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Foreword

A popular vision of future technology is to make things smart – from homes to cities
and phones to cars. The current buzz is all about smart health. But what does it mean to
make health smart? Ever more sensing and tracking of body data? But for what reason?
From one perspective, it is about raising awareness about people’s health and well-
being so they can be better informed and be able to act and make intelligent decisions.
From society’s perspective, it is about accumulating increasing amounts of knowledge
about people’s health and habits in order to provide better health policies, guidance,
and medical care.

While technology has been developed and used for many years to help improve
healthcare in hospitals, medical centers, and in the home, we are now witnessing the
dawn of a new digital health-tech revolution. Mobile apps and a diversity of sensing
devices are becoming more commonplace – placed in and on our bodies to track,
monitor, and detect patterns, anomalies, and deviations about how parts of us are
behaving. Not only can it tell us more about our blood, urine, and sugar levels but it can
also give us fresh insights into our moods, mental states, and motivations. Multiple
streams of data are being collated, mined, analyzed, and visualized in new ways to
provide new insights into what goes on under the skin. Not only doctors, but also the
general public are starting to learn and understand more about how their fitness levels,
their illnesses, and their well-being change over time.

A central question this smart health revolution raises, however, is whether it can be
put to good use so that people are truly empowered to act upon the knowledge rather
than become obsessively concerned about their data or frightened when discovering
new patterns in it. How can we design new tools and interfaces so that individuals can
be reassured about their data that is being collected, monitored, and aggregated over
time and space?

Being smart about health data is not straightforward. There are many questions that
need to be addressed from whether to automate or hand over more control to patients to
care for themselves; whether to let people know what diseases they are genetically
prone to, and so on. Smart health has the potential to enable more people to manage
their own health, and in doing so become more aware and better informed. But it also
raises a host of moral questions. Who owns the health data being collected? Who is
willing to share their health data? Where do the new streams of health data end up?
This book is all about how smart health can change society’s lives for the better.

December 2014 Yvonne Rogers
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Preface

Health costs worldwide are rapidly increasing. Demographic structures are dramatically
changing. Technological advances are tremendously increasing. The invariable need
for quality remains.

Advances in Biomedical Informatics and Biomedical Engineering provide the
foundations for our modern and future patient-centered medical and healthcare solu-
tions, biomedical systems, technologies, and techniques.

The majority of computer-supported healthcare solutions of the last decades focused
on the support of caregivers and medical professionals; this changed dramatically with
the introduction of ubiquitous computing technologies and the enormous success of
mobile computing: in particular, smart phones with multi-touch interaction along with
sophisticated sensor networks. Future smart technologies using the power of grid
computers and supercomputing – driven by examples including IBM Watson and
Apple Siri – will enable that a new concept of smart health provides support for a
more diverse end user group to enable individualized medicine, i.e., the P4-medicine
(preventive, participatory, predictive, personalized).

However, all these advances produce enormous amounts of data and one of the
grand challenges in our networked world are the large and high-dimensional datasets,
and the massive amounts of unstructured information. To keep pace with these growing
amounts of complex data, smart hospital approaches are a commandment of the future,
necessitating context-aware computing along with advanced interaction paradigms in
new physical-digital ecosystems. In such a smart hospital the medical doctors are
supported by smart technologies. At the same time people at home can be supported by
their technological health assistants to facilitate an overall healthier life, wellness and
well-being – and the circle of P4-medicine is closed.

The very successful synergistic combination of methodologies and approaches from
two areas offer ideal conditions toward solving the aforementioned problems: Human-
Computer Interaction (HCI) and Knowledge Discovery and Data Mining (KDD). The
vision is to support human intelligence with machine learning.

Consequently, the objective is to combine the best of both worlds: HCI, with the
emphasis on human issues including perception, cognition, interaction, reasoning,
decision making, human learning, and human intelligence; and KDD, encompassing
the wide range of artificial intelligence. Whatever we do, issues of privacy, data-
protection, safety, and security are mandatory in the medicine and health domains.

