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    Chapter 3   
 Stem Cell Niches in the Lung 

             Thomas     J.     Lynch    ,     Xiaoming     Liu    ,     Jun     Wei    , and     John     F.     Engelhardt    

      Abbreviations 

   AEC I/II    Alveolar epithelial cell I/II   
  AF    Autofl uorescence   
  ALDH1    Aldehyde dehydrogenase 1 family   
  AQP3    Aquaporin 3   
  BADJ    Bronchioalveolar duct junction   
  BASC    Bronchioalveolar stem cell   
  CCSP    Club cell secretory protein   
  CD16    Fc receptor, IgG, low affi nity III   
  CD24    CD24 molecule   
  CD31    Platelet/Endothelial cell adhesion molecule 1 (aka PECAM1)   
  CD32    Fc receptor, IgG, low affi nity IIb   
  CD34    CD34 antigen   
  CD45    Protein tyrosine phosphatase, receptor type, C (aka Ptprc)   
  CD73    5′ Nucleotidase, Ecto (aka Nt5e)   
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  CD151    CD151 antigen   
  CDH1    Cadherin 1, type 1, E-cadherin (aka E-Cad)   
  CFTR    Cystic fi brosis transmembrane conductance regulator   
  CGRP    Calcitonin gene-related peptide   
  CK    Cytokeratin   
  CSC    Cancer stem cell   
  EpCAM    Epithelial cell adhesion molecule   
  F3    Tissue factor (aka TF)   
  FGF    Fibroblast growth factor   
  GSI-A 3 B     Griffonia simplicifolia  isolectin A 3 B   
  H33342    Hoechst 33342   
  ITGA6    Integrin alpha 6 (aka CD49f)   
  ITGB4    Integrin beta 4 (aka CD104)   
  LGR6    Leucine-rich repeat containing g protein-coupled receptor 6   
  LRC    Label retaining cell   
  Ly6a    Lymphocyte antigen 6 complex, locus A (aka Sca-1)   
  Ly76    Lymphocyte antigen 76 (aka TER119)   
  lrMSC    Lung-resident mesenchymal stromal cell   
  MSC    Mesenchymal stromal cell   
  NEB    Neuroendocrine body   
  NGFR    Nerve growth factor receptor   
  NSCLC    Non-small cell lung cancer   
  PDGFRα    Platelet-derived growth factor receptor alpha   
  PNEC    Pulmonary neuroendocrine cell   
  SAE    Surface airway epithelium   
  SCLC    Small cell lung cancer   
  SMG    Submucosal gland   
  SPC    Surfactant protein C (aka Sftpc)   
  TGFβ    Transforming growth factor beta   
  TROP2    Tumor-associated calcium signal transducer 2 (aka Tacstd2)   
  TTF1    Thyroid transcription factor 1 (aka NKx2.1)   

3.1           Introduction 

 The epithelium of the conducting and respiratory airways in the adult lung is composed 
of numerous phenotypically distinct epithelial cell types tailored to perform region-
specifi c functions. Because the lung is exposed to the external environment and to 
inhaled pathogens, its airways must have a rapid capacity to regenerate if injured; 
this is essential to preserving an epithelial barrier and normal lung functions. Both 
during injury repair and in the context of homeostatic turnover, cell regeneration 
depends on various types of stem/progenitor cells that are positioned throughout the 
pulmonary tree (Borthwick et al.  2001 ; Hong et al.  2001 ; Kim et al.  2005 ; Liu et al. 
 2006 ; Liu and Engelhardt  2008 ; Rawlins et al.  2009b ; Reynolds and Malkinson  2010 ; 
Rock and Hogan  2011 ). 
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 As in other adult tissues and organs, the stem/progenitor cells of the adult lung are 
undifferentiated cells and have the capacity to remain multipotent, self-renew, and 
produce differentiated progeny present in the physiological domain in which they 
reside. Throughout the airway tree, several distinct cell types carry out local repair in 
response to injury (Fig.  3.1 ). In mice, such cells include a subset of basal cells (within 
the proximal airway) (Rock et al.  2009 ,  2010 ; Cole et al.  2010 ; Hajj et al.  2007 ; Hong 
et al.  2004a ), basal-like cells within the ducts of SMGs (Borthwick et al.  2001 ; 
Engelhardt  2001 ; Engelhardt et al.  1995 ; Hegab et al.  2011 ,  2012b ; Xie et al.  2011 ; 
Lynch and Engelhardt  2014 ), a subset of naphthalene-resistant variant club cells 
(within the NEBs of the bronchi and bronchioles) (Guha et al.  2012 ; Hong et al. 
 2001 ; Reynolds et al.  2000a ; Xing et al.  2012 ; Reynolds and Malkinson  2010 ), a 
subset of SPC expressing club cells at the BADJ (Giangreco et al.  2002 ; Kim et al. 
 2005 ; Rawlins et al.  2009b ; Zheng et al.  2013 ), and a subset of alveolar type II cells 
(Barkauskas et al.  2013 ; Fujino et al.  2011 ).  

