
Anomaly Detection and Diagnosis for Automatic
Radio Network Verification

Gabriela F. Ciocarlie1, Christopher Connolly1, Chih-Chieh Cheng1,
Ulf Lindqvist1, Szabolcs Nováczki2, Henning Sanneck2(B),

and Muhammad Naseer-ul-Islam2

1 SRI International, Menlo Park, USA
{gabriela.ciocarlie,christopher.connolly,
chih-chieh.cheng,ulf.lindqvist}@sri.com

2 Nokia, Budapest, Hungary
{szabolcs.novaczki,henning.sanneck,
muhammad.naseer-ul-islam}@nsn.com

Abstract. The concept known as Self-Organizing Networks (SON) has
been developed for modern radio networks that deliver mobile broadband
capabilities. In such highly complex and dynamic networks, changes to
the configuration management (CM) parameters for network elements
could have unintended effects on network performance and stability. To
minimize unintended effects, the coordination of configuration changes
before they are carried out and the verification of their effects in a
timely manner are crucial. This paper focuses on the verification problem,
proposing a novel framework that uses anomaly detection and diagno-
sis techniques that operate within a specified spatial scope. The aim is
to detect any anomaly, which may indicate actual degradations due to
any external or system-internal condition and also to characterize the
state of the network and thereby determine whether the CM changes
negatively impacted the network state. The results, generated using real
cellular network data, suggest that the proposed verification framework
automatically classifies the state of the network in the presence of CM
changes, indicating the root cause for anomalous conditions.

Keywords: Network automation · Self-organized networks (SON) ·
SON verification · Anomaly detection · Diagnosis

1 Introduction

Modern radio networks for mobile broadband (voice and data) are complex and
dynamic, not only in terms of behavior and mobility of users and their devices,
but also in terms of the many elements that make up the network infrastructure.
Network degradations that cause users to experience reduced or lost service
could have serious short- and long-term impact on the operator’s business, and
must therefore quickly be resolved as part of network management. Effective
management of complex and dynamic networks requires some form of automated
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
R. Agüero et al. (Eds.): MONAMI 2014, LNICST 141, pp. 163–176, 2015.
DOI: 10.1007/978-3-319-16292-8 12

164 G.F. Ciocarlie et al.

detection of problems such as performance degradation or network instability,
and also automation support for timely and effective diagnosis and remediation
of the detected problems. There are many factors that could cause degradations
in radio network performance: hardware faults, software faults, environmental
conditions (like weather and changes in the infrastructure), but degradations
can also stem from unintended effects of network configuration changes.

The need for adaptive, self-organizing, heterogeneous networks becomes press-
ing given the explosion of mobile data traffic with increased use of smartphones,
tablets, and netbooks for day-to-day tasks. Expectations for mobile networks
have grown along with their popularity, and include ease of use, high speed, and
responsiveness. Heterogeneous Networks (HetNet) can offer these capabilities,
providing virtually “unlimited” capacity and “ubiquitous” coverage. However, a
high level of distribution in the network infrastructure introduces higher com-
plexity, which requires additional mechanisms such as Self-Organizing Networks
(SON) concepts.

In order to prevent network-level degradation, actions that change network-
element configurations must either be coordinated a priori or their effects must
be verified (or both approaches could be used complementarily). Verification
is a hard problem for several reasons: actions can be the result of automated
or human decisions; networks for mobile broadband are very complex; some
parameters such as user behavior cannot be controlled; and no established simple
indicator of “system health” exists.

1.1 SON Verification

Before a system reaches the verification process, it may undergo a pre-action
SON coordination process. Based on rules provided by human experts or auto-
matically determined, SON coordination aims to reduce the risk of processing
actions that lead to conflicts and degraded states [14]. Performance Manage-
ment (PM) data is continuously collected from network cells in the form of Key
Performance Indicators (KPIs), which are a set of selected indicators used for
measuring network performance and trends: call-drop statistics, channel-quality-
indicator statistics, handover statistics, throughput, etc. Based on the KPIs col-
lected from all cells in the network or domain, the operation of a SON-enabled
system in a certain network domain should be verified to ensure that the new
actions improved the network performance rather than negatively impacting it.

