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Abstract. The application of Knowledge Discovery and Data Mining
approaches forms the basis of realizing the vision of Smart Hospitals.
For instance, the automated creation of high-quality knowledge bases
from clinical reports is important to facilitate decision making processes
for clinical doctors. A subtask of creating such structured knowledge is
entity disambiguation that establishes links by identifying the correct
semantic meaning from a set of candidate meanings to a text fragment.
This paper provides a short, concise overview of entity disambiguation in
the biomedical domain, with a focus on annotated corpora (e.g. CalbC),
term disambiguation algorithms (e.g. abbreviation disambiguation) as
well as gene and protein disambiguation algorithms (e.g. inter-species
gene name disambiguation). Finally, we provide some open problems and
future challenges that we expect future research will take into account.
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1 Introduction

The amount of digital data, also called the digital universe, grows rapidly,
amounting to 4.4 Zetabytes in 20131. Thus, medical doctors and biomedical
researchers of today are confronted with increasingly large volumes of high-
dimensional, heterogeneous and complex data from various sources, which pose
substantial challenges to the computational sciences [1]. Overall, the majority
of such information (e.g. medical reports) is transmitted through unstructured
documents [2], more suitably defined as non-standardized data [3]. The task of
Knowledge Discovery is to extract implicit, previously unknown, and potentially
useful information from such unstructured data [4].

The application of Knowledge Discovery and Data Mining approaches forms
the basis of realizing the vision of Smart Hospitals [1,5]. A prominent example
is the (automated) creation of high-quality knowledge bases (KB) from clinical
reports. The Comparative Toxicogenomics Database (CTD) [6], for instance, is
a high-quality data base for researching the influence of chemicals on human
health, but is manually curated and therefore restricted in its coverage of the

1 The digital universe of opportunities http://www.emc.com/collateral/analyst-
reports/idc-digital-universe-2014.pdf.
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documents annotated by experts. Providing high-quality, automatic methods for
populating the KB from clinical reports would facilitate decision making pro-
cesses for clinical doctors [1]. The demand for automatic methods is also reflected
in the natural language processing challenges posed by various initiatives, like
the BioCreative initiative2 and the BioNLP shared tasks [7]. For instance, in the
domain of biomedical research, the understanding of two-component regulatory
systems (TCSs), a mechanism widely used by bacteria to sense and respond to
the environment, can be facilitated [8]. TCSs are of particular interest for infec-
tious disease researchers including virulence, response to antibiotics, quorum
sensing and bacterial cell attachment [9].

For these purposes, the recognition and assignment of symptoms, chemicals,
genes, proteins etc. to a unique identifier in a KB is an important subtask.
This chapter gives an overview of the state-of-the art of linking unstructured
biomedical data to the Linked Data Cloud, with a special emphasis on biomedical
entity disambiguation.

The remainder of the chapter is structured as follows: Sect. 2 defines the tech-
nical terms required for understanding the chapter. Section 3 gives a clear defini-
tion of the problem that should be solved and illustrates why linking biomedical
entities to the cloud is a challenging task by examples. Section 4 then provides
the foundations for understanding the reviewed algorithms by exemplifying the
data structures used by disambiguation methods. The state-of-the-art review in
Sect. 5 is divided into four subsections:

– The state of the biomedical Linked Data Cloud is described in Sect. 5.1,
– Section 5.2 presents annotated corpora for training linking algorithms,
– Algorithms for biomedical term disambiguation are reviewed in Sect. 5.3,
– Algorithms for gene and protein disambiguation are presented in Sect. 5.4.

The chapter concludes with an overview of open problems in Sect. 6 and an
outlook on future work is given in Sect. 7.

2 Glossary and Key Terms

Automatic Term Recognition (ATR) Recognition and linking of terms to
domain specific data bases [10], synonym to ↑ NED.

Disambiguation The process of linking a ↑ surface form to a ↑ URI.
Entity A modeled abstract or concrete object of the real world, for example a

specific gene. In the context of ↑ disambiguation also called label [11].
Knowledge Base (KB) describes a knowledge repository that stores facts

about the world. Knowledge bases can be coarsely classified into structured
and unstructured knowledge bases depending on the form of the data repre-
sentation. An orthogonal classification is specific for general-purpose knowl-
edge bases, depending on the type of knowledge stored.

2 http://www.biocreative.org.

http://www.biocreative.org
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Linked (Open) Data describes the concept of providing semantic information
for data sets. The goal is to support automatic sharing and linking pieces of
the data on a semantic level. The basic technologies for Linked Data are ↑
URIs and ↑ RDF. Linked Open Data (LOD) encompasses the idea that these
data sets should be openly accessible.

Linked (Open) Data Cloud subsumes the (openly accessible) data sets rep-
resented as ↑ Linked Data.

Named Entity A modeled, concrete object of the real world, referenced by
proper names or acronyms in the text. Originally introduced in the Message
Understanding Conference (MUC) Challenges, the commonly agreed types
were person, location and organization, later date and time, measures and
email addresses were added [12]. Depending on the application domain, other
domain-specific named entities exist. These are for instance names of drugs
or proteins in the biomedical domain.

Named Entity Recognition (NER) The process of identifying a ↑ named
entity, i.e. identifying that a surface form represents a named entity (but not
yet knowing, which entity exactly).

Named Entity Disambiguation (NED) The process of linking a ↑ surface
form representing a ↑ named entity to a unique meaning [13].

Resource Description Framework (RDF) is a general concept for the seman-
tic description of resources. The building blocks of RDF are triplets consisting
of subject (the thing that is described), the object (to which it is related)
and a relation (specifying the relationship between subject and object). Rela-
tions are unidirectional. All parts of a triplet are uniquely identifiable by the
means of ↑ URIs.

Surface Form refers to the piece of textual information (words or phrases) that
should be linked to a semantic entity [14,15]. Also called mention, entity
mention, mention occurrence, spot [11], or lemma [16].

