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Abstract. Our goal is to develop a system for coaching human motions
(e.g., for rehabilitation and daily health maintenance). This paper focuses
on how to coach a user so that his/her motion gets closer to the good tem-
plate of a target motion. It is important to efficiently advise the user to
emulate the crucial features that define the good template. The proposed
system (1) automatically mines the crucial features of any kind of motion
from a set of motion features and (2) gives the user feedback about how
to modify the motion through an intuitive interface. The crucial features
are mined by feature sparsification through binary classification between
the samples of good and other motions. An interface for motion coaching
is designed to give feedback via different channels (e.g., visually, aurally),
depending on the type of error. To use the total system, all the user must
do is just move and then get feedback on the motion. Following experi-
mental results, open problems for future work are discussed.

Keywords: Motion coaching · Error feedback · Physical rehabilitation

1 Introduction

1.1 Background

The number of people suffering from chronic diseases is constantly rising [1–3].
Today, more than three quarters of the elderly population are suffering from
chronic diseases, independent of the economic, social, and cultural background
[4]. However, not only the prevalence of chronic illnesses increases with age but
also the likeliness of suffering from physical as well as mental disabilities. Statis-
tical data from Great Britain [5] shows that around half of all disabled persons
are 65 years or older.

A serious problem closely connected with declining physical abilities is an
increased risk of falls. Statistics of the World Health Organization [6] show that
approximately one third of the people over 65 years and half of the people over
80 years of age fall each year. Similar data is reported by Nehmer et al. [7].
Around 20 % to 30 % of the falls lead to serious injuries with long-term conse-
quences for the patients [8]. Statistical data from the UK [9] shows that fallsare
the major cause for disability in the age group of people over 75 and a lead-
ing cause of mortality due to injury. The most common serious injuries related
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to falls in older people are hip fractures, which result in annual costs of over
2 billion Euros for England alone [10].

The demographic change, which can be observed in most industrialized coun-
tries around the globe, does not only lead to an increased number of elderly
people but also contributes to a continuous decline of the working population.
For example, it is expected that the working force in Europe will decrease by
48 million people until 2050 while the dependency ratio is expected to double,
reaching 51 % in the same time [11]. Consequently, the ratio between the working
population and older citizens above 65 will shrink from currently 4:1 to only 2:1
in the coming 40 years. This development will inevitably result in a reduction
of the number of people who can provide care to older and disabled people [8].
Together with the financial constraints that most are currently facing, it will
become increasingly difficult to find enough caregivers for the growing number
of elderly people [12].

In this context, pervasive homecare environments are often cited as a promis-
ing solution for providing automated and personalized healthcare solutions for a
growing number of elderly people [7,10,12]. Pervasive healthcare environments
are usually equipped with different types of sensors for automated data captur-
ing as well as different types of output devices including large screens [13–15],
mobile devices [16,17], and ambient displays [18,19]. Over the last decade, several
prototype systems have been developed (e.g., [2–5,8,11]), which demonstrate
the potential of such environments for individually supporting different user
groups [6,20].

Within this paper, we describe the development of an automatic motion
coaching system which makes use of typical input and output technologies avail-
able in pervasive homecare environments in order to provide new user-centered
training and rehabilitation concepts [9]. For easy-to-use coaching systems [1], it is
important to efficiently advise a user to emulate the crucial features that define
the good template. This is because many other features of the target motion
might be varied among individuals, but those variations give less impacts on
evaluating the target motion. The proposed method automatically mines the
crucial features of any kind of motion. The crucial features are mined based on
feature sparsification through binary classification between the samples of good
and other motions. The following section provides a more detailed overview of
the proposed system.

1.2 Our Approaches and Related Work

Motion Measurement. We aimed at developing a user-centered system for
coaching human movement. For motion measurement in the laboratory stage,
multi-camera systems, [21–23], allow us to acquire highly accurate results, but
they are too expensive for realizing pervasive health systems. We have seen
a tremendous improvement of commercial real-time motion tracking devices.
Systems like Microsoft Kinect, Nintendo Wiimote, or PlayStation Move provide
low-cost solutions for end-users in home environments. The proposed system
utilizes an inexpensive depth-measurement sensor (i.e., Microsoft Kinect) in
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order to get high-measurement accuracy without devices attached to the body
for easy-to-use operation.