The SON verification process must occur as quickly as possible in order to
correlate detection results based on PM history with the history of Configuration
Management (CM) changes. If verification indicates that the network entered a
normal state, then the SON coordination process leverages knowledge of accept-
able actions and combinations of actions given the configuration history and the
system’s current state. In addition, it is desirable to determine and learn which
actions and combinations of actions are unacceptable, given the same history
and state, along with enabling action reversal where applicable.

Anomaly Detection and Diagnosis for Automatic Radio Network Verification 165

1.2 Contributions

This paper proposes a novel SON verification framework using anomaly detection
and diagnosis techniques that operate within a spatial scope larger than an indi-
vidual cell (e.g., a small group of cells, a geographical region like a town section, an
existing administrative network domain, etc.). The aim is to detect any anomaly
which may point to degradations and eventually faults caused by an external or
system-internal condition or event. CM changes (which reflect actions, e.g., by
human operators or SON functions or optimization tools), and KPIs (which reflect
the impact of the SON actions on the considered part of the network) are analyzed
together to characterize the state of the network and determine whether it was
negatively impacted by CM changes. Main contributions include:

– automatically identifying different network states using the KPI measure-
ments from all the cells/network in scope,

– using intrinsic knowledge of the system to automatically classify the states as
either normal or abnormal,

– determining the most likely explanation for the performance degradation.

2 Anomaly Detection and Diagnosis for SON Verification

Our approach is comprised of two main steps: (1) detecting anomalies for a
group of entities (i.e., cells) using topic modeling combined with (2) diagnosing
any anomaly using Markov Logic Networks (MLNs), which rely on probabilistic
rules to discern between different causes.

Topic modeling [16] is a type of statistical model that allows efficient topic
training and inference of mixing proportion of topics. It was initially used for
discovering topics in documents, where a topic is defined as a probability distri-
bution over words. The benefit of topic modeling is that each topic is individually
interpretable and characterizes a coherent set of correlated terms.

Markov Logic Networks (MLN) [13] are an approach for probabilistic reason-
ing using first-order predicate logic. As with traditional first-order logic, hypothe-
ses can be described in terms of supporting evidence and conclusions about
network properties. In contrast to first-order logic, MLNs permit rule weighting
and an explicit representation of the probabilities associated with logical state-
ments. As a result, one can think of MLNs as providing the infrastructure of a
probabilistic knowledge base, which can operate using noisy or incomplete data
and can incorporate diverse data sources into a common framework for analysis.

2.1 Overall Framework

Topic modeling is applied to the training KPI data from all the cells in scope,
leading to the construction of topic modeling clusters1 (indicators of the state
of the network), which are further classified by semantic interpretation as either

1 Given that we apply topic modeling to KPI data, for clarity, we will refer to topics
as clusters.

166 G.F. Ciocarlie et al.

normal or abnormal. Using the labeled clusters, the KPI data under test (i.e.,
subject to detection) leads to the mixture of weights for the different clusters
indicating the overall state of the network. For real deployment, testing data
can span any time or geographic scope (as a subset of the training geographic
scope), and may or may not overlap with the training data. This component is
well suited for this application domain, as we do not have any a priori notion
of what the different network states could be or how many types of states there
could be. Here, we generalize the concept of topic modeling to identify the states
(topics) of a system (i.e., the radio network). Furthermore, using semantic infor-
mation, states can be interpreted as either normal or abnormal, enabling the
detection of degradation in system’s state (see Sect. 2.3). Moreover, incremental
topic modeling can be used to capture new states over time [8].

In case of abnormal behavior, the diagnosis component is triggered. The
MLN inference is achieved by using CM change history information or any other
external information in form of an event sequence, along with the MLN rules and
their associated weights. The MLN rules are specific to this application domain
and are typically generated based on human expert knowledge. Rule weights can
be estimated or learned during operation, as new cases arise.

Figure 1 presents the detailed verification approach:

– Initially, for a given period of time, the KPI measurements of the group of
cells/network in scope are selected as the training dataset (D1) for generating
the topic modeling.