Volume 8700 of the Springer Lecture Notes in Computer Science is a State-of-the-
Art Volume focusing on hot topics on smart health. Each paper describes the state-
of-the-art and focuses on open problems and future challenges in order to provide a
research agenda to stimulate further research and progress.

To acknowledge here all those who contributed toward all our efforts and stimu-
lating discussions would be sheer impossible. Many people contributed to the devel-
opment of this book, either directly or indirectly, so we will use the plural form here:
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From Smart Health to Smart Hospitals

Andreas Holzinger1(✉), Carsten Röcker1,2,
and Martina Ziefle3

1 Holzinger Group, Research Unit HCI-KDD, Institute for Medical Informatics,
Statistics and Documentation, Medical University Graz, Graz, Austria

{a.holzinger,c.roecker}@hci-kdd.org
2 Fraunhofer Application Center Industrial Automation (IOSB-INA),

Lemgo, Germany
carsten.roecker@iosb-ina.fraunhofer.de

3 Human–Computer Interaction Center, RWTH Aachen University,
Aachen, Germany

ziefle@comm.rwth-aachen.de

Abstract. Prolonged life expectancy along with the increasing complexity of
medicine and health services raises health costs worldwide dramatically.
Advancements in ubiquitous computing applications in combination with the use
of sophisticated intelligent sensor networks may provide a basis for help. Whilst
the smart health concept has much potential to support the concept of the
emerging P4-medicine (preventive, participatory, predictive, and personalized),
such high-tech medicine produces large amounts of high-dimensional, weakly-
structured data sets and massive amounts of unstructured information. All these
technological approaches along with “big data” are turning the medical sciences
into a data-intensive science. To keep pace with the growing amounts of complex
data, smart hospital approaches are a commandment of the future, necessitating
context aware computing along with advanced interaction paradigms in new
physical-digital ecosystems. In such a system the medical doctors are supported
by their smart mobile medical assistants on managing their floods of data semi-
automatically by following the human-in-the-loop concept. At the same time
patients are supported by their health assistants to facilitate a healthier life, well‐
ness and wellbeing.

Keywords: Smart health · Smart hospital · Ubiquitous computing · Pervasive
health · P4 medicine · Context awareness · Computational intelligence

1 Introduction and Motivation

Life expectancy on our planet is still increasing [1, 2]. The World Population Database
of the United Nations Population Information Network, POPIN (http://www.un.org/
popin) forecasts a further increase in life expectancy through 2050. This prolonged life
expectancy along with an increasing survival of acute diseases poses a lot of challenges
for health care systems worldwide, making the use of sophisticated technologies not an
added value, but a requirement [3].

© Springer International Publishing Switzerland 2015
A. Holzinger et al. (Eds.): Smart Health, LNCS 8700, pp. 1–20, 2015.
DOI: 10.1007/978-3-319-16226-3_1
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Along with the worldwide increasing complexity of health care systems and the fact
that modern medicine is turning into a data-intensive science, traditional approaches for
handling this “big data” can no longer keep pace with demand, also increasing the risk
of delivering unsatisfactory results. Consequently, to cope with this rising flood of data,
smart approaches are vital [4–8].

Particularly, the advent of smart phones, powerful ubiquitous smart sensors and
decreasing costs of data storage has led to an ongoing trend to record all sort of personal
biomedical data over time [9, 10]. These recordings lead also to a growing amount of
so-called longitudinal data, in the engineering domain better known as time series data
[11, 12], being of much importance for predictive analytics – one of the cornerstones of
P4-medicine (see Sect. 4.1).

The meanwhile “historic” vision by Mark Weiser of ubiquitous computing [13] and
smart objects [14] is also true for healthcare: Moore’s law [15] is also applicable for
biomedical sensors which will be embedded in more devices than we can imagine. The
vision is that people will interact seamlessly in both cyberspace and physical space. The
power of such cyber-physical systems [16], is in their “intelligence”, i.e. smartness,
which lies in their adaptive behavior.