MotionCoaching Systems. During the last years, several motion coaching sys-
tems have been developed. Most systems focus on a special type of motion or exer-
cise. This is due to the fact that there are tremendous differences between motions
that have to be considered when analyzing motion data programmatically.

A review of several virtual environments for training in ball sports was intro-
duced in [24]. They stressed that coaching and skill acquisition usually involve
three distinct processes: conveying information (i.e., observational learning),
structuring practice (i.e., contextual inference), and the nature and administra-
tion of feedback (i.e., feedback frequency, timing, and precision). Additionally,
general possibilities when to provide feedback were identified. Concurrent feed-
back (during), terminal feedback (immediately following), or delayed feedback
(some period after) can be used to assist the subject in correcting the motion.

One recent concurrent feedback approach was taken by Velloso et al. [25].
Another example for concurrent feedback was presented by Matsumoto et al. [26]
who combined visual and haptic feedback. Even though their device greatly
improved the performance, it was very awkward to perform the exercises with
it due to its weight.

How to assist weightlifting training by tracking the exercises with a Kinect
and using delayed feedback is proposed by Chatzitofis et al. [27]. However, there
is still need for a human trainer to interpret those values in order to give feedback
to the subject. The tennis instruction system developed by Takano et al. [28]
also uses a delayed feedback approach but the focus is put on the process of
observational learning. Due to the absence of any explicit feedback in [28], it is
hard to determine how to actually correct the motion.

An example for terminal feedback can be found in [29] where the focus is put
on the correct classification of motion errors while feedback is given immediately
after the completion of the motion. However, this only allows the correction of
previously known and trained error types.

To systematically analyze possible designs of motion coaching systems, the
related work can be classified in a three-dimensional design space of multimodal-
ity [30]. The modality (visual, auditory, haptic) is chosen depending on the type
of input that the computer or human needs to perceive or convey information.

A single system generally consists of multiple points in this design space
(represented as a connected series of points). For example, the system developed
by Chatzitofis et al. [27] can be controlled with mouse and keyboard (haptic
input of control), visualizes performance metrics (visual output of data), and
captures motion data by using the Kinect system (visual input of data).

In some cases, the differentiation between output of control and data is not
unambiguous. Nevertheless, this can still be visualized. For example, in [25] the
output of an arrow indicating the direction in which to move the left or right
arm can be regarded as both, output of data and control. In the following, this
type of visualization will be referred to as output of control.
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2 Glossary

Depth sensor is an optical sensor that measures 3D distance from the sensor
to 3D points in a scene. The measured results are obtained as a gray-scale
image in which each pixel value represents the 3D distance. The examples
of the depth image are shown in Fig. 1 (i.e., “Depth images” in the figure).
There are several kinds of depth sensors, which are classified by a mechanism
for measuring 3D distance.

Expensive but accurate sensors are based on Time-Of-Flight (TOF) mea-
surement. A TOF sensor measures 3D distance by measuring the lapse of
time after the sensor emits light and before the light returns to the sensor.

Some other depth sensors are based on triangulation. Unlike human eyes
that observe a 3D point from different view points for triangulation (which
is often called stereo vision), many triangulation-based depth sensors emit
light and observe it from a different viewpoint for triangulation. This app-
roach allows us to easily measure 3D distance because point correspondence
is easy; in stereo vision, on the other hand, we must make a pixel correspon-
dence between different views (i.e., different images) based on noisy image
features so that pixels observing the same 3D point are paired.
Structured-light based sensors are also popular. These sensors emit a known

spatial light pattern and observes it. Based on its deformation projected on
a 3D surface in a scene, depth measurement can be achieved.

Kinect is a world-wide popular depth sensor developed by Microsoft. It can
capture color and depth images simultaneously. Its depth measurement is
based on the structured-light mechanism.

Motion capture system is used for obtaining the 3D human pose of a real
person. A number of commercial products have been already developed, but
all of them are still expensive. Several kinds of motion capture systems have
been developed, namely optical systems with passive/active markers, inertial
systems, mechanical systems, and magnetic systems.

