
Chapter 3
Distributed Estimation of Mixture Models

Kamil Dedecius and Jan Reichl

Abstract The contribution deals with sequential distributed estimation of global
parameters of normal mixture models, namely mixing probabilities and component
means and covariances. The network of cooperating agents is represented by a
directed or undirected graph, consisting of vertices taking observations, incor-
porating them into own statistical knowledge about the inferred parameters and
sharing the observations and the posterior knowledge with other vertices. The
aim to propose a computationally cheap online estimation algorithm naturally
disqualifies the popular (sequential) Monte Carlo methods for the associated high
computational burden, as well as the expectation-maximization (EM) algorithms for
their difficulties with online settings requiring data batching or stochastic approxi-
mations. Instead, we proceed with the quasi-Bayesian approach, allowing sequential
analytical incorporation of the (shared) observations into the normal inverse-Wishart
conjugate priors. The posterior distributions are subsequently merged using the
Kullback–Leibler optimal procedure.
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3.1 Introduction

The rapid development of ad-hoc networks and the emergence of the so-called
big data phenomenon have brought new challenges for distributed statistical data
processing. For instance, the processing often needs to be decentralized, i.e. without
any dedicated unit in the network. Instead, all agents are responsible for (i) taking
measurements, (ii) processing them, and (iii) sharing the statistical knowledge about
the (usually global) inferred parameters. In addition, the estimation should run
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online in many cases. This means to take observations of a dynamic process and
incorporate them sequentially into the shared knowledge. This often disqualifies
the popular sequential Monte Carlo (MC) approach due to the associated high
computational burden. Excellent surveys on distributed estimation are the recent
papers by Sayed [10] (non-MC) and Hlinka et al. [5] (MC-based).

Despite the great potential of the Bayesian paradigm in this field, its adoption
is still rather the exception than the rule. From the probabilistic viewpoint, the
resulting “classical” (that is, non-Bayesian) algorithms often suffer from statistical
inconsistencies. For instance, point estimators are often combined without reflecting
the associated uncertainty, which may lead to erroneous estimates. The first author’s
work [1] aims at partially filling this gap. It proposes a fully Bayesian approach to
decentralized distributed estimation with fusion, based on minimizing the Kullback–
Leibler divergence. The present contribution extends the results to the case of
mixture models, covered for the static cases, e.g., in [3, 8, 13].

The novelty of the proposed framework lies in a fully analytical Bayesian
processing of observations and shared knowledge about the estimated parameters.
To this end, the underlying theory relies on the quasi-Bayesian approach, proposed
by Smith, Makov, and Titterington [11, 12] and followed by Kárný et al. [6], whose
approach is adopted here. It provides analytical tractability of mixture inference
by relying on point estimators where necessary. Though we focus on normal
mixtures, the results are applicable to homogeneous mixtures of exponential family
distributions.

3.2 Quasi-Bayesian Estimation of Mixture Models

Consider an observable time series {Yt , t ∈ N} with Yt ∈ R
n following a normal

mixture distribution

Yt |φ ,θ ∼ φ1N(μ1,Σ1)+ . . .+φKN(μK ,ΣK)

∼ φ1N(θ1)+ . . .+φKN(θK), (3.1)

where N(μk,Σk) denotes the kth component density, namely a normal distribution
with mean vector μk ∈ R

n and covariance matrix Σk ∈ R
n×n, in the latter notation

summarized by θk = {μk,Σk}. The nonnegative variables φk taking values in the
unit K-simplex are the component probabilities. The number of components K
is assumed to be known a priori. Furthermore, the notation θ = {θ1, . . . ,θK},
φ = {φ1, . . . ,φK} is used.

Let pk(yk|θk) be the probability density function of the kth component, yielding
the mixture density of the form

p(yt |θ ,φ) =
K

∑
k=1

φk pk(yt |θk). (3.2)
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At each time instant t the observation yt is generated by the kt th component
pk(yt |θk), selected with probability φk,

p(yt |θ ,φ ,kt) =
K

∏
k=1

[φk pk(yt |μk,Σk)]
Sk,t , (3.3)

where Sk,t is the indicator function of the active component

Sk,t =

{
1 if Sk,t = kt ,

0 otherwise.
(3.4)

In other words, St = (S1,t , . . . ,SK,t) can be viewed as a vector with 1 on the
kt th position and zeros elsewhere, and hence follows the multinomial distribution
Multi(1,φ).