A major future trend is moving the human-in-the-loop [17], for a good reason, as
both humans and computers have very different strengths, but both together can indeed
be more powerful. At large scale this means to combine the best of two worlds: cognitive
science with computer science [18, 19].

Recent technological advances in networked sensors, low-power integrated circuits,
and wireless communications have enabled the design of low-cost, miniature, light‐
weight, and intelligent physiological sensor nodes [20]. All these developments leave
enormous expectations to our future: Smart environments will be able to automatically
track our health and will, to some extend, shift the point of care away from clinician’s
offices – thus hopefully be of economic relieve of the much overstressed hospital systems
and moving the preventive aspect into the foreground. There is a clear paradigm shift
from explicit measuring your health vitals to sensors that fade in the background and
track important measures. Second, consumers tend to increasingly like becoming their
own health managers and actively participate in healthcare. This hypothesis is expressed
through a booming movement called “Quantified Self” were consumer constantly track
health vitals such as sleep patterns, blood pressure and body fat.

This paper provides a very brief overview about the concept of smart health,
discusses the challenge of “big data” driven by the emerging P4-medicine, and debates
some aspects of smart hospitals, with a focus on how to deal with the large amounts of
data. Finally, we present some open questions and future challenges – only by touching
some aspects on the surface just to stimulate the debate.

2 Glossary

Acceptance: A very important concept for the successful integration of any smart health
concept, the term goes back to the work of [21].

2 A. Holzinger et al.



Ambient Intelligence: This term was coined within the European research community
[22], as a reaction to the terms Ubiquitous Computing [13] and Pervasive Computing
[23], which were introduced and frequently used by American researchers. In contrast
to the more technical terms of Ubiquitous and Pervasive Computing, Ambient Intel‐
ligence emphasizes aspects of Human–Computer Interaction and Artificial Intel‐
ligence. Hence, the emphasis of Ambient Intelligence is on better usability, more
efficient and embedded services, user-empowerment and support for advanced human
interactions [24].

Context Awareness: Involves knowledge about how individuals interact within a shared
socio-technical environment and includes information about the participants’ locations,
their present and past actions, and their intentions and possible future actions [25, 26].

Context-aware computing: Integration of multiple diverse sensors for awareness of
situational context that can not be inferred from location, and targeted at mobile device
platforms that typically do not permit processing of visual context [26, 27].

E-Health: Describes the fusion of medicine and healthcare services through the use of
information and communication technologies, with particular focus on everyday life and
low cost devices [28].

E-Homecare: Similar to the E-Health, but with a strong focus on preventive care appli‐
cations in the home domain [29]. E-Homecare services may include patient assessment,
supervision of patient care, routine nursing care and health monitoring, medication
administration and scheduled injections, management of dietary needs, daily exercise,
and lifestyle changes [30].

P4-Medicine: Focusing on the four aspects: predictive, personalized, preventive and
participatory, P4-medicine moves from a reactive to a proactive discipline supported by
systems approaches to disease, emerging smart technologies and analytical tools [31];
actually “big data” is good for P4-medicine, as machine learning approaches may get
better results by more training examples.

Privacy: A must in the health domain is to ensure privacy, data protection, safety and
security; a particular necessity in smart health, as main security problems encompass
protection Precautions, confidentiality, and integrity, which is a challenge as most of the
smart devices are working in a wireless environment [32–34].

Smart: The word synonym for clever, socially elegant, sophisticated, shrewd, showing
witty behaviour and ready mental capability, is a term which is intended to replace the
overly stressed word “intelligent”, mostly due to the fact that research in both human
and artificial intelligence is lacking far behind the original expectations when the field
of artificial intelligence was formed [35].

