
Chapter 2
A New Finite Approximation for the NGG
Mixture Model: An Application to Density
Estimation

Ilaria Bianchini

Abstract A new class of random probability measures, approximating the
well-known normalized generalized gamma (NGG) process, is defined. The new
process is built from the representation of the NGG process as a discrete measure,
where the weights are obtained by normalization of points of a Poisson process
larger than a threshold ε . Consequently, the new process has an as surely finite
number of location points. This process is then considered as the mixing measure in
a mixture model for density estimation; we apply it to the popular Galaxy dataset.
Moreover, we perform some robustness analysis to investigate the effect of the
choice of the hyperparameters.
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Normalized generalized gamma process

2.1 Introduction to Bayesian Nonparametric
Mixture Models

In this first section we deal with the problem of density estimation from a Bayesian
nonparametric point of view. The nonparametric approach is very useful because
it allows a rich class of models for the data, considering infinite dimensional
families of probability models. Priors on such families are known as nonparametric
Bayesian priors and prevent misleading decisions and inference that may result for
a parametric approach, which requires a strong assumption about the investigated
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phenomenon, cf. [11]. We will see how a particularly flexible class of nonpara-
metric priors within the family of normalized random measures with independent
increments (NRMI) can be applied for density estimation problems.

Mixture models provide a statistical framework for modeling a collection of
continuous observations (X1, . . . ,Xn) where each measurement is supposed to arise
from one of k possible unknown groups and each group is modeled by a density
from a suitable parametric family.

This model is usually represented hierarchically in terms of a collection of
independent and identically distributed latent random variables (θ1, . . . ,θn) as
follows:

⎧
⎪⎨

⎪⎩

Xi|θi
ind∼ K(·|θi), i = 1, . . . ,n,

θi|P iid∼ P, i = 1, . . . ,n,

P ∼ Q,

(2.1)

where Q denotes the nonparametric prior distribution and K(·|θ) is a probability
density function parameterized by the latent random variable θ .

Model (2.1) is equivalent to assume X1, . . . ,Xn i.i.d. according to a probability
density that is a mixture of kernel functions:

X1, . . . ,Xn
iid∼ f (x) =

∫

Θ
K(x|θ)P(dθ), (2.2)

where P is called mixing measure. Note that if Q selects discrete probability
measures, P is almost surely (a.s.) discrete and the mixture model can be written
as a sum with a countably infinite number of components:

f (x) =
∞

∑
j=1

p jK(x|θ j) ,

where the weights (p j) j�1 represent the relative frequencies of the groups in the
population indexed by θ j. This approach provides a flexible model for clustering
items in a hierarchical setting without the necessity to specify in advance the exact
number of clusters; therefore, it can also be adopted in cluster analysis. In the next
section, the normalized generalized gamma (NGG) prior is introduced, starting from
its construction via normalization of a discrete random measure. As we will see, it is
very flexible and still mathematically tractable at the same time, making it a suitable
choice for Q in the mixture model.

2.2 The NGG Process

Here, we briefly recall how to build a normalized random measure with independent
increments (for an in-depth study, see Chapter 8 of [8]). Consider a (a.s.) discrete
random measure μ(·): it can be expressed as an infinite weighted sum of degenerate
measures:
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μ(·) = ∑
i≥1

Jiδτi(·). (2.3)

The random elements (Ji,τi)i�1 are the points of a Poisson process on (R+,X) with
mean measure ν that satisfies the following conditions:

∫

(0,1)
sν(ds,X)< ∞, ν([1,∞)×X)< ∞. (2.4)

This construction produces the most general completely random measure (CRM)
without fixed atoms and non-random measure parts: it selects discrete measures
almost surely.

An important property which one could impose on a CRM is homogeneity,
i.e. the underlying mean measure factorizes. Let P0 be a non-atomic and σ -finite
probability measure on X: if ν(ds,dx) = ρ(ds)P0(dx), for some measure ρ on
R
+, we call μ homogeneous: in this case, the jumps in the representation (2.3) are

independent from the locations.
The sequence (Ji)i≥1 represents the jumps controlled by the kernel ρ and (τi)i≥1

are the locations of the jumps determined by the measure P0 on X. Since μ is
a discrete random measure almost surely, it is straightforward to build a discrete
random probability measure by the normalization procedure, which yields NRMIs,
first introduced by [14].

