
Chapter 10
A New Strategy for Testing Cosmology
with Simulations
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Abstract Structural properties of clusters of galaxies have been routinely used
to claim either tension or consistency with the fiducial cosmological hypothesis,
known as ΛCDM. However, standard approaches are unable to quantify the
preference for one hypothesis over another. We advocate using a ‘weighted’ variant
of approximate Bayesian computation (ABC), whereby the parameters of the strong
lensing-mass scaling relation, α and β , are treated as the summary statistics. We
demonstrate then, for the first time, the procedure for estimating the likelihood for
observing α and β under the ΛCDM framework. We employ computer simulations
for producing mock samples, and account for variation between samples for
modelling the likelihood function. We also consider the effects on the likelihood,
and consequential ability to compare competing hypotheses, if only simplistic
computer simulations are available.
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10.1 Introduction

Our standard model of cosmology, ΛCDM, is one in which our universe is made
up primarily of dark energy, has a large amount of dark matter, and only a small
fraction of ordinary matter; it is currently undergoing a period of expansion and
an expansion that is accelerating. This model appears to describe the contents and
evolution of the universe very well, and has been determined through the analysis
of several astrophysical objects and phenomena. One additional dataset with the
potential to provide complementary information is the mass-structure of clusters of
galaxies [1, 2, 22, 24]. These objects contain hundreds to thousands of galaxies, as
well as hot gas and dark matter, and they gravitationally lens and distort the images
of more distant galaxies.

Strong lensing efficiencies, as characterised by the effective Einstein radii
(denoted θE ) scale well with the mass of clusters at large over-densities [14]. If any
given set of galaxy clusters sample are, in fact, stronger lenses than predicted by the
ΛCDM model, they will have larger θE for a given total mass at low over-densities
(e.g., M500). The earliest studies of similar galaxy-cluster properties revealed a
significant difference between the observations and ΛCDM predictions [1, 15]. Thus
began the hunt for solutions to the so-called tension with ΛCDM cosmology.

Previous works in the literature have claimed either ‘tension’ or ‘consistency’
with ΛCDM, or insufficient data [6, 11, 18, 21, 23, 27], but do not allow one to
compare competing cosmological hypotheses. In the present work, we propose a
Bayesian approach to the cosmological test using galaxy cluster strong lensing
properties.

10.2 The Bayesian Framework

A Bayesian approach is advocated, in which one determines the relative preference
of two hypothetical cosmological models, C1 and C2, in light of the data D, by
calculating the Bayes factor B:

B =
L (D|C1)

L (D|C2)
(10.1)

where L denotes the likelihood of the data assuming a cosmology.
The aim then is to calculate, under one chosen hypothesis: ΛCDM, the likelihood

of observing the structural properties of a particular sample of galaxy clusters. This
sample is detected using a well-defined selection criteria and all relevant properties
have been measured [5, 7, 13, 16, 17, 26, 27].
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10.2.1 Weighted ABC

Achieving the aforementioned goal is non-trivial, because a likelihood function
related to the original observables (θE and M500) is intractable. This is because: (a)
computer simulations are deemed necessary for describing the irregular structure
of galaxy clusters, which undergo non-linear structure formation; (b) there are a
finite (and relatively small) number of clusters that can be simulated in a reasonable
amount of time, and thus the full θE–M500 space cannot be sampled. Therefore, this
problem is an ideal case for which one may apply a variant of approximate Bayesian
computation (ABC) [4, 25]. What we propose is not a likelihood-free approach,
however, and rather than rejecting mock samples that are dissimilar to the real data,
they are down-weighted. Thus, we refer to the novel approach described below as
Weighted ABC.

We assume a power-law relation between the strong lensing and mass proxies,
and perform a fitting to the following function in logarithmic space1:

log

[
M500

9×1014M�

]
= α log

[
θE

20”

√
Dd

Dds

]
+β (10.2)

with parameters α and β , and aim to find the likelihood of observing the scaling
relationship. α and β act as summary statistics for the dataset. However, rather
than calculating precise values for α and β , one would determine a probability
distribution that reflects the degree of belief in their respective values. The relevant
fitting procedure is described in Sect. 10.2.2.

Next, we outline how to calculate the likelihood of observing α and β . In
the following, ι represents background information such as knowledge of the
cluster selection criteria, the method of characterising the Einstein radius, and
the assumption that there exists a power-law relation between strong lensing and
mass.

1. Computer simulations (see [3, 14, 19, 20]) are run within the framework of a
chosen cosmological hypothesis, C. In our case, C represents the assumption that
ΛCDM (or specific values for cosmological parameters) is the true description
of cosmology.

2. Simulated galaxy clusters are selected according to specified criteria, ideally
reflecting the criteria used to select the real clusters.

