ε−8n3 3.378 · 1031 2.702 · 1032 3.932 · 1033

New ACGS 3 · 211ε−8n 6.292 · 1022 1.258 · 1023 3.072 · 1023

Now we can use the running times of the PAR() function in Fig. 2 to obtain
the time estimates. In this figure, we have only 16 samples, but since we are
using ε = 0.1, we have m = 400. Let tPAR be the running time of the PAR()
function in Fig. 2, the proportional estimate is 400

16 tPAR · 3n · 26mε−2 · ε−2 · 2 =
3,84 · 1010 · tPAR · n.

Table 3 shows the measured running times to invert RSA. We have a column
for the time on the correct input alternative, and a column for the total time of
the algorithm, and also the time tPAR from Fig. 2.

Table 3. Estimated time for ACGS execution

n (bits) tPAR (sec.) Correct alternative Total time

1024 0.111 19.7 days 138.4 · 103 years

2048 0.685 243.5 days 1.7 · 106 years

5000 8.554 20.3 years 52.1 · 106 years



RSA and Elliptic Curve Least Significant Bit Security 159

4.2 BS Results

Now we describe how we obtained more efficient running times for the BS algo-
rithm.

We applied the same approach as we did for ACGS: use a new sampling
method.

Regarding the BKGCD function, there is no problem with the bound equal
to 3 lg p. However, regarding the sampling, we have to consider that two oracles
are used, the oracle Op, and the oracle Bp. The oracle Bp is driven by δ that
defines the proportion of curves which Op has advantage ε. The ideal case is
when δ = 1, that makes the Op oracle applicable to every curve of the family.

In the case δ = 1 we have that BS is similar to ACGS. Based on this value, we
can obtain the running times for the PAR() function with operands of 160 bits
and 224 bits for ECDH, as shown in Fig. 4.

0

0.05

0.1

0.15

0.2

0.25

160 224

T
im

e
(s

ec
.)

Operands length (bits)

0.175

0.223

Fig. 4. The PAR() function running time and operands length (m = 40000).

We chose the m
def
= 8

ε2 sampling size and we executed experiments of the
BS for ECDH with 160 bits. The algorithm was successful in several successive
executions until it failed or was aborted by the time bound. We had the following
results: ε = 0.4: ran 368 and then stopped; ε = 0.3: ran 247 and then stopped;
ε = 0.2: ran 183 and then stopped; ε = 0.1: ran 862 and then continued; ε = 0.05:
ran 35 and then continued; ε = 0.01: ran once and then continued.

We estimated the running times for ε = 0.1 and m = 800, with the tPAR
time in Fig. 4. We have a total time of 800

40000 tPAR · 3 lg p · 26mε−2 · ε−2 · 2 =
6.144 · 107 · tPAR · lg p. From this equation, we built Table 4 with estimated
running times for BS.

We analyzed the worst case, where δ < 1 and close to zero. We fixed δ =
0.1, so that in only 10% of the curves the Op oracle has advantage inside the

isomorphic family. So we use the Bp oracle that implies a new sampling m
def
= 8

εδ2

that is related to the Op oracle queries by the Bp oracle.
This new sampling is obtained using the same methodology as before. Table 5

shows the estimated times to find the ECDH keys using the Bp oracle.



160 D. Nakamura and R. Terada

Table 4. Estimated running time for the BS algorithm.

lg p (bits) tPAR (s) Correct altern Total time

160 0.175 5.6 min 54.6 years

224 0.223 9.9 min 97.3 years

Table 5. Estimated time for the BS algorithm with the Bp oracle.

lg p (bits) Correct altern Total time

160 15.6 years 80 · 106 years

224 44.7 years 229 · 106 years

Comparison. Table 3 shows that to invert RSA-1024 with our implementations,
138.4 × 103 years are needed. On the other hand, Table 5 shows that to invert
ECC-160, 80 × 106 years are needed.

5 Conclusions

Based on the proposed algorithms, we were able to successfully build implemen-
tations with new sampling method and bounds. We achieved convergence speeds
higher than theoretically expected.

With our experiments we identified critical algorithmic parameters in order
to significantly reduce the running times. Even with the reduced running times,
the methods achieved successful convergences.

Our results show how fast it is to invert a cryptographic scheme with a
minimum knowledge of the LSB. In particular, for RSA with 1024 bits ACGS
required much less time to invert than the IFP time. This evidence was not
known from previous published analyses.

Future work. There is an ACGS version [1] for the Rabin scheme, which could
also be implemented for comparison. An idea to prove the validity of our meth-
ods is to create a faulty RSA implementation (revealing the LSB through a
secondary channel) and then adapt it as an oracle for ACGS. Such work would
show practical implications of our methods.

References

1. Alexi, W., Chor, B., Goldreich, O., Schnorr, C.-P.: RSA and rabin functions: certain
parts are as hard as the whole. SIAM J. Comput. 17(2), 194–209 (1988)

2. Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography.
http://code.google.com/p/relic-toolkit/

3. Ben-Or, M., Chor, B., Shamir, A.: On the cryptographic security of single RSA
bits. In: ACM Symposium on Theory of Computing (STOC 1883), pp. 421–430.
ACM Press, Baltimore, April 1983

http://code.google.com/p/relic-toolkit/


RSA and Elliptic Curve Least Significant Bit Security 161

4. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number
generator. SICOMP: SIAM J. Comput. 15, 364–383 (1986)

5. Blum, M., Micali, S.: How to generate cryptographically strong sequence of pseudo-
random bits. SIAM J. Comput. 13, 850–864 (1984)

6. Boneh, D., Shparlinski, I.E.: On the unpredictability of bits of the elliptic curve
Diffie–Hellman scheme. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 201.
Springer, Heidelberg (2001)

7. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of
secret keys in Diffie-Hellman and related schemes. In: Koblitz, N. (ed.) CRYPTO
1996. LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg (1996)

8. Bos, J.W., Kaihara, M.E., Kleinjung, T., Lenstra, A.K., Montgomery, P.L.: On the
security of 1024-bit RSA and 160-bit elliptic curve cryptography. http://eprint.
iacr.org/2009/389 (2009)

9. Brent, R.P., Kung, H.T.: Systolic VLSI arrays for polynomial GCD computation.
IEEE Trans. Comput. 33, 731–736 (1984)

10. Buhler, J.P., Lenstra, H.W., Pomerance, C.: Factoring integers with the number
field sieve. In: Lenstra, A.K., Lenstra, H.W. (eds.) The Development of the Number
Field Sieve. LNM, vol. 1554, pp. 50–94. Springer, Heidelberg (1993)

11. Chevalier, C., Fouque, P.-A., Pointcheval, D., Zimmer, S.: Optimal randomness
extraction from a Diffie-Hellman element. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 572–589. Springer, Heidelberg (2009)

12. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory
22(6), 644–654 (1976)

13. Fischlin, R., Schnorr, C.-P.: Stronger security proofs for RSA and rabin bits. J.
Cryptol. 13(2), 221–244 (2000)

14. Goldwasser, S., Micali, S., Tong, P.: Why and how to establish a private code
on a public network (extended abstract). In: FOCS, pp. 134–144. IEEE, Chicago,
Illinois, November 1982

15. Hofheinz, D., Kiltz, E.: Practical chosen ciphertext secure encryption from factor-
ing. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332. Springer,
Heidelberg (2009)

16. Jetchev, D., Venkatesan, R.: Bits security of the elliptic curve Diffie–Hellman secret
keys. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 75–92. Springer,
Heidelberg (2008)

17. Knuth, D.E.: The Art of Computer Programming. Seminumerical Algorithms, vol.
2, 2nd edn. Addison-Wesley, Reading (1981)

18. Lenstra, A.K., Verheuil, E.R.: Selecting cryptographic key sizes. J. Cryptol. 14,
255–293 (1999)

19. Menezes, A.J., Vanstone, S.A., Van Oorschot, P.C.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (1996)

20. Rabin, M.: Digitalized signatures as intractable as factorization. Technical report
MIT/LCS/TR-212, MIT Laboratory for Computer Science, January 1979

21. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

22. Roh, D., Hahn, S.G.: On the bit security of the weak Diffie-Hellman problem. Inf.
Process. Lett. 110, 799–802 (2010)

23. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

24. Stein, J.: Computational problems associated with Racah algebra. J. Comput.
Phys. 1(3), 397–405 (1967)

http://eprint.iacr.org/2009/389
http://eprint.iacr.org/2009/389


Isogeny Volcanoes of Elliptic Curves
and Sylow Subgroups

Mireille Fouquet1, Josep M. Miret2, and Javier Valera2(B)

1 Institut de Mathématiques de Jussieu, Université Paris Diderot - Paris 7,
Paris, France

fouquet@math.univ-paris-diderot.fr
2 Dept. de Matemàtica, Universitat de Lleida, Lleida, Spain

{miret,jvalera}@matematica.udl.cat

Abstract. Given an ordinary elliptic curve over a finite field located in
the floor of its volcano of �-isogenies, we present an efficient procedure
to take an ascending path from the floor to the level of stability and
back to the floor. As an application for regular volcanoes, we give an
algorithm to compute all the vertices of their craters. In order to do this,
we make use of the structure and generators of the �-Sylow subgroups of
the elliptic curves in the volcanoes.

Keywords: Elliptic curves · Isogeny volcanoes · Sylow subgroups ·
Finite fields

1 Introduction

In the last decades, the usage of elliptic curves over finite fields in the design of
secure cryptography protocols has grown significantly. Nevertheless, not all ellip-
tic curves are useful in cryptography based on the discrete logarithm problem,
since they must satisfy certain requirements related to their group orders or their
embedding degrees. Concerning their group orders, they must be of the form f · q
with q prime and f a small integer, otherwise the curves are vulnerable to the
Pohlig-Hellman attack [17]. Regarding their embedding degrees, they must be ≥ 6
for curves of 160 bits, otherwise the curves are vulnerable to the MOV attack [12].

Isogenies between elliptic curves over finite fields, in particular, prime degree
isogeny chains, have long been a subject of study with different approaches, since
they play a central role in the SEA algorithm (see [3,18]) to compute the group
order of an elliptic curve. The basic idea of this algorithm is the computation of
the trace of the Frobenius endomorphism of a curve modulo different suitably
chosen small primes �.

Given two ordinary elliptic curves E and E′ over a finite field Fq with endo-
morphism rings O and O′, respectively, and an isogeny I : E → E′ of degree
a prime � such that � � q, Fouquet and Morain [6] introduced, from the Kohel’s
Ph.D. thesis [9], the notion of direction of an �-isogeny. It is ascending, horizontal
or descending whether the index [O′ : O] is �, 1 or 1/� respectively. With this
c© Springer International Publishing Switzerland 2015
D.F. Aranha and A. Menezes (Eds.): LATINCRYPT 2014, LNCS 8895, pp. 162–175, 2015.
DOI: 10.1007/978-3-319-16295-9 9



Isogeny Volcanoes of Elliptic Curves and Sylow Subgroups 163

notion of direction for the �-isogenies, the set of isomorphism classes of ordi-
nary elliptic curves over Fq with group order N = q + 1 − t, |t| ≤ 2

√
q, can

be represented as a directed graph, whose vertices are the isomorphism classes
and its arcs represent the �-isogenies between curves in two vertices. It is worth
remarking that if two vertices are connected by an arc, the corresponding dual
�-isogeny is represented as an arc in the other direction.

Each connected component of this graph is called volcano of �-isogenies due to
its peculiar shape. Indeed, it consists of a cycle that can be reduced to one point,
called crater, where from its vertices hang � + 1 − m complete �-ary trees being
m the number of horizontal �-isogenies. Then, the vertices can be stratified into
levels in such a way that the curves in each level have the same endomorphism
ring. The bottom level is called the floor of the volcano.

Knowing the cardinality of an elliptic curve, Kohel [9] and recently Bisson and
Sutherland [1] describe algorithms to determine its endomorphism ring taking
advantage of the relationship between the levels of its volcano and the endo-
morphism rings at those levels. When the cardinality is unknown, Fouquet and
Morain [6] give an algorithm to determine the height (or depth) of a volcano
using exhaustive search over several paths on the volcano to detect the crater
and the floor levels. As a consequence, they obtain computational simplifications
for the SEA algorithm, since they extend the moduli � in the algorithm to prime
powers �s.

In [15], Miret et al. showed the relationship between the levels of a volcano
of �-isogenies and the �-Sylow subgroups of the curves. All curves in a fixed level
have the same �-Sylow subgroup. At the floor, the �-Sylow subgroup is cyclic.
When ascending by the volcanoside, that is, by the levels which are between the
floor and the crater, the �-Sylow subgroup structure is becoming balanced. The
first level, if it exists, where the �-Sylow subgroup is balanced, is called stability
level. If this level does not exist, the stability level is the crater of the volcano.
Recently, Ionica and Joux [7] have developed a method to decide whether the
isogeny with kernel a subgroup generated by a point of order � is an ascending,
horizontal or descending �-isogeny using a symmetric pairing over the �-Sylow
subgroup of a curve [8].

Volcanoes of �-isogenies have also been used by Sutherland [20] to compute
the Hilbert class polynomials. Another application has been provided by Bröker,
Lauter and Sutherland [2] in order to compute modular polynomials. To reach
these goals, in both works, it is necessary to determine the vertices of the craters
of the volcanoes. On the other hand, some specific side channel attacks, the so-
called Zero Value Point attacks, can be avoided using isogenies or more precisely
volcanoes of �-isogenies [16].

In this paper, given an ordinary elliptic curve E/Fq, the structure Z/�r
Z ×

Z/�s
Z, r > s, of its �-Sylow subgroup and a point Pr of order �r, we construct

a chain of �-isogenies starting from E and ending at a curve at the floor of the
volcano. This chain first is ascending, then horizontal and finally descending.
When h ≥ 1 and 2h < r + s, being h the height of the volcano, all the vertices
of its crater can be obtained by using repeatedly this sort of chains. Therefore
we present an algorithm to perform this task.



164 M. Fouquet et al.

In the following, we consider ordinary elliptic curves defined over a finite field
Fq, with cardinality unknown. We assume that the characteristic p of Fq is dif-
ferent from 2 and 3. We denote by � a prime that does not divide q. Furthermore,
in Sects. 3 and 4 we assume that the �-Sylow subgroup of the considered curve
is not trivial.

2 Preliminaries

In this section we introduce some notations that are used in the sequel concerning
�-isogenies, volcanoes of �-isogenies and �-Sylow subgroups of elliptic curves.

We denote by E/Fq an elliptic curve defined over the finite field Fq, by
E(Fq) its group of rational points with OE its neutral element and by j(E) its
j-invariant.

Given an ordinary elliptic curve E/Fq with group order N = q +1− t, where
t is the trace of the Frobenius endomorphism of E/Fq, its endomorphism ring
O = End(E) can be identified with an order of the imaginary quadratic field
K = Q(

√
t2 − 4q) (see [19]). The order O satisfies [4]

Z[π] ⊆ O ⊆ OK,

where OK is the ring of integers of K and π is the Frobenius endomorphism of
E/Fq. Writing t2 − 4q = g2DK, where DK is the discriminant of K, it turns out
that g is the conductor of the order Z[π] in the maximal order OK. Then the
conductor f of O divides g.

A volcano of �-isogenies [6] is a directed graph whose vertices are isomor-
phism classes of ordinary elliptic curves over a finite field Fq and where the arcs
represent �-isogenies among them. These graphs consist of a unique cycle (with
one, two or more vertices) at the top level, called crater, and from each vertex
of the cycle hang � + 1, � or � − 1 (depending of the number of horizontal �-
isogenies) �-ary isomorphic complete trees, except in the case where the volcano
is reduced to the crater. The vertices at the bottom level, called floor of the vol-
cano, have only one ascending outgoing arc. In the other cases each vertex has
�+1 outgoing arcs: for the vertices in the volcanoside, one is ascending and � are
descending, while for the vertices on the crater it depends on its typology (and
it can be easily explained for each case). The case where we encounter a vertex
with j-invariant j = 0 or j = 1728 is slightly different and is not treated in this
paper. We denote by V�(E/Fq) the volcano of �-isogenies where E/Fq belongs.
We remark that if E′/Fq is another curve on the volcano, V�(E′/Fq) = V�(E/Fq).

Lenstra [11] proved that E(Fq) � O/(π − 1) as O-modules, from where one
can deduce that E(Fq) � Z/n1Z × Z/n2Z. By writing π = a + gω with

a =

{
(t − g)/2
t/2

and ω =

{
1+

√
DK

2 if DK ≡ 1 (mod 4)√
DK if DK ≡ 2, 3 (mod 4)

we obtain that n2 = gcd(a − 1, g/f), n2 | n1, n2 | q − 1 and #E(Fq) = n1n2.
This implies that on a volcano of �-isogenies the group structure of all the curves
with same endomorphism ring, i.e. at the same level, is identical.



Isogeny Volcanoes of Elliptic Curves and Sylow Subgroups 165

From this classification of the elliptic curves, the relationship between the
structure of the �-Sylow subgroup E[�∞](Fq) of an elliptic curve E/Fq and its
location in the volcano of �-isogenies V�(E/Fq) is deduced.

Proposition 1. [15] Let E/Fq be an elliptic curve whose �-Sylow subgroup is
isomorphic to Z/�r

Z × Z/�s
Z, r ≥ s ≥ 0, r + s ≥ 1.

– If s < r then E is at level s in the volcano with respect to the floor;
– If s = r then E is at least at level s with respect to the floor.

As said in the introduction, we call stability level the level where from this one
down to the floor, the structure of the �-Sylow subgroup is different at each level
(we therefore allow the stability level to be the crater). Ionica and Joux [7] call it
the first level of stability. The curves located above the stability level (including
this one) until the crater, if they exist, have �-Sylow subgroup isomorphic to
Z/�

n
2 Z × Z/�

n
2 Z, being n = v�(N), n even and N the cardinality of the curves

(see [15]). A volcano whose crater is equal to the stability level is called a regular
volcano. Otherwise it is called an irregular volcano. Notice that if n is odd, then
the volcano is regular. If n is even, it can be regular or irregular.

The height h of a volcano of �-isogenies coincides with the �-valuation of
the conductor g of Z[π]. This value, assuming n is kwown, can be completely
determined in most cases (see [15]).

Concerning the �-Sylow subgroup E[�∞](Fq) of an elliptic curve E/Fq, Miret
et al. [14] gave a general algorithm to determine its structure Z/�r

Z × Z/�s
Z,

r ≥ s ≥ 0, together with generators Pr and Qs, without knowing the cardinality
of the curve. Their method starts computing either one point of order � of E(Fq),
if the �-Sylow subgroup is cyclic, or two independent points of order �, otherwise.
Then, in an inductive way, the algorithm proceeds computing one point of order
�k+1 for one or two points of order �k until reaching those of maximum order. If the
cardinality of the curve is known, Ionica and Joux [7] give a probabilistic algorithm
to compute the �-Sylow structure more efficiently than the preceeding one.

Finally, we say that a point Q ∈ E(Fq) is �-divisible or �-divides if there
exists another point P ∈ E(Fq) such that �P = Q. We say, as well, that P is an
�-divisor of Q.

3 A Particular Chain of �-Isogenies

Given an elliptic curve E/Fq, which is on the floor of the volcano V�(E/Fq), we
determine a chain of �-isogenies in the volcano from the floor to the stability
level and back to the floor. More precisely, if h ≥ 1 and the �-Sylow subgroup of
E/Fq is isomorphic to Z/�n

Z, then we give a chain of length n starting at the
floor to the stability level and descending back to the floor.

3.1 Behaviour of the �-Sylow Subgroup Through Particular
�-Isogenies

In this subsection, we study the changes in the �-Sylow subgroup when we con-
sider isogenies defined by the quotient of subgroups of order �.



166 M. Fouquet et al.

Lemma 2. Let Z/�r
Z × Z/�s

Z with r > s > 0 be the group isomorphic to the
�-Sylow subgroup of an elliptic curve E/Fq. Let Pr ∈ E(Fq) and Qs ∈ E(Fq) be
two linearly independent points whose orders are respectively �r and �s. Denote
P1 = �r−1Pr and Q1 = �s−1Qs.

(i) Either the isogenous curve E′ � E/〈P1〉 has �-Sylow subgroup isomorphic
to Z/�r−1

Z × Z/�s+1
Z and the �-isogeny of kernel 〈P1〉 is ascending or the

isogenous curve E′ � E/〈P1〉 has �-Sylow subgroup isomorphic to Z/�r
Z ×

Z/�s
Z and the �-isogeny of kernel 〈P1〉 is horizontal.

(ii) Either the isogenous curve E′′ � E/〈Q1〉 has �-Sylow subgroup isomorphic
to Z/�r+1

Z×Z/�s−1
Z and the �-isogeny of kernel 〈Q1〉 is descending or the

isogenous curve E′′ � E/〈Q1〉 has �-Sylow subgroup isomorphic to Z/�r
Z×

Z/�s
Z and the �-isogeny of kernel 〈Q1〉 is horizontal.

(iii) In the case that E/Fq is on the crater of the volcano, then the �-Sylow
subgroup of E′/Fq is isomorphic to Z/�r

Z × Z/�s
Z, that is, the �-isogeny

of kernel 〈P1〉 is horizontal.

Proof. By [15] the action of an �-isogeny over the �-Sylow subgroup of an elliptic
curve E/Fq is, if E[�∞](Fq) � Z/�r

Z × Z/�s
Z with r > s > 0, of the form

Z/�r
Z × Z/�s

Z, Z/�r+1
Z × Z/�s−1

Z or Z/�r−1
Z × Z/�s+1

Z depending on the
direction of the �-isogeny. By looking at the orders of the images of Pr and Qs

with the considered �-isogeny, we can conclude.

Lemma 3. Let Z/�r
Z × Z/�s

Z with r > s > 0 be the group isomorphic to the
�-Sylow subgroup of an elliptic curve E/Fq. Let Pr ∈ E(Fq) and let Qs ∈ E(Fq)
be two linearly independent points whose orders are respectively �r and �s. Let
I denote the isogeny from E to E′ of degree � such that kerI = 〈�r−1Pr〉. Then
there exists exactly one point R of the form

Qs or Pr + kQs, 0 ≤ k < �,

which does not �-divide in E(Fq) and I(R) �-divides in E′(Fq), but does not
�2-divide.

Proof. First of all, the set of points R in the �-Sylow subgroup 〈Pr, Qs〉 which
do not �-divide are, up to multiples, of one of the following forms

Pr + k1�Pr + k2Qs, 0 ≤ k1 < �r−1, 0 ≤ k2 < �s (1)
Qs + k1�

r−sPr + k2�Qs, 0 ≤ k1 < �s, 0 ≤ k2 < �s−1 (2)

Qs + k1�
r−s−iPr + k2�Qs,

0 ≤ k1 < �s+i, 0 ≤ k2 < �s−1,
0 < i < r − s

(3)

Since all the points of the form k1�Pr and k2�Qs �-divide in E(Fq), if some point
of the form (1), (2) or (3) has an image point under I that �-divides in E′(Fq),
then at least one of the points Qs or Pr + kQs, 0 ≤ k < �, has an image point
under I that also �-divides.



Isogeny Volcanoes of Elliptic Curves and Sylow Subgroups 167

We denote Î the dual of I. We denote by Q′
s = I(Qs). We have seen in

our first lemma that |Q′
s| = �s. Suppose there exists Q′

s+x ∈ E′(Fq) such that
�xQ′

s+x = Q′
s with x > 1. We have

�Qs = Î(I(Qs)) = Î(Q′
s) and �xÎ(Q′

s+x) = Î(�xQ′
s+x) = Î(Q′

s) = �Qs.

Therefore |Î(Q′
s+x)| = �x+s−1. Since x > 1, we get x + s − 1 > s and this is not

possible since the elements of 〈Qs〉 have at most order equal to �s. The same
argument holds to prove that the image of Pr +kQs at most �-divides in E′(Fq).

There is at least one point that does not �-divide in E(Fq) whose image by
I �-divides since the order of the �-Sylow subgroup is invariant by isogeny. The
same argument shows that there is only one point, up to multiples, that does
not �-divide in E(Fq) whose image by I �-divides.

Let us remark that the points R of the form (1) are of order �r, the ones
of the form (2) are of order �s and the ones of the form (3) are of order �s+i.
This consideration shows us that if the �-isogeny is ascending the unique R that
does not �-divide whose image �-divides in E′(Fq) is of the form (2), while if the
�-isogeny is horizontal the unique R is of the form (3) with order �r−1.

Proposition 4. Let E be an elliptic curve defined over Fq. Let Pn ∈ E(Fq) be
a point of order �n which does not �-divide. Denote by R a point of order � of
E(Fq) which generates a Galois invariant subgroup G of E(Fq). Let Pn+1 be a
point of E in some extension Fqk of Fq such that �Pn+1 = Pn. Let I : E → E′

the isogeny of kernel G. Then, the abscissa of the point I(Pn+1) is rational, that
is x(I(Pn+1)) ∈ Fq, if and only if

fI(x) = (x − x(Pn+1))(x − x(Pn+1 + R)) · · · (x − x(Pn+1 + (� − 1)R)) ∈ Fq[x].

Proof. The coefficients of the polynomial fI(x) are the elementary symmetric
polynomials Sr, 1 ≤ r ≤ �, in the abscissas of the points in Pn+1 + 〈R〉. In
[13], these elementary symmetric polynomials are given in terms of the so called
generalized Vélu parameters wi of the curve,

wi = (2i + 3)S(i+2) +
(i + 1)b2

2
S(i+1) +

(2i + 1)b4
2

S(i) +
ib6
2

S(i−1), (4)

where S(j) indicates the j-th power sum of the abscissas of the points in 〈R〉 \
{OE}. Therefore, the r-th elementary symmetric polynomial in the abscissas of
the points in Pn+1 + 〈R〉 is given by

Sr = Sr−1X + Sr +
r−2∑

i=0

(−1)iwiSr−i−2,

where X is the abscissa of the isogenous point I(Pn+1) and Sj is the j-th elemen-
tary symmetric polynomial in the abscissas of points in 〈R〉 \ {OE}. Therefore,
X = x(I(Pn+1)) ∈ Fq if and only if Sr ∈ Fq, ∀r ∈ {1, . . . , �}.



168 M. Fouquet et al.

Lemma 5. Let E′ be an elliptic curve defined over Fq. We suppose that the
�-torsion subgroup of E′/Fq is generated by two points P ′ and Q′ linearly inde-
pendent. Let I : E′ → E be the isogeny of kernel 〈P ′〉. We denote by Q the
image of Q′ by I. Then the dual isogeny Î is the isogeny from E with kernel
equal to 〈Q〉.
Proof. Let I ′ be the isogeny from E with kernel equal to 〈Q〉. The kernel of
the isogeny I ′ ◦ I is the �-torsion subgroup of E′. Therefore, the composition
I ′ ◦ I is equal to the multiplication by [�] over the curve E′, and hence I ′ = Î.
Therefore (Î ◦ I)(P ′) = OE′ and (Î ◦ I)(Q′) = OE′ . By definition of I, we have
I(P ′) = OE and I(Q′) = Q. Hence Î(Q) = OE′ and the subgroup generated by
Q is in the kernel of I ′. But Î is an isogeny of degree � and since Q is a point of
order � over E, ker Î = 〈Q〉.
We now show how we can obtain a chain of points on isogenous curves that do
not �-divide. This chain of non �-divisible points gives us the key of our chain of
�-isogenies.

Proposition 6. Let E be an elliptic curve defined over Fq with �-Sylow subgroup
isomorphic to Z/�r

Z×Z/�s
Z with r ≥ s ≥ 0 and r ≥ 2. Let Pk ∈ E(Fq) of order

�k, k ≥ 2, such that Pk is not �-divisible. Consider the isogeny I1 : E → E(1)

of kernel 〈P1〉, where P1 = �k−1Pk, and the isogeny I2 : E(1) → E(2) of kernel
〈I1(P2)〉, where P2 = �k−2Pk.
Suppose that the point I1(Pk) in E(1)(Fq) does not �-divide.

We, then, have two different cases depending on the value of k.

• Case k > 2 : the point I2(I1(Pk)) in E(2)(Fq) does not �-divide.
• Case k = 2 : the point I2(I1(Pk)) is OE(2) and the �-torsion subgroup of

E(2)/Fq is cyclic.

Proof. In the case k > 2, in order to prove that, under the isogeny I2 : E(1) →
E(2), the point I2(I1(Pk)) does not �-divide, let Pk+1 ∈ E(Fq) such that �Pk+1 =
Pk. Assume I2(I1(Pk+1)) ∈ E(2)(Fq). From Proposition 4, if x(I2(I1(Pk+1))) ∈
Fq, the polynomial

�−1∏

m=0

(x − x(I1(Pk+1) + mI1(P2)))

would have all its coefficients in Fq. Nevertheless, if we consider the dual isogeny
Î1 : E(1) → E with kernel 〈R〉, where R ∈ E(1)(Fq) and 〈R〉 �= 〈I1(P2)〉 by
Lemma 5, it turns out that Î1(I1(Pk+1)) = �Pk+1 = Pk. Hence the abscissa
x(Î1(I1(Pk+1))) ∈ Fq and again from Proposition 4, the coefficients of the poly-
nomial

�−1∏

m=0

(x − x(I1(Pk+1) + mR))

belong to Fq. Therefore, since the greatest common divisor of these two polyno-
mials is the linear factor x − x(I1(Pk+1)), we get x(I1(Pk+1)) ∈ Fq. Besides, if



Isogeny Volcanoes of Elliptic Curves and Sylow Subgroups 169

the ordinate of the point I2(I1(Pk+1)) belongs to Fq as well, then the ordinate
of I1(Pk+1) ∈ E(1)(Fq), which is a contradiction. The relationship between these
ordinates can be derived from the formula which expresses the ordinate of the
image of a point P under an isogeny of kernel G in terms of the coordinates
of P and the elementary symmetric polynomials in the abscissas of points of G
(see [10]). If k = 2, we can see that E1[�](Fq) is a non cyclic subgroup gener-
ated by I1(P2) and another point Q. Assume E2[�](Fq) is as well a non cyclic
group. Then E2[�](Fq) is generated by I2(Q) and another point P . Therefore
there exists a point P3 ∈ E(Fq) such that �P3 = P2 and I2(I1(P3)) = P . By
using the same argument as for the case k > 2, we get P3 ∈ E(Fq), which is a
contradiction.

Corollary 7. Let E be an elliptic curve defined over Fq with �-Sylow subgroup
isomorphic to Z/�r

Z × Z/�s
Z with r > s ≥ 0 and r ≥ 2 such that E is under

the crater of its volcano of �-isogenies. Let Pr ∈ E(Fq) such that Pr is of order
�r. We denote by E(1) (resp. E(2), E(3), . . . , E(r)) the quotient of the curve E
(resp. E(1), E(2), . . . , E(r−1)) by the subgroup generated by P1 (resp. the images
of P2, P3, . . ., Pr). Then the successive images of Pr in E(1), E(2), . . ., E(r−1)

never �-divide unless in E(r) where the image of Pr is OE(r) and the �-torsion
subgroup of E(r)/Fq is cyclic.

Proof. Since the curve is below the crater, by i) of Lemma 2, the first �-isogeny
is ascending and therefore the �-Sylow subgroup of E(1)/Fq is isomorphic to
Z/�r−1

Z × Z/�s+1
Z and hence the image of Pr does not �-divide. By induction

of Proposition 6, the result follows.

3.2 From Floor to Stability Level and Back to Floor

The preceding results lead us to consider the chain of �-isogenies defined by the
successive quotients of subgroups of order � determined from a point of the initial
curve whose order is the maximum power of �.

Theorem 8. Let E be an elliptic curve defined over Fq with �-Sylow subgroup
isomorphic to Z/�n

Z. Let Pn be a generator of this subgroup and, for all k ∈ N,
k < n, we denote by Pk the point �n−kPn. We suppose that the height h of the
volcano V�(E/Fq) is ≥ 1.

(i) If the curves of the crater of the volcano V�(E/Fq) have �-Sylow subgroup iso-
morphic to Z/�

n
2 Z × Z/�

n
2 Z, then the chain of �-isogenous successive curves

E, E(1), E(2), . . . , E(n−1) given by the subgroups generated by P1, resp. the
images of P2, P3, . . ., Pn consists of n/2 ascending �-isogenies until reaching
the stability level and n/2 descending �-isogenies.

(ii) If the curves of the crater of the volcano V�(E/Fq) have �-Sylow subgroups
isomorphic to Z/�r

Z × Z/�s
Z with r > s = h, then the chain of �-isogenous

successive curves E, E(1), E(2), . . . , E(n−1) given by the subgroups generated
by P1, resp. the images of P2, P3, . . ., Pn consists of h ascending �-isogenies
until reaching the crater, n−2h horizontal �-isogenies and finally h descend-
ing �-isogenies.



170 M. Fouquet et al.

Proof. Consider the successive isogenies Ii : E(i−1) → E(i), i = 1, . . . , n, where
E(0) = E, whose kernels are the subgroups generated by the successive images of
the points Pi = �n−iPn under the previous isogenies. Since the �-Sylow subgroup
of E is cyclic, E is at the floor of the volcano and it has a unique isogeny
I1 : E → E(1) which is ascending. The following isogenies of the sequence, from
Lemma 2, must be ascending or horizontal until reaching either a curve, if it
exists, with a balanced �-Sylow subgroup isomorphic to Z/�

n
2 Z × Z/�

n
2 Z or a

curve on the crater. Thus, the isogenies of the sequence are ascending from the
floor to the stability level.

In the case (i), n is even and the curve E(n
2 ) has �-Sylow subgroup isomorphic

to Z/�
n
2 Z×Z/�

n
2 Z. From Corollary 7, the image of the point Pn under the isogeny

In
2

does not �-divide in the curve E(n
2 ). This implies that the �-Sylow subgroup

of the curve E(n
2 +1) cannot be of the form Z/�

n
2 Z × Z/�

n
2 Z since the point Pn

does not �-divide. Hence, the isogeny In
2 +1 : E(n

2 ) → E(n
2 +1) is descending. By

Lemma 2, the following isogenies of the sequence are descending.
In the case (ii), by Lemma 2, we might encounter a sequence of horizontal

isogenies and then the rest of the isogenies will be descending.
We will first treat the case r > s + 1. We reach the crater with the curve

E(s). Its �-Sylow subgroup is generated by P
(s)
n the successive image of Pn of

order �r, r = n−s, and a point Q
(s)
s of order �s. The isogeny Is+1 is the quotient

of E(s) by 〈�r−1P
(s)
n 〉. Therefore Is+1(P

(s)
n ) is of order �r−1 and Is+1(Q

(s)
s ) is

of order �s. Since the isogeny cannot be ascending, it has to be horizontal and
therefore a point of the form Is+1(P

(s)
n +kQ

(s)
s ) �-divides in E(s+1) by Lemma 3.

By Corollary 7, we have that 1 ≤ k < �. This point P
(s)
n + kQ

(s)
s is an �s-divisor

of P
(s)
r but not an �s−1-divisor of P

(s)
r+1. This argument can be repeated until

we reach the isogeny In−s defined by the quotient by 〈P (n−s−1)
n−s 〉. In the curve

E(n−s), the point P
(n−s)
n−s+1 = �s−1P

(n−s)
n does not have �i-divisors with i ≥ s.

Therefore the point P
(n−s)
n is now a generator of order �s of the �-Sylow subgroup

of E(n−s). A Z/�r
Z component of the �-Sylow subgroup is obtained with the �i-

divisors of the point P
(n−s)
n +kQ

(n−s)
s . By Lemma 2, the isogeny In−s+1 defined

by the quotient by 〈P (n−s)
n−s+1〉 is either horizontal or descending and by Corollary 7

the isogeny is descending. By Lemma 2, the following isogenies are descending
and since we have s − 1 left, the last curve is at the floor of the volcano.

At last, we treat the case r = s + 1. The isogeny Is+1 is the quotient of E(s)

by 〈�r−1P
(s)
n 〉. Therefore Is+1(P

(s)
n ) is of order �r−1, r−1 = s, and Is+1(Q

(s)
s ) is

of order �s. Here, we can have either, like the precedent case, a point Is+1(P
(s)
n +

kQ
(s)
s ) that �-divides in E(s+1) or the point Is+1(Q

(s)
s ) that �-divides in E(s+1).

By a similar argument as the previous one, the following isogenies are descending
until the floor of the volcano.

The same method given in Theorem 8 works when considering an elliptic curve
E/Fq located in a level higher than the floor and lower than the stability level,
in the sense that the �-isogeny chain obtained is ascending from E/Fq to the
stability level and descending to the floor.



Isogeny Volcanoes of Elliptic Curves and Sylow Subgroups 171

3.3 An Example

Now we show an example of �-isogeny chain starting from a curve at the floor
of the volcano determined by the kernels of the successive images of the points
in the �-Sylow subgroup of the initial curve.

Let us consider the curve over the field Fp, p = 10009, given by the equation

E/Fp : y2 = x3 + 8569x + 2880,

whose 3-Sylow subgroup is cyclic isomorphic to Z/35Z generated by the point
P5 = (9137, 1237). Then, the chain of 3-isogenies determined by this point is
given by

996
(5, 0)

−→ 8798
(4, 1)

−→ 8077
(3, 2)

−→ 2631
(3, 2)

−→ 3527
(4, 1)

−→ 8123
(5, 0)

where we give the curves by their j-invariants (j(E) = 996) and we put in
brackets the integers (r, s) which determine the structure Z/3r

Z × Z/3s
Z of the

3-Sylow subgroups of the curves.
The corresponding sequence of the generators 〈P,Q〉 of the 3-Sylow sub-

groups, together with the integers (r, s) of the structure Z/3r
Z × Z/3s

Z and the
point determining the kernel of the isogeny is:

〈P5〉
(5, 0)

−→
34P5

〈P (1)
5 , Q

(1)
1 〉

(4, 1)
−→

33P (1)
5

〈P (2)
5 , Q

(2)
2 〉

(3, 2)
−→

32P (2)
5

〈Q(3)
3 , P

(3)
5 〉

(3, 2)
−→

3P
(3)
5

〈Q(4)
4 , P

(4)
5 〉

(4, 1)
−→

P
(4)
5

〈Q(5)
5 〉

(5, 0)

4 Going Around the Crater

In this section we give an application of the �-isogeny chains introduced in the
previous section. More precisely, given a regular volcano of �-isogenies V�(E/Fq)
with height h ≥ 1 satisfying 2h < v�(#E(Fq)) and whose crater has length
c > 2, we present an algorithm to walk around the vertices of its crater. In
order to do this we make use of the horizontal �-isogenies of our particular
chains. Throughout this section we suppose that the craters of the volcanoes
have lengths > 2.

Proposition 9. Let E/Fq be an elliptic curve whose �-Sylow subgroup is iso-
morphic to Z/�r

Z × Z/�s
Z with r > s > 0 located in the crater of V�(E/Fq). Let

E[�∞](Fq) = 〈P,Q〉 with |P | = �r and |Q| = �s. Let I1 : E → E′ be the �-isogeny
of kernel 〈�r−1P 〉 which is horizontal from Lemma2(iii). Let I2 : E → E′′ be the
other horizontal �-isogeny of E. Then the dual �-isogeny Î2 : E′′ → E has kernel
〈�r−1I2(P )〉 with |I2(P )| = �r.

Proof. The kernel of I2 is 〈�s−1Q + k�r−1P 〉 for some k ∈ {0, . . . , � − 1}. From
Lemma 5 the kernel of Î2 is 〈�r−1I2(P )〉. Note that I2(P ) has order �r. Indeed, if
|I2(P )| < �r, then I2(�r−1P ) = OE′′ . Hence �r−1P ∈ ker I2 = 〈�s−1Q+k�r−1P 〉,
which is a contradiction.



172 M. Fouquet et al.

Corollary 10. Let E0
I0−→ E1

I1−→ · · · Ic−2−→ Ec−1
Ic−1−→ E0 be the cycle of �-

isogenies of the crater of V�(E0/Fq). For all i ∈ {0, 1, . . . , c−1}, let Ei[�∞](Fq) =
〈Pi, Qi〉 such that |Pi| = �r and |Qi| = �s with r > s > 0. Then either, ∀i ∈
{0, 1, . . . , c − 1}, 〈�r−1Pi〉 is the kernel of Ii or, ∀i ∈ {0, 1, . . . , c − 1}, 〈�r−1Pi〉
is the kernel of Î(i−1) mod c.

As a consequence of Corollary 10 we can obtain, by using successive �-isogeny
chains, all vertices of the crater of V�(E/Fq), since the horizontal �-isogenies of
the chains all go in the same direction (see Fig. 1). This idea is implemented in
Algorithm 1.

/81 × /3

/243

1st 3-isogeny chain 2nd 3-isogeny chain3rd 3-isogeny chain

Fig. 1. Going around the crater by using 3-isogeny chains.

In order to study the cost of Algorithm1 we need first to know the suitable
number of chains to go around all the vertices in the crater. Knowing the para-
meters of the Algorithm 1 and assuming the length of the crater is c, the number
of �-isogeny chains required is k =

⌈
c

n−2h

⌉
. Indeed, since by the second part of

Theorem 8 each of our �-isogeny chains has n− 2h horizontal �-isogenies, we can
go around all the curves on the crater by using k �-isogeny chains. More precisely,
starting in a curve on the floor of the volcano we ascend up to the crater and we
walk through n − 2h curves of the crater to descend again to the floor and we
repeat the same process. From Corollary 10 we always take the same direction.

Thus, the cost of Algorithm 1 is given by k(C1 + n(C2 + C3)) where C1 is
the cost to find a point of order �n, C2 is the cost to compute an �-isogeny using
Vélu’s formulae [21], and C3 is the cost to compute the image of a given point
under an �-isogeny.

The cost C1 of finding a point of order �n, assuming � � log q and the
Extended Riemann Hypothesis, is O(nM(�) log q) with M(�) = � log � log log �.
Indeed, according to [14] it corresponds to compute a root of a polynomial of
degree � in Fq[x], which has cost O(M(�) log q), a total of 2n times. If we suppose
known the cardinality of the elliptic curve, using the Algorithm 1 of [7], we have



Isogeny Volcanoes of Elliptic Curves and Sylow Subgroups 173

Algorithm 1. Crater(E, �, n, h) −→ S

Input: An ordinary elliptic curve E over Fq such that E[�∞](Fq) � Z/�n
Z and the

height h of V�(E/Fq) is greater than 0 and 2h < n.
Output: A sequence S containing an elliptic curve of each vertex of the crater of

V�(E/Fq).
S ← [ ];
Compute a point P ∈ E(Fq) of order �n;
Compute the �h-isogeny I : E → E′ of kernel 〈�n−hP 〉;
E ← E′; P ← I(P ); Efinal ← E;
repeat

i ← n − h;
repeat

i ← i − 1;
Compute the �-isogeny I : E → E′ of kernel 〈�iP 〉;
E ← E′; P ← I(P ); S[#S + 1] ← E;
final ← E � Efinal;

until final ∨ i = h;
if ¬final then

Compute the �h-isogeny I : E → E′ of kernel 〈P 〉;
Compute a point P ′ ∈ E′(Fq) of order �n;
Compute the �h-isogeny I′ : E′ → E′′ of kernel 〈�n−hP ′〉;
E ← E′′; P ← I′(P ′);

end if
until final;
return S;

C1 = O(log q). The cost C2 of computing an �-isogeny using Vélu’s formalae is
O(�). Finally, by [5], the cost C3 of evaluating a given point under an �-isogeny
is O(�). Therefore, the total cost is either O(knM(�) log q) or O(k log q) whether
the cardinality is unknown or not.

In Table 1 we give the costs to go around all the vertices in the crater of a vol-
cano of �-isogenies using the proposed procedure by Ionica and Joux [7] and using
our Algorithm 1 assuming the cardinality is known. Notice that while Ionica-
Joux’s algorithm computes �-Sylow subgroups for each curve on the crater, our
proposal computes k =

⌈
c

n−2h

⌉
�-Sylow subgroups of curves on the floor.

The Algorithm 1 has been implemented with MAGMA V2.10-8. It has been
tested with several elliptic curves over Fq over an Intel Pentium M with 1.73
GHz. In Table 2 we give a sample of them including information about their

Table 1. Different costs with known cardinality.

Case Ionica-Joux Our proposal

Regular: 2h < n O(c log q) O(
⌈

c
n−2h

⌉
log q)

Regular: 2h = n O(c log q) —



174 M. Fouquet et al.

Table 2. Some timings about several volcanoes of �-isogenies.

q = p a b � n h c t1 t2

15559 4188 7183 3 4 1 40 0.07 0.02

10000000141 7034565020 8371535734 3 6 1 5612 64.99 13.83

1000000001773 464414175298 982044907463 3 7 2 37906 1955.42 979.54

10000000061 5760822374 8478355374 5 4 1 4982 196.90 15.54

10000000061 4382731032 4661390138 5 5 1 5153 134.63 13.35

1000000011151 875978249672 248043522958 5 6 2 11310 506.98 104.69

1000000000063 676232083726 397006774798 7 5 1 3486 151.98 6.61

100000231 58130720 83739022 11 5 1 190 0.83 0.09

volcanoes of �-isogenies and timings. In the second and third columns of the table
we have denoted by a and b the coefficients of the elliptic curve with equation
y2 = x3 +ax+ b. In the eighth and ninth columns we provide the timings t1 and
t2 (in seconds) corresponding to our implementation of Algorithm1 assuming
the cardinality is known or not.

Acknowledgments. The authors thank the reviewers for their valuable comments
and specially Sorina Ionica for her suggestions which have improved this article.
Research of the second and third authors was supported in part by grants MTM2013-
46949-P (Spanish MINECO) and 2014 SGR1666 (Generalitat de Catalunya).

References

1. Bisson, G., Sutherland, A.V.: Computing the endomorphism ring of an ordinary
elliptic curve over a finite field. J. Number Theory 131(5), 815–831 (2011)

2. Bröker, R., Lauter, K., Sutherland, A.V.: Modular polynomials via isogeny volca-
noes. Math. Comput. 81(278), 1201–1231 (2012)

3. Couveignes, J.-M., Morain, F.: Schoof’s algorithm and isogeny cycles. In: Huang,
M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, pp. 43–58. Springer,
Heidelberg (1994)

4. Cox, D.A.: Primes of the Form x2 + ny2. Wiley-Interscience, New York (1989)
5. Doche, C., Icart, T., Kohel, D.R.: Efficient scalar multiplication by isogeny decom-

positions. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS,
vol. 3958, pp. 191–206. Springer, Heidelberg (2006)

6. Fouquet, M., Morain, F.: Isogeny volcanoes and the SEA algorithm. In: Fieker, C.,
Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 276–291. Springer, Heidelberg
(2002)

7. Ionica, S., Joux, A.: Pairing the volcano. Math. Comput. 82(281), 581–603 (2013)
8. Joux, A., Nguyen, K.: Separating decision Diffie-Hellman from computational

Diffie-Hellman in cryptographic groups. J. Cryptol. 16(4), 239–247 (2003)
9. Kohel, D.: Endomorphism rings of elliptic curves over finite fields. Ph.D. thesis,

University of California, Berkeley (1996)
10. Lercier, R.: Algorithmique des courbes elliptiques dans les corps finis. Ph.D. thesis,

École Polytechnique, Paris (1997)



Isogeny Volcanoes of Elliptic Curves and Sylow Subgroups 175

11. Lenstra Jr., H.W.: Complex multiplication structure of elliptic curves. J. Number
Theory 56(2), 227–241 (1996)

12. Menezes, A., Okamoto, T., Vanstone, S.: Reducing elliptic curve logarithms to
logarithms in a finite field. IEEE Trans. Inf. Theory 39, 1639–1646 (1993)

13. Miret, J., Moreno, R., Rio, A.: Generalization of Vélu’s formulae for isogenies
between elliptic curves. In: Proceedings of the Primeras Jornadas de Teoŕıa de
Números Publicacions Matemàtiques, vol. Extra, pp. 147–163 (2007)

14. Miret, J., Moreno, R., Rio, A., Valls, M.: Computing the �-power torsion of an
elliptic curve over a finite field. Math. Comput. 78(267), 1767–1786 (2009)

15. Miret, J., Moreno, R., Sadornil, D., Tena, J., Valls, M.: Computing the height of
volcanoes of �-isogenies of elliptic curves over finite fields. Appl. Math. Comput.
196(1), 67–76 (2008)

16. Miret, J., Sadornil, D., Tena, J., Tomàs, R., Valls, M.: On avoiding ZVP-attacks
using isogeny volcanoes. In: Chung, K.-I., Sohn, K., Yung, M. (eds.) WISA 2008.
LNCS, vol. 5379, pp. 266–277. Springer, Heidelberg (2009)

17. Pohlig, S., Hellman, M.: An improved algorithm for computing algorithms over
GF (p) and its cryptographyc significance. IEEE Trans. Inf. Theory 24, 106–110
(1978)

18. Schoof, R.: Counting points on elliptic curves over finite fields. J. Théor. Nombres
Bordeaux 7(1), 219–254 (1995)

19. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathemath-
ics. Springer-Verlag, New York (1986)

20. Sutherland, A.V.: Computing Hilbert class polynomials with the Chinese remain-
der theorem. Math. Comput. 80(273), 501–538 (2011)

21. Vélu, J.: Isogenies entre courbes elliptiques. Comptes Rendus De L’Academie Des
Sciences Paris, Serie I-Mathematique, Serie A 273, 238–241 (1971)



Privacy



Beating the Birthday Paradox in Dining
Cryptographer Networks

Pablo Garćıa1, Jeroen van de Graaf2, Alejandro Hevia3(B), and Alfredo Viola4

1 Universidad Nacional de San Luis, San Luis, Argentina
2 Depto. de Ciência da Computação, Universidade Federal de Minas Gerais,

Belo Horizonte, Brazil
3 Department of Computer Science, University of Chile, Santiago, Chile

ahevia@dcc.uchile.cl
4 Instituto de Computación, Universidad de la República, Montevideo, Uruguay

Abstract. A Dining Cryptographer Network (DC-Net) allows multi-
ple players to broadcast messages without disclosing the identity of the
sender. However, due to their probabilistic nature, message collisions
can occur, meaning that two or more messages sent by different par-
ticipants end up occupying the same slot, causing these messages to be
lost. In this work, we evaluate two different strategies to deal with colli-
sions. When repeating a DC-net sequentially, honest parties who see that
their message did not collide can switch to sending a null message, effec-
tively decreasing the collision probability in subsequent rounds. When
repeating a DC-net in parallel, no feedback exists, and there will always
remain a non-zero probability that one message collides in every round.
We analyze both strategies with respect to the number of parties, the
number of slots, the number of repetitions and the probability of success.
We obtain exact but rather convoluted combinatorial formulas for both
cases, together with more tractable approximations, the correctness of
which has been demonstrated by simulations.

1 Introduction

Dining Cryptographers and Collisions. A well-known protocol providing
anonymous message broadcast is the Dining Cryptographers protocol, developed
by Chaum [4]. A DC-net is a randomized protocol which allows a set of parties
to send messages anonymously. Typically, a DC-net protocol is parameterized
by the number of participants, n, and its bandwidth, m. In the simplest variant
of a DC-net, each party must randomly choose a slot number between 1 and m
in order to send her message.

A serious problem of DC nets, already recognized in the original paper, is
the fact that two or more parties can, by coincidence, submit their message to
the same slot, leading to a collision. Here we focus on random collisions which
occur because of users choosing the same slot. One way to deal with collisions
is to run a slot reservation protocol before the actual message is sent; another
c© Springer International Publishing Switzerland 2015
D.F. Aranha and A. Menezes (Eds.): LATINCRYPT 2014, LNCS 8895, pp. 179–198, 2015.
DOI: 10.1007/978-3-319-16295-9 10



180 P. Garćıa et al.

is to run a mix-net first to deal with the slot reservations [6]. Here we explore
another direction.

Because of these collisions, we can consider the original DC-net as an unre-
liable communication channel. We say that a DC-net is reliable if, for each
participant, the probability that she does not succeed in publishing her mes-
sage (anonymously) is negligible in the security parameter κ. Theoretically this
should be interpreted as exponentially small in κ, and practically as below a
very small parameter such as 10−10 or smaller.

Summary of Our Results. In this work, we explore new ways to build
collision-free (or reliable) DC-net protocols. Our focus is not the low-level design
of new DC-net protocols, but instead a precise evaluation of the efficiency of at
least two simple ways to build collision-free DC-nets: sequential repetition and
parallel repetition.

Sequential Repetition. A first way to obtain a reliable DC-net is to consider
r sequential repetitions of an unreliable DC-net, for some fixed parameter
r > 1. If the message for a given party is successfully sent (has not collided
with some other message) then that party starts sending the null message
in any subsequent repetition of the basic DC-net. After r rounds, all parties
stop.

Parallel Repetition. A second way to obtain a reliable DC-net is to consider
k parallel repetitions of the basic DC-net, for some fixed parameter k ≥ 1.
Each party sends a copy of the message in each parallel instance, henceforth
called channel, of the DC-net protocol. In this case we say a message was
successfully sent if the message did not collide in at least one channel.

For both scenarios, we develop a quantitative analysis allowing a trade-off
between the probability of success, the number of participants n, the total num-
ber of available position m, and either the number of sequential repetitions r or
the number of parallel repetitions k.

We remark that both Chaum’s DC-net as well as Golle-Juels’ DC-net do not
really deal with collisions. In their papers [4,17] the authors seem to suggest the
strategy that the protocol needs to be repeated until each message is transmitted
collision-free – but no concrete algorithm is given.

Interestingly, as a byproduct of our analysis of the collision probability of
these iterated constructions, we show that collisions in Golle-Juels’ DC-net are
not random under the standard static adversary that corrupts t < n players. In
particular, the collision probability under such adversary for some honest user’
message is not t/n, but instead depends on the value of the message. Obtaining
a DC-net with random collisions can be easily done at the price of an extra
round. See Sect. 8 for details.

Related Work. An important motivation for our research is the observation
that anonymous broadcast can only be achieved in two ways: either by using DC-
nets or by using Mixnets, also invented by David Chaum [3]. However, a main



Beating the Birthday Paradox in Dining Cryptographer Networks 181

difference between these two alternatives is that DC-nets provide unconditional
anonymity (at the cost of a significant message overhead), whereas in Mixnets
the anonymity is inherently computational. So at some time in the future, when
the NSA has broken RSA or ElGamal, it can retro-actively trace messages
sent through Tor back to their originators. To eliminate this drawback, we believe
that practical prototypes of unconditional DC-nets should be implemented, and
this paper should be regarded as a theoretical contribution towards this effort.

Note that the Golle-Juels variant of DC-nets and its practical implemen-
tations, Dissent [5] and Verdict [6] do not satisfy this requirement, because in
that approach unconditional privacy is traded away in favor of efficiency: non-
interactive DHKE and pseudo-random number generators, implying computa-
tional anonymity only. We are not convinced this is the right trade-off and believe
that more effort should be spent to preserve unconditional privacy.

As a strategy to deal with disrupters we advocate the pro-active use of
cryptography (bit commitments, proofs of knowledge etc.), just as proposed in
[17,21]. The original proposal by Chaum suggested the use of traps, see Waidner
and Pfitzmann [22] for details. But we are somewhat sceptical about them. First,
traps assume sequential repetition, which in some cases is not available or not
desirable. Second, traps represent a re-active solution: disrupters need to be iden-
tified and excluded after they have started misbehaving. This means that a set
of sleeping Sybils can mount a collaborative denial-of-service attack and bring
down the network for a significant period of time. We therefore prefer pro-active
approaches.

Herbivore [15] uses a different topological model which reduces the impact
of disrupters. It also uses a slot reservation phase to avoid (or at least, reduce)
collisions which is in spirit similar to our sequential approach. However, their
performance metric is not the number of rounds, but the number of bits trans-
mitted per node in order to send a packet anonymously and successfully.

The idea of using parallel Dining Cryptographers was first suggested in [20]
(in German), but as far as we know no quantitative results have ever been pub-
lished. Preliminary results of our research were published recently in [11,12] (in
Spanish). Very recently yet another strategy was proposed to deal with colli-
sions which makes no a priori assumption about a distribution on the messages
submitted [9], using techniques from networking. An optimal solution offering
unconditional privacy is presented in [10].

2 Preliminaries

Protocols, Messages, and Adversaries: For any integer s > 0, let [s] denote the
set {1, . . . , s}. We model a DC-net as a multi-sender broadcast anonymous chan-
nel as follows. We consider a setting with n+1 parties (n is some fixed constant)
where sender parties P1, P2, . . . , Pn attempt to send messages M1,M2, . . . , Mn

(resp.) to a receiver party R, in an anonymous and reliable way. The commu-
nication between parties can be observed and even be influenced by a (possibly
computationally unbounded) adversary A which can statically corrupt at most



182 P. Garćıa et al.

t senders. In this work, since we start from secure DC-nets, we do not fix a
particular model of interaction between the adversary and the parties. Instead,
we describe the protocols in terms of the messages input to the protocol and
the messages received by R. If M is a tuple of n messages for the sender par-
ties we write ExecΠ(P (M ), A)(κ) for the output of party R when the parties
P = (P1, P2, . . . , Pn) and R execute the protocol in the presence of adversary
A for security parameter κ. We assume that this output is a set of messages.
Notice that the execution is randomized, so once M is fixed, Exec(P (M ), A)(κ)
is a random variable. Also, we assume that any initialization that the protocol
requires (i.e. a public key infrastructure) are performed at the beginning of the
execution.

Commitments: In this work, we use commitment schemes [19] to implement
the parallel iterated DC-net. In its basic form, commitment schemes are a tuple
(K, Comm, Open), where the key generation algorithm K produce the commitment
parameters μ, after being executed during setup time by a trusted player. Then,
randomized algorithm Comm takes μ and a message M , and produces a pair
commitment value and opening (C, op) ← Commμ(M). Algorithm Open allows
opening the commitment using M and op. Yet, the security requirements we
assumed on the commitment schemes are stronger, including non-malleability.
Due to space constraints we refer the interested reader to the work of Abdalla
et al. [1].

3 Sequential Repetition of DC-Nets

Perhaps the most well-known strategy to fix the collision problem is to sequen-
tially repeat the protocol – so much it is pervasively mentioned in many places,
including [4,17]. The strategy is simple: given an anonymous broadcast proto-
col Γ , fix a number of rounds r ≥ 1 and simply instruct parties to execute
Γ in sequence r times. In each execution, all senders attempt to transmit. For
each sender, if there is no collision (her message goes through) then that party
transmits the null message (denoted ⊥) from that point forward.

The main benefit of this strategy is simplicity. The resulting reliable DC-net
protocol is very easy to implement in a black-box manner, given access to Γ .

We assume each player Pi can detect if a message (not necessarily sent by Pi)
was involved in a collision or not (see [2] for a way to implement this assumption).

Sequential Repetition of DC-Net: Let Γ (M ) denote a single instance of an
unreliable DC-net protocol executed by players P1, . . . , Pn under input M =
(M1, . . . , Mn) where Mj is the input of player j. We let Γ

(r)
= Γ1, Γ2, · · · , Γr be

the protocol consisting of r sequential repetitions of protocol Γ , so Γj = Γ for
j = 1, . . . , k. All parties participate in every sequential iteration of the protocol.
In the description below, we let ci = (ci,j)j∈[r] be the vector of slots randomly
chosen by player Pi. In the j-th iteration of Γ , player Pi transmits her message
in slot ci,j ∈ [m]. Protocol Γ

(r)
takes input M and proceeds as follows:



Beating the Birthday Paradox in Dining Cryptographer Networks 183

1. Main Loop: All players do the following, from j = 1 up to j = r:
(i) Commit to a slot: Each player Pi chooses a value ci,j uniformly at

random in [m] as the transmission slot for the current execution of the
DC-net. Player Pi then computes and broadcast the associated commit-
ment Ci,j = Com(ci,j).

(ii) Computing and broadcasting the pads: Each party Pi participates
in the execution of protocol Γj = Γ using Mi as input and ci,j as the
transmission slot. In Γj , any non-interactive zero-knowledge proof of cor-
rectness1 is modified so Pi can prove that the slot ci,j used to prepare
the pad is consistent with the value committed in the previously broad-
casted Ci,j . Let dj = (ci,j)i∈[n] be the vector of slots used by all parties
in round j.

(iii) Compute the transmitted values: Let Sj ← ExecΓj
(P (M ;dj), A)(κ)

denote the final output of Γj . If message Mi ∈ S then Pi sets Mi ← ⊥
in order to transmit the null message in every subsequent round.

2. Compute the final set of transmitted values: The output of Γ
(r)

is then
the union (as sets) of Sj over j ∈ [r].

Notice that a message is successful if there exists a round j ∈ [r] such that the
message is successfully broadcast under protocol Γj .

4 Analysis of Sequential Repetition of DC-Nets

In this section we analyze the collision probability of sequential approach in
terms of the number of players n, the number of slots per channel m, and the
number of rounds r. The sequential DC protocol can be modelled as a problem
of balls-in-bins, where balls correspond to messages and bins to slots (positions).

Following the symbolic method presented in [8], we let Gm(x, z) = (ez/m +
(x − 1)z/m)m. In this setting the coefficient n![xkzn]Gm(x, z) is the probability
that when throwing n balls in m bins we have k bins with one ball. These bins
are filled by the messages that go through, and as a consequence do not have to
be sent again in the next round.

Theorem 1. With the convention that y0 = z, let

Ĝm(x, y0, y1, . . . , yr) =
n∏

i=1

Gm(x yi, yi−1/yi). (1)

Then n![xn, zn, y0
1 , . . . , y

0
r ] is the probability generating function that all messages

go through in less than or equal r round when n messages are sent in m slots,
using the sequential algorithm.

Sketch of the proof: The variable yi “marks” the number of balls that go
through in round i. Intuitively yi−1/yi takes care of the fact that the messages
that go through round i − 1 do not have to be sent in round i. �
1 For example, the term σ′′

i,θ in the Golle-Juels protocol, see Appendix A.



184 P. Garćıa et al.

Even though this is an exact approach, it is far from trivial to extract coefficients
and to find the probability that more than r rounds are needed.

By the Poisson Law which governs the asymptotic behavior of the problem
in the case n = λm with λ > 0 a constant ([8], pag. 177), the expected number
of bins with one ball when m,n → ∞ and n = λm is ne−λ. It can be seen that
this value is concentrated around its mean.

Let λ0 = n/m < 1. Then, the expected number of balls that fail in this round
is n − ne−λ0 , and as a consequence after the first round, the expected value of
the proportional constant λ1 is λ0(1 − e−λ0).

If we iterate this process, then after iteration i, the expected number of
messages that has to be sent is ni+1 = λi+1m with λi+1 = λi(1 − e−λi). The
process is finished at the iteration f such that nf < 1, that is λf < 1/m = λ0/n.

Theorem 2. Let 0 < δ < 1 and 0 < λ0 < 1 with (1 + δ)λ0 < 1, and let f be the
number of iterations made in the sequential algorithm when n balls are initially
thrown in m = n/λ0 bins. Moreover, let

low(n, λ0, δ) :=
⌊
lg

(
log

(
n

λ0

))
− lg (− log(((1 − δ)(1 − λ0/2)λ0))

⌋

and

high(n, λ0, δ) :=
⌈
lg

(
log

(
n

λ0

))
− lg (− log((1 + δ)λ0))

⌉
.

Then,

Pr [low(n, λ0, δ) ≤ f ≤ high(n, λ0, δ)] > 1 − e− δ2(1−e−λ0 )
3 n.

where lg denotes the logarithm in base 2.

Sketch of the Proof. This is a proof by induction based on Chernoff bounds.
After the first iteration we have an average of n1 = n0(1 − e−λ0) balls that had
collisions, where n = n0 = λ0m.

By Chernoff bounds, we have

Pr
[
λ1 > (1 + δ)λ0(1 − e−λ0)

]
= Pr

[
n1 > (1 + δ)n0(1 − e−λ0)

]

< e− δ2(1−e−λ0 )
3 n,

Pr
[
λ1 < (1 − δ)λ0(1 − e−λ0)

]
= Pr

[
n1 < (1 − δ)n0(1 − e−λ0)

]

< e− δ2(1−e−λ0 )
2 n.

Moreover, since u − u2/2 ≤ 1 − eu ≤ u, then

Pr
[
λ1 > (1 + δ)λ2

0

]
< e− δ2(1−e−λ0 )

3 n,

Pr [λ1 < (1 − δ) (1 − λ0/2) λ0] < e− δ2(1−e−λ0 )
2 n.



Beating the Birthday Paradox in Dining Cryptographer Networks 185

In general,

Pr[λi+1 > (1 + δ)λ2
i ≥ (1 + δ)λi(1 − e−λi)] < e− δ2(1−e−λi )

3 n,

P r[λi+1 < (1 − δ) (1 − λ0/2) λi ≤ (1 − δ) (1 − λi/2) λi

≤ (1 − δ)λi(1 − e−λi)] < e− δ2(1−e−λi )
2 n.

The sequential process finishes when nf = 1 (or equivalently when λf =
1/m = n/λ0). Furthermore, since

f−1∏

i=0

Pr
[
λi+1 > (1 + δ)λ2

i

]
< Pr

[
λ1 > (1 + δ)λ2

0

]
,

f−1∏

i=0

Pr [λi+1 < (1 − δ) (1 − λ0/2) λi] < Pr [λ1 < (1 − δ) (1 − λ0/2) λ0] ,

then, by chaining all the inequalities,

Pr

[
λ0/n = λf > ((1 + δ)λ0)2

f ≥ ((1 + δ)λ0)2
f

(1 + δ)

]
< e− δ2(1−e−λ0 )

3 n, (2)

Pr

[
λ0/n = λf < (Cλ0)2

f ≤ (Cλ0)2
f

C

]
< e− δ2(1−e−λ0 )

2 n, (3)

with C = (1 − δ)(1 − λ0/2)λ0.
The theorem then follows by finding f from Eqs. (2) and (3), and taking the

complement of these events. �
It is important to note that this leads to O(log log(n)) rounds. In terms of space,
if m = n, this means we have a O(n log log(n)) space algorithm, improving the
O(n2) cost given by the birthday paradox.

Experimental Results. For the experiments we have considered δ = 0.1
and λ0 ∈ {0.3, 0.5, 0.7, 0.9}. Moreover, for each of these values, and for n ∈
{104, 105, 106} we have calculated low(n, λ0, δ), high(n, λ0, δ), calculated the
probability of f being in the estimated range, run 100 experiments, and seen
how f falls in the estimated range. The probability is estimated up to 10 deci-
mal digits (so, errors less than 10−10, will lead to probability equal to 1).

The results are shown in Fig. 1. It can be seen that not only the upper and
lower bounds are very good but that all the experiments fall in the estimated
range of values.



186 P. Garćıa et al.

n λ0 Prob low
⌈
lg

(
log

(
n
λ0

))⌉
high # low # low + 1 # low + 2

104 0.3 0.9996 2 4 4 0 76 24
104 0.5 0.9999 3 4 5 0 97 3
104 0.7 0.9999 3 4 6 0 95 5
104 0.9 0.9999 3 4 10 0 97 3

105 0.3 1 3 4 4 10 90 0
105 0.5 1 3 4 5 0 86 14
105 0.7 1 3 4 6 0 88 12
105 0.9 1 3 4 11 0 85 15

106 0.3 1 3 4 4 0 100 0
106 0.5 1 3 4 5 0 29 71
106 0.7 1 3 4 6 0 28 72
106 0.9 1 4 4 11 24 76 0

Fig. 1. Experimental results of the sequential protocol.

5 Parallel Repetition of DC-Nets

Section 3 presented a variant that relies on a reactive strategy on behalf of the
players. This implies that all players have to be online during the execution of
the DC-net protocol, in particular, during r = O(n log(log(n))) iterations. In
some situations this is not possible or even desirable.

In this section we present a solution for a round-optimal reliable version
of the DC-net protocol (just r + 1 rounds if the underlying unreliable DC-net
takes r rounds). In particular, it is almost non-interactive (just 2 rounds) if
the underlying DC-net is non-interactive (e.g. Golle-Juels). Like the original
versions, it consists of three phases: (1) a preliminary phase, in which all pairs
of players exchange random keypads; (2) a two round phase, consisting of a
commitment round followed by a broadcast round, in which each party publishes
one contribution; (3) a message computation phase, in which the actual messages
are computed.