Support Vector Machine (SVM) is a pattern classifier [31]. Any pattern is
computationally expressed by a vector. In pattern classification, each pattern
is attributed to a class (e.g., “good” or “bad”).

3D Human Pose (aka a 3D skeleton) is computationally represented by a set
of 3D joint positions and links that connect physically-connected joints. Its
examples are illustrated in Fig. 1 (i.e., “Pose sequence” in the figure).

3 State-of-the-Art

3.1 System Overview

Figure 1 illustrates the overview of the proposed system consisting of two steps.
An offline model-learning step is performed before users are coached by the

system. In this step, two kinds of computational models are trained. For learning
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Fig. 1. Overview of the system.

the pose estimation model (i.e., “Pose models” in Fig. 1) that represents the
relationship between human poses and features extracted from depth images, the
samples of a target motion are captured by a synchronized Kinect and motion
capture system (i.e., “Kinect” and “Motion capture system” of “Offline model
learning” in Fig. 1). The pose classification model (“Classification models” in
Fig. 1) is acquired by the Support Vector Machine [32] (“SVM” in Fig. 1) to
evaluate whether the human pose at each frame is good or not.1. In addition,
the crucial features of the target motion (i.e., “Crucial components” in Fig. 1)
are mined by a sparse coding regularization in the SVM.

In an online coaching step, with the model learned beforehand, the system
observes the motion of a user with a Kinect camera (i.e., “Kinect” of “Online
coaching” in Fig. 1), estimates the human pose at every frame (i.e., “Pose esti-
mation” in Fig. 1), evaluates whether or not each pose is required to be modified
(i.e., “Motion evaluation at each frame” in Fig. 1), and coaches the user. In the
online coaching step, the three modules interact with a user as follows:

3D human pose estimation: A 3D human pose at each frame is estimated
from a depth image captured by a Kinect. The estimation method is based
on [33,34]. The accuracy of the pose estimation is improved by using real
pose data captured by the motion capture system instead of synthesized CG
data employed in [33,34].

1 We assume that a target motion can be classified into good and other motions. For
example, any motion in rehabilitation should be as correct (i.e., good) as possible.
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Motion evaluation: The user’s pose is evaluated by the SVM whether it is
good or not. If the pose is not good, it must be modified so that it gets
closer to a good template. Before evaluation, the pose sequence of the user
is synchronized with that of the template by dynamic time warping [35].

Motion coaching: At each subsequence (i.e., several sequential frames) that
must be modified, the interface system [36] gives feedback to the user. Note
that there might be a number of differences between the user’s motion and
the good template motion and that it is actually impossible to understand
all of them simultaneously. The proposed interface system gives feedbacks
one by one, depending on their priority. More crucial features are given first.
The priority of a feature is determined by how crucial the feature is for a
well done execution of the good template motion.

3.2 3D Human Pose Estimation

The estimation method is based on [33,34]. In this previous method, all training
data (i.e., “Depth images” and “Pose data” in Fig. 1) are generated from simu-
lation computer graphics data. This approach is useful for estimating arbitrary
human poses for gaming proposes because

– it is difficult to collect the synchronized human pose and depth data of a large
variety of arbitrary human poses, and

– even if the pose estimation error is relatively large due to modeling errors of
a variety of human poses, it might still be acceptable for gaming purposes.

In contrast to pose estimation for gaming purposes, for motion coaching it
should be more accurate. In particular, accurate pose estimation is required for
rehabilitation purposes.

In the proposed system, accuracy in pose estimation is improved by using
real observation data of human motions. The real depth images and human data
are captured by Kinect and a motion capture system. The left and right images
in Fig. 2 show a 3D point cloud computed from a captured depth image and a
skeletal human pose, respectively.

From a technical point of view, spatial alignment and temporal synchroniza-
tion between the point cloud and the pose are required.

Temporal Synchronization. Since a moving human body is captured by two
independent sensors, their captured data must be synchronized; a depth image
and pose data in the same frame of an image sequence and a pose sequence must
be captured at the same moment.

Unfortunately, Kinect does not have a hardware synchronization mechanism.
Instead, in the proposed system a software synchronization between those two
data sets is established.