From the Bayesian viewpoint the topological property of φ is crucial, as it allows
its modelling with the Dirichlet distribution with parameters κ1, . . . ,κK ,

φ = (φ1, . . . ,φK)∼ Dir(κ1, . . . ,κK), κk > 0 for all k = 1, . . . ,K,

conjugate to the multinomial distribution of St . Sequential estimation of each single
component mean and covariance can then proceed with the conjugate normal
inverse-Wishart distribution (or normal inverse-gamma in the univariate case),

θk = {μk,Σk} ∼ NiW(m,s,a,b), m ∈ R
n, s ∈ R

n×n, a,b > 0.

Exact knowledge of St would make the Bayesian inference of both the component
parameters μk,Σk and mixing probabilities φ easily tractable, since the product (3.3)
simplifies to a single density and a single component probability. Likewise, the
Bayesian inference of mixing probabilities φ is easy under known components, as
the detection of the active one is a relatively simple hypotheses testing problem,
see, e.g., [4]. However, our attention is shifted towards estimating both component
parameters μ ,Σ and mixing probabilities φ . For this sake, we need to derive the
Bayesian update

πφ ,θ (φ ,θ |y1:t ,k1:t) ∝ πφ ,θ (φ ,θ |y1:t−1,k1:t−1)
K

∏
k=1

[φk pk(yt |θk)]
Sk,t

where the joint prior distribution is assumed to be

πφ ,θ (φ ,θ |y1:t−1,k1:t−1) = πφ (φ |y1:t−1,k1:t−1)πθ (θ |y1:t−1,k1:t−1).

The independence of φ and θ allows tractable computation of the posterior
distribution. Indeed, this assumption is not quasi-Bayes specific.
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In this case, Kárný et al. [6] propose to rely on the approach of Smith, Makov,
and Titterington [11, 12] and replace the latent indicators Sk,t defined in Eq. (3.4) by
their respective point estimates with respect to φk and θk of the form

Ŝk,t = E
[
Sk,t |y1:t ,k1:t−1

]
∝ E [φk|y1:t−1,k1:t−1] pk(yt |y1:t−1,k1:t−1), (3.5)

where

pk(yt |y1:t−1,k1:t−1) =
∫

pk(yt |θk)πθk(θk|y1:t−1,k1:t−1)dθk (3.6)

is the predictive distribution (under normal inverse-Wishart prior it is a Student’s
t distribution). To summarize, the estimation of the indicator Sk,t of the active
component k is based on (i) testing the component membership based on the
predictive likelihood (3.6), and (ii) the estimated probability of the particular
component E[φk|·] in (3.5).

The quasi-Bayesian update then takes the weighted form of the regular update
under known St ,

πφ (φ |y1:t ,k1:t) ∝ E

[
Ŝt |y1:t ,k1:t−1

]
πφ (φ |y1:t−1,k1:t−1), (3.7)

πθk(θk|y1:t ,k1:t) ∝ [pk(yt |θk)]
Ŝk,t πθk(θk|y1:t−1,k1:t−1). (3.8)

If the component density is rewritten as the exponential family and the prior
density is conjugate, then, as shown in the Appendix, the update of the relevant
hyperparameters is particularly easy.

3.3 Distributed Estimation

Assume that the distributed estimation runs in a network represented by a directed
or undirected connected graph G(V,E) consisting of a set of vertices V = {1, . . . ,N}
(also called nodes or agents) and a set E of edges, defining the graph topology. The
vertices n ∈V are allowed to communicate with adjacent vertices. For a fixed vertex
n, these neighbors form a complete bipartite subgraph (every neighboring vertex
is connected with n) with radius 1, diameter at most 2 and of type star (unless the
vertex n is of degree 1), where n is the central vertex and all other vertices peripheral.
The set of vertices of this subgraph is denoted by Vn.

The vertices independently observe the process {Yt , t ∈ N}, taking observations

y(n)t ,n ∈ V . These are shared within Vn in the sense that each vertex n has access

to y( j)
t of vertices j ∈ Vn and incorporates them according to the quasi-Bayesian

estimation theory outlined in the previous section. That is, each node n ends with
the joint posterior density
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π(n)
φ ,θ (φ ,θ |ỹ1:t , k̃1:t), (3.9)

resulting from the number of card(Vn) updates of the form (3.7) and (3.8). Here,
tilde denotes the statistical knowledge comprising the Vn’s information relevant to
the particular variable. This step is called adaptation, e.g., [10].1

3.3.1 Combination of Estimates

In the combination step [10], the vertices n ∈ V access Vn’s posterior distribu-
tions (3.9) resulting from the adaptation,

π( j)
φ ,θ (φ ,θ |ỹ1:t , k̃1:t), j ∈Vn.