In the strategy described in Sect. 3 phase 2 was repeated and parties adapted
their new inputs as a function of the results of phase 3. We change the model
in this section by assuming that repeating phases 2 and 3 is not possible. We
assume each party can only broadcast one contribution (message) in phase 2,
and that is her only chance. So if a collision occurs, it means that no posterior
correction is possible. This implies that the probability of a collision should be
made to be negligible.

At the cost of extra bandwidth, this is not difficult to achieve: we assume
the existence of several (say k) copies of the same DC-net. We refer to each DC-
net as a channel, (reserving the word net for the whole construction consisting
of k channels). Each party chooses randomly a different slot in each channel
and sends the same contribution to each of these channels. Now we say that a
message transmission fails if the message collides in all the channels; it succeeds
if in at least one channel the message is alone in the slot.



Beating the Birthday Paradox in Dining Cryptographer Networks 187

Parallel Repetition of DC-Nets: As before, let Γ (M ) denote a single instance
of an unreliable DC-net protocol executed by players P1, . . . , Pn under input
M = (M1, . . . , Mn), where Mj is the input of player j.

We let Γ̂ (k) = Γ1||Γ2|| · · · ||Γk be the protocol consisting of k parallel rep-
etitions of the same protocol Γ� = Γ , for � = 1, . . . , k. All players partici-
pate in each parallel protocol Γ�, � = 1, . . . , k. In the description below, we
denote by ci = (ci,�)�∈[k] the vector of slots randomly chosen by player Pi so
ci,� ∈ [m] is the slot used in the �-th parallel channel Γ . Protocol Γ̂ (k) takes
input M= (M1, . . . , Mn) and proceeds as follows:

1. First round, committing to the slots: Each player Pi chooses a k-
dimensional vector of slots ci = (ci,�)�∈[k] by choosing each ci,� uniformly
at random in [m]. Player Pi then computes and broadcasts the corresponding
vector of commitments Ci = Com(ci,�)�∈[k].

2. Second round, computing the pads: Each player Pi prepares to runs k
copies of Γ , namely Γ1 through Γk, using the same input Mi in all parallel
executions Γ�. That is, if M�,i denotes the message used by player Pi in
execution Γ�, then M�,i = Mi and the slot used by player Pi is ci,�.

3. Second round, Computing the Proof of Unique Message: Each player
Pi then computes a zero-knowledge proof ρi that the same message is used
in each parallel copy of Γ .

4. Second round, broadcast of proofs and anonymous broadcast of
messages: Each player Pi broadcasts ρi and then runs runs k parallel copies
of protocol Γ , where any non-interactive zero-knowledge proof of correctness
is modified to also prove that the slot used (ci,�) is consistent with the previ-
ously broadcast commitment Ci.

5. Second round, computing receivedmessages in each parallel channel:
Each player first checks that ρj is a valid proof for player Pj , j ∈ [n]. If not
and if there is a reconstruction procedure for Γ , this is triggered with respect
to player Pj in each parallel run. If there is no reconstruction procedure,
the whole parallel protocol aborts and starts again, excluding the misbe-
having party. Let ExecΓ�

(P (M ; {ci}i∈[n]), A)(κ) denote the final output of
protocol Γ�. The output of Γ̂ (k) is then the union (as sets) over � ∈ [k] of
ExecΓ�

(P (M ; {ci}i∈[n]), A)(κ).

The following section presents the analysis of the collision probability of this
approach in terms of the number of players n, the number of slots per channel
m, and the number of parallel channels k.

6 Analysis of Parallel Repetition of DC-Nets

The parallel DC protocol can also be modelled as a problem of balls-in-bins,
where as before balls correspond to messages and bins to slots (positions).

In this setting we have a total of S bins, n balls and k parallel channels.
In each channel, each of the n balls chooses a position among m = S/k bins.



188 P. Garćıa et al.

The ball i (1 ≤ i ≤ n) is successful if in at least one of the channels falls in a bin
with only one ball.

We want to calculate Pm,n,k, the probability that all balls are successful if k
parallel channels are used. Moreover, the goal, for given values of n and S = km
is to find the value of k that maximizes Pm,n,k.

These kind of problems of balls-in-bins are known as the occupancy problem;
see for instance [7,18]. However, this specific problem does not seem to have been
analyzed.

We have obtained an exact expression for Pm,n,k which can be described as
a convolution of 2k − 1 nested sums. Even though this expression is exact, it is
very difficult to handle and far from trivial. We present it here, but then we use
an approximate model to predict the probability of success.

In the sequel
{

a
b

}
denotes the Stirling numbers of the second kind (number of

ways of placing a elements in b non-empty sets). Moreover the falling factorials
are defined as mj = m(m − 1)(m − 2) . . . (m − j + 1).

The proof of the following Fact can be found in the standard literature of
the problem (for example in [8]).

Fact 3. Let Cn,m be the number of ways of placing n balls in m bins in such
a way that no bin has one ball, and Tm,n,r =

∑
j≥0 mj+rCn−r,j. Moreover, let

Nm,n,r be the number of ways of throwing n balls in m bins in such a way that
r of the bins contain 1 ball. Then

1. Cn,m =
∑

i≥0(−1)i
(
n
i

){
n−i
m−i

}
.

2. Nm,n,r =
(
n
r

)
Tm,n,r.

3. Pm,n,1 = Nm,n,n

mn = mn

mn .

Sketch of the proof: Using symbolic techniques (as in [8]), Nm,n,r = n![urzn]
(ez + (u − 1)z)m and CN,M = N ![zn](ez − 1 − z)M .

A more direct approach will be useful for the generalization.

– Choose r balls to go to the r bins with one ball. This gives the factor
(
n
r

)
.

– Choose r bins and place the remaining n − r balls in the other m − r bins
in such a way that no bin has 1 ball. This gives the factor Tm,n,r. It can be
achieved as follows
1. Choose r bins to place 1 ball at each one (mr).
2. Choose j bins from the remaining m − r bins to place the n − r balls that

give collisions. There are (m − r)j ways of doing this. Together with the
previous selection, this gives a factor mr+j .

3. Place the (n − r) balls in the j bins in such a way that none of these j
bins are empty or have one ball. This contributes with the factor Cn−r,j .

�
Fact 3 clearly divides the calculation of Nm,n,r in two parts. The first one,

(
n
r

)
,

is related with the selection of successful balls and the second one, Tm,n,r, with
the selection of the bins and placement of the unsuccessful balls. This division
is key to derive a general results for all k. Since we were unable to use symbolic
techniques for the problem, we present a direct approach.



Beating the Birthday Paradox in Dining Cryptographer Networks 189

Theorem 4. Let Ik = {0 ≤ j1 = s1 ≤ n−t} ∪ {0 ≤ ji ≤ si ≤ n−t, 2 ≤ i ≤ k}

be a set of indices, δi = si − ji and Jk =
k∑

i=1

ji. Let Q
(k)
m,n,t be the probability

of having t failures when throwing n balls in k parallel channels with sets of m
bins. Then

1. Q
(k)
m,n,t =

R
(k)
m,n,t

nkm , with R
(k)
m,n,t =

(
n

t

)∑

Ik

c
(k)
n,t

k∏

i=1

Nm,n,si
and.

c
(1)
n,t = 1 which equals

(
J0

n − t − s1

)
when s1 = n − t,

c
(k)
n,t =

c
(k−1)
n,t(
Jk−2

n−t−sk−1

)
(

n − t − Jk−2

jk−1

)(
Jk−2

δk−1

)(
Jk−1

n − t − sk

)
, 2 ≤ k.

2. Pm,n,k = Q
(k)
m,n,0.

Sketch of the proof: The factor
(
n
t

)
gives the number of ways to choose the t

balls that fail in all the channels. As a consequence the other n−t balls should fall
in an bin with one ball in at least one of the channels. To analyze the algorithm
it is better to think it as a sequential process.

In this setting, si is the number successful balls in channel i, ji is the number
of balls whose first successful try is channel i and Ji is the total number of
successful balls up to channel i, with 1 ≤ i ≤ k. Then s1 = j1 since this is the
first successful channel for these balls, and jk = n − t − Jk−1 since at the end
n − t balls are successful (Jk = n − t).

Moreover, for 1 ≤ i < k, the ji balls whose first successful try is channel i
should be taken from the ones that have failed in all previous channels (n−t−Ji−i

of them), giving the factor
(
n−t−Ji−1

ji

)
. Furthermore, the other δi = si − ji balls

should be chosen among the one already successful, giving the factor
(
Ji−1

δi

)
.

Since sk are successful in the last channel, we have to choose the other n− t−sk

unsuccessful balls (but successful ones in the k channels) among the already
successful Jk−1 balls (giving the factor

(
Jk−1

n−t−sk

)
).

The recursive definition of c
(k)
n,t then follows by induction on k (the number of

channels). Notice that when k = 1, c
(1)
n,t =

(
J0

n−t−s1

)
. Since J0 = 0 this coefficient

is 0, unless s1 = n − t, when it takes the value of 1. This is actually the case,
since all the n − t balls should be successful in the first try.

The proof is then completed by noticing that
k∏

i=1

Nm,n,si
counts the number

of ways to place all the n − si balls in m − si bins in such a way that no bin has
one ball. �
Since this exact expression is very difficult to handle with large numbers, and
asymptotic results are difficult to achieve, an alternate, approximate approach
will be given to find an analytic expression to predict the results found by our
simulations.



190 P. Garćıa et al.

As it is presented in Sect. 4, if n balls are thrown in m bins, then the expected
number of bins with 1 ball is

E[# bins with 1 ball] = n

(
1 − 1

m

)n−1

. (4)

If n,m → ∞ this value can be approached by ne−n/m. Its variance is

V ar[# bins with 1 ball] = n(n − 1)
(

1 − 2
m

)n−2 (
1 − 1

m

)

+ n

(
1 − 1

m

)n−1

− n2

(
1 − 1

m

)2n−2

. (5)

Moreover, since when n,m → ∞ this variance is approached by ne−n/m(1 −
e−n/m), the number of bins with one ball is concentrated around its mean.

In the approximate model, let p = (1 − 1/m)n−1. So the expected number
of bins with one ball is np. Then, p can be interpreted as the probability that a
given ball is successful when n balls are thrown in m bins. Furthermore q = 1−p
can be interpreted as the probability that a given ball fails, since it falls in an
bin with two or more balls.

In this setting, we may consider a Bernoulli process where the probability
that a given ball fails in all the k channels is qk. Hence, with probability (1− qk)
a given ball succeeds in at least one of the channels. As a consequence, the
probability that all the n balls succeed in at least one channel is (1−qk)n. Then,
we have the following approximation, with S = km.

Theorem 5. Let, in the approximate model, p = (1 − 1/m)n−1 and S = km.
Moreover, let P̂S,n,k be the probability (in this model) that when n balls are thrown
in k parallel channels each with m bins, all the balls are successful. Then

1.

P̂S,n,k =

⎛

⎝1 −
(

1 −
(

1 − k

S

)n−1
)k

⎞

⎠
n

.

2. When S, n → ∞ and k = o(S), then p ≈ e
−nk

S , and then

P̂S,n,k ≈
(

1 −
(
1 − e

−nk
S

)k
)n

.

3. In this setting, for fixed S and n, the optimal number of channels (the value
of k that maximizes P̂S,n,k) is k = �Sx0

n � with x0 = log(2).
4. The optimal probability is

P̂ ∗
S,n ≈

(
1 − 1

2
Sx0

n

)n

.



Beating the Birthday Paradox in Dining Cryptographer Networks 191

5. For given n, the minimal value of S to achieve an exponentially small error
1/2b (with b a constant like 80, for example) is

S =
n

x0
(b + lg(n)),

where lg is the base 2 logarithm.

Sketch of the proof: Parts 1 and 2 are straightforward.
For parts 3 and 4, to find the optimal value of k, let us call x = kn/S and so

∂

∂k
P̂S,n,k ≈ − P̂S,n,k n(1 − e−x)k

1 − (1 − e−x)k

(
log(1 − e−x) +

xe−x

1 − e−x

)
.

The maximum is at the value x0 such that
(
log(1 − e−x0) + x0e−x0

1−e−x0

)
= 0, giving

x0 = log(2). As a consequence, the optimal number of channels is k = �Sx0
n �

(note that since S = Ω(n), then k = o(S) as requested), and so, the optimal
probability in this setting satisfies:

P̂ ∗
S,n ≈

(
1 − 1

2
Sx0

n

)n

. (6)

Moreover, for part 5, given n and a constant b (like b = 80), if we want an
exponentially small error in b (P̂ ∗

S,n = 1 − 1/2b, with b > 0), then from (6) and
the approximation (1 − 1

2b )
1
n = 1 − 1

n2b + O( 1
n2 ) then S should verify:

S =
n

x0
(b + lg(n)), (7)

where lg is the base 2 logarithm. �

Experimental Results. When S = o(n2) (e.g. n2−ε, for a constant ε > 0)
the probability of success tends to 0 with n (e.g. e−nε

). It is then reasonable to
assume for our experiments that S = O(n2).

It is very hard to compute the exact probabilities for large values of k and n
using Theorem 4; these values are calculated only up to k = 4 and small values
of n. We use this to check against the approximations calculated in parts 1 and
2 of Theorem 5. For k = 1 the approximation is very bad but we use the exact
value of mn/mn (S = m in this case).

Each experiment consists of running 100.001 trials and counting how many
successful trials are found. Underlined and in bold are the maximal probabilities
(in this case k = 10). The table shows that even for small values of n, the
approximate and asymptotic formulae agree very well with the experimental
results (and with the exact probabilities when they could be computed) (Fig 2).

The next table tests part 5 of Theorem 5. In this setting given b and n
the formula gives the minimum value of S such that, when using the optimal
number kopt of channels the probability of error is less than 2−b. We normalize



192 P. Garćıa et al.

S n k exact approx1 approx2 experimental

360 23 1 0.4877 - - 0.4861
360 23 2 0.7566 0.7348 0.7165 0.7587
360 23 3 0.8992 0.8961 0.8848 0.8967
360 23 4 0.9500 0.9493 0.9421 0.9497
360 23 5 - 0.9704 0.9654 0.9717
360 23 6 - 0.9801 0.9763 0.9802
360 23 8 - 0.9877 0.9849 0.9878
360 23 9 - 0.9891 0.9866 0.9891
360 23 10 - 0.9898 0.9874 0.9901
360 23 12 - 0.9898 0.9873 0.9897
360 23 15 - 0.9869 0.9838 0.9865
360 23 18 - 0.9799 0.9759 0.9803
360 23 20 - 0.9718 0.9670 0.9717
360 23 24 - 0.9410 0.9348 0.9406
360 23 30 - 0.8246 0.8226 0.8248

Fig. 2. Experimental results for the probability of success for a total of S = 360 and
k = 23 messages, slightly adjusted values from the birthday paradox.

the probability of success with the estimated value of error, and the quotient
should be close to one. The table shows that even for small values of n the
formulae are very good. For values of b up to 15, the test is run 200001 times
(with an average of 8 failures) (Fig. 3).

n b Sopt kopt experimental/(1 − 2−b)

23 12 549 16 1.000134
23 15 648 19 1.000015
30 12 732 16 1.000119
30 15 862 19 1.000005
40 12 1000 17 1.000034
40 15 1173 20 0.999995
50 12 1273 17 1.000024
50 15 1490 20 1.000010

Fig. 3. Experimental results for the number of slots needed to guarantee a probability
of failure less than 2−b. Ideally the last should be 1

7 Instantiating the Two Approaches

The two composition strategies analyzed in this paper can be instantiated with
several DC-nets yielding different overall properties. Using an information-the-
oretical DC-net like the one proposed by van de Graaf [21] (based on the DC-
net proposed by Chaum [4]) we can obtain privacy against computationally
unbounded adversaries. If, instead, we use Golle and Juels’ (short) DC-net [17],
then privacy against polynomial-time adversaries can be achieved. Moreover, the



Beating the Birthday Paradox in Dining Cryptographer Networks 193

reconstruction procedure of Golle-Juels’ DC-net translates into a collision-free
iterated DC-net with stronger robustness, where misbehaving parties can not
only be detected, but their contribution removed from the protocol result.

In any case, the analysis of the collision probability of Sects. 4 and 6 only
assumed two conditions over the underlying DC-net channel: (a) the adversary
can disrupt at most one slot per compromised party in each broadcast, where
the disrupted slot cannot depend on the slot selection by honest parties; and
(b) for the parallel construction, each party must transmit the same message
in all parallel channels. Condition (b) can be easily achieved by using (pos-
sibly information-theoretically hiding) commitments and non-interactive zero-
knowledge proofs. Condition (a), on the other hand, it is trickier to achieve. In
fact, contrarily to what it was claimed, the well-known DC-net protocol by Golle
and Juels [17] does not achieve this property. Section 8 explains the attack and
presents a simple modification that fixes the protocol.

We believe the two conditions mentioned above suffice to prove security in the
standalone model under a reasonable definition of secure, single-channel DC-net.
Due to space constraints a formal definition of security as well as the security
proof for the constructions are left to the full version of this paper.

Cost Analysis. In order to evaluate the overhead of the two composition strate-
gies, we compare them with a single execution of a DC-net achieving a similar
collision probability. Given the assumptions mentioned above, the cost associ-
ated to a single DC-net execution with S slots and n senders (each one sending a
single message) is at least O(n) commitments for the slots (one per sender), plus
the total numbers of bits CS,n transmitted during a single DC-net with S slots
and n players. Furthermore, we make the reasonable assumption that CS,n is
linear in S. The computation costs are simply those associated to computing the
commitments and verifying the committed slots are consistent with the actual
slots used.2

In terms of communication costs, our sequential repetition approach with n
senders, m = n slots and r = log log(n) rounds requires sending O(n log log(n))
commitments (one per sender per round), plus O(Cn,n log log(n)) bits. In terms
of computation costs, it is easy to see that the costs are r times the cost of
executing a single DC-net.

For the parallel repetition approach with n senders, S slots and k = �S log(2)
n �

parallel executions, the total communication costs are now O(nk) commitments
(one per sender per parallel channel), the total length of the proof of message
equality among parallel channels (namely nTk bits if the cost of such proof is Tk

per sender) plus kCS/k,n bits, the communication costs of k parallel executions
of a S/k-slot DC-net. The computation costs are k times the cost of running a
single DC-net plus the costs associated to computing the commitments and the
proofs, and then verifying the committed slots are consistent with the actual
slots used.
2 The exact computation costs depends on the DC-net used.



194 P. Garćıa et al.

In order to achieve a high enough probability of success (a probability that
does not goes to 0 when n tends to infinity), the standard single-channel DC-
net must use Ω(n2) slots. But, even assuming O(n2) slots for the single-channel
DC-net, the communication overhead of our sequential repetition construction
is much less since it is O(Cn,n log log(n)).

For the parallel repetition construction, the communicational overhead is
O(nTk) bits from the proofs of message equality plus the extra commitments
(O(nk) = O(S) compared with O(n)). The computational overhead is simply
the costs of verifying the proofs of message equality. This follows from the fact
that running k = S/n copies of a single n-slot DC-net is comparable to running
a single S-slot DC-net both in communication as well as computational costs. To
the contrary of a standard DC-net, our construction guarantees an exponentially
small probability of failure (part 5 of Theorem 5 for b = n) with only O(n2) space.

8 Jamming Attack on Golle-Juels’ DC-Net

In the abstract of their paper [17], Golle and Juels argue that their construction
achieves “high-probability detection and identification of cheating players”. It
turns out that this is not quite true if the messages sent are not encrypted (the
standard case when DC-nets are used as broadcast channels), as the malicious
players can still disrupt honest players’ transmissions by causing collisions with
probability 1 – well above the collision probability of honest users – without
being detected. Details follow.

The Golle-Juels’ short DC-Net protocol (see Appendix A for a more detailed
description) follows Chaum’s standard DC-net paradigm where each player Pi

initially prepares a m-dimensional vector (or “pad”). This pad satisfies a neat
property: if no player sends messages, the pair-wise multiplication of all player’s
pads results in the all-ones m-dimensional vector. Player Pi can use this prop-
erty to transmit a message Mi = 1 by simply multiplying Mi into one of the
components of his pad. The index of this component, called Pi’s communication
slot and denoted ci, is chosen uniformly at random in [m].

To prevent that a malicious player transmits several messages simply multi-
plying them into different component of the pad, a distinguished characteristic of
Golle-Juels’ protocol is that it uses proof of knowledge techniques [16] to force
each player to select at most one slot. Then, since a corrupted player P̂j can
choose at most a single slot to transmit a value, it may seem that P̂j cannot
do more harm that an honest player: both honest players and corrupted players
would have the same collision probability as the other players.

Unfortunately, this reasoning is flawed if the adversary is rushing [13].
A rushing adversary is allowed to “speak last” in every communication round,
even in synchronous networks. Consider now a single player P̂j corrupted under
such an adversary. This player can wait until all honest players have submitted
their pads and proofs, and then



Beating the Birthday Paradox in Dining Cryptographer Networks 195

1. internally and privately compute the resulting output by using an honestly-
produced pad as its own (P̂j ’s pad). This allows the adversary to not only
obtain the messages sent by all honest parties, but also identify all the posi-
tions where those messages were sent (it does NOT allow the adversary to
know who sent it, though). And then,

2. the adversary can “choose” P̂j ’s slot cj to be equal to any of the slots where
honest parties have sent their messages. Clearly, the adversary can also choose
the value of P̂j ’s message Mj ; this message can be chosen so the “collision”
with the honest player’s message in slot cj produces an arbitrary message of
the adversary’s choice. Then, P̂j outputs his (honestly computed with slot
cj) pad and proof.

The resulting message in slot cj will be completely controlled by the adversary:
it can be made look like a collision or not3. Furthermore, this strategy gives free
range for the adversary to select her target slot: for example, the adversary could
select a position based on the value of the honest player’s message. Clearly, the
outcome is a collision with probability 1.

Fixing the problem: We can prevent the attack by simply forcing each player to
commit to her slot using non-malleable commitments [1]. Consider the descrip-
tion of the protocol given in Appendix A. To prevent the degenerate case where
a corrupted player copies everything (commitments, pads, proofs) together, one
could modify these proofs to assure that the secret exponent xi used in the com-
putation of the pad W

(θ,�)
i , for each θ ∈ [m], is the same exponent on Pi’s public

key yi. This worst case can be dealt, however, much more easily by rejecting
repeated proofs under some fix ordering of the players.

Acknowledgements. The authors would like to thank the anonymous referees for
their helpful comments and suggestions which significatively helped to improve the
paper presentation. The third author also thanks the support of INRIA Chile.

A The Golle-Juels’ DC-Net

The DC-net protocol proposed by Golle and Juels [17] (called Short DC-net)
directly extends the ideas from Chaum’s DC-net [4]. In Chaum’s original pro-
tocol, parties share secret keys (called keypads) in a pairwise fashion, which
satisfies that the addition of all keypads effectively cancels out. To broadcast
a message, a party Pi adds (xors) the message into one of her pairwise-shared
keypads, so when keys are later combined, keys cancel out leaving her message
as the result. Notice that the Chaum’s original protocol outputs at most a single
message per execution.

Golle and Juels’ protocol dispenses with sharing private keys by having
each pair of parties non-interactively compute the keypads as Diffie-Hellman
3 See [2] for techniques to always detect this situation as a collision.



196 P. Garćıa et al.

keys. These keypads satisfy the same property – they cancel out once all are
combined – and enjoy specific algebraic properties (inherited from the pairing-
based key agreement used) that allow public verification of correctness of each
party’s keypad. In consequence, misconstructed keypads can be identified. More-
over, since each party’s private keys are initially threshold-shared among for all
parties, reconstruction of incorrectly-computed keypads is possible.

The full protocol is detailed below.

Common Public Inputs: k ∈ N, the security parameter, n ∈ N the number
of parties, t ∈ N a fixed integer, z ∈ N a counter, and � ∈ N the parallel
index. Also, G1, G2, e, g1, g, h, where G1, G2 are cyclic groups of prime order
p = O(2k), such that e : G1 × G1 → G2 is an admissible pairing, g1 is a
generator of G1, and g, h are independently-chosen generators of G2, and
H : { 0, 1 }∗ → G1 a collision-resistant hash function.

Public Inputs: y1, . . . , yn, where yi = gxi
1 is the public key of Pi corresponding

to private key xi.
Private Inputs: Pi has input Mi ∈ G2, and secret key xi ∈ Zp. Vı́a a one-time

setup procedure, Pi also gets a private key gets a (n, t)-share xj,i of party
Pj ’s the secret key xj .

Public Output: Each honest Pi obtains a multiset M = {M1, . . . , Mn} ⊂ G2

consisting of (almost) all messages sent by parties.

(1) Transmission Step: In this round, each party Pi does as follows:
1. First, Pi creates a shared pad by computing, for each θ ∈ {1, . . . , n}

Qθ,�
$← H(z||θ||�) and W

(θ,�)
i ← Πj∈{1,...,n},j �=ie(Qθ,�, yj)δi,jxi

where δi,j = 1 if i < j and −1 otherwise.

2. Pi then chooses ci
$← {1, . . . , n}. Then, Pi computes her transmission

vector V
(�)
i = (V (θ,�)

i )θ∈{1,...,n} as V
(θ,�)
i ← mi · W

(θ,�)
i if θ = ci and

V
(θ,�)
i ← W

(θ,�)
i if not.

3. Pi computes the verification information σi = (σ′
i, {σ′′

i,θ}θ∈{1,...,n}) as
follows:
(a) For each θ∈{1, . . . , n}, Pi does the following:

i. Pi picks ri,θ
$← Zp, and sets di,θ ← hri,θ if θ = ci, and di,θ ← ghri,θ

if θ = ci.
ii. Pi computes σ′′

i,θ as PoK{(xi, ri,θ) : (V (θ,�)
i = e(Πj∈{1,...,n},j �=iy

δi,j

j ,
Qθ,�)xi ∧ dθ = hri,θ ) ∨ (dθ = ghri,θ )}.

(b) Using r =
∑

j∈{1,...,n} rj as the witness, Pi computes σ′
i as PoK{r ∈

Zp : (Πn
θ=1(dθ))/g = hr }.

4. Pi then broadcasts (V (�)
i , σi).

5. Let (V (�)
i , σi) be the values broadcast by Pi. Each Pj verifies the valid-

ity of proofs σi. Let Ω ⊂ {1, . . . , n} be the subset of parties whose
proofs fail. If Ω = ∅, each Pj outputs the multiset M defined by M ←
{ Πi∈{1,...,n}V

(θ,�)
i : θ ∈ [m] }. and finishes the protocol. Otherwise, set

M ← ∅ and execute the reconstruction phase of the protocol.



Beating the Birthday Paradox in Dining Cryptographer Networks 197

(1) Correction Step: If xj is the secret key of party Pj , we let xi,j be the
private share of xj hold by Pi, and let yi,j = g

xi,j

1 be the corresponding public
share. We assume the shares were computed using known techniques, eg. [14],
so they satisfy xi,j = fi(j) where fi(x) is a random polynomial of degree
(t − 1) such that fi(0) = xi. Let λi,Γ = Πj∈Γ,j �=i

j
j−i be the corresponding

Lagrange coefficients used to recover xj from the shares xj,i, that is, xj =∑
i∈Γ xj,iλi,Γ .
In this round, each party Pi reconstructs the shared pad for each (mis-

behaving) party Pj in Ω as by working as follows:
1. First, Pi broadcasts Zj,i ← Q

xj,i

θ,� for each θ ∈ {1, . . . , n}.
2. Let Θ = {Zu,v} be the set of all broadcast shares, where Zu,v was sent

by Pv. Each party checks the validity of share Zu,v by checking that

e(Zu,v, g1)
?= e(yu,v, Qθ,�). Let Γ ⊂ Θ be a subset of shares that satisfy

the above validity condition, where |Γ | = t.
3. Then, Pi reconstructs the shared pad for each party Pj ∈ Ω as follows:

for each θ ∈ {1, . . . , n}, V̂
(θ,�)
j ← Πu∈{1,...,n},u �=je(Πi∈Γ Z

λi,Γ

j,i , yu)δj,u .
4. Finally, Pi outputs the multiset M ← {Πi∈{1,...,n}\ΩV

(θ,�)
i ·Πj∈ΩV̂

(θ,�)
j :

θ ∈ [m] } and finishes the protocol.

References

1. Abdalla, M., Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D.: SPHF-
friendly non-interactive commitments. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013, Part I. LNCS, vol. 8269, pp. 214–234. Springer, Heidelberg (2013)

2. Barthe, G., Hevia, A., Luo, Z., Rezk, T., Warinschi, B.: Robustness guarantees for
anonymity. In: CSF, pp. 91–106. IEEE Computer Society (2010)

3. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2), 84–88 (1981)

4. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipi-
ent untraceability. J. Cryptology 1(1), 65–75 (1988)

5. Corrigan-Gibbs, H., Ford, B.: Dissent: accountable anonymous group messaging.
In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) Proceedings of the 17th
ACM Conference on Computer and Communications Security, CCS 2010, pp. 340–
350. ACM (2010)

6. Corrigan-Gibbs, H., Wolinsky, D.I., Ford, B.: Proactively accountable anonymous
messaging in Verdict. In: King, S.T. (ed.) USENIX Security, pp. 147–162. USENIX
Association (2013)

7. Feller, W.: An Introduction to Probability Theory and its Applications, 3rd edn.
Wiley, New York (1968)

8. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press,
New York (2009)

9. Franck, C.: Dining cryptographers with 0.924 verifiable collision resolution. CoRR,
abs/1402.1732 (2014). http://arxiv.org/abs/1402.1732

10. Franck, C., van de Graaf, J.: Dining cryptographers are practical (preliminary
version). CoRR, abs/1402.2269 (2014). http://arxiv.org/abs/1402.2269

11. Garćıa, P.: Optimización de un protocolo noninteractive dining cryptographers.
Master’s thesis, Universidad Nacional de San Luiz, 2013. Universidad Nacional de
San Luiz (2013)

http://arxiv.org/abs/1402.1732
http://arxiv.org/abs/1402.2269


198 P. Garćıa et al.

12. Garćıa, P., van de Graaf, J., Montejano, G., Bast, S., Testa, O.: Implementación
de canales paralelos en un protocolo non interactive dining cryptographers. In:
43 Jornadas Argentinas de Informática e Investigación Operativa (JAIIO 2014),
Workshop de Seguridad Informática (WSegI 2014) (2014)

13. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999)

14. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999)

15. Goel, S., Robson, M., Polte, M., Sirer, E.G.: Herbivore: A scalable and efficient pro-
tocol for anonymous communication. Technical report TR2003-1890, Computing
and Information Science, Cornell University (2003). http://www.cs.cornell.edu/
people/egs/papers/herbivore-tr.pdf

16. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

17. Golle, P., Juels, A.: Dining cryptographers revisited. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 456–473. Springer, Heidelberg
(2004)

18. Kolchin, V., Sevastyanov, B., Chistyakov, V.P.: Random Allocations. Wiley, New
York (1978)

19. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

20. Pfitzmann, A.: Diensteintegrierende Kommunikationsnetze mit teil-
nehmerüberprüfbarem Datenschutz. Informatik-Fachberichte, vol. 234. Springer
(1990)

21. van de Graaf, J.: Anonymous one-time broadcast using non-interactive dining cryp-
tographer nets with applications to voting. In: Chaum, D., Jakobsson, M., Rivest,
R.L., Ryan, P.Y.A., Benaloh, J., Kutylowski, M., Adida, B. (eds.) Towards Trust-
worthy Elections. LNCS, vol. 6000, pp. 231–241. Springer, Heidelberg (2010)

22. Waidner, M., Pfitzmann, B.: The dining cryptographers in the disco: uncondi-
tional sender and recipient untraceability with computationally secure serviceabil-
ity (abstract). In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989.
LNCS, vol. 434, p. 690. Springer, Heidelberg (1990)

http://www.cs.cornell.edu/people/egs/papers/herbivore-tr.pdf
http://www.cs.cornell.edu/people/egs/papers/herbivore-tr.pdf


Private Asymmetric Fingerprinting: A Protocol
with Optimal Traitor Tracing

Using Tardos Codes

Caroline Fontaine1,2, Sébastien Gambs3,4, Julien Lolive1,4(B),
and Cristina Onete3

1 UMR CNRS 6285 Lab-STICC, Institut TELECOM, TELECOM Bretagne,
Plouzané, France

{caroline.fontaine,julien.lolive}@telecom-bretagne.eu
2 UMR 6285 Lab-STICC, CNRS, Plouzané, France

3 Université de Rennes 1, Rennes, France
{sgambs,maria-cristina.onete}@irisa.fr

4 Inria Rennes Bretagne-Atlantique / IRISA, Rennes, France

Abstract. Active fingerprinting schemes were originally invented to
deter malicious users from illegally releasing an item, such as a movie
or an image. To achieve this, each time an item is released, a differ-
ent fingerprint is embedded in it. If the fingerprint is created from an
anti-collusion code, the fingerprinting scheme can trace colluding buy-
ers who forge fake copies of the item using their own legitimate copies.
Charpentier, Fontaine, Furon and Cox were the first to propose an asym-
metric fingerprinting scheme based on Tardos codes – the most efficient
anti-collusion codes known to this day. However, their work focuses on
security but does not preserve the privacy of buyers. To address this
issue, we introduce the first privacy-preserving asymmetric fingerprint-
ing protocol based on Tardos codes. This protocol is optimal with respect
traitor tracing. We also formally define the properties of correctness, anti-
framing, traitor tracing, as well as buyer-unlinkability. Finally, we prove
that our protocol achieves these properties and give exact bounds for
each of them.

Keywords: Fingerprinting · Watermarking · Anti-collusion code · Tar-
dos code · Privacy · Anonymity

1 Introduction

A huge amount of digital items, such as pictures, songs and movies, is down-
loaded on a daily basis, both from centralized content platforms and via peer-to-
peer (P2P) networks. Some of these items have a commercial value (e.g., those

Caroline Fontaine—This work has received a French governmental support granted
to the COMIN Labs excellence laboratory and managed by the National Research
Agency in the “Investing for the Future” program under reference ANR-10-LABX-
07-01.

c© Springer International Publishing Switzerland 2015
D.F. Aranha and A. Menezes (Eds.): LATINCRYPT 2014, LNCS 8895, pp. 199–218, 2015.
DOI: 10.1007/978-3-319-16295-9 11



200 C. Fontaine et al.

sold on VoD platforms), while others have rather a personal value (e.g., user-
generated content). However, all digital material are associated with copyright
laws that should be respected. Indeed, even legitimate holders of copyrighted
material are typically not allowed to distribute it without an explicit permis-
sion. This type of infringement must be traceable in the sense that the culprits
should be identifiable.

One way of addressing this issue is to personalize the delivered content
through active fingerprinting techniques [9,24,26]. This process embeds a fin-
gerprint (i.e., a sequence of symbols, usually bits) into an item every time it is
sold or delivered. Such fingerprints are uniquely linked to single transactions,
thus implicitly also to single buyers. Fingerprinting can be achieved by water-
marking techniques, making the fingerprint imperceptible to human eyes and
robust with respect to some transformations (e.g., item resizing or change of
format).

A major challenge in fingerprinting is to thwart collusion attacks, in which
several owners of an item combine their legitimate copies to create an illegiti-
mate, untraceable copy before distributing it. Anti-collusion codes, like Tardos
code [30], were specifically designed to counter this threat. Indeed, if the finger-
prints embedded into items are codewords of an anti-collusion code, then the
structure of the code allows the retrieval of the identity of at least one of the
colluders.

Related Work on Fingerprinting. In this paper we consider two main types
of participants: the merchant, who retails several items, and the buyer, who
purchases (receives) an item. While we use this notation, which is standard
in the fingerprinting literature, our protocol can be extended to non-monetary
transactions. In particular, our protocol is specifically designed to be independent
of the mechanism used for the payment1. The underlying fingerprinting scheme
is usually encapsulated by running a fingerprinting protocol between the buyer
and the merchant, which should prevent both parties from cheating. However, for
most existing fingerprinting protocols, security comes at the cost of the buyer’s
privacy.

In particular, in symmetric fingerprinting protocols the merchant embeds a
unique fingerprint in each distributed copy of an item. When the buyer down-
loads such a copy, the merchant links the buyer’s identity to the unique fin-
gerprint in that copy. Apart from knowing the identity of all the buyers, the
merchant can also frame them by releasing a copy bound to them and accusing
them of illegal redistribution. Asymmetric fingerprinting protocols [24,26] solve
this weakness by generating the fingerprint through a secure bipartite proto-
col between the merchant and the buyer. At the end of the transaction, the
merchant learns a part of the fingerprint, called the halfword, which is used to
1 In particular, we need to provide the buyers with transaction-specific pseudonyms

during the buying phase of our protocol, rather than assuming than these
pseudonyms are inherited from the payment scheme. This property is achieved
through the use of a group signature scheme. The only assumption that we make on
the payment protocol is that it preserves the anonymity of the buyer.



Private Asymmetric Fingerprinting 201

trace a buyer’s identity but is not enough to frame him. Indeed, the complete
fingerprinted item is only delivered to the buyer.

However, in both the symmetric and the asymmetric cases, the merchant still
learns the identity of all buyers. An anonymous fingerprinting protocol [22,23,25]
goes a step further by ensuring the anonymity of buyers as long as they behave
honestly (i.e., they do not illegally distribute items) [1,6,28]. For instance in [25],
Pfitzmann and Waidner modified a previous construction [26] to obtain revoca-
ble anonymity, thus forbidding (honest) user profiling by the merchant. The
anonymity is guaranteed by using a trusted third party, the registration center
(RC), who knows the identity of buyers but not the items they bought. This
protocol was extended in [22] by using e-cash, so that the RC provides the buyer
with a digital coin at buyer registration. As illegal item redistribution amounts to
coin replays, which can be detected as double-spending. Camenisch [6] extended
the protocol in [25] by using group signatures. This is also the case in our app-
roach but our method is fundamentally different as it is designed to be able to
handle the structure of anti-collusion Tardos codes. Another anonymous finger-
printing protocol due to Abdul, Gaborit, and Carré [1] is based on DC-nets,
private information retrieval and group signatures. Finally more recently in [28],
the authors proposed an anonymous fingerprinting protocol using group signa-
tures, homomorphic encryption and zero-knowledge proofs. They also provided a
formal security framework for anonymous fingerprinting protocols. As our attack
model is slightly different, we have chosen to build a fully-fledged syntax and
security definitions from scratch.

Our Contributions. In this paper we combine the strong traitor-tracing capac-
ity of Tardos codes-based fingerprinting, as first exploited in [9], with black-box
cryptographic primitives providing strong buyer privacy. Our goal is to design
the first asymmetric fingerprinting protocol based on Tardos codes providing
strong privacy features. One of the main challenge here is to accommodate the
complex structure of these anti-collusion codes and achieve provable security.

Our first contribution is to formalize a full security and privacy model for
privacy-preserving fingerprinting protocols with traitor-tracing capacities
(PFP-TT), including the properties of correctness, buyer unlinkability, anti-framing
and traitor-tracing. For merchants dealing with strictly digital material, this will
not affect logistics, while providing a real asset to buyer privacy. Our second con-
tribution is the introduction of our protocol, the first PFP-TT provably attaining
these properties. Our proposal benefits from the optimal traitor-tracing proper-
ties of Tardos codes as well as from the security and privacy features provided by
other cryptographic primitives such as Non-Interactive Zero-Knowledge Proofs
of Knowledge (NIZK-PK), group signatures, symmetric encryption and oblivi-
ous transfer. Finally, our third contribution is to give exact security bounds for
each of these properties with respect to our protocol.

2 Tardos Codes

Tardos codes [30] are probabilistic anti-collusion codes particularly adapted
to the context of fingerprinting protocols. In this setting, fingerprints are



202 C. Fontaine et al.

codewords2 drawn at random according to a distribution p, which is half-sparse
and half-dense, chosen secretly at setup by the merchant. Tardos codes are the
shortest and most efficient anti-collusion codes available today. In our construc-
tion, we specifically use the improved version of binary Tardos codes due to
Škorić, Katzenbeisser and Celik [32].

A Tardos code is defined by the following parameters: the size |χ| of the
alphabet it uses, the maximum number n of buyers, the maximum size c for a
collusion of malicious buyers tolerated by the code and maximum false alarm
probability δ << 1 (denoted in the literature as ε1) for a given innocent buyer to
be wrongly accused. The design of this code is so efficient that the real risk for
a given buyer to be wrongly accused is much smaller than this loose theoretical
bound [8], leading to a very small global false alarm probability3 even when we
set δ = 0.001. The length m of the code is of the form m = Ac2�ln(1/δ)� while
the accusation threshold is of the form Z = Bc�ln(1/δ)�. In the literature, one
can find many attempts to minimize the constants A and B, mainly by improving
the accusation process. In practice in this paper, we set A = 2π2 and B = 2π
as in [32], which ensures a uniform efficient accusation, whatever the colluding
buyers’ strategy.

To our knowledge, Tardos codes have only been used in one other asymmet-
ric fingerprinting protocol, [9], which we briefly describe below. This protocol
begins with a setup phase in which, on input the parameters of the Tardos code,
a probabilistic generation algorithm outputs a vector p of size m containing iden-
tical and independently distributed (IID) random probabilities pj (more details
about their distribution are provided later). These probabilities are only known
by the merchant and kept secret from all other entities. Afterwards, a quanti-
zation is realized such that pj = Lj

N with Lj ∈ [N − 1], for an integer N . The
quantization process consists in choosing a number Lj of bits equal to 1, and a
number N − Lj of bits equal to 0 for each j. These bits are used to generate
an N ×m WORM (Write Once Read Many) memory [21], containing encrypted
watermarked bits. The merchant stores both the quantizations and the keys used
for the encryptions.

During the buying phase, the buyer and the merchant generate the specific
fingerprint embedded in the item. In particular, the buyer runs an oblivious
transfer (OT) protocol with the merchant, resulting in the recovery of m keys
(one per column of the WORM). These keys decrypt the content of m cells in the
WORM, allowing for the retrieval of several item bits. The buyer and merchant
then run a two-party protocol to embed this fingerprint into the item and let
the merchant learn the halfword. The buyer only retrieves his own copy of the
item. The halfword is stored by the merchant and used to trace misbehaving
purchasers.

Whenever a forgery is detected (i.e., the merchant finds an illegal copy of the
item), an accusation phase follows in [9], during which a score Sj is computed

2 In both [9] and in our work, only binary Tardos codes are used. We therefore just
describe the parameters used in the binary case.

3 By “global false alarm” we refer to the probability that any innocent buyer (rather
than merely a particular one) is falsely accused.



Private Asymmetric Fingerprinting 203

for each suspicious buyer, based on his halfword and the forged fingerprint Y .
Computed as in [32], this score reflects the probability that Buyer Bj colluded to
create the forgery. If Sj is greater than the accusation threshold for the halfword,
the buyer is deemed guilty, while otherwise he is assumed to be innocent. Note
that the merchant does not know the full fingerprint of the buyer, but only the
halfword, which enables him to compute only partial accusation scores. To pro-
vide a full score and a final decision, a second score has to be computed based
on the whole fingerprint. This second score is the one that truly reflects the
probability for the buyer to be guilty. To proceed with this final computation,
a judge forces the suspicious buyer to reveal his whole fingerprint (refusing to
cooperate for the buyer will lead the judge to believe that he is guilty). Thus,
in [9] the role of the judge is twofold: (1) he checks that the merchant has com-
puted the partial scores properly (i.e., without cheating), and (2) he computes
the second score that is needed to proceed to the final accusation.

3 Security Model

In this section, we first describe the system and adversary models before defining
the security and privacy requirements for privacy-preserving asymmetric finger-
printing protocols.

3.1 System and Adversary Models

System Model. We consider a system composed of the following participants.

– A set B of n buyers, denoted B1, . . . , Bn, whose identities are confirmed by a
certification authority. The buyers can receive digital content (hereafter called
an item) after conducting a transaction with a merchant.

– A single merchant who owns several items I1, . . . , I�, can create fingerprinted
copies of these items and – upon a successful transaction with a buyer – allows
the buyer to retrieve a fingerprinted copy of an item.

– A certification authority (CA) that registers buyers into the system. We
implicitly assume that the credentials of the merchant are certified, but not
necessarily by the same registration authority.

– An opening authority (OA) that may lift the anonymity of malicious buyers
upon receiving proof of their misbehavior from the merchant. Sometimes the
CA may also act as an OA, but a separation of these roles limits the possibility
of abuse.

We assume that the the merchant and buyers communicate over an anony-
mous channel (e.g., across the TOR network). Furthermore, if a buyer has to
pay for an item, we require the payment transaction to be anonymous. These
assumptions are necessary, but not sufficient. As pointed out in [18], an anony-
mous channel can only preserve privacy, but not create it. Indeed, the message
content must also ensure the sender- and receiver-anonymity. In our context, we



204 C. Fontaine et al.

are only concerned with protecting the privacy of buyers. We also require that
buyers receive their credentials from the CA via a secure (i.e., authenticated and
confidential) channel. We describe further assumptions on the watermarking and
fingerprinting process in the appendix.

Adversary Model. Each of the merchant’s items is divided in blocks of equal
size (the size depends of the medium and the watermarking scheme W). In this
work, we assume that the items all have m blocks, denoted I1, . . . , Im. If an item
is composed of less blocks, the merchant is assumed to “pad” the item.

We define the security and privacy properties of a Privacy-preserving Finger-
printing Protocol with Traitor-Tracing (PFP-TT) capacity (see also Appendix A.1)
in a game-based manner. Intuitively, a PFP-TT consists of the following algorithms.
The Setup algorithm outputs a set of public and private parameters. The Buyer
Registration algorithm, in which a buyer registers to the CA, produces as output
to the buyer his private group credentials. The Item Preparation algorithm, allows
the merchant to output a prepared item matrix τI and a proof πI that the item was
correctly prepared. The Buying algorithm, enables the buyer to retrieve a set of
keys and positions indicating the entries in the fingerprinting table τI from which
the buyer will recover the item. The merchant gets as output a halfword, enabling
him to detect misbehaving buyers. In addition, the PFP-TT also integrates a Recov-
ery algorithm, allowing the buyer to retrieve an item with a unique fingerprint as
well as an Accusation algorithm, use by the merchant to generate a list of buyers
and a proof that these buyers have misbehaved. Finally, the Opening algorithm
is run by the OA to lift the anonymity of misbehaving buyers based on the proof
that he has received from the merchant.

For the security and privacy models, we consider an adversary A who is given
access to oracles enabling him to interact with, and on behalf of, honest parties.
These oracles are sketched below and presented in detail in Appendix A.2.

Buying. We describe three oracles related to the purchase of an item. The first
oracle Buy∗ enables a malicious merchant to choose an arbitrary input input∗

and to deviate from the protocol in his transaction with a buyer. The second
one, Execute, allows an honest-but-curious merchant to run a buying protocol
with a chosen buyer for a chosen item. Finally the third oracle, BBuy, can
be used by a buyer to run a transaction with the merchant for some chosen
item.

Opening. The opening oracle allows a merchant to query the result of the Opening
algorithm, without knowing the secret information of the OA.

Corrupt. The corruption oracle returns the private key of a chosen buyer.
Collude. This oracle takes as input a set of fingerprinted copies and an arbi-

trary collusion strategy, and outputs a forged fingerprinted copy. The only
restriction applying to this oracle is the marking assumption, which states
that if all the input fingerprinted copies have for a particular block the same
fingerprint f i,j

I , then the fingerprinted block of the resulting forgery cannot
correspond to another valid fingerprinted block f ,

I �= f i,j
I .

Accuse. This oracle simulates the Accuse algorithm.



Private Asymmetric Fingerprinting 205

In the following section, we define the security game for each property in
terms of an additional oracle called Test, which changes at each game to reflect
the required security or privacy property.

3.2 Security and Privacy Requirements

In this section, we outline the security and privacy requirements that our PFP-TT
should guarantee. In each security game, the adversary is given access to a subset
of the algorithms and oracles presented in the previous section as well as to the
Test oracle. Due to space restrictions, we only informally describe the Test oracles
here and leave the full description to the Appendix.

Correctness. In this game, the challenger runs the Setup algorithm, which out-
puts the secret and public parameters spar and ppar, then proceeds to prepare
all items I using the IPrep algorithm. The adversary is given ppar and the cor-
responding proofs of preparation tuples (τI , πI) for each item I. The adversary
can adaptively query the TestCorr oracle, which runs an honest buyer-merchant
execution, and then calls the recovery algorithm. The oracle returns 0 if the
honest execution is wrongly formatted (i.e., the inputted item or buyer identi-
fiers – see Appendix A – correspond to non-existing values) or if it fails to recover
the correct set of fingerprinted blocks, while otherwise the oracle returns 1. The
adversary wins if at least one TestCorr query returns 0. We define the advantage
of the adversary A as AdvcorrectA = P[A wins].

Definition 1. A PFP-TT is (NTest, ε)-correct if any polynomial-time adversary
A against the correctness of PFP-TT making at most NTest queries to the TestCorr

oracle wins with advantage AdvcorrectA ≤ ε. Asymptotically, the protocol is NTest-
correct if any adversary A has negligible probability to win with at most NTest

queries.

Buyer Unlinkability. Following the approaches of [12] and [17], this game
considers the adversary to be a merchant, who can be honest-but-curious or
malicious. This behaviour is denoted by a flag flag ∈ {hbc,mal}. Thus, A receives
the public parameters and the merchant’s share of spar, before running IPrep
at will. If flag = hbc, the adversary may query the oracles Execute and Corrupt,
while if flag = mal, A may query Buy∗ and Corrupt. The adaptive TestBUnlink

oracle takes as input two buyers Bi and Bj , choosing consistently either the
first or the second, depending on a hidden bit b. The adversary can run Execute
(respectively Buy∗) at will with the buyer, then eventually free both buyers.
We say that the adversary A wins if he can guess the bit b. We consider the same
adversary classes as defined by Vaudenay [31]: weak adversaries cannot corrupt,
forward adversaries only follow corruption queries by further corruption queries,
and strong adversaries can cheat arbitrarily without any restrictions. We define
the advantage of the adversary is this game A as AdvID−priv

A := P[A wins] − 1
2 .

Definition 2. A PFP-TT is (NTest, ε)-buyer-unlinkable with respect to a flag-
merchant (in which flag ∈ {hbc,mal}) if any polynomial-time adversary A against



206 C. Fontaine et al.

the buyer unlinkability of PFP-TT making at most NTest queries to the TestBUnlink

oracle wins with advantage AdvID−priv
A ≤ ε. Asymptotically, the protocol is NTest-

buyer-unlinkable if it is (NTest, ν(1λ))-buyer-unlinkable.

Anti-framing. This property guarantees both anti-framing (i.e., a buyer cannot
be framed by a malicious merchant) and exculpability (i.e., a buyer cannot be
framed by a collusion of malicious buyers) by considering a generic collusion
between a malicious merchant and a set of malicious buyers. The adversary
uses the secret information of the merchant and Corrupt queries to collude with
buyers. He may also query Collude (for any of the corrupted buyers) and a
testing oracle, which allows the merchant to simulate the opening algorithm
from the OA. The objective of TestNoFrame is to verify whether A can produce
a convincing proof allowing to lift the anonymity of a buyer who is still honest
(i.e., uncorrupted) when the oracle is queried. The adversary wins if at least
one TestNoFrame query returns 1. We define the advantage of the adversary as
Advno−frame

A = P[A wins].

Definition 3. A PFP-TT is (NTest, ε)-unframeable if any polynomial-time adver-
sary A against the anti-framing of PFP-TT making at most NTest queries to the
TestNoFrame oracle wins with advantage Advno−frame

A ≤ ε. Asymptotically, the pro-
tocol is NTest-unframeable if it is (NTest, ν(1λ))-unframeable.

Traitor-Tracing. In traitor-tracing, an adversary can use the public parameters
and all the private keys of the buyers he controls to simulate transactions and
obtain legitimate fingerprinted copies FIB,I . The TestTT oracle runs the Collude
oracle on any subset of the legitimate copies, before calling the Accuse and Open
oracles (thus simulating the attempt of a merchant to trace forgeries), and wins
if the opening reveals no identity associated with one of legitimate copies in the
original input subset. The advantage of the adversary is AdvTTA = P[A wins].

Definition 4. A PFP-TT is (NTest, c, ε)-traitor-tracing if any polynomial-time
adversary A against the traitor-tracing of PFP-TT making at most NTest queries
to the TestTT oracle for at most c colluders, wins with advantage AdvTTA ≤ ε.
Asymptotically, the protocol is NTest-traitor-tracing if it is (NTest, ν(1λ))-traitor-
tracing.

4 Privacy-Preserving Asymmetric Fingerprinting Using
Tardos Codes

In order to attain the strong security and privacy requirements outlined in
Sect. 3, we introduce a new privacy-preserving fingerprinting protocol based on
Tardos codes. Our solution extends the asymmetric fingerprinting protocol based
on Tardos code due to [9]. Our protocol relies on cryptographic primitives such
as group signatures, oblivious transfer and NIZK-PK to achieve buyer unlinka-
bility. Recall that we also assume that merchants and buyers communicate over
an anonymous channel.



Private Asymmetric Fingerprinting 207

4.1 Protocol Description

Intuitively, our protocol consists of six phases: Setup, Registration, Item prepa-
ration, Buying, Item Recovery and Accusation. These phases are also depicted
in Figs. 1, 2 and 3. We proceed by describing each phase, first informally and
then formally.

Setup. The Setup phase provides relevant keys to, respectively, the Certification
and the Opening Authorities. More precisely, during the Setup procedure, the
algorithm GSKGen is run to output the master key for user registration skCA and
a trapdoor key for opening signatures skOA. These keys are given respectively to
the CA and the OA. The CA also generates the public group signature key pkG.

Registration. Buyers are then registered with the CA receiving secret keys for
a group signature scheme4. Formally, we assume that the CA keeps track of
fraudulent buyers and that he communicates with buyers via secure channels.
During the BReg procedure, when given as input the identity of a Bi, the CA
checks whether this buyer is black-listed (in this case, CA outputs a special
symbol ⊥). Otherwise, the CA transmits a private group-signature key skBi via
the secure channel.

Item Preparation. Independently of the buyer registration process, the mer-
chant runs the Preparation phase. Each item is assumed to have a uniform
length of m so-called blocks (shorter items are padded to this length). During
item preparation, the merchant generates the parameters for the Tardos codes
(namely the false alarm rate δ – which directly gives the bound for the max-
imum number c of detected colluders). The value δ must be smaller than a
maximum false-alarm rate certified by the CA. Subsequently, for each item, the
merchant generates a Write-Once-Read-Many matrix (WORM), in which each
entry (i, j) corresponds to the encryption of a fingerprinted copy of the i-th
block of the item. More precisely the block is fingerprinted with either a 0 or a 1
symbol, depending on the identically and independently at random probabilities
pi. Finally, the merchant proves that the preparation process was properly done
by computing a NIZK-PK [3,15]. Finally, the WORM and the NIZK-PK are
published as depicted in Fig. 1.

Formally, during the item preparation procedure IPrep, the merchant first
generates the parameters of the Tardos code: c, Z and δ. These parameters
depend on the maximum item length m. Afterwards, the merchant draws the
vector of probabilities p := p1, . . . , pm. Then, for each item It the merchant
proceeds by: (1) generating the bits f i,j

It
for i ∈ {1, . . . , m} and j ∈ {1, . . . , N},

which are stored in an N × m matrix FIt
, (2) generating N × m symmetric-

encryption keys ki,j
It

of an IND-CPA-secure symmetric encryption scheme, storing
them in a matrix κIt

for item It, (3) creating the WORM τIt whose entries fbi,j
It

=

4 Group signatures [2,4,10] provide anonymity to buyers for each transaction regard-
less of whether or not our protocol is coupled with an anonymous electronic payment
mean. Furthermore, they enable the OA to trace signatures back to the signers during
the Accusation phase.



208 C. Fontaine et al.

Fig. 1. The basic PFP-TT mechanics, including (a) item fingerprinting, (b) item prepa-
ration, (c) the transaction itself between the merchant and the buyer and (d) item
recovery.

Enc(ki,j
It

,W(Ii
t , f

i,j
It

)) are the encryption, under one of the generated keys, of a
fingerprinted block of the item with a specific fingerprint bit, and (4) generating
a NIZK-PK5, proving that the Tardos codes parameters are generated genuinely,
that δ < δmax, and that the WORM is correctly set-up. This proof is denoted as
πIt . For each item, the WORM and the proofs are published. We depict the item
fingerprinting, item preparation, item transaction and item recovery in Fig. 1.

Buying. The buying process is one of the most fundamental phases of our pro-
tocol and it consists of two parts. The first part consists in the generation of
the transaction information while during the second part, the buyer and mer-
chant alternatively exchange the roles of sender and receiver as they run several
sequential rounds of oblivious transfer (OT) [4,5,7,11,13,14,19,20,27] (for a
total of m rounds). More precisely, the buyer retrieves a sequence of m tuples
of keys and WORM positions for an item while the merchant gets to learn half
of the indices recovered by the buyer, which make up the halfword. To prevent
attacks in which the buyer inserts a false key into the OT, the merchant will link
5 This NIZK is a proof of correctness in which the witness consists of the maximum

number c of detected colluders, the probability δ that an innocent is wrongly accused,
the accusation threshold Z, and probabilities pi for i ∈ {1, . . . , m}. The statement
proved by the NIZK-PK consists of the following conditions: m = 2πc2[ln 1

δ
] and that

pi = (sin ri)
2 for some random ri uniformly picked in a specific interval (see [9]).



Private Asymmetric Fingerprinting 209

at each transaction, the value of the key to a randomly generated nonce, which
will be recovered together with the halfword.

In our protocol, these two objectives are achieved by interleaving, respec-
tively, rounds of 1-out-of-N and 1-out-of-2 oblivious transfer as follows. First,
the buyer retrieves, in a 1-out-of-N OT round, a tuple key/nonce, the first input
being from the corresponding column of the WORM while the second is gener-
ated at random by the merchant at each transaction (here the merchant plays
the role of the sender in the OT while the buyer is the receiver). At the end of
this OT round, we interleave a round of 1-out-of-2 OT, in which the merchant
recovers either the index, the key and the random nonce retrieved by the buyer
as well as a group signature on the key and the transaction number, or a bogus
tuple of values of the same format. These inputs are randomized by the buyer
before being inputted to the OT protocol. Thus, the merchant will not learn
until he receives the input whether it was genuine (in which case the key/nonce
values will be the correct ones) or not. This process continues by interleaving
1-out-of-Nand 1-out-of-2 OT rounds until respectively all the m index-key tuples
and the halfword are recovered.

Formally, during the IBuy procedure, the merchant and buyers communi-
cate via an anonymous and one-sided-authenticated channel6. Whenever a buyer
Bi wants to buy an item It from the merchant, the latter sends the current
timestamp and a randomly chosen transaction number NT . The buyer signs
the message consisting of those parameters and the requested item, by using
his private group key skBi . He sends the item name and this signature σBi

It
to

the merchant, who verifies it. If the verification fails, the merchant aborts by
outputting the error symbol ⊥.

Then the merchant generates N ∗ m random numbers {Ri,j}, for i ∈ {1, . . . ,
N} and j ∈ {1, . . . , m}. The buyer first runs a 1-out-of-N OT protocol, retrieving
a key ki,1

I�
and the corresponding random value Ri,1. Afterwards the merchant

runs a 1-out-of-2 OT with the buyer, retrieving either (1) a tuple (ki,1
I�

, Ri,1, σi),
such that σi is a group signature on the tuple (ki,1

I�
, NT ), in which NT was

the transaction number signed by the buyer before, or (2) a random value r
respecting the appropriate format. The merchant verifies the signature, before
checking that the tuple (ki,1

I�
, Ri,1) is consistent with his input for the previous

OT round. If both checks succeeds, the index i is added to the halfword Hw.
Otherwise, the halfword Hw remains unchanged. This process is repeated until m
keys have been retrieved by the buyer. The merchant checks at regular intervals
during the retrieval process that he has retrieved about half the indices of the
fingerprint blocks. If this condition is not satisfied, he aborts the transaction.
The frequency of these checks depends on m. Since m is presumably large, it
is reasonable to expect that the number of recovered bits in the halfword is
about a half of the total number of keys the buyer has recovered. At the end of
6 For the purpose of attaining the exact bounds of the Theorem in Sect. 4.2, we addi-

tionally assume that buyers only have black-box access to the protocols during the
buying process. For a detailed discussion of this assumption, see the remark on
privacy versus traitor-tracing.



210 C. Fontaine et al.

this transaction, the buyer has recovered a set KIB,I of size m whose elements
are tuples of the form (i, ki,j

II
)m
j=1 while the merchant has retrieved a set Hw of

indices.

Recovery. The buyer will use the indices and keys he has recovered in order
to obtain a fingerprinted copy of the item by using the WORM published for
that item. Specifically, the keys are used to decrypt m cells of the WORM, with
exactly one entry on each column. Formally, given the keys and the index sets,
the buyer can recover a fingerprinted item FIB,I .

Accusation and Opening. If the merchant suspects that a copy of a specific
item is a forgery, he computes accusation scores for each transaction of that
item. If the score exceeds the accusation threshold, this indicates that the signer
of the transaction signature has colluded to forge the item. The transaction
signatures, together with the signatures retrieved with the halfword Hw, for
each such score, together with a NIZK-PK that the scores were well computed,
are forwarded to the OA. If the NIZK-PK verifies, the OA opens the forwarded
group signatures, retrieving the identities of the signers. In our protocol, the
use of the NIZK-PK effectively replaces the first role of the judge in the work
of Charpentier and co-authors [9], mentioned in Sect. 2, as it ensures that the
merchant cannot cheat during the computation of this score or arbitrary lift the
anonymity of buyers. Note that the second role of the judge, which consists in
computing the full scores, remains and is accomplished by the OA in our case
(but this could also be delegated to another trusted entity).

Formally, given a forged item FI∗B∗,It
of an item It, during the Accuse phase,

the merchant computes the Tardos scores Sk for each transaction k made for
It, comparing them with the threshold for the halfword. For each score above
this threshold, the merchant adds to a list L the signature σB∗

It
received during

that transaction. The merchant proves using a NIZK-PK the correctness of the
accusation scores7. Finally, the merchant forwards the index of the forged item
It, the list of signatures L, and the proof πM to the OA.

Then, during the Open phase, if the proof verifies, then the OA uses the
master opening key skOA to lift the anonymity of the signatures contained the
list L. If the signed message opens to an item that is not the same as the item
forwarded by the merchant, and for which the computation was performed, then
the OA does not return the output. Depending on the practical deployment of
our protocol, the merchant may also be blacklisted if he misbehaves.

Remark: Privacy Versus Traitor Tracing. The probabilistic way in which
we run the 1-out-of-2 OT protocol is designed to preserve both the buyer’s
privacy (and ensuring anti-framing) – by not revealing more than the strictly
necessary indices of a buyer’s copy of an item – and the traitor-tracing capacity
7 The witness for this NIZK-PK consists of the transaction transcripts for the guilty

parties (including the group signatures for the 1-out-of-2 OT rounds), their scores
(computed as in [32]) and the threshold. The NIZK-PK statement is that the scores
are correctly computed, that they are higher than the threshold, and that the signed
messages sent along with the proof are indeed the ones associated to the transactions.



Private Asymmetric Fingerprinting 211

Fig. 2. System interactions: Setup, Buyer registration and Item preparation.

of Tardos codes – by giving the halfword to the merchant. However, the fact
that the merchant does not learn whether the received input (i.e., the index and
verifiable proof) will be the real or the simulated input until he verifies them
means that with a non-negligible probability, the merchant will recover less than
exactly half of the indices. However, the bounds we give in Sect. 4.2 only hold if
the merchant can recover at least half of these positions. In practice, this could
be ensured by allowing the buyer to only access in a black-box manner to the
buying process (i.e., using a trusted but obfuscated application), and additionally
authorizing the merchant to request further OT rounds by proving to the CA
that he has recovered less than the required amount of information. Another way
to ensuring this is by having the trusted application running a different type
of protocol, in which instead of 1-out-of-2 OT, the merchant simply specifies
m/2 positions for which the indices are returned in black-box manner, without
revealing the request or the output to the buyer. In addition, note that if the
merchant receives slightly less than the halfword, the traitor-tracing bound is
only marginally decreased. However, for the statements in Sect. 4.2 we make the
assumption that the merchant always recovers the entire halfword (abstracting
away from the method ensuring this).

4.2 Security and Privacy Properties

Due to space restrictions, we only give here the theorem including the security
properties of our protocol, leaving the formal proofs for the full version of the
paper.

Theorem 1. Let our protocol be implemented with a group signature scheme
GSScheme= (GSKGen, Join, Sign, Vf, Open, Revoke), a symmetric encryption
scheme EScheme= (EKGen, Enc, Dec), a certification scheme Cert = (CSign, CVf),
and a 1-out-of-N OT protocol. We also assume the existence of: a one-side authen-
ticated and one-side anonymous channel between the merchant and each buyer, a



212 C. Fontaine et al.

Fig. 3. System interactions: item transaction, item recovery, accusation and opening.

secure channel between the CA and the buyers, and of two NIZK-PKs NIZK-PK1,
and NIZK-PK2 (for proving respectively (1) that prepared item matrices are well-
formed and (2) the correctness of the accusation-score computation). The following
properties hold:

Correctness. For every (NTest, ε)-correctness adversary A there exist: an adver-
sary A1 against the correctness of GSScheme, an adversary A2 against the
correctness of Cert for the CA, an adversary A3 against the correctness of
the symmetric encryption scheme, an adversary A4 against the correctness of
the OT scheme, and adversaries A5 against the correctness of the NIZK-PK1,
such that:

ε ≤
5∑

i=1

AdvcorrectnessAi
.

Buyer Unlinkability. For every (NTest, ε)-strong-buyer-unlinkability adversary A
against our protocol, there exists: an adversary A1 against the full anonymity
of GSScheme, an adversary A2 against the anonymity of the merchant-buyer
communication channel, an adversary A3 against the security of the CA-
buyer channel, and adversary A4 against the soundness of the NIZK-PK1,
such that:

ε ≤ NTestAdv
full−anon
A1

+ NTestn(AdvanonA2
+ AdvsecA3

) + 
AdvsndA4
.

Anti-Framing. For any (NTest, ε)-anti-framing adversary A against our proto-
col, there exist: an adversary A1 against the full-traceability of GSScheme,
and adversaries A2 and A3 against the soundness of respectively NIZK-PK1

and NIZK-PK2, such that:

ε ≤ Advfull−trace
A1

+ 
(AdvSndA2
+ AdvSndA3

) + NTestnδ.



Private Asymmetric Fingerprinting 213

Traitor-Tracing. For any (NTest, c, ε)-traitor-tracing adversary A against our pro-
tocol there exist: an adversary A1 against the full-traceability of GSScheme
and an adversary A2 against the soundness of NIZK-PK2 such that:

ε ≤ Advfull−trace
A1

+ NTestAdv
Snd
A2

.

5 Conclusion

The work presented in this paper is the first step towards integrating strong
privacy features into fingerprinting protocols. Our solution extends the original
asymmetric fingerprinting protocol of Charpentier, Fontaine, Furon and Cox by
adding buyer-unlinkability, while preserving a high traitor-tracing probability by
using Tardos codes. Furthermore, we formally define the properties of correct-
ness, buyer-unlinkability, as well as anti-framing and traitor-tracing for PFP-TT,
finally giving exact bounds for the security and privacy properties of our proto-
col. We are currently implementing our protocol in order to evaluate its practical
efficiency as well as its scalability.