– The topic modeling clustering (M1) is applied to the training dataset (D1).
– The result of (M1) is a set of clusters representing the different states in which

the network can exist (D2). Each cluster has an associated weight correspond-
ing to the percentage of the network in the state represented by that cluster.

– Given the set of clusters (D2), the semantics of the KPIs are used to further
interpret the semantics of each cluster (M2).

– The result of (M2) is a set of labeled clusters that indicate if the network state
is either normal or abnormal (D3).

– The labeled clusters (D3) and the KPI measurements for test for the group of
cells in scope are used in a testing phase against the clusters (M3) to generate
the weight mixture indicating how normal or abnormal the network is.

– The result of (M3) is the weight mixture (D4) indicating the current state of
the network.

– The diagnosis component is triggered only if the cells in scope are abnormal.
Principal Components Analysis (PCA) (M4) is applied to the training dataset
(D1) to generate similar groups of cells. The result of (M4) contains groups of
cells (D5) that behave similarly; MLN inference is applied primarily on these
groups. Cell grouping is used to reduce MLN complexity.

– The groups of cells along with the CM change information (D5), external
events (e.g., weather event feeds) and MLN rules (generated either manually
based on human expert knowledge or automatically from other sources) are
used to generate the diagnosis information based on the MLN inference (M5).

– The result of (M5) is the diagnosis information for the abnormal cells within
the scope (D6).

Anomaly Detection and Diagnosis for Automatic Radio Network Verification 167

M3

KPI data for cells in scope under training

Generate topic modeling clusters using HDP

Clusters representing different network states

Interpret the semantics of the different clusters

Weight mixture indicating the current
network state

KPI data for
cells in

scope under
test

Labeled clusters representing network states

Test the KPI data against the clusters

Legend

data

method

D1

M1

D2

M2

D3

D4

D5

Generate groups of similar cells using PCA

Groups of cells for MLN inference

Generate diagnosis information using MLNs

Diagnosis information for anomalous cells

M4

D5

M5

D6

CM
changes

Weather
events

MLN
Rules

if anomalous

1) Network-level anomaly
detection

3) Visualization

2) Diagnosis

Fig. 1. Overall approach of the SON verification method applied to the group of cells
in scope. Data is depicted in blue and methods in pink. The dashed lines indicated
that an event is triggered in the presence of new evidence/data.

2.2 Anomaly Detection for SON Verification

The family of algorithms known as topic modeling [16] is well suited to the
SON verification domain because topic modeling can discover and infer themes
(topics) that constitute a hidden structure in a data set. In the set of KPI data
from multiple cells in a network, we do not have any a priori notion of what the
different network states could be or how many types of states there could be.
From the KPI data, topic models learn clusters of network states, and output the
codebook of the clusters and the mixing proportion of the clusters at each time
stamp. A codebook records a profile for each cluster (the average of the cluster,
called a centroid), and the clustering of an unknown query usually depends on
its similarity to the cluster’s profile.

Each cluster represents a state, characterized by its centroid. The mixing
proportion of clusters at each timestamp can be seen as a type of trigger for the
overall state of cells in scope. For our implementation, we used the Hierarchical
Dirichlet Process (HDP) algorithm [18]. As the name suggests, HDP is a hierar-
chical graphical model which extends the Latent Dirichlet Allocation (LDA) [4],
the most common topic modeling approach. For our context, the LDA model
represents a collection of M timestamps of KPI data from N cells. At each time
stamp, the KPI data is a mixture of K clusters, and the weight of each cluster is
represented by θ. For each cell n at time m, the KPI feature w can be classified
into one of the K clusters, determined by the hidden variable z.

Therefore, the goal of LDA models is to infer p(z|w) = p(w,z)∑

z
p(w,z)′ , which is usu-

ally intractable due to a complicated marginalization of hidden variables. Several

168 G.F. Ciocarlie et al.

solutions exist for approximating the inference, including variational inference [4]
and Gibbs sampling [10]. We considered the Gibbs sampling.

