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      Abbreviations 

   ARDS    Acute respiratory distress syndrome   
  CCL2    Chemokine ligand 2   
  COPD    Chronic obstructive pulmonary disease   
  eNOS    Endothelial nitric oxide synthase   
  EPC    Endothelial progenitor cell   
  GMP    Good manufacturing process   
  HGF    Hepatocyte growth factor   
  IDO    Indoleamine 2,3-dioxygenase   
  IFN-β    Interferon beta   
  IL-10    Interleukin 10   
  IL-6    Interleukin 6   
  IND    Investigational new drug   
  IPF    Idiopathic pulmonary fi brosis   
  ISCT    International Society for Cellular Therapy   
  KGF    Keratinocyte growth factor   
  MIP-2    Macrophage infl ammatory protein 2-alpha   
  miRNA    Microribonucleic acid   
  MSC    Mesenchymal stromal (stem) cells   
  NHBLI    National Heart Blood and Lung Institute   
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  NO    Nitric oxide   
  PACT    Production Assistance in Cellular Therapies   
  TGF-β    Transforming growth factor beta   
  TNF-α    Tumour necrosis factor alpha   
  TRAIL    Tumour necrosis factor-related apoptosis-inducing ligand   

6.1           Introduction 

 Pulmonary diseases, including acute respiratory distress syndrome (ARDS), asthma, 
chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fi brosis 
(IPF), bronchopulmonary dysplasia, and occupational diseases such as silicosis, 
remain important causes of morbidity and mortality worldwide. Some of these, such 
as COPD and asthma, in contrast to many other major diseases, are increasing in 
prevalence. COPD, the fourth leading cause of disease mortality worldwide, is 
expected to be the third by 2020, and thus remains a major public health concern. 
Current available treatments for lung diseases may lessen the severity of symptoms, 
but there is still a pressing need for new therapeutic approaches, since no existing 
treatment has been shown to reduce disease progression, reverse the pathological 
changes, and restore the organ functionality. Lung transplantation is considered the 
only curative approach for end-stage chronic diseases; however, there is a signifi -
cant shortage of suitable donor lungs and many on waiting lists die before a lung 
becomes available. Further, lung transplantation requires lifelong immunosuppres-
sion and fi ve-year mortality after transplantation is approximately 50 %. Lung 
transplantation is also not a realistic option for patients in many parts of the world. 
New therapeutic approaches are thus desperately needed (Weiss  2014 ). 

 Approaches utilizing cell-based therapies for lung diseases have progressed rap-
idly in recent years. Systemic or local (intratracheal) administration of different 
stem and progenitor cell types has been demonstrated to have effi cacy in different 
pre-clinical models of lung diseases (   Weiss et al.  2013a ,  b ; Kotton  2012 ; Lau et al. 
 2012 ). The different cell types have included endothelial progenitor cells (EPCs), 
bone marrow-derived mononuclear cells, amniotic fl uid cells, and mesenchymal 
stromal (stem) cells (MSCs) (Weiss  2014 ; Weiss et al.  2013a ,  b ). However, the 
majority of available pre-clinical data have focused on investigation of MSCs.  

6.2     Mesenchymal Stromal (Stem) Cells 

 MSCs were fi rst described in 1968, and since then, have been widely investigated 
for their applications in stem cell-based regeneration studies. The nomenclature has 
evolved over time as MSCs were initially named fi broblastic colony-forming units, 
subsequently as marrow stromal cells, mesenchymal stem cells, mesenchymal stro-
mal cells, or as multipotent mesenchymal stromal cells. Nowadays, the application 
of the more commonly currently utilized terms, mesenchymal stem cell or 
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 mesenchymal stromal cell, is inconsistent in the literature. This nomenclature 
loosely depends on whether MSCs are being used for their ability to differentiate 
into lineages potentially useful in regenerative medicine efforts and structural 
repair, or utilizing their immunomodulatory properties in the absence of structural 
engraftment (Lotfi negad et al.  2014 ). 