References

1. Abdul, W., Gaborit, P., Carré, P.: Private anonymous fingerprinting for color
images in the wavelet domain. In: Proceedings of SPIE Multimedia on Mobile
Devices, vol. 7542 (2010)

2. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) Advances of Cryptology EUROCRYPT 2003. LNCS, vol.
2656, pp. 614–629. Springer-Verlag, Heidelberg (2003)

3. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations. In: Proceedings of the Annual Symposium on the Theory of Computing
(STOC), pp. 103–112 (1988)

4. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

5. Brassard, G., Crépeau, C., Robert, J.M.: All-or-nothing disclosure of secrets. In:
Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–238. Springer,
Heidelberg (1987)

6. Camenisch, J.L.: Efficient anonymous fingerprinting with group signatures. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 415–428. Springer,
Heidelberg (2000)

7. Camenisch, J.L., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer,
Heidelberg (2007)

8. Cérou, F., Furon, T., Guyader, A.: Experimental assessment of the reliability for
watermarking and fingerprinting schemes. EURASIP J. Inf. Secur. 2008, 12 (2008).
Article ID 414962

9. Charpentier, A., Fontaine, C., Furon, T., Cox, I.: An asymmetric fingerprinting
scheme based on tardos codes. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.)
IH 2011. LNCS, vol. 6958, pp. 43–58. Springer, Heidelberg (2011)



214 C. Fontaine et al.

10. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

11. Chu, C.-K., Tzeng, W.-G.: Efficient k -out-of-n oblivious transfer schemes with
adaptive and non-adaptive queries. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol.
3386, pp. 172–183. Springer, Heidelberg (2005)

12. Gambs, S., Onete, C., Robert, J.: Prover anonymous and deniable distance-
bounding authentication. In: Proceedings of ACM AsiaCCS 2014, Accepted for
publication. ACM Press (2014)

13. Green, M., Hohenberger, S.: Blind identity-based encryption and simulatable obliv-
ious transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
265–282. Springer, Heidelberg (2007)

14. Green, M., Hohenberger, S.: Universally composable adaptive oblivious transfer.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 179–197. Springer,
Heidelberg (2008)

15. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006)

16. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

17. Hermans, J., Pashalidis, A., Vercauteren, F., Preneel, B.: A new RFID privacy
model. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 568–
587. Springer, Heidelberg (2011)

18. Kohlweiss, M., Maurer, U., Onete, C., Tackmann, B., Venturi, D.: Anonymity-
preserving public-key encryption: a constructive approach. In: De Cristofaro, E.,
Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 19–39. Springer, Heidelberg
(2013)

19. Lindell, A.Y.: Efficient fully-simulatable oblivious transfer. In: Malkin, T. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 52–70. Springer, Heidelberg (2008)

20. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Proceedings of the
12-th ACM-SIAM Symposium on Discrete Algorithms (SODA 2001), pp. 448–457.
SIAM (2001)

21. Oprea, A., Bowers, K.D.: Authentic time-stamps for archival storage. In: Backes,
M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 136–151. Springer, Hei-
delberg (2009)

22. Pfitzmann, B., Sadeghi, A.-R.: Coin-based anonymous fingerprinting. In: Stern,
J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 150–164. Springer, Heidelberg
(1999)

23. Pfitzmann, B., Sadeghi, A.-R.: Anonymous fingerprinting with direct non-
repudiation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 401–
414. Springer, Heidelberg (2000)

24. Pfitzmann, B., Schunter, M.: Asymmetric fingerprinting. In: Maurer, U.M. (ed.)
EUROCRYPT 1996. LNCS, vol. 1070, pp. 84–95. Springer, Heidelberg (1996)

25. Pfitzmann, B., Waidner, M.: Anonymous fingerprinting. In: Fumy, W. (ed.) EURO-
CRYPT 1997. LNCS, vol. 1233, pp. 88–102. Springer, Heidelberg (1997)

26. Pfitzmann, B., Waidner, M.: Asymmetric fingerprinting for larger collusions. In:
Proceedings of the 4-th ACM conference on Computer and Communications Secu-
rity (ACM CCS 1997), pp. 151–160. ACM Press (1997)

27. Rabin, M.: How to exchange secrets with oblivious transfer. Harvard University
Technical Report and IACR Eprint archive, report 187/2005 (1981). http://eprint.
iacr.org/2005/187

http://eprint.iacr.org/2005/187
http://eprint.iacr.org/2005/187


Private Asymmetric Fingerprinting 215

28. Rial, A., Deng, M., Bianchi, T., Piva, A., Preneel, B.: A provably secure anonymous
buyer-seller watermarking protocol. IEEE Trans. Inf. Forensics Secur. 5, 920–9310
(2010). IEEE

29. Stern, J.P.: A new and efficient all-or-nothing disclosure of secrets protocol. In:
Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 357–371. Springer,
Heidelberg (1998)

30. Tardos, G.: Optimal probabilistic fingerprint codes. In: Proceedings of the 35-th
ACM Symposium on Theory of Computing (STOC 2003), pp. 116–125. ACM Press
(2003)

31. Vaudenay, S.: On privacy models for RFID. In: Kurosawa, K. (ed.) Advances in
Cryptology–ASIACRYPT 2007. LNCS, vol. 4833, pp. 68–87. Springer, Heidelberg
(2007)

32. Škorić, B., Katzenbeisser, S., Celik, M.: Symmetric tardos fingerprinting codes for
arbitrary alphabet sizes. Des. Codes Crypt. 46, 137–166 (2008). Springer-Verlag

A The Full Security Model

A.1 Watermarking and Fingerprinting Assumptions

Watermarking and fingerprinting assumptions. In our context, a protocol
is run between a buyer and the merchant each time the former wants to recover a
specific item. At the end of the protocol, the buyer can retrieve the item such that
each block of the item is fingerprinted with exactly one bit. Thus, each buyer’s
version of the item is personalized with a unique fingerprint. We assume that
the fingerprint is embedded in the item by means of a watermarking technique,
which is imperceptible to humans and robust with respect to certain attacks.
More specifically:

1. The watermarking function, denoted by W, does not allow an adversary to
recover even a single bit of the fingerprint.

2. The watermarking technique is robust with respect to signal attacks, such as
compressing, printing, scanning, resizing or cropping of the digital medium
representing the item.

3. A collusion of malicious users can combine parts of their copies to create
a forged item. However, they are restricted by the fact that if they have
the same fingerprint block recurring at the same position in all their water-
marked copies, they cannot output a copy in which the fingerprint bit at
that specific position is different than the one they have in all their copies.
This well-known assumption is called the marking assumption in the litera-
ture. Note that, if the collusion only involves a single buyer, this assumption
precludes this buyer from producing a different (forged) fingerprint of the
item.

In a collusion attack, several buyers combine parts of the legitimate fingerprinted
items they own in order to forge an illegitimate copy. More precisely, they may



216 C. Fontaine et al.

combine the bits of their watermarks in an arbitrary manner, even adding era-
sures or errors, under the sole restriction of the marking assumption (see above).
Examples of collusion attacks include the majority and minority rules, as well
as the random choice. In the majority rule, the colluders choose for each block
the most frequent fingerprint block in their copies (without necessarily knowing
the value of this block) while in the minority rule, the less frequent fingerprinted
block is chosen. Finally, in the random choice strategy, a random fingerprint is
chosen amongst the available ones. A quite different strategy is a fusion of blocks.
In this attack, the marking assumption has for consequence that for some blocks
the fingerprint generated will be an error or an erasure, but never a valid finger-
printed block. The objective of the Tardos code is precisely to guarantee that
in case of a collusion, with high probability at least one of its member will be
traced.

A.2 A Formal Description of PFP-TT Schemes

Definition. A Privacy-preserving Fingerprinted Protocol with Traitor-Tracing
capacities is a tuple of algorithms PFP-TT = (Setup, BReg, IPrep, IBuy, IRecover,
Open) such that:

Setup: when given as input a security parameter 1λ, this algorithm returns
secret parameters spar (to be divided between the CA and the OA) and the
public parameters ppar that are available to all parties. We assume that the
remaining algorithms all implicitly take as input the public parameters ppar.

BReg: when given as input spar and a buyer’s identity B, the buyer registration
algorithm outputs either a secret key skB for B, or ⊥.

IPrep: when given as input an item I, the item preparation algorithm out-
puts the prepared item τI (in our case, a Write-Once-Read-Many WORM
table [21]), a proof πI that the item has been correctly formed, a matrix of
keys κII

and a matrix FI of fingerprints used for the preparation.
IBuy: the interactive buyer-merchant algorithm takes as input an item I, the

secret key skB of a buyer, and a key-matrix κII
generated at item preparation.

The output is a set KIB,I and some auxiliary information auxB,I (in our case
a halfword).

IRecover: when given as input the key set KIB,I , the prepared item τI and
the proof πI , the recovery algorithm returns a fingerprinted item FIB,I or the
symbol ⊥.

Open: when given as input a (merchant-generated) proof πM and spar, this
algorithm outputs a set of buyer identities, denoted {Bi}d

i=1 or an error
symbol ⊥. The value d is at most equals to the number of buyers c running
a collusion attack.

Accuse: the accusation algorithm takes as input a fingerprinted copy FI, and
the set of all auxiliary information auxB,I obtained from honest transactions,
and outputs a proof π.

Formal Oracles. Adversary interaction is captured by the following oracles:



Private Asymmetric Fingerprinting 217

Buy∗(I,B, input∗): This oracle allows an adversary (in particular a malicious
merchant) to deviate from protocol and execute the IBuy algorithm for item
I and buyer B with malicious input input∗. It returns the full output of the
IBuy algorithm and the transcript of the transaction.

Execute(I,B): This oracle takes as input an item identifier I and a buyer iden-
tifier B, and simulates the execution of the IBuy algorithm for buyer B and
item I for an honest merchant input. The oracle outputs the two values pro-
duced by the buying algorithm: the keys KIB,I and the auxiliary information
auxB,I , as well as the transcript of the transaction.

BBuy(I, skB): This oracle takes as input a buyer’s secret key skB and an item I
and runs the IBuy algorithm, returning KIB,I and the full transcript.

Open(πM): This oracle takes as input a proof πM and runs the opening algo-
rithm Open on input πM and the secret parameters spar, outputting a set of
identities {Bi}d

i=1. The oracle Open returns this set of identities.
Corrupt(B): This oracle takes as input a buyer identifier B and outputs the

buyer’s secret key skB .
Collude({FIBi,I}k

i=1, strategy): This oracle takes as inputs a set of at most k ≤ c
legitimately-bought fingerprinted copies {FIBi,I}k

i=1, and a strategy strategy
outputs a forged fingerprinted copy, FIB̃ ,̃I . The strategy can be arbitrary with
the following restriction: if for some block i of the item the recovered finger-
printed block fbi,j

I of all the colluding users embeds the γ-bit fingerprint f i,j
I ,

then the corresponding fingerprinted block of the forged item FIB∗,I∗ must
embed the fingerprint f i,j

I (this is a consequence of the marking assumption).
Accuse(FI,): This oracle runs Accuse on input the fingerprinted copy FI,,a matrix

of keys κII
, and a matrix of fingerprints FI , outputting the proof π.

The Test oracles We proceed by listing the formal Test oracles for each property.

Correctness: when given as input a product identifier I and a buyer identifier B,
TestCorr runs Execute(I,B), outputting the keys KIB,I = {(j, ˜

ki,j
I }j∈{1,...,N},

for consecutive values of i (if the values are not consecutive or have the wrong
format, TestCorr returns 0). The algorithm IRecover is subsequently run on
input the keys KIB,I , the table τI , and the proof πI , outputting the series
of blocks FIB,I (else, if ⊥ is output, the oracle TestCorr returns 0). The oracle
tests if for each entry [FIB,I ]i,j , it holds that [τI ]i,j = P([FIB,I ]i,j , [κII

]i,j) for
some one-way trapdoor preparation function P. If this last check fails, the
oracle outputs 0 while otherwise it outputs 1.

Buyer-unlinkability: when given as input two buyer identities Bi and Bj , and
a text parameter text ∈ {draw, free}, the TestBUnlinkb oracle, which keeps an
internal database DTestBUnlink , consistently associates either the first or the
second input buyer identities with a handle handle depending on an input bit
b. In this mode, once the TestBUnlink(·, ·, draw) query is run, the adversary may
interact with the anonymized buyer by means of the Execute and respectively
Buy∗ oracles (we modify these oracles to take as input the handle handle
instead of the identifier of the buyer). The adversary may also choose to
interact with other buyers or corrupt them. Finally, the adversary will free



218 C. Fontaine et al.

the two buyers by means of a TestBUnlink(·, ·, free) query. If the adversary
queries the Test oracle with text input draw while the current handle has
not been released, this oracle returns ⊥. Similarly, trying to free a handle
while no handle is currently associated to any buyer will yield the output ⊥.

Anti-framing: when given as input a proof πM, TestNoFrame runs the Open oracle
as a black box, receiving the set of identities {Bi}d

i=1. The oracle checks
if at least one identity output by Open is uncorrupted at the time of the
TestNoFrame query. If this statement is true, the oracle outputs 1 while other-
wise it returns 0.

Traitor-tracing: when given as input a set of honest fingerprinted copies {FIBi,I}k
i=1

and a strategy strategy, TestTT internally runs Collude, outputting a forged
copy FI,. Subsequently, it runs Accuse on input FI,, receiving the proof π.
This proof is given as input to the Open oracle, which returns a set of iden-
tities {Bj}d

j=1. If there exists some buyer B∗ such that one of the inputs
was FIB∗,I and B∗ is amongst the outputs of the Open query, then the oracle
TestTT returns 1 and the proof π, while otherwise it returns 0.



Anonymous Authentication with Shared Secrets∗

Joël Alwen1, Martin Hirt1, Ueli Maurer1, Arpita Patra2,
and Pavel Raykov1(B)

1 Department of Computer Science, ETH Zurich, Zürich, Switzerland
{alwenj,martin.hirt,ueli.maurer,pavel.raykov}@inf.ethz.ch

2 Department of Computer Science and Automation,
Indian Institute of Science, Bangalore, India

arpitapatra10@gmail.com

Abstract. Anonymity and authenticity are both important yet often
conflicting security goals in a wide range of applications. On the one hand
for many applications (say for access control) it is crucial to be able to
verify the identity of a given legitimate party (a.k.a. entity authentica-
tion). Alternatively an application might require that no one but a party
can communicate on its behalf (a.k.a. message authentication). Yet, on
the other hand privacy concerns also dictate that anonymity of a legit-
imate party should be preserved; that is no information concerning the
identity of parties should be leaked to an outside entity eavesdropping
on the communication. This conflict becomes even more acute when con-
sidering anonymity with respect to an active entity that may attempt to
impersonate other parties in the system.

In this work we resolve this conflict in two steps. First we formalize
what it means for a system to provide both authenticity and anonymity
even in the presence of an active man-in-the-middle adversary for vari-
ous specific applications such as message and entity authentication using
the constructive cryptography framework of [Mau11,MR11]. Our app-
roach inherits the composability statement of constructive cryptography
and can therefore be directly used in any higher-level context. Next we
demonstrate several simple protocols for realizing these systems, at times
relying on a new type of (probabilistic) Message Authentication Code
(MAC) called key indistinguishable (KI) MACs. Similar to the key hid-
ing encryption schemes of [BBDP01] they guarantee that tags leak no
discernible information about the keys used to generate them.

1 Introduction

1.1 Anonymous Authentication

Anonymity and authenticity are both important yet often conflicting security
goals in a wide range of applications. On the one hand “entity authentication”
is a core functionality needed for implementing access control both in physical

∗ The unabridged version of this paper appears in [AHM+14a].
A. Patra—Work done while the author was at ETH Zurich.

c© Springer International Publishing Switzerland 2015
D.F. Aranha and A. Menezes (Eds.): LATINCRYPT 2014, LNCS 8895, pp. 219–236, 2015.
DOI: 10.1007/978-3-319-16295-9 12



220 J. Alwen et al.

and digital systems. Moreover for many applications we are also required to
authenticate what is being said, a security goal more commonly referred to as
“message authentication”. In both cases an implicit assumption underlying the
systems is that each user has some unique identifying information associated
with them which they can use either to prove who they are or what they are
saying.

On the other hand, in a world where privacy matters, providing identify-
ing information over public channels leads to an inherent conflict between the
desire for authenticity (the property that no one else can claim to be you) and
anonymity (the guarantee that external parties learn nothing about your iden-
tity). The problem is especially acute in light of the fact that many authentica-
tion protocols for physical access control are implemented using RFID tokens,
where the communication can easily be eavesdropped, and the tokens can often
be accessed wirelessly from a significant distance and without the consent or
even awareness of the owner. Moreover mobile phones, constantly communicat-
ing over the public radio spectrum, also make use of uniquely identifying infor-
mation for authenticating their communication with the network. Even on the
internet when using a proxy or onion routing service to hide one’s IP address a
user interacts with a service requiring some form of authentication (say a VPN)
may still not enjoy anonymity if the service does not make use of an anonymous
authentication protocol.

In particular we stress that using cryptographic tools (to achieve secrecy and/
or authenticity) over an anonymous channel generally destroys the anonymity of
the channel. For example, if a challenge-response protocol based on a MAC and
shared secret keys is used for client authentication, then the MAC values (aka
tags) may leak partial information about the key, which means that an adversary
can recognize that the same client is involved in different sessions, i.e., one loses
unlinkability and hence also anonymity.

The goal of this work is to resolve this conflict allowing for the design of sys-
tems which provably guarantee both properties regardless of the greater context
in which they are used.

1.2 Our Contributions

On the highest level we achieve our stated goal via two phases. First we cleanly,
formally and composably capture what it means for a system to provide both
authenticity and anonymity even in the presence of an active man-in-the-middle
adversary for an array of specific applications such as message and entity authen-
tication. Next we prove the security of several simple protocols for realizing these
systems, at times relying on a new type of Message Authentication Code (MAC)
introduced in [AHM+14b].

Formalizing Anonymous Authentication. In more detail, the first contribution
of this work is to intuitively model a variety of resources providing anonymity.
We do this in the constructive cryptography framework of [Mau11,MR11]1,
1 One could also give an equivalent formulation in the UC framework.



Anonymous Authentication with Shared Secrets 221

inheriting its general composability guarantees. Concretely we define anonymous
variants of insecure channels (FA-IC), authenticated channels (FA-AC), secure
channels (FA-SC) and entity authentication (FA-EA). Each primitive is modelled
as an ideal resource which explicitly shows the abilities and limits of an active
man-in-the-middle adversary. For example, the ideal resource of an anonymous
secure channel allows a sender to send a message to a receiver such that the
adversary learns only the length of the message. The only actions permitted to
the adversary are to cause delivery of any message previously sent by a sender
(but without learning either the contents of the message or the identity of its
sender).

Constructions. The second contribution is to prove security for various con-
structions of stronger anonymous primitives from weaker ones (see Fig. 1 for the
overview). In particular, we build anonymous variants of authenticated channels
from insecure channels (and a pairwise shared-key setup denoted with K), entity
authentication from authenticated channels (and a type of insecure broadcast
channel denoted with FIB) and secure channels from authenticated channels.
While most of the constructions are relatively immediate the proofs are often
significantly more involved and it is these we consider to be the second contribu-
tion of this work. Some of the information theoretic constructions are decidedly
unpractical (and should be viewed more as feasibility results) but we also pro-
vide several optimizations decreasing both communication and computational
complexity. Combined with the pseudo-random function (PRF) based MAC
of [AHM+14b] these give rise to practically interesting protocols for constructing
anonymous message authentication and entity authentication from anonymous
insecure channels and insecure broadcast in the shared key setting.

All computational constructions in this work rely on a novel primitive called
key indistinguishable (KI) message authentication codes (MAC). Similar to the
notion of a key hiding public key encryption scheme given in [BBDP01] these are
(probabilistic) MACs such that tags generated with different keys cannot be dis-
tinguished from tags generated with the same key.2 This notion was introduced
in [AHM+14b] where a variety of constructions are given based on both black-
box primitives (such as PRFs, weak PRFs and Hash Proof Systems [HPS]) as
well as concrete number theoretic assumptions (such as Decisional Diffie-Hellman
[DDH], Learning with Errors [LWE] and Learning Parity with Noise [LPN]).

Deterministic Devices. We remark that while most of our protocols require par-
ties to be probabilistic (which may be a problem for extremely light-weight
computing devices) they can easily and generically be translated into stateful
but deterministic parties by using a PRG.3

2 Or more generally using the same or different states.
3 In particular the security proof for the probabilistic setting then automatically car-

ries over (at least in a computational sense) by preceding the proof with a hybrid
argument replacing the output of each call to the PRG with fresh random numbers.



222 J. Alwen et al.

FA-IC FIB FA-EA

K FA-AC FA-SC

Th. 1

Th. 2

[AHM+14a]

[AHM+14a]

+ +

Fig. 1. The overview of resources and relations among them. The single arrow ( )
denotes computational constructions, while double arrow ( ) denotes information-
theoretic constructions.

Robustness to Side-Channels. An important consequence of how we define these
resources is that we capture various types of information which may potentially
be available to an adversary through side-channels. Technically this is done by
providing extra capabilities and information to the distinguisher4 D whose goal
it is to tell the construction and ideal resource apart. In particular while no
information concerning the identities of anonymous parties leaks on the adver-
sarial interface of a given resource, D can trivially obtain such information from
say the receivers interface. Thus D can make use of such information to aid in
its task. In other words even an adversary equipped with such a side-channel
learns no more from its interface to the real communication resource used to run
the protocol than it does from the side-channel and the adversarial interface to
the ideal resource. It is this property which is central to the intuitive claim of
composability for all our constructions.5

Besides side-channels leaking information related to identities, we model
another important type of side-channel that concerns the relative order in which
parties respond. In particular, responses are always initiated at the behest of D.
This is of particular interest in a setting with mobile phones of differing compu-
tational power or RFID tags positioned at differing distances from the adversary.

Exact Security. Similar to [AHM+14b], all reductions we give come with an
exact security analysis (as opposed to asymptotic ones). We see at least two
advantages in taking this approach. First, such results greatly facilitate compar-
ing the quality/efficiency trade-off obtained via different constructions especially
when based on the same underlying cryptographic assumptions. A somewhat less
common but equally relevant advantage is that such statements make explicit
the benefits obtained by enforcing constraints on the adversary through imple-
mentation choices. Take for example a protocol whose security degrades say in
q/ |M|: the number of times an adversary can interact with a client divided by
the size of the messages space supported by a MAC. Normally such a protocol
4 called the “environment” in the language of UC.
5 And more abstractly, this property plays an important role in the composition the-

orem of [Mau11].



Anonymous Authentication with Shared Secrets 223

would require a MAC with at least 160-bit messages to be considered secure.
However, if implemented on hardware which guarantees failure after a limited
number of interactions, say q ≤ 210 (a common assumption in the RFID setting)
the MAC now needs only to support 100-bit messages potentially reducing the
hardware costs of the resulting implementation significantly.

1.3 Related Work

We provide an overview of the related literature which can, roughly speaking, be
divided up into those concerned with generic entity authentication, anonymous
entity authentication for RFIDs and anonymous authentication for mobile phone
networks.

Entity Authentication. A large body of work going back almost 30 years has
considered a range of security notions for unilateral entity authentication which,
broadly speaking, consist of an “information collection” phase followed by an
“attack” phase. An elegant overview elucidating their relationships can be found
in [MT12]. Borrowing the language of [MT12] we can informally characterize a
given security notion using three types of oracles C, S and T , namely the honest
client (prover), server (verifier) and a transcript oracle6 respectively. A partic-
ular security notion is then defined via two subsets of these oracles indicating
the resources available to the adversary during the two respective phases. For
example ({C}, {S})-auth security, traditionally referred to as active security,
allows the adversary oracle access to the client in the first phase while only
allowing access to the server in the attack phase. Another common example is
({T}, {S})-auth which is traditionally referred to as passive security.

While classical entity authentication protocols [FS86,GQ88,Sch89,Oka92]
focus on the public key setting satisfying weaker security notions (i.e. passive and
active security) more recent works (especially in the context of RFID identifica-
tion protocols) are set in the shared-key model and achieve increasingly strong
types of security culminating in several variants of man-in-the-middle (MiM)
security. In this work we consider ({C,S}, {S})-auth which [MT12] show to be
strictly weaker than ({}, {C,S})-auth (also used in [BR93,Vau10] for example).
We justify this choice by arguing that the later MiM variant is in fact stronger
than needed in real world applications. In particular it is unavoidable that an
adversary, with online access to C during the attack phase, can convince S to
accept (e.g. by blindly forwarding messages). Thus, in contrast to ({}, {C,S})-
auth, we have opted for a security notion which does not rule out adversaries
convincing S using an online C through more involved means such as by modi-
fying C’s messages.7

6 Upon each invocation the transcript oracle outputs a freshly sampled transcript
between the honest server and client.

7 As is done for example in the separating example between the two notions in [MT12].



224 J. Alwen et al.

Anonymous Authentication for RFIDs. Anonymous authentication has primar-
ily been studied in the context of entity authentication especially in the context
of RFID systems, where anonymity is of particular interest. Unfortunately these
results are tailored to this specific application and do not put forward a general
framework for anonymous authentication as in this work.

Furthermore, most of the suggested schemes are proven secure using game-
based notions [Vau10,HPVP11,DLYZ11], where security of the real world sys-
tem is guaranteed only within the particular (often complex) context described
by the game. Therefore it often remains unclear within which greater context
such protocols can be used. For example, in perhaps the most popular such
notion of [Vau10] and its derivatives (ex. [HPVP11]), the anonymity of a new
session is defined only against adversaries which do not learn the identities of
clients involved in previous (successful) sessions. In particular this means such
protocols can not, a priori, be used in a greater context where an adversary
may have access to say the full output of an RFID reader at any point in time.
However ideally one would hope for a protocol which is again anonymous once
the adversary loses such side-channel access to the card reader.

Composable security (UC) is considered in [ACdM05], but this solution
assumes purely passive tags, which an adversary can easily overwrite, hence
security cannot be achieved against a MiM adversary. Recently, [BLdMT09] and
[BM11] provide composable (UC) security, but the clients must be stateful.

Note that the term “anonymous authentication” is at times also used for
group authentication, where the server must not learn which particular client is
authenticating. This is not the scope of this paper.

Anonymous Authentication for Mobile Phone Networks. Besides the RFID setting
the models and definitions in this work also apply to authentication requirements
in other radio communication networks such as mobile and satellite phone sys-
tems. For example, in the specification of the 3rd (and later) generation mobile
phone systems by the 3GPP, a crucial key agreement (KA) phase between end-
users and the network operator is described. While this phase involves commu-
nication over the public radio spectrum (an insecure, but potentially anonymous
communication channel) the specification explicitly lists both end-user anonymity
(preservation) and authenticity as key design goals for this phase [rGPP12]. To
achieve this, a unique long-term secret is shared between each end-user device,
called a Universal Subscriber Identification Module (USIM), and the services
provider. Crucially, because the actual mobile devices (e.g. cellphones, tablets) are
not trusted, all secret key operations on the user-end are performed on the USIM;
a very light-weight computing device. This in turn has led to the use of light-weight
cryptographic primitives in the form of symmetric key algorithms such as those
used in this work.

Existing solutions leave much to be desired both in terms of anonymity
[KAC08,AMRR11,AMR+12] and authenticity [TM12] and a large body of work
with ad-hoc security arguments focuses on improving the status quo (e.g. [BR05,
KO05,GVI06,SAJ07,CRS11,CRS12]). Notable exceptions are the works of
[AMRR11,TM12,AMR+12] which make use of more formal symbolic analysis to



Anonymous Authentication with Shared Secrets 225

discover some vulnerabilities in existing solutions. Finally in the concurrent and
independent work of [LSWW13] a complex game-based security model, targeted
specifically at the setting of UMTS/LTE client-network communication (includ-
ing the KA), is presented. Moreover existing solutions are shown to satisfy a lim-
ited notion of anonymity and (roughly speaking) ({C,S}, {S})-authenticity under
some novel yet plausible assumptions concerning key component functions used
in the protocols.

In light of these results we view our work as making significant progress
towards developing a formal yet intuitively tractable and secure model, com-
patible with the language and tools of modern cryptography, for capturing and
analyzing the stated design goals of mobile phone networks together with exam-
ples of rigorously analyzed solutions. While we by no means claim the model
(nor protocols) to be directly applicable in this arena we do believe them to rep-
resent an important step forward towards developing more satisfactory security
guarantees for this extensively deployed application.

Anonymous Public-Key Encryption. Kohlweiss et al. [KMO+13] initiated the
study of anonymity in the constructive cryptography framework. They con-
sidered a single sender multi-receiver setting where the sender and receivers
communicate via a receiver-anonymous insecure channel. In such a setting they
apply a public-key encryption in order to achieve a receiver-anonymous confi-
dential channel. While achieving confidentiality with public-key encryption is
straightforward, one needs to additionally assume that the employed scheme is
key-private [BBDP01], i.e., which essentially means that for two given public
keys and one ciphertext, one cannot decide for which public key this ciphertext
is valid.

A related notion of the signer anonymity has been studied for signatures
schemes [YWDW06]. Intuitively, these schemes guarantee that the signature for
a secret random message hides the identity of the signer.

Multilateral-Anonymous Communication. Entity authentication providing both
sender and receiver anonymity has been studied in [AF04,JKT08]. In [AF04] the
authors define the notion of anonymity allowing each client to reveal and prove
its identity to certain other clients (chosen according to some policy), and hide it
from the remaining clients. Then, [AF04] gives two protocols implementing the
proposed anonymity notion and analyzes them in the applied pi calculus security
model [AF01]. In [JKT08] the authors present an authenticated key-exchange
protocol that provides anonymity for the parties exchanging a key.

1.4 Outline

In Sect. 2 we briefly review the constructive cryptography framework of [Mau11,
MR11] (with support for making exact security statements), and review two
security notions for MAC schemes.

In Sect. 3 we present the anonymous authentication resources for various
applications and provide information theoretic and computational constructions.



226 J. Alwen et al.

We also describe some more efficient variants thereof. In particular we describe
a protocol providing a trade-off allowing a potentially much more efficient server
protocol for realizing entity authentication at the cost of maintaining a short
but mutable state on the client side.

2 Definitions

We review the constructive cryptography framework which we use to define
anonymous authentication protocols. Next, in this section we define several secu-
rity notions for MACs including key-indistinguishability as well as a variety of
unforgeability definitions.

2.1 Constructive Cryptography and Exact Security

The primary goal of this work is to build anonymous authentication protocols
under various assumptions such that the resulting protocols can be used as a
building block within any greater system. This gives rise to two defining char-
acteristics of our security notions.

On the one hand we require an arbitrarily composable security guarantee. For
this we use the constructive cryptography [Mau11,MR11] (CC) framework which
allows for real/ideal type definitions supporting very strong “general” compos-
ability. On the other hand in practice concrete security matters. So departing
somewhat from the asymptotic statements used in many such definitions we
provide precise security claims detailing the exact security as a function of the
properties of the underlying assumptions. In doing so we provide a method to
evaluate the practicality and efficiency of using different constructions and basing
security on different concrete assumptions.

Recalling the CC Framework. We recall the main ideas of the CC framework
and refer to [Mau11,MR11] for further details. Similar to the Universal Com-
posability (UC) framework of Canetti [Can01] the CC framework makes use of
two types of basic computational systems. The first are called resources which
are equipped with a set of interfaces.8 We generally denote resources using calli-
graphic capital letters such as R and F . Each interface captures the capabilities
of a particular party which interacts with the system. The second type of systems
are called converters (such as a protocol π or simulator σ). Converters have an
internal interface through which they are connected to the available resources
and an external interface through which the composed system is accessed by
the context in which it is being used. In contrast to the UC framework we do
not assume the presence of a network of insecure channels and instead explicitly
define all communication resources we use in any given statement.

The CC framework allows for the presence of several resources for which
the || operator is used. For example the system where say resources modeling a
8 In the language of UC we speak of ideal functionalities and of ITM communication

tapes in the language of ITMs.



Anonymous Authentication with Shared Secrets 227

setup R and an insecure channel F are present is denoted by (R||F). Moreover
resources can be composed with (possibly multiple) converters giving rise to
a network of computational systems which we refer to as a composed system.
More concretely a broadcast channel (resource) together with several protocols
(converters) forms a composed system. To denote this composed system obtained
by attaching say a protocol π to resource R on interface I we write πIR.9 As
usual a security definition in the CC framework involves equating two composed
systems; intuitively modeling the “real” and “ideal” worlds respectively.

We wish to capture the intuition of providing “security against an attacker”.
For this we model the capabilities of an adversary using a given resource via an
adversarial interface. Generally a resource R modeling the real world provides
non-trivial capabilities on the adversarial interface (say full man-in-the-middle
(MiM) access) while the ideal resource F only provides very restricted capa-
bilities on that interface. The desired intuition is then captured by detailing a
simulator converter which attaches to adversarial interface of F and produces an
on-line translation (a.k.a. a simulation) making the interface look like the adver-
sarial interface of R. Unlike UC, the CC framework does not model the adver-
sary as an (arbitrary) separate entity (converter). Instead CC’s approach could
be thought of as UC in the special case of the dummy adversary, which acts as
a transparent conduit between its inner and outer interfaces.10

Finally the CC framework allows for security definitions which support “gen-
eral composition”. That is the real and ideal composed systems are interchange-
able regardless of the context in which they are used.11 For this CC like UC uses
an online adaptive distinguisher D (i.e. the “environment” in UC) whose goal
it is to tell the two systems apart. Intuitively D models the arbitrary context
in which the systems might be used and relative to which they should be inter-
changeable. Technically D is given access to all interfaces of either the real or
ideal system and, after arbitrary interaction with the system, D outputs a bit
indicating whether it believes this was the real or the ideal system.

Exact Security. We develop the notation for making exact security statements
in the CC framework. Take a fixed pair of systems R and F with k interfaces.
We consider a parametrized class of (t, x1, . . . , xk)-distinguishers D running in
time t and querying the ith interface at most xi times during the interaction

9 We note that resources and composed systems are actually computational objects
of the same type and so at times we also use calligraphic capital letters to denote a
composed system.

10 Indeed, as shown in the so called “Dummy Lemma” for various UC type frameworks,
this restriction results in no loss of generality while making security proofs far more
tractable.

11 This stands in contrast to say game based definitions which instead guarantee certain
properties of a real world system only within the particular context captured by the
game. For example the anonymity of the authentication protocols defined in [Vau10,
HPVP11] holds only with respect to adversaries which remain oblivious to which
parties have previously authenticated themselves during the life of the system (even
for the “wide adversary” variants).



228 J. Alwen et al.

with a system (R or F). The advantage of a specific D from this class ΔD(R,F)
is defined to be |Pr[D(R) → 1] − Pr[D(F) → 1]|. We will write R ≈α F (where
α = (t, x1, . . . , xk, ε)) to say that all distinguishers from this class have advantage
at most ε.12 In this work all systems are also parameterized by a implicit security
parameter λ. It can be understood to be fixed to an arbitrary value once and
for all and then shared across all systems in any given theorem.

2.2 Message Authentication Codes (MAC)

In this subsection we introduce the syntax and security properties for mes-
sage authentication codes. Note that the following presentation is adapted from
[AHM+14b].

Syntax. A message authentication code MAC = {KG, TAG, VRFY} is a triple of algo-
rithms with associated key space K, message space M, and tag space T .

– Key Generation. The probabilistic key generation algorithm k ← KG(1λ)
takes as input a security parameter λ ∈ N (in unary) and outputs a secret key
k ∈ K.

– Tagging. The probabilistic authentication algorithm τ ← TAGk(m) takes as
input a secret key k ∈ K and a message m ∈ M and outputs an authentication
tag τ ∈ T .

– Verification. The deterministic verification algorithm VRFYk(m, τ) takes as
input a secret key k ∈ K, a message m ∈ M and a tag τ ∈ T and outputs an
element of the set {Accept, Reject}.

Next we define some useful properties such a triple of algorithms can have such as
completeness and unforgeability. We also discuss a less common security notion
for MACs, called key indistinguishability [AHM+14b] which can only be achieved
by randomized MACs. Each of the following definitions depend on a security
parameter λ. However, in line with the above discussion on the treatment of the
security parameter in our constructive statements, we omit λ from our notation.
Instead, to avoid clutter, we assume that all security properties in any given
statement share the same fixed value of λ.

Completeness. We say that MAC has completeness error η if for all m ∈ M,

Pr[VRFYk(m, τ) = Reject : k ← KG(1λ), τ ← TAGk(m)] ≤ η.

Unforgeability. We recall the standard notion security for (randomized) MACs;
namely unforgeability under chosen message (and chosen verification) query

12 More specifically in this work the underlying cryptographic assumptions used give
rise to the properties of the real world resource R while the implementation choices
can allow for bounding properties of D. The final distinguishing advantage of the
real and ideal systems is usually a function of both types of properties.



Anonymous Authentication with Shared Secrets 229

attack (uf-cmva). We denote by Advuf-cmva
MAC (A, λ), the advantage of the adver-

sary A in forging the message for a random key k ← KG(1λ). Formally it is the
probability that the following experiment outputs 1.

Experiment. Expuf-cmva
MAC (A, λ)

– k ← KG(1λ)
– Invoke ATAGk(·),VRFYk(·,·).
– Output 1 if A queried (m∗, τ∗) to VRFYk(·, ·) s.t. VRFYk(m∗, τ∗) = Accept and

A did not receive τ∗ by querying m∗ to TAGk(·).
The above experiment can be weakened by relaxing the winning condition of

the experiment Expuf-cmva
MAC to require that m∗ has not previously been queried to

TAGk(·). We refer to the resulting notion as weakly unforgeable while referring to
the more stringent security notions as strongly unforgeable. In general in this
work unless stated explicitly otherwise we always mean the strong variants.
Finally we can remove the adversary’s access to the verification oracle in which
case we refer the experiment as cma rather than cmva.

We refer to an efficient (i.e. PPT) adversary A playing a cmva type experi-
ments as a (t, qt, qv)-adversary if it runs in time at most t, and for any pair of
oracles with a fixed key A makes at most qt tag and qv verification queries.

Definition 1 (Unforgeability of MACs). A message authentication scheme
MAC is (t, qt, qv, ε)-uf-cmva secure if for any (t, qt, qv)-adversary A we have:

Advuf-cmva
MAC (A, λ) := Pr[Expuf-cmva

MAC (A, λ) → 1] ≤ ε.

Key Indistinguishability. The notion of key indistinguishability (KI) guarantees
that tags leak no information about the underlying key (or state). This allows us
to use such a scheme to implement authentication anonymously. We note that
such a property is not implied by even the strongest of unforgeability notions
defined above.13 The intuition we capture for KI is that an adversary can not
tell a single pair of tag and verify oracles from two pairs of such oracles with
different states (including secret keys). In other words if an adversary has access
to 4 oracles (2 tag and 2 verify oracles) it can not tell if the tag (and verify)
oracles actually use the same state or not.

To formalize this we introduce some notation. For keys k0, k1 ∈ K we write
[k0, k1] to denote the 4-tuple of oracles (TAGk0 , VRFYk0 , TAGk1 , VRFYk1). Moreover
we write [k0, k0] to denote a similar 4-tuple but where the TAG oracles share their
entire internal state including secret key (and similarly for the VRFY oracles).

13 Indeed this is not difficult to see. For example we can modify any (say uf-cmva)
unforgeable scheme as follows such that it is clearly not key indistinguishable. Double
the key size, use the first half of the key in conjunction with the original TAG algorithm
to tag the message and then append the second half of the key to the resulting tag.
Clearly the scheme remains unforgeable however it is trivial to tell tags issued under
different keys apart.



230 J. Alwen et al.

In other words calls to the first and third oracle of [k0, k0] are answered by
essentially the same oracle (and similarly for the second and fourth oracle).14

Experiment. Expki-cmva
MAC (A, λ)

– k0, k1 ← KG(1λ), c ← {0, 1}
– Sample output c′ ← A[k0,kc].
– If a tag obtained from the left oracle (namely TAGk0) was verified using the

right verification oracle (namely VRFYkc
) or vice versa, then output a uniform

random bit.
– Otherwise if c = c′ output 1 and 0 otherwise.

As usual, in the above experiment we have made a non-triviality constraint;
namely that A is not allowed to make a query (m, τ) to oracle VRFYkc

if τ was
obtained from TAGk0 for message m (and vice versa).

As before in the following definition we say that an adversary A is a (t, qt, qv)-
adversary if it runs in time at most t and for each pair of oracles with a given key
makes at most qt tag and qv verification queries. So in total such an adversary
can make up to 2qt tag queries namely by making qt queries to TAGk0 and TAGkc

.

Definition 2 (Key Indistinguishability). Let λ be an (implicit) fixed secu-
rity parameter. A message authentication scheme MAC is (t, qt, qv, ε)-ki-cmva
secure if for any (t, qt, qv)-adversary A we have

Advki-cmva
MAC (A, λ) := 2

∣∣∣Pr[Expki-cmva
MAC (A, λ) → 1] − 1

2

∣∣∣ ≤ ε.

Moreover if MAC is (t, qt, 0, ε)-ki-cmva then we call it (t, qt, ε)-ki-cma secure.
In particular in the ki-cma experiment we simply omit all verification oracles.

3 Anonymous Authentication as Real/Ideal
Transformations

In this section we define a range of anonymous resources together with var-
ious computational and information theoretic protocols for constructing them.
We also describe several optimizations including two practically relevant
protocols.

14 For stateful MACs it is important that the full state (and not just the secret key) be
shared between matching oracles in [k0, k0]. Suppose we have a secure MAC which
hides all information about the secret keys. We can modify the TAG algorithm to keep
a counter which it appends to each tag τ it outputs. Clearly the scheme still hides
all information about the secret key. However it is unclear how such a scheme might
be used to achieve anonymity. Indeed it is trivial to tell say the 10th tag issued for
key k0 from the 3rd tag issued for different key k1.



Anonymous Authentication with Shared Secrets 231

3.1 Anonymous Message Authentication

We begin by focusing on anonymous message authentication. We prove that
using a KI and unforgeable MAC one can construct anonymous variants of
authenticated channels from insecure channels in the shared key setting thereby
reducing the problem of anonymous message authentication to building such
MACs. In [AHM+14a] we also give an optimization which provides the trade-off
of improving receiver efficiency (given an optimistic but realistic assumption)

FA-ICSi R

A

m

m mm′

m′
at the cost of requiring senders to be stateful.15

We define an anonymous insecure chan-
nel FA-IC (intuitively depicted on the right
side) which captures the minimal communica-
tion resource we require for achieving any type
of anonymous authentication. Intuitively this is a
multi-sender/single-receiver channel which provides the guarantee that the iden-
tity of the sender remains hidden on the adversary’s interface. The scheduling
and content of messages being sent is externally driven (technically they are pro-
vided by the distinguisher D) and we model an active adversary with full control
over message delivery and content. Finally once the adversary chooses to deliver
a message to the receiver, the receiver learns the content of that message but
not (a priori) the identity of the original sender. Indeed this identity may not
even be well defined as the adversary may have mauled an original sent message
or even invented a completely new message for delivery.

FA-ACSi R

A

i, mm

j,m mj

i, m

Next we define a multi-sender/single-receiver
anonymous authenticated channel FA-AC , (intu-
itively depicted on the right side and described
formally in Fig. 2). The difference to FA-IC are
two-fold. First the adversary is now restricted to
delivering only messages m which were originally
sent by one of the senders and second upon deliv-
ery of m the receiver additionally learns the identity of the original sender.

Finally we construct FA-AC from FA-IC in a shared key setting modeled via
n key-distribution resources K = {Ki | i ∈ [n]}16 where, upon initialization each
such resource Ki samples a fresh key and outputs it both to the corresponding
sender and to the receiver. Formally, K is a 2-interface resource which upon
initialization samples ki ←R K and outputs it on both interfaces. The protocol
for realizing FA-AC from FA-IC and Ki uses a MAC scheme MAC = (TAG, VRFY)
with message space M. In particular to send a message m ∈ M the sender
obtains shared key ki from Ki, computes a tag τ = TAGki

(m) and outputs (m, τ)
to FA-IC on interface Si. When the receiver obtains a message of the form
(m, τ) from interface R of FA-IC it looks for a key ki (obtained from Ki) such
that VRFYki

(m, τ) = true. If such a key is found output (m, i) and otherwise
output ⊥ (on the external interface).
15 For some applications (such as entity authentication for light-weight devices) this

reflects a design choice for senders already common in practice.
16 We use the standard notation [n] to denote the set {1, . . . , n}.



232 J. Alwen et al.

Init: M ← ∅, counter ← 0
On Interface Si:

Case (m): counter ← counter + 1, M ← M ∪ {(counter , i,m)}; output
(counter ,m) on interface A

On Interface A:
Case (j ∈ ∪ {⊥}): If ∃(j, i,m) ∈ M then output (i,m) on interface R (and

otherwise output ⊥).

Fig. 2. The anonymous authenticated channel FA-AC

We prove the construction secure using a somewhat involved sequence of
hybrid systems as summarized in the following theorem and the proof can be
found in [AHM+14a]. While the result is not surprising the proof reveals a
subtlety arising from the somewhat non-standard use of unforgeability in a multi-
user setting. As a consequence, in terms of exact security the construction loses
double the expected unforgebaility term ε′ per sender. The details can be found
in [AHM+14a].

Theorem 1. The trivial protocol π = (πS1 , · · · , πSn , ρR) described above realizes
FA-AC from FA-IC and K. More precisely, there exists a simulator σ such for
any t, qt, q

′
t, q

′
v ∈ N and ε, ε′ > 0, distinguisher D and MAC scheme MAC with

message space M such that:

– MAC is (t, qt, ε)-ki-cma secure, (t, q′
t, q

′
v, ε′)-uf-cmva secure and has η complete-

ness error.
– D runs in time t, sends q′

v messages through A, min(q′
t,

q′
v

n , qt
n ) messages

through Si (for all i ∈ [n]).

we get that ΔD[π(FA-IC ||K), σA(FA-AC)] ≤ 2nε′ + q′
vη + nε.

3.2 Anonymous Entity Authentication

We describe a multi-session and multi-user anonymous entity authentication
resource FA-EA in such a way that we can prove that a standard challenge
response protocol indeed constructs it with statistical security.

Resource FA-EA models multiple (sequential) authentication sessions initi-
ated via the server interface. Clients respond to the most recent pending authen-
tication challenge whenever prompted to do so via their interface. Each session
results either in the server accepting a particular identity or else failing (denoted
with a special output ⊥). The adversary, assumed to be controlling the schedul-
ing of the underlying communication channel, is given control over forwarding
challenges from the server to the client (via the QUERY command). However, it
learns nothing more than the relative order of responses generated by clients
thereby capturing the intuitive goal of anonymity. In particular, if the relative
order is random, it is impossible for the adversary to link clients’ responses in



Anonymous Authentication with Shared Secrets 233

different sessions.17 Further the adversary can, at any point, forward a client’s
response on to the server.

To capture the intuitive goal of entity authentication we equip FA-EA with
an internal set Responded which keeps track of the set of clients which have
forwarded their response for the current authentication session. In particular,
Responded is cleared whenever a new authentication session is initiated and,
crucially, for any given session the adversary can only cause identities contained
in Responded to be output on the server’s interface. In other words, the only
identities ever accepted at the end of a session are those which respond during
the session regardless of all previous actions taken on any interface.18 A formal
description capturing this behavior can be found in Fig. 3.

Init: InSession ← false, counter ← 0, Responded ← ∅, ∀i ∈ [n] msgi ← false

On Interface Ci:
Case (RESPOND):

If (msgi = true) then
msgi ← false, counter ← counter + 1
If (InSession = true) then Responded ← Responded ∪ {(counter , i)}
Output counter on interface A

On Interface S:
Case (GO): InSession ← true, Responded ← ∅; output GO on interface A

On Interface A:
Case (QUERY): ∀i ∈ [n] msgi ← true

Case (j ∈ ∪ {⊥}):
If (InSession = true) then

InSession ← false

If ∃(j, i) ∈ Responded then output i on interface S, otherwise output ⊥

Fig. 3. The ideal resource of anonymous entity authentication FA-EA

To verify that FA-EA captures our intended intuition we show that a very
simple challenge-response protocol indeed constructs FA-EA from FA-AC as
expected. Subsequently we describe several optimizations of interest for a more
practical scenario.

In order to send the challenge from server to clients we assume the presence
of a type of single-sender/multi-receiver insecure broadcast channel FIB . Put
simply any message input by the sender is output to the adversary and any mes-
sage input by the adversary is delivered to all receivers.19 The server protocol

17 In case the relative order of clients’ responses in different sessions is known to be
correlated (e.g., by one client possessing a faster hardware than the others and being
always the first to respond), the unlinkability of sessions is not guaranteed.

18 As described in the introduction, in the language of [TM12] this corresponds precisely
to ({C, S}, {S})-authenticity.

19 A formal description can be found in [AHM+14a].



234 J. Alwen et al.

ρ to realize FA-EA using FA-AC and FIB is extremely simple. For each new
authentication session it chooses a fresh random challenge r ←R M and broad-
casts it using FIB . When it receives a response (i, r′) from FA-AC it outputs
identity i if r′ = r and otherwise ⊥. The ith client protocol πCi is equally sim-
ple; it is equipped with a message buffer which stores the most recent message
received from FIB . Whenever π receives the command to respond it checks if
its message buffer is full and if so forwards the content to interface Si of FA-AC .
A formal description of this protocol and the proof that it constructs FA-EA for
(FA-AC ||FIB) as stated in the following theorem can be found in [AHM+14a].

Theorem 2. The protocol π = (πC1 , · · · , πCn , ρS) described above realizes
FA-EA from FA-AC and FIB. More precisely, there exists a simulator σ such for
any t, qs, qv ∈ N, distinguisher D sending qv messages through interface A and
starting qs sessions, and a challenge set M we get that ΔD[π(FA-AC ||FIB), σA

(FA-EA)] ≤ qs(qs+qv)
|M| .

We briefly remark on some variants of this result. Similar to the optimization
for building FA-SC from (FA-IC ||K) here too when using (FA-IC ||K) in place of
FA-AC the response from the clients need not include the random challenge r.
Moreover the same trade-off for the “optimistic setting” described in [AHM+14a]
can also be applied here to improve server efficiency using stateful clients. Finally,
when using KI MACs over (FA-IC ||K) underneath the challenge-response pro-
tocol we observe that it suffices to use only universally unforgeable MACs20

instead of uf-cmva ones. Intuitively, this is because the only messages for which
producing a fresh tag could impersonate a client are the random challenges cho-
sen by the server protocol. However for given (t, qt, qv, ε)-uf-cmva secure MAC
the exact distinguishing advantage between the real and ideal systems is smaller
(by an additive factor of (nε − 1)qs) than if the MAC is only (t, qt, qv, ε)-secure
against universal forgeries.21

This observation can be interpreted in two ways. On the one hand for a
given MAC based challenge-response authentication protocol we can weaken the
assumptions on the MAC for obtaining secure entity authentication. On the other
hand we can make use of potentially more efficient (but slightly more forgeable)
MAC schemes for constructing FA-EA.

References

[ACdM05] Ateniese, G., Camenisch, J., de Medeiros, B.: Untraceable RFID tags via
insubvertible encryption. In: ACM Conference on Computer and Com-
munications Security, pp. 92–101 (2005)

20 Universal unforgeability is a relaxed security notion for MACs where the adversary
only wins by producing a fresh (valid) tag for a uniform random message chosen by
the challenger.

21 The security loss arises because in addition to having to guess for which client an
impersonation attack will arise (see [AHM+14b]) the reduction to universal unforge-
ability must also guess during which of the qs sessions the attack occurs so as to
properly plant its random challenge message from the universal unforgeability game.



Anonymous Authentication with Shared Secrets 235

[AF01] Abadi, M., Fournet, C.: Mobile values, new names, and secure communi-
cation. SIGPLAN Not. 36(3), 104–115 (2001)

[AF04] Abadi, M., Fournet, C.: Private authentication. Theor. Comput. Sci.
322(3), 427–476 (2004)

[AHM+14a] Alwen, J., Hirt, M., Maurer, U., Patra, A., Raykov, P.: Anonymous
authentication with shared secrets. Cryptology ePrint Archive, Report
2014/073 (2014). http://eprint.iacr.org/

[AHM+14b] Alwen, J., Hirt, M., Maurer, U., Patra, A., Raykov, P.: Key-
indistinguishable message authentication codes.Cryptology ePrint
Archive, Report 2014/107 (2014 to appear in SCN 2014)

[AMR+12] Arapinis, M., Mancini, L.I., Ritter, E., Ryan, M., Golde, N., Redon, K.,
Borgaonkar, R.: New privacy issues in mobile telephony: fix and verifica-
tion. In: ACM CCS, pp. 205–216. ACM (2012)

[AMRR11] Arapinis, M., Mancini, L.I., Ritter, E., Ryan, M.: Formal analysis of
UMTS privacy. CoRR, abs/1109.2066 (2011)

[BBDP01] Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in
public-key encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol.
2248, pp. 566–582. Springer, Heidelberg (2001)

[BLdMT09] Burmester, M., Le, T.V., de Medeiros, B., Tsudik, G.: Universally com-
posable RFID identification and authentication protocols. ACM Trans.
Inf. Syst. Secur. 12(4), 1–33 (2009)

[BM11] Burmester, M., Munilla, J.: Lightweight RFID authentication with for-
ward and backward security. ACM Trans. Inf. Syst. Secur. 14(1), 11
(2011)

[BR93] Bellare, M., Rogaway, P.: Entity authentication and key distribution.
In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249.
Springer, Heidelberg (1994)

[BR05] Barbeau, M., Robert, J.-M.: Perfect identity concealment in UMTS over
radio access links. In: WiMob (2), pp. 72–77. IEEE (2005)

[Can01] Canetti, R.: Universally composable security: A new paradigm for cryp-
tographic protocols. In: FOCS, pp. 136–145 (2001)

[CRS11] Choudhury, H., Roychoudhury, B., Saikia, D.K.: UMTS user identity con-
fidentiality: An end-to-end solution. In: WOCN, pp. 1–6. IEEE (2011)

[CRS12] Choudhury, H., Roychoudhury, B., Saikia, D.K.: Enhancing user identity
privacy in LTE. In: TrustCom, pp. 949–957. IEEE C. Soc. (2012)

[DLYZ11] Deng, R.H., Li, Y., Yung, M., Zhao, Y.: A zero-knowledge based frame-
work for RFID privacy. J. Comp. Sec. 19(6), 1109–1146 (2011)

[FS86] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

[GQ88] Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fit-
ted to security microprocessor minimizing both transmission and mem-
ory. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330,
pp. 123–128. Springer, Heidelberg (1988)

[GVI06] Gódor, G., Varadi, B., Imre, S.: Novel authentication algorithm of future
networks. In: ICN/ICONS/MCL, p. 80. IEEE Computer Society (2006)

[HPVP11] Hermans, J., Pashalidis, A., Vercauteren, F., Preneel, B.: A new RFID
privacy model. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol.
6879, pp. 568–587. Springer, Heidelberg (2011)

http://eprint.iacr.org/


236 J. Alwen et al.

[JKT08] Jarecki, S., Kim, J., Tsudik, G.: Beyond secret handshakes: affiliation-
hiding authenticated key exchange. In: Malkin, T. (ed.) CT-RSA 2008.
LNCS, vol. 4964, pp. 352–369. Springer, Heidelberg (2008)

[KAC08] Khan, M., Ahmed, A., Cheema, A.R.: Vulnerabilities of UMTS access
domain security architecture. In: SNPD, pp. 350–355 (2008)

[KMO+13] Kohlweiss, M., Maurer, U., Onete, C., Tackmann, B., Venturi, D.:
Anonymity-preserving public-key encryption: a constructive approach. In:
De Cristofaro, E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp.
19–39. Springer, Heidelberg (2013)

[KO05] Køien, G.M., Oleshchuk, V.A.: Location privacy for cellular systems;
analysis and solution. In: Danezis, G., Martin, D. (eds.) PET 2005. LNCS,
vol. 3856, pp. 40–58. Springer, Heidelberg (2006)

[LSWW13] Lee, M.-F., Smart, N.P., Warinschi, B., Watson, G.: Anonymity guaran-
tees of the UMTS/LTE authentication and connection protocol. Cryptol-
ogy ePrint Archive, Report 2013/027 (2013). http://eprint.iacr.org/

[Mau11] Maurer, U.: Constructive cryptography – a new paradigm for security
definitions and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA
2011. LNCS, vol. 6993, pp. 33–56. Springer, Heidelberg (2012)

[MR11] Maurer, U., Renner, R.: Abstract cryptography. In: ICS, pp. 1–21.
Tsinghua University Press (2011)

[MT12] Mol, P., Tessaro, S.: Secret-key authentication beyond the challenge-
response paradigm: Definitional issues and new protocols. Manuscript,
December 2012

[Oka92] Okamoto, T.: Provably secure and practical identification schemes and
corresponding signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992.
LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993)

[rGPP12] 3rd Generation Partnership Project. TS 33.102 - 3G security; Security
architecture V11.5.0 (2012)

[SAJ07] Sattarzadeh, B., Asadpour, M., Jalili, R.: Improved user identity confi-
dentiality for UMTS mobile networks. In: ECUMN, pp. 401–409. IEEE
Computer Society (2007)

[Sch89] Schnorr, C.-P.: Efficient identification and signatures for smart cards. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer,
Heidelberg (1990)

[TM12] Tsay, J.-K., Mjølsnes, S.F.: A vulnerability in the UMTS and LTE authen-
tication and key agreement protocols. In: Kotenko, I., Skormin, V. (eds.)
MMM-ACNS 2012. LNCS, vol. 7531, pp. 65–76. Springer, Heidelberg
(2012)

[Vau10] Vaudenay, S.: Privacy models for RFID schemes. In: Ors Yalcin, S.B. (ed.)
RFIDSec 2010. LNCS, vol. 6370, pp. 65–65. Springer, Heidelberg (2010)

[YWDW06] Yang, G., Wong, D.S., Deng, X., Wang, H.: Anonymous Signature
Schemes. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC
2006. LNCS, vol. 3958, pp. 347–363. Springer, Heidelberg (2006)

http://eprint.iacr.org/


Cryptanalysis



On Key Recovery Attacks Against Existing
Somewhat Homomorphic Encryption Schemes

Massimo Chenal(B) and Qiang Tang

APSIA Group, SnT, University of Luxembourg, 6, rue Richard Coudenhove-Kalergi,
1359 Luxembourg, Luxembourg

{massimo.chenal,qiang.tang}@uni.lu

Abstract. In his seminal paper at STOC 2009, Gentry left it as a future
work to investigate (somewhat) homomorphic encryption schemes with
IND-CCA1 security. At SAC 2011, Loftus et al. showed an IND-CCA1
attack against the somewhat homomorphic encryption scheme presented
by Gentry and Halevi at Eurocrypt 2011. At ISPEC 2012, Zhang, Plan-
tard and Susilo showed an IND-CCA1 attack against the somewhat
homomorphic encryption scheme developed by van Dijk et al. at Euro-
crypt 2010.

In this paper, we continue this line of research and show that most
existing somewhat homomorphic encryption schemes are not IND-CCA1
secure. In fact, we show that these schemes suffer from key recovery
attacks (stronger than a typical IND-CCA1 attack), which allow an
adversary to recover the private keys through a number of decryption ora-
cle queries. The schemes, that we study in detail, include those by Brak-
erski and Vaikuntanathan at Crypto 2011 and FOCS 2011, and that by
Gentry, Sahai and Waters at Crypto 2013. We also develop a key recovery
attack that applies to the somewhat homomorphic encryption scheme by
van Dijk et al., and our attack is more efficient and conceptually sim-
pler than the one developed by Zhang et al.. Our key recovery attacks
also apply to the scheme by Brakerski, Gentry and Vaikuntanathan at
ITCS 2012, and we also describe a key recovery attack for the scheme
developed by Brakerski at Crypto 2012.

Keywords: Somewhat homomorphic encryption · Key recovery attack ·
IND-CCA1 security

1 Introduction

In 1978, Rivest, Adleman and Dertouzos [24] introduced the concept of privacy
homomorphism and asked whether it is possible to perform arbitrary operations
on encrypted ciphertexts. 30 years later, Gentry [11] gave a positive answer by
proposing an ingenious approach to construct fully homomorphic encryption
(FHE) schemes. With this approach, we can start with a somewhat homomorphic
encryption (SHE) scheme that can perform only limited number of operations
on ciphertexts (i.e. it can evaluate only low-degree polynomials). Then, through
c© Springer International Publishing Switzerland 2015
D.F. Aranha and A. Menezes (Eds.): LATINCRYPT 2014, LNCS 8895, pp. 239–258, 2015.
DOI: 10.1007/978-3-319-16295-9 13



240 M. Chenal and Q. Tang

the so-called bootstrapping step, we can turn this SHE scheme into an FHE
scheme. Even though SHE schemes are less powerful than FHE schemes, they
can already be used in many useful real-world applications, such as medical
and financial applications [22]. Note that researchers have proposed the concept
of leveled FHE schemes (e.g. [2,17]), which allow third parties to evaluate any
circuits up to a certain depth. In the following discussion, we treat these schemes
as SHE.

1.1 Related Work

After Gentry’s work, many SHE and FHE schemes have been proposed. Based
on the underlying hardness assumptions, these schemes can be categorized as
follows.

(1) The first category starts with Gentry [10,11]. A number of variations, opti-
mizations and implementations appear in [14,25]. The security of these
schemes are based on hard problems on lattices.

(2) The second category starts with van Dijk et al. [27]. More variants, imple-
mentation and optimizations appear in [6–8]. The security of these schemes
rely on the approximate greatest common divisor (AGCD) problem and some
variants. It is worth mentioning that Ding and Tao [9] claim to have found an
algorithm to solve the AGCD problem with some special parameters in poly-
nomial time. However, the AGCD problem and its variants are still believed
to be hard.

(3) The third category starts with Brakerski and Vaikuntanathan [3,4]. More
variants, implementations and optimizations appear in [1,2,16,17,22]. The
security of these schemes are based on the learning with errors (LWE) and
on the ring-learning with errors (RLWE) problems.

See Fig. 1 for a graphical visualization of the main families.
Recently, Nuida [23] proposed a new framework for noise-free FHE, based

on finite non-commutative groups. This is completely different from everything
appeared in literature so far, since the ciphertext in all known schemes carry
some noise. Nevertheless, a secure instantiation has yet to be found.

There exists another family of schemes, based on the NTRU encryption
scheme [18]. In [20] it is shown how to obtain a homomorphic encryption scheme
in a multi-user setting, introducing the notion of multi-key homomorphic encryp-
tion where it is possible to compute any function on plaintexts encrypted under
multiple public keys. The multi-key FHE of [20] is based on the NTRU scheme
[18] and on ideas introduced in [2]. We will not focus on NTRU-based multi-key
homomorphic encryption schemes.

All known SHE and FHE schemes have been developed with the aim of being
IND-CPA secure (resistant against a chosen-plaintext attack). In [11], Gentry
left it as a future work to investigate SHE schemes with IND-CCA1 security
(i.e. secure against a non-adaptive chosen-ciphertext attack). At this moment,
we have the following results.



On Key Recovery Attacks 241

Fig. 1. Hardness assumptions and relevant papers

– No SHE and FHE scheme can be IND-CCA2 (secure against adaptive chosen-
ciphertext attack). The reason is straightforward, based on the fact that the
adversary is allowed to manipulate the challenged ciphertext and submit it to
the decryption oracle in an IND-CCA2 attack.

– With Gentry’s approach, the resulted FHE scheme cannot be IND-CCA1
secure. The reason is also straightforward, based on the fact that the private
key is encrypted and the adversary is able to submit the ciphertext to the
decryption oracle.

– Loftus et al. [19] showed that Gentry’s SHE scheme [11] is not IND-CCA1
secure and presented an IND-CCA1 attack against the variation proposed in
[14]. They also showed that the same attack applies to the other variant by
Smart and Vercauteren [25]. In fact, the attacks are both key recovery attacks.
Moreover, they modified the SHE in [25] and proved its IND-CCA1 security
based on a new assumption. Zhang et al. [28] presented an IND-CCA1 attack
against the SHE scheme in [27], which can recover the secret key with O(λ2)
queries where λ is the security parameter.

In theory, IND-CPA security may be enough for us to construct cryptographic
protocols, in particular if we assume semi-honest attackers. However, key recov-
ery attacks will pose serious threat for practical usage of SHE and FHE. If a
malicious attacker submits manipulated ciphertexts and observes the behavior
(side channel leakage) of the decryptor, then it may be able to recover all plain-
texts in the system. Therefore, it is very desirable to design SHE and FHE with
IND-CCA1 security, or at least to avoid key recovery attacks.

1.2 Our Contributions

In this paper, we continue the line of work of [19,28] to present key recovery
attacks for the SHE schemes [4] (which, following the literature, we will refer



242 M. Chenal and Q. Tang

to as the BV11b SHE scheme), [3] (the BV11a SHE scheme), [17] (the GSW13
SHE scheme), and [1] (the Bra12 SHE scheme). Our attacks can also be applied
to the SHE scheme in [2] (the BGV12 SHE scheme). We also develop a new key
recovery attack against the SHE scheme in [27] (the vDGHV10 scheme), and our
attack is more efficient and conceptually simpler than that from [28]. Our results
essentially show that the SHE schemes underlying the FHE schemes in category
(3) above are not IND-CCA1 secure. Combining the results from [19,28], we can
conclude that most existing SHE schemes, except that from [19], suffer from key
recovery attacks so that they are not IND-CCA1 secure.

1.3 Structure of the Paper

In Sect. 2, we recall some background on SHE and FHE schemes. Starting from
Sect. 4, we are going to develop key recovery attacks against the aforementioned
SHE schemes. In Sect. 7, we conclude the paper. In the full version of this paper,
[5], we give the algorithmic description of our key recovery attacks, as well as
the efficiency analysis.

2 Preliminaries

Let N be the set of natural numbers, Z the ring of integers, Q the field of rational
numbers, and Fq a finite field with q elements, where q is a power of a prime p.
In particular, we will consider often Fp = Z/pZ = Zp. If r ∈ Zq, we indicate as
r−1 its inverse in Zq, i.e. that value such that r−1 · r = 1 mod q. For a ring
R and a (two-sided) ideal I of R, we consider the quotient ring R/I. For given
vectors v = (v1, . . . , vn), w = (w1, . . . , wn) ∈ Z

n
q , we let 〈v,w〉 =

∑
i viwi the

dot product of v,w. For a given rational number x ∈ Q, we let �x�, �x� and �x�
be respectively the rounding function, the floor function and the ceiling function.
For a given integer n ∈ N, �n + 1/2� = n + 1. To indicate that an element a is

chosen uniformly at random from a set A we use notation a
$← A. For a set A,

we let its cardinality be |A|. We consider also the standard basis {ei}n
i=1 of Rn,

where the coefficients of ei are all 0 except for the i-th coefficient, which is 1.
Unless otherwise specified, λ will always denote the security parameter of

the encryption schemes. In the asymmetric schemes we are going to discuss, the
secret key will be denoted as sk, and the public key will be pk.

2.1 Homomorphic Encryption

The following definitions are adapted from [11]. We only assume bit-by-bit
public-key encryption, i.e. we only consider encryption schemes that are homo-
morphic with respect to boolean circuits consisting of gates for addition and
multiplication mod 2. Extensions to bigger plaintext spaces and symmetric-key
setting are straightforward; we skip the details.



On Key Recovery Attacks 243

Definition 1 (Homomorphic Encryption). A public key homomorphic en-
cryption (HE) scheme is a set E = (KeyGenE ,EncryptE ,DecryptE ,EvaluateE) of
four algorithms, all of which must run in polynomial time. When the context is
clear, we will often omit the index E.

KeyGen(λ) = (sk, pk)

– input: λ

– output: sk; pk

Encrypt(pk,m) = c

– input: pk and plaintext m ∈ F2

– output: ciphertext c

Decrypt(sk, c) = m′

– input: sk and ciphertext c
– output: m′ ∈ F2

Evaluate(pk, C, (c1, . . . , cr)) = ce

– input: pk, a circuit C, cipher-
texts c1, . . . , cr, with ci =
Encrypt(pk,mi)

– output: ciphertext ce

Definition 2 (Correct Homomorphic Decryption). The public key homo-
morphic encryption scheme E = (KeyGen,Encrypt,Decrypt,Evaluate) is correct
for a given t-input circuit C if, for any key-pair (sk, pk) output by KeyGen(λ),
any t plaintext bits m1, . . . , mt, and any ciphertexts c = (c1, . . . , ct) with ci ←
EncryptE(pk,mi), we have that Decrypt(sk,Evaluate(pk, C, c)) = C(m1, . . . , mt).

Definition 3 (Homomorphic Encryption). The public key homomorphic
encryption scheme E = (KeyGen,Encrypt,Decrypt,Evaluate) is homomorphic for
a class C of circuits if it is correct for all circuits C ∈ C. We say that E is a fully
homomorphic encryption (FHE) scheme if it is correct for all boolean circuits.