Smart Health: A term, inherently integrating ideas from ubiquitous computing and
ambient intelligence applied to the future P4-medicine concept, thus tightly connected
to concepts of wellness and wellbeing [3, 36], and including big data, collected by large
amounts of biomedical sensors (e.g., temperature, heart rate, blood pressure, blood and
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urine chemical levels, breathing rate and volume, activity levels etc.) and actuators, to
monitor, predict and improve patients’ physical and mental conditions.

Smart Hospital: An old dream of a highly interactive environment saturated with high-
end ubiquitous devices [37], and closely related to the context aware health paradigm
[38]; this topic is in the strategic focus of large companies including IBM, Siemens,
Google, etc., as it is highly business relevant, as it might help to overcome the worldwide
cost problems of health systems.

Smart Multi-agents: consist of n interacting smart agents within an given environment
and are used to solve difficult problems, impossible solvable by an individual agent. The
goal of an agent based model is to search for explanatory insight into the collective
behavior of the agents, which can be software agents, robots, humans or collective
human teams. Smart agents are usually active software agents with simple goals (e.g.
birds in flocking or wolf-sheep in the prey-predator model), or they can be complex
cognitive agents. Such approaches have enormous capacity for solving biomedical
problems.

Ubiquitous Computing (UbiComp): A vision by Weiser (1991) [39], who argued, that
computers should be integrated into the physical environment, and hence be effectively
invisible to the user, rather than distinct objects on the desktop. Making many computers
available throughout the physical environment enables people to move around and
interact with computers, more naturally than they currently do, leading to the disap‐
pearing computer concept [40].

Wellness Technology: A term mainly introduced to correct the negative connotations
of ‘technology for disability’ and associated with technical devices for the prevention
of deterioration, the support of changes in lifestyle, and the improvement of social
contacts [41], becoming now more important [42].

3 From Ubiquitous Computing to Smart Health Environments

Ubiquitous computing provides enormous possibilities for establishing smart health
services as integral parts of future care concepts [43], which are challenged by our ageing
society. In this context, in particular smart homecare environments are often propagated
as a promising solution for taking care of elderly or disabled people. Sensors and new
interaction technologies seamlessly integrated in such environments offer various forms
of personalized and context-adapted medial support, including assistance to carry out
everyday activities, monitoring personal health conditions, enhancing patient safety, as
well as getting access to social, medical and emergency systems. By providing a wide
variety of services, smart healthcare applications bear the potential of bringing medical,
social and economical benefits to different stakeholders. The goals are from enhancing
comfort, supporting autonomy enhancement up to emergency assistance, including
detection, prevention, and prediction (Fig. 1).

4 A. Holzinger et al.



Technological challenges include mobility, invisibility (smart devices embedded in
our daily objects, e.g. clothes as in wearable computing [45], watches [46], glasses [47],
etc.), natural communication including voice and gestures instead of keyboard or mouse
[48], and most of all adaptivity and context-awareness, as those two important issues
“adaptive behavior in context” are key for “intelligence” i.e., capable of reacting to all
abnormal and exceptional situations in a flexible way.

3.1 Emergency Support

The majority of existing systems for detecting and preventing medical emergencies
focus on falls and congestive heart failures as their main application areas. In particular
fall detection becomes more and more important as recent statistics show that over
30 % of the people over 65 years and 50 % of the people over 80 years fall at least
once a year [49]. In approximately one fourth of these cases, people suffer serious
injuries with sustaining effects on their mobility and independence [50]. As many of
these falls happen when people are alone at home, several projects started to develop
mobile emergency systems, which should enable users to call for help in an emergency
situation [51]. While mobile solutions seem to be a promising approach at first sight,
empirical evidence shows that patients often do not carry those devices with them or
are simply not able to operate them when medical problems have occurred. Conse‐
quently, several research projects developed prototypes of pressure sensitive floor
elements allowing the detection of falls without additional technology being worn by
the patient. While early systems distributed pressure sensitive floor tiles at specific
locations within the environment (e.g. [52, 53]), more recent approaches use distributed
sensors to cover an entire room and thereby enable fine-grained location detection [54],
see Fig. 2.