 MSCs are described as self-renewal, fi broblastoid, non-phagocytic, adherent 
cells which are able to differentiate in vitro into some cell lineages, in particular, 
culture systems (Mafi  et al.  2011 ; Paunescu et al.  2007 ; Oswald et al.  2004 ; Tran 
et al.  2011 ). In addition to the bone marrow (Li and Ikehara  2013 ; Kern et al.  2006 ), 
MSCs have been found in other sources, including liver (Najimi et al.  2007 ), lung 
(Sabatini et al.  2005 ; Lama et al.  2007 ), brain (Kang et al.  2010 ), adipose tissue 
(Kern et al.  2006 ; Pawitan  2009 ; Zuk et al.  2002 ; Zannettino et al.  2008 ), peripheral 
blood (Chong et al.  2012 ), cornea (Choong et al.  2007 ), synovium (Jones et al. 
 2010 ), thymus (Krampera et al.  2007 ), dental pulp (Gronthos  2011 ; Gronthos et al. 
 2000 ), periosteum (Nakahara et al.  1990 ), tendon (Bi et al.  2007 ), fallopian tube 
(Jazedje et al.  2009 ), placenta (Sabapathy et al.  2012 ; Igura et al.  2004 ), amniotic 
fl uid (You et al.  2008 ), Wharton’s jelly (Wang et al.  2004 ), umbilical cord (Capelli 
et al.  2011 ; Romanov et al.  2003 ), and umbilical cord blood (Kern et al.  2006 ). 

 However, defi nition and investigation of MSCs continue to be confounded by 
several issues. For instance, there can be important differences in MSC properties, 
such as cell surface epitopes, secretome, immunomodulatory properties, lineage ten-
dencies, and genomic stability, according to the tissue, strain, and species that MSCs 
are derived from (Keating  2012 ;    Prockop and Oh  2012a ,  b ; Romieu-Mourez et al. 
 2012 ; Baer and Geiger  2012 ). Further, there is growing evidence that MSCs are 
heterogeneous and that different MSC subtypes exist, even in cells isolated from the 
same source. Thus, delineating functional differences between MSCs isolated from 
different sources is an area of current intense investigation (Viswanathan et al.  2014 ). 

 To foster a more uniform characterization of MSCs and facilitate the exchange 
of data among investigators, the Mesenchymal and Tissue Stem Cell Committee of 
the International Society for Cellular Therapy (ISCT) have proposed minimal crite-
ria to defi ne human MSCs, which are listed as: (1) MSCs must be plastic-adherent 
when maintained in standard culture conditions; (2) MSCs must express CD105, 
CD73, and CD90 in at least 95 % of cell population, and lack expression of CD45, 
CD34, CD14 or CD11b, CD79 alpha or CD19, and HLA-DR surface molecules as 
measured by fl ow cytometry; (3) MSCs must differentiate into osteoblasts, adipo-
cytes, and chondroblasts in vitro (Dominici et al.  2006 ; Horwitz et al.  2005 ). These 
criteria are currently being updated given the continued advances in understanding 
MSC biology with particular focus on developing potency assays applicable to clin-
ical applications (Viswanathan et al.  2014 ). To address some of the variations in 
properties of cultured MSCs, an NCRR/NIH-sponsored Center for Preparation and 
Distribution of Adult Stem Cells (MSCs) serves as a pre-clinical resource for stan-
dardized preparations of mouse, rat, and human MSCs (  http://medicine.tamhsc.edu/
irm/msc-distribution.html    ). The NHBLI also sponsors the Production Assistance in 
Cellular Therapies (PACT) program, a training and GMP manufacturing resource 
that supports pre-clinical, IND preparation, and clinical investigations with MSCs 
and other cell therapy (  https://secure.emmes.com/pactweb/Facilities    ).  
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6.3     Mechanisms of Action 

 While therapeutic interest in MSCs initially focused on exploring their capacity for 
multilineage differentiation to directly regenerate tissues and organs (Pittenger et al. 
 1999 ; Caplan and Bruder  2001 ), they are now also viewed as potent immunomodu-
lators of disease-associated tissue microenvironments (   Caplan  2009 ). Thus, the cur-
rent translational landscape for MSCs includes therapeutic models involving direct 
tissue regeneration as well as indirect, through their anti-infl ammatory and immu-
nomodulatory effects on damaged and diseased tissues (Bianco et al.  2013 ; Griffi n 
et al.  2013 ;    Le Blanc and Mougiakakos  2012 ; Prockop and Oh  2012a ,  b ) (Fig.  6.1 ). 
The capacity of MSCs to broadly modify the activity of most major components of 
the innate and adaptive immune system is now seen, along with their pro- angiogenic 
and cytoprotective effects, as an essential component of their therapeutic potential 
for many disease targets (Caplan and Bruder  2001 ; Bianco et al.  2013 ; Griffi n et al. 
 2013 ; Le Blanc and Mougiakakos  2012 ).  