Informally, a homomorphic encryption scheme that can perform only a lim-
ited number of operations is called a somewhat homomorphic encryption (SHE)
scheme.

2.2 Security Definitions

The following definitions are taken from [19]. The security of a public-key encryp-
tion scheme in terms of indistinguishability is normally presented as a game
between a challenger and an adversary A = (A1,A2). The scheme is considered
secure if no adversary can win the game with significantly greater probability
than an adversary who must guess randomly. The game runs in two stages:

– (pk, sk) ← KeyGen(1λ)
– (m0,m1) ← A(·)

1 (pk) /* Stage 1 */
– b ← {0, 1}
– c∗ ← Encrypt(mb, pk)
– b′ ← A(·)

2 (c∗) /* Stage 2 */

The adversary is said to win the game if b = b′, with the advantage of the
adversary winning the game being defined by

AdvIND-atk
A,E,λ = |Pr(b = b′) − 1/2|



244 M. Chenal and Q. Tang

A scheme is said to be IND-atk secure if no polynomial time adversary A can
win the above game with non-negligible advantage in the security parameter λ.
The precise security notion one obtains depends on the oracle access one gives
the adversary in its different stages:

– If A has access to no oracles in either stage then atk=CPA (indistinguishability
under chosen plaintext attack).

– If A has access to a decryption oracle in stage one then atk=CCA1 (indistin-
guishability under non-adaptive chosen ciphertext attack).

– If A has access to a decryption oracle in both stages then atk=CCA2, often
now denoted simply CCA (indistinguishability under adaptive chosen cipher-
text attack).

– If A has access to a ciphertext validity oracle in both stages, which on input
of a ciphertext determines whether it would output ⊥ or not on decryption,
then atk=CVA.

According to the definition, in order to show that a scheme is not IND-CCA1
secure, we only need to show that an adversary can guess the bit b with a non-
negligible advantage given access to the decryption oracle in Stage 1. Formally,
in a key recovery attack, an adversary can output the private key given access to
the decryption oracle in Stage 1. In comparison, a key recovery attack is stronger
than a typical IND-CCA1 attack.

3 Key Recovery Attack Against the vDGHV10 Scheme

In [28], Zhang, Plantard and Susilo presented a key recovery attack against the
SHE scheme from [27]. Given O(λ2) decryption oracle queries, an attacker can
recover the private key. Let η be the bit-length of the secret key p, O(λ2) =
3(η + 3) in the best case.

We describe here a more efficient and conceptually simpler key recovery
attack. Our attack is optimal in the sense that it recovers directly the secret
key with at most η oracle queries. Note that the decryption oracle outputs one
bit at a time.

We start by presenting the (asymmetric) SHE scheme as developed in [27].
The message space is M = Z2. The scheme is parametrized by γ (bit-length of
the integers in the public key), η (bit-length of the secret key), ρ (bit-length of the
noise), and τ (the number of integers in the public key). We also consider a
secondary noise parameter ρ′ = ρ + ω(logλ). For a specific (η-bit) odd positive
integer p, consider the following distribution over γ-bit integers:

Dγ,ρ(p) = {choose q
$← Z ∩ [0, 2γ/p), r $← Z ∩ (−2ρ, 2ρ) : output x = pq + r}

The algorithms of the vDGHV10 SHE scheme are defined as follows:



On Key Recovery Attacks 245

Since η = #bits(p), we immediately obtain odd lower and upper bounds lp
and up, respectively, for p:

lp = 2η−1 + 1 ≤ p ≤ up = 2η − 1

Notice explicitly that p can only assume the odd values 2η−1 + 1, 2η−1 + 3, . . . ,
2η − 3, 2η − 1. In particular, between 2η−1 and 2η there are 2η−2 candidate values
for p. We can also argue that between lp and up there are (up − lp)/2 = 2η−2 − 1
even integers. Let H(lp,up) = {0, 1, . . . , 2η−2 − 2}, these integers can be denoted
as lp + 2h + 1 for h ∈ H(lp,up).

Now, the idea of the key recovery attack is as follows: consider the ‘ciphertext’
c = lp + 2h + 1 for a given h ∈ H(lp,up). Submit c to the decryption oracle OD;
we will obtain a bit b ← OD(c) = (c mod p) mod 2. There are two cases to
distinguish:

b = 0 ‘Decryption is correct’ (since c is even); hence p > c, i.e. p ≥ lp + 2h + 2.
Update lp ← lp + 2h + 2.

b = 1 ‘Decryption is not correct’; hence p < c, i.e. p ≤ lp + 2h.
Update up ← lp + 2h.

Next, we repeat the decryption query with the updated values for lp, up and
with another even ‘ciphertext’ c ∈ [lp + 1, up − 1], and we stop when up = lp.
In particular, for efficiency we always choose c as the even integer in the middle
of the interval [lp + 1, up − 1]. It is easy to see that this attack leads to a full
recovery of the secret key p with at most log(2η−2 − 2) ≈ η oracle queries.

4 Key Recovery Attack Against the BV11b Scheme

In this section, we describe a key recovery attack against the SHE scheme from [4].



246 M. Chenal and Q. Tang

4.1 The BV11b SHE Scheme

The message space is M = Z2. Let f be a polynomial in λ, i.e. f(λ) = poly(λ).
Consider n = f(λ) ∈ N and let ε ∈ (0, 1) ∩ R. Assume an odd integer q ∈ N

such that q ∈ [2nε

, 2 · 2nε

), and an integer m ≥ nlog q + 2λ. Let χ be a noise
distribution over Zq (it produces small samples, all of magnitude not greater
than n). Finally, let L ∈ N be an upper bound on the maximal multiplicative
depth that the scheme can homomorphically evaluate, say L ≈ εlog n.

KeyGen(λ)

– pick s0, . . . , sL
$← Z

n
q

– pick a matrix A
$← Z

m×n
q

– pick a vector e ← χm

– compute b = As0 + 2e
– sk = sL
– pk = (A,b)

Encrypt(pk, μ ∈ M)

– pick r $← {0, 1}m

– set v = ATr ∈ Z
n
q

– set w = bTr + μ ∈ Zq

– ciphertext c = ((v, w), l).
Decrypt(sk, c = ((v, w), L))

μ = (w − 〈v, sL〉 mod q) mod 2

Notice that the vectors s1, . . . , sL−1 are used in order to compute the evalu-
ation key, which we omit here. We remark that during the homomorphic evalua-
tion, the scheme generates ciphertexts of the form c = ((v, w), l), where the tag
l indicates the multiplicative level at which the ciphertext has been generated
(fresh ciphertexts are tagged with l = 0). Note that it always holds that l ≤ L
due to the bound on the multiplicative depth, and that the output of the homo-
morphic evaluation of the entire circuit is expected to have l = L. As described
in [4], the SHE scheme is only required to decrypt ciphertexts that are output
by the evaluation step (which we omit here), and those will always have level
tag L. Therefore, we always expect a ciphertext of the form c = ((v, w), L) and
decryption is correctly performed using the secret key sL.

Apparently, we cannot decrypt level l ciphertexts c = ((v, w), l), for 1 ≤ l <
L, since we are only allowed to decrypt level L ciphertexts. However, we can
compute L − l fresh encryptions of 1, namely c1, . . . , cL−l. Then, we compute
c∗ = Evaluate(pk,MUL, c, c1, . . . , cL−l) based on the homomorphic property,
where MUL is the multiplication circuit. The resulting ciphertext c∗ will encrypt
the same message as c does, and with a tag level L. In particular, we can decrypt
fresh ciphertexts.

4.2 Our Key Recovery Attack

We are going to recover the secret key sL ∈ Z
n
q component-wise, and bit by

bit. For ease of notation, we will write s instead of sL. More precisely, we write
s = (s1, . . . , sn) ∈ Z

n
q . For every 1 ≤ j ≤ n, we have sj ∈ Zq and therefore sj can

be written with a maximum number N of bits, where N = �log2(q − 1)�+1. We
are going to recover the i-th bit of sj , for all 1 ≤ i ≤ N and for all 1 ≤ j ≤ n.

Intuitively, our attack works as follows. We start by finding the first bit of sj

for every 1 ≤ j ≤ n; then we will recover the second bit of sj for every 1 ≤ j ≤ n;



On Key Recovery Attacks 247

and we stop until we reach the N -th bit. In order to do so, we have to choose
a ‘ciphertext’ c to be submitted to the decryption oracle. Instead of submitting
c = (v, w) for honestly-generated v ∈ Z

n
q and w ∈ Zq, we submit c∗ = (x, y) for

some specifically-picked x ∈ Z
n
q and y ∈ Zq. We omit to write the level tag since

we can always obtain a level tag L from any l ≤ L.
For any 1 ≤ j ≤ n, let (sj)2 := aj,Naj,N−1 · · · aj,1 be the binary represen-

tation of sj (bits ordered from most significant to least significant). We have
aj,i ∈ {0, 1}, for all 1 ≤ i ≤ N .

Recovering aj,1
Wehave to choosex ∈ Z

n
q and y ∈ Zq in such away that y−〈x, s〉 mod q = sj .

To do so, pick y = 0 and x = (0, . . . , 0,−1, 0, . . . , 0) (where −1 is in position
j). Then, we have 0 − (−1)sj mod q = sj mod q = sj . As a result, by
modding out with 2, this will return the last bit aj,1 of sj .

Recovering aj,2
Now that we know the last bit aj,1 of sj , we want to obtain s

(1)
j := (sj −

aj,1)/2 ∈ Zq whose bit decomposition is the same as the bit decomposi-
tion of sj , but with the last bit removed from it. Then, modding out by
2, we will get the desired bit. This translates to the following condition:
find x ∈ Z

n
q and y ∈ Zq such that y − 〈x, s〉 mod q = (sj − aj,1)/2. Let

x = (0, . . . , 0, xj , 0, . . . , 0) (with xj in j-th position). We have to find y and
xj such that 2y − sj(2xj + 1) = −aj,1 mod q. Clearly, the solution is given
by xj = −2−1 mod q and y = −2−1aj,1 mod q. By querying the decryp-
tion oracle with the ‘ciphertext’ c∗ := (x, y), we obtain the second-to-last
bit aj,2 of sj .

Recovering aj,m, for 1 ≤ m ≤ N
Based on the above two cases, we generalize the procedure. Suppose we
have found all bits aj,i, for 1 ≤ i ≤ m − 1. In order to recover the bit
aj,m, we choose x := (0, . . . , 0, xj , 0, . . . , 0) ∈ Z

n
q and y ∈ Zq as follows:

xj = −(2m−1)−1 mod q and y = −(2m−1)−1(
∑m−1

i=1 2i−1aj,i).

5 Key Recovery Attack Against the BV11a Scheme

In this section, we describe a key recovery attack against the symmetric-key SHE
scheme from [3]. The attack also applies to the asymmetric-key SHE scheme.

5.1 The BV11a SHE Scheme

Consider primes q = poly(λ) ∈ N, t = poly(λ) ∈ Z
∗
q . Let n = poly(λ) ∈ N

and consider a polynomial f(x) ∈ Z[x] with deg(f) = n + 1. The message
space is M = Rt = Z[x]/(f(x)). Namely, a message is encoded as a degree n
polynomial with coefficients in Zt. Let χ be an error distribution over the ring
Rq := Zq[x]/(f(x)) and let D ∈ N, which is related to the maximal degree
of homomorphism allowed (and to the maximal ciphertext length). Parameters
n, f, q, χ are public.



248 M. Chenal and Q. Tang

Keygen(λ)
– sample s ← χ
– s = (1, s, s2, . . . , sD) ∈ RD+1

q
– sk = s

Encrypt(sk, μ ∈ M)
– sample a

$← Rq and e ← χ
– compute (a, b := as + te) ∈ R2

q
– compute c0 := b + μ ∈ Rq,

c1 := −a
– output c = (c0, c1) ∈ R2

q

Decrypt(sk, c = (c0, . . . , cD) ∈ RD+1
q )

μ = (〈c, s〉 mod q) mod t

We remark that while the encryption algorithm only generates ciphertexts
c ∈ R2

q , homomorphic operations (as described in the evaluation algorithm which
we omit here) might add more elements to the ciphertext. Thus, the most generic
form of a decryptable ciphertext in this scheme is c = (c0, . . . , cd) ∈ Rd+1

q , for
d ≤ D. Notice that ‘padding with zeros’ does not affect the ciphertext. Namely,
(c0, . . . , cd) ∈ Rd+1

q and (c0, . . . , cd, 0, . . . , 0) ∈ RD+1
q encrypt the same message

μ ∈ Rt.

5.2 Our Key Recovery Attack

We can write s = s0 + s1x + · · · + snxn ∈ Zq[x]/(f(x)) with coefficients sj ∈ Zq,
∀0 ≤ j ≤ n. We will recover each coefficient sj separately. Now, each sj has
at most N := �log2(q − 1)� + 1 bits; therefore #bits(s) ≤ (n + 1) × N =
(n + 1) × (�log2(q − 1)� + 1) and each query to the oracle decryption will reveal
a polynomial μ(x) = μ0 + μ1x + · · · + μnxn ∈ Zt[x]/(f(x)); we have #bits(μ) ≤
(n + 1) × (�log2(t − 1)� + 1). Therefore, the minimum number of oracle queries
needed is given by

⌈
#(bits(s))

#(bits revealed by an oracle query)

⌉
=

⌈�log2(q − 1)� + 1
�log2(t − 1)� + 1

⌉

We are going to query the decryption oracle with ‘ciphertexts’ of the form c∗
i :=

(hi, yi, 0, . . . , 0) ∈ RD+1
q for some hi, yi ∈ Rq. We will describe in detail our

attack in the case t = 2. An easy generalization for t ≥ 2 is discussed later.

An easy case : t = 2.

We expect to query the decryption oracle at least �log2(q − 1)� + 1 times and
recover sj , for all 0 ≤ j ≤ n, bit by bit. Let N = #bits(sj) = �log2(q − 1)� + 1,
∀0 ≤ j ≤ n; and let (sj)2 = aj,Naj,N−1 · · · aj,1 be the binary representation of
sj , ∀0 ≤ j ≤ n (i.e., aj,i ∈ {0, 1},∀1 ≤ i ≤ N and bits ordered most significant
to least significant). For ease of notation, we write c∗ = (h, y) instead of c∗ =
(h, y, 0, . . . , 0).

Recovering aj,1, for all 0 ≤ j ≤ n
For a submitted ‘ciphertext’ c∗ = (h, y), decryption is given by 〈c∗, s〉 mod



On Key Recovery Attacks 249

2= h+ys mod 2. We choose h =
∑n

j=0 0xj = 0 ∈ Rq and y = 1+
∑n

j=1 0xj =
1 ∈ Rq. The decryption oracle outputs

s mod 2 = (s0 mod 2) + (s1 mod 2)x + · · · + (sn mod 2)xn

= a0,1 + a1,1x + · · · + an,1x
n

Therefore, we obtain the last bits aj,1 for all 1 ≤ j ≤ n, which are n bits of s.
Recovering aj,2, ∀0 ≤ j ≤ n

With aj,1 for all 0 ≤ j ≤ n, we are going to recover aj,2, ∀0 ≤ j ≤ n, as
follows. We want to obtain

s(1) :=
s − (a0,1 + a1,1x + · · · + an,1x

n)
2

= s
(1)
0 + s

(1)
1 x + · · · + s(1)n xn ∈ Zq[x]

(f(x))

for which the bit decomposition of the coefficients s
(1)
j is the same as the bit

decomposition of sj , but with the last bit removed from it, for all 0 ≤ j ≤ n.
Then, by modding out with 2, we will get the desired bits. This translates
to the following condition: find c∗ = (h, y) = (h, y, 0, . . . , 0) ∈ RD+1

q such
that 〈c∗, s〉 = s(1) := s−(a0,1+a1,1x+···+an,1xn)

2 , from which we obtain 2h +
s(2y−1) = −(a0,1+a1,1x+ · · ·+an,1x

n). A solution is given by y = 2−1 ∈ Rq

and h = −2−1(a0,1+a1,1x+ · · ·+an,1x
n) ∈ Rq. Then, by modding out with 2

the ‘decrypted ciphertext’ μ = 〈c∗, s〉, we recover the second-to-last bits aj,2,
for all 0 ≤ j ≤ n.

Recovering aj,m, for 1 ≤ m ≤ N , 0 ≤ j ≤ n
Suppose we have found all bits aj,i, ∀1 ≤ i ≤ m − 1 and ∀0 ≤ j ≤ n. We
want to recover aj,m, ∀0 ≤ j ≤ n. By a recursive argument, we find that
we have to submit a ‘ciphertext’ c∗ = (h, y) such that y = (2m−1)−1 ∈ Rq

and h = −(2m−1)−1
(∑n

j=0 djx
j
)

with dj =
∑m−1

i=1 2i−1aj,i.

This concludes the attack for the case t = 2. Efficiency-wise, the total number
of oracle queries is N = �log2(q − 1)� + 1, which is optimal.

The general case : t ≥ 2.

We consider now the general case in which t ≥ 2 is a prime number in Z
∗
q .

We want to find s = s0 + s1x + · · · + snxn ∈ Zq[x]/(f(x)) and expect to query

the decryption oracle
⌈

�log2(q−1)�+1
�log2(t−1)�+1

⌉
times. With each query to the decryption

oracle, we are going to recover M = �log2(t− 1)�+1 bits of sj , ∀0 ≤ j ≤ n. The
idea is that we are going to recover sj , for all 0 ≤ j ≤ n. In its representation
in base t, sj can be represented with N figures aj,i ∈ {0, 1, . . . , t − 1}: (sj)t =
aj,Naj,N−1 · · · aj,1 where N = �logt(q − 1)� + 1; each aj,i is bounded by t − 1,
which explains the value M = �log2(t − 1)� + 1.



250 M. Chenal and Q. Tang

Recovering aj,1, ∀0 ≤ j ≤ n
For a submitted ‘ciphertext’ c∗ = (h, y) = (h, y, 0, . . . , 0) ∈ RD+1

q , decryp-
tion works as follows: 〈c∗, s〉 mod t = x + ys mod t. We choose h = 0 ∈ Rq

and y = 1 ∈ Rq. Then, the decryption oracle outputs

s mod t = (s0 mod t) + (s1 mod t)x + · · · + (sn mod t)xn

= a0,1 + a1,1x + · · · + an,1x
n

as we wanted.
Recovering aj,m, ∀1 ≤ m ≤ N , ∀0 ≤ j ≤ n

Suppose we know aj,i, ∀1 ≤ i ≤ m−1, ∀0 ≤ j ≤ n. We want to recover aj,m,
for all 0 ≤ j ≤ n. To do so, we submit to the decryption oracle a ‘ciphertext’
c∗ = (h, y) such that y = (tm−1)−1 ∈ Rq, h = −(tm−1)−1

(∑n
j=0 djx

j
)

, dj =
∑m−1

i=1 ti−1aj,i. It is straightforward to verify that it works and we skip the
details here.

5.3 Attacks Against the BGV12 and Bra12 SHE Schemes

The SHE scheme from [2] is closely related to the SHE schemes from [3,4]. This
implies that the attacks from Sects. 4.2 and 5.2 can be directly applied against
the SHE scheme from [2]. The details appear in [5]. The SHE scheme from [1]
is conceptually different, however, a key recovery attack can also be developed;
the details appear in [5].

6 Key Recovery Attack Against the GSW13 SHE Scheme

In this section, we describe a key recovery attack against the SHE scheme from
[17]. We first give some useful preliminary definitions. Let q, k ∈ N. Let l be the
bit-length of q, i.e. l = �log2q� + 1, and let N = k · l. Consider a vector a :=
(a1, . . . , ak) ∈ Z

k
q , and let (ai)2 := ai,0ai,1 . . . ai,l−1 be the binary decomposition

of ai (bit ordered least to most significant), for every i = 1, . . . , k. We define

BitDecomp(a) := (a1,0, . . . , a1,l−1, . . . , ak,0, . . . , ak,l−1) ∈ Z
N
q

For a given a′ := (a1,0, . . . , a1,l−1, . . . , ak,0, . . . , ak,l−1) ∈ Z
N
q , let

BitDecomp−1(a′) := (
l−1∑

j=0

2j · a1,j , . . . ,

l−1∑

j=0

2j · ak,j) ∈ Z
k
q

We notice explicitly that a′ does not necessarily lie in {0, 1}N , but when it does
then BitDecomp−1 is the inverse of BitDecomp. For a′ ∈ Z

N
q , we define

Flatten(a′) := BitDecomp(BitDecomp−1(a′)) ∈ Z
N
q



On Key Recovery Attacks 251

When A is a matrix, letBitDecomp(A),BitDecomp−1(A),Flatten(A) be the matrix
formed by applying the operation to each row of A separately. Finally, for b :=
(b1, . . . , bk) ∈ Zq let

PowersOf2(b) := (b1, 2b1, . . . , 2l−1b1, . . . , bk, 2bk, . . . , 2l−1bk) ∈ Z
N
q

It is easy to see that, for a,b ∈ Z
k
q and for a′ ∈ Z

N
q ,

– 〈BitDecomp(a),Powersof2(b)〉 = 〈a,b〉
– 〈a′,Powersof2(b)〉 = 〈BitDecomp−1(a′),b〉 = 〈Flatten(a′),Powersof2(b)〉

6.1 The GSW13 SHE Scheme

The message space is M = Zq for a given modulus q with # bits(q) = κ =
κ(λ,L). Let n = n(λ) be the lattice dimension and let χ = χ(λ) be the error
distribution over Zq (chosen appropriately for LWE: it must achieve at least
2λ security against known attacks). Choose m = m(λ) = O(nlogq). So the
parameters used in all algorithms are n, q, χ,m. We have that l = �log q� + 1 is
the number of bits of q, and we let N = (n + 1) · l.

Keygen(λ):
– t := (t1, . . . , tn) ← Z

n
q

– sk := s ← (1,−t1, . . . ,−tn) ∈
Z

n+1
q

– v = Powersof2(s) ∈ Z
N
q ; see1

– B
$← Z

m×n
q

– e ← χ, e ∈ Z
m
q

– b := B · t + e =: (b1, . . . , bm) ∈
Z

m
q .

– set A to be the (n + 1)-column
matrix consisting of b followed
by the n columns of B

A = (b | B) ∈ Z
m×(n+1)
q

– pk := A.
We remark that A · s = e.

Encrypt(pk, μ ∈ M):
– sample a matrix

R
$← {0, 1}N×m

– output the ciphertext

C = Flatten(µ · IN +

+ BitDecomp(R · A))∈ Z
N×N
q

Decrypt(sk, C):
– observe that the first l coeffi-

cients of v are 1, 2, . . . , 2l−2

– among these coefficients, let
vi = 2i be in (q/4, q/2]

– let Ci be the i-th row of C
– compute xi := 〈Ci,v〉
– output μ′ := �xi/vi�

The Decrypt algorithm can recover the message μ when it is in a ‘small
space’ (q = 2, i.e. M = Z2). For an algorithm that can recover any μ ∈ Zq,
we refer to the MPDec algorithm as described (as a special case) in [17] and
in [21]. If the ciphertext is generated correctly, it is not difficult to show that
C · v = μ · v + R · A · s = μ · v + R · e ∈ Z

N
q .

1 v=Powersof2(s) = (s1, 2s1, . . . , 2
l−1s1, s2, . . . , 2

l−1s2, . . . , sn+1, 2sn+1, . . . , 2
l−1sn+1)

= (1, 2, . . . , 2l−1,−t1,−2t1, . . . ,−2l−1t1, . . . ,−tn,−2tn, . . . ,−2l−1tn) ∈ Z
(n+1)l
q .



252 M. Chenal and Q. Tang

Now, the Decrypt algorithm uses only the i-th coefficient of the vector C ·v ∈
Z

N
q , i.e. 〈Ci,v〉 = μ · vi + 〈Ri, e〉 ∈ Zq. Moreover, in the Decrypt step, i has to

be such that vi := 2i ∈ (q/4, q/2], with i ∈ [1, 2, . . . , 2l−1]. Now remember that
l = �log q� + 1 equals the number of bits of q. Hence we have

2l−3 ≤ q

4
< 2l−2 ≤ q

2
< 2l−1 ≤ q < 2l

Therefore the only possible value for 2i ∈ (q/4, q/2] is 2l−2. For this reason,
Decrypt can be simply rewritten as

Decrypt(sk, C):
– let Cl−2 be the (l − 2)-th row of C
– compute xl−2 := 〈Cl−2,v〉
– output μ′ := �xl−2/2l−2�

One could think of outputting as ciphertext only the (l − 2)-th row Cl−2 of the
matrix C; this is actually not possible since the full matrix is still needed in
order to perform the homomorphic operations (in particular, the multiplication
of two ciphertexts). We will not discuss them here; see [17].

6.2 Our Key Recovery Attack

We are going to recover bit by bit each coefficient ti of the secret vector t :=
(t1, . . . , tn) ∈ Z

n
q . For every 1 ≤ i ≤ n, letBitDecomp(ti) := (ti,0, ti,1, . . . , ti,l−1) ∈

Z
l
q bits ordered from least to most significant. We explicitly remark that ti =

∑l−1
j=0 2jti,j . We will proceed as follows: start with i = 1 and recover, in this order,

the bits from most to least significant. Then continue with i = 2, and so on until
i = n. Let x ∈ Zq. Since #bits(q) = l, we have x ≤ q − 1 ≤ 2l − 2. Moreover,
we have #bits(x) ≤ �log2(q − 1)� + 1 := l∗. We have l∗ = l if q is not a power of
2, i.e. if q �= 2h, for any h ∈ {1, 2, . . . , l − 1}. Otherwise, l∗ = l − 1. We will not
distinguish between these two cases: just remark that if l∗ = l − 1, then ti,l−1 = 0
for all i ∈ {1, 2, . . . , n}.

Recovering BitDecomp(t1)
We start by recovering BitDecomp(t1). The trickiest part is to recover the most
significant bit. We start by recovering t1,l−1, t1,l−2, t1,l−3. We have to choose,
and submit to the decryption oracle, a matrix C ∈ Z

N×N
q . Then the oracle

will compute x = 〈Cl−2,v〉 and will output the rounded value μ = �x/2l−2�.
Our attack works also, with a trivial modification, in the case we define the
rounding function such that �n + 1/2� := n, for every n ∈ N. Our strategy is to
submit a matrix C whose entries are all 0 except for the (l−2)-th row Cl−2. Let
y = (y1, . . . , yN ) ∈ Z

N
q be the vector representing Cl−2.

We select y = (0, . . . , 0,−1, 0, . . . , 0) ∈ Z
N
q where −1 is in l+1-th position, i.e.

yi =

{
−1 if i = l + 1
0 otherwise



On Key Recovery Attacks 253

Through the decryption oracle, we have x = 〈y,v〉 = −vl+1 = t1 ∈ Zq and
μ = �t1/2l−2�. There are two cases.

1. μ = 0. In this case, we have 0 ≤ t1
2l−2 < 1

2 i.e. t1 < 2l−3 =
∑l−4

j=0 2j + 1.
Then it must be t1,l−1 = t1,l−2 = t1,l−3 = 0 .

2. 1 ≤ μ ≤ 4. In particular, 2l−3 ≤ t1 ≤ 2l − 2. Then we have

(t1,l−1, t1,l−2, t1,l−3) ∈ {0, 1}3\{(0, 0, 0)} (1)

Next, query the decryption oracle with y = (0, . . . , 0,−1, 0, 0,−1, 0, . . . , 0) ∈
Z

N
q with −1 in (l − 2)-th and (l + 1)-th positions:

yi =

{
−1 if i = l − 2 or i = l + 1
0 otherwise

Through the decryption oracle, we have x = 〈y,v〉 = t1 − 2l−3 ≥ 0 and
μ =

⌊
t1−2l−3

2l−2

⌉
. There are two cases:

2.1. μ = 0. In this case, we have 0 ≤ t1−2l−3

2l−2 < 1
2 i.e. 2l−3 ≤ t1 < 2l−2 =∑l−3

j=0 2j +1. Then it must be t1,l−1 = t1,l−2 = 0 . Condition (1) implies

that t1,l−3 = 1 .
2.2. 1 ≤ μ ≤ 3. In particular, 2l−2 ≤ t1 ≤ 2l − 2. Then we have

(t1,l−1, t1,l−2) ∈ {0, 1}2\{(0, 0)} (2)

Next, query the decryption oraclewithy = (0, . . . , 0,−1, 0,−1, 0, . . . , 0) ∈
Z

N
q , with −1 in (l − 1)-th and (l + 1)-th positions:

yi =

{
−1 if i = l − 1 or i = l + 1
0 otherwise

Through the decryption oracle, we have x = 〈y,v〉 = t1 − 2l−2 ≥ 0 and
μ =

⌊
t1−2l−2

2l−2

⌉
. There are two cases:

2.2.1. μ = 0. In this case, we have 0 ≤ t1−2l−2

2l−2 < 1
2 and 2l−2 ≤ t1 <

2l−2+2l−3 < 2l−1. This means that t1,l−1 = 0 . Therefore, condition

(2) implies that t1,l−2 = 1 . Moreover, since we have 0 ≤ t1−2l−2 <

2l−3, we have that t1,l−3 = 0 .

2.2.2. 1 ≤ μ ≤ 2. In particular, 2l−3 + 2l−2 ≤ t1.
Next, choose y = (0, . . . , 0,−1,−1, 0,−1, 0, . . . , 0) ∈ Z

N
q , with −1 in

(l − 2)-th, (l − 1)-th and (l + 1)-th positions:

yi =

{
−1 if i = l − 2, i = l − 1 or i = l + 1
0 otherwise

Query the decryption oracle with y: we have x = 〈y,v〉 = t1−(2l−3+
2l−2) ≥ 0 and μ =

⌊
t1−(2l−3+2l−2)

2l−2

⌉
. There are two cases:



254 M. Chenal and Q. Tang

2.2.2.1. μ = 0. In this case, we have 0 ≤ t1−2l−3−2l−2

2l−2 < 1
2 , i.e. 2l−3 +

2l−2 ≤ t1 < 2l−1. This implies t1,l−1 = 0 . Therefore, condition

(2) gives t1,l−2 = 1 . Moreover, we have 2l−3 ≤ t1−2l−2 < 2l−2;

hence t1,l−3 = 1 .

2.2.2.2. μ = 1. We have 2l−1 ≤ t1 ≤ 2l − 2. This implies t1,l−1 = 1 . We
now have to recover t1,l−2, t1,l−3.
Query thedecryptionoraclewithy = (0, . . . , 0,−1,−1, 0, . . . , 0) ∈
Z

N
q , with −1 in l-th and (l + 1)-th positions:

yi =

{
−1 if i = l or i = l + 1
0 otherwise

Through the decryption oracle, we have x = 〈y,v〉 = t1 −2l−1 ≥
0 and μ =

⌊
t1−2l−1

2l−2

⌉
. There are two cases:

2.2.2.2.1. μ = 0. In this case, we have 0 ≤ t1−2l−1

2l−2 < 1
2 , i.e. 0 ≤ t1 −

2l−1 < 2l−3 =
∑l−4

j=0 2j + 1. This implies t1,l−2 = t1,l−3 = 0 .

2.2.2.2.2. 1 ≤ μ ≤ 3. In particular, 2l−3 ≤ t1 − 2l−1. Then we have

(t1,l−2, t1,l−3) ∈ {0, 1}2\{(0, 0)} (3)

Choose y = (0, . . . , 0,−1, 0,−1,−1, 0, . . . , 0) ∈ Z
N
q , with −1

in (l − 2)-th, l-th and (l + 1)-th positions:

yi =

{
−1 if i = l − 2, i = l or i = l + 1
0 otherwise

Query the decryption oracle with y: we have x = 〈y,v〉 =
t1 − (2l−1 + 2l−3) ≥ 0 and μ =

⌊
t1−2l−1−2l−3

2l−2

⌉
. There are two

cases:
2.2.2.2.2.1. μ = 0. In this case, we have 0 ≤ t1−2l−1−2l−3

2l−2 < 1
2 , i.e. 2l−3 ≤

t1−2l−1 < 2l−2. This means that t1,l−2 = 0 . Condition (3)

then implies t1,l−3 = 1 .

2.2.2.2.2.2. 1 ≤ μ ≤ 2. In particular, 2l−2 ≤ t1 − 2l−1 ≤ 2l − 2 −
2l−1 = 2l−1 − 2. Then, we have t1,l−2 = 1 . We still have
to find t1,l−3. Next, query the decryption oracle with y =
(0, . . . , 0,−1,−1,−1, 0, . . . , 0) ∈ Z

N
q , where −1 is in (l − 1)-

th, l-th and (l + 1)-th positions:

yi =

{
−1 if i = l − 1, i = l or i = l + 1
0 otherwise

Through the decryption oracle, we have x = 〈y,v〉 = t1 −
(2l−1 + 2l−2) ≥ 0 and μ =

⌊
t1−2l−1−2l−2

2l−2

⌉
. There are two

cases:



On Key Recovery Attacks 255

2.2.2.2.2.2.1. μ = 0. In this case,

0 ≤ t1 − 2l−1 − 2l−2

2l−2
<

1
2
, i.e. 0 ≤ t1−2l−1−2l−2 < 2l−3

This implies that t1,l−3 = 0 .

2.2.2.2.2.2.2. μ = 1. Then 2l−3 ≤ t1 − 2l−1 − 2l−2. This implies that
t1,l−3 = 1 .

At this point, we know the first three significant bits t1,l−1, t1,l−2, t1,l−3 of t1.
Notice that we have recovered the first three most significant bits with at most 7
oracle queries. Next, we are going to recover t1,l−4. Query the decryption oracle
with

y = (0, . . . , 0,−t1,l−3,−t1,l−2,−t1,l−1,−1, 0, . . . , 0) ∈ Z
N
q

where −t1,i is in (i + 1)-th position. Then

x = 〈y,v〉 = t1 − (t1,l−12l−1 + t1,l−22l−2 + t1,l−32l−3)

Now, we have 0 ≤ x < 2l−3. Therefore, μ = �x/2l−2� = 0, and so not useful
at all to learn t1,l−4. The idea is to ‘shift’ the bits ‘to the left’, i.e. towards the
most significant. So, let us instead choose

y = 2 · (0, . . . , 0,−t1,l−3,−t1,l−2,−t1,l−1,−1, 0, . . . , 0) ∈ Z
N
q

So now x = 〈y,v〉 is such that 0 ≤ x < 2l−2. After submitting y to the decryption
oracle, it will compute and output μ = �x/2l−2�. Then t1,l−4 = μ .

Now we can generalize and recover t1,k, for all k = l − 4, l − 5, . . . , 1, 0. This
will complete the recovery of t1. Suppose that, for a given k, we recovered already
t1,m, ∀m ∈ [k + 1, . . . , l − 1]. We then recover t1,k by recurrence. Choose

y = 2l−k−3(0, . . . , 0,−t1,k+1,−t1,k+2, . . . ,−t1,l−1,−1, 0, . . . , 0) ∈ Z
N
q

with −t1,i in (i + 1)-th position; i.e.

yi =

⎧
⎪⎨

⎪⎩

−2l−k−3t1,i−1 for i ∈ [k + 2, . . . , l]
−2l−k−3 for i = l + 1
0 otherwise

Then we have x = 〈y,v〉 = 2l−k−3
(
t1 − ∑l−1

j=k+1 t1,j2j
)

with 0 ≤ x < 2l−2.

Then, t1,k = μ .
We recover completely t1 after at most 7 + (l − 3) = l + 4 oracle queries.

Recovering BitDecomp(tr), for every r ∈ [1, 2, . . . , n]
We can now generalize and recover BitDecomp(tr), for every r ∈ [1, 2, . . . , n], in
a way analogous to what has been done for the case r = 1. The only difference
is that, when choosing y ∈ Z

N
q , we set −1 in position rl + 1. So, for a given

r ∈ [1, 2, . . . , n], we have the following.



256 M. Chenal and Q. Tang

– Recovering the first three most significant bits tr,l−1, tr,l−2, tr,l−3. This is done
exactly as in the case of t1, with the only modification yl+1 = 0 and yrl+1 = −1
always.

– Recovering tr,k, for all k = l − 4, l − 5, . . . , 1, 0. Suppose that, for a given k,
we recovered already tr,m, ∀m ∈ [k + 1, . . . , l − 1]. We then recover tr,k by
recurrence. Choose

y = 2l−k−3(0, . . . , 0,−tr,k+1,−tr,k+2, . . . ,−tr,l−1, 0, . . . , 0,−1, 0, . . . , 0)∈ Z
N
q

with −tr,i in (i + 1)-th position and −1 in (rl + 1)-th position; i.e.

yi =

⎧
⎪⎨

⎪⎩

−2l−k−3tr,i−1 for i ∈ [k + 2, . . . , l]
−2l−k−3 for i = rl + 1
0 otherwise

Then we have x = 〈y,v〉 = 2l−k−3
(
tr − ∑l−1

j=k+1 tr,j2j
)

with 0 ≤ x < 2l−2.

Then, tr,k = μ .

In summary, we can recover the secret key t ∈ Z
n
q with at most (l + 4) · n

oracle queries.

7 Conclusion

In this paper, we have shown that the SHE schemes from [1–4,17] suffer from key
recovery attacks when the attacker is given access to the decryption oracle. Com-
bining the results from [19,28], we now know that most existing SHE schemes
suffer from key recovery attacks, and so they are not IND-CCA1 secure. As
such, a natural next step is to investigate whether it is possible to enhance these
SHE schemes to avoid key recovery attacks and make them IND-CCA1 secure.
One thing we should keep in mind is to preserve their homomorphic properties.
Following the work of [19], one could think of tweaking the decryption step of a
SHE scheme by including a ciphertext validity check in order to make sure that,
with some high probability, the ciphertext is honestly generated by the attacker
and not specifically chosen for the purpose of recovering a given bit (or bits) of
the secret key. Unfortunately, we cannot directly apply the techniques from [19]
due to the fact that the SHE scheme from [19] enjoys some particular algebraic
properties which do not exist in other schemes. This means that we need to treat
each SHE scheme individually.

Acknowledgments. Massimo Chenal is supported by an AFR PhD grant from the
National Research Fund, Luxembourg. Qiang Tang is partially supported by a CORE
(junior track) grant from the National Research Fund, Luxembourg.



On Key Recovery Attacks 257

References

1. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012)

2. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Proceedings of the 3rd Innovations in The-
oretical Computer Science Conference, ITCS 2012, pp. 309–325. ACM (2012)

3. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

4. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Proceedings of the 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, pp. 97–106 (2011)

5. Chenal, M., Tang, Q.: On key recovery attacks against existing somewhat homo-
morphic encryption schemes. IACR Cryptology ePrint Archive, Report 2014/535
(2014)

6. Cheon, J.H., Coron, J.-S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun,
A.: Batch fully homomorphic encryption over the integers. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer,
Heidelberg (2013)

7. Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryp-
tion over the integers with shorter public keys. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011)

8. Coron, J.-S., Naccache, D., Tibouchi, M.: Public key compression and modulus
switching for fully homomorphic encryption over the integers. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 446–464. Springer,
Heidelberg (2012)

9. Ding, J., Tao, C.: A new algorithm for solving the approximate common divisor
problem and cryptanalysis of the fhe based on gacd. IACR Cryptology ePrint
Archive, Report 2014/042 (2014)

10. Gentry, C.: A Fully Homomorphic Encryption Scheme. Ph.D thesis, Stanford, CA,
USA (2009)

11. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the Forty-First Annual ACM Symposium on Theory of Computing, STOC 2009,
pp. 169–178. ACM (2009)

12. Gentry, C.: Computing arbitrary functions of encrypted data. Commun. ACM
53(3), 97–105 (2010)

13. Gentry, C., Halevi, S.: Fully homomorphic encryption without squashing using
depth-3 arithmetic circuits. In: Proceedings of the 2011 IEEE 52nd Annual Sym-
posium on Foundations of Computer Science, FOCS 2011, pp. 107–109 (2011)

14. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–
148. Springer, Heidelberg (2011)

15. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 1–16. Springer, Heidelberg (2012)

16. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 465–482. Springer, Heidelberg (2012)



258 M. Chenal and Q. Tang

17. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013)

18. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

19. Loftus, J., May, A., Smart, N.P., Vercauteren, F.: On CCA-secure somewhat homo-
morphic encryption. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118,
pp. 55–72. Springer, Heidelberg (2012)

20. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Proceedings of the
Forty-Fourth Annual ACM Symposium on Theory of Computing, STOC 2012, pp.
1219–1234. ACM, New York (2012)

21. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
IACR Cryptology ePrint Archive, Report 2011/501 (2011)

22. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security
Workshop, CCSW 2011, pp. 113–124 (2011)

23. Nuida, K.: A simple framework for noise-free construction of fully homomorphic
encryption from a special class of non-commutative groups. IACR Cryptology
ePrint Archive, Report 2014/097 (2014)

24. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. In: De Millo, R.A., et al. (eds.) Foundations of Secure Computation, pp.
169–179. Academia Press, New York (1978)

25. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

26. Stehlé, D., Steinfeld, R.: Faster fully homomorphic encryption. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer, Heidelberg (2010)

27. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

28. Zhang, Z., Plantard, T., Susilo, W.: On the CCA-1 security of somewhat homo-
morphic encryption over the integers. In: Ryan, M.D., Smyth, B., Wang, G. (eds.)
ISPEC 2012. LNCS, vol. 7232, pp. 353–368. Springer, Heidelberg (2012)



Practical Attacks on AES-like Cryptographic
Hash Functions

Stefan Kölbl(B) and Christian Rechberger

Technical University of Denmark, Kongens Lyngby, Denmark
stek@dtu.dk

Abstract. Despite the great interest in rebound attacks on AES-like hash
functions since 2009, we report on a rather generic, albeit keyschedule-
dependent, algorithmic improvement: A new message modification tech-
nique to extend the inbound phase, which even for large internal states
makes it possible to drastically reduce the complexity of attacks to very
practical values for reduced-round versions. Furthermore, we describe new
and practical attacks on Whirlpool and the recently proposed GOST R
hash function with one or more of the following properties: more rounds,
less time/memory complexity, and more relevant model. To allow for easy
verification, we also provide a source-code for them.

Keywords: Hash functions · Cryptanalysis · Collisions · Whirlpool ·
GOST R · Streebog · Practical attacks

1 Introduction

Cryptographic hash functions are one of the most versatile primitives and have
many practical applications like integrity checks, message authentication, digital
signature or password protection. Often they are a critical part of more complex
systems whose security might fall apart if hash a function does not provide the
properties we expect it to have.

Cryptographic hash functions take as input a string of arbitrary finite length
and produce a fixed-sized output of n bits called hash. As a consequence, the
following main security requirements are defined for cryptographic hash func-
tions:

– Preimage Resistance: For a given output y it should be computationally
infeasible to find any input x′ such that y = h(x′).

– Second Preimage Resistance: For given x, y = h(x) it should be compu-
tationally infeasible to find any x′ �= x such that y = h(x′).

– Collision Resistance: It should be computationally infeasible to find two
distinct inputs x, x′ such that h(x) = h(x′).

For any ideal hash function with n-bit output size, we can find preimages or
second preimages with a complexity of 2n, and collisions with a complexity of
2n/2 using generic attacks.
c© Springer International Publishing Switzerland 2015
D.F. Aranha and A. Menezes (Eds.): LATINCRYPT 2014, LNCS 8895, pp. 259–273, 2015.
DOI: 10.1007/978-3-319-16295-9 14



260 S. Kölbl and C. Rechberger

IV f

m0

f

m1

f

m2

x1 x2 xn

f

mn

h

Fig. 1. Iterative construction for a cryptographic hash function.

Most cryptographic hash functions are constructed iteratively by splitting
the message into evenly sized blocks mi and using a compression function f to
update the state. We call the intermediate results xi chaining values and the
final output h hash value (Fig. 1).

The security proofs for the hash function rely on the difficulty of finding a
collision for this compression function, hence it is also of interest to consider the
properties of the compression function and find properties which distinguish it
from an ideal function.

– semi-free start collision: Find x,m,m′ such that f(x,m) = f(x,m′).
– free-start collision: Find x, x′,m,m′ such that f(x,m) = f(x′,m′).
– near collision: Find x,m,m′ such that f(x,m)⊕f(x,m′) has a low Hamming

weight.

To sum up the various types with respect to their relevance: a semi-free-start
collision is more interesting than a free-start collision, and a collision is more
interesting than a near-collision.

1.1 Motivation

Cryptanalytic attacks are often hard to verify. Cryptanalysts often concentrate
on the total running time of the attack, which is boiled down to a single number.
While one can argue about the exact transition point between cryptanalytic
attacks of practical and theoretical time complexity, it is often placed around an
equivalent of 264 calls to the primitive [1]. While this is a reasonable assumption
for state-level adversaries, it is out of reach for academic research labs. However,
the ability to fully implement and verify attacks is crucial, as this is often the
only way to make sure that all details are modelled correctly in the theoretical
analysis. In this paper we therefore aim at attacks that can actually be executed
(and verified) with limited budget computing resources.

In this paper we show a new practical attack on a class of AES-like hash func-
tions. We show attacks on reduced round versions of the ISO/IEC 10118-3 stan-
dard Whirlpool [2] and the new Russian federal standard GOST R 34.11-2012
[3]. The model we consider is semi-free-start attacks on the compression func-
tion, which in contrast to the free-start attacks do not allow the attacker to
choose different chaining values in a pair of inputs. This reduced degree of free-
dom makes the task of cryptanalysts harder, but is more relevant as it is closer
to the actual use in the hash function.



Practical Attacks on AES-like Cryptographic Hash Functions 261

1.2 Contribution

Despite a lot of attention on rebound-attacks of AES and AES-like primitives,
we show that more improvements are possible in the inbound phase.

To the best of our knowledge, currently no practical attacks on reduced round
GOST R have been published. However, there exists a practical 4-round free-start
collision attack on the Whirlpool compression function [4]. It seems very hard
to apply this specific attack directly to GOST R due to the extra round in the key
schedule, which gives GOST R additional security against these free-start attacks.

In this paper we show a new method to carry out a 4-round practical attack on
the Whirlpool and GOST R compression function. Additionally, and in contrast
to many other attacks known on GOST R, we do not need the freedom to add
half a round at the end to turn a near-collision into a collision. As the full hash
function also does not end with a half round, we argue that a result on 4 rounds
can actually be more informative than a result on 4.5 rounds.

New message modification technique. The attack is based on the rebound
attack and start-in-the-middle techniques, and it carefully chooses the key input
to significantly reduce the complexity resulting in a very low complexity1. We are
also able to improve the results on 6.5 rounds by extending this attack. We give an
actual example for such a collision, and have the source code of both the attack and
the general framework publicly available to facilitate further research on practical
attacks2. The method is not specific to a particular primitive, but is an algorithmic
technique that however depends on two conditions in a primitive to hold (see also
Sect. 4).

1.3 Related Work

In Table 1 we summarize the practical results on Whirlpool and GOST R. As
the GOST R compression function uses a design similar to the Whirlpool hash
function [2], many of the previous results on Whirlpool can be applied to GOST R.
We would also like to note on adding half a round at the end for GOST R. This
does not always make an attack more difficult, and in some cases it makes it
easier, as it makes it possible to turn a near-collision into a collision, therefore
we distinguish for our attacks if it applies for both cases.

There have also been practical attacks on other AES-based hash functions
like Maelstroem (6 out of 10 rounds [7]), Grøstl (6 out of 10 rounds [8]) and
Whirlwind (4.5 out of 12 rounds [9]).

1.4 Rebound Attacks

The rebound attack is a powerful tool in the cryptanalysis of hash functions,
especially for finding collisions for AES-based designs [10,11]. The cipher is split

1 Naturally, the improvement is not applicable for constructions or modes that do not
allow modification of the key input.

2 The source-code can be found at https://github.com/kste/aeshash.

https://github.com/kste/aeshash


262 S. Kölbl and C. Rechberger

Table 1. Summary of attacks with a complexity up to 264 on AES-based hash func-
tions. Time is given in compression function calls and memory in bytes.

Function Rounds Time Memory Type Reference

GOST R 4.5 264 216 semi-free-start collision [5]

4.75 practical 28 semi-free-start near-collision [6]

4 219.8 216 semi-free-start collision this work

4.5 219.8 216 semi-free-start collision this work

5.5 264 264 semi-free-start collision [5]

6.5 264 216 semi-free-start collision this work

Whirlpool 4 225.1 216 semi-free-start collision this work

6.5 225.1 216 semi-free-start near-collision this work

4 28 28 free-start collision [5]

7 264 28 free-start collision [4]

into three sub-ciphers
E = Efw ◦ Ein ◦ Ebw

and the attack proceeds in two steps. First, the inbound phase which is an
efficient meet-in-middle in Ein using the available degree of freedom. This is
followed by a probabilistic part, the outbound phase in Efw and Ebw using the
solutions from the inbound phase. The basic 4-round rebound attack uses a
differential characteristic with 1 − 8 − 64 − 8 − 1 active bytes per round and has
a complexity of 264. There are many techniques extending and improving this
attack. Some can even improve this very basic and simple setting of a square
geometry, like start-from-the-middle [8], super S-Box [12,13] or solving three fully
active states in the middle [14,15]. Other generic extensions exploit additional
degrees of freedom or non-square geometries to improve results, like and using
multiple inbounds [12,16]. In these settings, improved list-matching techniques
[17,18] are also a generic improvement.

2 Description of GOST R

This section gives a short description of the GOST R compression function as
we will use it for describing our attack in detail. As we are only looking at the
compression function, we leave out some details not relevant for the upcoming
attack in order to simplify the description. For a more detailed description of
GOST R we refer to [3].

The compression function g uses two 512-bit inputs (the message block m
and the chaining value h) to update the state in the following way (see Fig. 2)

gN (h,m) = E(L ◦ P ◦ S(h),m) ⊕ h ⊕ m (1)

where E is an AES-based block cipher using a state of 8 × 8 bytes and S, P, L
are the same functions as used in this block cipher (see below).



Practical Attacks on AES-like Cryptographic Hash Functions 263

E
SPL

mi

hi

hi+1

Fig. 2. An outline of the GOST R compression function. The chaining input is processed
through an additional round before entering E

If we want to find a collision for the compression function, the following
equation must hold

Δmi ⊕ Δhi ⊕ ΔE(hi,mi) = 0 (2)

2.1 Block Cipher E

The block cipher E takes two 512-bit inputs M and K0 and produces a 512-bit
output C. The state update consists of 12 rounds r and a final key addition.

L1 = L ◦ P ◦ S ◦ AK(M,K0)

Li+1 = L ◦ P ◦ S ◦ AK(Li,Ki) i = 1 . . . 11

C = AK(L12,K12)

The following four operations are used in one round (see Fig. 3):

– AK Adds the key byte-wise by XORing it to the state.
– S Substitutes each byte of the state independently using an 8-bit S-Box.
– P Transposes the state.
– L Multiplies each row by an 8 × 8 MDS matrix.

The 512-bit key input is expanded to 13 subkeys K0, . . . ,K12. This is done
similar to the state update but AK is replaced with the addition of a round-
dependent constant RCr.

Li+1 = L ◦ P ◦ S ◦ AK(K0, RC0) i = 0 . . . 11

K12 = AK(L12,K12)



264 S. Kölbl and C. Rechberger

K1

L0 AK1 S1 P1 L1

AK S P L

Fig. 3. The four operations used in one round of GOST R.

2.2 Notation

The notation we use for naming the states is:

– The state after applying the round function {AK,S, P, L} in round r is named
{AKr, Sr, P r, Lr}

– The byte at position x, y in state Xr is named Xr
x,y

– A row is denoted by Xr
∗,y and a column by Xr

x,∗
– and denote that there is a difference in a byte.
– and are used for highlighting values of a byte.

2.3 Differential Properties

The attacks in this paper are based on differential cryptanalysis, and the result-
ing complexity correlates with the differential properties of the round functions.
Therefore, to ease understanding, we give a short overview of the properties that
are relevant for our attack.

The linear layer L has a strong influence on the number of active S-Boxes.
There is no proof given that the linear layer L is MDS or has a branch number of
9 in the GOST R reference [3], but it was shown that this is the case in [19]. Hence,
if we have one active byte at the input we will get 8 active bytes at the output
with probability one. If we have a active bytes at the input the probability that
there will be b active bytes at the output under the condition a �= 0, b �= 0 and
a + b ≥ 9 is 2(b−8)8.

The properties of the S-Box have a strong influence on the complexity of our
attack, as will be seen later. Given a S-Box S : Fn

2 → F
n
2

{x | S(x) ⊕ S(x ⊕ a) = b} (3)

is the number of solutions for an input a and output difference b. Table 2 gives
the number of solutions for some S-Box designs used in practice.

To get a bound on the probability of the differential characteristics we are
interested in the maximum value of Eq. 3 which we will refer to as the maximum
differential probability (mdp) of an S-Box. A 4-round differential characteristic
has at least 81 active bytes due to the properties of the linear layer, therefore
any 4-round characteristic has a probability of ≤mdp81.



Practical Attacks on AES-like Cryptographic Hash Functions 265

Table 2. Comparison of different 8-bit S-Box designs used in AES-based hash
functions.

Solutions AES Whirlpool GOST R

0 33150 39655 38235

2 32130 20018 22454

4 255 5043 4377

6 - 740 444

8 - 79 25

256 1 1 1

For the rebound attack it is also important to know the average number
of possible output differences, given a non-zero input difference. We will refer
to this as the average number of solutions (ANS) for an S-Box which can be
computed by constructing the differential distribution table (DDT). The ANS
corresponds to the average number of non-zero entries in each row of the DDT.

This property influences the complexity for the matching step in the inbound
phase and increases the costs of finding one solution. For the GOST R S-Box we
get on average 107.05 solutions.

3 Attack on GOST R

In this section we describe our 4-round practical attack in detail and also show
how it can be applied to more rounds. The description of the attack is split into
two parts. First, we find a differential characteristic leading to a collision. Then
we show how to construct a message pair following this characteristic in a very
efficient way.

AK0 AK1 AK2 AK3 AK4

S
P
L

AK

S
P
L

AK

S
P
L

AK

S
P
L

AK

Fig. 4. The 4-round differential characteristic used in our attack.

3.1 Constructing the Differential Characteristic

For our 4-round attack we use a characteristic of the form 1 − 8 − 64 − 8 − 1
(see Fig. 4). This truncated differential path has the minimal number of pos-
sible active S-Boxes for 4 rounds and is the starting point for many attacks.
Next, we will determine the values of the differences before continuing with the
construction of the message pair.



266 S. Kölbl and C. Rechberger

The approach we use for this is based on techniques from the rebound attack,
like the start-in-the-middle technique used in [8]. This approach would also give
us an efficient way to find both the characteristic and message pair for a char-
acteristic of the form 1 − 8 − 64 − 8. However this would still lead to a higher
attack complexity if extended to 4 rounds. Hence, we only use ideas from this
approach to determine the differential characteristic and do not assume the key
input as constant.

Precomputation. First we pre-compute the differential distribution table
(DDT) of the S-Box and we also construct a list Mlin. This list contains all
possible 255 non-zero values of P0,0 and the result after applying L (see Fig. 5).

P0 L1

L

Fig. 5. Computing list Mlin for all 255 values of P 0
0,0 (blue) to find all possible transi-

tions from 1 to 8 bytes. Gray bytes are set to zero (Color figure online).

Construction

1. Start with a random difference in AK4
0,0 and propagate it back to S2 through

the inverse round functions. For the linear steps this is deterministic, and for
propagating through the S-Box we choose a random possible input difference
to the given output difference. After this step we will have a full active state
in S2.

2. For each difference in S2 we look up the set of all possible input differences
from the DDT for each byte of the state.

3. Check for each row of AK2 whether there is a possible match with the rows
stored in Mlin (see Fig. 6).

– The probability that a single byte matches is 107.05/255 ≈ 2−1.252 there-
fore a row matches with a probability of 2−10.018.

– If we take into account that Mlin has 255 entries we expect to find a
match with a probability of 1 − (1 − 2−10.018)255 ≈ 2−2.2.

– Therefore the probability for a match of all 8 rows is given by

(2−2.2)8 = 2−17.6 (4)

After this step we have found a characteristic spanning from S1 to AK4.
Now we have to repeat the previous process for a single row to find the right
differences in AK1. This has a probability of 2−2.2 of succeeding. Hence we need
to repeat the whole process 219.8 times to obtain one solution.



Practical Attacks on AES-like Cryptographic Hash Functions 267

107.05 differences

255 possible rows Mlin

AK2 S2

S

Fig. 6. The matching step in the middle is done on each row individually. There are
28 possible values for each row AK2

∗,j for j = 0, 1, . . . , 7.

Note that we can only choose 255 differences for AK4
0,0, but we can also

freely choose from the set of possible differences when propagating from S3 to
AK3. This gives us an additional 107.05 choices for each row in S2 leading
to ≈ 254 possible values for the state S2. Hence, we have enough starting points
for finding our differential characteristic.

3.2 Finding the Message Pair

Now we want to find a message pair which follows the previously constructed
characteristic. At this point only the differences, but not the values of the state,
are fixed. We start by fixing the values of AK2 such that the 64 differential
transitions S2 = S(AK2) are fulfilled.

Next we use the key input to solve any further conditions on the active
S-Boxes in order to lower the complexity of our attack. This step is split into
solving the conditions on S1

∗,0 = S(AK1
∗,0) and S3

0,∗ = S(AK3
0,∗).

Solving Conditions at the Start. We have 8 conditions on S1
∗,0 which we need

to solve. These conditions can be solved row-wise by choosing the corresponding
values in K2 such that P−1(L−1(AK2 ⊕ K2)) = S1. We can do this step row-
wise by solving a linear equation. As there is only a single byte condition for

AC
S
P
L

AK1 S1 P1 L1

AK2 S2 P2 L2

AK S P L

AK S P L

K1

K2

Fig. 7. The values of AK2 are fixed. We solve 7 of the conditions on S1 by using the
freedom in K2 (bytes marked orange), which allows us to influence the values on the
bytes in S1 (orange slash pattern).



268 S. Kölbl and C. Rechberger

each row, we only need one byte in the corresponding row of K2 to solve the
equation (see Fig. 7). The remaining bytes are fixed to arbitrary values as we have
no further conditions to fulfill at this step. These bytes could be used to solve
more conditions for other differential characteristics or to construct additional
solutions, as we will do for extending the attack on more rounds.

In this step we can generate up to 256 solutions per row. Note that we only
do this step for 7 rows, as we need the last row in the next step.

Solving Conditions at the End. For solving the conditions S3 = S(AK3),
we can use the bytes in K2

∗,7. These bytes form a column in KP3
7,∗ (see Fig. 8),

which allows us to solve a single byte condition per row for AK3.

1. Assume that K2
∗,0−6 are fixed and propagate them forward to KP3.

2. We can now solve the conditions for each row individually. In each row there
are 7 bytes fixed in KP 3 and a single byte in K3 (from AK3). This gives us a
linear equation with one solution per row and allows us to solve all conditions
on AK3.

AC2 KS2 KP2 K2

AC3 KS3 KP3 K3

AC S P L

AC S P L

AK

AK

AK2

AK3

Fig. 8. Solving all the conditions on AK3. The orange values are fixed from the previous
step and the purple values are used to fulfill the conditions on AK3.

Remaining Conditions. We still need to solve one byte condition on S1
0,7,

which can be done by repeating the previous procedure 28 times. The bytes
which are used to solve the conditions on AK3 form a row in K2 and influence
the values of L1 resp. P 1 and S1 (see Fig. 11 in Appendix A). This implies that
we can change the value of S1

0,7 by constructing different solutions for K2
∗,7.

The only remaining condition is ΔAK0
0,0 = ΔAK4

0,0, which can again be
solved by repeating the previous steps 28 times. It follows that we need to repeat
the algorithm shown in Sect. 3.2 about 216 times.

Complexity. We can construct the differential characteristic with a complexity
of 219.8. Finding a message pair following this characteristic requires 216 steps
using our message modification technique. Hence, the total complexity of the
attack is ≈ 219.9. We have implemented this attack and verified our results.
The un-optimized proof-of-concept implementation in Python is publily available
[20]. An example for a 4-round collision can be found in AppendixB.



Practical Attacks on AES-like Cryptographic Hash Functions 269

3.3 Extending the Attack

As we only need to control 15 bytes of the key, we can extend the attack on 6.5
rounds by using a characteristic of the form 8 − 1 − 8 − 64 − 8 − 1 − 8. In this
case we would use the same approach to find the differential characteristic for 4
rounds and in the message modification part we would construct more solutions
by using the additional freedom in the key. This will influence the differences at
the input/output of the 6.5 rounds. The complexity of this attack is ≈264, as
the 8-byte difference at the input/output needs to be equal (Fig. 9).

AK0 AK1 AK5 AK6 P6

S
P
L

AK

S
P
L

AK

S
P
L

AK

S
P
L

AK

S
P
L

AK

S
P

4-round attack

Fig. 9. The 4-round attack is extended by one round in the beginning and one round
in the end to mount an attack on 6.5 rounds.

4 Application to Other AES-based Hash Functions

The message modification technique presented is not specific to GOST R, but
requires a few criteria to be met. First the transposition layer has to have
the property that every byte of a single row/column is moved to a different
row/column (see Fig. 10). This is true for all AES-based hash functions we con-
sider in this paper, as it is a desired property against other attacks.

The second criteria is that there is a key addition in every round, hence our
attack is applicable to both Whirlpool and GOST R. Permutation-based designs
like Grøstl do not have this property. The attacker has less control of the input
for each round, which makes the hash function more resistant against these types
of attacks.

The complexity of the attack depends on the choice of the S-Box, as this
directly influences the costs of constructing the differential characteristic. Given
the average number of solutions s for Δout = S(Δin) with a fixed value Δin,
this directly gives the complexity for the matching step of the attack

(
1 −

(
1 − s

255

)255
)8

(5)

Whirlpool

1 2 3 4 5 6 7 8 1
2

3
4

5
6

7
8

SC

GOST R

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

P

Fig. 10. The transposition layer used in Whirlpool and GOST R.



270 S. Kölbl and C. Rechberger

Table 3. Comparing the maximum differential probability (MDP) and average number
of solutions (ANS) for different 8-bit S-Boxes in AES-based designs.

S-Box MDP ANS Matching Costs #S2

AES 2−6 127 26.42 255.91

Whirlpool 2−5 101.49 225.10 253.32

GOST-R 2−5 107.05 219.77 253.94

and the number of possible states for S2 is ≈ s 8. A comparison of the different
S-Boxes used in AES-based hash functions is given in Table 3.

5 Conclusion

In this paper, we have shown new practical attacks for both the Whirlpool
and GOST R compression function. We presented a 4-round attack with very
low complexity of 225.10 resp. 219.8. Importantly, the attack is fully verified and
source-code for it is available. In the case of GOST R the attack can be extended
to find collisions for 6.5 rounds with a complexity of 264 and for Whirlpool we
can extend it to construct a near-collision in 50 bytes with a complexity of 225.10

for 6.5 rounds of the compression function. The difference in the results for GOST
R and Whirlpool is due to the ShiftColumns operation which does not align the
bytes to lead to a collision for the differential characteristic we use.

Our attack is applicable to all AES-based primitives where it is possible for
the attacker to control the key input for a few rounds. This significantly reduces
the complexity of previous attacks and might be useful to speed up other attacks
on AES-based hash-function designs.

References

1. Biryukov, A., Dunkelman, O., Keller, N., Khovratovich, D., Shamir, A.: Key recov-
ery attacks of practical complexity on AES-256 variants with up to 10 rounds. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 299–319. Springer,
Heidelberg (2010)

2. Barreto, P., Rijmen, V.: The Whirlpool hashing function. In: First open NESSIE
Workshop, Leuven, Belgium, vol. 13, p. 14 (2000)

3. Dolmatov, V., Degtyarev, A.: GOST R 34.11-2012: Hash Function (2013). http://
tools.ietf.org/html/rfc6986

4. Sasaki, Y., Wang, L., Wu, S., Wu, W.: Investigating fundamental security require-
ments on whirlpool: improved preimage and collision attacks. In: Wang, X., Sako,
K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 562–579. Springer, Heidelberg
(2012)

5. Wang, Z., Yu, H., Wang, X.: Cryptanalysis of GOST R Hash Function. Cryptology
ePrint Archive, Report 2013/584 (2013). http://eprint.iacr.org/

http://tools.ietf.org/html/rfc6986
http://tools.ietf.org/html/rfc6986
http://eprint.iacr.org/


Practical Attacks on AES-like Cryptographic Hash Functions 271

6. AlTawy, R., Kircanski, A., Youssef, A.M.: Rebound Attacks on Stribog. Cryptology
ePrint Archive, Report 2013/539 (2013). http://eprint.iacr.org/

7. Kölbl, S., Mendel, F.: Practical attacks on the maelstrom-0 compression func-
tion. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 449–461.
Springer, Heidelberg (2011)

8. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved cryptanalysis of
the reduced Grøstl compression function, ECHO permutation and AES block cipher.
In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol.
5867, pp. 16–35. Springer, Heidelberg (2009)

9. Barreto, P.S.L.M., Nikov, V., Nikova, S., Rijmen, V., Tischhauser, E.: Whirlwind:
a new cryptoaphic hash function. Des. Codes Crypt. 56(2–3), 141–162 (2010)

10. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The rebound attack:
cryptanalysis of reduced whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

11. Lamberger, M., Mendel, F., Schläffer, M., Rechberger, C., Rijmen, V.: The rebound
attack and subspace distinguishers: application to whirlpool. J. Cryptol., 1–40
(2013)

12. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound
Distinguishers: Results on the Full Whirlpool Compression Function. [21] 126–143

13. Gilbert, H., Peyrin, T.: Super-Sbox cryptanalysis: improved attacks for AES-like
permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365–
383. Springer, Heidelberg (2010)

14. Jean, J., Naya-Plasencia, M., Peyrin, T.: Improved rebound attack on the finalist
Grøstl. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 110–126. Springer,
Heidelberg (2012)

15. Jean, J., Naya-Plasencia, M., Peyrin, T.: Improved cryptanalysis of AES-like per-
mutations. J. Cryptology 27(4), 772–798 (2014)

16. Matusiewicz, K., Naya-Plasencia, M., Nikolic, I., Sasaki, Y., Schläffer, M.: Rebound
Attack on the Full Lane Compression Function. [21] 106–125

17. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient dissection of composite
problems, with applications to cryptanalysis, knapsacks, and combinatorial search
problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 719–740. Springer, Heidelberg (2012)

18. Naya-Plasencia, M.: How to improve rebound attacks. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 188–205. Springer, Heidelberg (2011)

19. Kazymyrov, O., Kazymyrova, V.: Algebraic Aspects of the Russian Hash Standard
GOST R 34.11-2012. Cryptology ePrint Archive, Report 2013/556 (2013). http://
eprint.iacr.org/

20. https://github.com/kste/aeshash
21. Matsui, M. (ed.): ASIACRYPT 2009. LNCS, vol. 5912. Springer, Heidelberg (2009)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
https://github.com/kste/aeshash


272 S. Kölbl and C. Rechberger

A Solving Conditions

AC
S
P
L

AC
S
P
L

AK1 S1 P1 L1

AK2 S2 P2 L2

AK3 S3 P3 L3

AK S P L

AK S P L

AK S P L

K1

K2

K3

Fig. 11. Solving both conditions on S1 and AK3. The bytes marked purple solve the
conditions on AK3 and a single condition on S1, whereas the orange bytes solve 7
conditions on S1.

B Colliding Message Pair

Here a colliding message pair (M,M ′) and the chaining value are given. The
message pair has been found by using the 4-round characteristic and the dif-
ference in the messages is ΔAK0

0,0 = ΔAK4
0,0 = fc. All values are given in

hexadecimal notation.



Practical Attacks on AES-like Cryptographic Hash Functions 273



Key Recovery Attacks on Recent Authenticated
Ciphers

Andrey Bogdanov1, Christoph Dobraunig2, Maria Eichlseder2,
Martin M. Lauridsen1, Florian Mendel2, Martin Schläffer2,

and Elmar Tischhauser1(B)

1 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
ewti@dtu.dk

2 IAIK, Graz University of Technology, Graz, Austria

Abstract. In this paper, we cryptanalyze three authenticated ciphers:
AVALANCHE, Calico, and RBS. While the former two are contestants
in the ongoing international CAESAR competition for authenticated
encryption schemes, the latter has recently been proposed for lightweight
applications such as RFID systems and wireless networks.