Uniform Resource Identifier (URI) is a string of characters identifying
a resource. The most prominent example is the Uniform Resource Locator
(URL) used in the World Wide Web.

Word Sense Disambiguation (WSD) The process of linking a ↑ surface form
to a unique entry in a dictionary. In general, the linked ↑ surface forms are not
↑ entities. Consider for instance the different meanings of the word “mind”
(depending on the context it could be used as verb or noun and may have
different meanings in each grammatical form.).

3 Problem Statement

Entity annotators undertake a crucial processing step in producing structured
knowledge. They “ground” the underlying texts with respect to an adequate
semantic representation. The entity annotation task can be subdivided into the
following two sub steps:
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– Entity Recognition: The identification of short-and-meaningful sequences
of terms, also called surface forms, which can be linked to entities in a catalog.

– Entity Disambiguation: The annotation of surface forms with unambiguous
identifiers (entities) drawn from a catalog.

Entity Recognition. Entity recognition forms the first step of creating entity
annotations. It identifies proper nouns that can be linked to a semantic meaning.
Proper nouns often exhibit structural ambiguity that complicates the correct
identification. For example, the components of “Victoria and Albert Museum
and IBM and Bell Laboratories” look identical. The term “and” is part of the
name of the museum in the first example, but a conjunction joining two computer
company names in the second [17]. The task of named entity recognition (NER)
focuses on identifying surface forms in a text which are the names of things,
such as person, organization, gene or protein names. Overall, (named) entity
recognition is a well studied research topic. State-of-the-art algorithms for generic
knowledge entities score ≈90 % of F-measure [18], while accuracy of biomedical
NER strongly depends on the entities’ types (e.g. proteins, genes, diseases) [19].

Entity Disambiguation. The task of entity disambiguation establishes links
between identified surface forms and entities within a catalog (KB) and faces
the problem of semantic ambiguity [17]. Formally, entity disambiguation inher-
ently involves resolving many-to-many relationships. Multiple distinct surface
forms may refer to the same entity. Simultaneously, multiple identical surface
forms may refer to distinct entities [20]. Figure 1 shows a specific example of
this relationship. We assume a sentence containing the surface forms “Ford”
and “CART” (depicted in the yellow rectangle). Both surface forms may refer
to different entities, e.g. Ford by itself could be an actor (Harrison Ford), the

Fig. 1. Surface forms (bold) within a sentence (yellow rectangle) may refer to different
entities (rectangles in the middle) depending on the context. Additionally, an entity
may be addressed by various surface forms (rectangles on the right) (Colour figure
online).
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38th President of the United States (Gerald Ford), an organization (Ford Motor
Company) or a place (Ford Island). In our context, we assume “Gerald Ford”
to be the correct entity, which may be expressed in several ways, e.g. “Gerald
Rudolph Ford, Jr.”. However, similar to NER, the task of named entity dis-
ambiguation (NED) focuses on surface forms constituting the names of special
entity classes. The ever-increasing publication rate of biomedical documents now
means that entity disambiguation in the biomedical domain is becoming more
and more important. Biomedical NED is constrained to biomedical entities only,
but is extremely challenging [21] since a surface form

1. could refer to another type of biomedical entity, such as a protein or pheno-
type, e.g. the mouse gene “hair loss”.

2. could be other types of concepts in closely related domains, such as the clinical
field, e.g. the mouse gene “diabetes”.

3. could be the same as common English words, e.g. fly genes “can” and “lie”.
4. could refer to several, different genetic entities, either from the same or from

other species, e.g. cow or chicken.

In biomedical entity disambiguation, genes and gene products (i.e. proteins) form
an important class of entities. To map surface forms of these entity classes to
an entity within a KB, it is important to identify what organisms (species) the
genes and proteins belong to, and on what species the experiments are carried
out to understand particular biological phenomena. There are dozens of species
commonly used in biological studies, such as Escherichia coli, Caenorhabditis ele-
gans, Drosophila melanogaster, Homo sapiens and hundreds more are frequently
mentioned in biological research papers. For example, without context, “tumor
protein p53” may associate to over 100 proteins across 23 species3. To identify
the proteins (i.e. the underlined terms) in the following sentence, knowing the
“focus” species of the article is not sufficient, as they belong to three different
species: human, mouse and rat.

The amounts of human and mouse CD200R-CD4d3+4 and rCD4d3+4 pro-
tein on the microarray spots were similar ...

The authors of [21] investigated the extent of the ambiguity problem in the
biomedical domain. They obtained genes from 21 species and quantified nam-
ing ambiguities within and across species, with English words and with medical
terms. The results revealed that official gene symbols display negligible ambi-
guity within a specific species (0.02 % regarding uppercase letters) and a high
ambiguity across-species (14.20 %). Additionally, the results showed a moderate
ambiguity rate with general English words (0.57 %) and medical terms (1.01 %).
The analysis of correct gene disambiguation results within abstracts of biomed-
ical research paper also showed a very high number of ambiguous genes across
species [21] (85.1 %).

Overall biomedical NED is a challenging task and thus has attained much
attention in research in the last decade.

3 Querying RefSeq database (http://www.ncbi.nlm.nih.gov/refseq/). The number of
species was manually counted.

http://www.ncbi.nlm.nih.gov/refseq/
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4 Entity Representation

A crucial factor for creating a disambiguation system is the way entities are
represented within a KB. Generally an entity can be defined intensionally, i.e.
through a set of describing properties, or extensionally, i.e. through instances and
usage in documents [22]. In the following we differentiate more precisely between
these representations and give examples of how entities might be represented
within disambiguation KBs in practice.