 The mechanisms by which MSCs might alleviate infl ammation and injury are 
not completely understood and, as in other organ systems, likely involve multiple 
pathways including release of soluble mediators and/or microsomal particles as 
well as cell–cell contact. Importantly, the mechanisms of MSCs actions are  different 
in different lung diseases and refl ect the ability of the MSCs to sense and respond 
differently to different infl ammatory environments (Weiss  2014 ; Weiss et al.  2013a ,  b ). 
Much current interest in MSCs has focused on soluble factors due to their ability to 
secrete multiple paracrine factors such as growth factors, factors regulating 

  Fig. 6.1    Mechanisms of action of MSCs. MSCs promote benefi tial effects through cell-to-cell 
interactions and through secretion of soluble mediators, microvesicles and whole organelles, that 
can directly affect many cells, regulating, for example, the innate and adaptative immune system       
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 endothelial and epithelial permeability, factors regulating innate and adaptive 
immunity, anti-infl ammatory cytokines, and more recently, antimicrobial peptides. 
Some of the soluble mediators implicated in the different model systems include 
IL-6, IL-10, indoleamine 2,3-dioxygenase (IDO), Nitrous Oxide (NO), hepatocyte 
growth factor (HGF), and transforming growth factor (TGF)-β (Lotfi negad et al. 
 2014 ). Transduction or transfection of the MSCs to over-express secreted mediators 
including angiopoietin-1 or keratinocyte growth factor (KGF) further decreases 
endotoxin- mediated lung injury presumably through abrogation of endotoxin-
mediated endothelial injury (Xu et al.  2008 ; Chen et al.  2013 ). While native MSCs 
are effective, MSCs transduced to over-express eNOS, IL-10, KGF, or a CCL2 
inhibitor were found to be more effective in preventing monocrotaline-induced pul-
monary hypertension, ischemia-reperfusion-induced lung injury, or bleomycin-
induced pulmonary infl ammation and subsequent fi brosis, respectively (Prockop 
and Oh  2012a ,  b ; Keating  2012 ; Weiss  2013 ; Antunes et al.  2014 ; Kanki-Horimoto 
et al.  2006 ). MSCs appear also to act in part by decreasing the increased endothelial 
permeability found in acute lung injury, by secreting antibacterial peptides, by pro-
moting an anti-infl ammatory M2 phenotype in alveolar macrophages, by increasing 
monocyte phagocytic activity, and by reducing collagen fi ber content associated 
with increased metalloproteinase-8 expression and decreased expression of tissue 
inhibitor of metalloproteinase-1 (Weiss et al.  2013a ,  b ). However, MSCs may not 
always ameliorate lung injury with some pre-clinical data suggesting that MSCs 
may contribute to established lung fi brosis (Epperly et al.  2003 ; Yan et al.  2007 ; 
Weiss and Ortiz  2013 ). 

 In addition, the ability to secrete microparticles that contain not only proteins but 
RNA or miRNA species which can modulate the expression of multiple genes make 
these packaging vesicles an attractive and quite plausible means for MSCs to regu-
late multiple pathways and produce a robust therapeutic effect in different lung 
injury models (Lee et al.  2012 ; Aliotta et al.  2012 ;    Zhang et al.  2012a ,  b ; Thebaud 
and Stewart  2012 ; Islam et al.  2012 ). Besides this, direct mitochondrial transfer 
from MSCs to ATII cells through connexin 43-mediated cell–cell bridges has been 
demonstrated to replenish endotoxin-depleted ATP stores and restore surfactant 
secretion (Islam et al.  2012 ). 