Obviously the procedure is well defined only if the total mass of the measure
T := μ(X) is positive and finite almost surely:

P(0 < T < ∞) = 1.

This requirement is satisfied if the measure ρ (in the homogeneous case) is such that

∫

R+
ρ(ds) = ∞ ∀x ∈ X. (2.5)

This means that the jumps of the process form a dense set in (0,∞). However, since
the second condition in (2.4) must hold, it turns out that infinite points of the Poisson
process are very small. In fact, we find that the integral of intensity ρ over R+ is
infinite while the subinterval over [0,∞) is finite. Now, we define an NRMI P(·)
as μ(·)/T . It is important to highlight that NRMIs select, almost surely, discrete
distributions, such that P admits a series representation as

P = ∑
j≥1

p jδτ j , (2.6)

where p j = Jj/T ∀ j � 1, where the weights Jj are those in (2.3).
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Lévy intensity
Fig. 2.1 Example of intensity measure ν(ds,dx) = 1/Γ (1−σ)e−ss−1−σ dsP0(dx) where σ = 0.1
and P0 is Gaussian with mean 0 and variance 1

The NRMI addressed here is the NGG process. As stated in [1], a generalized
gamma measure is an NRMI μ with intensity measure equal to

ν(A×B) = P0(B)
∫

A
ρ(ds), A ∈B(R+),B ∈B(X)

where

ρ(ds) =
κ

Γ (1−σ)
s−1−σ e−sω ds, s > 0. (2.7)

Figure 2.1 displays ν(s,x), where ω = κ = 1, σ = 0.1 and P0 is Gaussian with
mean 0 and variance 1. It is straightforward to define the homogeneous random
probability measure P(·) = μ(·)/T as in (2.6), by the name of NGG process

P ∼ NGG(σ ,κ ,ω,P0),

with parameters (σ ,κ ,ω,P0), where 0 � σ � 1, ω ≥ 0, κ ≥ 0. Within this wide
class of priors one finds the following special cases:
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1. The Dirichlet process DP(κ ,P0) which is an NGG(0,κ ,P0) process;
2. The normalized inverse Gaussian process that corresponds to a

NGG(1/2,κ ,P0).

One could wonder why to choose this process instead of using directly the popu-
lar Dirichlet process. The main reason lies in the greater flexibility of the clustering
behavior, achieved by the additional parameter, σ , which tunes the variance of the
number of distinct observations in a sample from P (if σ increases, the variance
increases too; see, for instance, [9]).

2.3 The ε-NGG Approximation

The model we are going to approximate in this section is the so-called NGG mixture
model,

⎧
⎪⎪⎨

⎪⎪⎩

Xi|θi
ind∼ K(·|θi), i = 1, . . . ,n,

θi|P iid∼ P, i = 1, . . . ,n,

P ∼ NGG(σ ,κ ,ω,P0).

(2.8)

From now on, we will consider kernels K(·|θ) defined on X ⊆ R
p, where p

represents the dimension of the data, and the prior NGG is defined on Θ ⊆ R
m, the

space of the parameters of the kernel. For instance, if K is the univariate Gaussian
distribution, N(μ ,σ2), the latent variable θ could be the couple (μ ,σ2), hence
Θ =(R×R

+). The main problem when dealing with nonparametric mixture models
is the presence of an infinite dimensional parameter P, which makes these models
computationally difficult to handle.

In the literature, one can find two ways to tackle this problem, namely marginal
and conditional methods: on the one hand, the first ones integrate out the infinite
dimensional parameter, leading to generalized Polya urn schemes (see, for instance,
[10] and [12]). This approach has one main limitation: We cannot obtain information
about the latent variables, since the posterior inference involves only the predictive
distribution f (Xn+1|X1,X2, . . . ,Xn). On the other hand, conditional methods build
a Gibbs sampler which does not integrate out the nonparametric mixing measure
but update it as a part of the algorithm itself. The reference papers on conditional
algorithms for Dirichlet process mixtures are the retrospective sampler of [13]
and the slice sampler of [15] (extended in the more general NRMI case in [5]).
Conditional methods can also be based on truncation of the sum defining the mixing
measure P in (2.6): it can be performed both a-posteriori, as in [6] and [1], or
a-priori, as in [7] and [4]. The driving motivation for using conditional methods
is that they provide a “full Bayesian analysis,” i.e. it is possible to estimate either
posterior mean functional or linear and nonlinear functionals, such as quantiles.