4.1 Intensional Description

An intensional definition of an entity can be understood as a thesaurus or log-
ical representation, as it is provided by Linked Open Data repositories. In the
context of entity disambiguation, KBs comprising intensionally defined entities
are referred to as entity-centric KBs [23]. Formally, an entity-centric KB can be
described as

Kbent = {e0, ..., en|ei ∈ E,n ∈ N} (1)

The set of all entities available in the entity-centric KB Kbent is denoted as E,
with ei being a single entity [23]. All entities ei ∈ Kbent usually provide a unique
primary key ID which combines the name of the knowledge source as well as
its identifier in the knowledge source. Additionally, a variable number of fields k
contain domain-independent attributes, e.g. descriptions, and domain-dependent
information, e.g. the sequence length of genes. Formally, such an entity can be
denoted as

ei = (ID, F ield1, ..., F ieldk) (2)

Table 1 shows a specific example of how the entity “Phenylalanyl-tRNA–protein
transferase” might be represented in an entity-centric KB. The entity contains
standard attributes, i.e., name, synonyms, description, link to web resource,
type, as well as occurrence information. More specifically, all referenced surface
forms for this entity and the respective amount of occurrences with this surface
form are stored in Occurrences. The field Cooccurrences contains surface forms
of entities that appeared near the described entity in any text and the amount of
appearances of the respective surface form in the context range (i.e. 300 words).

4.2 Extensional Description

An extensional entity definition resembles information on the usage context of
an entity. For instance, natural language text documents annotated with entities
can be used as such usage context. KBs containing extensional entity definition
are referred to as document-centric KBs [23]. Formally, a document-centric KB
is defined as

Kbdoc = {d0, ..., dn|di ∈ D,n ∈ N} (3)

An entry di in a document-centric KB Kbdoc consists of the document content
representing a text string and a list of annotations of surface forms tlei , with
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Table 1. Example of an entity-centric KB entry

Field Content

ID UNQ9A741

Name Phenylalanyl-tRNA–protein transferase

Synonyms Leucyltransferase

Description Functions in the N-end rule pathway of protein degradation where
it conjugates Leu, Phe and, less efficiently, Met from aminoacyl-
tRNAs to the N-termini of proteins

Mainlink http://www.uniprot.org/uniprot/Q9A741

Type Caulobacter

Occurrences aat:::3

Co-Occurrences substrate:::3, Leu:::6, Phe:::6

l denoting the lth annotation in the document. Annotated surface forms are
described by their position in the document and a list of their entity references.
An entry in a document-centric KB is denoted as

di = (Document, {(Start, End, {ID}), ...}) (4)

Table 2 shows an example of a biomedical document containing the surface
form“‘Myeloma”’ in a document-centric KB. The document’s content is sub-
divided in title and titleandtext, which is a concatenation of the document’s title
and main content. Furthermore, all available annotations (and its respective
properties) are stored in the field Annotations. The field ID depicts a unique
document identifier.

Table 2. Example of a document-centric KB entry

Field Content

ID 174996

Title Antibody therapy for treatment of multiple myeloma

Abstract Monoclonal antibody therapy antibody therapy has emerged as a
viable treatment option for patients with lymphoma and some
leukemias. It is now beginning to be...

TitleAndAbs Antibody therapy for treatment of multiple myeloma. Monoclonal
antibody therapy antibody therapy has emerged as a viable
treatment option for patients with...

Keywords Myeloma::43::50::diso:umls:C0026764:T191:diso

http://www.uniprot.org/uniprot/Q9A741
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5 State-of-the-Art

In this section the state-of-the-art is reviewed along three dimensions. First, we
review the state of the biomedical linked data cloud in Sect. 5.1. Second, we
describe available annotated corpora for training algorithms in Sect. 5.2. Third,
we review the algorithms for for biomedical term disambiguation in Sect. 5.3
and for gene and protein disambiguation in Sect. 5.4. We note that we do not
describe and review text (pre-)processing steps (e.g. tokenization, normalization,
stemming) which are necessary for entity recognition and disambiguation. An
overview of relevant steps for text processing in the biomedical domain can be
found in [1].

5.1 The Biomedical Linked Data Cloud

According to the “State of the LOD Cloud 2014”4 the Linked Open Data cloud
comprises 1014 data sets, 83 (8.19 %) belong to the life sciences domain as of
April 2014. Data sets use different vocabularies, proprietary or non-proprietary.
Proprietary vocabularies are only used by one data set and thus are not useful
for interlinking differently linked data repositories. Non-proprietary vocabularies
are used by at least two data sets and comprise only 41.76 % of all encountered
649 vocabularies. In terms of data sets, 23.17 % (241) data sets use proprietary
vocabularies, but also nearly all of the data sets (99.87 %) use non-proprietary
vocabularies. In the life sciences this amount is slightly higher. 35 different pro-
prietary vocabularies are used in 26 data sets (these amount to 29.21 % of all
life sciences data sets). Only 28.57 % of these data sets are fully linkable to other
data sets, i.e. can be fully interpreted by automatic mechanisms. 65.71 % of these
data sets are not linkable at all.

5.2 Annotated Corpora

This section presents an overview of annotated corpora for biomedical entity
disambiguation. We omitted corpora that were not, or are no longer publicly
available.

GENIA Corpus

The GENIA corpus [24], released in 2003, contains ≈2000 MEDLINE abstracts
from the domain of molecular biology. The corpus is freely available for down-
load5. The MEDLINE abstracts were collected by querying PubMed for the three
MeSH terms “human”, “blood cells”, and “transcription factors“. They were
syntactically and semantically annotated, resulting in six different sub-corpora
corresponding to the specific annotations:

4 http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/.
5 http://www.nactem.ac.uk/genia/genia-corpus.

http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
http://www.nactem.ac.uk/genia/genia-corpus
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Table 3. Statistics of the GENIA corpus (term annotations)

GENIA

Documents 2,000

Document Type MEDLINE abstract

Surface Forms 89,862

Release Date 2003 (version 3.0)

– Part-of-Speech annotation subcorpus,
– Constituency (phrase structure) syntactic annotation subcorpus,
– Term annotation subcorpus,
– Event annotation subcorpus,
– Relation annotation subcorpus,
– Coreference annotation subcorpus.