For this synchronization, a predefined motion is performed by a subject. This
predefined motion is required to have a key frame that can be easily identified in
both depth image and pose sequences. The depth image and pose sequences are
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Depth data extracted from a depth image
captured by Kinect

Human pose data (skeleton) obtained by
a motion capture system, IGS-190

Fig. 2. Real depth and pose data, necessary to create a 3D pose model.

synchronized so that each of their key frames is a first frame in each sequence.
After the first frame, fI -th frame of the image sequence is temporally aligned
with fP = FP

FI
(f−1)+1-th frame, where FP and FI denote the frames-per-second

of the motion capture system and Kinect, respectively. In the experiments shown
in this paper, the subjects had to raise their right arm so that the key frame
where the hand was located in the highest position could be identified.

Spatial Alignment. Kinect and the motion capture system have their own
coordinate systems. They must be aligned in order to completely overlap the 3D
point cloud and the pose of a subject.

Assume that the temporal synchronization is established. Spatial alignment
is achieved by translating and rotating the coordinate system of one of the two
sensors (i.e., in our experiments the motion capture system) so that the 3D
positions of several key points coincide with each other between the two coordi-
nate systems. Since the number of unknown parameters is 6 (i.e., 3 degrees
of freedom in translation and 3 degrees of freedom in rotation), at least 2
pairs of corresponding points between the point cloud and the human pose are
needed for estimating those unknown parameters; each pair gives us 3 equations
(i.e., x, y, and z matching).

The following Eq. (1) expresses the translation and rotation of a 3D point M :

M ′ = T + RM , (1)
T = (tx, ty, tz)T , (2)

R =

⎛
⎝

1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

⎞
⎠

⎛
⎝

cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)

⎞
⎠

⎛
⎝

cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1

⎞
⎠ (3)

Here, tx, ty, tz, α, β, and γ are 6 unknown parameters. Given a 3D position MP

of the human pose, these 6 parameters are optimized so that M ′
P is equal to

the corresponding 3D position M I of the point cloud. Note that MP and M I
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are extracted from the same 3D point captured by the motion capture system
and Kinect, respectively. In reality, M ′

P might not be equal to M I due to noise.
Therefore, the 6 parameters are optimized so that ||M ′

P−M I || gets close to zero.
Since the above-mentioned problem is a non-linear optimization, we have

a variety of options for its solution. The LevenbergMarquardt algorithm was
used in our experiments. If three or more corresponding points are available,
parameter estimation can be robust to noise.

Random Forest Regression for 3D Pose Estimation. Given two spatially-
aligned and temporally-synchronized sequences (i.e., 3D point cloud and human
pose sequences), 3D pose estimation can be achieved in the exact same way with
[34]. All frames in the sequences are used for model learning.

With the model learned, we can obtain the 3D human pose at each frame
only from a depth image captured by the Kinect. The sequence of the estimated
human poses is employed for motion evaluation described in the following section.

3.3 Mining Crucial Features for Motion Evaluation

Mining Crucial Features via Sparse Coding. For evaluating the motion
of a user (i.e., classifying the motion to good or other motions), the SVM is
used in the proposed system. This classification is performed with a number of
features that represent the 3D pose and the motion of a human body. Since (1)
the system should be applicable to any kind of motion and (2) we do not know
which features of a target motion are crucial for defining the target motion, it is
better to exhaustively use all features that possibly represent a body motion.
In experiments, the concatenation of the following components was used as a
621D feature vector which consists of:

– 3D positions of all joints (3D × 18 joints = 54D)
– 3D velocities of all joints (3D × 18 joints = 54D)
– 3D accelerations of all joints (3D × 18 joints = 54D)
– 3D displacement between any pairs of joints (3D × 153 = 459D).

From these 621 features, the proposed method automatically mines which
body parts and/or motions are crucial for improving the movement of a user.
This mining is achieved by the sparse coding regularization in the SVM, as
proposed in [37]. In classification, the inner product of the feature vectors of
a test pose (denoted by v) and the weight vector w is computed. If the inner
product is above/below 0, the test pose is regarded as a positive/negative class
(e.g., good/others). Therefore, components with a larger absolute value in w
correspond to crucial features that have a large impact on the inner product. In
learning the SVM, the l1-regularized logistic regression [37] is employed so that
the gap between larger and smaller absolute values of w gets much greater.