The proposed method is based on an a-priori truncation of P: in particular, we
consider only jumps greater than a threshold ε > 0, which turns out to control the
approximation to the infinite dimensional prior: conditionally on ε , only a finite
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number of jumps has to be considered, hence we resorted to a finite dimensional
problem. In particular, the number of jumps Jj greater than a threshold value ε is
Nε +1, where Nε is a random variable distributed as

Nε ∼ Poisson(Λε), Λε =

∫ ∞

ε
ρ(ds) =

κωσ

Γ (1−σ)
Γ (−σ ,ωε),

so that its expectation increases as ε decreases. Furthermore, the jumps
(J0,J1, . . . ,JNε ) turn out to be i.i.d. from

ρε(s) =
ρ(s)
Λε

1(ε ,∞)(s) =
1

ωσΓ (−σ ,ωε)
s−σ−1e−ωs1(ε ,∞)(s).

We consider location points (τ0,τ1, . . . ,τNε ) i.i.d. from the base measure P0 and
define the following discrete (a.s.) random probability measure on Θ :

Pε(·) =
Nε

∑
j=0

Jj

Tε
δτ j(·) (2.9)

where Tε = ∑Nε
j=0 Jj. Pε in (2.9) is denoted as ε-NGG(σ ,κ , ω , P0) process. This

process can be seen as an approximated version of the NGG process of Sect. 2.2,
provided that ε is small, since the convergence to the NGG process holds true
provided that ε tends to 0. The main advantage compared to the corresponding
NGG is that in this case the sum defining Pε is finite: We moved from an infinite
dimensional process to a finite dimensional one, which eventually (when ε assumes
a very small value) approximates the NGG.

The mixture model we are going to consider can be expressed as follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X1, . . . ,Xn|θ1, . . . ,θn ∼ ∏n
i=1 K(Xi|θi),

θ1, . . . ,θn|Pε ∼ Pε i.i.d.,

Pε ∼ ε-NGG(σ ,κ ,ω,P0),

ε ,σ ,κ ∼ π(ε ,σ ,κ).

It can be either considered as an approximation of the NGG mixture model (2.8)
or as a separate model when ε is random. In the latter case, we let data “drive” the
degree of approximation and the model can be significantly different with respect to
its nonparametric counterpart, because ε may assume relatively large values.

Before proceeding to the application of Sect. 2.4, it is useful to remember that
the Bayesian estimate of the true density is

fXn+1(x|X1, . . . ,Xn) =
∫ Nε

∑
j=0

Jj

Tε
K(x|τ j)L (dε ,dσ ,dκ ,dP|X1, . . . ,Xn)

which will be estimated through Monte Carlo methods.
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A more detailed description of the ε-NGG mixture model, providing also a proof
of convergence and an MCMC algorithm to sample from the posterior distribution
of the model, can be found in [2].

2.4 An Application to Density Estimation for the Galaxy Data

In this section, we apply the model proposed in Sect. 2.3 to a very popular dataset in
the literature, the Galaxy dataset, exploiting the Gibbs sampler scheme of [2]. These
data are observed velocities of n = 82 different galaxies, belonging to six well-
separated conic sections of space. Specifically, we use Gaussian kernel densities
K(x|θ) = N(x|μ ,σ2). Hence, P0, the parameter of the nonparametric prior, is a
normal inverse-gamma distribution,

N

(

μ |X̄ ,
σ2

0.01

)

IG
(
σ2|2,1) ,

where X̄ stands for the sample mean, 20.83. This set of hyperparameters, first
proposed by [3], is standard in the literature.

We perform a robustness analysis through a lot of experiments which highlight
the relationship between the posterior estimates and the prior choice of the
parameters. In fact, the choice of a value (or a prior in the random case) for these
parameters is the most complicated part of the model, since it strongly influences
the posterior inference.

Here, we present some results corresponding to different sets of hyperparameters:
we report in Table 2.1 nine combinations of (σ ,κ) together with three values for the
a-priori expected values for the number of groups Kn, namely {3,5,20}, that we
used for our experiments.

