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Abstract. It is a well-known fact that exercising helps people improve
their overall well-being; both physiological and psychological health. Reg-
ular moderate physical activity improves the risk of disease progression,
improves the chances for successful rehabilitation, and lowers the levels
of stress hormones. Physical fitness can be categorized in cardiovascular
fitness, and muscular strength and endurance. A proper balance between
aerobic activities and strength exercises are important to maximize the
positive effects. This balance is not always easily obtained, so assistance
tools are important. Hence, ambient assisted living (AAL) systems that
support and motivate balanced training are desirable. This chapter
presents methods to provide this, focusing on the methodologies and con-
cepts implemented by the authors in the physical activity monitoring for
aging people (PAMAP) platform. The chapter sets the stage for an archi-
tecture to provide personalized activity monitoring using a network of
wearable sensors, mainly inertial measurement units (IMU). The main
focus is then to describe how to do this in a personalizable way: (1) mon-
itoring to provide an estimate of aerobic activities performed, for which
a boosting based method to determine activity type, intensity, frequency,
and duration is given; (2) supervise and coach strength activities. Here,
methodologies are described for obtaining the parameters needed to pro-
vide real-time useful feedback to the user about how to exercise safely
using the right technique.
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1 Introduction

Regular physical activity is highly recommended and is known to improve both
physiological and psychological health [41]. Physical exercise can be divided into
two categories, aerobic activity (promoting mainly cardiovascular health) and
strength training (beneficial for the whole musculoskeletal system [45], not only
muscle strength). These are all good arguments to exercise [13], but it is espe-
cially important for frail populations to help them maintain functional indepen-
dence [20,41]. However, improperly executed, physical activity may cause injury
[9,16]; hence, tools to allow for exercising efficiently and at minimal risk are
desirable, still no general purpose systems are yet available for purchase.

In this chapter, this lack is addressed by describing the PAMAP system. The
system’s modular design allows for efficient customization, which could enable
support tools as described above. Two use cases are studied in more detail:
(1) monitoring of aerobic activities and (2) monitoring of strength exercises.
For the former, a state-of-the-art boosting algorithm is provided. For the latter,
different methodologies necessary for supervising exercises are outlined. In both
cases, personalization is emphasized and the described methods are evaluated
using data from field trials.

This chapter is intended to be interesting for both generally knowledgeable
readers with a general interest for current advances in (AAL) solutions to activ-
ities of daily living ADL monitoring and support for strength activities using
inertial sensing. Specialists in the field with interest in machine learning and
multivariate signal pattern recognition looking for detailed algorithm descrip-
tions to solve the aforementioned exercise monitoring problems.

This book chapter is organized as follows: Sect. 2 provides a short overview
and the definitions of the most important terms that will be used throughout this
chapter. Section 3 starts by presenting a generic platform concept for (AAL) sys-
tems. It describes the important components as well as the modular and flexible
architecture for a physical activity monitoring using wearable sensors. Follow-
ing, Sect. 3.2 showcases the implementation of the generic platform concept for
the aerobic activity monitoring use case. Then, Sect. 3.3 illustrates the imple-
mentation for the strength exercise monitoring use case. Both use cases focus
on the objectives, the initial requirements as well as the personalization of the
(AAL) system. Section 4 briefly outlines the problems of the current setup, its
implementations and the research challenges that should be addressed in future.
Finally, for the general reader, a recommended reading list is presented in Sect. 4.

2 Glossary

ADL. The term activities of daily living summarizes daily activities within an
individual’s place or in outdoor environments. The term is mainly related to
health care.

EHR. An electronic health record is a computerized record of a person or
patient. Generally, it includes the history of illnesses, diagnosis, medical treat-
ments, etc.
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Fig. 1. The proposed modular monitoring platform architecture.

FITT. The frequency, intensity, time, type principle can be considered as a set
of rules in order to benefit from any form of fitness training and is applicable
to individual exercise training.

IMU. An inertial measurement unit usually combines multiple accelerometers,
gyroscopes, and magnetometers providing measurements of linear accelera-
tion, angular rate, and magnetic field.

GPS. A global positioning system determines the position (latitude and longi-
tude) of a receiver on earth by calculating the time difference for signals from
different satellites to reach the receiver.

MET. The metabolic equivalent of task is a unit to measure the energy cost of
physical activities. It is used to estimate the amount of oxygen used by the
body during physical activity and is defined as the ratio of metabolic rate
during a specific physical activity to a reference metabolic rate.

PSD. The power spectral density describes how the power of a signal or time
series is distributed over the different frequencies.

3 A State-of-the-Art System Example

This section first proposes an AAL system architecture for physical activity
monitoring using wearable sensors. It then details the two use cases, monitoring
of aerobic activities and supporting strength activities, in terms of requirements,
hardware platform, and monitoring methodology. The discussion is supported
with experimental results.

3.1 System Overview

The proposed system is modular and flexible. As illustrated in Fig. 1, it comprises
four major components that communicate with each other over network using
efficient protocols. The individual components (data collection, data processing,
data presentation, and data management) are outlined in the following.

The data collection component is based on a network of sensors and possi-
bly a mobile processing unit worn by the user. The sensor network can include,
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e.g., miniature inertial sensors and global positioning system (GPS) for mea-
suring the users’ motions and/or physiological sensors, such as a heart rate
monitor, ECG, skin conductivity sensor. During the data collection the data
is preprocessed; the raw sensor data is corrected, filtered, and synchronized, and
higher-level information, such as body pose based on multiple body-worn inertial
sensors, is derived.

The data processing component analyzes and characterizes the physical activ-
ity of the user using preprocessed data. This component encapsulates algorithms
developed for enabling sophisticated analysis. This can range from the deriva-
tion of the general frequency, intensity, time, type principle (FITT) parameters
to the accurate evaluation of strength exercises. One of the key points in this
context is to provide easy means for personalization in order to be able to target
individuals or groups with specific needs.