 Importantly, MSCs can also exert effects on lung infl ammation and injury 
through primary interactions with the immune system rather than through direct 
actions in lung. For example, available information demonstrates that MSCs allevi-
ate endotoxin-induced acute lung injury in mouse models inhibiting Th1 response 
through release of soluble anti-infl ammatory, anti-bacterial, and angiogenic sub-
stances, including IL-10, angiopoietin 1, KGF, and others (Mei et al.  2007 ;    Lee et al. 
 2009a ,  b ; Danchuk et al.  2011 ; Gupta et al.  2012 ;    Ionescu et al.  2012a ,  b ). In con-
trast, MSC administration in mouse models of asthma (allergic airways infl amma-
tion) ameliorates airways hyper-responsiveness by reducing Th2/Th17-mediated 
infl ammation through effects on antigen-specifi c T lymphocytes and by up- 
regulating T-regulatory cells (Cho et al.  2009 ; Park et al.  2010 ; Nemeth et al.  2010 ; 
Firinci et al.  2011 ; Goodwin et al.  2011 ). As such, as MSC-based therapies are 
developed for lung diseases, the specifi c disease pathogenesis in the context of the 
known actions of the MSCs must be carefully considered (Fig.  6.2 ).   
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6.4     Localization of MSCs in Lung After Systemic 
MSC Administration 

 Following systemic administration of MSCs isolated from bone marrow, adipose, 
placenta, or cord blood, a number of studies demonstrate that the cells initially 
localize in the lung vascular bed and that lung injury results in increased localiza-
tion and/or retention of marrow-derived cells in lung (reviewed by Weiss  2013 ; 
Antunes et al.  2014 ). Whether this represents formation of cell emboli in the lung 
vasculature or specifi c adherence to pulmonary vascular adhesion or other mole-
cules remains unclear. Further, the source of the MSCs may infl uence retention in 
the lung. For example, MSCs derived from human umbilical cord blood are cleared 
more rapidly from the lungs than are human bone marrow-derived MSCs (Nystedt 
et al.  2013 ). This refl ects both differences in size of the MSCs from different 
sources as well as differential expression of specifi c integrin and proteoglycan pat-
terns. Retention in the lung may also trigger the MSCs to have functional effects. 
For example, embolization of systemically administered MSCs in lung was felt to 
result in secretion of an anti-infl ammatory protein, TSG-6 (Lee et al.  2009a ,  b ). 
However, although bone marrow- or adipose-derived MSCs can be induced in vitro 
to express phenotypic markers of alveolar or airway epithelial cells, retention of 
MSCs in the lung is generally transient. Structural engraftment of MSCs as lung 
epithelium is a rare event of uncertain physiologic signifi cance in lung (Loi et al. 
 2006 ;    Sueblinvong et al.  2008 ; Ma et al.  2011 ; Maria and Tran  2011 ; Li et al.  2012 ; 
Yan et al.  2012 ; Baer  2011 ). However, some available data suggests that systemi-
cally administered MSCs can engraft as fi broblasts or myofi broblasts under certain 
fi brosing injury conditions, further discussed below (Antunes et al.  2014 ; Kanki-
Horimoto et al.  2006 ). This is a potential undesirable effect of the MSCs.  

  Fig. 6.2    MSCs trigger different responses according to each lung pathological environment. 
MSCs can secrete different soluble mediators depending on the lung disease microenvironment 
they get exposed to       
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6.5     Use of MSCs in Lung Diseases 