Fig. 1. From emergency assistance (right) to autonomy enhancement and comfort [44].
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Fig. 2. Smart Floor consisting of an array of pressure sensitive floor tiles for unobtrusively
monitoring patients in home environments [54, 55].

3.2 Monitoring of Patients with Chronic Diseases

Long-term treatment of chronic conditions does not only increase the quality of life
for patients, it is also expected to bring significant economical benefits compared to
traditional care concepts. Hence, it is not surprising that a broad variety of smart health
services have been developed for various kinds of chronic diseases. For example, Klack
et al. (2011) [56] developed an assistive home monitoring system for patients suffering
from end-stage heart failure, which incorporates medical data captured via different
biosensors embedded into the patient’s physical surrounding. The system focuses
particularly on patients with implanted mechanical circulatory support devices,
including ventricular assist devices and total artificial hearts and provides an easy and
unobtrusive way for monitoring crucial vital parameters over extended periods of time.
Figure 3 shows the monitoring system in a home environment. An infrared camera is
integrated behind a translucent interactive display, weight sensors are installed under
the entire floor and blood pressure and coagulation monitoring devices are implemented
in a coffee table next to the sofa.

Fig. 3. Medical sensors integrated in a smart home environment (left), blood pressure and
coagulation-monitoring device embedded in a coffee table (right), from the RWTH Living Lab
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Similar research prototypes have been developed for patients with diabetes [57], (for
the importance of diabetes refer to [58]), pulmonary diseases [59], memory loss [60–
62], physical impairments [63–65], for the aurally disabled [66, 67] for the elderly [68,
69], or for wellness of the young [42].

An interesting pioneering sample work has been presented by Park et al. (2003) [61]:
in their smart home project they devised a set of intelligent home appliances that
provided awareness of the end users needs and to improve day-to-day home life with
various smart technologies, including smart memories (the smart home learns favourite
ambient settings), smart pen (translates and offers additional help on vocabularies during
reading of text), gate reminder (reminds you before you leave your house on important
issues), smart photo album (see here also [70]), smart wardrobe (looks up the weather
forecast and recommends adequate clothing), smart dressing table, smart bed, smart
pillow, smart mat, smart table (see here also [71]), smart picture frame, smart furniture
(see here particularly [40]), smart refrigerator, smart sofa, smart greenhouse, smart wall,
smart window, and smart bathroom.

3.3 Integrated Care Environments

Over the last years, several prototypes of integrated medical care environments have
been developed, which incorporate different smart healthcare. For example, the Future
Care Lab (Fig. 4) at RWTH Aachen University provides an intelligent care infrastruc‐
ture, consisting of different mobile and integrated devices, for supporting elderly people
in technology-enhanced home environments. The setup of the lab enables in situ eval‐
uations of new care concepts and medical technologies by observing different target user
populations in realistic usage situations. As the lab relies on a modular technical concept,
it can be expanded with other technical products, systems and functionalities, in order
to address different user groups as well as individuals with differences in their cognitive,
health-related or cultural needs [43] (Röcker et al. 2010).

Fig. 4. An example of smart medical technologies integrated into a smart home environment,
from the RWTH Living Lab
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3.4 Machine Learning: Human-in-the-Loop

Whereas large amounts of data not good for humans, as they are difficult to handle
manually, large data sets are good for machine learning algorithms, as the more training
data are available the better results are achieved. However, a perfect match of both
together is to include the human-in-the-loop. Figure 5 shows an example: a medical-
doctor-in-the-loop crates and modifies rules on demand to train the algorithms, in the
shown example for activity recognition.