  Fig. 3.1    Illustration of potential stem/progenitor cell niches in the lung of the adult mouse. The 
lung can be divided into three major levels of conducting airways (the trachea, bronchi, and bron-
chioles) plus the gas-exchanging alveoli. Distinct region-specifi c stem/progenitor cell niches are 
thought to exist along the proximal-distal axis of the airway. These include: SMG ducts in the 
proximal trachea, basal cells within intercartilaginous zones of the trachea and primary bronchi, 
NEBs in the intralobar bronchi and bronchioles, and the BADJ and alveolar spaces within the 
alveoli. Progenitor/stem cells (marked in  red  and  listed ) reside in their respective local niches and 
these environments enable them to maintain their stem/progenitor properties and control their abil-
ity to differentiate into various progeny cell types.  SMG  submucosal gland,  NEB  neuroepithelial 
body,  BADJ  bronchioalveolar duct junction,  BV  blood vessel       
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 Studies using murine models have revealed several region-specifi c stem cell 
niches along the proximal-distal axis of the airway that maintain distinct subpopula-
tions of progenitors. Stem/progenitor cells are mobilized from these epithelial niches 
to maintain tissue homeostasis during injury repair and normal cellular  turnover. 
The coordination of molecular and cellular events in the microenvironment of stem 
cell niches plays a pivotal role in maintaining the balance of stem/progenitors and 
differentiated cells that are needed for regeneration in the lung (Fig.  3.1 ). In this 
chapter, we review the diversity of cell types, including potential stem/progenitor cells, 
that have been identifi ed in the adult lung, and discuss advances in our understanding 
of stem/progenitor cell niches and their roles in injury repair and lung cancer.  

3.2     Cellular Diversity in the Adult Lung 

 Based on its anatomical and functional features, the lung epithelium can be divided 
into three domains: the proximal cartilaginous airways (trachea and bronchi), the 
bronchioles (bronchioles, terminal bronchioles, and respiratory bronchioles), and the 
alveoli. The epithelial cell types in each of these domains are distinguished by their 
morphology, cellular phenotype (i.e., proteins they express), and function. The proximal 
airway of the mouse is lined with a pseudostratifi ed columnar epithelium composed 
mainly of basal, club, goblet, and ciliated cells; the secretory SMGs reside beneath 
this surface airway epithelium (SAE) and are limited to the proximal trachea in mice 
(Hansell and Moretti  1969 ; Pack et al.  1980 ; Widdicombe et al.  2001 ; Jeffery  1983 ; 
Liu et al.  2006 ). The major cell types in the human proximal airway differ slightly 
from those in mice and include basal, intermediate, goblet, non-ciliated columnar, and 
ciliated cells (Jeffery  1983 ; Liu et al.  2006 ; Mercer et al.  1994 ). Furthermore, in 
humans the SMGs are present throughout the cartilaginous airways, including the 
trachea and bronchi. These glands are composed of an interconnecting network of 
serous acini and mucus tubules, which secrete antibacterial factors, mucous, and fl uid 
into the airway lumen (Wine and Joo  2004 ). In the distal mouse and human airways 
(i.e., bronchioles), club, ciliated, neuroendocrine, and goblet cells are the major cell 
types, and neuroendocrine cells are found both individually and in clusters within 
NEBs (Mercer et al.  1994 ; Van Lommel et al.  1999 ; Plopper et al.  1980 ; Liu et al. 
 2006 ). However, the bronchioles of human lungs have also been shown to contain 
basal cells, albeit at lower abundance than in the proximal regions (Tamai  1983 ; 
Rock et al.  2010 ). The alveolar epithelium is lined by surfactant-producing cuboidal 
alveolar type II epithelial cells (AECII) and squamous gas-exchanging alveolar type I 
epithelial cells (AECI) (Liu et al.  2006 ). The major epithelial cell types that are 
present at various locations throughout the airway are listed in Table  3.1 .
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3.3        Potential Stem Cells in the Adult Lung 

 Stem/progenitor cells are crucial for development, tissue homeostasis, and injury 
repair in the lung. Studies using epithelial reconstitution assays, murine injury mod-
els, and lineage tracing approaches have identifi ed several region-specifi c stem/pro-
genitor cell populations in the adult lung of mice and humans. Basal cells in the 
proximal airways, variant club cells in bronchioles, bronchoalveolar stem cells 
(BASCs) in BADJs, and a subset of AECII in alveolar spaces have all been identi-
fi ed as stem/progenitor cells (Table  3.1 ). 

