

K. Liu et al. (Eds.): ICISO 2015, IFIP AICT 449, pp. 135–145, 2015.
© IFIP International Federation for Information Processing 2015

Translation of Requirements Engineering Models

Imad Eddine Saidi1, Taoufiq Dkaki1, Nacer Eddine Zarour2, and Pierre-Jean Charrel1

1 Jean Jaurès University, 5 Allée Antonio Machado, F-31058 Toulouse Cedex 9. France
2Ali Mendjli University, B.P.76. Constantine. Algeria

{Imad-Eddine.Saidi,Pierre-Jean.Charrel,Taoufiq.Dkaki}@Irit.fr,
Nasro_Zarour@yahoo.fr

Abstract. The globalization and the rapid development of information and
communication technologies encourage organizations to work together. In
software development, many works have emerged to support this cooperation
using different tools and methodologies. Most of them focus on the design-
stage concerns. However, very little works have dealt with cooperation during
the early stage of software projects, namely Requirements Engineering (RE),
despite the importance of this stage for the failure or the success of software
projects. There exist different kinds of approaches to support the RE process in
different contexts, based on models such as goal, viewpoint and scenario
oriented. Each of these models relies on concepts which differ from one model
to another. One of the difficulties for organizations that intend to work together
in the upstream phases of software projects is summarized by the following
question: What is the most appropriate approach every partner has to adopt? In
this paper, we propose a translation process between RE models in order to en-
sure that organizations with different types of RE backgrounds and methodolo-
gies can work together to achieve their objectives while still using their own
approach. The translation is performed using a unified meta-model issued from
a semantic process of computing similarities between concepts of RE models.

Keywords: Requirements Engineering, Meta-modelling, models translation,
similarities.

1 Introduction

In software engineering, many factors can be responsible for the success or the failure
of projects. One of the reasons affecting the failure of these projects is the poor defini-
tion and management of requirements [1]. Hence, predicting and writing good
requirements [2] is a key factor for the success or the failure of software projects.
Requirements Engineering (RE) [3] is the discipline which aims at defining, manag-
ing and documenting software requirements in upstream phases of software lifecycle.

However, due to present-day globalization [4] of the business world, many organiza-
tions should cooperate in order to achieve their objectives. Cooperation is the manner of
coordination that is necessary for agreeing on common objectives and for the coordinated
achievement of common work among participants [5]. Unfortunately, most of the work
that discusses cooperation in software engineering such as [6] and [7] focuses only on the

136 I.E. Saidi et al.

design stage of software development lifecycle and do not address the RE upstream
phase. Very little works have focused on the cooperation in RE. The fact that RE is im-
portant should have led to more interest in cooperation in this phase.

Different kinds of solutions have been proposed to support the RE process: goal
oriented approaches such as i* [8] deal with actor dependencies, goals and intentions,
viewpoint oriented approaches such as PREview [9] deal with the perception of ac-
tors, and scenario oriented approaches such as CREWS [10] describe functional be-
haviors by means of scenarios. This variety of solutions makes cooperation among
organizations stakeholders in this phase a difficult activity due to the heterogeneity
between these models.

Bendjenna et al. [11] proposed a solution which aims to integrate the three con-
cepts of goal, viewpoint and scenario into one model in a cooperative environment.
The work is embodied in the proposal of MAMIE as a new approach that should be
used by all organizations stakeholders in order to allow cooperation between them.
On the contrary, our work stems from the idea that preserving as far as possible the
working environment of the stakeholders involved in organizations which aim to coo-
perate is more realistic. This leads us to propose a translator between different kinds
of existing RE models that follows, in a broader way, the principle of Cares and
Franch [12]. These ones have defined a “super meta-model” hosting identified varia-
tions of i* and implementing a semantic preservation oriented translation algorithm
between these different variations.

Our translator allows organizations that use different kinds of RE models to coope-
rate continuing to use their usual approaches, without forcing them to spend time,
human and financial resources in order to migrate to a unique RE model. The RE
translator lies on our so called UREM unified meta-model which is issued from a
semantic process of computing similarities between concepts of RE models ([8], [9]
and [10]).

In this paper, we present a 3 phases process to translate RE models (Fig. 1). The fol-
lowing section 2 presents the two first phases of the translation process: the unified
requirements engineering meta-model UREM, and how correspondences between
concepts are built. In section 3, we discuss the third phase of building the RE translator
which involves ‘how’ the translation between heterogeneous RE models is performed.
Section 4 presents a case study to evaluate our work. In section 5, we conclude and
draw perspectives.