The data presentation component provides reminders and physical activity
visualization, guidance, and feedback to the user while training. Online user
interfaces can range from a simplistic mobile device interface (a smartphone
app), that provides alerts and just-in-time information about the current activ-
ity or daily profile. While being on the move, to a complete digital exercise
trainer shown on a stationary display at home or in the gym, that guides a user
through an exercise session whilst providing feedback on the way the exercises
are performed.

The data management component connects the monitoring system to a pri-
vate or public cloud. In a medical context, this could include uploading activity
data to an electronic health record EHR enabling reviewing of this data by health
care professionals. In a private context, activity data could be uploaded to social
communities and shared with informal carers, such as family or friends. This
sharing could promote friendly competition and motivate users to improve their
performance.

By providing standards for the system components described above, the dif-
ferent components can easily be exchanged. This way the functionality of the
system can be easily extended and specialized to create various target applica-
tions based on the same generic architecture.

The following sections showcase the implementation for the use case of aero-
bic activity monitoring Sect. 3.2 and strength exercise monitoring Sect. 3.3. The
topics data collection and data processing will be described in detail.

3.2 Aerobic Activity Monitoring

In the field of physical activity monitoring, the recognition of basic aerobic activi-
ties (such as walking, running or cycling) and basic postures (lying, sitting, stand-
ing) is well researched and is possible with just one 3D-accelerometer [11,18].
However, since these approaches only consider a limited set of similar activities,
they only apply to specific scenarios. Therefore, current research focuses among
others on increasing the number of activities to recognize, with the goal to give a
more accurate and more detailed description of an individual’s daily routine [3].
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Another challenge in this research field is the monitoring of physical activities
in real life scenarios, which is usually neglected or even completely ignored.
Moreover, recent benchmark results on physical activity monitoring datasets
show that the difficulty of the more complex classification problems appearing
in real life situations exceeds the potential of existing classifiers [32,33].

This section addresses these shortcomings by describing a robust activity
monitoring system for everyday life, as instantiation of the above described over-
all system architecture for the aerobic activity monitoring use case. The focus
lies thereby on the presentation and evaluation of algorithms for monitoring a
large and extensible set of activities of daily living based on a system for long-
term and everyday use. Furthermore, the personalization of activity recognition
algorithms — a new topic of interest in this field [19,23] — will also be addressed,
considering its feasibility in mobile applications and its applicability in everyday
life situations.

Objectives and Requirements. The aerobic activity monitoring use case
has two main objectives: to estimate the intensity of performed activities and
to identify the aerobic activities traditionally recommended. The former objec-
tive is motivated by the goal to tell how far individuals meet physical activity
recommendations, such as given in [13]. For this purpose, the system should dis-
tinguish activities of light, moderate, and vigorous effort. The ground truth for
this rough intensity estimation is based on the metabolic equivalent (MET) of
physical activities, provided by [1]. Moreover, to give a more detailed descrip-
tion of an individual’s daily routine, an activity recognition task is defined. The
goal thereby is the recognition of a few (recommended) activities and postures
of interest, but as part of a classification problem where a large amount of other
activities are included as well. This simulates the common behavior of how activ-
ity monitoring systems are used in real life scenarios.

Due to the special characteristics of classification problems defined on aerobic
activity monitoring tasks, the evaluation methodology of such systems deserves
a few remarks. The commonly used standard k-fold cross-validation (CV) only
simulates the scenario in which a classifier was trained. The evaluation this
way is limited to the known set of users and activities, thus delivering “opti-
mistic” results for real life scenarios. The simulation of subject independence
can be achieved with leave-one-subject-out (LOSO) CV. Moreover, to simulate
when unknown activities are performed, leave-one-activity-out (LOAO) CV is
recommended. The combination of LOSO and LOAO evaluation gives the best
simulation of how developed methods would behave in everyday life scenarios, as
described in [30]. Finally, it should be noted that traditional performance mea-
sures are used in this section to quantify the classification performance: precision,
recall, F-measure, and accuracy.

Data Collection. Since aerobic activities are monitored over a long period in
daily life, the hardware system for this use case has important constraints to
adhere: only a limited number of sensors can be used and only relaxed require-
ments can be defined for calibration and fixation of the sensors. Therefore, a
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mobile and unobtrusive system is proposed, consisting of the following compo-
nents: three wireless inertial sensors (attached on the chest, over the wrist on
the dominant arm and on the dominant side’s ankle, respectively), a wireless
heart rate monitor, and a mobile unit for data collection, processing, and online
feedback. An analysis of the necessity of the different sensors showed that this
proposed sensor setup is the minimum required to achieve an accurate monitor-
ing and assessment of the user’s aerobic activities in daily life [31].

Due to the lack of commonly used, standard datasets in the field of physical
activity monitoring the described hardware system was used to record a new
dataset [32,33]. The created PAMAP2 dataset includes inertial and heart rate
data from 9 subjects performing 18 different physical activities. The categoriza-
tion of the latter into intensity classes is given in Table 1. The dataset not only
includes basic activities and postures (lying, sitting/standing, walking, running,
cycling and Nordic walking) traditionally used in the activity monitoring field,
but also a wide range of everyday, household and fitness activities (e.g., car
driving, vacuum cleaning or playing soccer). Therefore, it is suitable for defining
complex classification tasks and to simulate developed methods under realistic
conditions. The dataset has been made publicly available in the UCI machine
learning repository [27] and will be used in the rest of this section for evaluation
purposes.

Data Processing. The PAMAP2 dataset provides raw sensory data. There-
fore, a common data processing chain (DPC) is applied to obtain the aimed inten-
sity and activity class. The DPC consists of preprocessing, segmentation, feature
extraction, and classification steps, as depicted in Fig. 2. The preprocessing step
provides synchronized, timestamped, and labeled acceleration and heart rate data.
This data is then segmented using a sliding window. Previous work shows (e.g.,
[15]) that for segmentation there is no single best window length for all activities.