Obviously, as mentioned in Sect. 2.2, as σ increases, the variance of Kn increases.
In addition, we consider three different priors for ε , in order to study their influence
on posterior inference. In what follows, we call (A) the case where the prior
is degenerate on a value, i.e. ε = 10−6, (B) where ε ∼ Uni f (0,0.1) and (C)

Table 2.1 Combinations of
parameters (σ ,κ) chosen for
the numerical examples: we
selected three different
couples for each prior mean
number of groups in the data

Index E(Kn) σ κ
1 3 0.001 0.45

2 3 0.1 0.25

3 3 0.2 0.05

4 5 0.001 1.0

5 5 0.2 0.35

6 5 0.3 0.09

7 20 0.2 5.0

8 20 0.4 2.2

9 20 0.6 0.3
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Fig. 2.2 Density estimates
for test cases A7, A8, and A9
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where ε is a Beta(0.69,2.06) scaled to the interval (0,δ = 0.1). In case (C), we
chose an informative prior for ε (with mean 0.25δ and variance 0.05δ 2) which
is concentrated over very small values, since our goal is to approximate the NGG
mixture model. Overall, we will have 27 test cases named A1, . . . ,A9, B1, . . . ,B9,
C1, . . . ,C9.

Figure 2.2 shows the posterior estimates in test cases A7, A8, and A9, proving
reasonable density estimates. We notice that there are only slight differences be-
tween the various density estimates, indicating robustness of the model. Figure 2.3
demonstrates that, when σ assumes larger values, the posterior distributions of Kn

spread to a larger range of possible values. Since the model is more flexible the
posterior mean is free to shift towards the “true” average, being more “sensitive”
to the data. This fact is more evident in cases B and C, where ε is random: the
posterior mode of the number of clusters is around 10, while in case A is around
16. Here, the data determine the degree of approximation such that unreasonable
a-priori information impacts the resulting number of groups less.

Furthermore, we fix σ = 0.1 and κ = 0.45 but we consider ε ∼ Gamma(α,β ),
with support over all positive real numbers; in particular, we choose (α,β ) ∈
{(0.5,2),(0.01,0.1),(1,10)}. The first combination corresponds to a relatively large
mean (0.25) and variance (0.125) for ε . However, a large mass of the distribution
lies around 0 due to the presence of an asymptote in the prior distribution. The
second and third combinations have the same mean (0.1) but the variance is 1 and
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Fig. 2.3 Histograms of the posterior number of clusters in tests A, B, C. In magenta the tests with
a bigger a-priori variance for Kn, in green the tests corresponding to a relatively small variance
a-priori, in blue the intermediate ones. (a) A7, A8, A9. (b) B7, B8, B9. (c) C7, C8, C9
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Fig. 2.4 (a) Traceplots and histogram for variable ε in the second test case. In panel (b) the violet
line shows the prior distribution, i.e. ε ∼ gamma(1,10)
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Fig. 2.5 Autocorrelation of variable ε , (a), and scatterplot of ε versus σ , (b): the gray lines
represent the contour levels of the prior

0.01, respectively. We report for brevity only results for (α,β ) = (1,10); however,
we point out that some mixing problems in the chain for ε arise, when increasing
the a-priori variance. Figure 2.4b shows that ε moves a posteriori towards smaller
values with respect to the prior information. Besides, the traceplot of ε , Fig. 2.4a,
exhibits a good mixing for the chain in this case.

Finally, we mention a further test, where all three parameters are random:
in particular, we assume ε ∼ Beta(0.69,2.06) with support on (0,0.1), σ ∼
Beta(1.1,30) and κ ∼ Gamma(1.1,8). The density estimate is satisfying, the only
issue to mention is the high autocorrelation of ε and the correlation between the
two parameters σ and ε (Fig. 2.5). This result is even more pronounced under a less
informative prior distribution for (σ ,ε).
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2.5 Conclusions

A method to deal with a particularly flexible nonparametric mixture model, namely
the NGG mixture model, is presented. It is based on a-priori truncation of the infinite
sum defining the random probability measure P and it allows to computationally
handle the presence of an infinite dimensional parameter, P, in the mixture model.
In fact, conditionally on a threshold value ε , we can define a new process Pε , which
consists of a finite sum. We showed an application to density estimation for the
popular Galaxy dataset. Through the exposition of several choices of the hyperpa-
rameters we established the robustness of the model and studied the relationship
between posterior estimates and prior elicitation. In particular, we illustrated some
suitable priors for the threshold parameter ε , letting in this case, the data drive the
degree of approximation. If there is no need to consider a fully nonparametric model,
ε may be relatively far from 0, implying smaller computational effort. Overall,
density estimates were satisfying in all the experiments.
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