Linguistic structures are annotated with biological terms from the GENIA ontol-
ogy in the term annotation subcorpus, which represents the corpus for entity
disambiguation. Table 3 provides an overview of the GENIE term annotation
subcorpus.

BioCreative Corpora

The BioCreative (Critical Assessment of Information Extraction in Biology)
community has released various annotated corpora since 2004. The data sets
are freely available for non-commercial purposes6.

GM Corpus (BioCreative I and II): The BioCreative I data set [25] for the
Gene Mention (GM) task was released in 2005 and consists of sentences from
MEDLINE abstracts annotated with gene mentions. The provided sentences
have already been tokenized. The BioCreative II data set [26] is an extended
and refined version of the BioCreative I data set and was released in 2008.
The changes include an addition of 5000 sentences, a review of the annotations
with ≈13 % changes and linkage of the gene mentions to either the GENE or
ALTGENE KB. Further, in the BioCreative II data set the sentences were not
tokenized a-priori. An overview of the basic statistics for the BioCreative I+II
data sets can be found in Table 4.

Table 4. Statistics of the GM I and II corpus (aggregated training, test and develop-
ment set)

GM I GM II

Documents 1,500 2,000

Document Type MEDLINE abstract MEDLINE abstract

Surface Forms 1,800 44,500

Release Date 2005 2008

6 http://www.biocreative.org/resources/.

http://www.biocreative.org/resources/
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Table 5. Statistics of the ChemDNER corpus (aggregated training, test and develop-
ment set)

ChemDNER

Documents 10,000

Document Type PubMed abstract

Surface Forms 84,355

Entities 19,805

Release Date 2013

ChemDNER Corpus (BioCreative IV): The ChemDNER (Chemical and Drug
Named Entity Recognition) corpus [27], released by the BioCreative community
in 2013 (part of BioCreative IV), contains PubMed abstracts manually anno-
tated with chemical compounds and drugs. Each abstract was annoated by at
least two experts with an overall inter-annotater agreement of 91 %, thus the
corpus can be considered a gold standard for chemical NER. Table 5 provides a
summary statistics of the corpus with all values aggregated over training, test
and development set. More details on corpus construction and statistic can be
found in [27].

BC4GO Corpus (BioCreative IV): The Gene Ontology (GO) corpus [28] was
released by the BioCreative community in 2013 as part of the BioCreative IV
challenge. The corpus consists of 200 annotated full-text articles from PMC. The
task associated with this corpus involves extracting gene function terms and the
associated evidence sentences. Table 6 provides an overview of the corpus.

CalbC Corpus

The CalbC (Collaborative Annotation of a Large Biomedical Corpus) corpus is a
very large, community-wide shared text corpus annotated with biomedical entity
references [29]. CalbC represents a silver standard corpus which results from the

Table 6. Statistics of the BC4GO corpus (aggregated training, test and development
set)

BC4GO

Documents 200

Document Type PMC full-texts

Gene mentions 5,162

Entities (Genes) 665

GO term mentions 5,275

Entities (GO terms) 1,311

Release Date 2013
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harmonization of automatically generated annotations and is freely accessible7.
The data set is released in 3 different sizes: small (CalbCSmall), big (CalbCBig)
and pilot, with the former two being the most widely used. Table 7 provides an
overview of the basic properties of CalbCSmall and CalbCBig. A comparison
regarding the overlap of entities within both corpora shows that a very high
percentage of entities occurs in both data sets. Hence, there are few entities
which occur in CalbCBig but are not present in the small corpus. In contrast
to other disambiguation corpora like Dbpedia, a surface form may be linked to
more than one entity resource per annotation. Due to a comprehensive taxon-
omy and classification system a surface form provides 9 entity annotations on
average. Figure 2 presents an overview of the distribution of surface forms and
their corresponding entities. The histogram axis showing the number of entities
is truncated at 40 entities due to very few existing surface forms which contain
a lot of different meanings (maximum 9895). Nearly half of all surface forms
may attain between 2 and 7 different entities. The other half of surface forms
attains up to 9895 different entity meanings. Figure 3 shows an overview of the
distribution of surface forms over entities. More than 10,000 different surface
forms address general entities like “kinase” or “protein”.

Table 7. Statistics of the CalbCSmall and CalbCBig corpora

CalbCSmall CalbCBig

Documents 174,999 714,282

Document Type MEDLINE abstract MEDLINE abstract

Surface Forms 2,548,900 10,304,172

Unique Surface Forms 50,725 101,439

Entities 37,309,221 96,526,575

Unique Entities 453,352 308,644

Used Unique Entities 265,532 228,744

Namespaces 14 16

Release Date 2011 2011

CRAFT Corpus

The CRAFT (Colorado richly annotated full text) corpus [30] is an annotated
corpus consisting of 67 full-text journal articles from the biomedical domain. The
corpus contains ≈100,000 annotations from the biomedical domain, linking it to
7 different repositories (Chemical Entities of Biological Interest, Cell Ontology,
Entrez Gene, Gene Ontology, NCBI Taxonomy, Protein Ontology and Sequence
Ontology). Table 8 provides an overview of the data set. The corpus is licenced
under the Creative Commons Attribution 3.0 license (CC BY) and is available
online8.
7 http://www.calbc.eu/.
8 http://bionlp-corpora.sourceforge.net/CRAFT/.

http://www.calbc.eu/
http://bionlp-corpora.sourceforge.net/CRAFT/
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Fig. 3. Number of entity annotations (Only entities annotated for more than 2000
different entities are shown.)

BioNLP Shared Tasks Corpera

The BioNLP Shared Tasks corpora originates from the GENIA corpus (see
above). In 2004, 2009 and 2011, the initiative covering different natural lan-
guage tasks for the biomedical domain released several corpora. The data sets
are available online9. Here, we describe subcorpora from the release in 2011 [8],
which is also publicly available10.