3. Different on-sky projections of these three-dimensional objects produce different
apparent measurements of structural properties. Therefore, we construct a large

1The pivot mass 9×1014M� is chosen to approximate the logarithmic average of the observed and
simulated clusters. Similarly, the pivot Einstein radius is chosen to be 20 arcseconds. Dd represents
the angular diameter distance from an observer on Earth to the galaxy cluster lens, while Dds
represents the angular diameter distance from the galaxy cluster lens to a more distant galaxy, in
our case chosen to be fixed to a redshift of z = 2.
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number of mock samples from these by randomly choosing an orientation-angle
for each cluster. Equation (10.2) is fit to each mock sample (See Sect. 10.2.2), to
determine a posterior over α and β : Pi(α,β |C, ι) denotes the result for the ith
of N mock samples. We combine these, to give the probability, P(α,β |C, ι) ≡
∑N

i=1 Pi(α,β |C, ι), that one would observe the scaling relation {α ,β} under the
hypothesis C. The result can be interpreted as a likelihood function as a function
of data: α and β .

4. Fit Eq. (10.2) to the data to obtain the posterior probability distribution for α and
β , P(α,β |ι). The normalised posterior is then interpreted as a single ‘data point’:
the distribution represents the uncertainty on the measurement of α and β .

5. Calculate the likelihood, L , of observing the α–β fit as we did, by integrating
over the product of the two aforementioned posteriors—now re-labelled ‘data-
point’ and ‘likelihood function’.

The result of integrating the product of P(α,β |C, ι) and P(α,β |ι) for the dataset is
mathematically equivalent to integrating the product for each mock separately, then
taking the average over all mock samples:

∫ [ 1
N

N

∑
i=1

Pi(α,β |C, ι)
]
P(α,β |ι)dα dβ =

1
N

N

∑
i=1

∫
Pi(α,β |C, ι)P(α,β |ι)dα dβ

(10.3)

Thus, what we have described above is equivalent to the weighting of each mock
sample according to its similarity to the real data, where the metric is the convolution
of the two (mock and real) posterior probability distributions P(α,β |ι).

10.2.2 Summary Statistic Fitting

The summary statistics α and β are parameters of the scaling relation between
strong lensing efficiency and total cluster mass [Eq. (10.2)]. The procedure for
calculating L , as described in Sect. 10.2.1, requires one to fit real or mock data to
determine the posterior distribution on α and β . We employ the Bayesian linear
regression method outlined in [10]. Additionally, we acknowledge that intrinsic
scatter is likely to be present, and thus introduce a nuisance parameter, V , which
represents intrinsic Gaussian variance orthogonal to the line.

For this subsection, we change notation in order to reduce the subscripts: the
mass of the i-th cluster lens as Mi, and the scaled Einstein radius as Ei. Each data-
point is denoted by the vector Zi = [logMi, logEi]. Their respective uncertainties
(on the logarithms) are denoted σ2

M and σ2
E . Since we assume the uncertainties

for Einstein radii and cluster mass are uncorrelated, the covariance matrix, Si,
reduces to:

Si ≡
(

σ2
M 0
0 σ2

E

)
(10.4)

In the case of a mock sample of simulated clusters, Si = 0.
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Consider now the following quantities: ϕ ≡ arctanα , which denotes the angle
between the line and the x-axis, and b⊥ ≡ β cosϕ which is the orthogonal distance
of the line to the origin. The orthogonal distance of each data-point to the line is:

Δi = v̂�Zi −β cosϕ (10.5)

where v̂ = [−sinϕ,cosϕ] is a vector orthogonal to the line.
Therefore, the orthogonal variance is

Σ 2
i = v̂�Siv̂ . (10.6)

Following [10], we calculate the likelihood over the three-dimensional parameter
space: Θ1 ≡ {α,β ,V}:

lnL = K−
N

∑
i=1

1
2

ln(Σ 2
i +V )−

N

∑
i=1

Δ 2
i

2Σ 2
i +V

(10.7)

where K is an arbitrary constant, and the summation is over all clusters in the
considered sample.

While we ultimately (aim to) provide the parameter constraints on α and β , flat
priors for these tend to unfairly favour large slopes. A more sensible choice is flat
for the alternative parameters ϕ and b⊥. We apply a modified Jeffreys prior on V :

π(V ) ∝
1

V +Vt
(10.8)

This is linearly uniform on V for small values and logarithmically uniform on V for
larger values with a turnover, Vt , chosen to reflect the typical uncertainties.