Table 1. Definition of the intensity estimation task: mapping of physical activities
included in the PAMAP2 dataset to the three intensity classes.

Light effort Moderate effort Vigorous effort

(< 3.0 METs) (3.0–6.0 METs) (> 6.0 METs)

lie walk run

sit cycle ascend stairs

stand descend stairs rope jump

drive car vacuum clean play soccer

iron Nordic walk

fold laundry

clean house

watch TV

computer work
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Fig. 2. The data processing chain applied in the aerobic activity monitoring use case.

To obtain at least two or three periods of all different periodic movements, a win-
dow length of about 3 to 5 s is reasonable. Furthermore, to assure an effective dis-
crete Fourier transform computation for the frequency domain features, a window
size of 512 samples was selected. Since the sampling rate of the raw sensory data
was 100 Hz in the recorded PAMAP2 dataset, the segmentation step results in
signal windows of 5.12 s length. Thus, the preprocessed data is segmented using
a sliding window with the defined 5.12 s of window size, shifted by 1 s between
consecutive windows. On each of these segments, various signal features are com-
puted in both time (e.g., mean, standard deviation) and frequency domain (e.g.,
energy, entropy). In total, 137 features are extracted, which then serve as input to
the classification step. The entire DPC is described in more detail in [32].

To deal with the other activities in the activity recognition task different
models have been proposed. Common approaches include regarding all back-
ground activities as separate activity classes (‘allSeparate’ model), introducing
a single background activity class (‘bgClass’ model, basically a null-class app-
roach) or separating the basic and background activities in a classification step
before or after the actual differentiation of the activities of interest (‘preReject’
or ‘postReject’ model, respectively). With the application of the above described
LOSO and LOAO evaluation techniques the model with best generalization
characteristics can be identified. As shown in [30], the ‘bgClass’ model behaves
the most robust in real life scenarios and will thus be used hereafter.

A wide range of classification methods has been proposed and applied in the
literature of physical activity monitoring. Most common choices are supervised
learning approaches such as decision trees, Bayesian or instance based classifiers,
support vector machines, neural networks, etc. A comparison of different meth-
ods applied for activity recognition can be found, e.g., in [2,24]. Moreover, some
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of the above listed classifiers have been used as part of an ensemble or meta-
level classifier. A benchmark on the previously defined intensity estimation and
activity recognition tasks, comparing different base- and meta-level classifiers, is
presented in [32,33]. Overall, the best performance is achieved with boosted deci-
sion trees and k-nearest neighbors. However, the boosted decision tree classifier
has further benefits: it is a fast classification algorithm with a simple structure
and is thus easy to implement. These benefits are especially important for aerobic
activity monitoring applications, since they usually run on mobile systems with
limited computational resources. Therefore, boosted decision trees are applied
in the classification step of the DPC for the rest of this section.

Algorithm 1. ConfAdaBoost.M1
Require: Training set of N instances: (xi, yi) i = 1, . . . , N (xi: feature vector, yi ∈ [1, . . . , C])

New instance to classify: xn
1: procedure Training((xi, yi) i = 1, . . . , N)

2: Assign equal weight to each training instance: wi = 1
N , i = 1, . . . , N

3: for t ← 1, T do
4: Fit weak learner on the weighted dataset: ft(x) ∈ [1, . . . , C]
5: Compute the confidence of the prediction that instance xi belongs to the

predicted class: pti, i = 1, . . . , N
6: Compute error et of model on weighted dataset: et =

∑
i:yi �=ft(xi)

ptiwi

7: if et = 0 or et ≥ 0.5 then
8: Delete last ft(x) and terminate model generation.
9: end if

10: Compute αt = 1
2 log

1−et
et

11: for i ← 1, N do

12: wi ← wie

(
1
2 −I(yi=ft(xi))

)
ptiαt

13: end for
14: Renormalize the weight of all instances so that

∑
i wi = 1

15: end for
16: end procedure

17: procedure Prediction(xn)
18: Set zero weight to all classes: μj = 0, j = 1, . . . , C
19: for t ← 1, T do
20: Predict class with current model: [c, pt(xn)] = ft(xn), where pt(xn) is the

confidence of the prediction that instance xn belongs to the predicted class c
21: μc ← μc + pt(xn)αt

22: end for
23: The output class is arg maxjμj j = 1, . . . , C
24: end procedure

One of the key challenges identified by the benchmark is the necessity to
improve existing algorithms to achieve good performance results on complex
activity monitoring classification problems. Therefore, a novel boosting method
called ConfAdaBoost.M1 is presented here. ConfAdaBoost.M1 (cf. Algorithm 1)
is a confidence-based extension of the well-known AdaBoost.M1 algorithm. It
is a direct multiclass classification technique, keeping the algorithmic structure
of AdaBoost.M1. The main idea of ConfAdaBoost.M1 can be described as fol-
lows. In the training part of the algorithm, the confidence of the classification
estimation is returned for each instance by the weak learner (line 5). These pti

confidence values are used when computing the error rate of the weak learner
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(line 6): the more confident the model is in the misclassification the more that
instance’s weight counts in the overall error rate. Moreover, the pti confidence
values are used to recompute the weights of the instances. The more confident
the weak learner is in an instance’s correct classification or misclassification,
the more that instance’s weight is reduced or increased, respectively (line 12).
Finally, the confidence values are used in the prediction part of the algorithm:
the more confident the weak learner is in a new instance’s prediction the more
it counts in the output of the combined classifier (line 21).

The ConfAdaBoost.M1 algorithm has been evaluated on various benchmark
datasets, comparing it to the most commonly used boosting techniques. Results
achieved on the defined activity recognition (PAMAP2 AR) and intensity esti-
mation (PAMAP2 IE) classification problems are shown in Table 2. It is clear
that ConfAdaBoost.M1 performed significantly best among the compared algo-
rithms. For example, on the activity recognition task the test error rate was
reduced by nearly 20% compared to the second best performing classifier. A more
detailed description of ConfAdaBoost.M1 and further results of its thorough
evaluation can be found in [29].