EPI Corpus: The EPI corpus (Epigenetics and Post-translational Modifications)
was crafted to research automatic extraction of events related to epigenetic
changes. The corpus consists of 1,200 MEDLINE abstracts, annotated with
entities representing proteins or genes. Additional annotations are made for
events (e.g. hydroxylation, DNA methylation), and event modifications (e.g.

9 http://www.nactem.ac.uk/genia/shared-tasks.
10 http://2011.bionlp-st.org/.

http://www.nactem.ac.uk/genia/shared-tasks
http://2011.bionlp-st.org/
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Table 8. Statistics of the CRAFT corpus

CRAFT

Documents 67

Document Type PubMed full-texts

Surface Forms ≈100,000

Namespaces 7

Unique Entities 4,319

Release Date 2012

catalysis, positive regulation, negation or speculation). An overview of the EPI
corpus is presented in Table 9.

Table 9. Statistics of the EPI corpus from the BioNLP Shared Task (aggregated
training, test and development set)

EPI

Documents 1,200

Document Type PubMed abstract

Surface Forms (Protein, Gene) 15,190

Surface Forms (Event) 3,714

Surface Form (Modification) 369

Release Date 2011

ID Corpus: The ID (infectious diseases) corpus was designed to study the molec-
ular mechanism of infectious diseases. It consists of 30 full-text documents from
the PMC data base. The documents are annotated with five types of entities
(protein, two-component system, regulon-operon, chemical and organism), event
types (e.g. for example gene expression, binding, regulation) and modifications.
The latter indicates whether a statement is a speculation or a negation. Table 10
provides an overview of the ID corpus.

CDT Corpus

The Comparative Toxicogenomic Database (CTD) [6] is a publicly available
database11 containing the following types of manually curated annotations:

– Chemical-gene interactions,
– Chemical-disease associations,

11 http://ctdbase.org/.

http://ctdbase.org/


222 S. Zwicklbauer et al.

Table 10. Statistics of the ID corpus from the BioNLP shared Task (aggregated train-
ing, test and development set)

ID

Documents 30

Document Type PMC full-texts

Surface Forms (Entity) 12,740

Surface Forms (Event) 3,714

Surface Form (Modification) 369

Release Date 2011

– Gene-disease associations,
– Chemical-phenotype associations.

The manual data collection started in 2004 and is constantly updated. An
overview of the data sets as of July 2014 can be found in Table 11.

Table 11. Statistics of the CDT corpus (figures correspond to the version from July
2014)

CDT

Documents 109,701

Document Type PubMed full-texts

Chemicals 13,446

Diseases 6,347

Genes 36,393

Release Date Silent releases, constantly updated

5.3 Biomedical Term Disambiguation

Biomedical term disambiguation focuses on disambiguating all classes of biomed-
ical entities (e.g. medical terms, abbreviations, genes, chemicals). Official biomed-
ical symbols display only a moderate degree of ambiguities with general English
words, medical terms and concepts [21]. Thus, the number of works resolving
these ambiguities is limited.

String Matching Algorithms. String Matching algorithms are able to map case-
sensitive surface forms to the respective KB entries. The work by Tsuruoka et
al. [31] focused on learning a string similarity measure from a dictionary with
logistic regression. The experiments were conducted on several large-scale gene
and protein name dictionaries. Results showed that a logistic regression-based
similarity measure outperforms existing similarity measures like Hidden Markov
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Model [32], SoftTFIDF [33], Jaro-Winkler [34] and Levenshtein in dictionary
look-up tasks.

Another work from Rudniy et al. [35] describes the problem of mapping
entities in biomedical data to the UMLS Metathesaurus. The work introduces
the Longest Approximately Common Prefix (LACP) method as an algorithm for
approximate string matching that runs in linear time. The authors compare the
LACP method to nine other well-known string matching algorithms (e.g. TF-
IDF [36], Jaro-Winkler [34], Needleman-Wunsch [37]) in terms of precision and
performance. As a result, LACP outperforms all nine string similarity methods
in both disciplines, performance and accuracy. It attains the best F1 values (up
to 92 %) when evaluated on three out of the four data sets.

A major disadvantage of these approaches is the non-availability of disam-
biguation techniques. In other words, if surface forms are ambiguous these algo-
rithms are hardly able to determine the potential entity candidate.

Abbreviation Disambiguation. There are a number of systems that have been
developed to map biomedical abbreviations to appropriate entities. Methods for
mapping abbreviations to full forms fall into two broad categories [38]: abbrevia-
tions are linked to entities with the help of pattern or rules when the entities’ full
forms appear nearby in the text [39,40], or statistical disambiguation methods
choose entities for an abbreviation based on the context the abbreviation occurs
in [38,41].

The intention of the AbbRe system [39] (Abbreviation Recognition and
Extraction) was to map abbreviations to entities when the entities’ full forms
are explicitly defined in biomedical full-text articles. AbbRE operates through a
set of manually annotated rules assigning matches between letters in the abbre-
viations and words in the full form. AbbRE was evaluated in full-text biomedical
articles and found to have 70 % recall and 95 % precision.

Fig. 4. Distribution (from eleven million MED-
LINE records) of the numbers of abbreviations
paired with different numbers of full forms [38].

Yu et al. [38] proposed the
first model that resolves the
problem of abbreviation ambi-
guity in full-text journal arti-
cles. The approach is built
upon the earlier work AbbRe
and presents a semi-supervised
method that applies MED-
LINE as a knowledge source
for disambiguating abbrevia-
tions and acronyms in full-text
biomedical journal articles. The
authors trained supervised
learning algorithms (i.e. Naive
Bayes and Support Vector
Machines) on 11 million MED-
LINE abstracts which were
annotated with AbbRe first.
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Figure 4 shows the distribution of the numbers of abbreviations paired with
different numbers of full forms occurring in the annotated MEDLINE abstracts.
The abbreviations “or” and “ca” correspond to the largest numbers of different
full forms. Overall, the authors report up to 92 % precision when disambiguating
biomedical abbreviations.