All these schemes use well-established and secure components such
as the AES, Grain-like NFSRs, ChaCha and SipHash as their building
blocks. However, we discover key recovery attacks for all three designs,
featuring square-root complexities. Using a key collision technique, we
can recover the secret key of AVALANCHE in 2n/2, where n ∈ {128, 192,
256} is the key length. This technique also applies to the authentication
part of Calico whose 128-bit key can be recovered in 264 time. For RBS,
we can recover its full 132-bit key in 265 time with a guess-and-determine
attack. All attacks also allow the adversary to mount universal forgeries.

Keywords: Authenticated encryption · CAESAR · Key collision ·
Guess-and-determine · Universal forgery · AVALANCHE · Calico · RBS

1 Introduction

An authenticated cipher is a symmetric-key cryptographic algorithm that aims
to provide both the confidentiality and authenticity of data – the two most
fundamental cryptographic functionalities. Authenticated encryption has been
used extensively since decades by combining encryption algorithms with message
authentication algorithms. However, it was not until the 2000s that the separate
security goal of authenticated encryption (AE) has been formulated [6,13].

Authenticated encryption schemes can basically be constructed either as
a generic composition of an encryption algorithm (a block or stream cipher)
and a message authentication code (MAC), or as a dedicated AE design. Doing
both encryption and authentication in one cryptographic primitive also has the
advantage of attaining a potentially higher peformance. Indeed, such combined
schemes as OCB [14,19,20] and OTR [17] require only one block cipher call

c© Springer International Publishing Switzerland 2015
D.F. Aranha and A. Menezes (Eds.): LATINCRYPT 2014, LNCS 8895, pp. 274–287, 2015.
DOI: 10.1007/978-3-319-16295-9 15



Key Recovery Attacks on Recent Authenticated Ciphers 275

per block of data processed to produce both the ciphertext and the authentica-
tion tag.

Owing to its relatively recent origins, only very few AE designs have been
included in international standards, the most prominent examples being CCM [9]
and GCM [10,15] which have been included in ANSI/ISO, IEEE and IETF
standards. Recently, the CAESAR competition [1] has been initiated in order
to establish a portfolio of recommended AE algorithms during the next years,
making authenticated encryption a major focus of the cryptographic commu-
nity. A large number of diverse designs has been submitted to this competition,
ranging from block cipher modes of operation to dedicated designs.

A substantial fraction of the CAESAR submissions build upon proven com-
ponents, such as the AES, the SHA-2 family or the Keccak [8] permutation.
An important reason for such a design decision is the assumption that the AE
scheme will inherit the good security properties of the building blocks. For some
designs, this is backed up by a formal security reduction. However this is not
the case for all candidates, and even when security proofs for confidentiality and
integrity are provided, they are often limited by the birthday bound, while at the
same time any key recovery attack with complexity below 2n would be highly
undesirable.

We analyze three recent proposals for authenticated encryption: AVALANCHE
[4] and Calico [21] are general-purpose AE schemes that have been submitted to
CAESAR, and RBS [12] has recently been proposed for lightweight applications.
All three algorithms are based on secure building blocks: AVALANCHE uses the
AES, Calico builds upon ChaCha [7] and SipHash [5], and RBS a Grain-like [3]
register-accumulator architecture [2].

Despite being based on these secure components, our analysis establishes that
all three algorithms admit key recovery attacks with complexities significantly
below exhaustive search. AVALANCHE and Calico lend themselves to attacks
based on key collisions, leading to a key recovery with complexity 2n/2 for all
versions of AVALANCHE (n ∈ {128, 192, 256}), and with complexity 264 for the
128-bit authentication key of Calico. For RBS, recovering its full 132-bit key
requires 265 time with a guess-and-determine strategy. For all algorithms, the
recovered key material enables the adversary to obtain universal forgeries. In
the case of AVALANCHE and RBS, the adversary also obtains all necessary key
material for decryption of arbitrary messages.

All these attacks are entirely structural and do not make use of any weak-
nesses of the building blocks themselves. We give an overview of the attacks and
their complexities in Table 1.

The remainder of the paper is organized as follows. We introduce some common
notation in Sect. 2. Section 3 describes the key recovery attack on AVALANCHE.
Our attack on Calico is presented in Sect. 4. In Sect. 5, we describe our guess-and-
determine attack on RBS. We conclude our findings in Sect. 6.

2 Notation

In the following, we use N,A,M and C to denote nonce, associated data (data
which is authenticated but not encrypted), a message (to be encrypted and



276 A. Bogdanov et al.

Table 1. Overview of the attacks presented in this paper. For the attacks marked
with (�), memoryless variants are possible [18], reducing the memory requirements to
O(1), eliminating the offline computations, and increasing the time complexity by a
factor of about 2.

Algorithm Recovered key bits Time Memory Data

Offline Online

AVALANCHE-128 384 264 264 264(�) 264

AVALANCHE-192 448 296 296 296(�) 296

AVALANCHE-256 512 2128 2128 2128(�) 2128

Calico 128 264 264 264(�) 264

RBS 132 – 265 O(1) 1

authenticated) and a ciphertext, respectively. For binary strings x and y, we let
|x| denote the bit-length of x and x‖y is the concatenation of x and y. We use
ε for the empty string, i.e. |ε| = 0. Subscript usually denotes the bit index of a
string, so xi is the ith bit of x, with the convention that x0 is the least significant,
rightmost bit. We use ⊕ to denote the XOR operation and use hw(x) to denote
the Hamming weight of x. In the case where X is a binary string of blocks, and
where the block size is understood to be b, we let X[i] denote the ith block of
X, i.e. X[i] = xbi−1‖ · · · ‖xb(i−1) for i ≥ 1.

3 AVALANCHE

The AVALANCHE scheme [4] is a submission to the ongoing CAESAR compe-
tition for authenticated encryption ciphers. We note that the specification of
AVALANCHE leaves some room for interpretation. In the aspects relevant to our
attacks, we assume the following:

– The nonce has sizes |N | ∈ {80, 160, 128} for key lengths n ∈ {128, 256, 192},
respectively.

– The nonce N is randomly generated.
– The counter c is initialized to c = 0.
– The tag length is |T | = 128 as well as the security parameters k and p are

128-bit.
– The (n + 256)-bit key K consists of three independent parts, K = (KP , k, p).

AVALANCHE uses the AES to process a message M of m blocks and associa-
ted data A of arbitrary length to produce a ciphertext C of m + 1 blocks and
an authentication tag T . It does not support a public message number, instead
a nonce N is generated by the encryption algorithm itself.

The input to AVALANCHE with a specified secret key K = (KP , k, p), is
a 3-tuple (M,A,K) of message and associated data. The output is a 4-tuple
(N,A,C, T ) of nonce, associated data, ciphertext, and tag. The scheme uses two



Key Recovery Attacks on Recent Authenticated Ciphers 277

main algorithms described in the following; PCMAC for message processing and
RMAC for processing associated data. The interfaces and outputs of the two
algorithms are

(N,C, τP ) = PCMAC(M) and τA = RMAC(A).

The final tag T is then computed as T = τP ⊕ τA.

3.1 PCMAC

The encryption with PCMAC is illustrated in Fig. 1. The padded message is
denoted M [1] · · · M [m] and the ciphertext C[0] · · · C[m]. The number r is gener-
ated at random.

EKP

N‖c

r

C[0]

EKP

N‖(c + 1)

M [1]

C[1]

EKP

N‖(c + m)

M [m]

C[m]

· · ·

Fig. 1. Message processing with PCMAC

3.2 RMAC

The output of RMAC is an intermediate tag τA of 128 bits. RMAC uses the
secrets k and p, p being a randomly chosen 128-bit prime and k chosen at random
from {�p/2� + 1, . . . , p − 1}. The intermediate tag τA is determined as

τA = (1‖A) · k mod p. (1)

3.3 Recovering the PCMAC Key

The critical part of PCMAC is that the encryption key for E (see Fig. 1) depends
on the nonce and counter. This facilitates key collision attacks, similar to the one
on McOE-X [16]. Our attack works in an offline phase and an online phase
(see Algorithms 1 and 2). Both are called with the same, arbitrary single-
message block M . The offline phase outputs a list L which is used in the online
phase. We also note that this technique allows a free trade-off between time and
memory by choosing the list size accordingly.



278 A. Bogdanov et al.

Algorithm 1. Offline(M)
Data: Single-block M

1 L ← ∅
2 for i = 1, . . . , � do
3 Choose new

K = (KP , k, p) ∈ {0, 1}n+256

4 (N, ε, C, T ) ←
AVALANCHE(M, ε, K)

5 L ← L ∪ {(C[1], KP , N)}
6 end
7 return L

Algorithm 2. Online(M,L)
Data: Single-block M , List L

output from Algorithm 1
1 for i = 1, . . . , 2n/� do
2 Obtain (N, ε, C, T ) for (M, ε)

from AE
3 if ∃(x, y, z) ∈ L : x = C[1]

then
4 return

y ⊕ ((N ⊕ z)‖0n−|N|)
5 end

6 end
7 return Failure

In the offline phase we build a table of size � of AVALANCHE encryptions of
the same message block, using different keys. In the online phase we request
the encryption of the same single-block message M in total 2n/� times. By the
birthday paradox, we expect to see a collision in the oracle output C[1] in the
online phase and the list L from the offline phase. As the nonce N is public,
we can then recover the secret key KP by adding it to the stored nonce z and
key y. We can verify candidate keys using an additional encryption. Obviously,
choosing � = 2n/2 gives the best overall complexity, using just 2 · 2n/2 time and
memory in the order of 2n/2 to store L. Memoryless versions of the meet-in-the-
middle technique can be used here as well [18].

3.4 Recovering the RMAC Secret Parameters

To recover (k, p), we use the attack described above to recover the secret KP . We
furthermore ask for encryption and tag of some arbitrary message block; once
with empty associated data, i.e. A = ε, and once with A = 0, i.e. a single zero bit.
Let the corresponding outputs of AVALANCHE be (N, ε, C, T ) and (N ′, 0, C ′, T ′),
where T = τP ⊕ τA and T ′ = τ ′

P ⊕ τ ′
A.

With KP in hand, we can ourselves compute τP and τ ′
P using PCMAC.

Consequently, we obtain τA and τ ′
A. Using the definition of RMAC of Eq. (1),

we observe that for the case where A = ε we directly obtain τA ≡ k mod p, but
since k ∈ {�p/2� + 1, . . . , p − 1} we have k = τA. Now, for the case where A = 0,
we find

τ ′
A ≡ (1‖0) · k mod p

⇔ τ ′
A ≡ 2k mod p

⇔ p = 2k − τ ′
A.

We therefore obtain the secret parameters (k, p) of RMAC with a complexity of
two one-block encryption queries.

In summary, we have recovered all n+256 bits of secret key material in about
2n/2 time.



Key Recovery Attacks on Recent Authenticated Ciphers 279

4 Calico

Calico [21] is an authenticated encryption design submitted to the CAESAR com-
petition. For Calico in reference mode, ChaCha-14 [7] and SipHash-2-4 [5] work
together in an Encrypt-then-MAC scheme [11]. The Calico design is depicted in
Fig. 2.

EM

N

KC

C MACC‖A

KM ⊕ N

T

Fig. 2. The Calico scheme with encryption (left) and tag generation (right)

4.1 Specification

For the purpose of using ChaCha-14 and SipHash-2-4 in Calico, the 384-bit key K
is split into two parts: a 256-bit encryption key KC and a 128-bit authentication
key KM , s.t. K = KC‖KM . The plaintext is encrypted with ChaCha under KC

to obtain a ciphertext with the same length as the plaintext. Then, the tag is
computed as the SipHash MAC of the concatenated ciphertext and associated
data. The key used for SipHash is generated by XORing the nonce to the (lower,
least significant part of the) MAC key KM , so

(C, T ) = EncCalico(KC‖KM , N,A,M),

where the ciphertext and tag, C and T respectively, are computed with

C = EncChaCha-14(KC , N,M)
T = MACSipHash-2-4(KM ⊕ N,C‖A).

The tag T and nonce N are both 64 bits long.

4.2 MAC Key Recovery

In Calico, SipHash is modified by XORing a nonce to the lower-significance bits
of the key. This modification of SipHash facilitates an attack similar to the one
described by Mendel et al. [16]. The attack targets the tag generation to recover
the MAC key, which in turn allows to forge tags for arbitrary associated data
and ciphertexts.

We can split the attack into an offline phase and an online phase (see Algo-
rithms 3 and 4), where the online phase requires access to an encryption oracle.
Algorithm 3 does 264 online queries for an overall complexity of 264. Tradeoffs
are possible to reduce the number of online queries at the cost of the overall
complexity.



280 A. Bogdanov et al.

Algorithm 3. Offline

1 L ← ∅
2 for i = 0, . . . , 264 − 1 do
3 Compute tag T for A, M = ε

under MAC key KM = i‖0
and nonce N = 0

4 L ← L ∪ {(T, KM )}
5 end

Algorithm 4. Online(L)
Data: List L output from

Algorithm 3
1 for j = 0, . . . , 264 − 1 do
2 Request tag T for A, M = ε

under nonce N = j from
encryption oracle

3 if ∃(x, y) ∈ L : x = T, y = i‖0
then

4 i‖j is a candidate for KM

5 end

6 end

This produces at least one MAC key candidate; if necessary, remaining candi-
dates can be filtered with additional offline computations, though their expected
number is very small.

Since Calico preserves the plaintext length for the ciphertext, an empty plain-
text and associated data will produce an empty input for the MAC, independent
of the cipher key or nonce. Thus, all offline computations and online queries
give tags calculated from the same MAC input, only with varying keys fed to
SipHash. The SipHash keys used in the offline phase all have the lower 64 bits
set to 0 and the upper 64 bits iterating through all possible values. In the online
phase, the SipHash keys have the upper 64 bits set to the original bits of the secret
KM , while the lower bits iterate through all possibilities. Thus, there is exactly
one match between the two key lists, which will also produce a colliding tag
(though other tag pairs may collide as well). The matching key stored in the
offline list gives the upper 64 bits of the correct key, the colliding nonce from the
online phase the lower 64 bits.

For tradeoffs with online complexity 2N < 264, replace 264 by 2N in the online
phase and by 2(128−N) in the offline phase; the success probability remains 1.
We note that memoryless versions of the meet-in-the-middle technique apply
also here [18].

5 RBS

RBS is an authenticated encryption scheme by Jeddi et al. [12] proposed for use
in RFID tags. The idea of RBS is to insert the bits of a MAC on the message
among the message bits, in key-dependent positions, to produce the authenti-
cated ciphertext.

5.1 Specification

The RBS scheme is depicted in Fig. 3. It takes as input a 64-bit message M and
a 132-bit key k to produce a 132-bit authenticated ciphertext C. Effectively, the



Key Recovery Attacks on Recent Authenticated Ciphers 281

key is split in two parts of sizes which we denote n and m respectively: the least
n significant bits are used for clocking the MAC (which we described in detail
later) while the most significant m bits are used for initializing the NFSR in
the MAC. RBS uses n = 64 and m = 68, but we sometimes use n and m for
generality in the following. Note that a requirement on the key k is that it has
Hamming weight 68, and hence the size of the key space is

(
132
68

) ≈ 2128.06.
The RBS MAC takes either a 64-bit or 68-bit input to be processed, along

with the key k, and produces a 68-bit output. While RBS does not specify this,
we assume (without influence on our attack) that the second MAC output is
truncated by taking the least significant 64 bits to obtain the value S.

MAC MAC

M

C

R

S

A

E

k k

k

NFSR

Accumulator

ki

Xi
Xi

Fig. 3. The RBS scheme as an overview (left) and with the internals of the MAC (right)

Consider A and R of Fig. 3 as registers of 64 bits and 68 bits, respectively.
For the function E, the ith ciphertext bit, denoted Ci, is obtained as

Ci =

{
least significant bit of A, ki = 0
least significant bit of R, ki = 1

.

Each time a bit is taken from A or R, to produce a ciphertext bit, the corre-
sponding register is right-rotated one position. As 132 bits are produced for the
ciphertext, E effectively obtains C by inserting the bits of R (the MAC of the
message), in order, into A at key-dependent positions.

The RBS MAC. The MAC used in RBS which we denote MAC(X, k), (depicted
in the right side of Fig. 3 where the input is denoted X) is a Grain-like design
based on the MAC of Ågren et al. [2]. It is composed of a 68-bit NFSR and a
68-bit accumulator. In this work, we consider the NFSR with an arbitrary update
function (and indeed the specification does not provide one). When a MAC is
computed, the NFSR is loaded with the most significant 68 bits of the key, i.e.
k131, . . . , k64 and the accumulator is set to zero. To produce MAC(X, k), the
NFSR is clocked |X| times, i.e. it is shifted left and the least significant bit is
set to the feedback XORed with the input bit Xi ⊕ ki where i = 0, . . . , |X| − 1.
If and only if Xi = 1, the accumulator is updated by XORing the current NFSR
state to it (we assume this is done prior to clocking the NFSR). When |X| > 64,
which is the case for the second MAC call, we assume that one re-uses k63, . . . , k0
for clocking, until all of X is processed, although this makes no difference to our
attack.



282 A. Bogdanov et al.

5.2 Cryptanalysis of RBS

The attack on the RBS scheme we present in the following uses a single chosen
plaintext and has expected worst case time complexity 265 and negligible memory
complexity. The attack is based on the following observations:

Observation 1. When computing R = MAC(M,k), if M = 1, then it imme-
diately follows from the definition of the MAC that R = k131‖ · · · ‖k64, i.e. the
68 most significant bits of the key.

Observation 2. Assuming one knows ka−1‖ · · · ‖k0 for some a with 1 ≤ a ≤
132, then one can determine the first � := hw(ka−1‖ · · · ‖k0) bits of R, as the bits
of R are directly mapped to C by the ki where ki = 1. These in turn correspond
to the first � bits of k131‖ · · · ‖k64. These can in turn be used to determine more
of R, and so on.

Combined, these observations imply that for M = 1, we know that R = k131‖ · · · ‖
k64. When guessing any number of the least significant key bits, a number of
bits of R and thus of k131‖ · · · ‖k64, equal to the Hamming weight of the guess,
can be directly obtained from C.

Definition 1 (Free bit iteration). The ith free bit iteration, with i ≥ 0, refers
to the number of bits obtained “for free” in one such iteration.

Thus, the 0th free bit iteration refers to the analysis of how many free bits are
obtained from the initially guessed key bits; the 1st free bit iteration refers to
how many free bits are obtained from the ones obtained from the 0th free bit
iteration, and so on.

For i ≥ 0, in the ith free bit iteration, we let �i denote the expected number of
free bits obtained and let δi denote the expected density of 1-bits in the remaining
unknown bits, after obtaining the �i free bits.

Lemma 1. Let ka−1‖ · · · ‖k0 be the initially guessed key bits and let �0 = hw
(ka−1‖ · · · ‖k0). Then

δi =
m − ∑i

j=0 �j

n + m − a − ∑i−1
j=0 �j

, i ≥ 0 and

�i = �i−1δi−1, i ≥ 1. (2)

Proof. In the ith free bit iteration, a +
∑i−1

j=0 �j bits have already been guessed,
so the denominator of δi is what remains unknown. The key bits guessed thus far
have Hamming weight

∑i
j=0 �j , so the 1-bits density among the last bits is δi.

The number of bits expected to obtained for free in iteration i + 1 is deter-
mined by the expected Hamming weight of the free bit portion just obtained in
iteration i, which in turn is �iδi. �
We now derive a closed formula for the quantity �i by observing that the ratios
�i+1/�i between consecutive elements of the sequence are actually constant, i.e.
independent of i. We formally prove this in the following lemma.



Key Recovery Attacks on Recent Authenticated Ciphers 283

Lemma 2. Let a and �0 be such that m − �0 �= n + m − a and n + m − a �= 0.
With the notations of Lemma 1, we have

�i =
(

m − �0
n + m − a

)i

�0 (3)

for i ≥ 1.

Proof. We prove the claim by induction. For i = 1, Eq. (2) yields �1 = m−�0
n+m−a�0=

(
m−�0

n+m−a

)1

�0.
Assuming (3) holds for all k ≤ i, we have

�i+1 =
m − ∑i

j=0 �j

n + m − a − ∑i−1
j=0 �j

· �i

=
m − �0

∑i
j=0

(
m−�0

n+m−a

)j

n + m − a − �0
∑i−1

j=0

(
m−�0

n+m−a

)j
·
(

m − �0
n + m − a

)i

�0. (4)

For r �= 1, the geometric series
∑N

i=0 ri is equal to rN+1−1
r−1 . Instantiating this

with r = a
b yields

∑N
i=0

(
a
b

)i = ( a
b )N

a−b

a−b and
∑N−1

i=0

(
a
b

)i = ( a
b )N

b−b

a−b . Since(
m−�0

n+m−a

)
�= 1, we can apply this to the two sums in Eq. (4), yielding

�i+1 =
m − �0

(
( m−�0

n+m−a )i
(m−l0)−(n+m−a)

−�0−n+a

)

n + m − a − �0

(
( m−�0

n+m−a )i
(n+m−a)−(n+m−a)

−�0−n+a

) ·
(

m − �0
n + m − a

)i

�0,

which can be reformulated to

=

(
m(−�0−n+a)−�0( m−�0

n+m−a )i
(m−�0)+�0(n+m−a)

−�0−n+a

)

(
(n+m−a)(−�0−n+a)−�0( m−�0

n+m−a )i
(n+m−a)+�0(n+m−a)

−�0−n+a

) ·
(

m − �0
n + m − a

)i

�0,

and collecting common terms gives

=

(m − �0)

((
m−�0

n+m−a

)i
�0 + n − a

)

�0 + n − a
· �0 + n − a

(n + m − a)

((
m−�0

n+m−a

)i
�0 + n − a

) ·
(

m − �0

n + m − a

)i

�0

=

(
m − �0

n + m − a

)
·
(

m − �0

n + m − a

)i

�0

=

(
m − �0

n + m − a

)i+1

�0,

as claimed. �



284 A. Bogdanov et al.

Note that the preconditions of the previous lemma are not imposing a limitation
for the evaluation of the �i for relevant values of a. For instance, with a = n,
the closed formula holds for any 1 ≤ �0 ≤ m, and the remaining case �0 = 0 is
trivial since all remaining unknown bits must be equal to one.

Optimal Choice of a. The closed formula of Lemma 3 also yields an estimate
for the optimal number of key bits a that should be guessed initially. Specifically,

we should choose a < n + m such that �0
∑∞

i=0

(
m−�0

n+m−a

)i

reaches n + m − a,
the number of still unknown bits. Since

�0

∞∑

i=0

(
m − �0

n + m − a

)i

=
1

1 −
(

m−�0
n+m−a

)�0 =
(

n + m − a

�0 + n − a

)
�0,

this means that the optimal choice of a should be such that
(

n + m − a

�0 + n − a

)
�0 = n + m − a

�
a = n or a = n + m.

Note however that this only holds asymptotically, and it is expected that slightly
more than n bits will need to be guessed to determine the remaining part of the.

For RBS this suggests that an initial guess of around n = 64 key bits should
be sufficient to determine all remaining 68 key bits. In order to determine how
many more bits than n we should guess, a more careful analysis of the progression
of the �i’s is needed. In the following, we develop a conservative estimate:

Lemma 3. Let a and �i be as in Lemma 1. Let L(a, �0) = (�0, . . . , �t) be the
series of �i defined from a and �0 s.t. t is the largest integer s.t. �t ≥ 1. When
guessing a initial key bits, the expected number of extra free bits obtained is
determined as

∑t−1
j=0 �j and the expected Hamming weight of these bits is deter-

mined as
∑t

j=0 �j.

Proof. This follows directly from the definition of �i and L(a, �0). �
Theorem 1. Let a, �i and L(a, �0) be as in Lemma 3. Let w(a) denote the worst
case expected complexity of key recovery when a is the number of key bits initially
guessed. Then

w(a) =
min{68,a}∑

�0=max{0,a−64}

(
a

�0

)(max{0, �132 − a − ∑t−1
j=0 �j�}

max{0, �68 − ∑t
j=0 �j�}

)
(5)

Proof. When initially guessing ka−1‖ · · · ‖k0, the Hamming weight of this guess,
�0, is bounded below by max{0, a − 64}, because when a > 0, the Hamming
weight must be positive by the pigeon-hole principle. The Hamming weight �0
is bounded above by either a or 68.



Key Recovery Attacks on Recent Authenticated Ciphers 285

There are
(

a
�0

)
ways to distribute the �0 ones over ka−1‖ · · · ‖k0. For each of

these, the rightmost binomial coefficient of Eq. (5) gives the number of ways to
place the remaining 1-bits among the unknown bits for this fixed combination of
(a, �0). We take the sums of the �j as �∑j �j� for a conservative estimate of the
complexity. Summing over all the possible �0 for a fixed a, the result follows. �

The Key Recovery Attack. We summarize the resulting key recovery attack
on RBS in Algorithm 5.

Algorithm 5. RBS-Key-Recovery(a)
Data: Number of initial key bits to guess, a

1 C ← RBS(1)
2 for �0 = max{0, 64 − a}, . . . , min{68, a} do
3 forall the guesses of k′

a−1‖ · · · ‖k′
0 with Hamming weight �0 do

4 Let L = (�0, . . . , �t), where t is the largest integer s.t. �t ≥ 1

5 Ξ ← max{0, 132 − a −∑t−1
j=0 �j} ; /* # of bits yet unknown */

6 Φ ← max{0, 68 −∑t
j=0 �j} ; /* # of 1-bits remaining */

7 forall the
(

Ξ
Φ

)
remaining candidates for k′

131‖ · · · ‖k′
131−Ξ+1 do

8 if C = RBS(1) under the key k′
131‖ · · · ‖k′

0 then
9 return k′

131‖ · · · ‖k′
0 as the correct key k

10 end

11 end

12 end

13 end

0 20 40 60 80 100 120 140
60

80

100

120

Initially guessed bits a

lo
g
2
w

(a
)

(a) Plot as a function of a

a log2 w(a)

61 68.24
62 67.32
63 66.22
64 65.27
65 65.00
66 66.75
67 68.39
68 71.18
69 72.83
70 76.03

(b) Data points
for the best val-
ues of a

Fig. 4. Expected worst time complexity for key recovery in RBS as a function of the
number of bits initially guessed, denoted a



286 A. Bogdanov et al.

It remains to determine the number of key bits a that should be guessed
initially. Figure 4 shows the base-2 logarithm of the expected worst case com-
plexity w(a). While Fig. 4a shows a plot of w(a) with a ∈ {1, . . . , 131}, Fig. 4b
gives a numerical illustration of the best values for a giving the lowest com-
plexity. From the data, we find that guessing a = 65 bits gives the lowest key
recovery complexity of 265.

6 Conclusion

In this paper we presented key recovery attacks on three recent authenticated
ciphers: AVALANCHE, Calico and RBS. The two former are submissions to the
ongoing CAESAR competition for authenticated encryption schemes while the
latter is a proposal for use in lightweight applications.

Common to all three designs is that they make use of solid primitives such
as the AES, SipHash and ChaCha. We stress that the attacks presented here are
purely structural, i.e. the weaknesses are present due to the way the primitives
are combined and not the primitives themselves.

For AVALANCHE and Calico, the key recovery is possible due to the nonce
being used as (part of) the key material, thus facilitating a key collision attack.
For RBS, we used a guess-and-determine approach. In all cases, the key was
recovered with a complexity of at most square root of the brute-force effort.
Our attacks allows an adversary to perform universal forgeries in all three cases,
and for AVALANCHE and RBS this extends to the ability to decrypt arbitrary
ciphertexts.

Acknowledgments. The work has been supported in part by the Austrian govern-
ment through the research program FIT-IT Trust in IT Systems (project 835919) and
by the Austrian Science Fund (project P26494-N15).

References

1. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness, March 2014. http://competitions.cr.yp.to/caesar.html

2. Ågren, M., Hell, M., Johansson, T.: On hardware-oriented message authentication.
IET Inf. Secur. 6, 329–336 (2012)

3. Ågren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of Grain-
128 with optional authentication. IJWMC 5, 48–59 (2011)

4. Alomair, B.: AVALANCHEv1. Submission to the CAESAR competition (2014).
http://competitions.cr.yp.to/round1/avalanchev1.pdf

5. Aumasson, J.-P., Bernstein, D.J.: SipHash: a fast short-input PRF. In: Galbraith,
S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 489–508. Springer,
Heidelberg (2012)

6. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/round1/avalanchev1.pdf


Key Recovery Attacks on Recent Authenticated Ciphers 287

7. Bernstein, D.J.: ChaCha, a variant of Salsa20. In: Workshop Record of SASC 2008:
The State of the Art of Stream Ciphers (2008)

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak SHA-3 submis-
sion. Submission to NIST (2011)

9. Dworkin, M.J.: SP 800–38C. Recommendation for block cipher modes of operation:
the CCM mode for authentication and confidentiality. Technical report, Gaithers-
burg, MD, United States (2004)

10. Dworkin, M.J.: SP 800–38D. Recommendation for block cipher modes of operation:
galois/counter mode (GCM) and GMAC. Technical report, Gaithersburg, MD,
United States (2007)

11. ISO 19772:2009. Information technology - Security techniques - Authenticated
encryption (2009)

12. Jeddi, Z., Amini, E., Bayoumi, M.: A novel authenticated cipher for RFID systems.
Int. J. Crypt. Inf. Secur. 4 (2014)

13. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of
operation. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 284–299. Springer,
Heidelberg (2001)

14. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011)

15. McGrew, D.A., Viega, J.: The security and performance of the galois/counter mode
(GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004.
LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004)

16. Mendel, F., Mennink, B., Rijmen, V., Tischhauser, E.: A simple key-recovery attack
on McOE-X. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012.
LNCS, vol. 7712, pp. 23–31. Springer, Heidelberg (2012)

17. Minematsu, K.: Parallelizable rate-1 authenticated encryption from pseudorandom
functions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 275–292. Springer, Heidelberg (2014)

18. Quisquater, J.-J., Delescaille, J.-P.: How easy is collision search. new results and
applications to DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp.
408–413. Springer, Heidelberg (1990)

19. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

20. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: ACM Conference on Computer
and Communications Security, pp. 196–205 (2001)

21. Taylor, C.: The Calico Family of Authenticated Ciphers Version 8. Submission to
the CAESAR competition (2014). http://competitions.cr.yp.to/round1/calicov8.
pdf

http://competitions.cr.yp.to/round1/calicov8.pdf
http://competitions.cr.yp.to/round1/calicov8.pdf


Tuning GaussSieve for Speed

Robert Fitzpatrick1, Christian Bischof2, Johannes Buchmann3,
Özgür Dagdelen3(B), Florian Göpfert3,

Artur Mariano2, and Bo-Yin Yang1

1 Institute of Information Science, Academia Sinica, Taipei, Taiwan
2 Institute for Scientific Computing, TU Darmstadt, Darmstadt, Germany

3 Cryptography and Computer Algebra, TU Darmstadt, Darmstadt, Germany
oezguer.dagdelen@cased.de

Abstract. The area of lattice-based cryptography is growing ever-more
prominent as a paradigm for quantum-resistant cryptography. One of
the most important hard problem underpinning the security of lattice-
based cryptosystems is the shortest vector problem (SVP). At present,
two approaches dominate methods for solving instances of this problem
in practice: enumeration and sieving. In 2010, Micciancio and Voulgaris
presented a heuristic member of the sieving family, known as GaussSieve,
demonstrating it to be comparable to enumeration methods in practice.
With contemporary lattice-based cryptographic proposals relying largely
on the hardness of solving the shortest and closest vector problems in
ideal lattices, examining possible improvements to sieving algorithms
becomes highly pertinent since, at present, only sieving algorithms have
been successfully adapted to solve such instances more efficiently than in
the random lattice case. In this paper, we propose a number of heuristic
improvements to GaussSieve, which can also be applied to other sieving
algorithms for SVP.

1 Introduction

Lattice-based cryptography is gaining increasing traction and popularity as a
basis for post-quantum cryptography, with the Shortest Vector Problem (SVP)
being one of the most important computational problems on lattices. Its difficulty
is closely related to the security of most lattice-based cryptographic constructions
to date. The SVP consists in finding a shortest (with respect to a particular,
usually Euclidean, norm) non-zero lattice point in a given lattice.

For solving SVP instances, we have a choice of algorithms available. In recent
works, heuristic variants of Kannan’s simple enumeration algorithm have dom-
inated. The original algorithm [11] solves SVP (deterministically) with time
complexity n

n
2 +o(n) (n being the lattice dimension). More recent works (such

as [7]) allow probabilistic SVP solution, sacrificing guaranteed solution for run-
time improvements.

A more recently-studied family of algorithms is known as lattice sieving algo-
rithms, introduced in the 2001 work of Ajtai et al. [4]. In 2008, Nguyen and
Vidick [21] presented a careful analysis of the algorithm of Ajtai et al., show-
ing it to possess time complexity of 25.90n+o(n) and space complexity 22.95n+o(n).
c© Springer International Publishing Switzerland 2015
D.F. Aranha and A. Menezes (Eds.): LATINCRYPT 2014, LNCS 8895, pp. 288–305, 2015.
DOI: 10.1007/978-3-319-16295-9 16



Tuning GaussSieve for Speed 289

Heuristic variants of [21], which run significantly faster than proven lower bounds
are presented in [21,27,28]. In 2010, Micciancio and Voulgaris [19] proposed two
new algorithms: ListSieve and a heuristic derivation known as GaussSieve, with
GaussSieve being the most practical sieving algorithm known at present. While
no runtime bound is known for GaussSieve, the use of a simple heuristic stopping
condition, in practice, appears effective with no cases being known (to the best
of our knowledge) in which GaussSieve fails to return a shortest non-zero vector.

For purposes of enhanced communication, computation and memory com-
plexity, many recent lattice-based cryptographic proposals employ ideal lat-
tices rather than “random” lattices. Ideal lattices, in brief, possess significant
additional structure which allows much more attractive implementation of said
proposals. However, as with any introduction of structure, the question of any
simultaneously-introduced weakening of the underlying problems arises. In 2011,
Schneider [22] illustrated that (following a suggestion in the work of Micciancio
and Voulgaris [19]) one can take advantage of the additional structure present in
ideal lattices in a simple way to obtain substantial speedups for such cases. Inter-
estingly, no such comparable techniques are known for other SVP algorithms,
with only sieving algorithms appearing to be capable of exploiting the additional
structure exposed in ideal lattices.

Another attractive feature of sieving algorithms is their relative amenability
to parallelization. Also in 2011, Milde and Schneider [20] proposed a parallel
implementation of GaussSieve, though the methodology used limited the number
of threads to about ten, before no substantial further speedups could be obtained.
In 2013, Ishiguro et al. [10] proposed a somewhat more natural parallelization of
GaussSieve, allowing a much larger number of threads. Using such an approach,
they report the solution of the 128-dimensional ideal lattice challenge [2] in
30,000 CPU hours. Currently, the most efficient GaussSieve implementation (of
which details have been published) is due to Mariano et al. [16] who implemented
GaussSieve with a particular effort to avoid resource contention. In this work,
we exhibit several further speedups which can be obtained both in the random
and ideal lattice cases.

While the security of most lattice-based cryptographic constructions relies
on the difficulty of approximate versions of the related Closest Vector Problem
(CVP) and SVP, the importance of improving exact SVP solvers stems from
their use (following Schnorr’s hierarchy [23]) in the construction of approximate
CVP/SVP solvers. Thus, any improvements, both theoretically and experimen-
tally, in exact SVP solvers can lead to a need for re-appraisal of proposed para-
meterizations.

Our Contribution. In this work, we highlight several practical improvements
that are applicable to other sieving algorithms. In particular, we propose the
following optimizations, which we incorporated into GaussSieve:
– We correct an error in the Gaussian sampler of the reference implementation

of Voulgaris and propose an optimized Gaussian sampler in which we dynam-
ically adapt the Gaussian parameter used during the execution of the algo-
rithm. Our experiments show that GaussSieve with our optimized Gaussian



290 R. Fitzpatrick et al.

sampler requires significantly fewer iterations to terminate and leads to a
speedup of up to 3.0× over the corrected reference implementation in random
lattices in dimension 60–70.

– The use of multiple randomized bases to seed the list before running the sieving
process offers substantial efficiency gains. Indeed, the speedup appears to grow
linearly in the dimension of the underlying lattice.

– We introduce a very efficient heuristic to compute a first approximation to the
angle between two vectors in order to test cheaply whether there is the need
to compute full inner products for the reduction process. This optimization is
possibly of independent interest beyond sieving algorithms.

We note that our improvements can be integrated into parallel versions of
GaussSieve without complication or restriction.

2 Background and Notation

A (full-rank) lattice Λ in R
n is a discrete additive subgroup. For a general intro-

duction, the reader is referred to [18]. We view a lattice as being generated by
a (non-unique) basis B = {b0, . . . ,bn−1} ⊂ R

n of linearly-independent vectors.
We assume that the vectors b0, . . . ,bn−1 form the rows of the n × n matrix B.
That is,

Λ = L(B) = Z
n · B =

{
n−1∑

i=0

xi · bi | x0, . . . , xn−1 ∈ Z

}
.

The rank of a lattice Λ is the dimension of the linear span span(Λ) of Λ. The
basis B is not unique, and thus we call two bases B and B′ equivalent if and
only if B′ = BU where U is a unimodular matrix, i.e., an integer matrix with
|det(U)| = 1. We note that such unimodular matrices form the general linear
group GLn(Z). Being a discrete subgroup, in any lattice there exists a subset of
vectors which possess minimal (non-zero) norm amongst all vectors. When asked
to solve the shortest vector problem, we are given a lattice basis and asked to
deliver a member of this subset. SVP is known to be NP-hard under randomized
reductions [3].

Random Lattices. Throughout this work, we rely on experiments with “random”
lattices. However, the question of what a “random” lattice is and how to generate
a random basis of one are non-trivial. In a mathematical sense, an answer to the
definition of a random lattice follows from a work in 1945 by Siegel [25], with
efficient methods for sampling such random lattices being proposed, for instance,
by Goldstein and Mayer [9]. In this work, all experiments were conducted with
Goldstein-Mayer lattices, as provided by the TU Darmstadt Lattice Challenge
project. For more details, the reader is directed to [8].

Definition 1. Given two vectors v,w in a lattice Λ, we say that v,w are Gauss-
reduced if

min(‖v ± w‖) ≥ max(‖v‖, ‖w‖) .



Tuning GaussSieve for Speed 291

Lattice Basis Reduction. A given lattice has an infinite number of bases. The
aim of lattice basis reduction is to transform a given lattice basis into one
which contains vectors which are both relatively short and relatively orthog-
onal. Such bases, in some sense, allow easier and/or more accurate solutions
of approximation variants of SVP or its related problem, the Closest Vector
Problem (CVP). In practice, the most effective arbitrary-dimension lattice basis
reduction algorithms are descendants of the LLL algorithm [14], with the Block-
Korkine-Zolotarev (BKZ) family [5,23] (or framework) of algorithms being the
most effective in practice. The LLL and BKZ algorithms rely on successive exact
SVP solution in a number of projected lattices. These projected lattices are two-
dimensional in the case of LLL and of arbitrary dimension in the case of BKZ –
the (maximal) projected lattice dimension being termed the “blocksize” in BKZ.
For more details, the reader is referred to [6].

Balls and Spheres. We define the Euclidean n-sphere Sn(x, r) centered at x ∈
R

n+1 and of radius r by Sn(x, r) := {y ∈ R
n+1 : ‖ x − y ‖= r}. The (open)

Euclidean n-ball Bn(x, r) centered at x ∈ R
n and of radius r is defined to be

Bn(x, r) := {y ∈ R
n : ‖ x − y ‖< r}.

Gaussians. The discrete Gaussian distribution with parameter s over a lattice
Λ is defined to be the probability distribution with support Λ which, for each
x ∈ Λ, assigns probability proportional to exp(−π‖x‖2/s2).

Miscellany. We use ⊕ to denote the bitwise XOR operation and use a∠b to
denote the angle between vectors a and b. Given a binary vector a, we use w(a)
to denote the Hamming weight of a.

3 The GaussSieve Algorithm

In 2010, Micciancio and Voulgaris [19] introduced the GaussSieve algorithm.
GaussSieve is a heuristic efficient variant of the ListSieve algorithm. In contrast
to GaussSieve, for ListSieve there exist provable bounds on the running time
and space requirements. An empirical comparison of ListSieve and GaussSieve
is given in [17]. In this work, we focus on the most efficient variant GaussSieve.
Algorithm 1 depicts the GaussSieve algorithm in more detail.

GaussSieve operates upon a supplied lattice basis B. It utilizes a dynamic list
L of lattice points. At each iteration, GaussSieve samples a new lattice point –
typically with Klein’s algorithm [12] – and attempts to reduce that vector against
vectors in the list L. By “reducing” we mean adding an integer multiple of a list
vector such that the norm of the resulting vector is reduced. Once the vector
cannot be reduced further by list members, the resulting vector is incorporated in
the list. Afterwards, all the vectors in the list L are tested to determine if they can
be reduced against this new vector. If so, those vectors are removed to a stack S,
with the stack playing the role of Klein’s algorithm in subsequent iterations
till it is depleted. This ensures that all vectors in the list L remain pairwise



292 R. Fitzpatrick et al.

Algorithm 1: GaussSieve
1 Input : Basis B, collision limit c

Output: v : v ∈ Λ(B) ∧ ‖v‖ = λ1(B)
2 L ← {}, S ← {}, col ← 0
3 while col < c do
4 if S is not empty then
5 v ← S.pop()
6 else
7 v ← SampleKlein(B)
8 j ← GaussReduce(v,L, S)
9 if j = true then

10 col ← col + 1

11 return v ∈ L s.t. ‖v‖ = minx∈L ‖x‖

function GaussReduce(p,L,S)
was reduced ← true
while was reduced = true do

was reduced ← false
for all vi ∈ L do

if ∃t ∈ Z : ‖p+ tvi‖ < ‖p‖ then
p ← p + tvi

was reduced ← true

if ‖p‖ = 0 then
return true

for all vi ∈ L do
if ∃u ∈ Z : ‖vi + up‖ < ‖vi‖ then

L← L\{vi}
vi ← vi + up
S.push(vi)

L ← L ∪ {p}
return false
end function

Gauss-reduced at any point during the execution of the algorithm. Eventually,
by this iterative process, the shortest vector in the lattice is found (with high
probability). In the following, we detail the GaussSieve algorithm in several
aspects.

Sampling. In order to populate the list with reasonably short vectors, GaussSieve
samples lattice points via Klein’s randomized algorithm [12], following the sugges-
tion in [21]. Klein’s algorithm, upon input a lattice basis B outputs a lattice point
distributed according to a zero-centered Gaussian of parameter s over the lattice
Λ(B). Since the vectors so derived are small integer combinations of the supplied
basis vectors, the norms of these vectors are strongly dependent on the “qual-
ity” of the supplied basis. Hence, reducing the input basis with “stronger” lattice-
reduction algorithms yields shorter vectors output and thus, intuitively and in
practice, GaussSieve terminates earlier than when given a “less-reduced” basis
from which to sample vectors. However, while the cost of enumeration algorithms
is strongly affected by the strength of the lattice-reduction employed, such a strong
correspondence does not appear to hold for the case of GaussSieve - such issues are
discussed further in Sect. 5.

Reduction. We attempt to reduce the given vector p (obtained either from
Klein’s algorithm or from the stack) against all list vectors, i.e., we try to find a
list vector v and integer t such that ‖p+ tv‖ < ‖p‖, in which case we reduce p
using v. Once no such v exists in the list, we attempt to reduce the extant list
vectors against p. All list vectors which can be reduced using p are duly reduced,



Tuning GaussSieve for Speed 293

removed from the list and inserted to the stack S. As a result, GaussSieve main-
tains its list L in a pairwise reduced state at the close of every iteration. In the
following iteration, if the stack contains at least one element, we pop a vector
from the stack in lieu of employing Klein’s algorithm.

Stopping criteria. Given that one cannot prove (at present) that GaussSieve
terminates, stopping conditions for GaussSieve must be chosen in a heuristic
way, chosen such that any further reduction in the norm of the shortest vector
found is unlikely to occur. In [19], it is suggested to terminate the algorithm
after a certain number of successively-sampled vectors are all reduced to zero
using the extant list, with 500 such consecutive zero reductions being mentioned
as a possible choice in practice. In Voulgaris’ implementation, a stopping con-
dition is employed which depends on the maximal list size encountered. In our
experiments we follow the suggestions of [19] in this regard.

Complexity. As with all sieving algorithms, the complexity of GaussSieve is
largely determined by arguments related to sphere packing and the Kissing
Number - the maximum number of equivalent hyperspheres in n dimensions
which are permitted to touch another equivalent hypersphere yet not intersect.
With practical variants of GaussSieve, as dealt with here, no complexity bound
is known due to the possibility of perpetual reductions of vectors to zero without
a shortest vector being found. For further details, we direct the reader to [19].

4 Approximate Gauss Reduction

The motivation for our first contribution stems from the observation that, at least
in moderate dimension, the overwhelming majority of vector pairs we consider
are already Gauss-reduced, yet we expend the vast majority of effort in the
algorithm in verifying that they are indeed Gauss-reduced. Thus, by “detecting”
relatively cheaply whether such a pair is almost-certainly Gauss-reduced, we can

(0, 1)

(0, 0) (1.5, 0)

Fig. 1. Example Gauss-reduced region (shaded), dimension 2.



294 R. Fitzpatrick et al.

obtain substantial (polynomial) speedups at the cost of possibly erring (almost
inconsequentially) with respect to a few pairs.

We now make an idealizing assumption, namely the random ball assumption
(as appears in [26]) that we can gain insights into the behavior of lattice algo-
rithms by assuming that lattice vectors are sampled uniformly at random from
the surface of an Euclidean ball of a given radius. As in [26], we term this the
“random ball model”. For intuition, Fig. 1 shows the region (shaded) of vectors
in the ball B2(0, 1.5) which are Gauss-reduced with respect to the vector (0, 1).

Lemma 1. Given a vector v ∈ R
n of (Euclidean) norm r sampled from at

random from Sn−1(0, r) and a second vector w sampled independently at random
from Sn−1(0, r′) (where r′ is a second radius), the probability that w is Gauss-
reduced with respect to v is

1 − I1−(r/2r′)2

(
n − 1

2
,
1
2

)

where hh := r′−r/2 and Ix(a, b) denotes the regularized incomplete beta function.

Proof. We assume, without loss of generality, that r′ ≥ r, otherwise, we swap v
and w. The surface area of the n-sphere of radius r′ (denoted Sn−1(0, r′)) is

Sn−1(0, r′) =
nπn/2r′n−1

Γ (1 + n
2 )

.

Then, the points from this sphere which are Gauss-reduced with respect to v are
determined by the relative complement of Sn−1(0, r′) with the hyper-cylinder of
radius

√
r′2 − r2/4 , of which both the origin and v lie on the center-line. We can

calculate the surface area of this relative complement by subtracting the surface
area of a certain hyperspherical cap from the surface area of a hemisphere of
the hypersphere of radius r′. Specifically, let us consider only one hemisphere
of Sn−1(0, r′). Considering the hyperspherical cap of height hh := r′ − r/2, this
cap has surface area

1
2
Sn−1(0, r′)I1−(r/2r′)2

(
n − 1

2
,
1
2

)
,

where Ix(a, b) denotes the regularized incomplete beta function:

Ix(a, b) :=
∞∑

i=a

(
a + b − 1

i

)
xi(1 − x)a+b−1−i.

Thus, the relative complement has surface area

1
2
Sn−1(0, r′)

(
1 − I1−(r/2r′)2

(
n − 1

2
,
1
2

))

and hence, the probability of obtaining a Gauss-reduced vector is

1 − I1−(r/2r′)2

(
n − 1

2
,
1
2

)
.

��



Tuning GaussSieve for Speed 295

For instance, Fig. 2 gives the probability of two vectors being a priori Gauss-
reduced with increasing dimension in the case of r = 1000 and r′ = 1100. By
a priori Gauss-reduced, we mean that two vectors, sampled at random from
zero-centered spheres of respective radii, are Gauss-reduced with respect to each
other. These illustrative values are chosen to be representative of the similar-
norm pairs of vectors which comprise the vast majority of attempted reductions
in GaussSieve.

20 40 60 80
0

0.5

1

dimension(n)

p
ro

b
a
b
il
it
y
 b

ei
n
g
 G

a
u
ss

-r
ed

u
ce

d

Fig. 2. Example probabilities of a priori Gauss-reduction, r = 1000, r′ = 1100.

If we are given two such vectors, we can easily determine whether they are
Gauss-reduced by considering the angle θ between them. It follows simply from
elementary Euclidean geometry that if the following condition is satisfied, they
are Gauss-reduced:

|π
2

− θ| ≤ arcsin(r/2r′)

Thus, if we can “cheaply” determine an approximate angle, we can tell with
good confidence whether they are indeed Gauss-reduced or not. We note that,
while we do not believe one can prove similar arguments to the above in the
context of lattices, the behavior appears indistinguishable for random lattices in
practice. Indeed, we also experimented with vector pairs sampled from random
lattice bases using Klein’s algorithm and obtained identical behavior to that
illustrated in Figs. 2 and 3. For determining such approximate angles, we inves-
tigated two approaches: (a) computing the angle between restrictions of vectors
to subspaces and (b) exploiting correlations between the XOR + population
count of the sign bits of a pair of vectors and the angle between them. We only
report the latter approach, which appears to offer superior results in practice.

Using XOR and Population Count as a First Approximation to the
Angle. Given a vector a ∈ Z

n we define ã ∈ Z
n
2 such that ãi = sgn(ai). Here,

we define



296 R. Fitzpatrick et al.

sgn(a) : R → {0, 1} by sgn(a) =

{
0 if a < 0
1 otherwise

and define the normalized XOR followed by population count of a and b to be

sip(a,b) : Rn × R
n → R

+ by sip(a,b) = w(ã ⊕ b̃)/n

Based on Assumption 1, we can use the XOR + population count of a and b as
a first approximation to the angle between a and b when their norms are rela-
tively similar. The attraction of using sip(a,b) as a first approximation to a∠b
is the need to only compute an XOR of two binary vectors followed by a popula-
tion count, operations which can be implemented efficiently. For intuition, consider
thefirst componentsa1, b1 of vectorsa andb, respectively. If sgn(a1)⊕ sgn(b1) = 1
then the signs of these components are different and are the same otherwise.
Clearly, in higher dimensions, when sampling uniformly at random from a zero-
centered sphere, the expected number of such individual XORs would be n/2,
hence E[sip(a,b)] = 1/2. If sip(a,b) = 1, then all components of both vectors lie
in the same intersection of the sphere with a given orthant and thus we might
expect that the angle between these two vectors has a good chance of being rela-
tively small. The analogous case of sip(a,b) = 0 corresponds to taking the nega-
tive of one of the vectors. Conversely, since the expected value of sip(a,b) is 1/2,
we expect this to coincide with the heuristic that, in higher dimensions, most
vectors sampled uniformly at random from a zero-centered sphere are almost
orthogonal. Again, we stress that these arguments are given purely for intuition
and appear to work well in practice, as posited in Assumption 1:

Assumption 1. [Informal] Let n � 2. Then, given a random (full-rank) lattice
Λ of dimension n and two vectors a,b ∈ Λ of “similar” norms sampled uni-
formly at random from the set of all such lattice vectors, the distribution of the
normalized sign XOR + population count of these vectors sip(a,b) and the angle
between them can be approximated by a bivariate Gaussian distribution.

Note 1. We note that, in our experiments, we took “similar” norm to mean that
max{‖a‖/‖b‖, ‖b‖/‖a‖} ≤ 1.2, with a failure to satisfy this condition leading
to full inner product calculation.

Application of Mardia’s test [15] for multivariate normalcy yields confirmative
results. As an example, the covariance matrix below provides a good approxi-
mation of this distribution, in dimension 96 as shown by our experiments.

[
0.01200 −0.00307

−0.00307 0.00290

]

For example, Fig. 3 shows the result of 100,000 pairs of vectors sampled according
to a discrete Gaussian from a 96-dimensional random lattice, with the region
lying between the horizontal lines containing the cases in which we assume that
the pair of vectors is Gauss-reduced and hence do not expend effort in computing
the full inner-product to confirm this. More specifically, we choose an integer



Tuning GaussSieve for Speed 297

parameter k and, when we wish to compute the angle between vectors a and b,
we firstly compute c = sip(a,b). If (�n/2−k)/n ≤ c ≤ (�n/2�+k)/n we assume
that a and b are already Gauss-reduced. Otherwise, we compute 〈a,b〉.
Choosing k, i.e. determining the distance of the horizontal lines from n/2 to
n was done heuristically, with values of 6 or 7 appearing to work best for the
lattice dimensions with which we experimented. If k is too small, the heuristic
loses value, while if it is too large we will commit too many false negatives (missed
reductions) which will lead to a decreased speedup. In the case of Fig. 3, k = 6.
The occurrence of a few false negatives arising from this approach appears to
have little consequence for the algorithm - this assumption appears to be borne
out by the experiments reported in Sect. 7. We also note that false positives
cannot occur.

Fig. 3. Example distribution of sip(a,b) and angle between random unit vectors in
dimension 96.

5 Using Multiple Randomized Bases

When examining the performance of enumeration-type algorithms in solving
SVP instances, the level of preprocessing carried out on the basis is of prime
importance, with the norms of the Gram-Schmidt vectors of the reduced basis
being the main determinant of the running time. With sieving algorithms, how-
ever, this does not appear to hold - the level of preprocessing carried out on the
basis has a far smaller impact on the running time of the sieving algorithms than
might be expected at first.

We posit that a much more natural consideration is the number of random-
ized lattice bases which are reduced and used to “seed” the list. That is, instead
of adding the input basis to the list before starting the sieving procedure, we
randomize and reduce the given basis several times, appending all so-obtained
lattice vectors to the list L by running GaussReduce(bi, L,S) for all obtained
vectors bi (cf. Algorithm 1).



298 R. Fitzpatrick et al.

0 200 400 600 800 1,000
0

1

2

3

4
·104

#Randomizations/Reductions

N
u
m

b
er

 o
f 
U

n
iq

u
e 

V
ec

to
rs

Experimental

Best Case

0 200 400 600 800 1,000
0

2

4

6

·104

#Randomizations/Reductions

N
u
m

b
er

 o
f 
U

n
iq

u
e 

V
ec

to
rs

Experimental

Best Case

Fig. 4. Number of distinct vectors obtained under repeated (up to 1000) randomiza-
tions and BKZ reductions with blocksize 20 for random lattice in dimension 40 (left)
and dimension 70 (right). In dimension 70 the two lines coincide almost exactly.

The idea of rerandomizing and reducing a given lattice basis for algorith-
mic improvements is not new. Indeed, Gama et al. [7] show, with respect to
enumeration-based SVP algorithms, a theoretical exponential speedup if the
input basis is rerandomized, reduced and the enumeration search tree for each
reduced basis is pruned extremely. Experiments confirm this huge speedup in
practice [13]. While in enumeration rerandomizing and reducing provides almost
independent instances of (pruned) enumeration, in this modification to Gauss-
Sieve we instead concurrently exploit all the information gathered through all
generated bases in a single instance of GaussSieve rather than running multiple
instances of GaussSieve.

However, a natural concern that arises in this setting is that of the number of
unique lattice vectors we can hope to obtain by way of multiple randomization
and reduction - we wish for this number to be as large as possible to maximize
the size of our starting list. Our experiments indicate that, given a large enough
lattice dimension, the number of duplicate vectors obtained by this approach
is negligible even when performing a few thousand such randomizations and
reductions. Figure 4 illustrates the number of distinct vectors obtained through
this approach in dimensions 40 and 70, highlighting that, beyond toy dimensions,
obtaining distinct vectors through this approach is not problematic. We also
observe that such a “seeding” of the list is only slightly more costly in practice
as this approach makes the first stage of the algorithm embarrassingly parallel,
i.e. each thread can carry out an independent basis randomization and reduction,
with a relatively fast merging of the resulting collection of vectors into a pairwise
Gauss-reduced list.

After seeding the list using the vectors from the reduced bases, we addition-
ally store these bases and, rather than sampling all vectors from a single basis,
sample from our multiple bases in turn. We note that our optimizations have



Tuning GaussSieve for Speed 299

some similarities with the random sampling algorithm of Schnorr [24]. Here, short
lattice vectors are sampled to update a given basis, thereby performing multiple
lattice reductions. However, we add new vectors into the list while Schnorr’s
algorithm uses a fixed number of vectors throughout the execution.

In practice, this modification appears to give linear speedups based on our
experimental timing results given in Sect. 7.

Given that parallel adaptations of GaussSieve are highly practical, especially
for ideal lattices, we expect the approach of randomizing and reducing the basis
to seed the list to be very effective in practice. For instance, the implementation
of Ishiguro et al. employed more than 2,688 threads to solve the Ideal-SVP
128-dimensional challenge, with the number of thread-hours totaling 479,904.
However, only a single basis was used, having been reduced with BKZ with a
blocksize of 30. If each thread additionally performed, say three randomizations
and reductions, over one million unique lattice vectors would be easily obtained.
In comparison, in dimension 128, we would expect our final list to contain roughly
4.2 million vectors in the ideal lattice case.

6 Reducing the Gaussian Parameter

Recall that Klein’s algorithm samples from a discrete Gaussian over the given
lattice by taking (integer) linear combinations of the basis vectors, with each
coefficient being sampled from a discrete Gaussian of parameter s over Z. The
parameter s is proportional to the norm of the Gram-Schmidt vector correspond-
ing to that dimension. Unfortunately, in the implementation of Voulgaris [1],
Klein’s algorithm is implemented incorrectly, with the result that one either
samples integers which are non-Gaussian, or one does sample from a Gaussian
but very slowly.

In the original implementation of Voulgaris, an arbitrary Gaussian sampling
parameter is chosen, while Ishiguro et al. choose an arbitrary though smaller
parameter. We choose the Gaussian parameter dynamically in our experiments,
i.e., by starting with an unfeasibly small (for example 500) parameter (which is
guaranteed to return only the zero vector) and then incrementing this by one
each time Klein’s algorithm returns a zero vector. The intuition for this strategy
is that, if the Gaussian parameter is too large, Klein’s algorithm will generate
unnecessarily long vectors, while if the Gaussian parameter is too small, the only
vectors delivered by Klein’s algorithm will be the zero vector and (occasionally)
single vectors from the basis. Hence we need to choose a Gaussian parameter
which is large enough that the number of lattice vectors obtainable is large
enough to generate a list which satisfies the termination condition, but which is
small enough that the vectors generated are not too long as to impose an addi-
tional unnecessary number of iterations on the algorithm. While it is probably
possible to prove an optimal value for the Gaussian parameter (i.e. to provide
a lower-bound on the Gaussian parameter which leads to enough entropy in
Klein’s algorithm to deliver a terminating list), we do not deal with this here as,



300 R. Fitzpatrick et al.

0 2 4 6 8

·104

0

0.2

0.4

0.6

0.8

1
·104

Iteration

L
is

t 
S
iz

e

Optimized Sampling

Implementation-β Sampling

Fig. 5. Progressive list sizes in a 56-dimensional random lattice.

in practice, our approach of dynamically increasing the parameter upon seeing
zero vectors appears to work very well.

Upon choosing the parameter in this way, a substantial change in behavior
occurs, as illustrated in Fig. 5, with far fewer iterations (less than half as many
in this case) being necessary to satisfy the termination condition. In contrast to
the suggestions in Ishiguro et al. (in which it was suggested that a fixed Gaussian
parameter should be used throughout the execution of the algorithm but that
the optimal Gaussian parameter increases with lattice dimension), our experi-
ments indicate that decreasing the Gaussian sampling parameter with increasing
dimension delivers superior results1.

7 Implementation and Experimental Results

To test the modifications outlined, we adapted the single-threaded implemen-
tation of Voulgaris [1], comparing minimally-modified versions to the reference
implementation. While several obvious optimizations are possible, we did not
implement these, for consistency. We stress, however, that the timings given here
are purely for comparative purposes and in addition to our algorithmic optimiza-
tions further optimizations at the implementation level can significantly enhance
the performance of the algorithm, for instance using 16-bit integers for vector
entries rather than the 64-bit integers used in the reference implementation.
1 We note that the speedups gained from dynamic choice of the Gaussian parameter

are independent of the bug in the reference implementation, said bug leading to only
a minor slowdown in most cases. See Table 1 further for details.



Tuning GaussSieve for Speed 301

Table 1. Execution time (in seconds) of Voulgaris’ implementation [1] and our
optimized variants.

Dimension 60 62 64 66 68 70

Reference implementation [1] 464 1087 2526 5302 12052 23933

Reference implementation-β 455 1059 2497 5370 12047 24055

XOR + Pop. Count (Sect. 4) 203 459 1042 2004 4965 11161

Mult. Rand. Bases (Sect. 5) 210 555 1103 2023 3949 7917

Opt. Gaussian sampling (Sect. 6) 158 376 1023 2222 5389 10207

Combined (s) 79 146 397 868 2082 4500

Shortest norm ≈ 1943 2092 2103 2099 2141 2143

All experiments were carried out using a single core of an AMD FX-8350
4.0 GHz CPU, 32 GB RAM, with all software (C++) compiled using the Gnu
Compiler Collection, version 4.7.2-5. Throughout, we only experiment with the
Goldstein-Mayer quasi-random lattices as provided by the TU Darmstadt SVP
challenge [2].

7.1 Our Timings

In order to better assess the impact of our modifications to GaussSieve, we
compare our implementations both to the original implementation of Voulgaris
and a “corrected” version where we embed a correct implementation of a dis-
crete Gaussian sampler2. We denote the original implementation by “Reference
Implementation” and the original implementation + corrected Gaussian sampler
by “Reference Implementation-β”.

Table 1 shows timings for the original (unoptimized) implementation of
Voulgaris [1], of Reference Implementation-β, and of our proposed optimiza-
tions explicitly. We also provide timings for an implementation which incorpo-
rates all the discussed optimizations for which the pseudocode can be found in
Appendix A. For the multiple-bases optimization we display the timing with
best efficiency, i.e., with the optimal (in terms of our limited experiments) num-
ber of bases. All timings exclude the cost of lattice reduction but we include the
additional necessary lattice reduction via BKZ when considering multiple bases.

We observe that our optimized Gaussian sampler gives a speedup of up to
3.0x. However, with increasing dimension the speedup decreases slightly. Our
integration of approximate inner-product computations increases performance
by a factor of up to 2.7x, as compared to the original implementation of GaussSieve.
2 In the implementation of Voulgaris, no lookup table is employed for Gaussian carry-

ing out rejection sampling over a subset of the integers. Hence, the sampled integers
are much closer to uniform than to the intended truncated Gaussian. In our cor-
rected comparative implementation we employ the same Gaussian parameter from
the Voulgaris implementation but ensure that the sampled vectors adhere to the
prescribed Gaussian.



302 R. Fitzpatrick et al.

Table 2. Time for (sieving, initialization) in seconds.

Dim Number of additional bases

0 10 20 40 80 160 320

60 (453, 0) (274, 2) (238, 4) (210, 8) (195, 15) (185, 29) (164, 59)

62 (1075, 0) (810, 1) (686, 3) (612, 12) (570, 12) (533, 22) (530, 43)

64 (2507, 0) (1389, 17) (1209, 36) (1025, 75) (877, 153) (723, 322) (461, 748)

66 (5302, 0) (3193, 19) (2716, 41) (2328, 83) (1961, 171) (1659, 364) (1233, 835)

68 (12052, 0) (6842, 23) (5852, 48) (5071, 99) (4360, 200) (3652, 415) (3015, 934)

70 (23933, 0) (14933, 24) (12641, 53) (10933, 111) (9561, 225) (8139, 464) (6871, 1046)

Similar speedups are obtained by considering multiple randomized bases;
however, the speedup increases for larger dimensions. Indeed, if we ignore dimen-
sion 70, for which we did not consider an optimal number of bases due to time
constraints, the speedup is approximated closely by the function 0.1838n−9.471.
Figure 6 illustrates the speedups for several dimensions when increasing the num-
ber of bases considered.

When employing multiple randomized bases it is almost always the case that
with increasing dimension employing more bases is preferable. Table 2 shows the
runtime of our implementation when employing various numbers of randomized
bases. It also depicts the amount of time necessary to reduce all the generated
bases.

60 62 64 66 68 70
1

2

3

4

5

Dimension (n)

Sp
ee

du
ps

Multiple Randomized Bases
0.1838n − 9.471

0 100 200 300

1

1.5

2

2.5

3

Number of Additional Bases

Sp
ee

du
ps

dim 60
dim 62
dim 64
dim 66
dim 68
dim 70

Fig. 6. Speedups with respect to the dimension (left) and the number of additional
bases used to seed the list before sieving (right).

Acknowledgments. The authors would like to thank the anonymous reviewers of
Latincrypt 2014 for their helpful comments and suggestions which substantially
improved this paper. Özgür Dagdelen is supported by the German Federal Ministry of
Education and Research (BMBF) within EC-SPRIDE.