Personalization of Physical Activity Recognition. The benchmark results
on the PAMAP2 dataset show that although good overall performance is achieved
on various activity monitoring tasks, the individual performance of the included
subjects varies a lot [32,33]. Therefore, personalization approaches are highly
encouraged, thus to adapt a general activity monitoring model to a new user.
This has become a topic of interest recently, suggesting personalization either in
the feature extraction or classification step of the DPC. Drawbacks of existing
approaches are that either the general model is simple (allowing only low perfor-
mance on complex classification tasks) or too complex for mobile applications,
resulting in unfeasible computational costs.

This section presents a novel general concept of personalization, applying it
in the decision fusion step of the DPC. In this concept the general model consists
of a set of S classifiers (experts), all weighted the same (wi = 1, i = 1, . . . , S).
Using new labeled data from a previously unknown subject, only the weights of
the experts are retrained, the classifiers themselves remain the same. To show
that this concept is a valid approach for personalization, different methods based
on the idea of weighted majority voting are applied to increase the performance
of the general model for new individuals. The baseline performance is given by

Table 2. Comparison of ConfAdaBoost.M1 to common boosting algorithms: test error
rates [%] on the PAMAP2 activity recognition and intensity estimation tasks.

Task AdaBoost.M1 Quinlan- Conf- SAMME

AdaBoost.M1 AdaBoost.M1

PAMAP2 AR 29.28 ± 1.4 27.9 ± 1.06 22.22 ± 0.77 27.98 ± 1.34

PAMAP2 IE 7.98 ± 1.04 7.73 ± 0.66 5.60 ± 0.31 7.81 ± 0.6
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majority voting (MV), thus when no retraining is performed. Using a set of
N labeled samples from the new subject, three existing approaches are applied
to retrain the general model: weighted majority algorithm (WMA), randomized
weighted majority algorithm (RWMA) and weighted majority voting (WMV).
Moreover, based on the proposed general concept, a novel algorithm called depen-
dent experts (DE, cf. Algorithm 2) is introduced. The main idea of the DE algo-
rithm is that the confidence of an expert’s prediction depends on the decision
of all other experts. Therefore, the result of training the weights is a matrix of
size SC (W, line 13), where wi,c stands for the weight of the ith expert when the
majority vote of all other experts is the class c (defined as the performance rate
of the ith expert on this subset of samples, cf. line 8–10). This way, DE is more
flexible compared to existing algorithms: it supports the case when an expert is
performing good on some classes, but poorly on others.

The described general concept of personalization and the novel DE algo-
rithm have been thoroughly evaluated on the PAMAP2 activity recognition
task, using the LOSO evaluation technique [34]. The results show the validity
of the proposed methods: compared to MV, the overall performance measures
and especially the lowest individual performance increases significantly. More-
over, the new DE algorithm clearly outperforms all other methods and is thus a
very promising approach for personalization. Since the presented algorithms are
computationally not intensive, they are feasible for mobile activity monitoring
systems. Finally, the proposed personalization approach requires less interaction
from a new user than existing solutions and has a short response time [34].

Algorithm 2. Dependent Experts
Require: S is the set of S different experts (classifiers): si, i = 1, . . . , S

C is the set of C classes the classification task is composed of: ci, i = 1, . . . , C
N is the set of N new labeled samples: ni = (xi, yi), i = 1, . . . , N

(xi: feature vector, yi ∈ [1, . . . , C])
New instance to classify: xnew

1: procedure training weight(S,C,N)
2: for i ← 1, S do
3: for j ← 1, N do
4: Predict label of xj with expert si: ŷj

5: Predict label of xj with the ensemble S ∩ si, using majority voting: ˆ̃yj

6: end for
7: for c ← 1, C do
8: Pc = {∀n ∈ N |ˆ̃y = c}
9: Pc good = {∀n ∈ Pc |ŷ = y}

10: wi,c = |Pc good|/|Pc|
11: end for
12: end for
13: W is the return weight matrix, composed of wi,c i = 1, . . . , S and c = 1, . . . , C
14: end procedure
15: procedure prediction(S,C,W,xnew)
16: μc = 0, c = 1, . . . , C
17: for i ← 1, S do
18: Predict label of xnew with expert si: class ĉ

19: Predict label of xnew with the ensemble S ∩ si: class ˆ̃c
20: μĉ ← μĉ + wi,ˆ̃c

21: end for
22: The output class is arg maxcμc c = 1, . . . , C
23: end procedure



Personalized Physical Activity Monitoring Using Wearable Sensors 109

3.3 Strength Exercise Monitoring

Different systems and methodologies for monitoring and supervising home-based
motor retraining and coordination exercises have been proposed during the past
years. See [25] for a thorough review of wearable sensors and systems for rehabil-
itation applications. Examples of rehabilitation solutions that have entered into
the market are Hocoma’s ValedoMotion [14] and CoRehab’s Riablo [8]. Using few
wearable IMUs, both system monitor specific body parts, such as back, knee,
or elbow, with respect to range of motion and use gamification techniques to
motivate the user.

Current video games include feedback based on wearable motion or external
vision sensors in order for users to follow fitness exercises of general interest.
While such gaming systems are motivating and can have a positive effect on
strength, balance, and overall fitness, the considered parameters are undocu-
mented leading to a lack of proper monitoring and helpful feedback. Moreover,
the available systems cannot be personalized for users with specific needs and
individual limitations and their use in frail populations has led to injuries as
reported in a recent survey [38]. Finally, external vision sensors suffer from the
line-of-sight problem and therefore restrict the set of available exercises to those
which allow full visibility of the user in the relevant plane.