 In the trachea and main-stem bronchi, basal cells are the principal stem cells 
involved in homeostasis and injury repair and have the capacity to generate all the 
major cell types found in the proximal airway, including basal, ciliated, goblet, and 
granular secretory cells (including club cells) (Hong et al.  2004a ,  b ; Hajj et al.  2007 ; 
Rock et al.  2009 ; Schoch et al.  2004 ; Cole et al.  2010 ; Engelhardt et al.  1995 ). The 
intermediate cells in the human proximal airway are so named because they are 
generally thought to represent an intermediate state of differentiation from basal 
cells and to serve as a transient amplifying cell population with the capacity to dif-
ferentiate into ciliated and goblet cells (Engelhardt et al.  1995 ; Mercer et al.  1994 ). 
Intermediate cells do not exist in the mouse proximal airway, potentially because of 
the less pseudostratifi ed nature of their smaller diameter airways. Of note, studies of 
murine lung injury involving BrdU labeling demonstrated that label-retaining cells 
(LRCs) reside predominantly in the ducts of SMGs, suggesting that these glands 
serve as a stem cell niche in the proximal airway (Xie et al.  2011 ; Borthwick et al. 
 2001 ; Engelhardt et al.  1995 ; Engelhardt  2001 ; Rock et al.  2009 ). Importantly, the 
SMG-localized LRCs have the capacity to undergo sequential rounds of cell divi-
sion despite their slowly cycling phenotype (Xie et al.  2011 ; Lynch and Engelhardt 
 2014 ). Nevertheless, because lineage tracing of glandular LRCs has not yet been 
possible, the ability of these stem cells to produce specifi c airway cell types remains 
unclear. Several cellular markers have been utilized to identify and isolate basal 
cells. These include cytokeratin 5 (CK5), cytokeratin 14 (CK14), and aquaporin 3 
(Rock et al.  2009 ,  2010 ; Schoch et al.  2004 ). Using a CK5-CreERT2 transgenic 
mouse line, Rock et al. further demonstrated that basal cells are capable of differen-
tiating into club and ciliated cells, both at steady state and during injury repair 
(Rock et al.  2009 ). In addition, they identifi ed nerve growth factor receptor (NGFR) 
and integrin α6 (ITGA6, also called CD49f) as markers on the surfaces of isolated 
human basal stem cells (Rock et al.  2009 ). Similarly, Ghosh et al. identifi ed a 
CD49f bright /Sca-1 + /ALDH1 +  (Aldehyde dehydrogenase 1) subset of tracheal basal 
cells as region-specifi c stem cells, and demonstrated that these cells could generate 
niches in vitro and contribute to tracheal epithelial maintenance and injury repair 
(Ghosh et al.  2011 ). These studies suggested that basal cells play key roles in both 
homeostasis and injury repair of the proximal airway. 

 In the intralobar bronchiolar airways, a subset of the variant club cells that 
express club cell secretory protein (CCSP, also called Scgb1a1) but not CyP450-2F2 
(CCSP + , CyP450-2F2 − ) can self-renew and produce both club cells and ciliated 
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cells (Hong et al.  2001 ; Rawlins et al.  2009b ; Reynolds and Malkinson  2010 ; Xing 
et al.  2012 ; Guha et al.  2012 ). This CCSP + /CyP450-2F2 −  subset was also found at 
the BADJ of distal bronchioles, where it contributed to airway epithelial regenera-
tion following naphthalene-mediated depletion of CyP450-2F2 +  club cells 
(Giangreco et al.  2002 ). Kim et al. subsequently identifi ed BASCs as a subpopula-
tion of cells that express CCSP and pro-surfactant protein C (SPC) and serve as 
region-specifi c stem cell at the BADJ (Kim et al.  2005 ). Using naphthalene- and 
bleomycin-induced murine models of lung injury repair, Kim et al. further demon-
strated that these cells possessed the capacity to self-renew and to produce differen-
tiated epithelial cells in vivo, and that BASCs could differentiate into club cells and 
alveolar epithelial cells in an ex vivo clonogenic assay (Kim et al.  2005 ). Conversely, 
an in vivo lineage tracing experiment using a CCSP(Scgb1a1)-CreER™ knock-in 
mouse line revealed that club cells generated daughter club cells and ciliated cells 
but not alveolar cells following hypoxia-induced lung injury (Rawlins et al.  2009b ). 
However, subsequent lineage tracing studies following alveolar injury by infl uenza 
infection and bleomycin exposure support the fi nding that CCSP-expressing stem/
progenitors can give rise to AECI and AECII cells (Zheng et al.  2013 ; Rock et al. 
 2011 ). These injury- dependent infl uences on BASC-derived lineages suggest that 
either specifi c injury signals may invoke different responses and/or that multiple 
subsets of BASCs exist with different capacities for differentiation. The later 
hypothesis is consistent with fi ndings suggesting that BASCs in the distal airways 
might include a heterogeneous population of progenitor cells (Teisanu et al.  2009 , 
 2011 ; Chen et al.  2012 ). A study by Teisanu et al. classifi ed club cells with the sur-
face antigen profi le CD45 − /CD31 − /CD34 − /EpCAM + /Sca-1 low  into two subgroups 
based on their autofl uorescence (AF) profi les and suggested that club cells in the 
AF low  population are naphthalene resistant, whereas their AF high  counterparts were 
not (Teisanu et al.  2011 ). Indeed, mice that were exposed to naphthalene showed 
signifi cantly greater proliferation in AF low  club cells compared to AF high  club cells, 
and conversely, mice exposed to ozone showed signifi cantly greater proliferation in 
the AF high  club cell fraction compared to AF low  club cells (Teisanu et al.  2011 ). 
McQualter et al. demonstrated that an EpCAM + /Sca-1 low /Integrin α6β4 + /CD24 low  
fraction of epithelial stem/progenitor cells was capable of self-renewing and dif-
ferentiating into a variety of airway epithelial lineages, including alveolar epithelial 
cells (McQualter and Bertoncello  2012 ). These studies provide evidence that 
BASCs play key roles in the repair of injury to both bronchiolar and alveolar cells, 
as well as in homeostasis. 