General Biomedical Term Disambiguation. Few works focused on general bio-
medical term disambiguation, which comprises all kinds of biomedical surface
forms that can be linked to an entity (i.e. medical terms, gene names, abbrevi-
ations).

The work of Chen et al. [42] presents a simple method for biomedical term
disambiguation, which can be viewed as a context-based classification approach.
Instead of directly using all of a words’ surrounding words, the authors only select
certain words with high “discriminating” capabilities as features. By using this
method, unimportant surrounding words are discarded to improve disambigua-
tion quality. The top-n influential context terms are used as feature vector. These
feature vectors serve as input to a classification method for creating classifiers
(i.e. Support Vector Machine, Naive Bayes, Ripper and C4.5), which map each
surface form to an entity in the KB. A major contribution of this method is its
unique way of selecting the features of the ambiguous terms and building feature
vectors.

Zwicklbauer et al. [23] investigated biomedical entity disambiguation with
entity- and document-centric KBs. The authors state that document-centric KBs
outperform laboriously constructed entity-centric KBs if an adequate amount
of annotations is available. In this context, they investigated to which degree
disambiguation results depend on the quality of entity repositories [23]. They
showed that the quality of disambiguation results with an entity-centric KB is
distinguished from the use of different repositories and biomedical subdomains
(e.g. UMLS, Uniprot, Entrez Gene). A major limitation is the non-use of machine
learning algorithms. Instead, the authors apply standard approaches like the
Vector Space Model [43] with TF-IDF [36] and BM-25 [44].

5.4 Gene and Protein Disambiguation

A bulk of works specialized on disambiguating genes and proteins, which consti-
tutes a challenging task due to a high degree of ambiguous gene/protein mentions
across species [21]. The goal of gene and protein disambiguation, a subtask of
the Gene Normalization (GN) process (also comprises gene and protein recogni-
tion [45]), is to determine the unique identifiers of genes and proteins mentioned
in scientific literature. A unique identifier comprises a unique species id as well
as a unique id for the respective gene or protein. Basically, the gene and pro-
tein disambiguation (in the following denoted as gene disambiguation) faces the
following ambiguity problems:

1. Gene-Protein name ambiguity: a surface form may refer either to a gene or a
protein, but is unambiguous within the set of all genes or proteins across all
species.
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2. Intra-species gene name ambiguity: a surface form could be the identifier
of several genes or proteins belonging to a specific species when the species
identifier is provided.

3. Inter-species gene name ambiguity: a surface form could be the identifier of
several genes or proteins across species.

In the following we describe the most important works addressing the respec-
tive ambiguities.

5.4.1 Gene-Protein Name Ambiguity

The simplest form of ambiguity occurs if a surface form either refers to a gene or
a protein while being unambiguous within the set of all genes or proteins across
all species. This assumption can be modeled as a binary classification problem
which classifies the surface form into the gene or protein class.

While recent work do not explicitly distinguish between both classes, the
authors of [46] conducted experiments on how standard classification approaches
like Naive Bayes and C4.5 [47] perform on this disambiguation task. When
Naive Bayes was combined with a well-chosen smoothing function, it attained
≈80 % accuracy in the classification task on different data sets. Ginter et al. [48]
introduced a new classifier based on ordering and weighting the feature vectors
obtained from word counts and work co-occurrence in the text. An additional
improvement was attained after weighting by positions of the words in the con-
text of annotated article abstracts downloaded from the PubMed [49] database.
Pahikkala et al. [50] further improved accuracy by incorporating a weighting
scheme based on distances of context words into a conventional Support Vector
Machine.

Overall gene-protein classification is quite simple and thus attains accuracy
values between 85 % and 90 % with standard approaches.

5.4.2 Intra-species Gene Name Ambiguity

It is more likely that a surface form could be the identifier of several genes or
proteins belonging to a specific species when the species identifier is provided.
Algorithms that resolve an intra-species gene name ambiguity do not explicitly
distinguish between the gene and protein class. The BioCreative I and II chal-
lenges [45] were conducted to map genes from the EntrezGene KB when specific
sets of species are provided. Focusing on gene recognition in text and gene disam-
biguation (and also on protein-protein interactions), the BioCreative II dataset is
commonly used for evaluation purpose of intra-species gene-protein name ambi-
guity. However, by also including the gene recognition task, the result values of
the evaluated systems are not applicable to the disambiguation task in general.

Semantic Approaches Xu et al. [51] proposed a gene profile-based approach which
examines gene name disambiguation under several idealistic assumptions:
1. Perfect gene mentions are assumed with most being restricted to short string
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gene symbols, and 2. among the possible gene candidates in their disambigua-
tion task one candidate is always the correct answer, which ignores the fact that
an apparent gene mention in a text may not denote a gene at all [52]. How-
ever, in their approach, they extract a profile with different types of information
(e.g. context terms, context ontological semantic concepts) from each gene from
already annotated knowledge sources. Their disambiguation approach describes
an information retrieval approach which ranks the similarity scores between the
context of the surface form and the candidate gene profiles. A look at their
results, however, reveals that a plain bag-of-words approach performs almost
equally well.

A complex semantic disambiguation approach was introduced by Hakenberg
et al. [53,54]. They identify genes by using background knowledge from Entrez-
Gene, UniProt and GeneOnthology (GO). For each candidate ID that is assigned
to a gene surface form and thus to a text, the approach tries to find all informa-
tion in the text and picks the ID with the highest likelihood. To calculate the
similarity based on GO terms, GO terms in the surface form context are com-
pared with gene candidate GO terms. For each potential tuple taken from the
two sets, the system calculates a distance of the terms in the ontology tree. These
distances yield a similarity measure for two terms, even if they do not belong
to the same sub-branch or are immediate parents/children of each other. The
distance takes the shortest path via the lowest common ancestors into account,
as well as the depth of this lowest common ancestor in the overall hierarchy. The
distances for the closest terms from each set then define a similarity between the
gene and the text [54]. The approach currently achieves an F-measure of 86.4 %
on the BioCreative II gene normalization data and, thus, belongs to the best
intra-species gene name disambiguation systems.