To summarize, previous work has mostly focused on a single body joint
rather than providing a flexible solution for the whole body. Moreover, it has
concentrated on the motivational aspect of the system rather than on devel-
oping sophisticated monitoring methodology. Therefore, this section focuses on
a recently developed methodology, which takes both exercise load and tech-
nique into account and stands out due to the complexity of evaluation parame-
ters, the inclusion of the complete body, and its generic concept with inherent
personalization.

Objectives and Requirements. The aim of the strength exercise use case
is to guide a user through a training session and to provide valuable online
feedback in order to ensure positive training effects and prevent injuries through
correct exercise execution. For this, the exercise load, as well as, the performed
movement have to be monitored and evaluated. The latter includes verifying that
the muscles loaded during the exercise are the targeted ones and that the range
of motion and the assumed postures are correct. Monitoring these parameters
requires, in contrast to the aerobic activity use case, short-term, but accurate
tracking of relevant body segments.

The following paragraphs describe the technical realization of these require-
ments in terms of the back-end components depicted in Fig. 1. Data collection
addresses the hardware platform, as well as, full-body motion tracking, while
data processing encapsulates methods for: (1) to learn and then recognize motion
patterns (single exercise repetitions) in continuous motion data streams; and
(2) to compare segmented patterns to previously learnt reference motions and
to evaluate their execution in terms of the above mentioned parameters.
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Data Collection. Strength exercises are monitored over a short period of time,
typically during training indoors and require accurate tracking of all involved
body segments. Therefore, the hardware system for this use case is based on a
stationary processing and display infrastructure (e.g., a laptop and a television)
and a comparably complex wearable inertial sensor setup.

Any commercially available IMU, providing sufficient measurement quality
can be in the system. While the latest generation wireless sensors, such as [39,46],
are rather costly and obtrusive due to their form factor, recent developments in
sensor miniaturization enable low-cost and light-weight solutions [36].

The number of sensors, the sensor positioning, fixation, and calibration, is
a trade-off between ease of use and data accuracy. The latter receives more
emphasis here compared to the aerobic monitoring use case. To precisely capture
the user’s movements, it is typically assumed to have one IMU on each major
body segment that should be monitored. Moreover, sensors should be placed
on bones, ligaments, and between muscles in order to be unobtrusive and limit
the skin and muscle motion artifacts. Furthermore, an easy, fast and repeatable
fixation method is required that neither allows for too many degrees of freedom
nor is too size-dependent.

While previous systems emphasize flexibility and are mostly based on Velcro
straps on top of the normal cloths [8,14], the system in focus here, the solution
proposed in [6], uses a modified sports suit with pre-defined sensor fixation points
in order to reduce the burden on the user to remember the correct positioning.
Moreover, an interactive, but easy-to-perform calibration procedure is used to
improve data accuracy. Recent developments in the direction of smart garment
with highly integrated miniaturized sensors provide a promising future platform
for the considered application [36].

Fig. 3. Functional upper body model with indicated IMU placement (red cubes) (Color
figure online).
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A conventional approach to body motion tracking is to determine the joint
angles and angle kinematics by comparing the IMU measurements (accelerations,
angular velocities, and magnetic fields) to predictions based on a biomechanical
body model using model based sensor fusion. This biomechanical model is typi-
cally a functional model consisting of rigid bodies and joints, such as the upper-
body model illustrated in Fig. 3 in relation to the sensor positions. To capture
more detailed motions or additional body parts, the model complexity can be
increased by including additional segments and respective IMUs. While commer-
cially available inertial motion capturing systems based on the aforementioned
type of IMUs [40,47] provide rather closed solutions, dedicated implementations
of the underlying method as described in e.g., [10,21,28] provide more flexibility.
In particular, [21] describes a generic method for tracking arbitrary kinematic
chains based on IMUs.

The inertial motion capturing system used in this section is based on the
model illustrated in Fig. 3, while assuming the same structure also for the lower
body. The full-body model consists of ten rigid bodies (torso, pelvis, upper-
arms, forearms, upper-legs, and lower-legs) connected by anatomically motivated
restricted joints. The orientations of torso and pelvis, as well as, the shoulder
and hip joints are modeled with three degrees of freedom, while elbow and knee
joints are modeled as pivot joints with two degrees of freedom. Hence, in total,
26 angles are available for data processing.

Due to a lack of commonly available datasets for the type of application
described here, a new dataset has been created using this setup. This dataset is
particularly interesting, since it has been generated in the context of a clinical
study with an extremely relevant target group of elderly people between the ages
of 55 and 86. The dataset contains motion tracking data (26 joint angles at 100 Hz)
from 30 participants performing 10 to 13 different upper and lower body exercises.
These exercises were performed once under the supervision of a physical activity
teacher and once autonomously. Labels indicate the start and end of each exercise
repetition. From the 30 participants, ten were fit and healthy, ten were cardiac
patients and ten suffered from upper or lower body functional disabilities. Hence,
this dataset is suitable for evaluating personalized monitoring methodologies and
will be used in the rest of this section for evaluation purposes1.

Data Processing. From a technical point of view, monitoring both exercise
load and performed movement requires to automatically detect single exercise
repetitions and to accurately evaluate each repetition with respect to certain
parameters. A promising concept for achieving personalized monitoring is to
learn personalized exercise models from example executions of individual users.
This is illustrated in Fig. 4: During a teach-in phase, training data is collected
from a user, while he/she performs a certain number of exercise repetitions (per
exercise), e.g., under supervision of a physical activity specialist. The training
data is then used to automatically construct a personalized exercise model, which
1 The dataset is publicly available at http://www.pamap.org/PAMAP trials.tar.gz.

http://www.pamap.org/PAMAP_trials.tar.gz
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serves as gold standard during the trainer mode, i.e., during online exercise mon-
itoring. This generic reference model concept not only enables personalization,
but it also provides independence of a fixed exercise selection with pre-defined
parameters for each exercise.

