
Chapter 9
Identifying the Infectious Period Distribution
for Stochastic Epidemic Models Using
the Posterior Predictive Check

Muteb Alharthi, Philip O’Neill, and Theodore Kypraios

Abstract Under the Bayesian framework, we develop a novel method for assessing
the goodness of fit for the SIR (susceptible-infective-removed) stochastic epidemic
model. This method seeks to determine whether or not one can identify the
infectious period distribution based only on a set of partially observed data using
a posterior predictive distribution approach. Our criterion for assessing the model’s
goodness of fit is based on the notion of Bayesian residuals.
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9.1 Introduction

Poor fit of a statistical model to data can result in suspicious outcomes and
misleading conclusions. Although the area of parameter estimation for stochastic
epidemic models has been a subject of considerable research interest in recent years
(see, e.g., [1, 7, 9]), more work is needed for the model assessment in terms of
developing new methods and procedures to evaluate goodness of fit for epidemic
models. Therefore, it is of importance to seek a method for assessing the quality of
fitting a stochastic epidemic model to a set of epidemiological data.

The most well-known stochastic model for the transmission of infectious dis-
eases is considered, that is the SIR (susceptible-infective-removed) stochastic
epidemic model. We recall methods of Bayesian inference using Markov chain
Monte Carlo (MCMC) techniques for the SIR model where partial temporal data
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are available. Then, a new simulation-based goodness of fit method is presented.
This method explores whether or not the infectious period distribution can be
identified based on removal data using a posterior predictive model checking
procedure.

9.2 Model, Data and Inference

We consider a SIR stochastic epidemic model [2] in which the rate of new infections
at time t is given by βn−1X(t)Y (t), where X(t) and Y (t) represent the number of
susceptible and infective individuals at t in a closed homogeneous population of size
N = n+1, which consists of n initial susceptibles and one initial infective, and β
denotes the infection rate parameter.

Following [3, 5], let fTI (·) denote the probability density function of TI (the length
of the infectious period, which is assumed to be a continuous random variable)
and let θ indicate the parameter governing TI . Also, define I = (I1, . . . , InI ) and
R = (R1, . . . ,RnR), where I j and R j are the infection and removal times of individual
j and where we shall assume, for simplicity, that the total number of infections and
removals are equal, that is nI = nR = m (this assumption can be relaxed, see [8] for
the details). Assuming a fully observed epidemic (complete data) with the initial
infective labelled z such that Iz < I j for all j �= z, the likelihood of the data given the
model parameters is

L(I,R|β ,θ ,z) =
(

m

∏
j=1, j �=z

βn−1Y (I j−)

)
· exp

(−βn−1A
) · m

∏
j=1

fTI (R j − I j) ,

where A = ∑m
j=1 ∑N

k=1(R j ∧ Ik − Ik ∧ I j) with Ik = ∞ for k = m+1, . . . ,N . Here, I j−
denotes the time just prior to I j and R j− is defined similarly.

Unfortunately, incomplete data (where we observe only removal times) are the
most common type of epidemic data. As a result, the likelihood of observing only
the removal times given the model parameters is intractable. One solution to make
the likelihood tractable is to use the data augmentation technique by treating the
missing data as extra (unknown) parameters [8]. For instance, let TI ∼ Exp(γ),
where γ is referred to as the removal rate. By adopting a Bayesian framework and
assigning conjugate gamma prior distributions to the model parameters [8] that are
β ∼ Gamma(λβ ,νβ ), (with mean = λβ/νβ ) and γ ∼ Gamma(λγ ,νγ), we get the
following full conditional posterior distributions:

β |γ ,I,R ∼ Gamma
(
λβ +m−1,νβ +n−1A

)
,

γ |β ,I,R ∼ Gamma

(
λγ +m,νγ +

m

∑
j=1

(R j − I j)

)
,
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as well as

π(I|β ,γ ,R) ∝

(
m

∏
j=1, j �=z

Y (I j−)

)
· exp

(−βn−1A
) · m

∏
j=1

exp(−γ(R j − I j)) .

The model parameters β and γ can be updated using Gibbs sampling steps as they
have closed form of the posterior distributions. However, the infection times need
to be updated using a Metropolis–Hastings step. Having done that, we can obtain
samples from the marginal posterior distributions of the model parameters.

When the length of the infectious periods is assumed to be constant, we have two
model parameters to be updated, namely the mean of the infectious period E(TI) = c
and the infection rate parameter β . However, if we let the infectious periods to
have a gamma distribution Gamma(α,δ ), in addition to estimating the infection
rate parameter β , we shall assume for computational reasons that the gamma shape
parameter α is known (although it can be considered as unknown parameter to be
estimated from the data, see [6] for the details) and the scale parameter δ is unknown
and has to be estimated using MCMC output.