 In the pulmonary alveolus, surfactant-producing AECII cells have long been rec-
ognized as stem/progenitor cells for the squamous AECI cells in the adult lung 
(Adamson and Bowden  1974 ; Evans et al.  1975 ). In vitro assays of cell proliferation 
and clonogenicity, as well as in vivo analyses following epithelial injury and lineage 
tracing, have produced mounting evidence that a subset of AECIIs have the capacity 
to proliferate and restore the alveolar epithelium by producing either new AECII 
cells or their squamous AECI counterparts (Reddy et al.  2004 ; Barkauskas et al. 
 2013 ; Fujino et al.  2011 ). Equally noteworthy were fi ndings suggesting that integrin 
α6β4 is a biomarker for a subset of stem/progenitor cells in alveolar epithelia; 
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SPC − /integrin α6β4 +  cells were found resident in the alveolar epithelia, where they 
were able to regenerate SPC +  AECII cells (Chapman et al.  2011 ). The notion that 
AECII cells are region-specifi c stem/progenitors was recently confi rmed by work 
from the Hogan laboratory, which employed a genetic SPC-labeled lineage tracing 
assay and an in vitro 3D culture model. This study produced convincing evidence 
that AECII cells were able to maintain the homeostasis of alveolar epithelia during 
both steady-state turnover and injury repair (Barkauskas et al.  2013 ). Several strate-
gies that rely on biomarkers to identify and isolate adult lung stem/progenitor cells 
are listed in Table  3.2 .

3.4        Stem Cell Niches in the Adult Lung 

 As discussed above, a vast body of evidence has demonstrated that distinct stem/
progenitor cell populations reside in specifi c anatomical niches (Fig.  3.1 ), where 
diverse cell types and signals coordinate the behavior of stem cells during homeo-
stasis and following injury. Stem cell niches are discrete microenvironmental units 
within a tissue that can provide one or more of the following features important for 
stem cell control: a unique extracellular matrix; supporting cell types; unique inner-
vation and nearby vasculature; and diffusible factors that allow stem cells to main-
tain a capacity to self-renewal and control their proliferation and differentiation in 
the setting of injury (Fuchs et al.  2004 ). The anatomical sites of airway stem cell 
niches are typically epithelial structures associated with these unique features 
described above (e.g., innervation, support cells). Although much remains to be 
learned about how components of airway niches coordinate stem/progenitor cell 
behavior and phenotype, data from organ systems that have been studied more 
extensively suggest that they are likely important in the lung as well. 

 In the following discussion of stem cell niches in the airway, we focus on the 
unique anatomic and biologic properties of each niche within a particular region of 
the lung, and on how these features may contribute to repair following injury. In 
particular, we concentrate on studies of slowly cycling stem/progenitor cells in the 
mouse lung, since nucleotide label retention has been one of the most commonly 
used methods for tracking the anatomic locations of stem cell niches in the lung. 

3.4.1     The Tracheal Surface Airway Epithelium 

 Within the tracheal SAE, subsets of basal cells are thought to be the major stem/
progenitor cells. Following injury, LRCs tend to cluster within intercartilaginous 
zones of the distal trachea and larger bronchi along the basal lamina of the surface 
epithelium (Borthwick et al.  2001 ). These intercartilaginous zones tend to be sites of 
high blood vessel concentration and nerve penetration to the epithelium (Baker 
et al.  1986 ; McDonald  1988 ). These features are likely important biologic 
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components and may function to localize stem/progenitor cells within this niche at 
homeostasis; they could also mediate injury responses that direct changes in stem/
progenitor cell behavior. It has been suggested that these intercartilaginous zones 
enable a subset of surface basal cells to maintain multipotency within the mouse 
proximal airway (Borthwick et al.  2001 ; Engelhardt  2001 ; Liu and Engelhardt 
 2008 ; Rock et al.  2009 ,  2010 ; Hong et al.  2004b ). Subpopulations of basal cells with 
the capacity for self-renewal and differentiation have also been described by others, 
based on clonogenic assays and lineage tracing studies (Cole et al.  2010 ; Hajj et al. 
 2007 ; Hong et al.  2004a ; Schoch et al.  2004 ; Rock et al.  2009 ). For example, Rock 
et al. recently identifi ed a subset of basal cells that were marked with p63 + /NGFR + /
CK5 +  that were able to self-renew and to generate luminal daughter cells within an 
in vitro 3D tracheosphere assay (Rock et al.  2009 ). Lineage tracing studies in mice 
expressing a CK5-promoter driven CreER transgene further demonstrated that 
CK5-expressing basal cells could give rise to ciliated and club cells in the tracheo-
bronchial airways, both at steady state and following injury (Rock and Hogan  2011 ; 
Rock et al.  2010 ).  