This sparsification can be regarded as dimensionality reduction because the
dimensions with smaller values can be neglected. For dimensionality reduction,
many other techniques have been proposed (e.g., PCA, LLE [38], Isomap [39],
GPLVM [40]). Those techniques, however, cannot provide a user intuitive
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feedbacks for understanding how to modify the motion. This is because these
techniques project a vector from a high-dimensional space to a low-dimensional
space defined by an arbitrary subspace in the high-dimensional space. That is,
each axis in the low-dimensional space might correspond to multiple axes in
the original high-dimensional space. As a result, even if a motion feature corre-
sponding to only one axis in a subspace obtained by PCA or similar techniques
is selected, a user might be required to move the body as follows: “you should
move the right hand, the right elbow, the left toe, and the hip so that ...”. On
the other hand, in the proposed method, only one motion feature (e.g., “the
right hand” or “the right elbow”) is selected from the low-dimensional space
generated by the sparse coding regularization.

Experiments of Feature Mining. Experiments were conducted with baseball
pitching motions2 captured from 34 people; 13 good (i.e., expert) players and
21 beginners. From these 34 people, 445 sequences were captured in total. Both
pose estimation and classification models were trained by the data of 33 people,
and the data of the remaining one person was used for testing. Note that all 621
features were normalized.

The following two ways were tested for selecting crucial motion features:

(a) Naive selection: The distance between features of a user’s pose and a good
template is computed at each feature component (e.g., 3D position of the
right hand); the distance at i-th feature is denoted by df . Features having
the larger distance are regarded as crucial features.

(b) Selection with the sparsification: df is multiplied with the weight of
f -th feature (i.e., f -th component of w). Features having the larger product
are regarded as crucial features.

Motions selected by the above two criteria, (a) and (b), were checked by
expert players. In examples shown in Fig. 3, naive selection recommended the
left toe velocity as the most crucial motion (i.e., (a) in Fig. 3), while the right
hand was selected by the proposed method (i.e., (b) in Fig. 3). It is natural that
the motion of the hand holding a ball is more important for pitching. The experts
also validated the selection of the proposed method.

time

(a) Crucial feature of naive selection (i.e.,
left toe velocity)

time

(b) Crucial feature selected by the pro-
posed method (i.e., right hand velocity)

Fig. 3. Visual feedbacks illustrating the difference between the user’s motion (shown
with red) and the good template (shown with blue) in pitching motions (Colour figure
online).

2 To validate the system, a sport motion is a good example because its exercise is
important for skill proficiency of beginners as well as rehabilitation of experts.
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Experiments of Using Features for Motion Evaluation. We also demon-
strate the effectiveness of the sparsification in motion evaluation. The mean
classification rate of all 445 sequences, each of which was evaluated by leave-
one-out cross-validation, is computed. The means over all frames were 67 % and
76 % in (a) and (b), respectively. These results demonstrate the effectiveness of
the sparsification also in motion classification. This effect is gained because a
low-dimensional feature space allows us to improve the generalizing capability
of classifiers such as the SVM, as described in [41].

3.4 Motion Coaching Interface

Just a simple visualization of a motion difference (e.g., Fig. 3) might not be
intuitive for motion coaching, depending on the type of motion error. This section
discusses what kind of feedback is appropriate for each type of motion error.

Interface Design. To combine the ideas of motion errors and different types of
motion feedback, a prototype system was implemented that enables first exper-
iments with some of the proposed feedback types.

JavaFX was used as an underlying framework since it allows fast creation of
user interfaces with JavaFX Scene Builder and provides built-in support for ani-
mations and charts. For the user to be able to concentrate on the visualization,
the system takes two synchronized motion sequence files that contain informa-
tion about joint positions at each point in time as input. Synchronized in this
context means that frame number i in the template motion corresponds with
frame number i in the comparison motion. Figure 4 shows a screenshot of the
system. In this interface, joints that are not relevant for a special motion can be
de-selected manually.