Fig. 1. RE Translator Building Process

 Translation of Requirements Engineering Models 137

2 UREM: Unified Requirements Engineering Meta-model

In this section, we use a unified RE meta-model to create correspondences between
meta-models of 3 representative RE approaches: i*, PREview and CREWS. This
meta-model represents the common abstraction of those RE meta-models. These cor-
respondences represent the core component of the translator between RE models. The
translation between models using these correspondences can be achieved by finding
for each concept in a source model the most suitable correspondent concept or collec-
tion of concepts in a target model. The resulting so called UREM meta-model is
illustrated in Figure 2.

Fig. 2. UREM Meta-model

Each class (abstract concept) in UREM (Fig. 2) represents an abstraction of a set of
similar RE concepts. These concepts are labeled beside each abstract concept in Fig 2.
Similar concepts are concepts that share some common ground (attributes). In a pre-
vious work, we adopted a rigorous semantic process [13] based on the semantics of
words which represent RE concepts. This process is performed using WordNet [14]
and is composed of several steps starting with the classification of RE concepts into
two categories: concepts that can be retrieved directly from WordNet (category 1) and

138 I.E. Saidi et al.

concepts that cannot (category 2). This categorization leads us to develop an incre-
mental process by applying several algorithms on concepts of category 1 using
WordNet: (1) Word Sense Disambiguation (WSD), (2) treat concepts as a tree in
WordNet and compute distances by finding the least common parent (hypernym).
Afterwards, we compare concepts of the category 2 to the tree that represents con-
cepts of the category 1 and their parents in order to find similarities.

UREM is represented as a tree where abstract concepts are parent nodes (hyper-
nyms) of different RE concepts (nodes). For each concept, we can find the most suit-
able correspondent (the most similar concept) in a target model by browsing the tree
as follows:

• If several paths lead from a given concept to one concept in another model, we use
least common hypernyms as described in [13] to find the shortest path between
concepts. If the shortest path leads to several concepts in a same target model, we
consider all these concepts as a correspondent. For example: Goal concept of i* has
the same distance to several concepts in PREview: Viewpoint, History, Name and
Source. If a concept has child and parent nodes, we always browse the tree accord-
ing to the shortest path. Finding paths is a key factor to build correspondences.

• We build sets of correspondences between the three RE models from the results of
the previous steps. For example: Goal and SoftGoal concepts in i* have Scenario,
Object and Goal target concepts in CREWS, and Viewpoint, History, Name,
Source target concepts in PREview. In the same time, Scenario, Object and Goal
concepts in CREWS have Viewpoint, History, Name,Source target concepts in
PREview. UseCase has also a short path to these concepts. We build the overall
correspondence: {Scenario, Object, UseCase, Goal (CREWS), Goal, SoftGoal (i*),
Viewpoint, History, Name, Source (PREview)} that is stored and used as a refer-
ence to translate these concepts from a model to another.

The resulting sets of correspondences are:

• C1 = {Scenario, Object, UseCase, Goal (CREWS), Goal, SoftGoal (i*), Viewpoint,
History, Name, Source (PREview)}

• C2 = {Action, Event, StructureObject (CREWS), Task (i*), Reqirements (PRE-
view)}

• C3 = {Agent, StateTransition, State (CREWS), Actor, Resource (i*), Concern,
Focus (PREview)}.

In this section, we have built correspondences relationships among RE concepts. In
the next section, we discuss the last phase illustrated in Fig. 1 to build the RE transla-
tor related to; how to perform translation between those concepts using the defined
correspondences.

3 Translation between Requirements Engineering Models

In this section we describe how to translate RE concepts using correspondences created
in the previous section. Figure 3 illustrates the design of the translation process between
concepts.

 Translation of Requirements Engineering Models 139

The design illustrated in Fig. 3 is based on the factory design pattern [15] which al-
lows users to translate and create, for a source concept, one or more target concepts
without bothering them with the entire specification of these target concepts that they
do not need to know, or they do not have the abilities to handle. The translation
should be performed through a common interface called IConcept. The user asks
ConceptsFactory for translation that needs the use of a referential repository: RefRe-
pository.