3.4.2     The Tracheal Submucosal Glands 

 A link between SMGs and stem/progenitor cells in the SAE was fi rst discovered 
through retroviral lineage tracing experiments using human airway epithelial cells 
and a rat trachea xenograft model (Engelhardt et al.  1995 ). In these studies, retrovi-
rally tagged human tracheobronchial epithelial cells were expanded in a denuded rat 
trachea that had been subcutaneously implanted into nu/nu mice. These cultures con-
tained diverse populations of airway cells that were capable of clonal expansion 
within the xenografted airway. Phenotypic analysis of clones established a working 
model for progenitor/progeny relationships in the adult human proximal airway. 
Although seven clonal classes were discovered, the most abundant clone phenotype 
was multipotent and contained basal, intermediate, ciliated, and goblet cells. These 
multipotent clones were also the largest in size, supporting the hypothesis that they 
were derived from stem/progenitors with the largest capacity for expansion. Notably, 
SMGs also formed within these xenografts, and lineage tracing revealed that they 
were always associated with multipotent clones on the SAE. Expansion of basal cell 
progenitors in vitro prior to seeding into xenografts reduced the complexity of pos-
sible outcomes in clone phenotypes observed, giving rise to multipotent clones 
almost exclusively. These fi ndings suggested that a small subset of basal cells are 
multipotent for SAE cell types and also have the capacity to form SMGs (Engelhardt 
et al.  1995 ). Additionally, these studies demonstrated with early passage primary 
human airway epithelial cells that a diverse range of progenitors exist in the human 
proximal airway with unipotent and bipotent capacities for differentiation. Later, 
clonal analysis in mice expressing a CK14-CreER transgene confi rmed these fi nd-
ings and demonstrated that at least two subsets of basal cells exist with either unipo-
tent or multipotent capacity for differentiation (Hong et al.  2004b ). Consistent with 
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the fi nding that a subset of adult airway stem cells have the capacity to generate 
SMGs, LRCs localized within glands or glandular ducts following tracheal epithe-
lial regeneration following injury (in response to both SO 2  and detergent treatment), 
suggesting that a subset of slowly cycling glandular epithelial cells are tissue-specifi c 
stem/progenitor cells and are capable of regenerating the airway epithelium after 
injury (Borthwick et al.  2001 ; Engelhardt  2001 ). Based on dual nucleotide sequential 
labeling experiments, these glandular LRCs retain the capacity to divide following 
repeated injury but remain slowly cycling (Xie et al.  2011 ; Lynch and Engelhardt 
 2014 ). Glandular LRCs make up a small fraction of total glandular cells 
(0.39 % ± 0.03 %) at 90 days after injury and only about 10 % of glandular LRCs 
reenter the cell cycle following a second injury and remain slowly cycling (Xie 
et al.  2011 ). Thus, if slowly cycling glandular LRCs are a stem cell, they represent 
approximately 0.04 % of total glandular cells. 

 Similar observations on glandular-derived stem cells were made in a murine 
model of hypoxic-ischemic injury (Hegab et al.  2011 ,  2012b ). In these studies, 
Hegab et al. found that the SMG duct cell population included stem/progenitor cells 
that shared phenotypic features with surface airway basal cells and were resistant to 
epithelial injury in the context of tracheal hypoxic-ischemic injury. In vitro and 
ex vivo assays carried out with epithelial stem/progenitor cells isolated from the 
SMG duct have demonstrated that these cells are capable of self-renew and can 
generate several cell types found in the SAE and SMGs (Hegab et al.  2011 ,  2012a , 
 2014 ). Furthermore, in vitro colony forming assays using epithelia isolated from the 
gland- rich proximal region of the mouse trachea have revealed that these cells have 
a higher potential for proliferation than their counterparts from the gland-free distal 
trachea (Xie et al.  2011 ). 

 Cumulatively, these studies provide convincing evidence that the SMGs serve as 
a stem/progenitor cell niche for the proximal airway. The positioning of stem/
progenitor cell niches within SMGs likely has biologic signifi cance beyond simply 
the maintenance of glandular cell types. For example, SMGs are less exposed to the 
external environment and pathogens that threaten the lung, thus glandular stem cell 
niches are more protected. Additionally, SMGs are highly innervated (Nadel  1983 ; 
Wine  2007 ) and their secretions are regulated (i.e., enhanced) in response to injury 
of the SAE (Xie et al.  2011 ). Given that SMGs play an important role in airway 
innate immunity by producing secretions that regulate the composition of fl uid, 
electrolytes, mucus, and antibacterial factors at the airway surface (Wine and Joo 
 2004 ; Wang et al.  2001 ; Dajani et al.  2005 ), it is not surprising that the regulation of 
glandular secretions following airway insults might be coordinated with the mobili-
zation of glandular stem/progenitor cells that regenerate the airway surface. 
Interestingly, studies of cystic fi brosis suggest that defects in glandular secretions 
caused by the lack of the cystic fi brosis transmembrane conductance regulator 
(CFTR) chloride channel alter the SMG stem/progenitor cell niche by dysregulating 
the calcitonin gene-related peptide (CGRP) neuropeptide (Xie et al.  2011 ). Such 
studies have demonstrated that, in mice defi cient for CFTR, slowly cycling LRCs 
relocate from SMGs to the SAE following naphthalene injury and that this is accom-
panied by a redistribution of highly proliferative stem/progenitor cells from proximal 