Fig. 4. Concept for personalized strength exercise monitoring.

Subsequently, the technique to automatically generate a personalized exercise
model from training data is described. This includes finding all repetitions of the
performed exercise in the recorded sequence and then creating a statistical model
from the detected repetitions. Afterwards, it is explained, how this model is used
to detect and evaluate motion cycles during online monitoring.

Teach-in Mode. The following paragraphs describe a fully automated method
for reliably extracting known numbers of exercise repetitions within continu-
ous motion sequences. Technically, this corresponds to the problem of detecting
motifs in multivariate training sequences, which is also referred to as unsuper-
vised motif discovery. A motif is here a recurring motion segment, representing
one repetition of strength exercise execution. The detected segments can then be
used to generate a personalized statistical model, which can serve as reference
for both online motion cycle detection and evaluation.

In the following, the different steps of motif discovery will be described.
First, the dimensionality of the motion data is reduced. Figure 5a shows an
example recording of the 26 angles for the full body. Based on the assumption
that the most moving joints contain the most relevant information, the angles
with highest variances are extracted (see Fig. 5b). Let

Ci = {ci,1, ci,2, · · · , ci,n},

with 0 ≤ i < b, be a time series of angle values for joint angle i, where b is the
number of tracked angles and n the length of the sequence. Then, each channel
with var(Ci) > μvar is considered to be relevant, with

μvar =
1
b

·
b∑

i=0

var(Ci).

Since, in this case, the length of the pattern (one exercise repetition) is unknown,
the second step is to estimate a suitable window size west, i.e., the length of one
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motion cycle. This is an extension to most previous approaches, which are based
on a predefined window size [22]. Here, the windows size depends on the sampling
rate of the system and is measured in number of samples.

Based on the assumption that the repetitions in the training sequence are
performed consecutively with roughly the same speed, a dominant frequency
should be present in the signal. This can be extracted using the combined power
spectral density (PSD) [44] (cf . Fig. 5b). The window length west is then initial-
ized as the wavelength of the dominant frequency, west = λ = v

fdominant
, with v

being the sampling rate; i.e., here 100 Hz.
The next step detects the motif candidates. For this, an extended version of

Minnen’s method [22] parametrized with west is used. The method collects over-
lapping sub-sequences, Si, of length west from the training signal, S, and deter-
mines the k-nearest neighbors for each subsequence as kNN(Si) = Si,1...k. Here, k
is the predefined number of repetitions. In order to reduce the sensitivity to local
time shift and slightly varying execution speed, dynamic time warping (DTW) is
used as distance measure. A real motif should have at least k similar sub-sequences.
Hence, in order to find good motif candidates, for each subsequence, Si, the dis-
tance density is estimated as the reciprocal of the distance to the least similar
neighbor k: den(Si) ∝ 1

dist(Si,Si,k) . The motif candidates, candi, are then identi-
fied as the local maxima of the densities among their k nearest neighbors:

maxima(Si) = {Si : ∀ Si,j den(Si) > den(Si,j)},

where j = [1, k]. Motif candidates are highlighted in Fig. 5c.
In the next step of the algorithm, a model for each candidate is generated and

used to segment the signal. As most of the learning approaches fail, if there are only
few training samples available, either constructed models [42] or template-based
approaches are feasible. Here, a template approach, based on the online dynamic
time warping (ODTW) [17] is described. The motif candidate is chosen as the
template for the DTW and its k-neighbors are used for defining the cost threshold.

Finally, the candidate, which model provides the best signal segmentation, is
chosen as the motion motif. As criteria, the difference between the number of seg-
mented patterns and the known number of executions in the training sequence,
as well as, the average normalized DTW costs are used. In Fig. 5c, the selected
candidate is marked red.

The chosen motif and its nearest neighbors can now be either used to generate
a class template from a set of the best templates, e.g., extract the templates from
the nearest neighbors that have the best minimum inter-class DTW distances [17],
or they can be used to generate a hiddenMarkovmodel (HMM) as proposed in [42].
Both approaches are suitable for an online real-time segmentation.

The proposed motif discovery method was evaluated on the previously men-
tioned dataset in terms of precision, recall, and overlap. Precision is defined as
the fraction of segmented exercise executions that are relevant, while recall is
defined as the fraction of correctly retrieved executions. A segment, i.e., a motion
cycle, is considered as correctly retrieved, if it overlaps with the ground truth
segment exceeds 30 %.
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Fig. 5. Consecutive steps of the motif discovery on a sample teach-in sequence: (a) plots
26 joint angles recorded during a teach-in session for one exercise; (b) illustrates the
reduced motion tracking signal, i.e., the most moving joint channels (top) and the
PSD (bottom), where the dominant frequency is marked with a red circle (estimation
of west); in (c), the annotated area shows the result of the motif candidate (green)
selection, as well as the finally selected motif (red) (Color figure online).
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Fig. 5. (Continued)

Table 3. Exemplary motif discovery results averaged over all performed exercises in
terms of precision, recall, and percental overlap.

# Precision Recall Overlap

μ ± var μ ± var μ ± var

1 0.77 ± 0.10 0.80 ± 0.10 0.59 ± 0.06

2 0.85 ± 0.08 0.86 ± 0.08 0.71 ± 0.08

3 0.98 ± 0.00 0.97 ± 0.01 0.75 ± 0.03

4 0.93 ± 0.02 0.95 ± 0.02 0.76 ± 0.02

5 0.98 ± 0.00 0.90 ± 0.01 0.73 ± 0.03

...
...

...
...

30 0.95 ± 0.01 0.88 ± 0.01 0.59 ± 0.04

ø 0.93 ± 0.00 0.91 ± 0.00 0.72 ± 0.00

Table 3 exemplifies the experimental results for selected participants rep-
resented in the dataset, averaged over all performed exercises. A more detailed
analysis of the results is given in [43]. In the following the methods for generating
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personalized models for real-time, online motion cycle detection, as well as, for
motion cycle evaluation are introduced.