Motion Errors and Feedback Types. The first step when thinking about
how to provide motion error feedback is to become aware of different types of

Fig. 4. Screenshot of the motion coaching system.
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motion errors (i.e., deviation between a template and comparison motion) that
need to be addressed. To that extent, it is obvious to differentiate between the
spatial and temporal dimension.

When just considering the spatial dimension, there are three main types
of motion errors that can occur. First, the absolute position of a joint can be
wrong. When only the spatial collocation of several joints is important, the
relative position of them should be taken into account instead. For example,
a clapping motion can be defined only by the spatial relationship between the
palms (i.e., the palms touch each other or not). The last main error type is a
wrong angle between neighboring joints. Naturally, the angle is influenced by
the actual positions of the joints, but it is expected that a different type of
visualization is required depending on whether the focus is put on the angle or
the absolute joint position.

In a next step, several general ways to provide feedback by using different
modalities were elaborated.

The most natural but technically the most complex way when using the
visual channel is to either extract only the human body or to use the complete
real scene and overlay it with visual feedback (e.g., colored overlay of body parts
depending on the distance error). The natural scene reduces the cognitive load
for the subject as the mapping between the real world and the visualization is
trivial. Displaying the human body as a skeleton makes this mapping a bit harder
but allows to put the focus on the motion itself. To compare a template with a
comparison motion, the abstracted skeletons can be visualized side by side or in
an overlaid manner, as shown in Fig. 5. It is expected that the overlaid view is
mainly applicable when trying to correct very small motion errors. At a higher
abstraction level, performance metrics such as speed or distance deviation per
joint or body part can be displayed textually or graphically (i.e., with the aid of
charts). There is, however, no information on how to correct the motion and the
subjects need to interpret those values to improve their motion. To overcome
this weakness, it is desirable to be able to visualize instructions (i.e., visual
output of control) that guide users in correcting their motion. Two possible

Fig. 5. Visualization of two skeletons, one captured online and one of a template
motion. Left: side-by-side comparison. Right: overlay.
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approaches are simple textual instructions [42] or graphical instructions such as
arrows indicating the direction in which the motion should be corrected [25].

Audio feedback can be used in several ways to give motion error feedback.
Spoken instructions (i.e., auditory output of control) are one possible way to
which most people are already used to from real training situations. Note that
the bandwidth of the auditory channel is much lower than the one of the visual
channel and therefore not much information can be provided at the same time.
Nevertheless, the audio feedback has the big advantage that it easily catches
human attention and users do not have to look in a special direction (e.g., for
observing a screen). In terms of auditory output of data, different parameters of
sound (i.e., frequency, tone, volume) can be modified to represent special motion
errors. A first step in this direction was taken by Takahata et al. [43] in a karate
training scenario.

Another important point of research is the question of how to motivate people
to use a motion coaching system. As it is commonly accepted that the use of
multiple modalities increases learning performance (see [44], for example), a
motion coaching system should aim at addressing multiple senses. Therefore,
several of the ideas above are combined in the proposed interface.

The use of haptic output devices is not treated as applicable for a motion
coaching system used to teach a wide range of different exercises due to two main
reasons: First, there is no reliable and generic way to translate instructions into
haptic patterns (see [45], for example). Second, specially adapted hardware is
required to provide appropriate haptic feedback, which is then often considered
disturbing [26].

Multimodal Feedback Types Visual Output of Data 1 – Metrics
(Textual). The performance metrics illustrated in Fig. 6 provide basic infor-
mation such as 3D and 2D distance deviations per joint and a comparison of the
template and sample speed per joint. Due to the perspective projection of the
real-world 3D coordinates to the joint positions in the visualized 2D skeleton on

Fig. 6. Distance and speed metrics for a single pair of frames for currently loaded
motion sequences.
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the screen, it may occur that there are large 3D deviations that are not recog-
nizable in the skeleton representation. The data helps to get an understanding
of this relation and allows for a very detailed motion analysis. Nevertheless, this
high precision is not necessarily needed for a motion coaching scenario and a
subject may only use this type for terminal or delayed feedback.