There is not much related work on the human-in-the-loop approach yet, one of the
most prominent ones to date is the work of Shyu et al. (1999) [72]: they implemented a
human-in-the-loop (a physician-in-the-loop, more specifically) approach in which the
medical doctor delineates the pathology bearing regions (regions of interest) and a set
of anatomical landmarks in the image when the image is entered into the database. To
the regions thus marked, their approach applies low-level computer vision and image
processing algorithms to extract attributes related to the variations in gray scale, texture,
shape, etc. Additionally their system recorded attributes which captured relational infor‐
mation such as the position of a region of interest with respect to certain anatomical
landmarks and an overall multidimensional index is assigned to each image based on
these attribute values.

Fig. 5. Concept of Human-in-the-loop (Doctor-in-the-loop), similar to supervised learning. With
massive sensor data only machine learning approaches can bring us further.
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4 From Smart Health to the Smart Hospital

4.1 Future Medicine as a Data Science

Today the design of a drug involves more data science than biological or medical
science. The life sciences are increasingly turning into a data intensive science [73–
76]. In bioinformatics and computational biology we face not only increased volume
and a heterogeneity and diversity of highly complex, multi-dimensional, multivariate
and weakly-structured, noisy and dirty data [6, 7, 77–79], but also the growing need
for integrative analysis and modeling [80–85]. Due to the increasing trend towards
P4-medicine: Predictive, Preventive, Participatory, Personalized [76, 86], even more
amounts of large and complex data sets, particularly omics-data [87], including data
from genomics, epi-genomics, meta-genomics, proteomics, metabolomics, lipidomics,
transcriptomics, epigenetics, microbiomics, fluxomics, phenomics, etc., are becoming
available. A recent article on “HCI for Personal Genomics” by [88] gets straight to
the point: Recent advances in -omics along with Web technologies have led to a
dramatic increase in the amount of available complex data sets to both expert and non-
expert users. They emphasize that the HCI community is challenged with designing
and developing tools and practices that can help make such data more accessible and
understandable. However, the problem is, that despite the fact that humans are excel‐
lent at pattern recognition in dimensions of lower than three [89], most of our current
data is in dimensions much higher than three, making manual analysis difficult, yet
often impossible [90]. Today, biomedical experts both in daily routine and science are
no longer capable of dealing with such increasingly large, complex, high-dimensional
and weakly-structured data sets. Consequently, efficient, useable computational
methods, algorithms and tools to interactively gain insight into such data are a
commandment of the time [91].

Consequently, a synergistic combination of methodologies and approaches of two
areas offer ideal conditions towards unraveling these problems: Human-Computer Inter‐
action (HCI) and Knowledge Discovery/Data Mining (KDD), with the goal of supporting
human intelligence with machine learning – human-in-the-loop – to discover novel,
previously unknown insights into the data [18]. Big Data is bad for humans, but good for
machines, as machine learning algorithms improve their precision with the amount of
training samples, however, what we really need is not more data – but better data.

4.2 Mobile Medical Doctors Assistants

The vision of a “mobile medical doctor’s assistant” is an example of a cognitive
computing project (see Sect. 5) that shall enable a more natural interaction between
medical professionals and biomedical data and would be a cornerstone in the develop‐
ment of a smart hospital, and can contribute to enhanced patient safety [92]. One step
to reach such a goal is in the application of sophisticated modern technologies such as
the Watson Content Analytics. Technologically, “Watson” consists of diverse algo‐
rithms, created in the context of cognitive computing research to demonstrate the capa‐
bility of the DeepQA technology [93]. The challenge to date is, that Watson has “no
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eyes and no ears”, so Watson needs sophisticated user interfaces, to date Watson the
current algorithms – sophisticated as they are – are far from being usable for the non-
expert end user [5].