 A steadily increasing number of articles demonstrate effi cacy of either systemic or 
intratracheal administration of MSCs obtained from bone marrow, adipose, cord 
blood, or placenta in a growing spectrum of lung injury models in mice and in a 
slowly growing number of clinical investigations in lung diseases (reviewed by 
Weiss  2013 ; Antunes et al.  2014 ). This includes mouse models of acute lung injury 
and bacterial lung infection (Gupta et al.  2012 ; Ionescu et al.  2012a ,  b ; Danchuk 
et al.  2011 ; Kim et al.  2011 ;    Sun et al.  2011a ,  b ; Xu et al.  2012 ; Zhang et al.  2013 ), 
asthma (Firinci et al.  2011 ; Goodwin et al.  2011 ; Kapoor et al.  2011 ;    Kavanagh and 
Mahon  2011 ; Lee et al.  2011 ; Ou-Yang et al.  2011 ; Ionescu et al.  2012a ,  b ; Lathrop 
et al.  2014 ), bronchopulmonary dysplasia (Chang et al.  2011 ;    Pierro et al.  2013 ; 
Zhang et al.  2010 ,  2012a ,  b ; Tropea et al.  2012 ; Sutsko et al.  2013 ), COPD (Hoffman 
et al.  2011 ; Katsha et al.  2011 ; Schweitzer et al.  2011 ; Ingenito et al.  2012 ; Kim 
et al.  2012 ), ischemia re-perfusion injury (Yang et al.  2009 ; Manning et al.  2010 ; 
Sun et al.  2011a ,  b ), post-infl ammatory lung fi brosis (Ortiz et al.  2003 ,  2007 ; Rojas 
et al.  2005 ; Zhao et al.  2008 ; Aguilar et al.  2009 ; Kumamoto et al.  2009 ; Moodley 
et al.  2009 ; Cargnoni et al.  2010 ; Cabral et al.  2011 ; Lee et al.  2010 ; Saito et al. 
 2011 ), pulmonary hypertension (Lee et al.  2012 ; Baber et al.  2007 ; Umar et al. 
 2009 ; Kanki-Horimoto et al.  2006 ; Hansmann et al.  2012 ; Liang et al.  2011 ), sepsis 
and burns (Gonzalez-Rey et al.  2009 ; Nemeth et al.  2009 ; Iyer et al.  2010 ; Mei 
et al.  2010 ;    Yagi et al.  2010a ,  b ;  Krasnodembskaya et al.  2012 ), and other critical 
illness or autoimmune-related lung injuries including hemorrhagic shock, lupus, 
pancreatitis, silicosis, and ventilator-induced lung injury (Shi et al.  2012 ; Pati et al. 
 2011 ; Wang et al.  2012 ; Lassance et al.  2009 ; Chimenti et al.  2012 ; Curley et al. 
 2012 ). Systemically administered MSCs can also home to tumors, through as yet 
unclear chemotactic mechanisms, and have been utilized for delivery of chemo-
therapeutic and other anti-tumor agents in mouse lung tumor models. This may 
provide a viable therapy for lung cancers, particularly with MSCs engineered to 
express anti-tumor compounds such as tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL) or Interferon beta (IFN-β) (Kanehira et al.  2007 ; 
Rachakatla et al.  2007 ; Stoff-Khalili et al.  2007 ; Xin et al.  2007 ; Zhang et al.  2008 ; 
Matsuzuka et al.  2010 ; Loebinger et al.  2009a ,  b ; Heo et al.  2011 ; Hu et al.  2012 ). 
MSC administration has also been demonstrated to alleviate infl ammation and 
injury produced by  intratracheal instillation of either endotoxin or bacterial in 
human lung explants (Lee et al.  2009a ,  b ,  2013 ). 

 In parallel with robust pre-clinical data, a slowly growing number of clinical 
investigations of MSC-based therapy in different lung diseases including ARDS, 
COPD, IPF, and silicosis are occurring (Table  6.1 ). In the following sections, the 
rationale for potential MSC effects, available pre-clinical data, and consider-
ations of clinical trials of MSCs in ARDS, COPD, IPF, and silicosis will be 
considered.

6 Challenges of Cell Therapy for Lung Diseases and Critical Illnesses
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6.6        Acute Respiratory Distress Syndrome 

 The immunomodulatory and reparative potential of MSCs makes them potential 
therapeutic tools for the acute infl ammatory response to infection and pulmonary 
injury seen in ARDS. Several pre-clinical studies on ARDS have demonstrated that 
MSCs may improve the pulmonary and systemic infl ammation characteristic of the 
disease (Rojas et al.  2005 ; Nemeth et al.  2009 ; Mei et al.  2010 ; Gupta et al.  2007 ). 
In models of endotoxin- or bacterial-induced ARDS mice and in explanted human 
lungs, MSC administration not only attenuates infl ammation by decreasing several 
infl ammatory mediators, including tumor necrosis factor-alpha (TNF-α), macro-
phage infl ammatory protein 2-alpha (MIP-2), IFN-γ, IL-1β, MIP-1α, IL-6, IL-8, 
and keratinocyte-derived cytokine in plasma and bronchoalveolar lavage fl uid, but 
it is also able to rescue epithelial cells with mitochondrial dysfunction by mitochon-
dria transfer (Islam et al.  2012 ; Spees et al.  2006 ). In addition, MSCs favorably 
infl uence the host response to bacterial infections, the commonest and most severe 
cause of ARDS. MSC therapy can reduce bacterial counts via a number of mecha-
nisms, including increased antimicrobial peptide secretion, such as lipocalin-2 
(Gupta et al.  2012 ), and enhanced macrophage phagocytosis (Krasnodembskaya 
et al.  2012 ; Nemeth et al.  2009 ). MSCs also enhance repair following lung injury, 
as evidenced by the fi ndings that both intravenous (Curley et al.  2012 ) and intratra-
cheal (Curley et al.  2013 ) MSC therapy restore lung function following ventilator- 
induced lung injury via a KGF-dependent mechanism. Based on these promising 
preclinical fi ndings, a number of early-phase clinical trials have begun to investi-
gate the potential of MSC therapy for severe ARDS. 