The inputs to LDA models are a collection of vectors containing feature values
derived from KPI data of all cells. The outputs of LDA models are a codebook
for K clusters, and a set of cluster mixture weights θ for each timestamp m.

By default, LDA can only be applied to a single KPI feature (i.e., it considers
only one KPI feature value from cells in the network, and does clustering based on
it). However, our framework needs to consider multiple KPIs as a whole to deter-
mine network status. We extend the model to accommodate multiple features by
replacing the single feature w with multiple features wi, and associate each feature
to a codebook βi. We denote this model as multi-variate LDA (m-LDA). Note that
each cluster contains a histogram for every feature (KPI). The histogram repre-
sents the expected histogram of that feature value for the given scope (network
or group of cells) under one cluster. The major difference between LDA and HDP
is that for LDA both the number of topics at each timestamp and the number of
profiles are fixed, while for HDP they are automatically determined. The inputs
and outputs for HDP are the same as for LDA.

2.3 Cluster Interpretation

Using visual inspection, the topic modeling centroids can be characterized as
either normal or abnormal, but an automated interpretation module is necessary.
Consequently, we introduce a simple classifier for the centroids that considers
the characteristics of the KPIs. This classification can be achieved only for KPIs
that are not supposed to increase (e.g., drop call rate) or decrease (e.g., call
success rate) within certain bounds. To characterize each KPI for a given centroid
(represented as a normalized histogram with B bins, where pi is the proportion

allocated to bin i), we calculate its expected value as E[X] =
B∑

i=1

pi ∗ i.

A final score is computed as:

score =

⎧
⎪⎨

⎪⎩

|1−E[X]|
B−1 , if it should not increase

|B−E[X]|
B−1 , if it should not decrease

(1)

The following qualifiers are generated for the different score values:

label =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

VERY GOOD, if score < τ1

VERY BAD, if score > 1 − τ1

GOOD, if τ1 <= score < τ2

BAD, if 1 − τ2 <= score < 1 − τ1

RELATIVELY BAD, otherwise

(2)

where τ1, τ2 ∈ [0, 1] are the thresholds that determine the classification and are
empirically determined such that the quality of the (VERY) GOOD clusters is
high (i.e., τ1 = 0.05 and τ2 = 0.15). A cluster that has at least one BAD (any
type) histogram is considered an abnormal centroid; otherwise it is normal.

Anomaly Detection and Diagnosis for Automatic Radio Network Verification 169

2.4 Diagnosis for SON Verification

MLNs are well suited for diagnosis in this application domain because they can
be used to compute the most likely explanation for an event given data that is
noisy, incomplete or even contradictory. Probabilistic parameter values (weights)
can be learned through experience and user feedback. We approach the problem
of diagnosis in terms of expressing multiple hypotheses within the MLN rule set,
running the inference engine, then querying for the most likely explanations given
the observed conditions. We use the Probabilistic Consistency Engine (PCE) [1],
a very efficient MLN solver under continuous improvement.

We apply MLNs by reasoning over groups of cells (where groups can be geo-
graphically or behaviorally defined) at different times. PCA is applied to identify
groups of cells that behave similarly over all KPIs. By reasoning over groups,
we can improve the efficiency of the inference process, reducing the number of
entities (from cells to group of cells) on which the inference is performed. The
PCE input language consists of the following elements:

– Definition of types (also called sorts)
– Enumeration of the sets corresponding to each type
– Declarations of the predicates to be used, and the types of each argument
– A set of weighted clauses comprising the probabilistic knowledge base
– Assertions (predicate forms that express information that is known to be true)

Each clause is an expression in first-order logic. MLNs search for the most
likely explanation for the knowledge base in terms of the assignments of variables
to predicate arguments. MLNs accumulate the probabilities that each clause is
true given a particular variable assignment. One can also query the knowledge
base and ask for the probability that a specific predicate is true under a specific
variable assignment or ask how often a predicate is true in general.