A future vision is to make the Watson technology useable from a smart phone –
so that a medical professional can ask questions to the data, e.g. “Show me the simi‐
larities, differences, anomalies … between patients with symptom X and patients with
symptom Y”. Why mobility? Medical professionals work in an environment which
requires high mobility; within their daily routine their sphere of activity alters
frequently between wards, outpatient clinics, diagnostic and therapeutic departments
and operating theatres – they rarely sit in an office. Although access to stationary
clinical workstations is provided in the hospital, their locations do not always coincide
with the user’s current workplace. In order to fulfill a high health service standard, the
medical staff has an extensive demand for information at a number of locations –
which actually only mobile computers can supply [94]. For example: Up-to-the-minute
electronic patient record information is not always available at the bedside [95, 96].
New orders or diagnostic results noted during rounds must be transcribed to the elec‐
tronic patient records via a clinical workstation at a later time – whereas a mobile
computer enables direct access [97–100].

4.3 Smart Hospital

Mark Weiser (1991) expressed his vision of invisible computing by his famous sentence:
“… the most profound technologies are those that disappear [39]”. We interpret this and
develop it further: “The best technology is those who is in the direct workflow”, and
practically not perceived as such. A smart hospital would integrate all aforementioned
approaches with the aim to support both professionals and patients.

Approaches to a smart hospital are rare to date, a search in the Web of Science as of
December, 30, 2014 returned only 22 hits (title = “smart hospital”). The most prominent
example is a project on Activity recognition for the smart hospital, by the group around
Jesus Favela [37]: they developed an approach for automatically estimating hospital-
staff activities, where they trained a discrete hidden Markov model (HMM) to map
contextual information to a user activity. The vision of the authors is called iHospital
and includes a highly interactive smart environment saturated with heterogeneous
computing devices. At the core of this approach is context aware computing (see Sect. 5).

5 Future Challenges

5.1 Challenge 1: Context Aware Computing

Context is key in the development of the smart hospital in the sense that it is any infor‐
mation that can be used to characterize the situation of entities (people, places, objects),
considered to be relevant to the interaction between an end user and an ubiquitous
computing application [101]. A classical paper [102] provides a good overview of
context in the field of artificial intelligence. If context is redefined continually and ubiq‐
uitously, then how can users form an accurate model of a constantly evolving digital
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world? If system adaptation is negotiated, then how do we avoid disruption in human
activities? A clear architecture and a well-founded, explicit relationship between envi‐
ronment and adaptation are the critical factors; indeed, they are the key that will unlock
context-aware computing at a global scale [103]. Such approaches require the integration
of concepts in User Experience and Context-aware computing in the sense of [26], and
[27] and to see our surrounding environment as a Physical-Digital Ecosystem [104–
106]. Context aware computing is not only key for the smart hospital, but for the overall
smart health principle: Situational awareness can be used to reduce the amount of explicit
input a person is required to provide a computer. Contextual information of what and
where the user task is, what the user knows, and what the system capabilities are, can
simplify the user scenario [107]. Improving the user experience is not enough; we need
concepts, frameworks, and methods that will enable it to consider humans and computers
as part of our complex world full of limitations and opportunities (see also challenge 4).

5.2 Challenge 2: Cognitive Computing

Cognitive computing (cc) is suited to solve medical problems: because it is on how
to deal with complex situations and information uncertainty, and dealing with probable
information is the key challenge in biomedical informatics [108]. The quest towards
a smart hospital requires new breakthroughs in the overlapping area of cognitive
science and computer science: Whilst high-dimensionality of our data is often regarded
as a curse [109], it is also possible that very high dimensionality actually facilitates
processing: for example, numbers (i.e., scalars) can be seen as one-dimensional data,
but in a computer they can be represented by strings of bits, i.e. by high-dimensional
vectors, so a 32-bit integer can be seen as a binary vector in . Such a high-dimen‐
sional representation makes simple algorithms and circuits for high-precision arith‐
metic possible. We can contrast this with one-dimensional representation of numbers.
The slide rule represents them one-dimensionally and makes calculating awkward and
imprecise. Thus, the dimensionality of an entity (a number) and the dimensionality of
its representation for computing purposes (a bit vector) are separate issues – the first
with the existence in our world, the other with the manipulation by algorithms in
abstract spaces – which is more suitable for computing. Pentti Kanerva (2009) [110]
shows a nice example of the advantages of such a hyper-dimensional approach, which
we cannot discuss here due to the limited space but we can summarize: A grand
challenge of cognitive computing is to explore both hyper-dimensional representation
of data and randomness. This brings us further beyond Von-Neumann machines and
is a core topic of brain informatics [111–113] – which may bring us to both smart
health and smart hospitals.