Fig. 3. Design of Translation Process

RefRepository stores all possible correspondences generated in the previous section
between concepts of i*, PREview and CREWS models. For each correspondence,
there exist translation rules which describe how to translate a source concept to a
target model. RefRepository defines two types of translation:

• Automatic translation is used with the first and the second type of translation. This
rule operates when the Concepts Factory creates automatically a new instance of a
target concept from the source one by checking the most suitable correspondence
in RefRepository. Afterward, the factory translates source attributes to target
attributes in the new target concept by moving the value of source attributes to a
target attributes. The factory uses simple naming conventions to name the new tar-
get concepts.

• Semi-Automatic translation is performed after the automatic translation if a part of
source concepts cannot be translated correctly to the target model. We perform a
translation aided by questions {Which, How or What}. Two lists of elements (con-
cepts and attributes) are created, one for source elements that are not translated cor-
rectly to the target model and the other is composed of empty instances which
represent target elements in the target model that are not created in the automatic
translation. Fig. 4 illustrates these lists. Each list is divided in three sets according to
the correspondences that are previously defined. Users can help the RE translator

140 I.E. Saidi et al.

using their experience by
swers to these questions
and target elements that a

Fig. 4. Structur

RefRepository (Fig. 5) cont
an attribute and it belongs
where each one has a set o
used in the semi-automatic

Fig. 5. Class dia

y answering several questions on the source elements. A
are a guide to find a matching (translation) between sou

are not translated automatically.

re of Semi-Automatic Translation using Questions

tains a set of elements. Each element is either a concep
to a model. Each element is included in a corresponde

of Naming Conventions and a set of questions that will
translation.

agram of the referential repository (RefRepository)

An-
urce

pt or
ence
l be

 Translation of Requirements Engineering Models 141

4 Case Study: Software Bugs Management

The evaluation of our work can be achieved by applying several case studies in order
to verify the soundness of the translation process we propose. In this paper, we
present one of these case studies to illustrate the translation process: a requirements
specification for a software bugs management system. We uses i*, PREview and
CREWS to represent requirements models. For the sake of space we only represent i*
model (cf. Annex), the translation between i* and PREview and the results of transla-
tion between the three models. We compare source models for each type to the mod-
els obtained according to the translation rules defined in the previous section.

The comparison is performed using a three rows and three columns translation con-
fusion matrix [16] to calculate the translation accuracy of our solution. Rows and
columns respectively represent source models (actual classes) and target models (pre-
dicted classes): i*, PREview and CREWS. Each cell Ci,j represents the number of
concepts instances which are translated correctly from the source model i into the
target model j. Afterward, we compute the accuracy of the translation AT between
each couple of models M1 and M2 by applying a simple formula to find the average of
translated concepts ratio between any couple of models. Let C1 and C2 be respectively
the numbers of concepts of M1 and M2. Let C1,2 and C2,1 be the number of translated
concepts respectively from M1 to M2 and from M2 to M1. RT ൌ ൫C1,2 C1⁄ ൅ C2,1 C2⁄ ൯2 (1)

Any difference between predicted and actual concepts is considered as an error. In
our case study, we apply an automatic translation which represents the most important
part of translation without any expert intervention, and then we can improve the trans-
lation results by using a semi-automatic translation between RE models.

The case study involves a requirements specification for a system which aims to
manage and resolve software bugs. A bug is an “Imperfections in software develop-
ment process that would cause software to fail to meet the desired expectations” [17].
Therefore a bug can be defined as an abnormal behavior or a malfunction of the soft-
ware system. To monitor these bugs, the use of a bug-tracker is inevitable to eliminate
or at least reduce them. This system aims at providing actors with the possibility to
report malfunctions, comment them, track the status of the anomaly, notify other ac-
tors of the problems encountered, and suggest solutions or opportunities for circum-
vention.

4.1 Application of Translation between PREview and i*

The translation between RE models of this case study is performed according to trans-
lation rules and correspondences C1, C2 and C3 defined in section 2.

To translate the PREview source model to i*, the user of PREview asks the Translator
(ConceptsFactory) to translate the different 13 instances of concepts that compose the
specification of the case study to target concepts in i*. ConceptsFactory checks for each
instance the most suitable correspondence in the target model i*. Table 1 illustrates the
results of the translation process grouped by correspondences.