Now the goal is to represent (i.e., approximate) them by a single joint posterior

π̃(n)
φ ,θ parameterizing the mixture (3.1) in consideration. To this end, we adopt

the Kullback–Leibler divergence [7] defined in the Appendix, and seek for π̃(n)
φ ,θ

satisfying

∑
j∈Vn

αn jD(π̃(n)
φ ,θ ||π( j)

φ ,θ )→ min, (3.10)

where αn j = 1/(card(Vn)) are nonnegative uniform weights assigned to nodes j ∈Vn

summing to unity. Other weight choices, e.g. reflecting properties of the neighboring
vertices are possible as well.

Let us impose an additional assumption simplifying the theory: identical order of

component parameters and significantly overlapping densities π( j)
φ ,θ of all j ∈ Vn.

This means that the order of the components and their parameterization agrees
at all vertices in Vn (and hence V ). This assumption can be easily removed by
incorporating detection of similar posterior distributions or enforced by starting
from identical initial priors.

We exploit the following general proposition proved, e.g., in [1]. Although we
consider exponential family distributions (where it provides analytically tractable
results), the proposition is not limited to them.

Proposition 1. Let π( j)
φ ,θ be the posterior probability density functions of vertices

j ∈ Vn and αn j their weights from the unit card(Vn)-simplex. Their approximation

by a single density π̃(n)
φ ,θ optimal in the Kullback–Leibler sense (3.10) has the form

1The terms “adaptation” and “combination” were introduced by [10]. We adopt them for our
Bayesian counterparts.
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π̃φ ,θ ∝ ∏
j∈Vn

[
π( j)

φ ,θ

]αn j
. (3.11)

The resulting approximate posterior density hence virtually parameterizes a
much richer mixture, however, the individual densities overlap by the given
assumption. Then Proposition 1 gives a method for reduction to the parametrization
of K components,

π̃(n)
φ ∝ ∏

j∈Vn

[
π( j)

φ

]αn j
and θ̃ (n)

φ ∝ ∏
j∈Vn

[
θ ( j)

φ

]αn j
,

which, due to the structure of the conjugate priors (see Appendix) and component
ordering yields

ξ̃ (n)
k,t = ∑

j∈Vn

αn jξ
( j)
k,t , ν̃(n)

k,t = ∑
j∈Vn

αn jν
( j)
k,t , and κ̃(n)

k,t = ∑
j∈Vn

αn jκ
( j)
k,t ,

for the hyperparameters ξ ,ν and κ of the prior distributions for θ and φ , respec-
tively. The resulting KL-optimal posterior is then again conjugate to the model and
can be used for the subsequent adaptation step.

3.4 Simulation Example

The simulation example deals with estimating a three-component normal mixture
model, for simplicity univariate of the form

Y ∼ 1
3

N(−2,1)+
1
3

N(4,1)+
1
3

N(8,2),

with unknown means and variances. The graph G(V,E), whose scheme is depicted
together with the components and samples in Fig. 3.1, consists of a set of vertices
V = {1, . . . ,8} \ {6}. The sixth vertex is disconnected and serves for comparison.

The vertices n ∈ V ∪ {6} take observations y(n)t with t = 1, . . . ,300. Clearly,
one would expect relatively easy identification of the leftmost component, while
the other two may be problematic due to their closeness. The quasi-Bayesian
estimation of components k∈{1,2,3} exploits the conjugate normal inverse-gamma
prior NIG(μk,σk;mk,sk,ak,bk) = N(μk|σ2

k ;mk,σ2sk)× IG(σ2
k ;ak,bk) with initial

hyperparameters mk set to 0, 3, and 6, respectively; the other hyperparameters
are sk = 1,ak = 2,bk = 2 for all k. The prior for the component probabilities is
φ ∼ Dir( 1

3 ,
1
3 ,

1
3 ). This initialization is identical across the graph.

The progress of the point estimates of μk and σk is depicted in Fig. 3.2 for the
isolated vertex 6 (left) and the randomly chosen vertex 4 (right). The point estimates
of μk converge relatively well in both cases, however, the variance estimates
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Fig. 3.1 Left: Layout of the graph with isolated node 6 for comparison. Right: Normalized
histogram and true components of the mixture
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Fig. 3.2 Evolution of estimates of component means and standard deviations. Left: isolated vertex
6. Right: situation at a chosen cooperating vertex 4. Solid black lines depict true values

Table 3.1 Statistics of mean square errors (MSEs) of resulting estimates:
distributed estimation and isolated vertex 6