Figure 2 presents an example of a PCE input specification, which includes
three types (sorts), called Time t, Group t and Mag t. In particular, the Group t
sort refers to PCA-derived groups of cells. The const declaration defines 486 cell
groups that we can reason over. We also have anomaly conditions derived from
the network-level anomaly detection component described above. In the MLN
excerpt here, we see two out of several hundred anomaly conditions. These two
declare that anomalies were observed in groups G39 and G46 at time interval
T2. Finally, we see three add statements. These are rules that link weather,
anomaly, and configuration information with hypotheses about the reasons for
network degradation. The final statements in the PCE input are ask statements
that query the state of the network for the probabilities of different hypotheses.

When applying MLNs to temporal data, decomposition of the timeline into
intervals or atomic units (individual timestamps or samples) is generally useful.
In some cases, rules might be needed to define temporal order, especially for
attempts to represent causality and delayed response to disruptive events. Time
(or sample number) can be applied as an extra argument in certain predicates.
In general, MLN solution times depend polynomially on the number of observa-
tions in the data, but will grow exponentially with the number of arguments to

170 G.F. Ciocarlie et al.

Fig. 2. Example of a PCE input specification

predicates. Therefore, the argument count should be kept low for all predicates
and, if necessary, the problem should be decomposed to maintain a low argument
count for all predicates used by the knowledge base.

When specifying an MLN, we normally start with rules and weight estimates
that represent a subject matter expert’s (SME’s) understanding of causes and
effects that determine network behavior. Moreover, the weights associated with
the MLN rules can be learned over time to provide a more accurate probabilistic
model for the observed situations. Several weight learning schemes exist, most of
which take the form of maximum-likelihood estimation with respect to a training
set. As more relevant training data is available, the MLN weights can be modified
to tune the probabilistic knowledge base to generate the best answers for a given
situation. Realistically, a SME might not be able to account for all possibilities
in advance. As unexpected cases arise, there will be a need to add rules during
the training phase to accommodate these cases. The new rules’ weights will also
need to be trained. Weight adjustment can be an ongoing process, but weight
stability will be the primary indicator that the MLN is working as expected.

3 Performance Evaluation

This section analyzes the performance of our framework applied to a real network
dataset. The experimental corpus consisted of KPI and CM data for approxi-
mately 4,000 cells, collected from 01/2013 to 03/2013. The KPIs have differ-
ent characteristics; some of them are measurements of user traffic utilization
(e.g. downlink or uplink data volume or throughput), while others are measure-
ments of call control parameters (e.g. drop-call rate and successful call-setup
rate).

Anomaly Detection and Diagnosis for Automatic Radio Network Verification 171

Most of the cells in the
network exhibit
abnormal CSSR and
CSSR_Ph1

Fig. 3. Codebook of cluster #8 generated by the HDP experiment. The cluster is
characterized by profiles of features, and each profile shows how the KPI value is
distributed across the network within this cluster. The red underlines denote the normal
value of each KPI. Under normal condition, most of the cells are supposed to be
concentrated around normal values.

3.1 Cluster Analysis

We experimented with the HDP approach on all cells in the network with valid
KPI data from 01/2013 to 03/2013. We trained the model on all timestamps
from this time range to produce the cluster profiles, and tested on the same
temporal and geographic scope to investigate the cluster semantics over the
whole network. However, for real-time testing, data could span any time and
geographic scope. We did not set the number of clusters, nor any constraints on
how they were constructed, in advance. The final number of clusters automat-
ically learned by our algorithm was 32. Figure 3 shows the codebook of cluster
#8, with 11 KPIs. We use this particular cluster as an example because it shows
one type of anomaly condition, corresponding to an abnormal network condition
in mid-February. The predominant level of cluster #8 along the entire period of

172 G.F. Ciocarlie et al.

January February March

P
ro

po
rt

io
n

of
 th

e

W
ho

le
 N

et
w

or
k

Fig. 4. The predominant level of cluster #8 as a time series.

time is shown in Fig. 4, which is generated by running the HDP model of Fig. 3
on all cells from the whole time span.