142 I.E. Saidi et al.

Table 1. Translation from Preview to i*

The overall translation for the 13 instances of PREview is automatically performed

to 11 instances in i*, and semi-automatically to 4; i.e. a total of 15 instances if the
semi-automatic translation is well performed. Recall that an original source model of
i* is composed of 20 instances of concepts. The 5 concepts in i* that are not translated
are: Tasks (ReportBugTask, FixBugTask, ManageBugsTask), SoftGoal (Immediate-
Reporting), Resource (BugResource). The Source concept (SoftwareSource) is not
translated correctly to i* model.

The translation from an i* source model to PREview is performed in the same way
with the same correspondences as illustrated in Table 2.

The overall translation of i* model (20 instances) are translated automatically to 11
instances of PREview concepts, and semi-automatically to one instance; that leads to
a total of 12 instances if the semi-automatic translation is well performed. Knowing
that an original source model of PREview is composed of 13 instances, the Resource
and the SoftGoal of i* model are not translated correctly to PREview concepts.

4.2 Evaluation

In the evaluation, we compute the rate of translation successes obtained from the
source models (Rows) of i*, PREview and CREWS. Table 3 presents the confusion
matrix that summarizes the translation results of the models in the case study.

Proceeding from Table 3, we compute the accuracy of translation AT of the case
study when using automatic translation. We apply the formula (1) between each
couple of RE models:

Source (Preview) Concepts Target (i*) Concepts Translation Rule
3 instances of Viewpoint concept
with their names:
{BugManagementViewpoint,
BugReportingViewpoint &
BugFixgingViewpoint}

3 instances of Goal concept:
{BugsManagementGoal,
BugsReportingGoal,
BugsFixingGoal}

Automatic
Translation using C1.

8 instances of Requirement
Concepts:
BugReproducibilityDegree-
Requirement,
BugResolutionPriorityRequirement
, BugSeverityDegreeRequirement,
BugSummaryRequirement,
SuggestSolutionRequirement,
TestingRequirement,
CommitRequirement,
NotificationRequirement}

8 instances of Task Concept:
AddBugReproducibilityDegree
Task,
AddBugResolutionPriorityTask,
AddBugSeverityDegreeTask,
AddBugSummaryRequirement
Task, SuggestSolutionTask,
TestSolutionTask,
CommitSolutionTask,
NotifyPersonsTask}

Automatic
Translation using C2

Concern: {Bug Unavailability} 4 actors {ManagerActor,
ReporterActor, QATesterActor,
EngineerActor

Semi-Automatic
translation using C3
and the question:
'Who is responsible
for’+ Concern

 Translation of Requirements Engineering Models 143

Table 2. Translation from I * to PREview

Table 3. Automatic translation matrix for software bugs management system

 I* PREview CREWS
I* (20a) 11 20
PREview (13a) 11 16
CREWS (21a) 15 11

a. Numbers of concepts instances presented in the requirements specification

• PREview to/from i*: RT = (11÷20 + 11÷13) × 0.5 = 70%
• CREWS to/from i*: RT = (15÷20 + 20÷21) × 0.5 = 85%
• CREWS to/from PREview: RT = (11÷13 + 16÷21) × 0.5 = 80%

The total average translation accuracy AT among all models is 78%. We observe the
best translation rate is between i* and CREWS. The translation rate can be improved
using a semi-automatic translation.

The case study presents a specific part of defined correspondences. The other con-
cepts are not applied in this case study and have to be used in a future case study.

5 Conclusion

This paper presents a solution which allows the translation between different kinds of
RE models in order to improve cooperation between stakeholders issued from coope-
rating companies. The translation is performed using a set of correspondences between
the RE models, based on a unified meta-model called UREM. UREM is composed of a
set of abstract concepts that represent these correspondences. For a given correspon-
dence, we define translation rules to ensure the translation between concepts from one
RE model to another. We present a case study in order to assess the correspondences
and the rules that are defined. Unfortunately, we observe that some concepts are not
successfully translated. We fix to some extent a part of this problem by adjusting some
correspondences such as the concept Actor of i* and Agent of CREWS that can be
integrated into the attribute StakeHolder of the PREview Viewpoint concept. Recall
that the overall translation accuracy among all models is 78%.

3 instances of Goal concept
mentioned in Table 1

3 instances of Viewpoint
concept mentioned in Table 1

Automatic Translation
using C1

11 instances of Task: 8
mentioned in Table 1 that
represent sub tasks for
ReportBugTask FixBugTask,
ManageBugsTask.