MSE Min (distr.) Max (distr.) Mean (distr.) Vertex 6

Means μk 0.007 0.007 0.007 0.057

Variances σ2
k 0.092 0.481 0.222 1.26

Comp. probabilities φ 0 0 0 0.001

converge well only in the case of the distributed estimation (with the exception of
σ2

1 ). This is due to the much richer data available for the interconnected vertices.
The mean squared errors (MSE) of the final estimates are given in Table 3.1.
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3.5 Conclusion

The quasi-Bayesian method for analytically tractable sequential inference of pa-
rameters of probabilistic mixtures has been extended to the case of distributed
estimation of normal mixture model with unknown mixing probabilities and
component parameters. Here, distributed means that there is a graph (network)
of cooperating vertices (nodes, agents) sharing their statistical knowledge (obser-
vations and estimates) with a limited subset of other vertices. This knowledge is
combined at each vertex: the observations are incorporated by means of the Bayes’
theorem, the estimates are combined via the Kullback–Leibler optimal rule.

The main advantage of the method is its simplicity and scalability. Unlike Monte
Carlo approaches, it is computationally very cheap. The authors have recently shown
in [2] that this method is suitable for the whole class of mixture models consisting
of exponential family distributions and their conjugate prior distributions.

One difficulty associated with the method is common for most mixture estimation
methods, namely the initialization. In addition, merging and splitting of components
after the combination of estimates would significantly enhance the suitability of the
approach for dynamic cases. These topics remain for further research.

Appendix

Below we give several useful definitions and lemmas regarding the Bayesian
estimation of exponential family distributions with conjugate priors [9]. The proofs
are trivial. Their application to the normal model and normal inverse-gamma prior
used in Sect. 3.4 follows.

Definition 1 (Exponential family distributions and conjugate priors). Any dis-
tribution of a random variable y parameterized by θ with the probability density
function of the form

p(y|θ) = f (y)g(θ)exp{η(θ)ᵀT (y)} ,

where f ,g,η , and T are known functions, is called an exponential family distribu-
tion. η ≡ η(θ) is its natural parameter, T (y) is the (dimension preserving) sufficient
statistic. The form is not unique.

Any prior distribution for θ is said to be conjugate to p(y|θ), if it can be written
in the form

π(θ |ξ ,ν) = q(ξ ,ν)g(θ)ν exp{η(θ)ᵀξ} ,

where q is a known function and the hyperparameters ν ∈ R
+ and ξ is of the same

shape as T (y).
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Lemma 1 (Bayesian update with conjugate priors). Bayes’ theorem

π(θ |ξt ,νt) ∝ p(yt |θ)π(θ |ξt−1,νt−1)

yields the posterior hyperparameters as follows:

ξt = ξt−1 +T (yt) and νt = νt−1 +1.

Lemma 2. The normal model

p(yt |μ ,σ2) =
(σ2)−

1
2√

2π
exp

{
− 1

2σ2 (yt −μ)2
}

where μ ,σ2 are unknown can be written in the exponential family form with

η =

(
μ
σ2 ,

−1
2σ2 ,

−μ2

2σ2

)ᵀ
, T (yt) =

(
y,y2,1

)ᵀ
, g(η) =

(
σ2)− 1

2 .

Lemma 3. The normal inverse-gamma prior distribution for μ ,σ2 with the (non-
natural) real scalar hyperparameters m, and positive s,a,b, having the density

p(μ ,σ2|m,s,a,b) =
ba(σ2)a+1+ 1

2√
2πsΓ (a)

exp

{
− 1

σ2

[
b+

1
2s

(m−μ)2
]}

can be written in the prior-conjugate form with

ξt =

(
m
s
,

m2

s
+2b,

1
s

)ᵀ
.

Lemma 4. The Bayesian update of the normal inverse-gamma prior following the
previous lemma coincides with the ‘ordinary’ well-known update of the original
hyperparameters,

s−1
t = s−1

t−1 +1,

mt = st

(
mt−1

st−1
+ yt

)
,

at = at−1 +
1
2
,

bt = bt−1 +
1
2

(
m2

t−1

st−1
− m2

t

st
+ y2

t

)
.

Definition 2 (Kullback–Leibler divergence). Let f (x),g(x) be two probability
density functions of a random variable x, f absolutely continuous with respect to g.
The Kullback–Leibler divergence is the nonnegative functional
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D( f ||g) = E f

[
log

f (x)
g(x)

]
=

∫
f (x) log

f (x)
g(x)

dx, (3.12)

where the integration domain is the support of f . The Kullback–Leibler divergence
is a premetric; it is zero if f = g almost everywhere, it does not satisfy the triangle
inequality nor is it symmetric.
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