3.2 Cluster Interpretation

Since HDP modeling is an unsupervised learning technique, the generated clus-
ters have no associated semantics (normal or abnormal). We thus implemented
a simple classifier for the centroids, taking into consideration the characteristics
of the KPIs. This classification can be achieved only for KPIs that are not sup-
posed to increase (e.g., drop call rate) or decrease (e.g., call success rate). A clus-
ter that has at least one BAD (any type) histogram is considered an abnormal
centroid; otherwise it is normal. After analyzing all the clusters (where τ1 = 0.05
and τ2 = 0.15), our tool deemed 15 centroids as normal and 17 as abnormal.
Visual inspection confirmed the labels.

Given the outcome of the interpretation module, we further classified the
overall state of the network for February 2013, the month with more interesting
dynamics. Figure 5 presents the portion of the network in an abnormal state
for February 2013. We observe that overall 5–10% of the network exhibits some
abnormalities, and then for some periods of time a larger portion of the network
exhibits abnormalities. The diagnosis component will further identify the causes
for the observed anomalies.

3.3 Diagnosis Results

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Timestamp

S
um

 o
f a

bn
or

m
al

 c
lu

st
er

s'
 w

ei
gh

ts

02/01/2013 02/08/2013 02/15/2013 02/22/2013

Fig. 5. Portion of the network in abnor-
mal state for February 2013.

When we applied PCE to the Febru-
ary 2013 rule set, we asked for
instances of three different hypothet-
ical conditions: (1) normal behavior,
(2) weather-related degradation, and
(3) configuration changes. Our query
results are limited to predicates with
a greater than 70 % probability of
being true. The results are presented
in Fig. 7. The MLN used input regard-
ing changes in the wcel angle (antenna
tilt angle) parameter for approximately
4,000 cells for each day in Febru-
ary, along with weather reports that

Anomaly Detection and Diagnosis for Automatic Radio Network Verification 173

covered the whole area of interest for February 2013. The network found some
anomalies for 10 February 2013. In Fig. 7, we can observe that not all changes
in wcel angle served as anomaly triggers, since only a smaller portion of the cells
were affected. In our investigation, we also noticed a very interesting trend in
the change, which can indicate an automated action (Fig. 6).

100 70 50 30 10 20 40 60 80 120

Values

D
el

ta

0
10

0
20

0
30

0
40

0

Fig. 6. Deltas between the after and before
wcel angle values for all the cells affected

MLNs are generated in a semi-
automated fashion for each times-
tamp. Figure 8 presents the input
and output of PCE tool for Febru-
ary 10th 2013. We can observe that
MLN receives input from topic mod-
eling regarding the groups of cells that
were deemed anomalous as well as
input from the CM data as wcel angle
changes. Moreover, the MLN can also
accommodate a visibility delay of
up to n hours for which CM changes
can propagate and affect cells (n = 48
in our experiments); hence, the time
window in which cells are labeled as
anomalous in Fig. 7. The output of the
PCE tool consists of groups of cells
affected by CM changes and normal groups of cells (no cell group was affected
by weather events for that day).

0
2

4
6

Timestamp

P
er

ce
nt

ag
e

of
 c

el
ls

 r
ep

re
se

nt
in

g
cm

_e
ve

nt
s

[%
]

02/01/2013 02/08/2013 02/15/2013 02/22/2013

change in
wcel_angle
for 2,000
cells

~

0.
0

0.
1

0.
2

0.
3

Timestamp

P
er

ce
nt

ag
e

of
 c

el
ls

 r
ep

re
se

nt
in

g
w

ea
th

er
_e

ve
nt

s
[%

]

02/01/2013 02/08/2013 02/15/2013 02/22/2013

Fig. 7. Percentage of cells diagnosed as anomalous due to wcel angle changes (left) and
weather events (right). The dotted vertical line indicates when changes in wcel angle
started to occur.