3 Stem Cell Niches in the Lung



48

gland-rich regions of the trachea to regions of the SAE that lack glands. CGRP is 
induced in SMGs following airway injury and leads to the induction of gland secretions 
by activating CFTR, however, CGRP is constitutively upregulated in SMGs of cystic 
fi brosis humans, ferrets, pigs, and mice and this altered neuroendocrine signaling is 
thought to be the basis of stem cell niche dysfunction (Xie et al.  2011 ). Such fi ndings 
emphasize the plastic nature of airway stem/progenitor cell niches.  

3.4.3     The Neuroepithelial Bodies in the Intralobar Airways 

 Pulmonary NEBs are found within the epithelia of intrapulmonary airways (bronchi 
and bronchioles) and contain specialized CGRP-expressing pulmonary neuroendo-
crine cells (PNECs) (Cutz et al.  2013 ). The NEBs are extensively innervated and 
intrapulmonary bronchial capillaries are fenestrated at these sites (Lauweryns et al. 
 1972 ,  1974 ; Cutz et al.  2013 ). Both innervation and NEBs have been shown to be 
highest at sites of bifurcation in the airway (Elftman  1943 ; Cutz et al.  2013 ). Given 
these unique anatomic characteristics of NEBs, it is not surprising they appear to be 
stem/progenitor cell niches for the intralobar airways during both normal cell turn-
over and injury repair (Hong et al.  2001 ; Reynolds et al.  2000a ). 

 At least two distinct cell types exist within NEBs—CCSP + /CyP450 −  variant club 
cells and the above-mentioned CGRP +  PNECs (Reynolds et al.  2000a ,  b ). Lineage 
tracing studies using murine models have demonstrated that both the PNECs, and 
variant club cells associated with NEBs, have the capacity to self-renew and to dif-
ferentiate into club and/or ciliated cells following naphthalene injury (Song et al. 
 2012 ; Hong et al.  2001 ; Xing et al.  2012 ; Guha et al.  2012 ). A subpopulation of 
naphthalene-resistant CCSP + /CyP450 −  variant club cells was identifi ed as stem/pro-
genitor cells in distal airways (Reynolds et al.  2000a ,  b ; Hong et al.  2001 ; Rawlins 
et al.  2009b ). Guha et al. also recently identifi ed a distinct subset of CCSP low /
CyP450 − /Scgb3a2 + -expressing club cells resident in NEBs for which Notch signals 
and the transcription factor TTF1 (Nkx2.1) played a crucial role in determining the 
secretory cell fate in developing murine airways, supporting the idea that the NEB 
microenvironment is a stem cell niche for variant club-like stem cell precursors 
(Guha et al.  2012 ). Notch signaling in club cells was also found in the adult lung, in 
which Notch1 was required for repopulating lost club cells following airway 
 epithelial injury (Xing et al.  2012 ). Previously, Hong et al. ablated CCSP-expressing 
cells—including club and variant club cells—by treating transgenic mice that 
expressed thymidine kinase from a CCSP promoter with ganciclovir, and then stud-
ied the lineage potential of the CGRP-expressing PNEC progenitors (Hong et al. 
 2001 ). The group found that, although PNECs replicated following club cell abla-
tion, they were unable to regenerate CCSP-expressing club cells or ciliated cells, 
suggesting that PNECs are not competent to regenerate the mouse bronchiolar 
epithelium (Hong et al.  2001 ). However, Song et al. obtained different results 
using another approach to tag the PNEC lineage (Song et al.  2012 ). Specifi cally, 
these investigators introduced a CreER transgene into the CGRP locus and used this 
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transgene to lineage trace or ablate CGRP-expressing PNECs. They found that fate 
mapped CGRP-expressing PNECs could generate both club and ciliated cells fol-
lowing naphthalene injury, but that when PNECs were ablated using Cre-activated 
diphtheria toxin (DTA), ciliate cells were not regenerated (Song et al.  2012 ). The 
apparent discrepancies between the outcomes in Hong et al. and Song et al., which 
suggest that PNECs are either unipotent or multipotent, respectively, are likely 
related to the methods of airway injury used in these studies and may refl ect a high 
level of plasticity in distal airway progenitors.  

3.4.4     The Bronchioalveolar Duct Junctions 

 Mounting evidence suggests that within the terminal bronchioles the BADJ is a niche 
for BASCs that are capable of regenerating both bronchiolar and alveolar epithelial 
cell lineages following injury (Zacharek et al.  2011 ; Kim et al.  2005 ; Regala et al. 
 2009 ; Tropea et al.  2012 ; Zheng et al.  2013 ; Rock et al.  2011 ). In vitro studies sug-
gested that BASCs have the capacity to differentiate into club, AECII, and AECI 
cells. However, lineage tracing studies using CCSP-CreER knock-in mice did not 
substantiate these fi ndings in vivo, at least in the cases of naphthalene- and hyper-
oxia-induced acute injury to the lung; the CCSP-expressing progenitors did not give 
rise to the alveolar epithelium in these contexts (Rawlins et al.  2009a ). Nevertheless, 
when other models of alveolar injury (infl uenza infection or bleomycin exposure) 
were tested, lineage traced CCSP-expressing progenitors gave rise to labeled AECI 
and AECII cells (Zheng et al.  2013 ; Rock et al.  2011 ; Tropea et al.  2012 ). Thus, 
the contribution of BASCs to alveolar injury repair may depend on injury-specifi c 
regulatory factors within the BADJ microenvironment.  