Visual Output of Data 2 – Metrics (Graphical). Charts are used to visu-
alize distance and speed metrics over time. Multiple joints can be selected to
be included in a single chart to compare the respective deviations. From a
motion coaching perspective, this type of feedback is mainly suited for terminal
or delayed feedback. Figures 7 and 8 visualize the deviations of the distance and
the speed (between the template and comparison motion) of two different joints
for a small frame interval, respectively. As real-world data is often subject to
large fluctuations, values are smoothed for visualization purposes by calculating
a weighted average for the k-step neighborhood (k between 5 and 10), see an

Fig. 7. Distance deviation chart for right forearm (selected series)and right hand.

Fig. 8. Speed deviation chart for right forearm (selected series) and right hand.
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Fig. 9. The effect of temporal smoothing. Upper: original data. Lower: smoothed data.

Fig. 10. Exemplary skeleton-based distance error visualizations (left: colored joint over-
lay, center: overlay of template and comparison skeleton, right: static result of animated
joint moving to its correct position).

example in Fig. 9. While the original data was noisy (the upper graph in the
figure), its smoothed graph is better for understanding the motion (the lower
graph in the data).

Visual Output of Data 3 – Colored Joint Overlay. All joints with devi-
ations larger than upper and lower thresholds, which are given manually, are
respectively colored in red and green (applicable for speed and distance
deviations). The coloring of joints with values in between those thresholds is
determined gradually (i.e., vary from red over orange to green). An example can
be found in Fig. 10 (left skeleton): the largest deviations occur for joints located
in the right arm. This visualization approach can be used either for concurrent,
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terminal, or delayed feedback and allows to easily determine joints with high
deviations.

Visual Output of Data 4 – Skeleton Overlay. Visualizing the template and
comparison skeleton in an overlaid manner (instead of side by side which is the
default behavior of the proposed system) turned out to be only suitable to correct
very small motion errors. Otherwise the mapping between the intended and
actual joint position is not directly visible. Oftentimes, it is hard to differentiate
between the two skeletons. To overcome this weakness, the opacity value of the
template is lower than the one of the comparison skeleton (see Fig. 10, center).

Visual Output of Control – Distance Error Animation. So far, no direct
information on how to correct the motion was given. The initial idea of Velloso
et al. [25] that uses directed arrows to indicate how to correct the motion was
adapted and replaced by an animated joint that moves to its correct position
and thus gradually changes its color from red (wrong position) to green (correct
target position is reached). Even though this is still a quite technical represen-
tation, this approach is considered to be more natural than using arrows (see
Fig. 10, right). However, it is only applicable for terminal or delayed feedback.

Auditory Output of Control – Speed Feedback. For the most striking
speed deviation, a verbal feedback phrase is provided by using a text-to-speech
library. However, even if humans are used to this type of auditory feedback, such
a specific per-joint feedback is not applicable in practice. Therefore, several joints
are clustered to body parts and feedback is provided accordingly (e.g., “Move
your right arm faster” instead of “Move your right hand and elbow faster”).
Auditory feedback in general is best suited for concurrent feedback.

Combination of Visual and Auditory Output of Data. As stressed in
the previous section, per-joint speed feedback is regarded as too technical. In
this approach that combines visual and auditory output, joints are clustered
to body parts (by using the charts for analyzing deviation dependencies) and
considered as a whole during motion error feedback. The animated illustration
is embedded in a video playback of the motion sequences and supported by
corresponding speech output, as illustrated in Fig. 11. Note that the coloring
allows to easily determine the affected body part and the blinking speed of the
highlighted joints depicts the type of speed deviation (too fast: fast blinking, too
slow: slow blinking).

4 Open Problems

Our goal is to develop a user-centered physical motion coaching system which
can be used for supporting private rehabilitation and training. For this coach-
ing system, this chapter described (1) accurate 3D human pose estimation, (2)
mining crucial motion features for efficient coach, and (3) intuitive motion-error
feedback interface.

For 3D human pose estimation, its accuracy is improved by using real obser-
vation data (i.e., 3D point cloud captured by Kinect and 3D human pose data
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Fig. 11. Example of embedded multimodal speed feedback in motion sequence play-
back (Note: text in the figure is provided by speech output and is not visualized).

obtained by a motion capture system) as training data. Since the two data are
captured independently by different devices, spatial alignment and temporal syn-
chronization are inevitable. While the system proposed in this chapter achieves
these alignment and synchronization, the following questions remain open:

– Frame rate: Are the frame rates of the Kinect and the motion capture system
completely identical?