Machine Learning Approaches. There are also a few machine-learning approaches
for intra-species gene ambiguity. One system is Azure, which is able to automat-
ically assign gene names to their LocusLink12 ID in previously unseen MED-
LINE abstracts [55]. Azure contains a supervised learning approach that covers
tens of thousands of genes and proteins. Apparently, it is possible to achieve
high quality gene disambiguation using scalable automated techniques. Wermter
et al. [52] developed GeNo, a highly competitive system for gene name normal-
ization. The authors apply a Maximum Entropy string similarity measure for
candidate retrieval and calculate a semantic similarity score for checking seman-
tic matches. Additionally, the authors show that (i) machine learning methods
perform superiorly when integrated with publicly available training data in a
well-designed manner and (ii) a simple bag-of-words semantic approach to bio-
logical background knowledge performs as well as more complex semantic dis-
ambiguation [52].

Major disadvantages for machine learning and profile-based approaches are:
As new biological entities are discovered very quickly, there may be no mention
in the previous existing literature for that sense or for that symbol. A partial

12 http://www.ncbi.nlm.nih.gov/Web/Newsltr/Summer99/locus.html.

http://www.ncbi.nlm.nih.gov/Web/Newsltr/Summer99/locus.html


Linking Biomedical Data to the Cloud 227

solution is to perform updates to the profiles and machine learning models
regularly.

5.4.3 Inter-species Gene Name Ambiguity

In inter-species gene name ambiguity tasks the species information for genes is
not provided. Hence, a surface form could be the identifier of several genes or
proteins across species. The disambiguation task requires the disambiguation
of species first, and the resolution of the intra species gene name ambiguity in
the second step (cf. Sect. 5.4.2). Species disambiguation faces the problem that
multiple species assignments may be correct and that therefore multiple cor-
rect entities may exist. Hence, determining the parameter of how many results
should be retrieved for each disambiguation task is a challenge. If not explic-
itly mentioned the proposed algorithms return a single species with the most
likelihood.

Rule-Based Approaches. A simple approach to link surface forms to a species is
by looking for species words in the context. More specifically, several works use
one of the following rules as a baseline system [56]:

1. Previous species word: if the word preceding an entity is a species word,
assign the species ID indicated by that word to the entity.

2. Species word in the same sentence: if a species word and an entity appear in
the same sentence, assign its species ID to the entity. When more than one
species word co-occurs in the sentence, priority is given to the species word
to the entity’s left with the smallest distance. If all species words occur to
the right of the entity, take the nearest one.

3. Majority vote: assign the most frequently occurring species ID in the docu-
ment to all entity mentions.

A well-known system to detect the species of genes in scientific publications
is GNAT and was proposed by Hakenberg et al. [54]. Their approach relies on a
multi-stage procedure with descending reliability to assign species to genes. For
instance, a gene and a species could occur in the same phrase, including enumer-
ations: “rat and murine Eif4g1”. If no rule can be applied, the approach checks
the abstract for general mentions of kingdoms, classes, etc. The system obtained
one of the best performance for the Gene Normalization task in BioCreative II.

A recent approach [57] defines a three-step species disambiguation system.
First, a preprocessing step including tokenization and cue word extraction for
each gene surface form is performed. Second, the algorithm estimates focus
species with the proposed EF-AISF coefficient, the entity frequency-augmented
invert species frequency, to calculate the relevance between the cue words of a
surface form and species. The species with the highest correlation coefficient is
chosen as the probable focus species. Third, an appropriate species is assigned to
each gene surface form with the help of the introduced Relational Guide Factor
which enhances the capability of species assignment. An evaluation shows that
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the usage of EF-AISF may significantly outperform other (machine-learning)
approaches like SVMs in the task of entity species disambiguation.

Wang et al. [58] introduced and compared a number of rule-based and machine-
learning based approaches to resolve species ambiguity in mentions of biomedical
named entities, and demonstrated that a hybrid method achieves the best overall
accuracy at 71.7 %, as tested on the gold-standard ITI-TXM corpora [59]. The
authors performed multiple species assignments and investigated the average rank
of the first correct species annotation.

They also introduced a hybrid species information tagging system (a combi-
nation between rule-based and machine learning approach), which improved the
rule-based term identification system by up to 10 % [58].

Machine Learning Approaches. The authors of [60] describe a generic approach
to disambiguate specific entity classes (e.g. species). Instead of classifying each
individual occurrence of an entity, it classifies pair-wise relations between the
surface form in question and the cue words in its adjacent context, where each
cue word is assumed to bear a semantic class (e.g. a specific species). If a cue
word features a “positive” relation with the surface form, the corresponding
semantic tag of the cue word is assigned to the surface form. While an individual
surface form may belong to a large number of semantic classes, a relation can
only take one of two values: positive or negative, hence transforming a complex
multi-classification problem into a less complicated binary classification task.
The binary classification problem was solved with Support Vector Machines.
One drawback of the relation classification systems is that they cannot cover
all surface forms but only the ones with informative keywords co- occurring in
the same sentence. The authors overcame that drawback by using spreading
rules [60].

The approach by Harmston et al. [61] transforms a MEDLINE record into
a mixture of adjacency matrices. By performing a random walk over the result-
ing graph, the authors are able to perform multi-class supervised classification,
allowing the assignment of taxonomy identifiers to individual gene mentions.
This method does not require training data for all potential classes in order
to achieve high performance and does not only perform classification but also
provides a probability, which serves to quantify the certainty attached to a clas-
sification. This species disambiguation approach shows significant improvements
over the relation method proposed by Wang et al. [60]. Once the reliable cor-
pora are in place, the approach can be applied in an automatic fashion without
any user intervention, which will aid its employment in the context of novel
organisms [61].