3.4.5     The Alveoli 

 The terminal end of the respiratory tree is composed of alveolar sacs, whose cellu-
lar composition includes AECI and AECII cells, capillaries, and lung-resident mes-
enchymal stromal cells (lrMSCs). AECII cells, which produce surfactant protein C 
(SPC), have been suggested to serve as a stem/progenitor cells from which AECI 
and AECII cells are regenerated after alveolar injury (Adamson and Bowden  1974 ; 
Barkauskas et al.  2013 ). However, a recent study that used an SPC-CreER mouse 
model to map the fates of AEC cells following bleomycin injury found that the 
majority of AECII cells in fi brotic areas did not arise from preexisting SPC- 
expressing AECII cells (Chapman et al.  2011 ), but rather from a subset of previ-
ously unrecognized AECs. These cells expressed the laminin receptor integrin α6β4 
but not CCSP or SPC and expanded to form a differentiated alveolar-like epithe-
lium containing CCSP- expressing cells and SPC-expressing AECII cells in an 
ex vivo kidney capsule model (Chapman et al.  2011 ). By contrast, in a more recent 
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study by Barkauskas et al., SPC-expressing AECII cells were found to self-renew 
and differentiate into AECI cells, both at steady state and following alveolar injury 
(Barkauskas et al.  2013 ). These investigators went on to show, using an in vitro dif-
ferentiation 3D culture model, that individual AECII cells produced self-renewing 
“alveolospheres” that comprised both AECI and AECII cells. Of note, co-culturing 
AECII cells with a PDGFRα-expressing subpopulation of lung mesenchymal cells 
signifi cantly increased the effi ciency of formation of self-renewing alveolospheres. 
Thus, these PDGFRα-expressing lung stromal cells, which include alveolar fi bro-
blasts and lipofi broblasts, appear to be components of the AECII stem/progenitor 
cell niche within the alveolus (Barkauskas et al.  2013 ). Taken together with studies 
on the BADJ, these studies suggest that multiple stem/progenitor cell niches in the 
distal lung may contribute to repair of the alveolus following injury, and that the 
active niche in the context of homeostasis resides in the alveolus.   

3.5     MSCs and Stem/Progenitor Cell Niches 
in the Adult Lung 

 Increasing evidence indicates that MSCs are important components of epithelial 
stem/progenitor niches in the adult lung, and that they play an essential role in 
orchestrating epithelial regeneration during both homeostasis and injury repair 
(McQualter et al.  2010 ,  2013 ; Volckaert et al.  2011 ,  2013 ; Gong et al.  2014 ). lrM-
SCs can be isolated from bronchioalveolar lavage (BAL) fl uid (Lama et al.  2007 ) 
and lung tissue (Ricciardi et al.  2012 ) using the techniques of differential plastic 
adherence and enzymatic dissociation, respectively. Studies evaluating in vitro co- 
culture models have demonstrated that lrMSCs are not only key for the prolifera-
tion and differentiation of epithelial stem cells (McQualter et al.  2010 ) but also are 
able to differentiate into AECII cells when co-cultured with AECII cells in a tran-
swell model (Gong et al.  2014 ). In this context, lrMSCs can contribute to lung 
repair by secreting FGF-10 and TGF-β, and thereby promoting re-epithelialization 
(McQualter et al.  2010 ,  2013 ; Volckaert et al.  2011 ,  2013 ). In the developing lung, 
FGF-10 is central to regulating BMP, Wnt, and Shh signaling pathways, which are 
responsible for coordinating differentiation in this context (Morrisey and Hogan 
 2010 ). In the adult lung, TGF-β signaling by mesenchymal cells regulates the 
secretion of FGF- 10 and provides a cue that is necessary for epithelial regeneration 
(McQualter et al.  2010 ,  2013 ). Two subpopulations of lrMSCs were found—
CD166 −  lrMSCs, which have the capacity to differentiate into lipofi broblast and 
myofi broblast cell types and to support epithelial stem cell proliferation and dif-
ferentiation in vitro, and CD166 +  lrMSCs, which are limited to producing cells of 
the myofi broblast lineage and fail to support epithelial stem cell proliferation and 
differentiation in vitro (McQualter et al.  2013 ). Studies by Volckaert et al., which 
used a naphthalene- based model of lung injury, have identifi ed lrMSCs as impor-
tant components of the bronchiolar stem/progenitor cell niche. These studies 
implicate parabronchial smooth muscle cells (PSMCs) in the regulation of 
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naphthalene-resistant club cells at the BADJ and adjacent to NEBs by activating 
Wnt/FGF-10 signaling (Volckaert et al.  2011 ). In addition, the Wnt target gene 
c-Myc was found to be critical for both activating the PSMC niche and inducing 
FGF-10 expression (Volckaert et al.  2013 ). Mechanistically, FGF-10 secreted 
by PMSCs activated Notch signaling and Snail expression in naphthalene-resistant 
club cells, and subsequently initiated the repair process by promoting club cell 
proliferation and differentiation (Volckaert et al.  2011 ,  2013 ).  