 Currently, fi ve studies of MSC therapy safety in patients with ARDS are listed in 
ClinicalTrials.gov. At the University of California, San Francisco, a phase I, multi-
center, open-label dose escalation clinical trial is in progress to assess the safety of 
intravenous infusion of allogeneic bone marrow-derived human MSCs in ARDS 
(NCT01775774) and a phase II, multicenter study was initiated in March, 2014, to 
assess the safety and effi cacy of a single dose of allogeneic bone marrow-derived 
human MSCs infusion in patients with ARDS. In Sweden, a phase I, multi-center, 
open-label, non-randomized controlled trial is also testing the safety of bone-
marrow- derived MSCs in ARDS (NCT02215811). Two phase I, randomized, 
double- blind, placebo-controlled trials are also taking place in China to test the 
safety of systemic infusion of allogeneic human adipose MSCs (NCT01902082) 
and of MSCs derived from menstrual blood (NCT02095444) in ARDS patients.  

6.7     Chronic Obstructive Pulmonary Disease 

 In several preclinical studies, MSC administration has been demonstrated to attenuate 
infl ammation by decreasing levels of infl ammatory mediators, such as IL-1β, TNF-α, 
IL-8, as well as decrease apoptosis (Huh et al.  2011 ; Zhen et al.  2010 ), improve 
parenchymal repair (increased levels of KGF, HGF, and epidermal growth factor), 
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and increase lung perfusion (Huh et al.  2011 ; Shigemura et al.  2006 ; Guan et al. 
 2013 ). Based on these preclinical fi ndings, several groups are investigating the thera-
peutic potential of MSC therapy in COPD patients. 

 The fi rst safety trial registered in ClinicalTrials.gov (NCT01110252) assessed 
systemic administration of autologous bone marrow mononuclear cells in four 
Brazilian patients/volunteers with advanced COPD (stage IV dyspnea) and found 
no obvious adverse effects after 1 year (Ribeiro-paes et al.  2011 ). In a recent trial 
carried out in the United States (NCT00683722), using non-HLA matched alloge-
neic bone marrow-derived MSCs obtained from healthy volunteers (Prochymal ® ; 
Osiris Therapeutics Inc), sixty-two patients were randomized to double-blinded 
intravenous infusions of either allogeneic MSCs or vehicle control. Patients received 
four monthly infusions (100 × 10 6  cells/infusion) and were subsequently followed 
for 2 years after the fi rst infusion (Weiss et al.  2013a ,  b ). This trial demonstrated that 
use of MSCs in COPD patients may be considered safe, as there were no infusion 
reactions and no deaths or serious adverse events deemed related to MSC adminis-
tration. However, no signifi cant differences were observed in the overall number of 
adverse events, frequency of COPD exacerbations, or severity of disease in patients 
treated with MSCs. A signifi cant decrease was observed in circulating C-reactive 
protein in MSC-treated patients giving a potential mechanistic clue of MSC actions. 

 A phase I, non-randomized, open-label study in Brazil is currently recruiting 
patients diagnosed with severe heterogeneous emphysema to evaluate the safety of 
one-way endobronchial valves combined with bone-marrow MSCs (NCT01872624). 
Another phase I, non-randomized, non-blinded, prospective study to test the safety 
and feasibility of administration of bone-marrow MSCs before and after lung vol-
ume reduction surgery for severe pulmonary COPD has been concluded in the 
Netherlands (NCT01306513). Results for this study are pending. An open-label, 
non-randomized, multicenter study is currently underway in Mexico to evaluate the 
safety and effi cacy of autologous adipose-derived stem cell transplantation in 
GOLD moderate-severe patients (NCT01559051).  