174 G.F. Ciocarlie et al.

Fig. 8. Input and output of PCE tool for February 10th 2013

3.4 Computational Performance

We implemented the HDP models using the Gibbs sampling, which is a variant
of Markov Chain Monte Carlo (MCMC) method that is based on previous sam-
pling of hidden variables. Gibbs sampling is an iterative algorithm, which loops
through all timestamps within the valid time range in each iteration. The number
of iterations depends on the convergence of the algorithm, and is related to the
number of available data. With the full dataset from January to March, the algo-
rithm converged in 10 iterations. Let us denote the total number of timestamps
as N , the average number of valid cells at each timestamp as M , the average
number of topics at each timestamp as T , the number of global profiles as K,
the number of KPIs as F , and the number of digitized bins for features as W .
The complexity of topic sampling for each cell data is O(KF), and the complex-
ity of profile sampling for each topic is O(KFW). Therefore, the total complexity
for each Gibbs sampling iteration is O(N(MKF + TKFW)).

For the detection phase, the Gibbs sampling for computing the probabili-
ties has the same complexity as training. However, the deployed system usually
collects KPI data for one time point at a time (N = 1) and calls the evaluation
process. For a small set of test data like this, the number of iterations to reach
convergence is less than the training one, and the HDP evaluation process can
respond in real time. On a Linux system with 2.27 GHz CPU, an iteration for the
evaluation takes 2 s with a subset (∼ 1000) of all cells. The evaluation process
converged in 2 iterations.

Anomaly Detection and Diagnosis for Automatic Radio Network Verification 175

An MLN description consists of “direct” predicates that correspond to obser-
vations and “indirect” predicates that are evaluated during the inference pro-
cess. In contrast to conventional logic systems for which predicates can only be
true or false, MLN predicates can be true with some probability. PCE uses an
MCMC approach to inference, relying on sampling to estimate the probabilities
of different indirect predicates in the system. Despite the theoretical worst-case
complexity of MLN inference, the MCMC approach has distinct advantages for
practical application. Our experiments exhibit running times on the order of
1 min for 486 PCA-derived cell groups and three segmented time intervals. In
these experiments, the sampling parameter ranged from 1000 to 10000 runs, a
range which appears appropriate for convergence.

4 Related Work

To the best of our knowledge, there are significant methods available for CM
and PM analysis; however, none of them fully addresses the SON verification
use case. Some of the existent work is only partially automated [2] with tool
support for regular network reporting and troubleshooting, while others use dis-
joint analysis for PM and CM, requiring an additional linking mechanisms which
is normally done manually. In terms of PM analysis, most work relates to detec-
tion of degradations in cell-service performance. If previous research addressed
the cell-outage detection [11], cell-outage compensation [3] concepts and net-
work stability and performance degradation [5,9] without relying on PM data,
more recently, detection of general anomalies has been addressed based on PM
data [6,7,12,17]. For CM analysis, Song et al. [15] propose formal verification
techniques that can verify the correctness of self-configuration, without address-
ing the need for runtime verification.

5 Conclusions

This paper proposed a framework for SON verification that combines anomaly
detection and diagnosis techniques in a novel way. The design was implemented
and applied to a dataset consisting of KPI data collected from a real operational
cell network. The experimental results indicate that our system can automat-
ically determine the state of the network in the presence of CM changes and
whether the CM changes negatively impacted the performance of the network.
We are currently planning to expend our framework to more SON use cases such
as troubleshooting and we are exploring other types of data that can be used in
the diagnosis process. We envision that additional work is needed to integrate
our framework with human operator input.

Acknowledgment. We thank Lauri Oksanen, Kari Aaltonen, Kenneth Nitz and
Michael Freed for their contributions.

176 G.F. Ciocarlie et al.

References

1. Probabilistic Consistency Engine. https://pal.sri.com/Plone/framework/
Components/learning-applications/probabilistic-consistency-engine-jw

2. Transparent network performance verification for LTE rollouts, Ericsson whitepa-
per (2012). http://www.ericsson.com/res/docs/whitepapers/wp-lte-acceptance.
pdf

3. Amirijoo, M., Jorguseski, L., Litjens, R., Schmelz, L.C.: Cell outage compensation
in LTE networks: algorithms and performance assessment. In: 2011 IEEE 73rd
Vehicular Technology Conference (VTC Spring), 15–18 May 2011