Wang et al. [56] compared a parser-based (e.g. Stanford parser), a super-
vised multi-classification [58] and a relation-based [60] species disambiguation
approach. Promising results are obtained by training a machine learning model
on syntactic parse trees, which is then used to decide whether an entity belongs
to the model organism denoted by a neighboring species-indicating word (e.g.
yeast). The parser-based approaches are also compared with a supervised classi-
fication method and results indicate that the former are a favorable choice when
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domain portability is of concern. The best overall performance was obtained by
combining the strengths of a syntactic parser (i.e. ENJU-Genia), a relation clas-
sification model, and a supervised classification model. Their method does not
function well if no species term co-occurs with the gene mentions in a sentence.
Similarly, the method cannot handle the articles that lack species mentions.

A comparison between rule-based and machine learning approaches shows
that machine learning approaches attain satisfying results. However, the avail-
ability of training data is often limited, and the available data sets tend to be
imbalanced and, in some cases, heterogeneous.

6 Open Problems

This chapter lists the open problems for linking biomedical data to the cloud,
categorized into problems with the data (Sect. 6.1) and algorithm-related prob-
lems (Sect. 6.2).

6.1 Dataset Related Problems

Annotated corpora for training linking algorithms contain surface forms linked to
entities from different KBs and namespaces (e.g. Uniprot, UMLS, SnomedCT).
This implies that algorithms trained on one specific corpus with its respective
KBs are only able to link to these KBs. Depending on the application scenario,
however, references to different KBs might be required. Although the Semantic
Web standard accounts for connections between two repositories in the Linked
Data Cloud by special types of relations, e.g. the owl:sameAs relation, the major-
ity of the biomedical linked data repositories (65.71 %) is not linkable to other
repositories (see Sect. 5.1). Thus, an open problem is the missing links between
the various available repositories, also termed ontology alignment. High-quality
automatic ontology alignment is still an open problem, while semi-automatic
approaches seem to yield promising results [62], but require considerable human
effort.

Further problems root in the missing provenance and licensing information of
the Linked Data Cloud repositories. As described in Sect. 5.1 for the life sciences
domain, only 3.37 % of the data sets provide licensing information in RDF and
pose a challenge for fully automatic exploitation of these KBs. Applications using
Linked Data repositories rely on the actuality and correctness of the represented
knowledge, but only the minority of the life sciences data sets in the Linked Data
Cloud (23.60 %) contain provenance information.

6.2 Algorithm Related Problems

Analyzing available disambiguation algorithms shows three major, important
and open problems which have been addressed insufficiently so far.
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Inter-domain Entity Disambiguation. Scientific literature is being published in
various domains (e.g. biomedical, computer science domain). Consequently, these
documents comprise entities from different domains. Generally, existing dis-
ambiguation systems are able to disambiguate entities belonging to a specific
domain, either generic entities as available in Wikipedia or special knowledge
entities (e.g. biomedical entities). Zwicklbauer et al. [23] showed that large-scale
and heterogeneous entity KBs may mitigate disambiguation results significantly.
An open problem is how different entity repositories from different domains can
be combined while providing reliable disambiguation results.

Supervised or Unsupervised Classification. Disambiguation tasks (i.e. intra-
species and inter-species gene name ambiguity) may be interpreted as classi-
fication tasks. Thus, many approaches rely on supervised classification, which
needs a non-negligible amount of training data. The availability of training data
is often limited, and the available data sets tend to be imbalanced and, in some
cases, heterogeneous [60]. Another problem of making extensive use of training
data is that new biological entities are discovered very quickly. There may be no
surface form in the previous existing literature for that sense or for that symbol
[51]. Unsupervised or rule-based algorithms are either not available or do not
provide similar results as supervised algorithms [58]. The question remains how
algorithms provide reliable results despite requiring less or no training data.

Multiple Species Assignments. As shown in Sect. 3, a surface form of genes
or proteins may belong to several different species (e.g. the proteins in sen-
tence “human and mouse CD200R-CD4d3+4 and rCD4d3+4 protein” belong to
the species human, mouse and rat). Hence, these surface forms refer to multiple
entities. Existing algorithms usually extract the corresponding species provid-
ing the highest score. Furthermore, a static threshold often denotes the top-n
relevant species to be extracted. However, existing approaches lack algorithms
to investigate how many and which species belong to surface forms of genes or
proteins.

7 Conclusion and Outlook on Future Work

Biomedical entity disambiguation has benefited from substantial interest from
researchers and from practical needs of several domains (e.g. smart hospitals,
infectious disease researchers), especially in the last ten years. In this work we
provide an overview of biomedical entity disambiguation, with a special focus on
annotated corpora, term disambiguation algorithms as well as gene and protein
disambiguation algorithms.

As stated in the section above, there is a need for disambiguation systems for
entities across several domains (e.g. entities from computer science and biomed-
ical domain). A first important step would be to investigate how to combine
two KBs, comprising entities from different domains, without mitigating disam-
biguation results due to an increase of heterogeneity and quantity.
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Another important direction to add more flexibility to disambiguation sys-
tems is in reducing the necessity of training data by intelligent algorithm design
and data exploitation. Most works are built upon supervised algorithms and
need a huge amount of annotated data sets. Promising approaches avoid using
expensive manually annotated data for each new domain and thus achieve better
portability, e.g. [60].

With the entity linking approaches becoming more and more sophisticated,
the application tasks shift to more complex recognition tasks. This shift can
for instance, be observed in the community challenges issued by the BioNLP
consortium. Starting with 2011, the event detection task additionally involved
co-reference resolution and relation identification, and assumed a correct entity
disambiguation system as prerequisite [8].
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