8 instances of Requirement
(mentioned in Table 1).

Automatic Translation
using C2.

4 Actors mentioned in Table 1 Concern mentioned in Table 1 Semi-Automatic
translation using C3 and
the question: “What is
the concern of”+ Actor.

Source (i*) Concepts Target (PREVIEW) Concepts Translation Rule

144 I.E. Saidi et al.

We are currently developing ReqTranslator: it is a web platform which aims to illu-
strate and apply our solution of RE models translation. The platform proposes several
features including translation of different kinds of RE models in addition to ensure the
auto-integration of new types of RE models. This integration can be easily achieved
due to the structure of the data model proposed for the platform which allows extensi-
bility. Another perspective is to enhance the visualization form tables to graphs which
will simplify the representation of requirements. We will also study more complex
case studies in order to improve the evaluation of our work.

References

1. McConnel, S.: Code Complete: A Practical Handbook of Software Construction, 2nd edn.
(2004), ISBN-13: 079-0145196705, ISBN-10: 0735619670

2. Kotonya, G., Sommerville, I.: Requirements Engineering: Processes and Techniques. Wi-
ley (1998), ISBN: 978-0-471-97208-2

3. 830-1998 - IEEE Recommended Practice for Software Requirements Specifications, E-
ISBN 978-0-7381-0448-5 (1998)

4. Joshi, M.: International Business. Ox-ford University Press, India (June 22, 2009), ISBN-
10: 0195689097, ISBN-13: 978-0195689099

5. Bauknecht, K., Mühlherr, T., Sauter, C., Teufel, S.: Computerunterstützung für die Grup-
penarbeit. Addison-Wesley, Bonn (1995)

6. McChesneya, I.R., Gallagherb, S.: Communication and co-ordination practices in software
engineering projects. Information and Software Technology Journal 46(7), 473–489 (2004)

7. Altmann, J., C.: Cooperative software development: concepts, model and tools, Technolo-
gy of Object-Oriented Languages and Systems, TOOLS 30 Proceedings, pages 194-207,
(1999)

8. Yu, E.: Modelling Strategic Relationships for Process Reengineering, Phd Thesis, Univer-
sity of Toronto (1995)

9. Sommerville, I., Sawyer, P.: Requirements Engineering: A Good Practice Guide. Wiley
(1997), ISBN: 978-0-471-97444-4

10. Sutcliffe, A.G., Maiden, N.A.M., Minocha, S., Manuel, D.: Supporting Scenario-Based
Requirements Engineering. IEEE Transactions on Software Engineering 24(12) (1998)

11. Bendjenna, H., Zarour, N., Charrel, P.J.: Eliciting Requirements for an Inter-company Co-
operative Information System. J. Systems and IT 12(4), 305–333 (2010)

12. Cares, C., Franch, X.: A Metamodelling Approach for i* Model Translations. In: Mourati-
dis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 337–351. Springer, Heidel-
berg (2011)

13. Saidi, I., Dkaki, E., Zarour, T., Charrel, N.E.: P.,J.: Semantic Based Process towards Unifi-
cation of different Requirements Engineering Approaches. In: International Conference on
Knowledge Management and Information Sharing, Vilamoura, Portugal. SciTePress (2013)

14. Miller, G., WordNet, A.: A Lexical Database for English. CACM 38(1) (1995)
15. Johnson, R., Vlissides, J., Helm, R., Gamma, E.: Design Patterns: Elements of Reusable

Object-Oriented Software (1994), ISBN-13: 078-5342633610, ISBN-10:0201633612
16. Stehman, S.V.: Selecting and interpreting measures of thematic classification accuracy.

Remote Sensing of Environment 62(1), 77–89 (1997)
17. Kumaresh, S., Baskaran, R.: Defect Analysis and Prevention for Software Process Quality

Improvement. International Journal of Computer Applications 8(7), 875–887 (2010)

 Translation of Requirements Engineering Models 145

Annex

Fig. 6. i* meta-model

Fig. 7. i* Specification for Software Bugs Management System

	Translation of Requirements Engineering Models
	1 Introduction
	2 UREM: Unified Requirements Engineering Meta-model
	3 Translation between Requirements Engineering Models
	4 Case Study: Software Bugs Management
	4.1 Application of Translation between PREview and i*
	4.2 Evaluation

	5 Conclusion
	References
	Annex