Tuning GaussSieve for Speed 303

References

1. Voulgaris, P.: GaussSieve Implementation. (http://cseweb.ucsd.edu/pvoulgar/
impl.html)

2. TU Darmstadt Lattice Challenge. (http://www.latticechallenge.org)
3. Ajtai, M.: The shortest vector problem in L2 is NP-hard for randomized reductions

(Extended Abstract). In: STOC 1998, pp. 10–19. ACM, New York (1998)
4. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice

vector problem. In: Vitter, J.S., Spirakis, P.G., Yannakakis, M. (eds.) STOC, pp.
601–610. ACM (2001)

5. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: ASI-
ACRYPT, pp. 1–20 (2011)

6. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: EUROCRYPT, pp. 31–
51 (2008)

7. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning.
In: EUROCRYPT, pp. 257–278 (2010)

8. Gama, N., Schneider, M.: SVP Challenge (2010). (http://www.latticechallenge.
org/svp-challenge)

9. Goldstein, D., Mayer, A.: On the equidistribution of hecke points. Forum Mathe-
maticum 15, 165–190 (2003)

10. Ishiguro, T., Kiyomoto, S., Miyake, Y., Takagi, T.: Parallel gauss sieve algorithm:
Solving the SVP challenge over a 128-Dimensional ideal lattice. In: Public Key
Cryptography, pp. 411–428 (2014)

11. Kannan, R.: Improved algorithms for integer programming and related lattice prob-
lems. In: Johnson, D.S., Fagin, R., Fredman, M.L., Harel, D., Karp, R.M., Lynch,
N.A., Papadimitriou, C.H., Rivest, R.L., Ruzzo, W.L., Seiferas, J.I. (eds.) STOC,
pp. 193–206. ACM (1983)

12. Klein, P.N.: Finding the closest lattice vector when it’s unusually close. In: SODA,
pp. 937–941 (2000)

13. Kuo, P.-C., Schneider, M., Dagdelen, Ö., Reichelt, J., Buchmann, J., Cheng, C.-M.,
Yang, B.-Y.: Extreme enumeration on GPU and in clouds - How many dollars you
need to break SVP challenges. In: CHES, pp. 176–191 (2011)

14. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261(4), 515–534 (1982)

15. Mardia, K.V. (ed.): Tests of Univariate and Multivariate Normality. Handbook of
Statistics. North-Holland, Amsterdam (1980)

16. Mariano, A., Timnat, S., Bischof, C.: Lock-free GaussSieve for linear speedups in
parallel high performance SVP calculation. In: SBAC-PAD (2014)

17. Mariano, A., Dagdelen, O., Bischof, C.: A comprehensive empirical comparison of
parallel ListSieve and GaussSieve. APCI&E (2014)

18. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: A Cryptographic
Perspective. Milken Institute Series on Financial Innovation and Economic Growth.
Springer, US (2002)

19. Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the shortest
vector problem. In: Proceedings of the Twenty-first Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2010, pp. 1468–1480. Society for Industrial
and Applied Mathematics (2010)

20. Milde, B., Schneider, M.: A parallel implementation of gausssieve for the shortest
vector problem in lattices. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873,
pp. 452–458. Springer, Heidelberg (2011)

http://cseweb.ucsd.edu/pvoulgar/impl.html
http://cseweb.ucsd.edu/pvoulgar/impl.html
http://www.latticechallenge.org
http://www.latticechallenge.org/svp-challenge
http://www.latticechallenge.org/svp-challenge


304 R. Fitzpatrick et al.

21. Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are
practical. J. Math. Cryptol. 2(2), 181–207 (2008)

22. Schneider, M.: Sieving for shortest vectors in ideal lattices. IACR Cryptology ePrint
Archive 2011, 458 (2011)

23. Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci. 53, 201–224 (1987)

24. Schnorr, C.-P.: Lattice reduction by random sampling and birthday methods. In:
STACS, pp. 145–156 (2003)

25. Siegel, C.L.: A mean value theorem in geometry of numbers. Ann. Math. 46(2),
340–347 (1945)

26. Vallée, B., Vera, A.: Probabilistic analyses of lattice reduction algorithms. In:
Nguyen, P.Q., Vallée, B. (eds.) The LLL Algorithm, Information Security and
Cryptography, pp. 71–143. Springer, Heidelberg (2010)

27. Wang, X., Liu, M., Tian, C., Bi, J.: Improved Nguyen-Vidick heuristic sieve algo-
rithm for shortest vector problem. In: ASIACCS, pp. 1–9 (2011)

28. Zhang, F., Pan, Y., Hu, G.: A Three-level sieve algorithm for the shortest vector
problem. In: Selected Areas in Cryptography, pp. 29–47 (2013)

A Pseudocode of our Optimized GaussSieve

Algorithm 2: Optimized GaussSieve
1 Input : Basis B, k ∈ Z

+, r ∈ Z
+,

a′ ∈ R
+, δ ∈ R

+

Output: v : v ∈ Λ(B) ∧ ‖v‖ = λ1(B)
2 L ← {}, S ← {}, col ← 0, a ← a′

repeat
3 B′ ← RandomizeBasis(B)
4 for v ∈ B′ do
5 v’ ← GaussReduce(v,L, S, k)
6 if ‖v′‖ 	= 0 then
7 L ← L ∪ {v}
8 until r times
9 while col < c do

10 if S is not empty then
11 v ← S.pop()
12 else
13 v ← SampleKlein(B’, a)
14 while v = 0 do
15 a ← a + δ
16 v ← SampleKlein(B’, a)

17 j ← GaussReduce(v,L, S, k)
18 if j = true then
19 col ← col + 1

20 return v ∈ L s.t. ‖v‖ = minx∈L ‖x‖

function GaussReduce(p,L, S, k)
was reduced ← true
while was reduced = true do

was reduced ← false
for all vi ∈ L do

if SIP(vi,p, k) = 1 then
if ∃t ∈ Z : ‖p + tvi‖ < ‖p‖
then

p ← p + tvi

was reduced ← true

if ‖p‖ = 0 then
return true

for all vi ∈ L do
if SIP(vi,p, k) = 1 then

if ∃u ∈ Z : ‖vi + up‖ < ‖vi‖
then

L← L\{vi}
vi ← vi + up
S.push(vi)

L ← L ∪ {p}
return false
end function



Tuning GaussSieve for Speed 305

The below pseudocode displays our proposed modifications to GaussSieve. In
lines (3)–(9) we incorporate our multiple-randomized-bases optimization, and in
the function GaussReduce(p,L,S, k) we embed the cheap test SIP implementing
our XOR + population count computation for the approximation of the angle
between two vectors. The optimized Gaussian sampler modifies the function
SampleKlein.

In the pseudocode, the parameter k ∈ Z
+ defines the bounds on the XOR

+ population count, within which we assume that a pair of vectors is Gauss-
reduced, i.e. if n/2 − k ≤ 〈ã, b̃〉 ≤ n/2 + k, we assume the pair a,b are Gauss-
reduced.



Analysis of NORX: Investigating
Differential and Rotational Properties

Jean-Philippe Aumasson1, Philipp Jovanovic2(B), and Samuel Neves3

1 Kudelski Security, Lausanne, Switzerland
jeanphilippe.aumasson@gmail.com

2 University of Passau, Passau, Germany
jovanovic@fim.uni-passau.de

3 University of Coimbra, Coimbra, Portugal
sneves@dei.uc.pt

Abstract. This paper presents a thorough analysis of the AEAD scheme
NORX, focussing on differential and rotational properties. We first intro-
duce mathematical models that describe differential propagation with
respect to the non-linear operation of NORX. Afterwards, we adapt a
framework previously proposed for ARX designs allowing us to automa-
tise the search for differentials and characteristics. We give upper bounds
on the differential probability for a small number of steps of the NORX
core permutation. For example, in a scenario where an attacker can only
modify the nonce during initialisation, we show that characteristics have
probabilities of less than 2−60 (32-bit) and 2−53 (64-bit) after only one
round. Furthermore, we describe how we found the best characteristics
for four rounds, which have probabilities of 2−584 (32-bit) and 2−836

(64-bit), respectively. Finally, we discuss some rotational properties of
the core permutation which yield some first, rough bounds and can be
used as a basis for future studies.

Keywords: NORX · AEAD · LRX · Differential cryptanalysis · Rota-
tional cryptanalysis

1 Introduction

NORX [4] is a new scheme for authenticated encryption with associated data
(AEAD) and was recently submitted to CAESAR [1]. NORX is based on well-
known building blocks but refines those components to provide certain desirable
features. Its layout is a modified version of the monkeyDuplex construction [9],
which allows to process data in parallel. The duplex construction is an alteration
of sponge functions [10], which were introduced alongside Keccak [12]. The core
permutation F of NORX is derived from ChaCha [6] and BLAKE2 [5], which are
parade examples for ARX primitives, i.e. cryptographic functions based solely
on integer addition mod 2n, bit rotations and XOR. However, the permutation F

c© Springer International Publishing Switzerland 2015
D.F. Aranha and A. Menezes (Eds.): LATINCRYPT 2014, LNCS 8895, pp. 306–324, 2015.
DOI: 10.1007/978-3-319-16295-9 17



Analysis of NORX: Investigating Differential and Rotational Properties 307

is a so-called LRX1 construction, because integer addition, which can be written
as a+ b = (a⊕ b)+ ((a∧ b) � 1) [21], is replaced by the approximation (a⊕ b)⊕
((a ∧ b) � 1), a purely logic-based operation. The aim is to increase hardware
friendliness and simplify cryptanalysis. Despite its famous predecessors, that
have already resisted extensive analysis [3,19,25] and are deemed secure, this new
permutation F still lacks in-depth analysis and its security level is yet unclear.

Differential cryptanalysis [13] is one of the most powerful and versatile attack
techniques usable against symmetric primitives and belongs to the standard
repertoire of every cryptanalyst. Therefore, it is not surprising that every new
symmetric primitive is examined upon its resistance against differential attacks.
Usually, it is much easier to establish bounds for strongly aligned ciphers, like
AES [16], than for weakly aligned ones [8]. NORX rather belongs to the latter
category and, despite some successful inroads into deriving bounds for weakly
aligned ciphers [15,17], it is not obvious how to establish such bounds in the
general case. Hence, in the first part of the paper, we investigate differential
propagation in F and, based on that, introduce NODE [2], the NORX Differ-
ential Search Engine, a framework providing a way to search for differentials
and characteristics in an automated way. Our approach is guided by the work
of Mouha and Preneel [24], where a search framework was introduced for the
ARX cipher Salsa20 [7]. Their framework constructs a description of the differ-
ential propagation behaviour of Salsa20, using well-known differential properties
of integer addition [22]. The description is formulated in the CVC language,
the standard input language of the constraint solver STP [18], which supports
operations on bit vectors (like bitwise XOR, AND, modular addition, etc.) and
therefore allows a straightforward modelling of the differential search problem.
The resulting description has a simple shape, which facilitates cryptanalysis.

However, in order to use such a framework for NORX, some adjustments are
necessary: The permutation F of NORX is not based on integer addition, and
hence we can not rely upon already known results on the differential properties
of the latter [22]. Therefore, we start with the mathematical modelling of differ-
ential propagation with respect to the non-linear operation (a⊕b)⊕(

(a∧b) � 1
)

of NORX. All of our claims are supported by rigorous proofs. Then, we use these
results to show how to adapt the search framework to the NORX permutation,
which requires some more modifications, since the original framework [24] was
developed for Salsa20, whereas F is based on ChaCha [6]. Finally, we present the
results from our extensive empirical analysis of FR.

The second part of this paper is dedicated to the rotational cryptanalysis [20]
of the core permutation FR. Rotational cryptanalysis is another important aspect
for the security evaluation of ARX/LRX-based primitives. We present some basic
rotational properties of F and based on that derive bounds for a few simple
rotational attacks.

1 This is not an official term. We introduce it to easily distinguish between ARX- and
purely logic-based primitives. Terminology-wise it is not entirely correct, though, as
integer addition can be obviously modelled by bitwise logical operations as well.



308 J.-P. Aumasson et al.

Outline. The paper is structured as follows. Section 2 introduces notation and
recalls the basic layout of NORX, with a focus on its core permutation FR, as it is
the main target of our cryptanalysis efforts. Sections 3 and 4 present differential
and rotational cryptanalysis of NORX and Sect. 5 concludes the paper.

2 Preliminaries

2.1 Notation

Hexadecimal numbers are denoted in typewriter, e.g. c9 = 201. A word is either
a 32-bit or 64-bit string, depending on the context. Parsing of data streams (as
byte arrays) to word arrays is done in little-endian order. The concatenation of
strings x and y is denoted by x ‖ y. The length of a bit string x is written as
|x|, and its Hamming weight as hw(x). We use the standard notation ¬, ∧, ∨
and ⊕ for bitwise NOT, AND, OR and XOR, x � n and x � n for left- and
right-shift, and x ≪ n and x ≫ n for left- and right-rotation of x by n bits.

2.2 Core Components of NORX

The NORX family of AEAD schemes is based on the monkeyDuplex construc-
tion [9,11] and parametrised by a word size W ∈ {32, 64}, a round number
1 ≤ R ≤ 63, a parallelism degree 0 ≤ D ≤ 255 and a tag size |A| ≤ 10W . The
meaning of the parameters is basically self-explanatory, for more details see [4].

The state S of NORX consists of sixteen words s0, . . . , s15 each of size
W bits, which are arranged in a 4 × 4 matrix. Thus, the state has a size of
512 bits for W = 32 and a size of 1024 bits for W = 64. Due to the duplex con-
struction, the words of the state are divided into two types: s0, . . . , s9 are called
the rate words and s10, . . . , s15 are called the capacity words2. The rate words
are used for data processing, whereas the capacity words remain untouched and
ensure the security of the scheme. S is initialised by loading a nonce n0, n1, a
key k0, . . . , k3 and constants u0, . . . , u9 in the following way

⎛

⎜⎜⎝

s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

⎞

⎟⎟⎠ ←−

⎛

⎜⎜⎝

u0 n0 n1 u1

k0 k1 k2 k3
u2 u3 u4 u5

u6 u7 u8 u9

⎞

⎟⎟⎠

More information on the constants can be found in [4]. This initial state is
transformed by F2R, where F is the round function, interleaved with the injection
of parameter and domain separation constants, before data processing starts,
which uses FR. Concrete instances of NORX, as given in [4], use R ∈ {4, 6}. The
round function F of NORX is composed of a column step

G(s0, s4, s8, s12) G(s1, s5, s9, s13) G(s2, s6, s10, s14) G(s3, s7, s11, s15)

2 These are also respectively known as the outer and inner part of the state [9,10].



Analysis of NORX: Investigating Differential and Rotational Properties 309

followed by a diagonal step

G(s0, s5, s10, s15) G(s1, s6, s11, s12) G(s2, s7, s8, s13) G(s3, s4, s9, s14)

The function G transforms four words a, b, c, and d by doing

1 : a ←− (a ⊕ b) ⊕ (
(a ∧ b) � 1

)
5 : a ←− (a ⊕ b) ⊕ (

(a ∧ b) � 1
)

2 : d ←− (a ⊕ d) ≫ r0 6 : d ←− (a ⊕ d) ≫ r2
3 : c ←− (c ⊕ d) ⊕ (

(c ∧ d) � 1
)

7 : c ←− (c ⊕ d) ⊕ (
(c ∧ d) � 1

)

4 : b ←− (b ⊕ c) ≫ r1 8 : b ←− (b ⊕ c) ≫ r3

where rotation offsets (r0, r1, r2, r3) have the values (8, 11, 16, 31) for 32-bit and
(8, 19, 40, 63) for 64-bit.

Since our analysis focusses on the core permutation FR, we do not go into
the details of NORX’s mode of operation. For more information on these topics,
we refer to the official specification [4].

2.3 Weak States

The NORX specification [4] contains a discussion about the all-zero state, which
is mapped to itself by FR for any R > 0, and why it is no problem for the security
of the scheme. However, due to the layout of F, there is another class of weak
states. These are of the form

⎛

⎜⎜⎝

w w w w
x x x x
y y y y
z z z z

⎞

⎟⎟⎠

with w, x, y, and z being arbitrary W -bit sized words. The column-pattern is
preserved by FR for an arbitrary value of R > 0. The ability to hit such a state
purposely, is equivalent to the ability of reconstructing the key and therefore
breaking the entire scheme. While there are quite many of these states, namely
24W , their number is still negligible compared to the total number of 216W

states. Thus, the probability to hit such a state is 2−12W , which translates to
probabilities of 2−384 (W = 32) and 2−768 (W = 64). Additionally, this attack
does not take into account the extra protection provided through the duplex
construction, the asymmetric constants used during initialisation, or the domain
separation constants which are integrated into the state before each application
of FR. All of the above features should impede the exploitation of these states.

3 Differential Cryptanalysis

This section is dedicated to the differential cryptanalysis of NORX. First, we
introduce the required mathematical models to describe differential propagation
in FR of NORX. Then we describe how to construct the search framework and
finally apply it to NORX and present our results.



310 J.-P. Aumasson et al.

3.1 Mathematical Models

Let n denote the word size, let x and y denote bit strings of size n and let α,
β and γ denote differences of size n. We identify by αi, βi, γi, xi and yi the
individual bits of α, β, γ, x and y, with 0 ≤ i ≤ n − 1.

Definition 1. The non-linear operation H of NORX is the vector Boolean func-
tion defined by

H : F2n
2 −→ F

n
2 , (x, y) �→ (x ⊕ y) ⊕ ((x ∧ y) � 1)

Definition 2. Let f : F2n
2 −→ F

n
2 be a vector Boolean function and let α, β and

γ be n-bit sized XOR-differences. We call (α, β) −→ γ a (XOR-)differential of
f if there exist n-bit strings x and y such that the following equation holds:

f(x ⊕ α, y ⊕ β) = f(x, y) ⊕ γ

Otherwise, if no such n-bit strings x and y exist, we call (α, β) −→ γ an impos-

sible (XOR-)differential of f .

Plugging the non-linear operation H of NORX from Definition 1 into the formula
of Definition 2, we see that an XOR-differential (α, β) −→ γ of H fulfils

α ⊕ β ⊕ γ = ((x ∧ β) ⊕ (y ∧ α) ⊕ (α ∧ β)) � 1 (1)

for n-bit strings x and y. Rewriting the above formula on bit level we get

0 = α0 ⊕ β0 ⊕ γ0

0 = (αi ⊕ βi ⊕ γi) ⊕ (αi−1 ∧ βi−1) ⊕ (xi−1 ∧ βi−1) ⊕ (yi−1 ∧ αi−1), i > 0

Lemma 3 is an important step towards expressing differential propagation
in NORX and is the analogue to Theorem 1 for integer addition from [22]. The
lemma eliminates the dependence of Eq. 1 on the bit strings x and y and therefore
allows us to check in a constant amount of word operations if a given tuple
(α, β, γ) of differences is an (impossible) XOR-differential of H.

Lemma 3. For each XOR-differential (α, β) −→ γ of the non-linear operation
H of NORX the following equation is satisfied:

(α ⊕ β ⊕ γ) ∧ (¬((α ∨ β) � 1)) = 0 (2)

Proof. See Appendix A.

Obviously, a tuple of differences (α, β, γ) not satisfying Lemma 3 is an impossible
XOR-differential of H.

Definition 4. Let f be a vector Boolean function and let δ be an XOR-differen-
tial in terms of Definition 2. The probability xdpf of δ is defined as

xdpf (δ) = |{x, y ∈ F
n
2 : f(x ⊕ α, y ⊕ β) ⊕ f(x, y) ⊕ γ = 0}| · 2−2n

The value xdpf (δ) is also called the XOR-differential probability of δ. Moreover,
for xdpf (δ) = 2−w we call w the XOR-(differential) weight of δ.



Analysis of NORX: Investigating Differential and Rotational Properties 311

The differential probability of an impossible differential is always 0 by prereq-
uisite, as {x, y ∈ F

n
2 : f(x ⊕ α, y ⊕ β) ⊕ f(x, y) ⊕ γ = 0} is then the empty set,

see Definition 2. To compute the probability of a differential with respect to the
non-linear operation H of NORX, we can use the following lemma.

Lemma 5. Let δ be a XOR-differential with respect to the non-linear operation
H of NORX. Its differential probability is then given by

xdpH(δ) = 2−hw((α∨β)�1)

Proof. See Appendix A.

Instead of looking at XOR-differences one could alternatively also analyse
f -differentials, which is done in the following.

Definition 6. Let f : F2n
2 −→ F

n
2 be a vector Boolean function and let α, β and

γ be differences with respect to f . We call (α, β) −→ γ an f-differential of XOR
if there exist n-bit strings x and y such that the following equation holds:

f(x, α) ⊕ f(y, β) = f(x ⊕ y, γ)

Otherwise, if no such n-bit strings x and y exist, we call (α, β) −→ γ an impos-
sible f-differential of XOR.

Plugging the non-linear operation H of NORX into the formula of Definition 6
we obtain the following equation

α ⊕ β ⊕ γ = ((x ∧ (α ⊕ γ)) ⊕ (y ∧ (β ⊕ γ))) � 1 (3)

which can be expressed on bit level as

0 = α0 ⊕ β0 ⊕ γ0

0 = (αi ⊕ βi ⊕ γi) ⊕ (xi−1 ∧ (αi−1 ⊕ γi−1)) ⊕ (yi−1 ∧ (βi−1 ⊕ γi−1)), i > 0

Lemma 7. Let H denote the non-linear operation of NORX. For each H-differen-
tial in terms of Definition 6 the following equation is satisfied:

(α ⊕ β ⊕ γ) ∧ (¬(γ � 1) ⊕ (α � 1)) ∧ (¬(β � 1) ⊕ (γ � 1)) = 0 (4)

Proof. See Appendix A.

Definition 8. Let f be a vector Boolean function and δ be an f-differential in
terms of Definition 6. The probability fdp⊕ of δ is defined as

fdp⊕(δ) = |{x, y ∈ F
n
2 : f(x, α) ⊕ f(y, β) ⊕ f(x ⊕ y, γ) = 0}| · 2−2n

We call fdp⊕(δ) the f-differential probability of δ. Moreover, for fdp⊕(δ) = 2−w

we call w the f-(differential) weight of δ.

Lemma 9. Let H denote the non-linear operation of NORX and let δ be an
H-differential in terms of Definition 6. Its probability is then given by

Hdp⊕(δ) = 2−hw(((α⊕γ)∨(β⊕γ))�1)

Proof. See Appendix A.

While we exclusively consider XOR-differentials and -characteristics in the rest
of the paper, f -differentials might be of interest for future investigations.



312 J.-P. Aumasson et al.

3.2 NODE – The NORX Differential Search Engine

Now that we have introduced the mathematical model, we describe in this part
the framework NODE for the search of differential characteristics of a predefined
weight. Our tool is freely available at [2] under a public domain-like license.
We focus here on XOR-differentials, as introduced in Definition 2, i.e. differences
are computed with respect to XOR and for the vector Boolean function we use
the non-linear operation H of NORX. If we speak in the following of differentials
we always refer to the above type. Below we show the general approach, and
refer to Appendix B for the CVC code.

For modelling the differential propagation through a sequence of operations,
we use a technique well known from algebraic cryptanalysis: For every output
of an operation a new set of variables is introduced. These output variables are
then modelled as a function of its input variables. Moreover, the former are used
as input to the next operation. This is repeated until all required operations have
been integrated into the problem description. Before we show how the differential
propagation in FR is modelled concretely, we introduce the required variables.

Let s denote the number of (column and diagonal) steps to be analysed and
let 0 ≤ i ≤ 15 and 0 ≤ j ≤ 2(s−1). For example, if we analyse F2, we have s = 4.
Let xi, yi,j and zi be W -bit sized variables, which model the input, internal and
output XOR differences of a differential characteristic. Recall that W ∈ {32, 64}
denotes the word size of NORX. Moreover, let wi,k, with 0 ≤ k ≤ s − 1, be
W -bit sized helper variables which are used for differential weight computations
or equivalently to determine the probability of a differential characteristic. We
assume that the probability of a differential characteristic is the sum of weights of
each non-linear operation H. Furthermore, let d denote a W -bit sized variable,
which fixes the total weight of the characteristic we plan to search for. The
description of the search problem is generated through the following steps:

1. Every time the function G applies the non-linear operation H we add two
expressions to our description:
(a) Append the equation 0 = (α ⊕ β ⊕ γ) ∧ (¬((α ∨ β) � 1)) from Lemma 3,

with α, β and γ each substituted by one of the variables xi, yi,j or zi.
This ensures that only non-impossible characteristics are considered.

(b) Add the expression wi,k = (α ∨ β) � 1 from Lemma 5, with α and
β substituted by the same variables xi, yi,j or zi as in step (a). This
expression keeps track of the weight of the characteristic.

2. Every time the function G applies a rotation we apply the same rotation to the
corresponding XOR difference, i.e. we add γ = (α ⊕ β) ≫ r to the problem
description, with α, β and γ substituted appropriately. Note that the rotation
is a linear operation and thus does not change the differential probability.

3. Add an expression corresponding to the following equation:

d =
s−1∑

k=0

15∑

i=0

hw(wi,k) (5)



Analysis of NORX: Investigating Differential and Rotational Properties 313

This equation ensures that indeed a characteristic of weight d is found.
Depending on the technique how Hamming weights are computed, additional
variables might be necessary. Refer to Appendix B for one possible imple-
mentation to compute Hamming weights in the CVC language.

4. Set the variable d to the target differential weight and append it to the prob-
lem description.

5. Exclude the trivial characteristic mapping an all-zero input difference to an
all-zero output difference. To do so, it is sufficient to exclude the all-zero input
difference. Therefore, append an expression equivalent to ¬(

(x0 = 0) ∧ ... ∧
(x15 = 0)

)
to the CVC description.

After the generation of the problem description is finished, it can be used to
search for differential characteristics using STP. Alternatively, STP allows to con-
vert the representation of the problem to SMT-LIB2 or CNF, enabling searches
with other SMT or SAT solvers, like Boolector [14] or CryptoMiniSat [23].

3.3 Applications of NODE

In this part we describe the application of the search framework to the permu-
tation FR of NORX. Depending on the concrete attack model, there are different
ways an attacker could inject differences into the NORX state. During initialisa-
tion an adversary is allowed to modify either the nonce words s1 and s2 (initN )
or nonce and key words s1, s2, s4, . . . , s7 (initN,K). During data processing an
attacker can inject differences into the words of the rate s0, . . . , s9 (rate). Last
but not least, we also investigate the case where an attacker can manipulate
the whole state s0, . . . , s15 (full). While an attacker is not able to influence the
entire state at any point directly due to the duplex construction, the full sce-
nario is nevertheless useful to estimate the general strength of FR, because all of
the other settings described above are special cases of the latter. Additionally, it
could be useful for the chaining of characteristics: For example, an attacker could
start with a search in the data processing part (i.e. under the rate setting) over a
couple of steps, say FR1 , and continue afterwards with a second search, starting
from the full state for another couple of steps, say FR2 , so that differentials from
the second search connect to those from the first, resulting in differentials for
FR1+R2 . We will explore this Divide&Conquer strategy in more detail below.

For the rest of the paper, we denote a differential characteristic as a tuple
of differences (δ0, . . . , δn), where δ0 is the input difference and δn is the output
difference. The values δi for 0 < i < n are called internal differences. The weight
of the probability that difference δi is transformed into difference δi+1 by the
ri-fold iteration of F is denoted by wi for 0 ≤ i ≤ n − 1. Recall, that we assume
that the probability of the entire characteristic is equal to the multiplication of
probabilities of the partial characteristics, and thus we have w =

∑n−1
i=0 wi for

the total weight of the characteristic. The notation FR+0.5 describes that we do
R full rounds followed by one more column step, e.g. F1.5 corresponds to one full
round plus one additional column step.



314 J.-P. Aumasson et al.

Experimental Verification of the Search Framework. The goal of the
experimental verification is to show that the framework indeed does what it is
supposed to do, namely find differentials of a predetermined weight w in FR.
Therefore, we generated differentials for F1.5 (full) and verified them against a C
reference implementation of F1.5. Under these prerequisites our framework found
the first differentials at a weight of 12, for both W = 32 and W = 64, which
thus should have a probability of about 2−12. To get a better coverage of our
verification test, we did not use only differentials of that particular weight, but
generated random differentials of weights w ∈ {12, . . . , 18}, which are listed in
Appendix C.1 for both 32- and 64-bit. Then we applied them to the C imple-
mentation of F1.5 for 2w+16 pairs of randomly chosen input states having the
input difference of the characteristic. In each case, we checked if the output
difference had the predicted pattern. The number of pairs adhering the char-
acteristic should be around 216. The results are illustrated in the first table of
Appendix C.2 and show that the search framework indeed finds characteristics
with the expected properties.

Lower Bounds for Differential Weights of FR. We made an extensive
analysis on the weight bounds of differential paths in FR, where we investigated
1 ≤ s ≤ 4 steps for our four different scenarios initN , initN,K , rate and full. We
tried to find the lowest weights where differentials appear for the first time. These
cases are listed in Table 1 as entries without brackets. For example, in case of
NORX32 under the setting full, there are no differentials in F1.5 with a weight
smaller than 12. Entries in brackets are the maximal weights we were capable
of examining without finding any differentials. Due to memory constraints, our
methods failed for differential weights higher than those presented in Table 1.
For example, our search routine did not find any characteristics of weight smaller
than 40 (i.e. of probability higher than 2−40) for the scenario F1.5, initN,K and
W = 32. The required amount of RAM, to execute this check, was approximately
49 GiB (using CryptoMiniSat with 16 threads) with a running time of 8 h.

The security of NORX depends heavily on the security of the initialisation,
which transforms the initial state by F2R. As initN is the most realistic attack
scenario, we conducted a search over all possible 1- and 2-bit differences in the
nonce words. Our search revealed that the best characteristics have weights of

Table 1. Lower bounds for differential trail weights

NORX32 NORX64

initN initN,K rate full initN initN,K rate full

F0.5 6 2 2 0 6 2 2 0

F1.0 (60) 22 10 2 (53) 22 12 2

F1.5 (60) (40) (31) 12 (53) (35) (27) 12

F2.0 (61) (45) (34) (27) (51) (37) (30) (23)



Analysis of NORX: Investigating Differential and Rotational Properties 315

67 (32-bit) and 76 (64-bit) under those prerequisites. Obviously, these weights
are not too far away from the computationally verified values of 60 (32-bit) and
53 (64-bit) from Table 1, showing that the bounds for F (initN ) are quite tight.

Extrapolating the above results to F 8 (i.e. R = 4), we get lower weights
of 61 + 3 · 27 = 142 (initN ) or 45 + 3 · 27 = 126 (initN,K) for NORX32 and
51 + 3 · 23 = 132 (initN ) or 37 + 3 · 23 = 106 (initN,K) for NORX64. However,
these are only loose bounds and we expect the real ones to be considerably higher.

Search for Differential Characteristics in F4. This part shows how we con-
structed differential characteristics in F4 under the setting full for both versions
of the permutation, i.e. 32- and 64-bit. Unsurprisingly, a direct approach to find
such characteristics turned out to be infeasible, hence we decomposed the search
into multiple parts and constructed the entire path step by step.

At first we made searches that only stretched over R ≤ 2 rounds. After tens
of thousands of iterations using many different search parameter combinations
we found differentials having internal differences of Hamming weight 1 and 2
after one application of F. We also used a probability-1 differential in G, which
is listed as the first entry in the table of Appendix A, as a starting place. We
expanded all those characteristics for both word sizes, in forward and backward
direction one column or diagonal step at a time, until their paths stretched the
entire 4 rounds. The best differential paths we found this way have weights of
584 (32-bit) and 836 (64-bit), respectively. Both are depicted in Appendix C.3.

Iterative Differentials. We also performed extensive searches for iterative
differentials in F for the setting full. Using our framework, we could show that
there are no such differentials up to a weight of 29 (32-bit) and 27 (64-bit), before
our methods failed due to computational constraints. Extrapolating these results
to F8 and F12, i.e. the number of initialisation rounds for R = 4 and R = 6, we
get lower weight bounds of 232 and 348, for 32-bit, or of 216 and 324 for 64-
bit. The best iterative differentials we could find for F, have weights of 512
(32-bit) and 843 (64-bit) and are depicted in Appendix C.4. These weights are
obviously much higher than our guaranteed lower bounds, and hence we expect
that the latter are much better compared to the values we were able to verify
computationally.

Differentials with Equal Columns. The class of weak states from Sect. 2.3
can be obviously transformed into XOR-differentials having four equal columns.
The best differentials we could find for one round F have weight 44 for both
32-bit and 64-bit. They exploit an already well known probability-1 differential
in G, see Appendix C.2. The 64-bit variant was also used in the construction
of the characteristics with weight 836 in F4 above. Concrete representations of
these differentials can be found in Appendix C.5.

3.4 Further Applications

The techniques presented in this section are obviously not restricted to NORX
only. In principle, every function based on integer addition, as shown for Salsa20



316 J.-P. Aumasson et al.

in [24], and/or bitwise logical operations, like OR, NAND, NOR and so on, can
be analysed just as easily. For LRX ciphers, all one has to do is rewrite their
non-linear operations in terms of bitwise logical AND, which then allows to reuse
the results from above.

4 Rotational Cryptanalysis

Definition 10. Let f be a vector Boolean function f : F2n
2 −→ F

n
2 and let x, y

be n-bit strings. We call (x, y) a rotational pair with respect to f if the following
equation holds:

f(x, y) ≫ r = f(x ≫ r, y ≫ r)

Lemma 11. Let H be the non-linear function of NORX, and let x, y be n-bit
strings. The probability of (x, y) being a rotational pair is:

Pr(H(x, y) ≫ r = H(x ≫ r, y ≫ r)) =
9
16

(≈ 2−0.83)

Proof. See Appendix D.

Now we can use Lemma 11 and Theorem 1 from [20] (under the assumption
that the latter holds for H, too) to compute the probability of Pr(FR(S) ≫ r =
FR(S ≫ r)) for a state S and a number of rounds R. It is given by:

Pr(FR(S) ≫ r = FR(S ≫ r) = (9/16)4·4·2·R

Table 2 summarizes the (rounded) weights (i.e. the negative logarithms of
the probabilities) for different values of R, which are relevant for NORX.

Table 2. Weights for rotational distinguishers of FR

R 4 6 8 12

w 106 159 212 318

As a consequence, the permutation FR on a 16W state is indistinguishable
from a random permutation for R ≥ 20 if W = 32 and for R ≥ 39 if W = 64
with probabilities of Pr ≤ 2−531 and Pr ≤ 2−1035 respectively.

Definition 12. Let f be a vector Boolean function f : F2n
2 −→ F

n
2 and let x, y

be n-bit strings. We call (x, y) a rotational fixed point with respect to f if the
following equation holds:

f(x, y) ≫ r = f(x, y)



Analysis of NORX: Investigating Differential and Rotational Properties 317

Lemma 13. Let f be a vector Boolean function f : F
2n
2 −→ F

n
2 , (x, y) �→

f(x, y), which is a permutation on F
n
2 , if either x or y is fixed. The probability

that (x, y) is a rotational fixed point is:

Pr(f(x, y) ≫ r = f(x, y)) = 2−(n−gcd(r,n))

Proof. See Appendix D.

A direct consequence of Lemma 13 is that for n even and r = n/2 the probability
that (x, y) is a rotational fixed point is 2−n/2. The rotation r = n/2, which
swaps the two halves of a bit string, is especially interesting for cryptanalysis as
it results in the highest probability among all 0 < r < n.

The non-linear function H of NORX obviously satisfies the requirement of
being a permutation on F

n
2 , when one of its inputs is fixed. Therefore we get

probabilities of 2−16 (32-bit, r = 16) and 2−32 (64-bit, r = 32), that (x, y) is a
rotational fixed point of H.

5 Conclusion

In this paper, we provide an extensive analysis of the differential and rotational
properties of NORX’s core permutation FR and derive some first bounds for
attacks on the complete scheme. We introduce the mathematical models required
to describe XOR- and H-differentials with respect to FR. All mathematical claims
are verified by rigorous proofs. Moreover, we present NODE, a framework, which
allows to automatise the search for XOR-differentials and -characteristics. We
show the results of our extensive experiments and can conclude that there is a
large gap between those differential bounds that are computationally verifiable
and the weights of the best differentials that we were able to find. In particular,
when considering initialisation with F8, the verifiable but extrapolated weight
bounds have values of 126 (NORX32) and 106 (NORX64) for an attacker in the
related key model. On the other hand, the best differentials for F4 have weights
of 584 (32-bit) and 836 (64-bit). Thus, initialisation with F8 (R = 4) and F12

(R = 6) seems to have a high security margin against differential attacks.
For rotational cryptanalysis, we are able to derive lower weight bounds of 212

and 318 for distinguishers on F8 and F12 using a mix of new and already known
results. We stress that these distinguishers only hold for the bare permutation.
They do not take into account the additional protection provided by the duplex
construction of NORX or the asymmetric constants used during initialisation.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their comprehensive commentaries which helped to improve the quality of this paper.

References

1. CAESAR – Competition for Authenticated Encryption: Security, Applicability,
and Robustness (2014). http://competitions.cr.yp.to/caesar.html

http://competitions.cr.yp.to/caesar.html


318 J.-P. Aumasson et al.

2. NODE – The NORX Differential Search Engine (2014). https://github.com/norx/
NODE

3. Aumasson, J.-P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New Features
of Latin Dances: Analysis of Salsa, ChaCha, and Rumba. In: Nyberg, K. (ed.) FSE
2008. LNCS, vol. 5086, pp. 470–488. Springer, Heidelberg (2008)

4. Aumasson, J.-P., Jovanovic, P., Neves, S.: NORX: Parallel and Scalable AEAD.
In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014, Part II. LNCS, vol. 8713,
pp. 19–36. Springer, Heidelberg (2014)

5. Aumasson, J.-P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: Sim-
pler, Smaller, Fast as MD5. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-
Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 119–135. Springer, Heidelberg
(2013)

6. Bernstein, D.J.: ChaCha, a Variant of Salsa20. In: Workshop Record of SASC 2008:
The State of the Art of Stream Ciphers (2008). http://cr.yp.to/chacha.html

7. Bernstein, D.J.: The Salsa20 Family of Stream Ciphers. In: Robshaw, M., Bil-
let, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer,
Heidelberg (2008)

8. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On Alignment in Keccak. In:
ECRYPT II Hash Workshop, May 2011

9. Bertoni, G., Daemen, J., Peeters, M.,Assche, G.V.: Permutation-based Encryption,
Authentication and Authenticated Encryption, presented at DIAC, Stockholm,
Sweden, 05–06 July 2012

10. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Cryptographic Sponge Func-
tions, January 2011. http://sponge.noekeon.org/CSF-0.1.pdf

11. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the Sponge:
Single-pass Authenticated Encryption and Other Applications. In: Miri, A., Vau-
denay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg
(2012)

12. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak Reference, January
2011. http://keccak.noekeon.org/

13. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. J.
Cryptol. 4(1), 3–72 (1991)

14. Brummayer, R., Biere, A.: Boolector: An Efficient SMT Solver for Bit-vectors and
Arrays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505,
pp. 174–177. Springer, Heidelberg (2009)

15. Daemen, J., Peeters, M., Assche, G.V., Rijmen, V.: Nessie Proposal: the Block
Cipher Noekeon. Nessie submission (2000). http://gro.noekeon.org/

16. Daemen, J., Rijmen, V.: The Wide Trail Design Strategy. In: Honary, B. (ed.)
Cryptography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidel-
berg (2001)

17. Daemen, J., Van Assche, G.: Differential Propagation Analysis of Keccak. In: Can-
teaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 422–441. Springer, Heidelberg
(2012)

18. Ganesh, V., Govostes, R., Phang, K.Y., Soos, M., Schwartz, E.: STP – A Simple
Theorem Prover (2006–2013). http://stp.github.io/stp

19. Guo, J., Karpman, P., Nikolić, I., Wang, L., Wu, S.: Analysis of BLAKE2. In:
Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 402–423. Springer, Heidel-
berg (2014)

20. Khovratovich, D., Nikolić, I.: Rotational Cryptanalysis of ARX. In: Hong, S., Iwata,
T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 333–346. Springer, Heidelberg (2010)

https://github.com/norx/NODE
https://github.com/norx/NODE
http://cr.yp.to/chacha.html
http://sponge.noekeon.org/CSF-0.1.pdf
http://keccak.noekeon.org/
http://gro.noekeon.org/
http://stp.github.io/stp


Analysis of NORX: Investigating Differential and Rotational Properties 319

21. Knuth, D.E.: The Art of Computer Programming, Volume 4A: Combinatorial
Algorithms, Part 1, vol. 4A. Addison-Wesley, Upper Saddle River (2011). http://
www-cs-faculty.stanford.edu/∼uno/taocp.html

22. Lipmaa, H., Moriai, S.: Efficient Algorithms for Computing Differential Properties
of Addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 336–350. Springer,
Heidelberg (2002)

23. Mate Soos: CryptoMinisat (2009–2014). http://www.msoos.org/cryptominisat2
24. Mouha, N., Preneel, B.: Towards Finding Optimal Differential Characteristics for

ARX: Application to Salsa20. Cryptology ePrint Archive, Report 2013/328 (2013)
25. Shi, Z., Zhang, B., Feng, D., Wu, W.: Improved Key Recovery Attacks on Reduced-

round Salsa20 and ChaCha. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012.
LNCS, vol. 7839, pp. 337–351. Springer, Heidelberg (2013)

26. Shoup, V.: Computational Introduction to Number Theory and Algebra, 2nd edn.
Cambridge University Press, Cambridge (2009). http://shoup.net/ntb

A Addenda to Differential Cryptanalysis

Proof of Lemma 3. On bit level Eq. 2 has the form

0 = α0 ⊕ β0 ⊕ γ0

0 = (αi ⊕ βi ⊕ γi) ∧ (αi−1 ⊕ 1) ∧ (βi−1 ⊕ 1), i > 0

Obviously, the least significant bits (i.e. i = 0) are identical for Eqs. 1 and 2. For
i > 0 let t = (αi ⊕ βi ⊕ γi) ⊕ (αi−1 ∧ βi−1). If t = 0 then Eq. 1 has always the
solution xi−1 = yi−1 = 0. Otherwise, if t = 1, Eq. 1 is only solvable if αi−1 = 1
or βi−1 = 1, and these are exactly the cases captured in Eq. 2.

Proof of Lemma 5. Without loss of generality we assume that α �= 0 or β �= 0.
Looking at Eq. 1, we see that the term (α⊕β⊕γ) has no effect on the probability
of the differential δ, since it does not depend on either x or y. It has therefore
probability 1.

Analysing the bit level representation of Eq. 1, we observe that the term
(xi−1∧αi−1)⊕(yi−1∧βi−1)⊕(αi−1∧βi−1) is balanced (i.e., is 1 with probability
1/2) if αi−1 = 1 or βi−1 = 1. Therefore, under the assumption of independence of
αi and βi, the overall probability of δ can be computed by counting the number
of 1s in the first n− 1 bits of α∨β or, equivalently, of (α∨β) � 1, which proves
the lemma.

Proof of Lemma 7. It is easy to see that the least significant bits (i.e. i = 0) of
Eqs. 3 and 4 are the same. Therefore, we will consider them no longer. Looking
at the bit level representation of Eq. 3 (for i > 0) we consider two cases:

– αi ⊕ βi ⊕ γi = 0: Here, Eq. 3 has always the solution xi−1 = yi−1 = 0.
– αi ⊕ βi ⊕ γi = 1: In this case, the bit level representation of Eq. 3 is only

solvable if either αi−1 �= γi−1 or βi−1 �= γi−1. Furthermore, the bit level
representation of Eq. 4 is given by

(αi ⊕ βi ⊕ γi) ∧ (αi−1 ⊕ γi−1 ⊕ 1) ∧ (βi−1 ⊕ γi−1 ⊕ 1) = 0, i > 0

http://www-cs-faculty.stanford.edu/~uno/taocp.html
http://www-cs-faculty.stanford.edu/~uno/taocp.html
http://www.msoos.org/cryptominisat2
http://shoup.net/ntb


320 J.-P. Aumasson et al.

It is evident that the latter equation only holds if (αi ⊕ βi ⊕ γi) = 0, αi−1 �=
γi−1, or βi−1 �= γi−1. As seen above, these are the very same conditions that
define a H-differential.

Proof of Lemma 9. The claim can be proven analogously to Lemma 5. It
follows from the fact that in the bit level representation of Eq. 3 the expression

(xi−1 ∧ (αi−1 ⊕ γi−1)) ⊕ (yi−1 ∧ (βi−1 ⊕ γi−1))

is balanced if αi−1 ⊕ γi−1 = 1 or βi−1 ⊕ γi−1 = 1.

B CVC Code

Below we show exemplarily for NORX64 how to translate the differential search
operations to the CVC language. Variables have the datatype BITVECTOR(W),
where W = 64 is the wordsize.

Computation of hw(w) using helper variables h0, . . . , h5, where hw(w) = h5:

C Selected Differentials

C.1 Experimental Verification of NODE

The first table shows the results from our verification ofNODE, see Sect. 3.3. Nota-
tion is used as follows. we: expected weight, #S: number of samples, ve: expected
value of input/output pairs adhering the differential, vm:measured value of input/-
output pairs adhering the differential, wm: measured weight. After that we list the
differentials in 32- and 64-bit F1.5 that we used to perform the verification.



Analysis of NORX: Investigating Differential and Rotational Properties 321



322 J.-P. Aumasson et al.

C.2 Probability-1 Differentials in G

Using NODE we could show that there are exactly 3 probability-1 differentials
in both versions (32- and 64-bit) of G.

C.3 Best Differential Characteristics for F4

The following two tables show the best differential characteristics in F4 that
we were capable to find with NODE. The values δ0 and δ4 are in- and output
difference, respectively, and δ1, δ2, and δ3 are internal differences. The differences
are listed after a single application of F, respectively, and the values wi, with
i ∈ {0, . . . , 3}, are the corresponding differential weights.



Analysis of NORX: Investigating Differential and Rotational Properties 323

C.4 Best Iterative Differentials for F

C.5 Best Differentials Having Equal Columns of Weight 44 in F

D Addenda to Rotational Cryptanalysis

Proof of Lemma 11. After evaluating and simplifying the equation H(x, y) ≫
r = H(x ≫ r, y ≫ r) we get ((x ∧ y) � 1) ≫ r = ((x ≫ r) ∧ (y ≫ r)) � 1.
Translating this equation to bit vectors results in

(xr−1 ∧ yr−1, . . . , x0 ∧ y0, 0, xn−2 ∧ yn−2, . . . , xr ∧ yr)
= (xr−1 ∧ yr−1, . . . , x0 ∧ y0, xn−1 ∧ yn−1, xn−2 ∧ yn−2, . . . , 0)

The probability that those two vectors match is (3/4)2 = 9/16, as a∧ b = 0 with
probability 3/4 for bits a and b chosen uniformly at random.



324 J.-P. Aumasson et al.

Proof of Lemma 13. The first important observation is that the statement of
this lemma is independent of the function f , as it only makes a claim on the
image of f . Thus it is sufficient to prove the lemma for z ≫ r = z, where
z = f(x, y) and x or y was fixed.

We identify the indices of an n-bit string by the elements in G := Z/nZ.
Let τ : G −→ G, imodn �→ (i + 1)modn. Then τ obviously generates the cyclic
group G, i.e. ord(τ) = n. Moreover, for an arbitrary r ∈ Z we have ord(τ r) =
n/ gcd(r, n), see [26, §§6.2]. In other words, the subgroup H := 〈τ r〉 of G has
order n/ gcd(r, n). By Lagrange’s theorem we have ord(G) = [G : H] · ord(H)
and it follows for the group index [G : H] = gcd(r, n), which corresponds to the
number of (left) cosets of H in G. These cosets contain the indices of a bit string
which are mapped onto each other by a rotation ≫ r. This means that there
are 2gcd(r,n) n-bit strings z which satisfy z ≫ r = z. Thus the probability, that
an n-bit string z, chosen uniformly at random among all n-bit strings, satisfies
z ≫ r = z is 2−(n−gcd(r,n)). This proves the lemma.



Cryptographic Protocols



Efficient Distributed Tag-Based Encryption
and Its Application to Group Signatures
with Efficient Distributed Traceability

Essam Ghadafi(B)

Computer Science Department, University of Bristol, Bristol, UK
essam gha@yahoo.com

Abstract. In this work, we first formalize the notion of dynamic group
signatures with distributed traceability, where the capability to trace
signatures is distributed among n managers without requiring any inter-
action. This ensures that only the participation of all tracing managers
permits tracing a signature, which reduces the trust placed in a single
tracing manager. The threshold variant follows easily from our defini-
tions and constructions. Our model offers strong security requirements.
Our second contribution is a generic construction for the notion which
has a concurrent join protocol, meets strong security requirements, and
offers efficient traceability, i.e. without requiring tracing managers to
produce expensive zero-knowledge proofs for tracing correctness. To dis-
pense with the expensive zero-knowledge proofs required in the tracing,
we deploy a distributed tag-based encryption with public verifiability.
Finally, we provide some concrete instantiations, which, to the best of our
knowledge, are the first efficient provably secure realizations in the stan-
dard model simultaneously offering all the aforementioned properties. To
realize our constructions efficiently, we construct an efficient distributed
(and threshold) tag-based encryption scheme that works in the efficient
Type-III asymmetric bilinear groups. Our distributed tag-based encryp-
tion scheme yields short ciphertexts (only 1280 bits at 128-bit security),
and is secure under an existing variant of the standard decisional linear
assumption. Our tag-based encryption scheme is of independent inter-
est and is useful for many applications beyond the scope of this paper.
As a special case of our distributed tag-based encryption scheme, we get
an efficient tag-based encryption scheme in Type-III asymmetric bilinear
groups that is secure in the standard model.

Keywords: Group signatures · Distributed traceability · Distributed
public-key encryption · Standard model

1 Introduction

Group signatures, introduced by Chaum and van Heyst [25], are a fundamen-
tal cryptographic primitive allowing a member of a group (administered by a
designated manager) to anonymously sign messages on behalf of the group.
c© Springer International Publishing Switzerland 2015
D.F. Aranha and A. Menezes (Eds.): LATINCRYPT 2014, LNCS 8895, pp. 327–347, 2015.
DOI: 10.1007/978-3-319-16295-9 18



328 E. Ghadafi

In the case of a dispute, a designated tracing manager can revoke anonymity
by revealing the signer. The downside of granting a single entity the capabil-
ity to trace signatures is the high trust placed in such an entity. As a result,
anonymity in group signatures relying on a single tracing authority only holds
if the tracing authority is fully honest. More precisely, a misbehaving tracing
authority could abuse the power granted to it and open signatures need not be
opened. Therefore, reducing the trust placed in the tracing manager by distrib-
uting the tracing capability among different parties is desirable. While some of
the existing schemes can be translated into the distributed traceability setting
by utilizing standard secret-sharing techniques, e.g. [10,50], unfortunately, most
of those secure in the strong Bellare et al. model [13], would become impractical
due to the expensive zero-knowledge proofs required in the tracing.

Related Work. After their introduction, a long line of research on group signa-
tures has emerged. Bellare, Micciancio and Warinschi [11] formalized the secu-
rity definitions for group signatures supporting static groups. In such a notion,
the group population is fixed at the setup phase. Moreover, the group manager
(which also provides the traceability feature) needs to be fully trusted. Later,
Bellare, Shi and Zhang [13] provided formal security definitions for the more
practical dynamic case where members can enroll at any time. Also, [13] sepa-
rated the tracing role from the group management.

Besides correctness, the model of [13] defines three other requirements:
anonymity, traceability and non-frameability. Informally, anonymity requires
that signatures do not reveal the identity of the signer; traceability requires
that the tracing manager is always able to identify the signer and prove such
a claim; non-frameability ensures that even if the group and tracing managers
collude with the rest of the group, they cannot frame an honest member. More
recently, Sakai et al. [49] strengthened the security definitions of group signatures
by adding the opening soundness requirement.The stronger variant of opening
soundness ensures that even if all entities are corrupt, it is infeasible to produce
a signature that traces to two different members.

Constructions of group signatures in the random oracle model [12] include
[8,15,18,21–24,26,29,41,46]. Constructions not relying on random oracles include
[5,7,19,20,35,36,43,44]. Other measures in which the above mentioned construc-
tions differ are: the security they offer, the size of the signatures they yield and
the round complexity of the join protocol.

Different approaches have been proposed to minimize the trust placed in the
tracing manager. Sakai et al. [48] recently proposed the notion of group signa-
tures with message-dependent opening. In such a notion, an admitter specifies
what messages signatures upon which can be traced. This prevents the tracing
manager from opening signatures on messages not admitted by the admitter. In
[38], the authors informally highlighted how to extend their linkable group sig-
nature scheme (secure in the random oracle model) to provide distributed trace-
ability. In [30], the authors presented a scheme where the roles of the managers
can be distributed. Their scheme is only non-frameable against honest tracing
managers, and requires both random oracles and the generic group model.



Efficient Distributed Tag-Based Encryption and Its Application 329

Benjumea et al. [14] introduced the notion of fair traceable multi-group sig-
natures which combines the features of group signatures and traceable signatures
[40] and in which traceability requires the co-operation of a judge with designated
parties known as fairness authorities. The authors also provided a construction
of their primitive in the random oracle model.

Zheng et al. [51] extended Manulis’s notion of democratic group signatures
[45] to add threshold traceability where group members must collude to trace
signatures. Democratic group signatures differ from group signatures in many
aspects. In the former, the roles of the group and tracing managers are eliminated
and the group is managed by the members themselves. In addition, signatures
are only anonymous to non-members.

Our Contribution. We offer the following contributions:

1. A formal security model for group signatures with distributed traceability
without requiring any interaction. Only the participation of all n tracing
managers makes it possible to trace a signature. The more general k out of
n threshold case follows easily from our definitions. Our model offers strong
security including the notion of tracing soundness [49].

2. A generic framework for constructing group signatures with efficient (i.e.
without requiring expensive zero-knowledge proofs in the tracing) distributed
traceability that supports dynamic groups with a concurrent join protocol and
which is provably secure w.r.t. our strong security model.

3. Instantiations of the generic framework in the standard model. To the best
of our knowledge, they are the first provably secure realizations not relying
on idealized assumptions offering all the aforementioned properties.

4. An efficient distributed/threshold selective-tag weakly IND-CCA tag-based
encryption scheme that is based on an existing variant of the standard deci-
sional linear assumption. Our scheme is non-interactive (i.e. requires no inter-
action between the decryption servers) and is robust, i.e. the validity of
the decryption shares as well as the ciphertext is publicly verifiable. The
scheme works in the efficient Type-III bilinear groups setting and yields short
ciphertexts which are much shorter than those of the original Kiltz’s tag-
based encryption scheme [42] and its threshold variant of [6]. By combining
our scheme with a strongly unforgeable one-time signature scheme as per
the transformation in [42], we obtain an efficient fully secure IND-CCA dis-
tributed/threshold encryption scheme, which is useful for many applications
beyond the scope of this paper.

Paper Organization. In Sect. 2, we give some preliminary definitions. We
present our model for group signatures with distributed traceability in Sect. 3.
We present the building blocks we use in Sect. 4. In Sect. 5, we present our
generic construction and provide a proof of its security. In Sect. 6, we present
instantiations in the standard model.

Notation. A function ν(.) : N → R
+ is negligible in c if for every polynomial p(.)

and all sufficiently large values of c, it holds that ν(c) < 1
p(c) . Given a probability

distribution Y , we denote by x ← Y the operation of selecting an element



330 E. Ghadafi

according to Y . If M is a probabilistic machine, we denote by M(x1, . . . , xn)
the output distribution of M on inputs (x1, . . . , xn). By [n] we denote the set
{1, . . . , n}. By PPT we mean running in probabilistic polynomial time in the
relevant security parameter.

2 Preliminaries

In this section we provide some preliminary definitions.

Bilinear Groups. A bilinear group is a tuple P := (G, G̃,T, p,G, G̃, e) where
G, G̃ and T are groups of a prime order p, and G and G̃ generate G and G̃,
respectively. The function e is a non-degenerate bilinear map e : G × G̃ −→ T.
We use multiplicative notation for all the groups. We let G

× := G \ {1G} and
G̃

× := G̃ \ {1
G̃
}. In this paper, we focus on the efficient Type-III setting [32],

where G �= G̃ and there is no isomorphism between the groups in either direction.
We assume there is an algorithm BGrpSetup taking as input a security parameter
λ and outputting a description of bilinear groups.

Complexity Assumptions. We use the following existing assumptions:

Symmetric External Decisional Diffie-Hellman (SXDH). The Decisional Diffie-
Hellman (DDH) assumption holds in both groups G and G̃.

Decisional Linear in G (DLING) Assumption [1,33]. Given P and a tuple (Gh,
Gv, Gu, Grh, Gsv, Gut) ∈ G

6 for unknown h, r, s, t, u, v ∈ Zp, it is hard to
determine whether or not t = r + s.

External Decisional Linear in G (XDLING) Assumption [1]1. Given P and a
tuple (Gh, Gv, Gu, Grh, Gsv, Gut, G̃h, G̃v, G̃u, G̃rh, G̃sv) ∈ G

6 × G̃
5 for un-

known h, r, s, t, u, v ∈ Zp, it is hard to determine whether or not t = r + s.
q-Strong Diffie-Hellman (q-SDH) Assumption in G [17]. Given the tuple (G,Gx,

. . . , Gxq

) ∈ G
q+1 for x ← Zp, it is hard to output a pair (c,G

1
x+c ) ∈ Zp × G

for an arbitrary c ∈ Zp\{−x}.
q-AGHO [3]. Given a random tuple (G, G̃, W̃ , X̃, Ỹ ) ∈ G × G̃

4, and q uni-
formly random tuples (Ai, Bi, Ri, D̃i) ∈ G

3 × G̃, each satisfying e(Ai, D̃i) =
e(G, G̃) and e(G, X̃) = e(Ai, W̃ )e(Bi, G̃)e(Ri, Ỹ ), it is hard to output a
new tuple (A∗, B∗, R∗, D̃∗) satisfying the above equations.

Group Signatures. Here we briefly review the model of Bellare et al. [13]
for dynamic group signatures with a single tracing authority. A dynamic group
signature scheme consists of the following algorithms:

• GKg(1λ) outputs a group public key gpk, a group manager’s secret key msk
and a tracing key tsk.

• UKg(1λ) outputs a secret/public key pair (usk[uid],upk[uid]) for user uid.
• 〈Join(gpk, uid,usk[uid]), Issue(msk, uid,upk[uid])〉 is an interactive protocol

between a user uid and the group manager GM via which the user joins the
group. If successful, the final state of the Issue algorithm is stored in the reg-
istration table at index uid (i.e. reg[uid]), whereas that of the Join algorithm
is stored in gsk[uid] and is used as the user’s group signing key.

1 XDLIN
G̃

can be defined analogously by giving G̃ut ∈ G̃ instead of Gut ∈ G.



Efficient Distributed Tag-Based Encryption and Its Application 331

• Sign(gpk,gsk[uid],m) outputs a group signature Σ on the message m by mem-
ber uid.

• Verify(gpk,m,Σ) verifies whether or not Σ is a valid group signature on m
outputting a bit.

• Trace(gpk, tsk,m,Σ, reg) is the tracing algorithm in which the tracing man-
ager uses its tracing key tsk to identify the group member uid who produced
the signature Σ plus a proof πTrace for such a claim.

• TraceVerify(gpk, uid, πTrace,upk[uid],m,Σ) verifies the tracing proof πTrace

outputting a bit accordingly.

Besides correctness, the security requirements defined by [13] are:

• Anonymity: A group signature does not reveal the identity of the member who
produced it even when the keys of the group manager and all group members
are all revealed. This requirement relies on the tracing manager being fully
honest.

• Non-Frameability: Even if the group and tracing managers collude with the
rest of the group, they cannot frame an honest group member.

• Traceability: Even if the tracing manager and all group members are corrupt,
they cannot produce a signature that does not trace to a member of the group.

3 Syntax and Security of Dynamic Group Signatures
with Distributed Traceability

The parties involved in a Dynamic Group Signature with Distributed Traceabil-
ity (DGSDT ) are: a group manager GM who authorizes who can join the group;
κ tracing managers TM1, . . . ,TMκ which only the participation of all of which
makes it possible to identify who produced a signature; a set of users who can
join group at any time by contacting the group manager. A DGSDT scheme
consists of the following polynomial-time algorithms:

• GKg(1λ, κ) is run by a trusted third party. On input a security parameter λ
and the number of tracing managers κ, it outputs a group public key gpk, a
group manager’s secret key msk and secret tracing keys {tski}κ

i=1.
• UKg(1λ) outputs a secret/public key pair (usk[uid],upk[uid]) for user uid. We

assume that the public key table upk is publicly available (possibly via some
PKI) so that anyone can obtain authentic copies of the public keys.

• 〈Join(gpk, uid,usk[uid]), Issue(msk, uid,upk[uid])〉 is an interactive protocol
between a user uid and the group manager GM. Upon successful completion,
uid becomes a member of the group. The final state of the Issue algorithm is
stored in the registration table at index uid (i.e. reg[uid]), whereas that of the
Join algorithm is stored in gsk[uid]. We assume that the communication in
this interactive protocol takes place over a secure (i.e. private and authentic)
channel. The protocol is initiated by a call to Join.

• Sign(gpk,gsk[uid],m) on input the group public key gpk, a user’s group signing
key gsk[uid] and a message m, outputs a group signature Σ on m by the group
member uid.



332 E. Ghadafi

• Verify(gpk,m,Σ) is a deterministic algorithm which checks whether or not Σ
is a valid group signature on m outputting a bit.

• TraceShare(gpk, tski,m,Σ) on input the group public key gpk, a tracing key
tski belonging to tracing manager TMi, a message m and a signature Σ, it
outputs (ν, πTrace) where ν is the tracing share of TMi of Σ and πTrace is a
proof for the correctness of the tracing share. If TMi is unable to compute her
share, she outputs (⊥,⊥). If the validity of the shares are publicly verifiable,
we just omit πTrace.

• ShareVerify(gpk, tid, ν, πTrace,m,Σ) verifies whether the share ν is a valid trac-
ing share of Σ by tracing manager TMtid outputting a bit accordingly.

• TraceCombine(gpk, {(ν, πTrace)i}κ
i=1,m,Σ, reg) on input the group public key

gpk, κ tracing shares and their proofs, a message m, a signature Σ, and the
users’ registration table, it outputs an identity uid > 0 of the user who pro-
duced Σ plus a proof θTrace attesting to this claim. If the algorithm is unable
to trace the signature to a user, it returns (0, θTrace). This algorithm does not
require any secret information and hence could be run by any party.

• TraceVerify(gpk, uid, θTrace,upk[uid],m,Σ) on input the group public key gpk,
a user identity uid, a tracing proof θTrace, the user’s public key upk[uid], a
message m, and a signature Σ, outputs 1 if θTrace is a valid proof that uid has
produced Σ or 0 otherwise.

Security of Dynamic Group Signatures with Distributed Traceability.
Our model extends Bellare’s et al. model [13] to provide distributed traceability
and additionally captures tracing soundness as recently defined by [49] in the
context of group signatures with a single tracing manager, which is vital for
many applications as we explain later. Moreover, our non-frameability definition
is slightly stronger than that of [13].

The security requirements of a dynamic group signature with distributed
traceability are: correctness, anonymity, non-frameability, traceability and trac-
ing soundness. To define those requirements, we use a set of games in which the
adversary has access to a set of oracles. The following global lists are maintained:
HUL is a list of honest users; CUL is a list of corrupt users whose personal secret
keys have been chosen by the adversary; BUL is a list of bad users whose per-
sonal and group signing keys have been revealed to the adversary; SL is a list
of signatures obtained from the Sign oracle; CL is a list of challenge signatures
obtained from the challenge oracle.

The details of the following oracles are given in Fig. 1.

AddU(uid) adds an honest user uid to the group.
CrptU(uid, pk) adds a new corrupt user whose public key upk[uid] is chosen by

the adversary. This is called in preparation for calling the SndM oracle.
SndM(uid,Min) used to engage in the Join-Issue protocol with the honest, Issue-

executing group manager.
SndU(uid,Min) used to engage in the Join-Issue protocol with an honest, Join-

executing user uid on behalf of the corrupt group manager.
RReg(uid) returns the registration information reg[uid] of user uid.



Efficient Distributed Tag-Based Encryption and Its Application 333

Fig. 1. Details of the oracles used in the security games

WReg(uid, val)modifies the entry reg[uid] by setting reg[uid] := val.
RevealU(uid) returns the personal secret key usk[uid] and the group signing key

gsk[uid] of group member uid.
Sign(uid,m) returns a signature on the message m by the group member uid.
CHb(uid0, uid1,m) is a left-right oracle for defining anonymity. The adversary

sends a couple of identities (uid0, uid1) and a message m and receives a group
signature by member uidb for b ← {0, 1}.

TraceShare(tid,m,Σ)returns the tracing share of signature Σ of tracing manager
TMtid.

Trace(m,Σ)returns the identity of the signer of the signature Σ, i.e. first obtains
the different tracing shares and then combines them.

The following security requirements are defined by the games in Fig. 2.



334 E. Ghadafi

Correctness. This guarantees that: signatures produced by honest users are
accepted by the Verify algorithm, the tracing shares are accepted by the
ShareVerify algorithm, and the final tracing outcome of TraceCombine is accepted
by the TraceVerify algorithm and points out to the user who produced the sig-
nature.

Formally, a DGSDT scheme is correct if for all λ, κ ∈ N, the advantage
AdvCorr

DGSDT ,A,κ(λ) := Pr[ExpCorr
DGSDT ,A,κ(λ) = 1] is negligible for all PPT adver-

saries A.

(Full) Anonymity. This requires that signatures do not reveal the identity of
the group member who produced them. In the game, the adversary can corrupt
any user and fully corrupt the group manager. It can also learn the secret tracing
keys of up to κ − 1 tracing managers of its choice. The only restriction is that
the adversary is not allowed to query the TraceShare and Trace oracles on the
challenge signature. Since the adversary can learn the personal secret and group
signing keys of any user, including the challenge users, our definition captures full
key exposure attacks. Also, since the adversary can corrupt up to κ − 1 tracing
managers, it can obtain up to κ − 1 tracing shares of the challenge signature.

In the game, the adversary chooses a message and two group members and
gets a signature by either member and wins if it correctly guesses the member.
WLOG we allow the adversary a single call to the challenge oracle. A hybrid
argument (similar to that used in [13]) can be used to prove that this is sufficient.

Formally, a DGSDT scheme is (fully) anonymous if for all λ, κ ∈ N, the
advantage AdvAnon

DGSDT ,A,κ(λ) is negligible for all PPT adversaries A, where

AdvAnon
DGSDT ,A,κ(λ) :=

∣∣∣Pr[ExpAnon-0
DGSDT ,A,κ(λ) = 1] − Pr[ExpAnon-1

DGSDT ,A,κ(λ) = 1]
∣∣∣ .

Non-Frameability. This ensures that even if the rest of the group as well as
the group and all tracing managers are fully corrupt, they cannot produce a
signature that traces to an honest group member who did not produce such a
signature. Our definition is stronger than that used in other group signature
models, e.g. [13], in the sense that the adversary in our game wins even if it
produces a new signature on a message that was queried to the signing oracle,
i.e. analogous to strong unforgeability in traditional signatures. The definition
can in a straightforward manner be adapted to the weaker variant by requiring
that the adversary’s signature is on a new message that the framed user did not
sign.

Formally, a DGSDT scheme is non-frameable if for all λ, κ ∈ N, the advan-
tage AdvNon-Frame

DGSDT ,A,κ(λ) := Pr[ExpNon-Frame
DGSDT ,A,κ(λ) = 1] is negligible for all PPT

adversaries A.

Traceability. This ensures that the adversary cannot produce a signature that
cannot be traced to a member in the group. In the game, the adversary can
corrupt any user and learn the tracing keys of all tracing managers. The only
restriction is that the adversary is not given the group manager’s secret key as
this would allow it to create dummy users which are thus untraceable.



Efficient Distributed Tag-Based Encryption and Its Application 335

Fig. 2. Security games for dynamic group signatures with distributed traceability

Formally, a DGSDT scheme is traceable if for all λ, κ ∈ N, the advantage
AdvTraceDGSDT ,A,κ(λ) := Pr[ExpTraceDGSDT ,A,κ(λ) = 1] is negligible for all PPT adver-
saries A.

Tracing Soundness. Tracing soundness, as recently defined by [49] in the con-
text of group signatures with a single tracing manager, requires that even if the
group and all tracing managers as well as all members of the group collude, they



336 E. Ghadafi

cannot produce a valid signature that traces to two different members. As shown
(in the single tracing authority setting) in [49], such a property is important for
many applications. For example, applications where signers might get rewarded
or where abusers might be prosecuted. In such applications, it is important that
signatures can only trace to one user. Refer to [49] for more details.

Formally, a DGSDT scheme has tracing soundness if for all λ, κ ∈ N, the
advantage AdvTrace-SoundDGSDT ,A,κ(λ) := Pr[ExpTrace-SoundDGSDT ,A,κ(λ) = 1] is negligible for all
PPT adversaries A.

4 Building Blocks

In this section we present the building blocks that we use in our constructions.

Distributed Tag-Based Encryption with Public Verification. A Distrib-
uted Tag-Based Encryption scheme DTBE is a special case of threshold tag-
based encryption [6] where n out of n decryption servers must compute their
decryption shares honestly for the decryption to succeed. Public verification
requires that checking the well-formedness of the ciphertext only require pub-
lic information. We say the scheme is non-interactive if decrypting a ciphertext
requires no interaction among the decryption servers. Also, the scheme is robust
if invalid decryption shares can be identified by the combiner.

Formally, a DTBE scheme for a message space MDT BE and a tag space
TDT BE is a tuple of polynomial-time algorithms (Setup,Enc, IsValid,ShareDec,
ShareVerify,Combine), where Setup(1λ, n) outputs a public key pk and vectors
svk = (svk1, . . . , svkn) and sk = (sk1, . . . , skn) of verification/secret keys for the
decryption servers; Enc(pk, t,m) outputs a ciphertext Cdtbe on the message m
under the tag t; IsValid(pk, t, Cdtbe) outputs 1 if the ciphertext is valid under the
tag t w.r.t. the pubic key pk or 0 otherwise; ShareDec(pk, ski, t, Cdtbe) takes as
input the public key pk, the i-th server secret key ski, a tag t, and the cipher-
text Cdtbe, and outputs the i-th server decryption share νi of Cdtbe or the reject
symbol ⊥; ShareVerify(pk, svki, t, Cdtbe, νi) takes as input the public key pk, the
i-th server verification key svki, a tag t, the ciphertext Cdtbe, and the i-th server
decryption share νi and outputs 1 if the decryption share νi is valid or 0 oth-
erwise. Combine(pk, {svki}n

i=1, {νi}n
i=1, Cdtbe, t) outputs either the message m or

the reject symbol ⊥.
We say the scheme is correct if for every message m ∈ MDT BE , every

tag t ∈ TDT BE and every (pk, {svk}n
i=1, {sk}n

i=1) output by Setup, if Cdtbe ←
Enc(pk, t,m) then we have that:

1. ∀i ∈ [n], if νi ← ShareDec(pk, ski, t, Cdtbe) then ShareVerify(pk, svki, t, Cdtbe,
νi) = 1.