6.8     Idiopathic Pulmonary Fibrosis 

 When administered early after injury is instituted, MSCs attenuate infl ammation 
and prevent development of bleomycin-induced lung fi brosis in mice, the most 
commonly utilized experimental model. However, administration of MSCs at time 
intervals longer than 7 days after bleomycin administration had no effect on estab-
lished fi brotic changes in either mouse or pig lungs (Ortiz et al.  2003 ). Further, using 
a different model of lung fi brosis induced by radiation exposure in rodents, MSCs 
administered at time points at which established fi brotic changes were present, 
MSCs were detected in the interstitium as myofi broblasts suggesting that fi broblas-
tic differentiation of MSC occurred in response to mediators produced in the injured 
tissue (Epperly et al.  2003 ; Yan et al.  2007 ). These data suggest that MSC adminis-
tration in the setting of an established or ongoing fi brotic response may worsen the 
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disease process and augment scarring in injured tissue rather than reversing it. As 
such, available data only supports a potential ameliorating effect of MSC adminis-
tration in fi brotic lung diseases if administered early in the disease course during 
active infl ammation (Weiss et al.  2013a ,  b ). At present, there is no data to support an 
ameliorating effect of MSCs on established lung fi brosis. Thus, careful consider-
ation must be given to clinical investigations of MSCs in fi brotic lung diseases. 

 Despite these concerns, there are three trials listed in ClinicalTrials.gov that are 
taking place to evaluate the safety and feasibility of MSC therapy in IPF patients. In 
the United States, a phase I/ll, randomized, blinded, and placebo-controlled trial is 
recruiting 25 IPF patients to investigate the safety, tolerability, and potential effi cacy 
of intravenous infusion of allogeneic human MSCs (NCT02013700). Another phase 
I, open-label, multicenter, non-randomized study will evaluate the safety and feasi-
bility of the endobronchial infusion of autologous bone-marrow MSCs at escalating 
doses in patients with mild-to-moderate IPF at Navarra University in Spain 
(NCT01919827). A third phase I, open-label, single-center, non-randomized dose- 
escalation study in Australia evaluated the safety and feasibility of placental-derived 
MSC infusion in IPF patients (NCT01385644). Initial results from this trial demon-
strate no adverse effects over the 6-month follow-up period. A fourth trial, not listed 
in clinicaltrials.gov, reported no adverse effects of endobronchial administration of 
autologous adipose-derived MSCs over a 1-year follow-up period (Tzouvelekis 
et al.  2013 ).  

6.9     Silicosis 

 Preclinical studies using an experimental model of silicosis demonstrated that both 
systemic and intratracheal administration of autologous BMMCs reduce infl amma-
tion and fi brosis (Lassance et al.  2009 ; Lopes-Pacheco et al.  2013 ). These positive 
effects encouraged a non-randomized, phase I trial of endobronchial administration 
of autologous BMMCs in patients with chronic and accelerated silicosis in Brazil 
(NCT01239862). In this study, three patients each received 2 × 10 7  bone marrow- 
derived cells labeled with 99mTc. The cellular infusion procedure was well toler-
ated by the patients, and no respiratory, cardiovascular, or hematological 
complications were observed. Scintigraphy showed an increase in lung perfusion in 
the basal region up to day 180 after the infusion, while the apex and midzone areas 
presented reduced perfusion at day 180 (Loivos et al.  2010 ; Souza et al.  2012 ). 
However, no subsequent clinical study of MSCs in silicosis has occurred.  

6.10     Conclusions and Future Directions 

 Cell therapy approaches for lung diseases and critical illnesses including ARDS, 
COPD, IPF, and silicosis continue to evolve at a rapid pace. Pre-clinical studies with 
MSCs have generated a great amount of enthusiasm as a benefi cial therapy for lung 
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diseases and critical illnesses. Initial clinical trials have demonstrated that MSC 
administration is safe, with few adverse effects, but substantial challenges still have 
to be overcome before MSCs can be used for clinical practice. As such, further stud-
ies focusing on understanding the mechanisms of action of MSCs must be more 
investigated in order to continue to develop rational approaches for clinical trials. 
Nonetheless, cell-based therapies with MSCs and other cell types offer potential 
hope for these devastating and incurable pulmonary diseases.     
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