Thus, for each Θ1, we may define an alternative set of parameters Θ2 ≡
{ϕ,b⊥,V}, for which the prior is given by:

π(Θ2) = π(ϕ,b⊥)π(V )

∝ π(V ) (10.9)

where π(V ) is given by Eq. 10.8. The prior on Θ1 is then dependent on the
magnitude of the Jacobian of the mapping between the two sets of parameters:

π(Θ1) = π(Θ2)det ∂Θ2
∂Θ1

≡ π(Θ2)
1

(1+α2)3/2 (10.10)
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Boundaries on the priors are sufficiently large2: −8 ≤ β ≤ 8; −40 ≤ α ≤ 40; 0 ≤
V ≤ Vmax. Vmax is chosen to reflect the overall scatter in the data. The posterior is
calculated following Bayes’ theorem:

P(Θ1|D) ∝ L (D|Θ1)π(Θ1) (10.11)

and is normalised. In practice, the posterior distribution was sampled by employing
emcee [8], the python implementation of the affine-invariant ensemble sampler for
Markov chain Monte Carlo (MCMC) proposed by [9].

As we are interested in the constraints on α and β , we then marginalise over the
nuisance parameter, V .

10.3 Results

In Fig. 10.1, we show the relation between the Einstein radii and the cluster mass
M500. The real cluster sample is represented by red circles. For simulated clusters,
the situation is more complicated. Since different lines of sight provide a large
variation in projected mass distribution, each cluster cannot be associated with an
individual Einstein radius, nor a simple Gaussian or log-normal distribution [14].
We therefore measure the Einstein radius for 80 different lines of sight and, for ease
of visualisation, describe the distribution of Einstein radii for each simulated cluster
by a box-plot.

Fig. 10.1 Strong lensing
efficiency, characterised by
scaled Einstein radii, θE,eff,
plotted as a function of mass.
The range of Einstein radii for
simulated clusters are shown
by the blue box-plots. The red
circles represent the real
clusters. The red line marks
the maximum a-posteriori fit
to observational data, while
the thin blue lines mark the fit
to 20 randomly chosen mock
samples from simulations
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2The physically motivated choice of restricting α ≥ 0 is also explored; however, this has very minor
effects on the final results despite removing the (small) secondary peak in the marginal posterior
on α and β .
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Fig. 10.2 Left: 1-σ and 2-σ constraints on parameters of the strong lensing—mass relation given
the real cluster data (red contours), with a maximum a posteriori fit marked by a red circle.
Overplotted in blue dots are the best fits to 80 mock observations of simulated galaxy clusters.
A typical 1-σ error is shown as a blue ellipse. Right: Same as the middle panel, but the blue
circle and curves mark, respectively, the maximum and the 1-σ and 2-σ contours of the likelihood
function found by combining all 80 mocks. Ultimately, the likelihood, L ≈ 0.3, is found by
convolving the functions marked by the red and blue contours

We fit the observational data to the lensing-mass relation and after marginalising
out the nuisance parameter, V , present the posterior distribution for α and β , denoted
by red contours in the left-hand panel of Fig. 10.2. This fit is reinterpreted as a single
‘data-point’. To estimate the likelihood, as a function of possible data, we employ
simulations. Many mock samples are individually fit to the lensing-mass relations;
the maximum of the posterior is shown as a blue point and a typical 1-σ error shown
as a blue ellipse. By adding the posteriors for each mock sample and renormalising,
we estimate the required likelihood function, shown by the blue contours in the
right-hand panel of Fig. 10.2. By multiplying by the ‘data-point’ distribution and
integrating over the parameter space, we find L ≈ 0.3.

Note that one cannot comment on whether the likelihood is large or small.
Currently, such simulations are only available for the fiducial ΛCDM cosmological
model. However, if the same process is repeated for simulations under a different
model, then the Bayes factor can be calculated [see Eq. (10.1)] and, after accounting
for priors, may (or may not) reveal a preference for one of the cosmologies, in light
of this data. Alternative cosmological models may include, for example, those with
a different relative dark matter to dark energy ratio, interactions between the two
dark components, or a different normalisation for the structure power spectrum.
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10.4 Computational Challenge

The approach described above is an exciting new strategy for calculating the
likelihood for observing strong lensing galaxy clusters for a chosen cosmological
hypothesis. However, we recognise that the calculation involves running computer
simulations that can take months. Computationally ‘cheaper’ simulations ignore
several astrophysical processes in the formation of galaxy clusters and it is debatable
whether these would be sufficient.

In order to determine the severity of this problem, we repeat the aforementioned
procedure using galaxy cluster counterparts from such simulations, at varying levels
of complexity and realism, and find that the likelihood, L , can then vary by a factor
of three or four. If the cheaper simulations are employed, then the selection criteria
must also be replaced with an alternative compromise. We test this alternative and
find that L changes by a factor of two.

Our findings suggest that if a model-comparison study was carried out using a
simulation based on an alternative cosmological hypothesis and resulting in a Bayes
factor of 20 or more [see Eq. (10.1)], then the cheaper simulations (or toy models
based on these) would be sufficient. However, in the event that the Bayes factor B
is found to be smaller, then the computationally expensive but realistic simulations
would be necessary.
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