2. m ← Combine(pk, {svki}n
i=1, {νi}n

i=1, Cdtbe, t).

Besides correctness, we require two security properties: Selective-Tag weak
Indistinguishability against Adaptive Chosen Ciphertext Attacks (ST-wIND-
CCA) [42] and Decryption Consistency (DEC-CON). Informally, the former



Efficient Distributed Tag-Based Encryption and Its Application 337

Fig. 3. Our distributed tag-based encryption scheme

requires that an adversary who gets a decryption oracle for any ciphertext under
a tag different from the target tag (which is chosen beforehand), cannot distin-
guish which challenge message was encrypted. The latter requires that an adver-
sary cannot output two different sets of decryption shares of a ciphertext which
open differently. The formal definitions of those can be found in the full version.

We provide in Fig. 3 a new efficient construction of a distributed tag-based
encryption scheme with public verification that works in the efficient Type-III
bilinear group setting. Our scheme which is secure in the standard model under
a variant of the DLIN assumption, namely, the XDLING assumption is based on
Kiltz’s tag-based encryption scheme [42] and its Type-I threshold variant in [6].
Our scheme is efficient and yields ciphertexts of size G

5. Note that in Type-III
bilinear groups, elements of G are much smaller than their Type-I counterparts,
especially now that small-characteristic symmetric bilinear groups are rendered
insecure [9,34]. To give a sense of comparison, we outline that at 128-bit security,
the size of elements of G is 256 bits whereas that of their large-characteristic sym-
metric groups counterparts is 1536 bits. Therefore, our construction yields much
shorter ciphertexts than the variants of Kiltz’s scheme in symmetric bilinear
groups. Our scheme is of independent interest and has other applications beyond
the scope of this paper. For instance, combining it with a strongly unforgeable
one-time signature scheme (e.g. the full Boneh-Boyen scheme) as per the trans-
formation in [42], we get an efficient distributed (or threshold) IND-CCA secure
encryption scheme [27,28] in Type-III groups which is secure in the standard
model under the XDLING and q-SDH assumptions. In addition, when n = 1, we
obtain a tag-based encryption scheme in the efficient Type-III setting with 29%
shorter ciphertexts than the Type-III variant of Kiltz’s scheme in [39] (which
yields ciphertexts of size G

3 × G̃
2). Unlike the scheme in [39], which only works



338 E. Ghadafi

Fig. 4. The Full Boneh-Boyen (Left) and the Weak Boneh-Boyen (Right) signatures

for a polynomial (in the security parameter) message space, our scheme has no
restriction on the message space.

For simplicity we consider the n-out-of-n case. However, our scheme can, in
a straightforward manner, be adapted to the k-out-of-n case by deploying any
k-out-of-n secret sharing scheme to compute the servers’ secret keys.

We prove the following Theorem in the full version of the paper.

Theorem 1. The construction in Fig. 3 is a secure distributed tag-based encryp-
tion scheme if the XDLING assumption holds.

Digital Signatures. A digital signature for a message space MDS is a tuple of
polynomial-time algorithms DS := (KeyGen,Sign,Verify) where KeyGen outputs
a pair of secret/public keys (sk, pk); Sign(sk,m) outputs a signature σ on the
message m; Verify(pk,m, σ) outputs 1 if σ is a valid signature on m.

Besides correctness, we require existential unforgeability under adaptive
chosen-message attack which demands that all PPT adversaries getting the pub-
lic key and access to a sign oracle, have a negligible advantage in outputting a
valid signature on a message that was not queried to the sign oracle. A weaker
variant of existential unforgeability (i.e. existential unforgeability under a weak
chosen-message attack) requires that the adversary sends all its queries before
seeing the public key.

In this paper, we use two digital signatures by Boneh and Boyen [17] which we
refer to as the Full Boneh-Boyen signature (Fig. 4 (Left)) and the Weak Boneh-
Boyen signature (Fig. 4 (Right)), respectively. Both schemes are secure under the
q-SDH assumption. The weaker scheme is secure under a weak chosen-message
attack.

Structure-Preserving Signatures. Structure-preserving signatures [2] are signa-
ture schemes where the message, the public key and the signature are all group
elements, and signatures are verified by evaluating pairing product equations.

In this paper, we use two structure-preserving signatures from the literature.
The first scheme is by Abe et al. [4] which offers controlled re-randomizability
where a signature can only be re-randomized if the user has a special randomiza-
tion token. The scheme in the asymmetric setting is illustrated in Fig. 5 (Left).
The unforgeability of the scheme relies on an interactive assumption. Refer to [4]



Efficient Distributed Tag-Based Encryption and Its Application 339

Fig. 5. The structure-preserving signature of [4] (Left) and that of [3] (Right)

for details. The second scheme we use is that of Abe et al. [3]. The scheme in
the asymmetric setting is given in Fig. 5 (Right). The strong unforgeability of
the scheme relies on the non-interactive q-AGHO assumption.

Strongly Unforgeable One-Time Signatures. A one-time signature scheme
is a signature scheme that is unforgeable against an adversary who is only allowed
a single signing query. Strong Unforgeability requires that the adversary cannot
even forge a new signature on a message that she queried the sign oracle on. In
this paper, we will instantiate the one-time signature using the Full Boneh-Boyen
signature scheme from Fig. 4.

Non-Interactive Zero-Knowledge Proofs. Let R be an efficiently com-
putable relation. For pairs (x,w) ∈ R, we call x the statement and w the witness.
We define the language L as all the statements x in R. A Non-Interactive Zero-
Knowledge (NIZK) proof system [16] for R is defined by a tuple of algorithms
NIZK := (Setup,Prove,Verify,Extract,SimSetup,SimProve).

Setup(1λ) outputs a common reference string crs and an extraction key xk
which allows for witness extraction. Prove(crs, x, w) outputs a proof π that
(x,w) ∈ R. Verify(crs, x, π) outputs 1 if the proof is valid, or 0 otherwise.
Extract(crs, xk, x, π) outputs a witness. SimSetup(1λ) outputs a simulated ref-
erence string crsSim and a trapdoor key tr that allows for proof simulation.
SimProve(crsSim, tr, x) outputs a simulated proof πSim without a witness.

We require: completeness, soundness and zero-knowledge. Completeness
requires that honestly generated proofs are accepted; Soundness requires that
it is infeasible (but for a small probability) to produce a valid proof for a false
statement; Zero-knowledge requires that a proof reveals no information about
the witness used. For formal definitions refer to [16].



340 E. Ghadafi

Fig. 6. Types of equations one can use Groth-Sahai proofs for

GROTH-SAHAI PROOFS. Groth-Sahai (GS) proofs [37] are efficient non-
interactive proofs in the Common Reference String (CRS) model. The language
for the system has the form

L := {statement | ∃witness : Ei(statement,witness)n
i=1 hold },

where Ei(statement, ·) is one of the types of equation summarized in Fig. 6,
where X1, . . . , Xm ∈ G, Ỹ1, . . . , Ỹn ∈ G̃, x1, . . . , xm′ , y1, . . . , yn′ ∈ Zp are secret
variables (hence underlined), whereas Ai, T ∈ G, B̃i, T̃ ∈ G̃, ai, bi, ki,j , t ∈ Zp,
tT ∈ GT are public constants.

The proof system has perfect completeness, (perfect) soundness, composable
witness-indistinguishability/zero-knowledge. We use the SXDH-based instantia-
tion of the proofs. Refer to [37] for details.

5 Our Generic Construction

In this section, we present our generic construction for dynamic group signatures
with distributed traceability.

Overview of the construction. The idea behind our generic construction has
some in common with Groth’s scheme [36] in that we combine a standard NIZK
proof system with a weakly secure tag-based encryption scheme and a strong one-
time signature scheme to eliminate the need for the more expensive simulation-
sound NIZK systems [47] and IND-CCA public-key encryption schemes which
were required by the construction of Bellare et al. [13]. However, unlike [36], our
framework provides distributed traceability, has a concurrent join protocol and
achieves tracing soundness.

Our generic construction requires three digital signatures DS1, DS2 and WDS
where the first two have to be unforgeable against a standard adaptive chosen-
message attack, whereas it suffices for the third scheme to be unforgeable against
a weak chosen-message attack. We also require a strongly unforgeable one-time
signature scheme OT S that is secure against an adaptive chosen-message attack.
Additionally, we require a NIZK proof of knowledge system NIZK and a ST-
wIND-CCA distributed tag-based encryption scheme DT BE . In order to have effi-
cient tracing, we ask that DT BE is non-interactive and robust. As was noted



Efficient Distributed Tag-Based Encryption and Its Application 341

Fig. 7. The Join/Issue protocol for our construction

by [31], such a property simplifies tracing even in traditional group signatures with
a single tracing manager. Finally, we require a collision-resistant hash function H :
{0, 1}∗ → TDT BE . For simplicity and WLOG we assume that TDT BE = MWDS .
Otherwise, one could use a second hash function. Note that one can use the same
signature scheme for both DS1 and DS2 but using different key pairs.

The GKg algorithm runs NIZK.Setup to generate a common reference
string crs for NIZK. It also runs DT BE .Setup to generate (pkDT BE , {svki}κ

i=1,
{ski}κ

i=1), and DS1.KeyGen to generate (pkGM, skGM). The group public key is
gpk := (1λ, crs, pkGM, pkDT BE , {svki}κ

i=1,H). The group managers’ secret key is
msk := skGM, whereas the tracing key of tracing manager TMi is tski := ski.

A new user creates her personal key pair by running DS2.KeyGen to generate
(upk[uid],usk[uid]). When the user wishes to join the group, she generates a key
pair (pkuid, skuid) for the signature scheme WDS and then signs pkuid using DS2

and her personal secret key usk[uid] to obtain a signature siguid. We use siguid as
a proof when proving that the user has produced a group signature.

To join the group, the user sends pkuid and siguid to the group manager. If
siguid is valid, the group manager issues a membership certificate certuid (which
is a DS1 signature on pkuid that verifies w.r.t. pkGM).

To sign a message m, the member chooses a fresh key pair (otsvk, otssk) for
the one-time signature OT S and encrypts her public key pkuid with DT BE using
H(otsvk) as tag (and possibly some randomness τ) to obtain a ciphertext Cdtbe.
She then signs H(otsvk) using the digital signature scheme WDS and her secret
key skuid to obtain a signature σ. She then uses NIZK to produce a proof π
proving that: she did the encryption correctly, she has a signature σ on H(otsvk)
that verifies w.r.t. her public key pkuid and she has a certificate certuid on pkuid
from the group manager. Finally, she signs (m,Cdtbe, otsvk, π) using the one-time
signature OT S to obtain σots. The group signature is Σ := (σots, π, Cdtbe, otsvk).
To verify the signature, one verifies the proof π and the one-time signature σots,
and ensures that the ciphertext Cdtbe is well-formed.

We remark here if DS1 and/or WDS schemes are re-randomizable, one
can reveal the signature components which are independent of their respec-
tive messages after re-randomization. This simplifies the proof π and subse-
quently improves the efficiency. The revealed parts of those signatures can then
be included as the part of the message to be signed by OT S to ensure that one
achieves the stronger notion of non-frameability.



342 E. Ghadafi

Fig. 8. Our generic construction

To trace a signature, the decryption shares νi of the ciphertext Cdtbe are
obtained from the respective tracing managers and then combined together in
order to recover the plaintext pkuid. Then one just needs to search in the reg-
istration table reg to see if any entry reg[j].pk matches pkuid. If this is the
case, (j, ({ν}κ

i=1, pkuid, reg[j].sig)) is returned. Otherwise, (0, ({ν}κ
i=1, pkuid,⊥))

is returned. Note that combining the different tracing shares does not require the
knowledge of any secret key and hence this could be performed by any party. To
verify the correctness of the tracing, one just needs to ensure that all decryption



Efficient Distributed Tag-Based Encryption and Its Application 343

shares verify correctly and in the case that j > 0, one needs to verify that the
signature sig verifies w.r.t. upk[j].

The construction is detailed in Fig. 8, whereas the Join/Issue protocol is given
in Fig. 7. The language associated with the NIZK proof is as follows, where for
clarity we underline the elements of the witness:

L :
{(

(Cdtbe, H(otsvk), pkGM, pkDT BE), (pkuid, τ, σ, certuid)
)

:

DS1.Verify(pkGM, pkuid, certuid) = 1 ∧ WDS.Verify(pkuid, H(otsvk), σ) = 1

∧ DT BE–Enc(pkDT BE , H(otsvk), pkuid; τ) = Cdtbe

}
·

Theorem 2. The construction in Figs. 7 and 8 is a secure dynamic group sig-
nature with distributed traceability providing that the building blocks are secure
w.r.t. their security requirements.

The full proof of this Theorem can be found in the full paper.
Next, we present two example instantiations of the generic construction in

the standard model.

6 Instantiations in the Standard Model

Here we provide two example instantiations of the generic framework in the
standard model.

Instantiation I. Here we instantiate the signature schemes DS1 and DS2 using
the recent structure-preserving signature scheme by Abe et al. [4] (shown in Fig. 5
(Left)), and instantiate WDS and OT S with the weak and full Boneh-Boyen
signature schemes, respectively. We also instantiate NIZK using the Groth-
Sahai proof system. For the distributed tag-based encryption scheme, we use
our new scheme from Fig. 3. The size of the signature of this instantiation is
G

24 × G̃
21 × Z

5
p. The details are in the full paper. The proof for the following

Theorem follows from that of Theorem 2.

Theorem 3. Instantiation I is secure if the Abe et al. signature scheme [4] is
unforgeable and the SXDH, XDLING and q-SDH assumptions hold.

Instantiation II. To eliminate the need for interactive intractability assump-
tions, we instead use the strongly unforgeable signature scheme by Abe et al. [3]
(Fig. 5 (Right)) to instantiate DS1 and DS2 signature schemes. The rest of the
tools remain the same as in Instantiation I. The size of the group signature of
this instantiation is G28 × G̃

24 ×Z
3
p. The details are in the full paper. The proof

for the following Theorem follows from that of Theorem 2.

Theorem 4. Instantiation II is secure if the SXDH, q-AGHO, XDLING and
q-SDH assumptions hold.



344 E. Ghadafi

Efficiency Comparison. Since there are no existing constructions which simul-
taneously offer all the properties as our constructions, we compare the size of
the signature of our instantiations with that of Groth’s scheme [35] for the single
tracing manager setting which is considered the-state-of-the-art. Groth’s scheme
yields signatures of size G

46 × Zp in symmetric groups. Besides the extra dis-
tributed traceability feature, our instantiations involve fewer rounds in the join
protocol than [35] and, in addition, satisfy tracing soundness.

Acknowledgments. We thank anonymous reviewers for their comments. The author
was supported by ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO and EPSRC
via grant EP/H043454/1.

References

1. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:
Constant-size structure-preserving signatures: generic constructions and simple
assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 4–24. Springer, Heidelberg (2012)

2. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

3. Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving
signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011)

4. Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Unified, minimal and selectively
randomizable structure-preserving signatures. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 688–712. Springer, Heidelberg (2014)

5. Abe, M., Haralambiev, K., Ohkubo, M.: Signing on Elements in Bilinear Groups
for Modular Protocol Design. Cryptology ePrint Archive, Report 2010/133. http://
eprint.iacr.org/2010/133

6. Arita, S., Tsurudome, K.: Construction of threshold public-key encryptions
through tag-based encryptions. In: Abdalla, M., Pointcheval, D., Fouque, P.-A.,
Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 186–200. Springer, Heidel-
berg (2009)

7. Ateniese, G., Camenisch, J., Hohenberger, S., de Medeiros, B.: Practical group
signatures without random oracles. Cryptology ePrint Archive. Report 2005/385.
http://eprint.iacr.org/2005/385

8. Ateniese, G., Camenisch, J.L., Joye, M., Tsudik, G.: A practical and provably
secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO
2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

9. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A heuristic quasi-polynomial
algorithm for discrete logarithm in finite fields of small characteristic. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 1–16. Springer,
Heidelberg (2014)

10. Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS National Computer
Conference, vol. 48, pp. 313–317. AFIPS Press (1979)

http://eprint.iacr.org/2010/133
http://eprint.iacr.org/2010/133
http://eprint.iacr.org/2005/385


Efficient Distributed Tag-Based Encryption and Its Application 345

11. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, pp. 614–629. Springer,
Heidelberg (2003)

12. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: ACM-CCS 1993, pp. 62–73. ACM (1993)

13. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of
dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–
153. Springer, Heidelberg (2005)

14. Benjumea, V., Choi, S.G., Lopez, J., Yung, M.: Fair traceable multi-group sig-
natures. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 231–246. Springer,
Heidelberg (2008)

15. Bichsel, P., Camenisch, J., Neven, G., Smart, N.P., Warinschi, B.: Get shorty via
group signatures without encryption. In: Garay, J.A., De Prisco, R. (eds.) SCN
2010. LNCS, vol. 6280, pp. 381–398. Springer, Heidelberg (2010)

16. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations. In: STOC 1988, pp. 103–112 (1988)

17. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)

18. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

19. Boyen, X., Waters, B.: Compact group signatures without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer,
Heidelberg (2006)

20. Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size group sig-
natures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 1–15.
Springer, Heidelberg (2007)

21. Camenisch, J.L., Groth, J.: Group signatures: better efficiency and new theoretical
aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 120–133.
Springer, Heidelberg (2005)

22. Camenisch, J.L., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

23. Camenisch, J.L., Michels, M.: A group signature scheme with improved efficiency.
In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 160–174.
Springer, Heidelberg (1998)

24. Camenisch, J.L., Stadler, M.A.: Efficient group signature schemes for large groups.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997)

25. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

26. Delerablée, C., Pointcheval, D.: Dynamic fully anonymous short group signatures.
In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210. Springer,
Heidelberg (2006)

27. Desmedt, Y.G., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)

28. Frankel, Y.: A practical protocol for large group oriented networks. In: Quisquater,
J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 56–61.
Springer, Heidelberg (1990)



346 E. Ghadafi

29. Furukawa, J., Imai, H.: An efficient group signature scheme from bilinear maps. In:
Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 455–467.
Springer, Heidelberg (2005)

30. Furukawa, J., Yonezawa, S.: Group signatures with separate and distributed
authorities. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp.
77–90. Springer, Heidelberg (2005)

31. Galindo, D., Libert, B., Fischlin, M., Fuchsbauer, G., Lehmann, A., Manulis, M.,
Schröder, D.: Public-key encryption with non-interactive opening: new con-
structions and stronger definitions. In: Bernstein, D.J., Lange, T. (eds.)
AFRICACRYPT 2010. LNCS, vol. 6055, pp. 333–350. Springer, Heidelberg (2010)

32. Galbraith, S., Paterson, K., Smart, N.P.: Pairings for cryptographers. Discrete
Appl. Math. 156, 3113–3121 (2008)

33. Ghadafi, E., Smart, N.P., Warinschi, B.: Groth–Sahai proofs revisited. In: Nguyen,
P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 177–192. Springer,
Heidelberg (2010)

34. Granger, R., Kleinjung, T., Zumbrägel, J.: Breaking ‘128-bit Secure’ supersingular
binary curves (or how to solve discrete logarithms in F24·1223 and F212·367). In:
Cryptology ePrint Archive, Report 2014/119. http://eprint.iacr.org/2014/119.pdf

35. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol.
4284, pp. 444–459. Springer, Heidelberg (2006)

36. Groth, J.: Fully anonymous group signatures without random oracles. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer,
Heidelberg (2007)

37. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193–1232 (2012)

38. Hlauschek, C., Black, J., Vigna, G., Kruegel, C.: Limited-linkable Group Signa-
tures with Distributed-Trust Traceability. Technical Report, Vienna University of
Technology (2012) http://www.iseclab.org/people/haku/tr-llgroupsig12.pdf

39. Kakvi, S.A.: Efficient fully anonymous group signatures based on the Groth group
signature scheme. Masters thesis, University College London (2010). http://www5.
rz.rub.de:8032/mam/foc/content/publ/thesis kakvi10.pdf

40. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589.
Springer, Heidelberg (2004)

41. Kiayias, A., Yung, M.: Group signatures with efficient concurrent join. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 198–214. Springer, Heidelberg
(2005)

42. Kiltz, E.: Chosen-Ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

43. Libert, B., Peters, T., Yung, M.: Scalable group signatures with revocation. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
609–627. Springer, Heidelberg (2012)

44. Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free revoca-
tion. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 571–589. Springer, Heidelberg (2012)

45. Manulis, M.: Democratic group signatures: on an example of joint ventures. In:
ASIACCS 2006, pp. 365–365. ACM (2006)

http://eprint.iacr.org/2014/119.pdf
http://www.iseclab.org/people/haku/tr-llgroupsig12.pdf
http://www5.rz.rub.de:8032/mam/foc/content/publ/thesis_kakvi10.pdf
http://www5.rz.rub.de:8032/mam/foc/content/publ/thesis_kakvi10.pdf


Efficient Distributed Tag-Based Encryption and Its Application 347

46. Nguyen, L., Safavi-Naini, R.: Efficient and provably secure trapdoor-free group
signature schemes from bilinear pairings. In: Lee, P.J. (ed.) ASIACRYPT 2004.
LNCS, vol. 3329, pp. 372–386. Springer, Heidelberg (2004)

47. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS 1999, pp. 543–553 (1999)

48. Sakai, Y., Emura, K., Hanaoka, G., Kawai, Y., Matsuda, T., Omote, K.: Group sig-
natures with message-dependent opening. In: Abdalla, M., Lange, T. (eds.) Pairing
2012. LNCS, vol. 7708, pp. 270–294. Springer, Heidelberg (2013)

49. Sakai, Y., Schuldt, J.C.N., Emura, K., Hanaoka, G., Ohta, K.: On the security
of dynamic group signatures: preventing signature hijacking. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 715–732.
Springer, Heidelberg (2012)

50. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
51. Zheng, D., Li, X., Ma, C., Chen, K., Li, J.: Democratic group signatures with

threshold traceability. In: Cryptology ePrint Archive, Report 2008/112. http://
eprint.iacr.org/2008/112.pdf

http://eprint.iacr.org/2008/112.pdf
http://eprint.iacr.org/2008/112.pdf


How to Leak a Secret
and Reap the Rewards Too

Vishal Saraswat(B) and Sumit Kumar Pandey

C.R.Rao Advanced Institute of Mathematics Statistics and Computer Science,
Hyderabad, India

{vishal.saraswat,emailpandey}@gmail.com

Abstract. We introduce the notion of the designated identity verifier
ring signature (DIVRS) and give a generic construction from any given
ordinary ring signature scheme. In a DIVRS scheme, the signer S of a
message has the additional capability to prove, at time of his choice,
to a designated identity verifier V that S is the actual signer without
revealing his identity to anyone else. Our definition of a DIVRS retains
applicability for all previous applications of a ring signature with an
additional capability which can be seen as mix of a designated verifier
signature [7] and an anonymous signature [14,18]. Our generic transfor-
mation preserves all the properties of the original ring signature without
significant overhead.

Keywords: Designated identity verifier · Ring signature · Signer anony-
mity · Signing proof · Unpretendability

1 Introduction

The notion of ring signature was introduced by Rivest, Shamir and Tauman [13]
in 2001 to enable a user to leak a secret without revealing his identity. It allows a
signer to form a ring of members (including himself) arbitrarily without collabo-
ration of any of those ring members and sign a message so that the message can
be authenticated to have been signed by a member of the ring without revealing
exactly which member of the ring is the actual signer. Unlike a group signa-
ture [4], a ring signature does not need any centralized authority or co-ordination
among users and there is no revocation of anonymity by anyone. The users in
the ring are not fixed and it can be generated on the fly at the time of signature
generation and it is possible to achieve unconditional anonymity [3,5,13], so that
even an adversary with an unlimited computational power cannot find out who
among the ring members is the actual signer. Thus ring signatures and its vari-
ants are a useful tool for whistle blowing [13], anonymous authentication in ad
hoc groups [5], and many other applications which require signer anonymity but
a group formation is not possible. In the next subsection, we present yet another
application of ring signatures but which cannot be solved completely with the
existing primitives and motivates the need of our defined notion of designated
identity verifier ring signature.
c© Springer International Publishing Switzerland 2015
D.F. Aranha and A. Menezes (Eds.): LATINCRYPT 2014, LNCS 8895, pp. 348–367, 2015.
DOI: 10.1007/978-3-319-16295-9 19



How to Leak a Secret and Reap the Rewards Too 349

1.1 Motivation

Many applications of ring signatures like whistle blowing or anonymity-
preserving auctions come with a ‘reward’ for the signer (whistle blower or auc-
tion winner). To claim the reward the signer would need to reveal their identity
to a designated authority (government official or auctioneer) and prove that they
indeed produced the signature. Consider the following two examples:

Motivation I: Suppose the government announces a reward for information
leading directly to the apprehension or conviction of the boss B of a criminal
gang. B is a powerful person feared by all and has many officials in the gov-
ernment secretly working for him. A member S of the gang is tempted by the
award and wants to reveal some information about B.

– S needs to make the information public and not tip off a select few officials
since S does not know if they might be working for B and might hand him
over to B.

– S cannot reveal his identity to anyone for same reasons.
– S wants/needs to reveal his identity to claim the reward

- only after B has been convicted; and
- only to a designated official V .

– Finally, V should not be able to prove that S had leaked the information.

Motivation II: Consider an auction scenario.

– A bidder A wants to anonymously participate in an auction without revealing
his identity even to the auctioneer.

– The auctioneer B is not willing to accept ‘completely anonymous’ bids. For
example, bids from millionaires or people from certain organization, may be
accepted.

– When A wins the auction, A needs to prove his identity to claim the win while
preserving his anonymity.

To achieve anonymity, A could possibly use a ring signature (with a suffici-
ciently anonymizing ring formed of potential millionaire bidders) but a standard
ring signature does not satisfy the last property and after winning the bid,
A will not be able to prove that he indeed placed the winning bid. A solution
is to use our proposed DIVRS with B as the designated verifier. If A loses the
auction, there is no loss of anonymity. If A wins the auction, only B gets to
identify A. Note that B cannot prove to others that A bid for the item. The
winning bid though can be publicly verified.

1.2 Our Contribution

Designated Identity Verifier Ring Signature. We propose the notion of a
designated identity verifier ring signature (DIVRS) to provide a solution to above
and related problems. In a DIVRS scheme, the signer us of a (public) message



350 V. Saraswat and S.K. Pandey

has the capability to prove, at a time of his choice, to a designated identity
verifier (DIV) ud that us is the actual signer without revealing their identity
to anyone else. Even after us has proved to ud that he is indeed the signer, ud

cannot prove to anyone else that us is the actual signer. So, us is able to claim
the reward while preserving his anonymity. Our definition of a DIVRS retains
applicability for all previous applications of a ring signature with an additional
capability which can be seen as mix of a designated verifier signature [7] and an
anonymous signature [14,18].

We also give a construction of DIVRS scheme building on the sign and com-
mit approach used in [14]. Our construction is a generic transformation from any
given ordinary ring signature scheme(s), any encryption scheme and any com-
mitment scheme. Our construction not only preserves all the properties of the
original ring signature but also provides many additional desirable properties
without significant overhead.

The universality and conceptual simplicity of our scheme and the flexibil-
ity in the choice of the component primitives lead to efficient and application
relevant instantiations and makes our construction very attractive. One may
construct a DIVRS based on the factoring problem or the discrete log problem
by choosing the component primitives based on respective problems. One can
have an identity-based DIVRS or even a post-quantum DIVRS by choosing the
component primitives which are identity-based or post-quantum respectively.
The generic and modular nature of our scheme allows many extensions such as
a threshold scheme with multiple signatories and/or multiple designated ring
signature verifiers and/or multiple designated identity verifiers.

Security Properties of DIVRS

1. Unforgeability: No one should be able to produce a valid message-signature
pair which he has not signed (for a ring of which he is not a member).

2. Public message authentication: Message authentication provides credibil-
ity to the leaked information compared to “blind” tip-offs. Also, it prevents
a corrupt official from rewarding someone unfairly on the conviction of a
criminal without a tip-off.

3. Signer Anonymity:
i. No one, including the DIV until the publication of the identity verification

token, should be able to compute who among the ring members is the
actual signer of the message from the message-signature pair. This allows
the user to leak any information anonymously.

ii. Even after the publication of the identity verification token no one exclud-
ing the DIV should be able to know anything about the signer.

iii. Even the DIV should not be able to prove the identity of the signer even
after the publication of the identity verification token.

4. Designated Identity Verifier Anonymity:
i. No one other than the original signer, including the DIV, should be able

to reveal the identity of the DIV.



How to Leak a Secret and Reap the Rewards Too 351

ii. Even after the publication of the identity verification token, no one other
than the original signer and the DIV should be able to reveal the identity
of the DIV.

5. Signing Provability: The actual signer should be able to prove to the DIV
about the authorship of the signature and thus be able to claim the rewards.

6. Unpretendability: No one other than the actual signer should be able to
convince anyone about the authorship of the signature. This ensures that only
the actual whistle-blower/bidder/signer can claim the rewards.

1.3 Related Work

A lot of research, including group signatures [4] and ring signatures [13], has
been done to achieve signer anonymity. Rivest et al. [13] noted this application
and provided a mechanism for their specific scheme to achieve this but did not
formalize the notion or the relevant security properties. Lv et al. [11] also pro-
vided a mechanism for the specific scheme in [13] but they too did not formalize
the notion or the relevant security properties. We mention some of the related
work in the areas.

– (Universal) Designated verifier (ring) signature [7,15] allows the signer to des-
ignate a verifier at the time of signature generation so that the designated ver-
ifier, but no one else, can verify the validity of the message-signature pair and
may know the identity of the signer. In the strong versions of these schemes
the designated verifier cannot prove to a third party about the actual signer
of the message.

- In all the variations of designated verifier signatures, the message cannot
be publicly authenticated so the Property (2) is not satisfied. In case of
ring signature variants, the signer cannot really prove that he actually is
the signer, thus Property (5) is missing.

– Anonymous signatures [14,18] are signature schemes where the signature of a
message does not reveal the identity of the signer. A signer signs a message
m and publishes message-signature pair (m,σ) but the signature cannot be
verified until and unless the signer reveals a verification token τ and thus the
anonymity of the signer is preserved. It also guarantees unpretendability, that
is, infeasibility for someone other than the correct signer to prove authorship
of the message and signature.

- Since the message m cannot be authenticated until the token τ is revealed
the Property (2) of DIVRS is not satisfied and once the τ is revealed every-
one can identify the signer so Property (3) is lost. (The scheme can achieve
the designated identity verifier property by encrypting the signature with
public-key of the DIV or by using a designated verifier signature as the
underlying signature scheme but in that case the message cannot be pub-
licly authenticated even after the publication of the verification token).

– Deniable ring authentication/signature [12,16] enables the signer to allow any
verifier (the verifier need not be designated at the time of signature generation)
to authenticate a message without revealing which member has issued the



352 V. Saraswat and S.K. Pandey

signature and the verifier cannot convince any third party that message was
indeed authenticated.

- In such schemes, the message cannot be publicly authenticated so the
Property (2) is not satisfied. Also, the opposite of Property (5) is guaran-
teed instead.

– Step-out ring signatures [8] are ring signatures with two additional procedures:
confession and step-out. The confession procedure allows the signer to prove
his authorship whenever he wants and the step-out procedure allows non-
signer member of the ring to prove that he is not the signer. Similar property
is also achieved by deniable ring signatures [9] and conditionally anonymous
ring signatures [19].

- In these schemes, the anonymity of the signer can be compromised by
non-signer members of the ring which is not desirable in our scenario.

– Convertible ring signatures [10] allow the signer to prove their authorship of
the ring signature by converting the ring signature into an ordinary signature.

- In these schemes, the anonymity of the signer can be compromised by
non-signer members of the ring which is not desirable in our scenario.

– Accountable ring signatures [17] have a designated trusted entity, a system-
wide participant independent of any possible ring of users, which can identify
the actual signer.

- In these schemes, the designated trusted entity can find out the identity
of the signer as soon as the message is leaked so the Property (3.i) of
DIVRS is not satisfied. Further, it is not in the hands of the signer to
designate the identity verifier.

All the above mentioned schemes and related schemes which allow for iden-
tity verifiability either lack immediate public verifiability of the message or do
not provide (unconditional) anonymity or the signer cannot delay the identity
verification. In the next subsection, we present a brief outline of this paper.

1.4 Outline of the Paper

Section 2 gives some basic definitions used in this paper. In Sect. 3, formal def-
initions of DIVRS and its security notions have been presented. In Sect. 4, we
present our generic construction of a DIVRS scheme. Finally, the correctness and
security proof of our proposed scheme are presented in Sect. 5.

2 Preliminaries

We denote by v ← A(x, y, z, . . .) the operation of running a randomized or
deterministic algorithm A(x, y, z, . . .) and storing the output to the variable v.

If X is a set, then v
$← X denotes the operation of choosing an element v of

X according to the uniform random distribution on X. We say that a given
function f : N → [0, 1] is negligible in n if f(n) < 1/p(n) for any polynomial p
for sufficiently large n. AORCL(inp) denotes an adversary A which has an access
to the oracle ORCL and takes input inp.



How to Leak a Secret and Reap the Rewards Too 353

Unless stated otherwise, all algorithms are probabilistic and polynomial-time.
Further, all adversaries are polynomial-time and are allowed to make at most
polynomial number of queries to the oracle(s) they have access to. For the sake of
brevity, we will assume the “setup” algorithms of the schemes mentioned and will
not mention those explicitly. Same about the “spaces” — message-space, key-
space, and any other domains of the respective algorithms. Same again, about the
public parameters of the scheme — in all the algorithms, input of the respective
public parameters will be implicit.

In the security notions and other properties mentioned in this work we encom-
pass general definitions — depending on the requirements of the DIVRS, the exact
security notions and any other property of the basic components may be chosen.
We now present the standard definitions related to the components used in our
scheme.

2.1 Public-Key Encryption Scheme

A public-key encryption scheme PKE is a tuple of algorithms (PK-Gen, PK-Enc,
PK-Dec) where

1. the key generation algorithm PK-Gen takes as input the security parameter
k and outputs a key pair (pkPKE,skPKE) ← PK-Gen(1k);

2. the encryption algorithm PK-Enc takes as input the recipient’s public-key
pkPKE and a message m and outputs its encryption enc ← PK-Enc(pkPKE,m);
and

3. the deterministic decryption algorithm PK-Dec takes as input the recipient’s
secret-key skPKE and the ciphertext enc and outputs the plaintext/decryption
m̃ ← PK-Dec (skPKE, enc) or a symbol ⊥ if enc was not a valid encryption.

We require the following three properties from an encryption scheme:

Correctness: For any valid encryptable message m,

Pr
[
(pkPKE, skPKE) ← PK-Gen(1k) : PK-Dec(skPKE,PK-Enc(pkPKE, m)) = m

]
= 1 .

Semantic Security: (aka, ciphertext indishtinguishability [6]) For any adver-
sary A = (A1,A2) the advantage

Advsec
PKE,A(k) def=

∣∣Pr[Gamesec-1PKE,A(k) = 1] − Pr[Gamesec-0PKE,A(k) = 1]
∣∣

is negligible in the security games Gamesec-bPKE,A, b = 0, 1, defined in Game 1.

Recipient Anonymity: (aka, Key Privacy [1]) For any adversary A = (A1,A2)
the advantage

Advanon
PKE,A(k) def=

∣∣Pr[Gameanon-1PKE,A (k) = 1] − Pr[Gameanon-0PKE,A (k) = 1]
∣∣

is negligible in the anonymity games Gameanon-bPKE,A, b = 0, 1, defined in Game 2.



354 V. Saraswat and S.K. Pandey

Gamesec-b
PKE,A(k)

(pkPKE, skPKE) ← PK-Gen(1k)

(m0, m1, st) ← A
PK-Dec(skPKE,·)
1 (pkPKE)

enc ← PK-Enc(pkPKE, mb)

b′ ← A
PK-Dec(skPKE,·)
2 (enc, st)

return b′
where A2 is not allowed to query enc from the decryption oracle PK-Dec(skPKE, ·).

Game 1: PKE Security Game

Gameanon-b
PKE,A(k)

(pkPKE,0, skPKE,0) ← PK-Gen(1k), (pkPKE,1, skPKE,1) ← PK-Gen(1k)

(m, st) ← A
PK-Dec(skPKE,0,·),PK-Dec(skPKE,1,·)
1 (pkPKE,0, pkPKE,1)

enc ← PK-Enc(pkPKE,b, m)

b′ ← A
PK-Dec(skPKE,0,·),PK-Dec(skPKE,1,·)
2 (enc, st)

return b′
where A2 is not allowed to query enc from the decryption oracles PK-Dec(skPKE,i, ·).

Game 2: PKE Anonymity Game

2.2 Commitment Scheme

A commitment scheme CS consists of a pair of algorithms (CS-Com,CS-Ver)
where

1. the commitment algorithm CS-Com takes as input a bit-string s and outputs
its committal-decommittal pair

(com, dec) ← CS-Com(s);

and
2. the deterministic commitment verification algorithm CS-Ver takes as input

the committal com, decommittal dec and a bit-string s and outputs a bit

b ← CS-Ver(com, dec, s).

We require the following three properties from a commitment scheme:

Correctness: For any bit-string s,

Pr[(com, dec) ← CS-Com(s) : CS-Ver(com, dec, s) = 1] = 1.

Hiding: For any adversary A = (A1,A2) the advantage

AdvCS,A
hide(k) def=

∣∣Pr[Gamehide-1CS,A (k) = 1] − Pr[Gamehide-0CS,A (k) = 1]
∣∣

is negligible in games Gamehide-bCS,A , b = 0, 1, defined in Game 3.

Binding: For any adversary A the advantage

Advbind
CS,A(k) def= Pr

[
GamebindCS,A(k) = 1

]

is negligible in the game GamebindCS,A defined in Game 3.



How to Leak a Secret and Reap the Rewards Too 355

Gamehide
CS,A-b(k)

(s0, s1, st) ← A1(1
k)

(com, dec) ← CS-Com(sb)
b′ ← A2(com, st)
return b′

Gamebind
CS,A(k)

(com, dec, s, dec′, s′) ← A(1k)
p ← CS-Ver(com, dec, s)
p′ ← CS-Ver(com, dec′, s′)
return p ∧ p′ ∧ (s �= s′)

Game 3: Commitment Scheme Hiding and Binding Games

2.3 Ring Signature

A ring R = (R[1], . . . , R[n]) is an ordered list of ring members R[i]. To each
ring member R[i], there is an associated public-key & secret-key pair (pk [i], sk [i])
and we can identify the user R[i] with its public-key pk [i]. We refer to the tuple
pk := (pk [1], . . . , pk [n]) as the public-key of the ring and identify the ring with it.

A ring signature scheme RS consists of a tuple of algorithms (RS-Gen, RS-Sig,
RS-Ver) where

1. the ring generation algorithm RS-Gen takes as input the security parameter
k and forms a ring R = (R[1], . . . , R[n]), with the signer R[s] as its member,

where s
$←{1, . . . , n}, and outputs

pk = (pk [1], . . . , pk [n]) and sk = sk [s]

where sk [s] is the secret-key of the signer and pk [i] is the public-key of the
ring member R[i] for i ∈ {1, . . . , n}.

Remark 1. In the ring generation algorithm RS-Gen, if the signer R[s] already
has an existing key-pair (pk [s], sk [s]), it is used. Otherwise, RS-Gen generates
a valid key pair for the signer by invoking the key generation algorithm PK-
Gen of a suitable public-key encryption scheme. Other ring members, including
the DIV, must already have a valid public key with respect to some suitable
public-key encryption scheme. Note that, in case of identity based ring signature
schemes, the last condition is automatically fulfilled since the public-key can be
derived for any identity.

2. the signature generation algorithm RS-Sig takes as input the ring’s public-key
pk , the signer’s secret-key sk [s] and a message m and outputs its signature
σ ← RS-Sig(pk , sk [s],m) with respect to the ring R; and

3. the deterministic ring signature verification algorithm RS-Ver takes as input
the public-key pk of the ring R, a message m and a signature σ and outputs
a bit b ← RS-Ver(pk ,m, σ).

We require the following three properties from a ring signature scheme RS:

Correctness: For any valid signable message m and a ring R = {R[1], . . . , R[n]},

Pr
[
(pk , sk) ← RS-Gen(1k), R[i] ← R : RS-Ver(pk ,RS-Sig(pk , sk [i], m)) = 1

]
= 1 .



356 V. Saraswat and S.K. Pandey

Unforgeability: For any adversary A the advantage

Advuf-cma
RS,A (k) def= Pr[Gameuf-cmaRS,A (k) = 1]

is negligible in the game Gameuf-cmaRS,A defined in Game 4 where the attacker A
cannot have queried the signing oracle RS-Sig(pk , sk , ·) with m. Relaxing this
restriction to: “the attacker A may query the signing oracle RS-Sig(pk , sk , ·)
with even m but must not have received σ as an answer” strong unforgeability
is defined. In this paper we work with fixed rings but unforgeability against
chosen subring attacks and unforgeability w.r.t. insider corruption [2] may be
similarly defined in the obvious fashion.

Signer Anonymity: For any adversary A = (A1,A2) the advantage

Advanon
RS,A(k) def=

∣∣Pr[Gameanon-1RS,A (k) = 1] − Pr[Gameanon-0RS,A (k) = 1]
∣∣

is negligible in the games Gameanon-bRS,A , b = 0, 1, defined in Game 4. Allowing
the attacker to have all the secret-keys sk as additional input, anonymity
against full key exposure is defined.

Gameuf-cma
RS,A (k)

(pk , sk) ← RS-Gen(1k)
(m, σ) ← ARS-Sig(pk,sk,·)(pk)
return RS-Ver(pk , m, σ)

Gameanon-b
RS,A (k)

(pk , sk) ← RS-Gen(1k)

(m, pk0, pk1, st) ← A
RS-Sig(pk,sk,·)
1 (pk)

σ ← RS-Sig(pk , skb, m)

b′ ← A
RS-Sig(pk,sk,·)
2 (σ, st)

return b′

Game 4: Ring Signature Unforgeability and Anonymity Games

3 Formal Model and Security Notions

In this section, we define the formal model of a designated identity verifier ring
signature (DIVRS) and the related security notions, namely,

1. correctness of a DIVRS –
i. message authentication,
ii. signing provability,

2. unforgeability,
3. signer anonymity,
4. designated identity verifier anonymity, and
5. unpretendability.

We point out that in all the security games defined below, even the designated
identity verifier (DIV) is a potential adversary except only in the anonymity
games played after the identity verification token has been released. Further, all
adversaries are polynomial-time.



How to Leak a Secret and Reap the Rewards Too 357

3.1 Designated Identity Verifier Ring Signature

Let R = (R[1], . . . , R[n]) be a ring with the signer us = R[s] and the designated
identity verifier (DIV) ud = R[d] as its members where the indices s and d are
chosen randomly from {1, . . . , n}. Without loss of generality we assume that us �=
ud, that is, a signer does not designate himself/herself for identity verification.

We define a designated identity verifier ring signature as a tuple of algorithms

DIVRS = (DIV-Gen,DIV-Sig,DIV-SVf,DIV-IVf)

where

1. DIV-Gen is the ring generation algorithm which takes as input the security
parameter k and forms a ring R = (R[1], . . . , R[n]) with the signer R[s] and

the designated identity verifier R[d] as its members, s, d
$←{1, . . . , n}, and

outputs
pk = (pk [1], . . . , pk [n]) and sk = sk [s]

where sk [s] is the secret-key of the signer and pk [i] is the public-key of the
ring member R[i] for i ∈ {1, . . . , n};

Remark 2. The observations made in Remark 1 apply here too.

2. DIV-Sig is the signature generation algorithm which takes as input the ring’s
public-key pk , the signer’s secret-key sk [s], the DIV’s public-key pk [d] = pk PKE

and a message m and outputs a pair (σ, τ) ← DIV-Sig(pk , sk [s], pk [d],m)
where σ is the signature with respect to the ring R and τ is the identity
verification token;

3. DIV-SVf is the deterministic ring signature verification algorithm which takes
as input the public-key pk of the ring R, a message m and a signature σ and
outputs a bit b ← DIV-SVf(pk ,m, σ).

4. DIV-IVf is the deterministic identity verification algorithm which takes as
input a message m, a signature σ, the “claimed” signer’s public-key pk [s],
the DIV’s secret-key sk [d] = sk PKE (corresponding to pk [d] = pk PKE) and the
identity verification token τ revealed by the signer and outputs a bit b ←
DIV-IVf(pk [s], sk [d],m, σ, τ).

3.2 Correctness

A DIVRS is said to be correct if for any valid signable message m and any two
ring members R[i], R[j] ← R, the following two conditions hold:

Pr
[

(pk , sk) ← DIV-Gen(1k), (σ, τ) ← DIV-Sig(pk , sk [i], pk [j],m) :
DIV-SVf(pk ,m, σ) = 1

]
= 1. (1)

Pr
[

(pk , sk) ← DIV-Gen(1k), (σ, τ) ← DIV-Sig(pk , sk [i], pk [j],m) :
DIV-IVf(pk [i], sk [j],m, σ, τ) = 1

]
= 1. (2)



358 V. Saraswat and S.K. Pandey

The Property (1) is referred to as the correctness of the signature verifica-
tion and in combination with unforgeability property (Sect. 3.3), it allows reli-
able message authentication. The Property (2) is referred to as the correctness
of the identity verification and in combination with unpretendability property
(Sect. 3.6), it allows reliable signing provability.

3.3 Unforgeability

A DIVRS is said to be unforgeable if for any adversary A the advantage

Advuf-cma
DIVRS,A(k) def= Pr[Gameuf-cmaDIVRS,A(k) = 1]

is negligible in the game Gameuf-cmaDIVRS,A defined in Game 5 where the attacker A

cannot have queried the signing oracle DIV-Sig(pk , sk , ·, ·) with m.
A DIVRS is said to be strongly unforgeable if for any adversary A the advan-

tage
Advsuf-cma

DIVRS,A(k) def= Pr[Gamesuf-cmaDIVRS,A(k) = 1]

is negligible in the game Gamesuf-cmaDIVRS,A defined in Game 5 where the attacker A

may query the signing oracle DIV-Sig(pk , sk , ·, ·) with even m but must not have
received σ as an answer.

Gameuf-cma
DIVRS,A(k)

(pk , sk) ← DIV-Gen(1k)
(m, σ, τ) ← ADIV-Sig(pk,sk,·,·)(pk)
return DIV-SVf(pk , m, σ)

Gamesuf-cma
DIVRS,A(k)

(pk , sk) ← DIV-Gen(1k)
(m, σ, τ) ← ADIV-Sig(pk,sk,·,·)(pk)
return DIV-SVf(pk , m, σ)

Game 5: DIVRS (Strong) Unforgeability Games

3.4 Signer Anonymity

A DIVRS is said to be signer anonymous if for any adversary A = (A1,A2) the
advantage

Advanon
DIVRS,A(k) def=

∣∣Pr[Gameanon-1DIVRS,A(k) = 1] − Pr[Gameanon-0DIVRS,A(k) = 1]
∣∣

is negligible in the games Gameanon-bDIVRS,A, b = 0, 1, defined in Game 6 with d0 = d1.
A DIVRS is said to be signer anonymous against full key exposure if for any

adversary A = (A1,A2) the advantage

Advafke
DIVRS,A(k) def=

∣∣Pr[Gameafke-1DIVRS,A(k) = 1] − Pr[Gameafke-0DIVRS,A(k) = 1]
∣∣

is negligible in the games Gameafke-bDIVRS,A, b = 0, 1, defined in Game 6 with d0 = d1.

Remark 3. (a) It is required that s0, s1, d0, d1 ∈ R, else the games in 6 abort.
(b) Until the identification verification token has been released, τ is assumed to

be null in these security games and even the DIV is a potential adversary.



How to Leak a Secret and Reap the Rewards Too 359

Signer Anonymity Against Rogue DIV. The DIV should not be able to
prove the identity of the actual signer even by releasing his secret-key even after
the release of the identification verification token. This property is similar to the
property required of a strong designated verifier signature [7].

Gameanon−b
DIVRS,A(k)

(pk , sk) ← DIV-Gen(1k)

(m,(s0,d0),(s1,d1),st)←A
DIV-Sig(pk,sk,·,·)
1 (pk)

(σ,τ) ← DIV-Sig(pk , sk [sb], pk [db], m)

b′ ← A
DIV-Sig(pk,sk,·,·)
2 (σ, τ, st)

return b′ ∧ ((s0, d0) �= (s1, d1))

Gameafke−b
DIVRS,A(k)

(pk , sk) ← DIV-Gen(1k)

(m,(s0,d0),(s1,d1),st) ← A
DIV-Sig(pk,sk,·,·)
1 (pk,sk)

(σ,τ) ← DIV-Sig(pk , sk [sb], pk [db], m)

b′ ← A
DIV-Sig(pk,sk,·,·)
2 (σ, τ, st)

return b′ ∧ ((s0, d0) �= (s1, d1))

Game 6: DIVRS (Full Key Exposure) Anonymity Games

3.5 Designated Identity Verifier Anonymity

A DIVRS is said to be designated identity verifier anonymous if for any adversary
A = (A1,A2) the advantage

Advdiv-anon
DIVRS,A(k) def=

∣∣Pr[Gameanon-1DIVRS,A(k) = 1] − Pr[Gameanon-0DIVRS,A(k) = 1]
∣∣

is negligible in the games Gameanon-bDIVRS,A, b = 0, 1, defined in Game 6 with s0 = s1.
A DIVRS is said to be designated identity verifier anonymous against full key

exposure if for any adversary A = (A1,A2) the advantage

Advdiv-afke
DIVRS,A(k) def=

∣∣Pr[Gameafke-1DIVRS,A(k) = 1] − Pr[Gameafke-0DIVRS,A(k) = 1]
∣∣

is negligible in the games Gameafke-bDIVRS,A, b = 0, 1, defined in Game 6 with s0 = s1.

Remark 4. The observations made in Remark 3 apply here too.

3.6 Unpretendability

A DIVRS is said to be unpretendable if for any adversary A = (A1,A2) the
advantage

Advup
DIVRS,A(k) def= Pr[GameupDIVRS,A(k) = 1]

is negligible in the game GameupDIVRS,A defined in Game 7.
As in the case of anonymity, we say that DIVRS is unpretendable against full

key exposure if the advantage Advup-fke
DIVRS,A(k) of any adversary is negligible in

the game Gameup-fkeDIVRS,A which is similar to the game GameupDIVRS,A(k) except
that now the adversary also gets the target secret-key sk [s0] as an additional
input.



360 V. Saraswat and S.K. Pandey

Gameup
DIVRS,A(k)

s0 ← {1, . . . , n}, d0 ← {1, . . . , n}
(pk , sk) ← DIV-Gen(1k)

(m, st) ← A
DIV-Sig(pk,sk,·,·)
1 (pk)

(σ, τ) ← DIV-Sig(pk , sk [s0], pk [d0], m)

(s1, d1, τ1) ← A
DIV-Sig(pk,sk,·,·)
2 (σ, τ, st)

return DIV-IVf(pk [s1], sk [d1], m, σ, τ1) ∧ (s0 �= s1)

Game 7: DIVRS (Strong) Unpretendability Games

Intuitively, the adversary aims to claim the authorship of the message m
signed by the target secret-key sk [s0] with the ring signature σ and the identity-
verification token τ . The adversary tries to produce an appropriate τ1 satisfying

DIV-IVf(pk [s1], sk [d1],m, σ, τ1) = 1,

so that his chosen identity pk [s1] is verified by his chosen DIV pk [d1], both of
which could be chosen after τ has been released. Our definition of unpretend-
ability guarantees that the probability of success for this attempt is negligible.

We can define various weaker versions of unpretendability:

1. The adversary does not get τ as input, that is, he tries to claim the reward
before the original signer.

2. The DIV’s identity is fixed a priori and the adversary is unable to choose it
adaptively as in GameupDIVRS,A or Gameup-fkeDIVRS,A.

We can also define stronger notions of unpretendability as in the case of
unforgeability. For example unpretendability against chosen subring attacks
might be defined but that would be inapplicable to the objective of this paper.

4 Generic Construction of a DIVRS

We now present a generic construction of a designated identity verifier ring
signature

DIVRS = (DIV-Gen,DIV-Sig,DIV-SVf,DIV-IVf)

using an ordinary ring signature scheme RS=(RS-Gen, RS-Sig, RS-Ver). Our
construction uses an ordinary ring signature scheme RD= (RD-Gen, RD-Sig,
RD-Ver) with possibly RD=RS, an encryption scheme PKE = (PK-Gen, PK-Enc,
PK-Dec), and a commitment scheme CS= (CS-Com, CS-Ver). We assume these
schemes satisfy the properties defined in Sect. 2.

To leak an information m, the signer us chooses a set L of potential “leakers”
{ul1 , . . . , uln}, n ≥ 1, and a designated identity verifier (DIV) ud, sets D := {ud},
forms two rings RL = (RL[0], RL[1], . . . , RL[n]) and RD = (RD[0], RD[1]) from
the sets {us}∪D∪L and {us}∪D respectively (with random orderings). He then
chooses ring signature schemes RS and RD (with possibly RD=RS) for signing
messages w.r.t. the rings RL and RD respectively and computes respective ring



How to Leak a Secret and Reap the Rewards Too 361

signatures σL on m and σD on m||σL. The signer us then obtains an encryption
enc of the string m0 = m||σL||σD||us||ud with the public-key pk PKE of the DIV
ud and a commitment com of enc with respect to a decommittal dec. The signer
finally leaks the information m and its DIVRS, σ := σL||com.

Given σ, anyone can parse σL from it and verify that the message m was
indeed signed by a member of the ring RL.

When us wants to prove that he was the actual signer to ud, he reveals the
identity verification token τ = dec||enc. Given, τ anyone can obtain enc and
confirm its authenticity by parsing com from σ but only ud is able to decrypt
enc to find out the identity us. ud can then verify it was indeed us who signed
m by verifying the ring signature σD with respect to the ring RD.

function DIV-Gen(1k)
(pkRS, skRS) ← RS-Gen(1k)
pk ← pkRS

sk ← skRS‖pkRS

return (pk , sk)
function DIV-Sig(pk , sk [s], pk [d], m)

Parse sk as skRS‖pkRS

σL ← RS-Sig(pkRS, skRS[s], m)
(pkRD, skRD) ← RD-Gen(1k)
σD ← RD-Sig(pkRD, skRD[s], m||σL)
enc ← PK-Enc(pkPKE, m||σL||σD||us||ud)
(com, dec) ← CS-Com(enc)
σ ← σL||com; τ ← dec‖enc
return (σ, τ)

function DIV-SVf(pk , m, σ)
Parse σ as σ′

L‖com′

return RS-Ver(pk , m, σ′
L)

function DIV-IVf(pk [s], sk [d], m, σ, τ)
Parse σ as σ′

L‖com′

If RS-Ver(pk , m, σ′
L) = 0 return 0

Parse τ as dec′‖enc′

If CS-Ver(com′, dec′, enc′) = 0 return 0
m0 ← PK-Dec(skPKE, enc)
If m0 =⊥ return 0
Parse m0 as m′||σ′′

L||σ′
D||u′

s||u′
d

If m′ �= m return 0
If σ′′

L �= σ′
L return 0

If u′
d �= ud return 0

return RD-Ver(pkRD, m||σ′
L, σ′

D)

Description 1: DIVRS description

5 Security Proof

In this section we present the security proof of our scheme. We show that the
security of the scheme is tied with security of the component schemes. That is,
if a certain property of our scheme is violated then some security property of
one of the component schemes is also violated. In particular, in the following
subsections, we prove the following theorem:

Theorem 1. Let
RS = (RS-Gen,RS-Sig,RS-Ver) (3)

and
RD = (RD-Gen,RD-Sig,RD-Ver) (4)

be correct, unforgeable and anonymous ring signature schemes (with possibly
RD = RS),

PKE = (PK-Gen,PK-Enc,PK-Dec) (5)



362 V. Saraswat and S.K. Pandey

be a correct, semantically secure anonymous (key-private) encryption scheme,
and

CS = (CS-Com,CS-Ver) (6)

be a correct hiding and binding commitment scheme. Then the

DIVRS = (DIV-Gen,DIV-Sig,DIV-SVf,DIV-IVf) (7)

constructed using these as components is correct, unforgeable, signer anonymous,
designated identity verifier anonymous and unpretendable.

5.1 Correctness of the Proposed Scheme

Correctness of the Signature Verification. This is immediate from the
correctness of the ring signature RS since for any σ = σ′

L‖com′ where σ′
L, is the

RS-signature, DIV-SVf(pk ,m, σ) = 1 if and only if RS-Ver(pk ,m, σ′
L) = 1.

Correctness of the Identity Verification. This is immediate from the cor-
rectness of the ring signature(s) RD (and RS), the encryption scheme PKE and
the commitment scheme CS. Since DIV-IVf(pk [s], sk [d],m, σ, τ) = 0 if and only
if at least one of the following holds:

– RS-Ver(pk ,m, σ′
L) = 0 where σ = σ′

L‖com′

– CS-Ver(com′, dec′, enc′) = 0 where τ = dec′‖enc′

– m0 ← PK-Dec(sk PKE, enc) and m0 �= m||σ′
L||σ′

D||u′
s||ud

– RD-Ver(pkRD,m||σ′
L, σ′

D) = 0 where m0 = m||σ′
L||σ′

D||u′
s||ud.

Thus if the DIVRS was correctly computed and the identity verification returns 0,
the correctness of the component schemes is violated.

5.2 Unforgeability

The unforgeability of DIVRS is tied with the unforgeability of the ring signature
RS. Suppose that A is an adversary attacking the unforgeability of DIVRS. Then
using A, we construct an adversary B, with essentially the same time complexity
as that of A, which attacks the unforgeability of RS, and satisfying

Advuf-cma
DIVRS,A(k) ≤ Advuf-cma

RS,B (k).

The adversary B is given a public-key pkRS of RS, and the corresponding
signing oracle RS-Sig(skRS, ·). B sets pk = pkRS, and gives it to A and answers
the signing query of A as follows: for signing query of m, B calls its own signing
oracle with query m to obtain σL. B then computes

σD ← RD-Sig(′)(pkRD, skRD[s],m||σL),
enc ← PK-Enc(pk PKE,m||σL||σD||us||ud) and

(com, dec) ← CS-Com(enc)



How to Leak a Secret and Reap the Rewards Too 363

and returns (σ = σL||com, τ = dec‖enc) to A.
Note that this simulation of the unforgeability game for A by B is perfectly

done according to the description of DIVRS.
Suppose that A halts with output (m∗, σ∗). Then B parses σ∗ as σ1‖σ2,

and halts with output (m∗, σ1). Whenever the output (m∗, σ∗) of A is a suc-
cessful forgery for DIVRS, then B outputs a successful forgery (m∗, σ1) for RS
since from the definition of DIV-SVf, DIV-SVf(pk ,m∗, σ∗) = 1 holds only if
RS-Ver(pk ,m∗, σ1) = 1 holds. This proves the claimed inequality.

5.3 Unpretendability

Finally, we show that DIVRS satisfies unpretendability with respect to full key
exposure. Suppose that A = (A1,A2) is an adversary attacking unpretendability
of DIVRS. Using A, we construct an adversary B, with essentially the same time
complexity as that of A, attacking the binding property of the commitment
scheme CS, satisfying

Advup-fke
DIVRS,A(k) ≤ Advbind

CS,B(k).

Given the security parameter k, B obtains (pk , sk) ← DIV-Gen(1k) and gives
it to A. B answers A’s queries as in DIVRS except that for the commitment
computation, it calls the CS-Com oracle in its own challenge. Finally B obtains
(m, st) ← A1(pk , sk). B then computes (σ, τ) ← DIV-Sig(pk , sk [s0], pk [d0],m)
and obtains (s1, d1, τ1) ← A

DIV-Sig(sk ,·,·,·)
2 (σ, τ, st).

Then B parses σ as σL||com, τ as dec‖enc and τ1 as dec1‖enc1 and halts with
output (com, dec, enc, dec1, enc1).

Note that this simulation of the full-key exposure unpretendability game for
A by B is perfect and whenever A succeeds at breaking the unpretendability of
DIVRS, that is,

DIV-SVf(pk [s1], sk [d1],m, σ, τ1) = 1

and s0 �= s1, then B also succeeds in breaking the binding property of CS. From
the definition of DIV-SVf,

DIV-SVf(pk [s1], sk [d1],m, σ, τ1) = 1

holds implies that CS-Ver(com, dec1, enc1) holds. Moreover, since

(σ, τ) = DIV-Sig(pk , sk [s0], pk [d0],m),

by correctness of the DIVRS,

DIV-SVf(pk [s0], sk [d0],m, σ, τ) = 1

holds and hence CS-Ver(com, dec1, enc1) must hold too. Now, s0 �= s1 so that
enc �= enc1 and hence B has successfully violated the binding property of CS.



364 V. Saraswat and S.K. Pandey

5.4 Signer Anonymity

The signer anonymity of DIVRS is tied to the signer anonymity of the ring
signature RS, the semantic security of the encryption scheme PKE and the hiding
property of the commitment scheme CS.

The reduction of the signer anonymity to the signer anonymity of the ring
signature RS is straight forward and we assume that the adversary gets a non-
negligible advantage only due to com component of σ = σL||com. That is, with-
out com, σL is just a random string to A.

We first prove the signer anonymity before the release of the identity verifi-
cation token τ , when even the DIV is a potential adversary.

Suppose the advantage Advanon-fke
RS,C (k) of an adversary C attacking the signer

anonymity of RS is zero. Suppose that A = (A1,A2) is an adversary attacking the
signer anonymity of DIVRS. Using A, we construct B, with essentially the same
time complexity as that of A, attacking the hiding property of the commitment
scheme CS, satisfying

Advanon-fke
DIVRS,A (k) ≤ Advhide

CS,B(k).

Consider the game Gamehide-bCS,B with respect to this adversary B. Given the
security parameter k, B obtains (pk , sk) ← DIV-Gen(1k) and gives it to A. B
answers A’s queries as in DIVRS except that for the commitment computation,
it calls the CS-Com oracle in its own challenge. Finally B obtains

(m, (s0, d0), (s1, d1), st) ← A
DIV-Sig(pk ,sk ,·,·)
1 (pk)

with d0 = d1 = d. B then computes for b = 0, 1,

σL,b ← RS-Sig(pkRS, skRS[sb],m),

σD,b ← RD-Sigb(pkRDb
, skRDb

[sb],m||σL,b) and
encb ← PK-Enc(pk PKE,m||σL,b||σD,b||usb ||ud)

and gives enc0 and enc1 as challenge strings to the challenger of the Gamehide-bCS,B

and obtains (com, dec) ← CS-Com(sb) from the challenger. B then picks a ran-
dom bit b1 and gives σ = σL,b1 ||com as the challenge signature to the attacker A
and obtains its guess b2 and returns b2 as its guess to the challenger in its own
challenge.

Note that this simulation of the anonymity game for A by B is perfect, and
the output of B is the same as the output of A. Hence,

Pr[Gamehide-bCS,B (k)] = Pr[Gameanon-fkeDIVRS,A -b(k)],

for b = 0, 1. Therefore,

Advanon-fke
DIVRS,A (k) =

∣∣Pr[Gameanon-fke-1DIVRS,A (k) = 1] − Pr[Gameanon-fke-0DIVRS,A (k) = 1]
∣∣

=
∣∣Pr[Gamehide-1CS,B (k) = 1] − Pr[Gamehide-0CS,B (k) = 1]

∣∣

=Advhide
CS,B(k).



How to Leak a Secret and Reap the Rewards Too 365

Intuitively, if com is the commitment with respect to encb1 then A returns
b2 = b1 with a non-negligible advantage. But if com is not the commitment with
respect to encb1 then A does not have the right σ and could possibly only return
a random b2. Thus when B returns b2 as its guess, it achieves an equal advantage
as that of A. So, before the release of the identity verification token τ ,

Advanon-fke
DIVRS,A (k) ≤ Advanon-fke

RS,C (k) + Advhide
CS,B(k).

Now we prove the signer anonymity after the release of the identity verifica-
tion token τ , when anyone other than the DIV can be an adversary. The signer
anonymity is now straight forward from semantic security of the encryption
scheme PKE.

Given, τ (and σ) anyone can obtain enc by parsing com from σ. So now
the signer anonymity can be attacked by using enc (only, assuming the RS
anonymity). That is, one can try to obtain the us component of m||σL||σD||us||ud

from its encryption enc = PK-Enc(pk PKE,m||σL||σD||us||ud). But the semantic
security of the encryption scheme PKE guarantees a negligible success probability
of any such attack. So, after the release of the identity verification token τ ,

Advanon-fke
DIVRS,A (k) ≤ Advanon-fke

RS,C (k) + Advsec
PKE,B(k).

Note that DIVRS satisfies signer anonymity with respect to full key exposure
as long as the underlying ring signature RS also satisfies the same.

Signer Anonymity Against Rogue DIV. Note that even if the DIV releases
the decryption m||σL||σD||us||ud of enc (which is public after release of τ), one
can be convinced that (m,σ, τ) was produced by a member of the ring RD ⊂ RL

but as long as the underlying ring signature RS and the ring signature RD are
signer anonymous, they cannot distinguish which member of RD was the actual
signer and the DIV itself could equally likely have been the signer. We refer the
reader to [13] where this property of a ring signature is discussed in detail.

5.5 Designated Identity Verifier Anonymity

The designated identity verifier anonymity of DIVRS is tied to the semantic
security and the recipient anonymity of the encryption scheme PKE and the
hiding property of the commitment scheme CS.

Until the release of the identity verification token τ , when even the DIV is a
potential adversary, the designated identity verifier anonymity follows from an
similar proof as in above proof of the signer anonymity, with the only difference
that now s0 = s1 and d0 �= d1. So, before the release of the identity verification
token τ ,

Advafke
DIVRS,A(k) ≤ Advhide

CS,B(k).

Let us now consider the case after the release of the identity verification token
τ , when anyone other than the DIV can be an adversary.



366 V. Saraswat and S.K. Pandey

Given, τ (and σ) anyone can obtain enc by parsing com from σ. So now the
DIV anonymity can be attacked by using enc. The recipient anonymity of the
encryption scheme guarantees that the anonymity of the DIV is not revealed
from enc directly. An adversary C can also try to obtain the ud component of
m||σL||σD||us||ud from its encryption enc = PK-Enc(pk PKE,m||σL||σD||us||ud).
But the semantic security of the encryption scheme PKE guarantees a negligi-
ble success probability of any such attack. So, after the release of the identity
verification token τ ,

Advdiv-afke
DIVRS,A(k) ≤ Advanon

PKE,C(k) + Advsec
PKE,B(k).

Note that DIVRS satisfies designated identity verifier anonymity with respect
to full key exposure as long as the underlying ring signature RS also satisfies the
same.