4. Blei, D., Ng, A., Jordan, M.: Latent dirichlet allocation. J. Mach. Learn. Res. 3,
993–1022 (2003)

5. Bouillard, A., Junier, A., Ronot, B.: Hidden anomaly detection in telecommunica-
tion networks. In: International Conference on Network and Service Management
(CNSM), Las Vegas, NV, October 2012

6. Ciocarlie, G.F., Lindqvist, U., Novaczki, S., Sanneck, H.: Detecting anomalies in
cellular networks using an ensemble method. In: 9th International Conference on
Network and Service Management (CNSM) (2013)

7. Ciocarlie, G.F., Lindqvist, U., Nitz, K., Nováczki, S., Sanneck, H.: On the feasibility
of deploying cell anomaly detection in operational cellular networks. In: IEEE/IFIP
Network Operations and Management Symposium (NOMS), Experience Session
(2014)

8. Ciocarlie, G.F., Cheng, C.-C., Connolly, C., Lindqvist, U., Nováczki, S.,
Sanneck, H., Naseer-ul-Islam, M.: Managing scope changes for cellular network-
level anomaly detection. In: International Workshop on Self-Organized Networks
(IWSON) (2014)

9. D’Alconzo, A., Coluccia, A., Ricciato, F., Romirer-Maierhofer, P.: A distribution-
based approach to anomaly detection and application to 3G mobile traffic. In:
Global Telecommunications Conference (GLOBECOM) (2009)

10. Griffiths, T., Steyvers, M.: Finding scientific topics. Proc. Natl. Acad. Sci.
101(suppl. 1), 5228–5235 (2004)

11. Mueller, C.M., Kaschub, M., Blankenhorn, C., Wanke, S.: A cell outage detection
algorithm using neighbor cell list reports. In: Hummel, K.A., Sterbenz, J.P.G.
(eds.) IWSOS 2008. LNCS, vol. 5343, pp. 218–229. Springer, Heidelberg (2008)

12. Nováczki, S.: An improved anomaly detection and diagnosis framework for mobile
network operators. In: 9th International Conference on Design of Reliable Com-
munication Networks (DRCN 2013), Budapest, March 2013

13. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2),
107–136 (2006)

14. Hämäläinen, S., Sanneck, H., Sartori, C. (eds.): LTE Self-Organising Networks
(SON) - Network Management Automation for Operational Efficiency. Wiley,
Chichester (2011)

15. Song, J., Ma, T., Pietzuch, P.: Towards automated verification of autonomous
networks: A case study in self-configuration. In: IEEE International Conference on
Pervasive Computing and Communications Workshops (2010)

16. Steyvers, M., Griffiths, T.: Probabilistic topic models. In: Landauer, T.,
McNamara, D.S., Dennis, S., Kintsch, W. (eds.) Handbook of Latent Semantic
Analysis, pp. 427–448. Erlbaum, Hillsdale (2007)

17. Szilágyi, P., Nováczki, S.: An automatic detection and diagnosis framework for
mobile communication systems. IEEE Trans. Netw. Serv. Manage. 9, 184–197
(2012)

18. Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Hierarchical dirichlet processes.
J. Am. Stat. Assoc. 101(476), 1566–1581 (2006)

https://pal.sri.com/Plone/framework/Components/learning-applications/probabilistic-consistency-engine-jw
https://pal.sri.com/Plone/framework/Components/learning-applications/probabilistic-consistency-engine-jw
http://www.ericsson.com/res/docs/whitepapers/wp-lte-acceptance.pdf
http://www.ericsson.com/res/docs/whitepapers/wp-lte-acceptance.pdf

	Anomaly Detection and Diagnosis for Automatic Radio Network Verification
	1 Introduction
	1.1 SON Verification
	1.2 Contributions

	2 Anomaly Detection and Diagnosis for SON Verification
	2.1 Overall Framework
	2.2 Anomaly Detection for SON Verification
	2.3 Cluster Interpretation
	2.4 Diagnosis for SON Verification

	3 Performance Evaluation
	3.1 Cluster Analysis
	3.2 Cluster Interpretation
	3.3 Diagnosis Results
	3.4 Computational Performance

	4 Related Work
	5 Conclusions
	References