3.6     Stem/Progenitor Cell Niches and Cancer-Initiating Stem 
Cells in the Lung 

 Lung cancer is a heterogeneous disease in terms of its phenotypic diversity and 
anatomical sites of origin in the airways. Lung cancers can be subdivided into two 
major groups—small cell lung cancers (SCLCs) and non-small cell lung cancers 
(NSCLCs). SCLC is characterized by neuroendocrine cell morphology and accounts 
for ~15 % of lung malignancies; NSCLC accounts for the remaining cases (~85 %) 
and can be further subdivided into three distinct histological subtypes: squamous 
cell carcinoma (SCC), adenocarcinoma, and large cell carcinoma (Travis et al. 
 2013 ). The morphologies and molecular properties (e.g., activation of the Wnt, 
Hedgehog (Hh), and Notch signaling pathways) of each subtype have led to the 
hypothesis that lung cancers are derived from stem cells in the lung (Alamgeer et al. 
 2013 ; Lundin and Driscoll  2013 ). Currently, it is possible to isolate lung cancer 
stem cells (CSCs) based on the expression of several tumor markers, including alde-
hyde dehydrogenase (ALDH), CD133, CD44, and the ability to effl ux certain dyes 
such as Hoechst (Alamgeer et al.  2013 ). 

 Although lung CSCs have not been as well characterized as other tumors, the cur-
rent understanding of the phenotypes of region-specifi c airway epithelial stem/pro-
genitor cells has led to the hypothesis that cancers initiate at specifi cally those 
anatomic locations in which stem cell niches reside. This hypothesis is supported, in 
part, by fi ndings from animal models of lung cancer; the most common sites of origin 
for different lung cancer types correlate with distinct, region-specifi c airway stem/
progenitor cell niches (Kitamura et al.  2009 ; Succony and Janes  2014 ; Leeman et al. 
 2014 ). Notably, mouse adenocarcinomas are characterized by the expression of the 
transcription factor Nkx2.1 (TTF1), CCSP, and SPC and arise from BADJs, suggest-
ing that cancer-initiating progenitor cells arise from within club or AECII stem/pro-
genitor-cell populations (Kim et al.  2005 ; Imielinski et al.  2012 ; Travis et al.  2013 ; 
Xu et al.  2012 ). Lung SCCs are characterized by differentiation into squamous cells 
with a basal cell phenotype, and can be subdivided based on mRNA expression lev-
els, into classes of cells that resemble basal cell progenitors in the SAE or SMGs 
(Wilkerson et al.  2010 ), two sites at which stem cell niches exist. Similarly, SCLCs 
are found predominantly in the intermediate airways and are characterized by 
the expression of a range of neuroendocrine cell markers, including CGRP (Song 
et al.  2012 ; Kelley et al.  1994 ; Carraresi et al.  2006 ). Thus, SCLCs may originate 
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from CGRP-expressing progenitors within the NEB stem/progenitor cell niche. 
This hypothesis is further supported by experiments using transgenic mice defi cient 
for Rb1 and p53 in specifi cally the club cells, AECII cells, or PNECs; in these animals, 
SCLCs arise most frequently from NEB-resident PNECs (Sutherland et al.  2011 ). 
These fi ndings suggest that mutations that dysregulate airway stem/progenitor cell 
niches play important roles in selecting lung CSCs that outcompete other progenitors 
and promote cancer initiation, metastasis, and chemoresistance (Takebe and Ivy 
 2010 ; Chen et al.  2014 ).  

3.7     Perspective Summary 

 The results from in vitro and in vivo clonogenic assays and lineage tracing analyses 
in various experimental models have suggested that region-specifi c stem/progenitor 
cells reside within distinct niches in the lung. At least fi ve unique epithelial stem/
progenitor cell niches have been proposed in the lung, and the signals that induce 
the expansion of progenitors and specifi cation of daughter cells from each of these 
niches appear to be diverse. Moreover, in the mouse models that have been studied, 
this often depends on the type of injury. The available data also suggest that some 
progenitors impart a high level of lineage plasticity to the lung, with committed dif-
ferentiated cell types capable of adopting stem cell properties and reestablishing 
stem cell niches in the setting of severe airway injury. Given that abnormalities in 
lung stem/progenitor cell niches can occur in the context of genetic disease, viral 
infection, and lung cancer, it will be important to defi ne the cues that are intrinsic to 
lung cells, as well as those that are extrinsic (i.e., present in the unique regional 
niches of the lung). Such knowledge is expected to provide effective new avenues 
for the treatment of lung diseases.     
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