References

1. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001). 353

2. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and con-
structions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006). 356

3. Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to
ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480.
Springer, Heidelberg (2002). 348

4. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). 348, 351

5. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc
groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 609–626. Springer, Heidelberg (2004). 348

6. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984). 353

7. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
143–154. Springer, Heidelberg (1996). 348, 350, 351, 359

8. Klonowski, M., Krzywiecki, �L., Kuty�lowski, M., Lauks, A.: Step-out ring signatures.
In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 431–
442. Springer, Heidelberg (2008). 352

9. Komano, Y., Ohta, K., Shimbo, A., Kawamura, S.: Toward the fair anonymous
signatures: deniable ring signatures. IEICE Trans. 90–A(1), 54–64 (2007). 352

10. Lee, K.-C., Wen, H.-A., Hwang, T.: Convertible ring signature. IEE Proc. Commun.
152(4), 411–414 (2005). 352

11. Lv, J., Wang, X.: Verifiable ring signature. In: DMS 2003 - The 9th International
Conference on Distribted Multimedia Systems, pp. 663–667 (2003) 351

12. Naor, M.: Deniable ring authentication. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 481–498. Springer, Heidelberg (2002). 351



How to Leak a Secret and Reap the Rewards Too 367

13. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
348, 351, 365

14. Saraswat, V., Yun, A.: Anonymous signatures revisited. In: Pieprzyk, J., Zhang, F.
(eds.) ProvSec 2009. LNCS, vol. 5848, pp. 140–153. Springer, Heidelberg (2009).
348, 350, 351

15. Steinfeld, R., Bull, L., Wang, H., Pieprzyk, J.: Universal designated-verifier sig-
natures. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 523–542.
Springer, Heidelberg (2003). 351

16. Susilo, W., Mu, Y.: Deniable ring authentication revisited. In: Jakobsson, M., Yung,
M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 149–163. Springer, Heidelberg
(2004). 351

17. Xu, S., Yung, M.: Accountable ring signatures: a smart card approach. In:
Quisquater, J.-J., Paradinas, P., Deswarte, Y., Kalam, A. (eds.) Smart Card
Research and Advanced Applications VI. IFIP, vol. 153, pp. 271–286. Springer,
New York (2004). 352

18. Yang, G., Wong, D.S., Deng, X., Wang, H.: Anonymous signature schemes. In:
Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 347–363. Springer, Heidelberg (2006). 348, 350, 351

19. Zeng, S., Jiang, S., Qin, Z.: A new conditionally anonymous ring signature. In:
Fu, B., Du, D.-Z. (eds.) COCOON 2011. LNCS, vol. 6842, pp. 479–491. Springer,
Heidelberg (2011). 352



Extending Oblivious Transfer Efficiently

or - How to Get Active Security with Constant
Cryptographic Overhead

Enrique Larraia(B)

Department of Computer Science, University of Bristol, Bristol, UK
cseldv@bristol.ac.uk

Abstract. On top of the passively secure extension protocol of [IKNP03]
we build a new construction secure against active adversaries. We can
replace the invocation of the hash function that is used to check the
receiver is well-behaved with the XOR of bit strings. This is possible by
applying a cut-and-choose technique on the length of the bit strings that
the receiver sends in the reversed OT. We also improve on the number
of seeds required for the extension, both asymptotically and practically.
Moreover, the protocol used to test receiver’s behaviour enjoys uncondi-
tional security.

1 Introduction

Oblivious Transfer (OT), concurrently introduced by Rabin [Rab81] and Wiesner
[Wie83] (the latter under the name of multiplexing) is a two-party protocol
between a sender Alice and a receiver Bob. In its most useful version the sender
has two secret bit strings, and the receiver wants to obtain one of the secrets at
his choosing. After the interaction the receiver has not learnt anything about the
secret string he has not chosen, and the sender has not learnt anything about
the receiver’s choice. Several flavours have been considered and they turn out to
be equivalent [EGL85,BCR86a,BCR86b,Cré87].

In the Universally Composable Framework [Can01], OT has been rigorously
formalized and proved secure [CLOS02] under the assumption of trapdoor per-
mutations (static adversaries) and non-committing encryption (adaptive adver-
saries). It was further realized [PVW08] under several hard assumptions (DDH,
QR or worst-case lattice problems).

OT is a powerful cryptographic primitive that may be used to implement
a wide range of other cryptographic primitives [Kil88,IPS08,Yao82,GMW86,
GV87,EGL85]. Unfortunately, the results of Impagliazzo and Rudich [IR89]
make it very unlikely that one can base OT on one-way functions (as a black-
box).

As a second best solution, Beaver showed in its seminal paper [Bea96] that
one can implement a large number of oblivious transfers assuming that only a
small number of OTs are available. This problem is known as Extended Obliv-
ious Transfer. The OTs that one starts with are sometimes called the seeds of
c© Springer International Publishing Switzerland 2015
D.F. Aranha and A. Menezes (Eds.): LATINCRYPT 2014, LNCS 8895, pp. 368–386, 2015.
DOI: 10.1007/978-3-319-16295-9 20



Extending Oblivious Transfer Efficiently 369

the extension. Beaver showed that if one starts with say n seeds, it is possible
to obtain any polynomial number (in n) of extended OTs. His solution is very
elegant and concerns feasibility, but it is inherently non-efficient. Later, Ishai
et al. [IKNP03] showed a very efficient reduction for semi-honest adversaries.
Since then other works have focused on extensions with active adversaries
[IKNP03,HIKN08,IPS08,NNOB12]. This paper continues this line of research.

State of the Art. The approach initiated in [IKNP03] runs at his core a
reversed OT to implement the extension. As already noted in [IKNP03], proving
security against a cheating receiver Bob∗ is not trivial, as nothing refrains him
from inputting whatever he likes in the reversed OT, allowing him to recover
both secrets on Alice’s side.

In terms of efficiency, the passive version of [IKNP03] needs O(s) OT seeds,
where s is a security parameter, with cut-and-choose techniques and the com-
biner of [CK88] active security comes at the cost of using Ω(s) seed OTs1. In
[HIKN08] active security is achieved at no extra cost in terms of seed expansion
(and communication), they apply OT-combiners worsening the computational
cost. In [NNOB12] the expansion factor is 8

3 ≈ 2.66, which is already quite
good. Recently, it has been shown [LZ13] that meaningful extensions only exist
if one starts with ω(log s) seeds, (for log s seeds one would have to construct
an OT protocol from the scratch). The constructions of [Bea96,IKNP03] can be
instantiated with superlogarithmic seeds, so are optimal in this respect.

The communication cost is not really an issue, due to known almost-free
reductions of OT n

poly(n) to OT n
n, using a pseudo random generator, and running

the small OT on the seeds. The computational cost of [IKNP03] is extremely
efficient (passive version), it needs O(s) work, i.e. constant work per extended
OT (precisely it needs three invocations of the cryptographic primitive). All
active extensions need at least amortized Ω(s) work.

Our Contributions. A technique that has proven to be quite useful [Nie07] is
to split the extension protocol in two: an outer protocol ρ, and an inner proto-
col π. The former implements the actual extended transfers, whereas the latter
wraps the reversed OT, ensuring at the same time that the receiver Bob is well-
behaved in some sense. We follow the same idea, the novelty of our construction
being in how the inner protocol π is realized. More concretely, for a fixed security
level s we give a family of protocols πm,n,t, where n is the number of seeds, m
is the number of extended transfers, and t ∈ [ 1

n , 1). Values of t close to 1
n render

less OT seeds, and values close to 1 less computational and communication cost.
We obtain

– The overall construction has amortized constant cost in terms of crypto-
graphic computation. Active security is obtained at the cost of XORing O
((1 − t)n2) bits. The construction has similar communication complexity. The
previous best [NNOB12] need to hash O(n) bits per extended transfer.

1 The hidden constant is quite big.



370 E. Larraia

– The seed expansion factor of the reduction, with respect to the passive version
of [IKNP03] is asymptotically close to 2, and this convergence is quite fast, for
example for security level s = 128 one needs about n = 323 seeds to produce
about 1, 00, 000 extended OTs. This means that our construction essentially
suffers an overhead factor of 2 in the security parameter, with respect to the
passive protocol of [IKNP03].

– The reduction of π to the inner OT is information-theoretic. Other con-
structions either required computational assumptions e.g. [IKNP03,HIKN08,
IPS08], or were in the random oracle [Nie07,NNOB12]. The outer protocol ρ is
the standard protocol of [IKNP03], thus it uses a correlation robust function.

Our proof technique is, to some extent, similar to those of [Nie07,NNOB12] in
the sense that it is combinatorial. Instead of working with permutations, we are
able to connect security with set partitions. In [NNOB12] adversarial behaviour
was quantified through what the authors called leakage functions. We take a
different approach, and measure adversarial behaviour with the thickness of a
partition. Details are in Sect. 4.3.

Paper Organization. Notation and basic background is introduced in Sect. 2.
Section 3 discusses the approach of [IKNP03] and fits it in our context. In Sect. 4
we present the inner protocol π and prove it secure. In Sect. 5 the final construc-
tion is concluded, we discuss complexity and further directions.

2 Preliminaries

2.1 Notation

We denote with [n] the set of natural number less or equal than n. Let F2 be
the field of telements, binary vectors x are written in bold lowercase and binary
matrices M in bold uppercase. When M is understood from the context, its
rows will be denoted with subindices mi, and its columns with superindices mj .
The entry at position (i, j) is denoted with mj

i . Accordingly, the jth bit of a row
vector r ∈ F

n
2 will be denoted with rj , and the ith bit of a column vector c ∈ F

m
2

with ci. For any two matrices M, N, of dimension m × n, we let [M,N] be the
m × 2n matrix whose first n columns are mj and last n columns are nj . The
symbol a|J stands for the vector obtained by restricting a at positions indexed
by J .

2.2 Set Partitions

Given a finite set X of n objects, for any p ≤ n, a partition P of X is a collection
of p pairwise disjoint subsets {Pk}p

k=1 of X whose union is X. Each Pk is a part
of X. We say that part Pk is maximal if its size is the largest one. Let ER(X)
denote the set of all possible equivalence relations in X. There is a one-to-one
correspondence between partitions of X and equivalence relations in X, given by
the mapping P �→ R, where xRy iff x ∈ Pk and y ∈ Pk. We write PX to denote
the set of all partitions of X. In this work we will be concerned with partitions
of the set [n], where n is the number of OT seeds.



Extending Oblivious Transfer Efficiently 371

2.3 Universally Composable Framework

Due to lack of space we assume the reader is familiar with the UC Framework
[Can01], especially with the notions of environment, ideal and real adversaries,
indistinguishability, protocol emulation, and the composition theorem. Function-
alities will be denoted with calligraphic F . As an example OT m

n denotes the OT
functionality, in which the sender inputs m pairs of secret strings (li, ri)i∈[m],
each string of length n. The receiver inputs vector σ ∈ F

m
2 , and as a result

obtains the ith left secret li if σi = 0, or the ith right secret ri if σi = 1. We
will also make use of a correlation robust function. We name the output of the
CRF as the hash of the input. Some times we will write H instead of CRF. The
definition can be found in [IKNP03].

3 The IKNP Approach

In 2003, in their breakthrough, Ishai, Kilian, Nissim and Petrank [IKNP03]
opened the door for practical OT extensions. They provided two protocols for
this task. Throughout this paper we will sometimes refer to the passive version
as the IKNP extension. We consider the standard OT functionality [CLOS02] in
its multi session version, the only difference is that the adversary is allowed to
abort the execution. This is necessary because of how we deal with a cheating
sender (see Fig. 3).

3.1 IKNP in a Nutshell

For any m = poly(n), the ideal functionality OT m
n is realized making a single

call to OT n
m, where the security parameter of the reduction depends on n. This

in turn implies a reduction to OT n
n using a pseudorandom generator. It works

as follows: Let σ ∈ F
m
2 be the input of Bob to OT m

n , he chooses a m × 2n
binary matrix [L,R] for which it holds lj ⊕ rj = σ, j ∈ [n], but is otherwise
random, and inputs it to an inner OT n

m primitive. Alice inputs a random vector
a ∈ F

n
2 . As a result of the call Alice obtains (row) vectors {qi}i∈[m], for which

hold qi = li ⊕ σi · a. Now, if Alice wants to obliviously transfer one of her
two ith secrets (x(0)

i ,x(1)
i ), she XORs them with p(0)

i = qi and p(1)
i = qi ⊕ a

respectively, and sends masks y(0)
i , y(1)

i to Bob, who can obtain x(bi)
i from y(bi)

i

and li. This can be used to implement one transfer out of the m that Bob wishes
to receive, but can not cope with more: the OTP used for the ith transfer, with
pads (p(0)

i ,p(1)
i ), prohibits to use (p(0)

j ,p(1)
j ) in the jth transfer, because they

are correlated (the same a is implicit in both pairs2). To move from a situation
with correlated pads to a situation with uncorrelated ones, IKNP uses a CRF;
i.e. Alice masks x(c)

i with the hash of p(c)
i . The construction is perfectly secure

2 Bob would learn e.g. the distance of two non-transmitted secrets. It is trivial to check

that if two correlated pairs are used by Alice, then x
(1+bi)
i ⊕ x

(1+bj)

j = y
(1+bi)
i ⊕

y
(1+bj)

j ⊕ li ⊕ lj .



372 E. Larraia

against a malicious sender Alice∗, and statistically secure against a semi-honest
receiver Bob∗.

Intuitively, each input bit, σi, of Bob is protected by using n independent
additive sharings as inputs to the inner OT n

m. As for Alice’s privacy, the crucial
point being that as long as a is not known to Bob, then x(1+bi) remains hidden
from him; in that situation, one of the pads in each pair is independent of Bob’s
view. Unfortunately, the above crucially relies on Bob following the protocol
specifications. In fact, it is shown in [IKNP03] how Bob∗ can break privacy if he
chooses carefully what he gives to the inner OT n

m.

3.2 Modularizing the Extension

We define an ideal functionality that acts as a wrapper of the inner call to the
OT primitive.3 It behaves as follows: (1) On an honest input B = [L,R] from
Bob (i.e. B defines n sharings of some vector σ), the functionality gives to Alice
a pair (a,Q) that she will use to implement the extended transfers. The secret
a is randomly distributed in Bob’s view. (2) An ideal adversary S can guess d
bits of a, in this case the functionality takes the guesses with probability 2−d.
The secret a has n − d bits randomly distributed in Bob’s view.

The functionality is denoted with cPADm,n to emphasize that it gives m
correlated pairs of pads, under the same a to Alice (of length n). See Fig. 1 for
a formal description. We emphasize that cPAD without the malicious behav-
iour was implicit in [IKNP03], and with the malicious behaviour in [Nie07]. We
have just made the probability of aborting more explicit. The novelty of our
approaches lies in how is realized.

For completeness, we have included the IKNP extension protocol, see Fig. 2
for details. The only difference is that the pads (p(0)

i ,p(1)
i )i∈[m] that Alice uses to

generate uncorrelated ones via the CRF are assumed to be given by cPADm,n.

3.3 The Reduction

The proof is on the same lines of the reduction of [IKNP03]. For the case the
receiver is actively corrupted, with cPADm.n at play, Bob∗ is forced to take a
guess before the actual extended transfers are executed. He is not caught with
probability 2−d, in which case n − d bits of a are completely unknown to him.
This correspondence between adversarial advantage and uncertainty (observed
in [Nie07]) is the key to argue security in the active case. What we observe is
that within the set F that indexes the n − d unknown bits, either a or the
flipped vector a⊕1 has at least (n−d)/2 bits set to one. Consequently, the same
number of bits of one of the pads that Alice uses remains unknown to Bob∗.
Using bounding techniques borrowed from [Nie07] it is not difficult to simulate
ρ with security essentially half the security of the IKNP extension.
3 The purpose of the otherwise seemingly artificial functionality is to give a neat

security analysis, both inwardly and outwardly.



Extending Oblivious Transfer Efficiently 373

Functionality cPADm,n

cPAD runs with a pad’s receiver Alice, a pad’s creator Bob, and an adversary S. It is
parametrized with the numbers of transfers m, and the length of the bit strings n.

- Upon receiving input (receiver, sid) from Alice and (creator, sid, [L,R]) from Bob, where
[L,R] ∈ Mm×2n defines n sharings of the same vector σ, sample at random a ∈ F

n
2 .

Then record the tuple (a, [L,R]), send (sid) to S and halt.
- Upon receiving message (deliver, sid) from S, compute matrix Q ∈ Mm×n as

qi = li ⊕ (l
1
i ⊕ r

1
i ) · a.

Output (delivered, sid, a,Q) to Alice, (delivered, sid) to Bob and S, and halt.

- Upon receiving (corruptAlice, sid, ã) from S, where ã ∈ F
n
2 , give Q̃ = [lj ⊕ ãj(lj ⊕ rj ]j∈[n]

to S. If additionally S sends (corruptAlice, sid, ⊥), output (abort, sid) to Alice and Bob and
halt.

- Upon receiving message (corruptBob, sid, [L̃, R̃], ã, G) from S, where G ⊆ [n] is of size d,

and ã ∈ F
d
2 , do:

- with probability p = 1 − 2−d, output (corruptBob, sid) to Alice and S and halt. Else,
- replace a|G with ã, and compute matrix Q subject to

qi = l̃i ⊕ (̃li ⊕ r̃i) ∗ a.

Output (delivered, sid, a,Q) to Alice, (delivered, sid) to Bob and S, and halt.

Fig. 1. Modeling creation of correlated pads

Protocol ρ
The protocol is parametrized with the number of extended transfers m, and the length of the

transmitted vectors n.

Primitive: A cPADm,n functionality.
Inputs: Alice inputs (sender, (xi,0,xi,1)i∈[m], sid), where xi,c ∈ F

n
2 , and Bob inputs

(receiver, σ, sid) with σ ∈ F
m
2 .

Protocol:
1. Bob samples n independent sharings of σ. Denote this sharings as [L,R] (i.e. lj ⊕ rj =

σ).
2. The parties call cPAD. Bob inputs (creator, sid, [L,R]), and Alice inputs (receiver, sid),

as a result Alice gets (a,Q) where Q is a m × n binary matrix, and a ∈ F
n
2 .

3. Let p
(0)
i = qi and p

(1)
i = qi ⊕ a. Alice computes y

(c)
i = x

(c)
i ⊕ H

(c)
i (p

(c)
i ) for c = 0, 1,

and sends pairs (y
(0)
i ,y

(1)
i )i∈[m] to Bob.

Outputs: Bob computes hi = H
(σi)
i (li) and outputs x

′
i = y

(σi)
i ⊕ hi. Alice outputs nothing.

Fig. 2. IKNP extension

Claim (Restatement of [IKNP03, Lemma1] for Active Adversaries). In the
cPADm,n-hybrid model, in the presence of static active adversaries, with access
to at most 2o(n) queries of a CRF, the output of protocol ρ, and the output of
the ideal process involving OT m

n , are 2−n/2+o(n)+2-close.

For completeness it follows a proof sketch that combines the proofs of [IKNP03,
Nie07]. Later, in Sect. 4.4 we will elaborate on an alternative idea for the simula-
tion.

We focus on the case Bob∗ is corrupted, simulating a malicious Alice∗ is easy,
and we refer the reader to [IKNP03] for details. To simulate a real execution of ρ,



374 E. Larraia

Functionality OT m
n

The functionality is parametrized by the number of transfers m, and the length of bit strings
n. It runs between a sender Alice, a receiver Bob and an adversary S.

1. Upon receiving (sender, sid, (x
(0)
i ,x

(1)
i )i∈[m]) from Alice, where x

(c)
i ∈ F

n
2 , record tuple

(x
(0)
i ,x

(1)
i )i∈[m]. (The length n and number of transfers t is fixed and known to all parties)

2. Upon receiving (receiver, sid, σ) from Bob, where σ ∈ F
m
2 , send (sid) to S, record σ and

halt.
3. Upon receiving (deliver, sid) from S, send (delivered, sid, (x

(σi)
i )i∈[m]) to Bob and

(delivered, sid) to Alice and halt.
4. Upon receiving (abort, sid) from S, and only if (deliver, sid) was not previously received,

send (fail, sid) to Alice and Bob and halt.

Fig. 3. The functionality of [CLOS02] augmented with aborts

– S internally runs steps 1 and 2 of ρ. If A sends (deliver, sid) to cPAD, then S sets r
def
= σ∗,

where σ∗ is what A specified as input to cPAD.
Otherwise, S internally gets message (corruptBob, sid, [L̃, R̃], ã, G) from A, then cPAD ei-
ther rejects, in which case S externally sends (abort, sid) to OT m

n , outputs what ρB outputs
and halts.
If cPAD, does not abort, let F = [n]\G, then (for each i ∈ [m]) split it in two disjoint

subsets, F1, F0 such that the bits of l̃i ⊕ r̃i indexed with Fci
are equal to bit ci. Say Fri

is the largest set. S sets r
def
= (r1, . . . , rm).

– Next, S externally calls OT m
n on input r getting output (zi)i∈[m]. It then fills the input

tape of ρA with x
(ri)
i = zs and x

(ri+1)
i = 0n, executes step 3 of ρ, outputs what ρB outputs

and halts.

Fig. 4. The ideal adversary for actively corrupted receivers

an ideal adversary S starts setting an internal copy of the real adversary A, and
runs the protocol between A and dummy parties ρA and ρB. The communication
with the environment E is delegated to A. Recall t hat S is also interacting with
the (augmented with aborts) ideal functionality OT m

n (see Fig. 3). A description
of S for a malicious Bob∗ is in Fig. 4.

Let Dist be the event that E distinguishes between the ideal process and the
real process, we examine the simulation conditioned on three disjoint events: SH
is the event defined as “A sends (deliver, sid) to cPAD”, Active is the event “A
sends (corruptBob, sid) and cPAD does not abort”, and Abort is the event “A
sends (corruptBob, sid) and cPAD aborts”. It is clear that conditioned on Abort
the simulation is perfect (with unbounded environments), because no transfers
are actually done. Now, say that |G| = d, then cPADm,n does not abort with
probability 2−d, so we write

Pr[Dist] ≤ Pr[Dist|SH] + Pr[Dist|Active] · 2−d (1)

Conditioning on Active. In this case, the only difference between the ideal and
the real process is that S fills with garbage the secret x(ri+1)

i of ρA, thus, the
transcripts are indistinguishable provided E (or A) does not submit Q = p(ri+1)

i

to the CRF (in that case, E sees the zero vector in the ideal process, and the
actual input of Alice in the real process). It is enough to see that this happens



Extending Oblivious Transfer Efficiently 375

with negligible probability: First, pad p(ri+1)
i restricted at positions indexed with

Fri
can be expressed as

p(ri+1)
i|Fri

= qi|Fri
⊕ (ri ⊕ 1) · a|Fri

= (̃li ⊕ (̃li ⊕ r̃i) ∗ a)|Fri
) ⊕ (ri ⊕ 1) · a|Fri

= l̃i|Fri
⊕ ri · a|Fri

⊕ (ri ⊕ 1) · a|Fri

= l̃i|Fri
⊕ a|Fri

.

Second, the size of Fri
is at least (n − d)/2, because F = F0 ∨ F1 and Fri

is
maximal. Third, cPADm,n generates a|Fri

using his own random bits. It follows

that p(ri+1)
i has (n − d)/2 bits randomly distributed in E ’s view.

He may still guess such bits searching through the query space and using the
CRF to compare. We next bound the probability of this happening. If E (or A)
guess correctly such bits, they would have handed to the CRF query Q = p(ri+1)

i .
As (n − d)/2 bits are unknown, the CRF returns random answers on E ’s view,
the probability of hitting all the bits in p(ri+1)

i is bounded by pi ≤ hri+12(d−n)/2

where hri+1 is the number of queries made to H
(ri+1)
i . By the union bound, given

h denoting the total number of queries, E and A jointly hit query Q = p(ri+1)
i

for some i ∈ [m], with probability

Pr[Dist|Active] ≤ 2(
∑

i∈[m]

hri+12(d−n)/2) ≤ h2d/2+1−n/2. (2)

Conditioning on SH. This case corresponds to semi-honest adversaries. We refer
the reader to the proof of [IKNP03] for details. The only difference is that now
also A can submit arbitrary queries to the CRF, hitting the offending one with
the same probability than the environment would, thus

Pr[Dist|SH] ≤ h2−n+1. (3)

Plugging inequalities 2 and 3 into 1, we obtain that the simulation fails with
probability

Pr[Dist] ≤ h2−n+1 + h2d/2+1−n/2 · 2−d ≤ h2−n/2+2.

The Claim follows setting h = 2o(n). 
�

4 Generating Correlated Pads

The result of Sect. 3.3 (and previous works) shows that the IKNP extension can
be upgraded to active security assuming that any adversarial strategy, on the
receiver’s side, amounts to guessing some of the bits of the sender’s secret a
before the extended transfers are executed. In this section we realize the cPAD
functionality in a way where the only computational cost involved, beyond the
underlying OT primitive on which it builds, is XORing bit strings.



376 E. Larraia

Protocol πm,n,t

The protocol is parametrized with the length of the input m, the number of OT seeds n, and a
parameter t ∈ [ 1

n , 1).

Primitive: An OT n
m(r+1) functionality with r = � 1−t

2 n	.
Inputs: Bob inputs [L0,R0] ∈ Mm×2n defining n sharings of some vector σ0 ∈ F

m
2 (i.e. lj0⊕rj

0 =
σ0 for j ∈ [n]). Alice inputs nothing.

Commit Phase:
1. Alice samples a ∈ F

n
2 at random, and Bob randomly samples r matrices [Li,Ri] in

Mm×2n (i.e. i ∈ [r]). Each defining n sharings of (say) vectors σ1, . . . , σr.
2. The parties call the OT n

r(m+1) functionality. Alice inputs a, and Bob offers matrix

[[L0, . . . ,Lr], [R0, . . . ,Rr]] as his matrix of n (left,right) secrets of length r(m + 1)
(towering up the Li’s together, idem with the Ri’s). As a result Alice obtains output
matrix [Q0, . . . ,Qr] ∈ Mr(m+1)×n.

Prove Phase: Alice challenges Bob to make sure he used a good enough input matrix.
3. Alice sends to Bob a random challenge vector e ∈ F

r
2.

4. For i ∈ [r], Bob computes σ̃i = σi ⊕ ei · σ0, L̃i = Li ⊕ ei · L0, and R̃i = Ri ⊕ ei · R0.

It sends the r proofs (σ̃i, [L̃i, R̃i])i∈[r] to Alice.

5. For each i ∈ [r], and j ∈ [n] Alice prepares witnesses W̃i = (a, Q̃i = Qi ⊕ ei · Q0), and

checks whether q̃j
i

?
= l̃ji + aj · (̃lji ⊕ r̃j

i ), and σ̃i
?
= l̃ji ⊕ r̃j

i If not, she outputs corruptBob
and halts.

Outputs: If Alice did not abort, she outputs (a,Q0) and Bob outputs nothing.

Fig. 5. Realizing cPADm,n

4.1 Warming Up: Committing Bob to His Input

The inner OT n
m of the IKNP extension can be seen, in a way, as a commitment for

Bob’s input σ to the outer OT m
n . The idea resembles the commitment scheme

of [Cré89] generalized to m-bit strings. We split the protocol in two phases:
A “commit” phase and a “prove” phase. To commit to σ, Bob chooses n inde-
pendent sharings B = [L,R] (i.e. lj ⊕ rj = σ for j ∈ [n]) and offers them to an
OT n

m primitive. For the jth sharing, Alice obliviously retrieves one of the shares
using her secret bit aj . She obtains a “witness” matrix Q = [qj ]j∈[n]. To prove
his input Bob reveals (σ, B̃), and Alice checks she got the right share in the first
place, (i.e. she checks qj ?= l̃j ⊕ aj · (̃lj ⊕ r̃j)), and that B̃ is consistent with σ

(i.e. l̃j ⊕ r̃j ?= σ).

Witnessing. The above protocol is of no use in our context, as for Bob to show
he behaved correctly, he would have to reveal his input σ to the outer OT m

n .
Nevertheless, we retain the concept of Alice obtaining a “witness” of what Bob∗

gave to the inner OT . Such object is a pair W = (a,Q) obtained as the output
of an OT n

m primitive. Two witnesses W , W ′ are consistent if a = a′. Similarly,
a “proof for witness W” is a pair (σ, B̃) such that B̃ defines n sharings of σ. We
say the proof is valid if it is consistent with W , in the sense Alice would accept
in the above protocol, when she is presented the proof and uses W to check it.

We emphasize that with this terminology, the output of cPADm,n is precisely
a witness (see Fig. 1).



Extending Oblivious Transfer Efficiently 377

4.2 The Protocol

Suppose Alice has obtained a witness W0 and she wants to use it to implement
the extended transfers (as in protocol ρ). She is not sure if in order to give her the
witness Bob used a good matrix B0 = [L0,R0] or a bad one (loosely speaking a
good matrix defines almost n sharings of a fixed vector σ, whereas a bad matrix
has many (left,right) pairs adding up to distinct vectors.). Now, say that Alice
has not one but two witnesses W0, W1. If they are consistent it is not difficult
to see that she also knows a witness for B+ = B0 ⊕ B1. So what Alice can do
is to ask Bob to “decommit” to B+ as explained in Sect. 4.1. Intuitively Bob∗ is
able to “decommit” if B+ is not a bad matrix. It is also intuitive that B+ is not
a bad matrix provided B0 and B1 are both good, or both bad. To rule out the
latter possibility, Alice flips a coin and asks Bob to either “decommit” to B1 or
to B+ accordingly. The process is repeated r times to achieve real soundness.
Observe that a malicious Alice∗ can not tell anything from σ, as an honest Bob
always sends either σ1 or masked σ0 ⊕ σ1 when he is “decommitting”.

Generating r consistent witnesses with W0 can be done very efficiently4 using
an OT n

r(m+1) primitive. The details of the protocol are in Fig. 5.

Correctness. If the parties follow the protocol it is not difficult to see that πm,n,t

outputs exactly the same as cPADm,n. By the homomorphic property, Alice
does not reject on honest inputs. Output correctness is due to the fundamental
relation exploited in the IKNP extension.

4.3 Security Analysis

The rest of the section is dedicated to prove that the output of πm,n,t and the
output of cPADm,n are statistically close. The road-map is as follows: we first
explain why we can work with partitions of [n], then we state some useful results,
and lastly we use them to show indistinguishability.

Taxonomy of Receiver’s Input. Here we are after a classification of Bob’s
matrix B = [L,R] ∈ Mm×2n. As an illustration consider an honest situation
where Bob gives matrix B such that it defines n additive sharings of some vector
σ of his choosing. This means that lj ⊕ rj = σ for all indices in [n]. Clearly, the
relation j1Rj2 iff lj1 ⊕ rj2 = σ is the trivial equivalence relation in [n] where all
indices are related to each other. In other words, the matrix [L,R] defines the
trivial partition of [n], i.e. P = {[n]}.

Underlying Partition. For any binary matrix Δ in Mm×n, its underlying relation
is the subset RΔ ∈ [n] × [n] defined as

RΔ = {(i, j) ∈ [n] × [n] | δi = δj}.

As usual, we write iRΔj to mean (i, j) ∈ RΔ. It is not difficult to see that RΔ

is an equivalence relation5, in particular each Δ defines a unique partition PΔ

4 The cost to pay is increasing the length of the input bit strings to the OT , using a
PRG one would only need to obliviously transfer the PRG seed.

5 The reader can check the relation is reflexive, symmetric and transitive.



378 E. Larraia

of [n]. Also, for any partition of [n], we say is �-thick if the size of its maximal
parts are �. Now it becomes clear that any (possibly malicious) receiver’s input
B = [L,R] implicitly defines a partition of [n], given by matrix Δ = [l1 ⊕
r1, . . . , ln ⊕ rn]. The input is �-thick if its partition is �-thick.

Parametrizing the Thickness. One can take a parametric definition, saying that
P is �-thick if � = M

n , where M is the size of a maximal part6. In the security
analysis this notion will prove to be useful. For example, honest inputs have
(high) thickness level � = 1. We will always adopt the parametric perspective.

Witnessing and Thickness. Let W = (a,Q) be a witness that Alice has. If Bob∗

used an �-thick B to give W to Alice, then W is said to be �-thick.

Rejecting Thin Inputs. Now we formalize the intuition that Bob∗ is caught
with high probability if he inputs a matrix with their columns adding up to
many distinct vectors.

The first lemma deals with rejections on a particular “proof” handed by
Bob. The second lemma upper bounds the thickness of a witness derived from
the XOR operation. The proof of the rejection lemma exploits the correctness
of the OT primitive. Both proofs make heavy use of the underlying partition
defined in Sect. 4.3. The reader might want to skip them in the first lecture, and
go directly to Proposition 1.

Lemma 1. Let W = (a,Q) be a witness that is known to Alice. Then, Bob
knows a valid proof for W only if he knows at least n(1 − �) bits of a, where � is
the thickness of W . In particular, if Alice is honest this happens with probability
p ≤ 2−n(1−�).

Proof. Let B = [L,R] be the input of Bob to the OT from which Alice obtained
witness (a,Q), and let (σ, B̃) be the proof held by Bob. Also, let Δ = [l1 ⊕
r1, . . . , ln ⊕ rn], and say that Δ defines partition P = {P1, . . . , Pp} of [n].

If the proof (σ, B̃) is valid, then for all j ∈ [n] we can derive the equations

(1) qj = lj ⊕ aj · (lj ⊕ rj) , (2) δj = lj ⊕ rj ,

(3) qj = l̃j ⊕ aj · (̃lj ⊕ r̃j) , (4) σ = l̃j ⊕ r̃j .

where (1) and (2) are given by the correctness of the OT n
m executed on Bob’s

input B = [L,R], and (3) and (4) follow from assuming (σ, B̃) is valid. Adding
(1) and (3), and plugging (2) and (4) in the result, we write lj ⊕ l̃j = aj ·(δj ⊕σ).
Assume first there exist j0 ∈ [n], such that σ = δj0 . Say wlog. that j0 ∈ P1. Now,
by definition of P, we have σ = δj iff jRΔj0. In other words, for 2 ≤ k ≤ p
and j ∈ Pk we have σ �= δj . It follows that there exists i ∈ [m] such that
δj
i �= σi, and therefore aj = lji ⊕ l̃ji . The RHS of the last equation is known to
Bob, so is aj . This is true for all j ∈ Pk, and all k ≥ 2, therefore Bob knows
|P2 ∨ . . . ∨ Pp| = n − |P1| ≥ n(1 − �) bits of a, where the last inequality follows

6 Parameter � lies in [ 1
n
, 1].



Extending Oblivious Transfer Efficiently 379

because P is �-thick. On the other hand, if σ �= δj for all j ∈ [n], then Bob
knows the entire vector a. Adding up, Bob∗ knows at least n(1 − �) bits of a.

Since a is secured via the OT n
m, Bob knows such bits by guessing them at

random. We conclude that Alice accepts any σ with probability p < 2n(1−�),
provided Alice samples a at random, which is indeed the case.

Lemma 2. If W = (a,Q) is �-thick and W̃ = (a, Q̃) is �̃-thick , then W+ =
(a,Q ⊕ Q̃) is �+-thick with �+ ≤ 1 − |� − �̃|.
Proof. Say that ε = |�− �̃|. and let [L,R], [L̃, R̃] be the Bob’s inputs from which
Alice obtained witnesses W and W̃ . Say that they define partitions P = P[L,R],
P̃ = P[L̃,R̃]. Similarly one defines partition PΔ⊕Δ̃ for witness (a,Q ⊕ Q̃).

First, suppose � ≤ �̃, and let P̃max a maximal part of P̃. Consider the refine-
ment P∩

max = P̃max ∩ P. If j1, j2 lie in the same part of P∩
max then j1RΔ⊕Δ̃j2

iff j1RΔj2. This follows from the fact that if j1 and j2 are both in P̃max, then
δ̃

j1 = δ̃
j2 . In particular, each part of P∩

max lies in a different part of PΔ⊕Δ̃.
Now, look at the auxiliar partition {[n]\P̃max,P∩

max}. The maximum size
we can hope for a part in PΔ⊕Δ̃ occurs when [n]\P̃max collapses with a single
maximal part of P∩

max. Even in this case, the size of a maximal part of PΔ⊕Δ̃

is upper bounded by

n(1 − �̃) + n� = n(1 − (� + ε) + �) = n(1 − ε).

This follows from observing that P̃max is of size n�̃, and P∩
max have parts

upper bounded by n�. The case �̃ ≤ � is analogous (using auxiliar partition
{[n]\Pmax, Pmax ∩ P̃}).

Next, we estimate the acceptance probability of πm,n,t on any possible input
of Bob. Note that the first witness obtained in the commit phase is the output
of πm,n,t.

Proposition 1. Let W = (a,Q) the first witness that Alice obtains in the com-
mit phase of πm,n,t. Then, if W has thickness � ≤ t, Alice accepts any adver-
sarial proof with probability p ≤ 2−n(1−t)/2+2. In that case, Bob knows at least
n(1 − t)/2 bits of a.

Proof. Recall that in the protocol r = � 1−t
2 n�, and let E = (E1, . . . , Er) be

the random variable (uniformly distributed over Fr
2) that Alice uses to challenge

Bob∗. For i ∈ [r], let B∗
i = (L∗

i , R
∗
i ) be the adversarial random variables that

Bob∗ uses to sample the r matrices in the commit phase of π. Let [Li,Ri] =
Bi ← B∗

i the actual matrices. Denote with Δi their correspondent underlying
matrices. Each Δi defines a unique partition Pi of [n], with thickness �i ∈ [ 1

n , 1].
We want to upper bound the probability of Alice accepting in πm,n,t with

� ≤ t. Denote with Accept this event. Consider the r.v. E∗ = (E∗
1 , . . . ,E∗

r), given
by:

E∗
i =

{
0 i if �i > t′ + �

1 if �i ≤ t′ + �



380 E. Larraia

where t′ = 1−t
2 is positive if t ∈ [ 1

n , 1). We first look at the probability of Alice
accepting the ith proof,

P [Accepti] =
1
2
(P [Accepti | Ei → 0] + P [Accepti | Ei → 1])

≤ 1
2
(P [Accepti | Ei → 0, E∗

i → 0] + (P [Accepti | Ei → 0, E∗
i → 1]

+ P [Accepti | Ei → 1, E∗
i → 0] + P [Accepti | Ei → 1, E∗

i → 1])
= p0,0 + p0,1 + p1,0 + p1,1.

Consider the cases:

(ei, e
∗
i ) = (0, 1). If Alice uses W̃i = Wi and �i ≤ t′ + � (i.e. 1 − �i ≥ 1 − t′ − �),

by Lemma 1 we bound p0,1 ≤ 2−n(1−�i) ≤ 2−n(1−t′−�).
(ei, e

∗
i ) = (1, 0). If Alice uses W̃i = W+ = Wi +W and �i ≥ t′ + � (i.e. �i − � ≥ t′,

with t′ ≥ 0 is equivalent to |�i − �| ≥ t′), by Lemma 2 we have �+ ≤ 1 − |�i −
�| ≤ 1 − t′, and Lemma 1 bounds p1,0 ≤ 2−n(1−�+) ≤ 2−n(1−(1−t′)) = 2−nt′

.

Now, observe that by hypothesis � ≤ t, and therefore 1−t
2 = t′ = min{1 −

t′ − �, t′}. From the above we deduce, (1) if Bob∗ does not guess Alice’s coin Ei

with his own coins E∗
i then he has to guess at least n(1 − t)/2 bits of a, (2) in

that case we bound pb,b+1 ≤ 2−nt′
= 2−n(1−t)/2.

We have to give up in bounding p0,0 and p1,1 as Bob∗ can always choose
�i appropriately to pass the test with high probability (e.g. �i = 1, �i = �
respectively). As observed, in these cases Bob∗ is guessing Alice’s coin ei with
his own coin e∗

i . It is now easy to finish the proof as follows:
Let Guess be the event {e ← E} ∩ {e ← E∗}, is clear that if ¬Guess, then

exist i0 s.t. ei0 ← Ei0 and ei0 ⊕ 1 ← E∗
i0

, we can write

P [Accept] = P [∩r
i=1Accepti]

≤ P [(∩r
iAccepti) ∩ Guess] + P [(∩r

iAccepti) | ¬Guess]
≤ P [Guess] + P [Accepti0 | Ei0 → ei, E

∗
i0 → ei + 1]

≤ 2−r + 2−n 1−t
2 +1

Therefore Alice accepts and Bob∗ knows n(1 − t)/2 bits of a with probability at
most 2−n(1−t)/2+2.

Remark on Proposition 1. The above result ensures two things: First, if Bob
inputs a matrix whose columns do not add to the same constant value he is
forced to take a guess on some bits of a. As we saw in Sect. 3.3 this is enough to
implement the extended transfers securely. Second, setting the thick parameter
t appropriately we can rule out a wide range of adversarial inputs with over-
whelming probability in n. For example, the adversarial input IIKNP = [L,R]
of the attack in the IKNP extension has all its columns adding up to distinct
elements, i.e. its underlying partition is the thinnest possible partition of [n],
PIKNP = {{1}, . . . , {n}}. Since t ≥ 1

n , this input is rejected with overwhelming
probability.



Extending Oblivious Transfer Efficiently 381

Simulating a malicious Alice∗ S externally sends (Alice, corrupt) to cPADm,n. Next, it runs
an internal execution of π. In step 1 S does nothing (acting as πB). In step 2, S internally
gets adversarial ã as input to the inner OT . S externally sends (corruptAlice, sid, ã) to

cPADm,n, obtaining matrix Q̃0. It samples at random r vectors σi ∈ F
m
2 , and for each it

sets n sharings [Li,Ri] (i.e. lji ⊕ rj
i = σi for j ∈ [n]). Let Qi a m × n matrix such that

qj
i = lji ⊕ ãj · σi, S internally gives [Q̃0,Q1, . . . ,Qr] to A in step 2.

Let ẽ ∈ F
r
2 the adversarial challenge that S internally gets from A in step 3. If ei = 0, S

prepares proof (σi, [Li,Ri]). If ei = 1, S prepares proof (σi,+, [Li,+,Ri,+]), where σi,+
is sampled at random, and [Li,+,Ri,+] defines n sharings of σi,+. Then S internally sends
the r proofs to A in step 4. If πA aborts in step 5, S externally sends to cPADm,n message
(corruptAlice, sid, ⊥). Lastly, S outputs whatever πA outputs and halts.

Simulating a malicious Bob∗ S externally sends (Bob, corrupt) to cPADm,n and as a response
obtains input BE = [LE ,RE ]. It then sets πB’s input to BE , and runs an internal execu-
tion of π up to step 5 (πB is controlled by A). In step 2, A specifies an m(r + 1) × 2n
matrix [[L0, . . .Lr], [R0, . . .Rr]] as input to OT n

m(r+1), and in step 4 A specifies r proofs

(σ̃i, [L̃i, R̃i])i∈[r].
Next, S runs step 5 of its internal copy of πm,n,t, it sets flag Rabort to true iff it resulted
in abort, but it does not tell A whether or not she passed. If Rabort is true S externally
sends (corruptBob, sid, ⊥) to cPADm,n, outputs what πB outputs and halts. Otherwise, it
computes the r + 1 associated m × n matrices Δi of the (adversarial) input a given to

OT n
m(r+1). For each i ∈ [r], S finds the indices j ∈ [n] such that σ̃i �= δj

i ⊕ ei · δj
0 (if

any). Denote this subset of [n] as G. Now, for those j ∈ G, S finds the first k ∈ [m] such

that σ̃i,k �= δj
i,k, then it sets ãj = lji,k ⊕ l̃ji,k. Lastly, if G is empty, S externally sends

(deliver, sid) to cPADm,n. Otherwise it sends (corruptBob, sid, [L0,R0], ã, G) to cPADm,n.
S tells to abort to A iff cPADm,n says so, outputs what πB outputs and halts.

Simulating an honest execution S gets (sid) from cPADm,n, runs an internal execution of
π and halts.

a Recall how they are defined, i.e. Δi has columns δj
i = lji ⊕ rji for i ∈ [r] ∪ {0},

j ∈ [n].

Fig. 6. The ideal adversary for cPAD

Putting the Pieces in the UC Framework. We have not yet captured the
notion of having blocks of a randomly distributed in Bob’s view, it is resolved
with a simulation argument. More concretely, we show a reduction to OT n

m(r+1)

with perfect security against Alice∗, and statistical security against Bob∗.

Theorem 1. In the OT n
m(r+1)-hybrid, in the presence of static active adversaries,

the output of protocol πm,n,t and the output of the ideal process involving cPADm,n

are 2−n(1−t)/2+2 close.

Proof. Let E denote the environment, and S be the ideal world adversary. S
starts invoking an internal copy of A and setting dummy parties πA and πB.
It then runs an internal execution of π between A, πA, πB, where every incom-
ing communication from E is forwarded to A as if it were coming from A’s
environment, and any outgoing communication from A is forwarded to E . The
description of S is in Fig. 6.

We now argue indistinguishability. Let Dist be the event of having E distin-
guishing between the ideal and real process. We bound the probability of Dist
occurring conditioned on corrupting at most one of the parties.

Perfect security for Bob (EXECπ,E,A ≡ EXECφ,E,S). If Alice is malicious, then
what E gets to see from Bob’s ideal transcript is (B, [Q̃0,Q1 . . . ,Qr]), (σ̃i,



382 E. Larraia

[L̃i, R̃i])i∈[r]), where B = [L,R] is the input, i.e. n sharings of, say, σ0. Matrix
Q̃0 is consistent with B and with adversarial choice ã (see Fig. 1), hence by def-
inition of S and the robustness of OT n

m(r+1), matrix [Q̃0,Q1, . . . ,Qr] is exactly
distributed as in the real process. Furthermore, if ẽi = 1, then σ̃i = σi,+ is
randomly sampled, whereas in the real process σ̃i = σ0 ⊕ σi, with σi being in
the private part of Bob’s transcript. Therefore the proofs of the ideal and real
process are identically distributed. We conclude that real and ideal transcripts
are identically distributed, and therefore Pr[Dist|corruptAlice] = 0.

Statistical security for Alice (EXECπ,E,A
s≈ EXECφ,E,S). For the case Bob is cor-

rupted, we first note that up to step 5, both processes are identically distributed
because S runs an internal copy of πm,n,t using input [LE ,RE ] specified by E .
Next, say [L0,R0] is �-thick. Then, if � ≤ t, by Proposition 1, the size of G is
at least n(1 − t)/2 with overwhelming probability (in n), thus cPADm,n does
not abort with probability p ≤ 2−n(1−t)/2. By Proposition 1 again the ideal and
the real processes abort on thin inputs except with probability p ≤ 2−n(1−t)/2+2

(i.e. we do not care if E distinguishes in this case). On the other hand, if � > t
and the internal copy of πm,n,t did not abort (if aborts, so does cPADm,n by
definition of S), then we claim that the output of both processes are identically
distributed. This follows from (1) the output matrix [L0,R0] is extracted by S,
and looking closely at the proof of Lemma1, we deduce (2) if j ∈ G, then for
some i ∈ [r], Bob∗ “decommits” to σ̃i �= δj

i ⊕ ei · δj
0, the real bit aj is exactly as

the one extracted by S; (3) if j /∈ G, then j is such that for each i ∈ [r], Bob∗

is decommitting to σ̃i = δj
i ⊕ ei · δj

0. In this case, the system of equations given
in the proof of Lemma1 collapses to lj = l̃j ; rj = r̃j . One sees that if E could
tell anything from a|[n]\G, he could equally tell the same before the prove phase,
contradicting the security of the underlying OT n

m(r+1).
We have argued Pr[Dist|corruptBob] ≤ 2−n(1−t)/2+2.

Completeness. For the case none of the parties are corrupted, indistinguishability
follows from the security of the underlying OT n

m(r+1).
Adding up, E distinguishes with probability Pr[Dist] ≤ 2−n(1−t)/2+2. This

concludes the proof.

4.4 Another Look at the Outer Reduction

Here we take a different perspective for the IKNP reduction that fits better
with our partition point of view (as defined in Sect. 4.3). We aim to give some
intuition of the underlying ideas, and the reader should by no means take the
following discussion as formal arguments.

For an illustrative example let us first look at the attack of the protocol in
the IKNP extension. A malicious Bob∗ was giving input matrix B with all the
columns adding up to distinct elements. Consequently its underlying partition is
PIKNP = {{1}, . . . , {n}}. This structure on B is such that all but one of the bits
of both pads are known to Bob∗. One can see this as splitting the query space
F

n
2 as n copies of F2, namely Q =

⊕n
i=1 F2. To search for the secret vector a, one



Extending Oblivious Transfer Efficiently 383

just have to brute-force each summand separately and use the CRF to compare.
After n · |F2| = 2n calls the query space is exhausted, i.e. even computationally
bounded environments would distinguish between the ideal and the real process.

We want to assign to each possible matrix input B = [L,R]] a unique struc-
ture of the query space that the environment is forced to use towards distin-
guishing. In other words, we want to establish a correspondence between the
partition implicitly defined in B, and the possible ways to split the query space
Q = F

n
2 .

Let P be any partition of [n], express it as P = {P1,1, . . . , Pq1,1, . . . , P1,n, . . . ,
Pqn,n} where for i ∈ [n], j ∈ [qi], part Pj,i is either empty or is of size i (i.e.
there are qi parts of size i in P). The type of P is the vector q = (q1, . . . , qn) ∈
{[n] ∪ {0}}n. The q-type query space, is the vectorial space Qq =

⊕n
i=1 Qq,i,

where Qq,i is the ith block of Qq, and stands for qi copies of an F2-vectorial
space of dimension i.

Thus, the type of PIKNP corresponds to vector q = n·e1, and the query space
the environment was using to brute-force Alice’s secret a is precisely Qn·e1 . On
the other hand, honest inputs always define the trivial partition PH = {[n]} with
type q = en, the reduction against a semi-honest receiver in [IKNP03], based
security arguing that the environment would have to brute-force F

n
2 , which is

the query space Qen
.

Now, the map f : B �→ Qq, where PB is q-type, is well defined. To see this,
just observe that the relation in P [n] defined as P ∼ P ′ iff “both partitions are
of same type” is an equivalence relation, and look at the chain

Mm×n
g1−→ P [n] g2−→ (P [n]/ ∼)

g3−→ V
Δ �→ PΔ �→ [PΔ]∼ = q �→ Qq

We see that f = g3 ◦ g2 ◦ g1 is well defined.
From this one can imagine how the reduction would work. cPAD could check

the thickness of the adversarial B, and reject if is less than a fixed parameter t.
This ensures that the structure of the query space contains at least one block of
size big enough, wasting the chances of the environment to search through it in
reasonable time. Unfortunately, with this reduction the composition of the inner
and outer protocols renders worst choices of parameters.

5 Concluding the Construction

In this section we prove the main result of the paper. For a given security para-
meter n recall that t is a parameter lying in interval [ 1

n , 1), and r = � 1−t
2 n�.

Observe that the results of Sect. 4 break down for t = 1. This corresponds to a
superfluous πm,n,1 (no checks at all). In other words, a malicious Bob∗ can input
any possible bad-formed matrix B to the IKNP extension, in which case there
is no security.

Corollary 1. In theOT n
m(r+1)-hybrid, for any t ∈ [ 1

n , 1) protocol ρπm,n,t/cPADm,n

UC-realizes OT m
n in the presence of static active adversaries, provided the environ-

ment is given access to at most 2o(n) queries to a CRF.



384 E. Larraia

Proof. The result follows applying the Composition Theorem of [Can01]. By
Claim the error simulation for ρ is eρ = 2−n/2+o(n)+2, and by Theorem1 the
error simulation for πm,n,t is eπ = 2−n(1−t)/2+2. Using that (1 − t)/2 < 1/2 if
t > 0, and the transitivity of the composition operation, the error simulation for
ρπm,n,t/cPADm,n is e = eρ + eπ ≤ 2−n(1−t)/2+o(n)+3.

5.1 Complexity and Choice of Parameters

For the computational overhead, we emphasize that a cryptographic primitive is
still needed to implement the actual extended transfers (we are using the IKNP
extension). To implement m = poly(n) transfers, in the test Alice and Bob have
to XOR rm(2n+1) bits. Thus, per extended OT each participant needs to XOR
O((1 − t)n2) bits. The communication complexity (number of bits transferred
per OT) turns out to be equivalent. The test adds a constant number of rounds
to the overall construction, concretely 2 extra rounds.

In terms of the seed expansion we can do it better. For a security level of s
bits in the reduction, one need roughly n ≈ 2

1−t (s + o(n) + 3) OT seeds. One
can measure the quality of the reduction looking at the seed expansion factor
exp(t) = 2

1−t . It is clear that exp(t) tends to 2, when t → 1
n and n → ∞. One only

need to halve the security parameter of the IKNP reduction (asymptotically).
Practical choice of parameters are also very efficient. For example, to imple-

ment about 1, 000, 000 transfers, with security of s = 64 bits, setting t = 1
16 , one

needs roughly n ≈ 186 OT seeds. For security level s = 128, one would need
roughly 323 OT seeds.

5.2 Open Problems

In the reductions for ρ and π the security parameter suffers an expansion factor
of 2. We ask whether one can remove this overhead whilst still maintaining
security against computational unbounded receivers in the inner protocol.

In the area of secure function evaluation, recently OT has been used to
boost the efficiency of two-party protocols [NNOB12] and their counterparts in
the multiparty case [LOS14]. A key part on the design of such protocols was
the generation of authenticated bits, which in turn borrows techniques from the
IKNP extension. It would be interesting to see whether (a suitable modification
of) our protocol π can be used to generate such authenticated bits. This would
immediately give unconditional security (currently both constructions need a
random oracle), in terms of efficiency we do not know if this replacement would
bring any improvement at all.

Acknowledgments. This work has been supported in part by EPSRC via grant
EP/I03126X.



Extending Oblivious Transfer Efficiently 385

References

BCR86a. Brassard, G., Crépeau, C., Robert, J.M.: All-or-nothing disclosure of secrets.
In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–238.
Springer, Heidelberg (1987)

BCR86b. Brassard, G., Crépeau, C., Robert, J.-M.: Information theoretic reductions
among disclosure problems. In: FOCS, pp. 168–173 (1986)

Bea96. Beaver, D.: Correlated pseudorandomness and the complexity of private
computations. In: STOC, pp. 479–488 (1996)

Can01. Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: FOCS, pp. 136–145 (2001)

CK88. Crépeau, C., Kilian, J.: Weakening security assumptions and oblivious trans-
fer. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 2–7.
Springer, Heidelberg (1990)

CLOS02. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable
two-party and multi-party secure computation. In: STOC, pp. 494–503
(2002)

Cré87. Crépeau, C.: Equivalence between two flavours of oblivious transfers. In:
Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 350–354. Springer,
Heidelberg (1988)

Cré89. Crépeau, C.: Verifiable disclose for secrets and applications. In: Quisquater,
J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 150–
154. Springer, Heidelberg (1990)

EGL85. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing
contracts. Commun. ACM 28(6), 637–647 (1985)

GMW86. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but
their validity and a methodology of cryptographic protocol design (extended
abstract). In: FOCS, pp. 174–187 (1986)

GV87. Goldreich, O., Vainish, R.: How to solve any protocol problem - an efficiency
improvement. In: CRYPTO, pp. 73–86 (1987)

HIKN08. Harnik, D., Ishai, Y., Kushilevitz, E., Nielsen, J.B.: OT-combiners via secure
computation. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 393–411.
Springer, Heidelberg (2008)

IKNP03. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers
efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–
161. Springer, Heidelberg (2003)

IPS08. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious
transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 572–591. Springer, Heidelberg (2008)

IR89. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way
permutations. In: STOC, pp. 44–61 (1989)

Kil88. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–
31 (1988)

LOS14. Larraia, E., Orsini, E., Smart, N.P.: Dishonest majority multi-party com-
putation for binary circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part II. LNCS, vol. 8617, pp. 495–512. Springer, Heidelberg (2014)

LZ13. Lindell, Y., Zarosim, H.: On the feasibility of extending oblivious transfer.
In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 519–538. Springer,
Heidelberg (2013)



386 E. Larraia

Nie07. Nielsen, J.B.: Extending oblivious transfers efficiently - how to get robust-
ness almost for free. IACR Cryptology ePrint Arch. 2007, 215 (2007)

NNOB12. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to
practical active-secure two-party computation. In: Safavi-Naini, R., Canetti,
R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidel-
berg (2012)

PVW08. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and
composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 554–571. Springer, Heidelberg (2008)

Rab81. Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR Cryp-
tology ePrint Arch. 187 (1981)

Wie83. Wiesner, S.: Conjugate coding. SIGACT News 15, 78–88 (1983)
Yao82. Yao, A.C.-C.; Protocols for secure computations (extended abstract). In:

FOCS, pp. 160–164 (1982)



Author Index

Alwen, Joël 219
Aumasson, Jean-Philippe 306

Bernstein, Daniel J. 64
Bischof, Christian 288
Bogdanov, Andrey 274
Buchmann, Johannes 288
Buhrow, Benjamin 104

Cabarcas, Daniel 48
Chenal, Massimo 239

Dagdelen, Özgür 84, 288
Daniel, Erik 104
De Santis, Fabrizio 127
Dobraunig, Christoph 274

Eichlseder, Maria 274
El Bansarkhani, Rachid 84

Fitzpatrick, Robert 288
Fontaine, Caroline 199
Fouquet, Mireille 162

Gambs, Sébastien 199
García, Pablo 179
Geihs, Matthias 48
Ghadafi, Essam 327
Gilbert, Barry 104
Göpfert, Florian 84, 288
Güneysu, Tim 84

Hevia, Alejandro 179
Hinterwälder, Gesine 31
Hirt, Martin 219
Hutter, Michael 31

Janssen, Wesley 64
Jovanovic, Philipp 306

Kölbl, Stefan 259

Lange, Tanja 64
Larraia, Enrique 368
Lauridsen, Martin M. 274

Lauter, Kristin 3
Lolive, Julien 199
López-Alt, Adriana 3

Mariano, Artur 288
Maurer, Ueli 219
Mendel, Florian 274
Miret, Josep M. 162
Moradi, Amir 31

Naehrig, Michael 3
Nakamura, Dionathan 146
Neves, Samuel 306

Oder, Tobias 84
Onete, Cristina 199

Paar, Christof 31
Pandey, Sumit Kumar 348
Patra, Arpita 219
Pöppelmann, Thomas 84

Rass, Stefan 127
Raykov, Pavel 219
Rechberger, Christian 259
Riemer, Paul 104

Sánchez, Ana Helena 84
Saraswat, Vishal 348
Schläffer, Martin 274
Schwabe, Peter 31, 64, 84
Shea, Mike 104
Smetsers, Sjaak 64

Tang, Qiang 239
Terada, Routo 146
Tischhauser, Elmar 274

Valera, Javier 162
van de Graaf, Jeroen 179
van Gastel, Bernard 64
Viola, Alfredo 179

Yang, Bo-Yin 288


	Preface
	LATINCRYPT 2014
	Contents
	Invited Talks
	Private Computation on Encrypted Genomic Data
	1 Introduction
	2 Statistical Algorithms in Genetic Association Studies
	2.1 Hardy-Weinberg Equilibrium and the Pearson Goodness-of-Fit Test
	2.2 Linkage Disequilibrium
	2.3 Cochran-Armitage Test for Trend (CATT)
	2.4 Linear Regression

	3 Practical Homomorphic Encryption
	3.1 The Homomorphic Encryption Scheme

	4 Computation on Encrypted Data
	4.1 Encoding Genomic Data
	4.2 Computing Genotype and Phenotype Counts
	4.3 Modified Algorithms
	4.4 How to Set Parameters

	5 Performance
	6 Conclusion and Future Work
	References

	Cryptographic Engineering
	Full-Size High-Security ECC Implementation on MSP430 Microcontrollers
	1 Introduction
	2 The MSP430X Microcontroller Architecture
	3 Implementation of Curve25519
	4 Implementation of Modular Multiplication in F2255-19
	4.1 Multiplication Using Carry-Save Representation
	4.2 Operand-Caching Multiplication
	4.3 Karatsuba Multiplication

	5 Performance and Power Consumption Results
	5.1 Performance
	5.2 Power Consumption

	6 Conclusion
	References

	Efficient Integer Encoding for Homomorphic Encryption via Ring Isomorphisms
	1 Introduction
	1.1 Related Work
	1.2 Organization

	2 BV-RLWE
	2.1 Notation
	2.2 Scheme
	2.3 Noise Analysis
	2.4 Security

	3 Integer Encoding
	3.1 Bit Coefficient Encoding
	3.2 Ring Isomorphism Encoding
	3.3 SIMD
	3.4 Modulus Switching

	4 Integer Encoding Efficiency
	4.1 Benchmark Function
	4.2 Evaluating Lower Bounds
	4.3 Results

	References

	TweetNaCl: A Crypto Library in 100 Tweets
	1 Introduction
	2 Salsa20, HSalsa20, and XSalsa20
	3 Poly1305
	4 SHA-512
	5 Curve25519 and Ed25519
	6 Auditability: Two Case Studies
	References
	A The 100 Tweets
	B A Python script to convert tweetnacl.c into the 100 tweets
	C A Python script to print tweetnacl.h

	High-Speed Signatures from Standard Lattices
	1 Introduction
	2 Preliminaries
	3 The Bai-Galbraith Signature Scheme
	3.1 Description of the BG Signature Scheme
	3.2 Optimizing Rejection Sampling

	4 Security Analysis and Parameter Selection
	4.1 Hardness of LWE
	4.2 Hardness of SIS
	4.3 An Instantiation for Software Efficiency

	5 Implementation Details
	5.1 High-Level Optimizations
	5.2 Low-Level Optimizations in AVX and AVX2
	5.3 Low-Level Optimization in NEON

	6 Results and Comparison
	References

	Block Cipher Speed and Energy Efficiency Records on the MSP430: System Design Trade-Offs for 16-Bit Embedded Applications
	1 Introduction
	2 Related Work
	3 Algorithms and Implementation Variations
	3.1 AES
	3.2 SPECK

	4 Implementation Details
	4.1 AES 8-BIT
	4.2 AES 32-BIT
	4.3 AES 16-BIT
	4.4 SPECK
	4.5 MSP430 Features and Capabilities

	5 Results and Discussion
	5.1 Experimental Setup and Procedure
	5.2 Results and Discussion

	6 Conclusions
	References
	7 Appendix A Code Listings

	Side-Channel Attacksand Counter measures
	On Efficient Leakage-Resilient Pseudorandom Functions with Hard-to-Invert Leakages
	1 Introduction
	2 Background
	2.1 Pseudorandom Generators
	2.2 Pseudorandom Functions

	3 The Leakage Model
	4 Security with Leakages
	5 Efficient Pseudorandom Functions
	5.1 Concrete Security Analysis
	5.2 Theoretical Analysis with Hard-to-Invert Leakages
	5.3 Hardware Implementations with Super-Exponential Leakages

	6 Conclusion
	References

	RSA and Elliptic Curve Least Significant Bit Security
	1 Introduction
	2 Preliminaries
	2.1 BKGCD Algorithm
	2.2 PAR() Function

	3 Methods and Implementations
	3.1 RSA Algorithm
	3.2 ECDH Algorithm
	3.3 Relic Cryptographic Library

	4 Results
	4.1 ACGS Results
	4.2 BS Results

	5 Conclusions
	References

	Isogeny Volcanoes of Elliptic Curves and Sylow Subgroups
	1 Introduction
	2 Preliminaries
	3 A Particular Chain of -Isogenies
	3.1 Behaviour of the -Sylow Subgroup Through Particular  -Isogenies
	3.2 From Floor to Stability Level and Back to Floor
	3.3 An Example

	4 Going Around the Crater
	References

	Privacy
	Beating the Birthday Paradox in Dining Cryptographer Networks
	1 Introduction
	2 Preliminaries
	3 Sequential Repetition of DC-Nets
	4 Analysis of Sequential Repetition of DC-Nets
	5 Parallel Repetition of DC-Nets
	6 Analysis of Parallel Repetition of DC-Nets
	7 Instantiating the Two Approaches
	8 Jamming Attack on Golle-Juels' DC-Net
	A The Golle-Juels' DC-Net
	References

	Private Asymmetric Fingerprinting: A Protocol with Optimal Traitor Tracing Using Tardos Codes
	1 Introduction
	2 Tardos Codes
	3 Security Model
	3.1 System and Adversary Models
	3.2 Security and Privacy Requirements

	4 Privacy-Preserving Asymmetric Fingerprinting Using Tardos Codes
	4.1 Protocol Description
	4.2 Security and Privacy Properties

	5 Conclusion
	References
	A The Full Security Model
	A.1 Watermarking and Fingerprinting Assumptions
	A.2 A Formal Description of PFP-TT Schemes


	Anonymous Authentication with Shared Secrets*
	1 Introduction
	1.1 Anonymous Authentication
	1.2 Our Contributions
	1.3 Related Work
	1.4 Outline

	2 Definitions
	2.1 Constructive Cryptography and Exact Security
	2.2 Message Authentication Codes (MAC)

	3 Anonymous Authentication as Real/Ideal Transformations
	3.1 Anonymous Message Authentication
	3.2 Anonymous Entity Authentication

	References

	Cryptanalysis
	On Key Recovery Attacks Against Existing Somewhat Homomorphic Encryption Schemes
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions
	1.3 Structure of the Paper

	2 Preliminaries
	2.1 Homomorphic Encryption
	2.2 Security Definitions

	3 Key Recovery Attack Against the vDGHV10 Scheme
	4 Key Recovery Attack Against the BV11b Scheme
	4.1 The BV11b SHE Scheme
	4.2 Our Key Recovery Attack

	5 Key Recovery Attack Against the BV11a Scheme
	5.1 The BV11a SHE Scheme
	5.2 Our Key Recovery Attack
	5.3 Attacks Against the BGV12 and Bra12 SHE Schemes

	6 Key Recovery Attack Against the GSW13 SHE Scheme
	6.1 The GSW13 SHE Scheme
	6.2 Our Key Recovery Attack

	7 Conclusion
	References

	Practical Attacks on AES-like Cryptographic Hash Functions
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Related Work
	1.4 Rebound Attacks

	2 Description of GOST R
	2.1 Block Cipher E
	2.2 Notation
	2.3 Differential Properties

	3 Attack on GOST R
	3.1 Constructing the Differential Characteristic
	3.2 Finding the Message Pair
	3.3 Extending the Attack

	4 Application to Other AES-based Hash Functions
	5 Conclusion
	References
	A Solving Conditions
	B Colliding Message Pair

	Key Recovery Attacks on Recent Authenticated Ciphers
	1 Introduction
	2 Notation
	3 AVALANCHE
	3.1 PCMAC
	3.2 RMAC
	3.3 Recovering the PCMAC Key
	3.4 Recovering the RMAC Secret Parameters

	4 Calico
	4.1 Specification
	4.2 MAC Key Recovery

	5 RBS
	5.1 Specification
	5.2 Cryptanalysis of RBS

	6 Conclusion
	References

	Tuning GaussSieve for Speed
	1 Introduction
	2 Background and Notation
	3 The GaussSieve Algorithm
	4 Approximate Gauss Reduction
	5 Using Multiple Randomized Bases
	6 Reducing the Gaussian Parameter
	7 Implementation and Experimental Results
	7.1 Our Timings

	References

	Analysis of NORX: Investigating Differential and Rotational Properties
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Core Components of 
	2.3 Weak States

	3 Differential Cryptanalysis
	3.1 Mathematical Models
	3.2 [] -- The Differential Search Engine
	3.3 Applications of 
	3.4 Further Applications

	4 Rotational Cryptanalysis
	5 Conclusion
	References
	A Addenda to Differential Cryptanalysis
	B CVC Code
	C Selected Differentials
	C.1 Experimental Verification of 
	C.2 Probability-1 Differentials in G
	C.3 Best Differential Characteristics for F4
	C.4 Best Iterative Differentials for F
	C.5 Best Differentials Having Equal Columns of Weight 44 in F

	D Addenda to Rotational Cryptanalysis

	Cryptographic Protocols
	Efficient Distributed Tag-Based Encryption and Its Application to Group Signatures with Efficient Distributed Traceability
	1 Introduction
	2 Preliminaries
	3 Syntax and Security of Dynamic Group Signatures with Distributed Traceability
	4 Building Blocks
	5 Our Generic Construction
	6 Instantiations in the Standard Model
	References

	How to Leak a Secret and Reap the Rewards Too
	1 Introduction
	1.1 Motivation
	1.2 Our Contribution
	1.3 Related Work
	1.4 Outline of the Paper

	2 Preliminaries
	2.1 Public-Key Encryption Scheme
	2.2 Commitment Scheme
	2.3 Ring Signature

	3 Formal Model and Security Notions
	3.1 Designated Identity Verifier Ring Signature
	3.2 Correctness
	3.3 Unforgeability
	3.4 Signer Anonymity
	3.5 Designated Identity Verifier Anonymity
	3.6 Unpretendability

	4 Generic Construction of a DIVRS
	5 Security Proof
	5.1 Correctness of the Proposed Scheme
	5.2 Unforgeability
	5.3 Unpretendability
	5.4 Signer Anonymity
	5.5 Designated Identity Verifier Anonymity

	References

	Extending Oblivious Transfer Efficiently
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Set Partitions
	2.3 Universally Composable Framework

	3 The IKNP Approach
	3.1 IKNP in a Nutshell
	3.2 Modularizing the Extension
	3.3 The Reduction

	4 Generating Correlated Pads
	4.1 Warming Up: Committing Bob to His Input
	4.2 The Protocol
	4.3 Security Analysis
	4.4 Another Look at the Outer Reduction

	5 Concluding the Construction
	5.1 Complexity and Choice of Parameters
	5.2 Open Problems

	References

	Author Index