Model Construction and Motion Cycle Detection. Based on the motion segments
extracted in the teach-in mode, a method for constructing an HMM for a motion
pattern, is discussed in this section. The HMM representation is chosen for two
reasons: (1) it naturally takes variations in motion into account by allowing for
time-warping and has thus been successfully applied in domains such as speech,
gesture, and handwriting recognition; (2) standard algorithms, such as the short-
time Viterbi algorithm [7] can be applied for online, real-time monitoring.

The observation probabilities of the HMM are modeled using Gaussian mix-
ture models (GMM), as illustrated in the left plot in Fig. 6. Here, the different
joint angle components of the multivariate signal are handled separately.

Let RM be the set of reference motions recorded for one exercise performed
by one individual, during the teach-in phase. Now, a model MRM is learnt from
the reference motion RM . Since traditional parameter estimation methods for
HMMs, such as the Baum-Welch algorithm, typically fail when applied to too
few training examples, a simple construction algorithm is applied to capture
the characteristics of each reference motion RMi. This algorithm builds a HMM
with left-right topology, which is a wide-spread approach to model time-varying
sequential data [26]. Self-transitions and skip-transitions are added to allow for
a faster and slower execution of the pattern. The number of states, N , is cho-
sen as half the average sample length lavg: N = � lavg

2 � of the reference motion
patterns RM . For each state, STi, a GMM is then trained using an expectation-
maximization algorithm on all respective elements of RMi[j : j + lavg]. Thus,
each segment is described by one normal distribution N (μj , σj).

The HMMs obtained during the personalized model creation enable online
detection of the represented reference motion within continuous motion data
by utilizing the short-time Viterbi algorithm [7]. In general, the Viterbi algo-
rithm computes the most likely path of states given a sequence of observations.
Here, the observations are given by the continuous joint angles as streamed by
the data collection component. Thus, the algorithm can determine, to which
state, respectively frame, of the reference motion the current motion matches.
If the probability of the Viterbi algorithm is below a defined threshold, the
current observation is considered represent an incorrect motion. The motion
cycle detection immediately allows for counting exercise repetitions and deduc-
ing their duration. Whenever a complete motion cycle has been detected, the
detailed evaluation starts as will be detailed below.

Motion Cycle Evaluation. According to the system requirements, it is fundamen-
tal to evaluate the load of the exercise, the muscles that work, as well as, the
posture assumed during the exercise in order to ensure effectiveness and safety.
Translating these constraints into objective data that can be derived from the
measured motion data resulted in the following criteria: For movement load,
the exercise intensity is quantified by the number of repetitions, the movement
speed, the movement amplitude, and the movement smoothness. Whether the
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Fig. 6. HMM for one angle of the motion signal.

muscles that work are the correct ones is evaluated based on the axes of rotation
during motion. Finally, for safety issues, the posture is evaluated based on a
number of fixed distances or angles to be kept when performing the movement.
This could, for instance, be the distance between the feet during squat exercises,
or the angle at the pelvis during push-ups.

The number of repetitions and their duration are given by the motion cycle
detection step described above. For the other criteria, an algorithm has been
proposed in [6], which evaluates each detected motion cycle using the model
constructed during the teach-in mode as reference. The different steps of the
algorithms are the following. First, different angles and distances that must be
respected during the movement in order to avoid injuries are computed and
compared with those obtained during the reference movement. Afterwards, the
principal rotation axis is computed for the current cycle at each joint. The prin-
cipal rotation axes are then compared to the ones obtained during the refer-
ence movement. Using the same formalism, the rotation amplitudes are also
compared. Finally, the number of local extrema of the time derivative of the
joint trajectory (i.e., its velocity) that has the greatest range of motion dur-
ing the movement is evaluated and compared in order to determine movement
smoothness. The procedure is illustrated in Fig. 7. The movement duration used
to evaluate velocity, the pose (fixed angles and distances), and the rotation
amplitudes of the movement to evaluate should not differ by more than a cer-
tain threshold from the reference model. The principal rotation axes should not
deviate more than a certain threshold from those obtained from the reference.
For the smoothness, the same number of extrema has to be found, since any
other number of extrema indicates a deviation from the prescribed movement,
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Fig. 7. Motion cycle evaluation: Detected motion cycles are evaluated separately by
comparing them to a reference motion. The cycles overlaid with a red area show a
significant deviation from the reference movement (illustrated as dashed red lines)
(a), either in amplitude (b) or in the number of extrema (c). The green area indicates
a correctly performed cycle (Color figure online).

e.g., in the form of a parasite movement or a break in motion flow during the
execution of the exercise. For providing online user feedback, if any of these
above mentioned criteria are not met, an alert can be generated and sent to
the user interface, which translates this into explanatory feedback. The motion
cycle evaluation concept is summarized in Table 4. Moreover, a technical evalua-
tion of the proposed algorithm in terms of a confusion matrix for the considered
parameters within a small-scale study can be found in [6].

4 Open Problems and Future Outlook

This chapter has outlined a platform for personalized physical activity monitor-
ing by means of wearable sensors and has showcased different possible use cases.
Even though promising results have been shown that indicate the potential of
the technology, there are still open problems and challenges to be solved before
this technology can be widely applied.

In the aerobic exercise monitoring use case, it should be investigated how well
the developed methods and algorithms perform with different user groups. The
evaluation on a publicly available physical activity monitoring dataset — including
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only young, healthy adult subjects — indicate good performance results.
However, the ability to generalize the developed approaches with significantly
different user groups (e.g., elderly) remains an open question. Moreover, it is
also planned to investigate the effect of increasing the number of known (thus
in the training included) other activities, with the goal to improve even more
the robustness with respect to unknown other activities while sustaining the
high performance regarding the basic activity classes of interest. Furthermore,
although the mobile aerobic activity monitoring system in its current form (using
small wireless sensor units and a smartphone as mobile control unit) is as unob-
trusive as possible with today’s technology, its acceptance amongst different user
groups needs to be evaluated in a user study.