– Drift: Does the 3D pose obtained by the motion capture system temporally
drift at all?

– Frame(s) for temporal synchronization: Are the frames of the coordinate sys-
tems of the Kinect and the motion capture system appropriate for spatial
alignment? Are there measurement errors in that frame? Would another frame
be better suited for the alignment? Would it be better to use multiple frames
for the alignment to cope with drift?

The crucial motions are mined by the sparse coding regularization during
training of the SVM that classifies target motions into good or not. The weight
vector of the SVM shows which features are crucial for classifying whether a
user’s motion is good or not. In particular, the sparse coding regularization
allows us to enhance the difference between crucial and non-crucial features.
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In reality, however, it is not so easy to extract only crucial features correctly
from a huge number of possible features. While the ultimate goal of the system
is to apply to any kind of motion fully automatically, it might be possible to
reduce the possible features manually, based on knowledge of the motion so that
only meaningful features (i.e., features that might be crucial) remain. Otherwise,
for realizing a fully-automatic system, we might be able to reduce the possible
features independently of the motion, based on the structure and general kine-
matics of a human body.

From a technical point of view, important issues for developing an intuitive
motion-error feedback interface are not clear yet. In particular, how to auto-
matically select a feedback type depending on the motion is an open problem.
We need extensive user tests in order to address this.

5 Future Outlook

Future work for improving feature mining includes using knowledge of a human
body (e.g., kinematics and joint structures) as heuristics, extensive user tests,
and verification with many other kinds of motions. In terms of using the knowl-
edge of a human body, it is expected that the knowledge is helpful for mining
more discriminative features. Since this knowledge does not depend on the type
of motion, usability of the system is not damaged.

For an intuitive interface system, different ways to provide motion error feed-
back were analyzed. The results from this first prototype can be used for an initial
evaluation that may allow to exclude several feedback possibilities or reveal the
need for analyzing others in more detail.

However, technology acceptance is a quite complex phenomenon and the suc-
cess of a motion coaching system does not only depend on the interface alone.
Final statements are only possible when a complete system has been developed
and tested in detail. The development of such a system requires an interdiscipli-
nary approach with scientific contributions from the fields of machine learning,
computer vision, human-computer interaction, and psychology.

References

1. Campana, F., Moreno, A., Riano, D., Laszlo, Z.: K4care: Knowledge-based home-
care eservices for an ageing europe

2. Laleci, G.B., Dogac, A., Olduz, M., Tasyurt, I., Yuksel, M., Okcan, A.: Spahire: A
multi-agent system for remote healthcare monitoring through computerized clinical
guidelines. In: Agent Technology and E-Health (2007)

3. Villar, A., Federici, A., Annicchiarico, R.: K4care: Knowledge-based homecare eser-
vices for an ageing europe. In: Agent Technology and E-Health (2007)

4. Vergados, D.J., Alevizos, A., Mariolis, A., Caragiozidis, M.: Intelligent services for
assisting independent living of elderly people at home. In: PETRA (2008)

5. Population Censuses and Surveys Office: General Household Survey 1994 (1995)
6. World Health Organization: Active Aging: A Policy Framework (2012)



206 N. Ukita et al.

7. Nehmer, J., Becker, M., Karshmer, A.I., Lamm, R.: Living assistance systems: an
ambient intelligence approach. In: ICSE, pp. 43–50 (2006)

8. de Ruyter, B.E.R., Pelgrim, E.: Ambient assisted-living research in carelab. Inter-
actions 14(4), 30–33 (2007)

9. Health Education Authority: Older People - Older People and Accidents, Fact
Sheet 2 (1999)

10. Torgerson, D., Dolan, D.J.: The cost of treating osteoporotic fractures in the united
kingdom female population

11. EU: The Demographic Future of Europe - From Challenge to Opportunity. Com-
mission Communication (2006)

12. Adam, S., Mukasa, K.S., Breiner, K., Trapp, M.: An apartment-based metaphor
for intuitive interaction with ambient assisted living applications. In: BCS HCI (1)
(2008)
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