9.3 Methodology

We are concerned with identifying the infectious period distribution of the SIR
model based only on removal data. In the SIR stochastic epidemic model, regardless
of the type of infectious period distribution (we consider Exponential, Gamma and
Constant), the total population size is constant and satisfies N =X(t)+Y (t)+Z(t),
where Z(t) denotes the number of removed individuals at event time t with
X(0)≥ 1,Y (0)≥ 1 and Z(0) = 0; note that Z(s)≤ Z(t) for any 0 ≤ s ≤ t;s, t ≥ 0.

However, due to the fact that epidemic data are partially observed it is sufficient
for our purpose to consider only the times when removals occur instead of looking
at all event times. Assuming that all infected individuals are removed by the end of
the epidemic, the behaviour of the three models in terms of Z(r1),Z(r2), . . . , differs,
where r j represents the j-th removal time.

We turn our attention to taking advantage of this difference to distinguish
between these three models when fitting them to data in the case of partial
observations. Let Robs = (Robs

1 , . . . ,Robs
m ) and Rrep = (Rrep

1 , . . . ,Rrep
m ) denote the

observed and replicated removal times, respectively, and also let π(Rrep i|Robs)
represent the removal times predictive distribution. Then our proposed method can
be generally described by the Algorithm 1.

Step 3 in the Algorithm 1 can be done simply by keeping simulating (until the
desired sample size is obtained) from the model using the model parameter posterior
distributions while rejecting simulations that do not match the observed final size.
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Algorithm 1 Generic algorithm for our method

1. Given Robs, fit an SIR model using MCMC to get samples from π(β |Robs) and π(θ |Robs).

2. Draw β i ∼ π(β |Robs) and θ i ∼ π(θ |Robs), i = 1, . . . ,M.

3. Use β i and θ i to draw samples from π(Rrep i|Robs) conditioning on mrep i = mobs.

4. Compare Robs and π(Rrep i|Robs) graphically as well as using Bayesian residual criterion.

9.4 Illustration

To illustrate our method, 93 removal times were simulated from an SIR model in
which TI ∼ Exp(0.5) and β = 1.5 in a population of size N = 100, that consists of
n = 99 initial susceptibles and one initial infective.

Throughout the analysis, uninformative gamma prior distributions with parame-
ters λβ = λγ = λδ = 1 and νβ = νγ = νδ = 0.001 were set to the parameters of the
SIR models and it was assumed that the gamma shape parameter, when fitting the
SIR model with gamma infectious period TI ∼ Gamma(α,δ ) is known (α = 10).

By looking at Fig. 9.1, it is clearly noticeable that the observed data fit very well
within the predictive distribution of the exponential SIR model, the model that has
generated the data.

As mentioned above, our preferred criterion to measure the goodness of fit is the
Bayesian residual [4], that is, conditioning on mrep i = mobs,

d j = Robs
j −E(Rrep i

j |Robs), j = 1, . . . ,m,

where E(Rrep i
j |Robs) =

∫
Rrep i

j π(Rrep i
j |Robs) dRrep i

j ≈ 1
M ∑M

i=1 Rrep i
j .

It is worth mentioning here that the quantity ∑m
j=1 d2

j could provide an overall
measure of fit. Figure 9.2 shows the Bayesian residual distributions for the three
models in which it is qualitatively obvious that there is a high density accumulated
near zero, coming from the Exponential SIR model, compared to the other two
models. On top of that, quantitatively, the sum of the squared Bayesian residuals
∑m

j=1 d2
j are 96.3, 354.7 and 812.6 for the Exponential, Gamma and Constant SIR

models, respectively. Therefore, as expected, the Exponential SIR model, from
which the data was generated, has the smallest value of the sum of the squared
Bayesian residuals.

9.5 Conclusion

Bayesian inference for the SIR model has been introduced, where the epidemic
outbreak is partially observed. We have proposed a method to assess the goodness
of fit for the SIR stochastic model based only on removal data. A simulation study
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Fig. 9.1 Comparison of the removal times predictive distribution for the three SIR models
(top left: Exponential, top right: Gamma, bottom: Constant) based on 1,000 realizations and
conditioning on the observed final size, where the dotted line indicates the observed data and the
solid line represents the predictive mean

has been performed to test the proposed method. Using the posterior predictive
assessment for checking models, this diagnostic method is able to identify the true
model reasonably well.

One advantage of this method is that it looks explicitly at the discrepancy
between observed and predicted data, which avoids using unobserved quantities in
the process of assessment, see [10] as an example. Furthermore, this method is still
valid when including an extra state, the exposed period, to the SIR model in which
individuals in this state are infected but not yet infectious.
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Fig. 9.2 The Bayesian
residual distributions for each
SIR model based on 1,000
samples from the
conditioning predictive
distribution for the three
models
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