Table 4. Motion cycle evaluation concept: The fixed angles and distances are pro-
vided by physical activity experts. The other measures are directly deduced from the
movement of reference. The values x and θ are parameters of the algorithm.

Constraints Parameters Measures Thresholds

Safety Posture Fixed angles and distances

at/between joints

±x% of reference value

Load of exercise Number of repetitions Number of cycles Same as reference

Movement velocity Movement duration ±x% of reference value

Movement amplitude Range of motion from

quaternions at

moving joints

±x% of reference value

Movement smoothness Number of extrema in

velocity of most

moving joint

Same as reference

Muscles to work Joint rotation axes Quaternion axes at

moving joints

Angle deviation, θ,

from reference axis

In the strength exercise use case, for instance, the detailed motion capturing
needs to be more robust and the wearable sensory equipment even less obtrusive
to be reliably deployed in the users’ homes. Current developments in miniatur-
ized sensors and smart clothes are fully in line with the latter requirement and
open up for new possibilities. Moreover, stationary vision and depth sensors used
in current gaming consoles could be fused with wearable motion sensors in order
to create synergies and increase precision and robustness or reduce the number
of required wearable sensors. A purely vision-based approach, however, is not
feasible for the type of motions performed, due to the line-of-sight problem.

Another challenge is posed by the machine learning algorithms used to learn,
segment, and evaluate motion cycles of arbitrary exercise motions. Today, these
algorithms require engineering know-how to some extend to tune various
parameters and thresholds. Here, further experiments and the development of
data-driven parameter selection methods are crucial in order to improve the
usability of such technologies for e.g., health care professionals.

A last aspect to mention for the strength exercise use case is the fact that
recognition algorithms sometimes fail. This raises the question how this should
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be handled by both the monitoring system and the user interface. Here, in par-
ticular false negative motion cycle detections or false positive incorrect motion
detections could decrease the motivation of the user rather than providing sup-
port. Furthermore, a system accepting incorrect motions could be even more
dangerous and could encourage the user to hurt himself. A forgiving user inter-
face and the possibility for online learning based on some type of feedback from
the user could be subject of future research.

Even though open problems still exist, monitoring technologies, such as the
ones presented in this chapter, have taken a big step forward and in view of
today’s societal challenges, the aging society and the aging workforce, it is to be
expected that mobile health technologies will gain even more importance and
enter various application fields from personal health and fitness over work-life-
balance support to human factor research.
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Reading

The generic platform concept for physical activity monitoring using wearable sen-
sors, as well as the two implemented use cases have been presented in
the previous Sect. 3. Especially the technical requirements in terms of the hard-
ware platform and monitoring methodology have been addressed. However, in
order to design such a system it is inevitable to consider end user requirements
and to evaluate its overall usability. Particularly, when designing for diversity
(e.g., elderly population) additional requirements have to be considered.

Targeting the elderly population various aspects and effects of aging on men-
tal and physical health and fitness have to be considered. Among others the
book

K. Berger. The developing person: Through the life span. Worth Publishers,
2008

describes the cognitive changes with aging (decreased ability to perceive a high
amount of information at the same time, decrease of memory), the physiological
changes (decrease of sensory abilities, e.g., vision and hearing, decrease of move-
ment accuracy and coordination) and the ability to deal with recent technology.
The cognitive and the physiological changes should be taken into account during
the conception of the user interface and the conception of the wearable sensors.
Regarding the user interface, the quantity of information presented to the user
should be reduced to the most useful and simplest form and should be presented
by different sensory means (visual, auditive). The interaction with the system,
as well as the manipulation and the fixation of the wearable sensors, should not
require any fine movements. Finally, the user interface should be integrated into
a system familiar to the user in order to limit the required learning of unknown
technology. For a detailed description regarding the above mentioned require-
ments the interested reader is referred also to the following books

A. D. Fisk, W. A. Rogers, N. Charness, S. J. Czaja, and J. Sharit. Designing
for older adults: Principles and creative human factors approaches. CRC
press, 2009

and

A. Sears and J. A. Jacko. The Human-Computer Interaction Handbook: Fun-
damentals, Evolving Technologies and Emerging Applications. CRC Press,
2007

Moreover, recent advances in the miniaturization of sensors have made it
possible to realize a great variety of new applications and open up new possibil-
ities. However, this vast amount of sensor data has to be captured, stored and
analyzed. Finding patterns and trends in this data is a challenging task. Witten
et al. presents in

I. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques, Second Edition. The Morgan Kaufmann Series in Data Manage-
ment Systems. Elsevier Science, 2005
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a description of the Weka toolkit, along with a thorough foundation for the
machine learning concepts the toolkit uses, and practical advice for using the dif-
ferent tools and algorithms. Weka is a collection of machine learning algorithms
for data mining tasks. It includes tools for data pre-processing, classification,
regression, clustering, association rules, and visualization. It is also well-suited
for developing new machine learning systems.

A comprehensive and up-to-date introduction to the theory and practice of
artificial intelligence is given by Russell and Norvig in

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall series in artificial intelligence. Prentice Hall, 2010

A great introduction to ubiquitous computing is given by Krumm in

J. Krumm. Ubiquitous Computing Fundamentals. Taylor & Francis, 2009

This book covers the contributions of 11 of the most prominent researchers in
the field of ubiquitous computing. Based on the categories systems, experience,
and sensors the authors describe various research topics in the field of ubiquitous
computing.

Finally, pattern recognition from the Bayesian viewpoint is addressed in the
book

C. Bishop. Pattern Recognition and Machine Learning. Information Science
and Statistics. Springer, 2006

This book does not require any previous knowledge of pattern recognition or
machine learning concepts. Furthermore, it includes a self-contained introduction
to basic probability theory.
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