5.3 Challenge 3: Stochastic Computation

Closely related to cognitive computing by emphasizing the aspect of randomness is the
concept of stochastic computation [114]. Stochastic computing (sc) was proposed in the
1960s as a low-cost alternative to conventional binary computing. It is unique in that it
represents and processes information in the form of digitized probabilities and employs
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low-complexity arithmetic units which was a primary design concern in the past – due
to the limited computing power and inaccurate results [115]. Meanwhile, Bayesian
computational techniques such as Markov chain Monte Carlo (MCMC), Sequential
Monte Carlo (SMC), and Approximate Bayesian Computation (ABC) methods are well
established and have revolutionized the practice of Bayesian statistics, however new
grand opportunities have appeared with the emergence of massive, high-dimensional
and complex data sets [116, 117]. Stochastic computation is an approach for the design
of robust and energy-efficient systems-on-chip (SOC) in nanoscale process technologies
[118], which will be vital for smart hospital environments. The reduction of size along
with massive parallelization is one step towards implementing stochastic computation
approaches, hence to overcome classical von Neumann machines to perform meaningful
and accurate computations in neural circuits. Much work is needed here in the future,
but there are promising ideas for the realization of smart health and smart hospital
particularly in programmable and autonomous stochastic molecular automata, which
have been shown to perform direct analysis of disease-related molecular indicators in
vitro and may have the potential to provide in situ medical diagnosis and cure [119].

5.4 Challenge 4: Smart Multi-agent Collectives with Experts-in-the-Loop

Multi-agent systems are an extremely interesting research area [120–123] and are
becoming continually important for solving medical problems (e.g. [124]). Human–
Agent collectives (HAC) are an upcoming class of socio-technical hybrid systems in
which both humans and smart agents may develop a flexible relationship to achieve both
their individual and collective goals. It is increasingly accepted that it is both necessary
and beneficial to involve human experts, working as active information processors, in
a concerted effort together with smart agents [125, 126]. Such approaches are completely
in line with the goal of combining cognitive science with computer science [19],
following the HCI-KDD approach [18]. The challenge in Human-Agent collectives is,
that despite relevant work in the AI, HCI and Ubicomp communities a comprehensive
scientific foundation is lacking, hence is of urgent need for fundamental research; in
particular the challenges are in flexible autonomy (balance control between human
experts and smart agents), agile teaming, incentive engineering and most of all on how
to provide a necessary infrastructure, and the application of machine learning to network
metrics and the human labelling of graphs provide a lot of interesting research challenges
[127]. There are several best practice examples from disaster management [128, 129].

5.5 Challenge 5: Beyond Data Mining

As Yvonne Rogers pointed out in the Foreword to this volume: Being smart about health
data is not straightforward: Smart health has the potential to enable more people to
manage their own health, and in doing so become more aware and better informed. But
it also raises many moral questions. Who owns the health data being collected? Who is
willing to share their health data? Where do the new streams of health data end up? All
these questions must be considered when realizing a smart hospital. These are grand
challenges and not easy to tackle and can be summarized as “What comes beyond data
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mining?”, to close with the words of Tim Menzies “Prediction is all well and good – but
what about decision making?” [130].

References

1. Oeppen, J., Vaupel, J.W.: Demography - broken limits to life expectancy. Science
296(5570), 1029 (2002)

2. Mathers, C.D., Stevens, G.A., Boerma, T., White, R.A., Tobias, M.I.: Causes of international
increases in older age life expectancy. Lancet 385(9967), 540–548 (2015)

3. Röcker, C., Ziefle, M., Holzinger, A.: From computer innovation to human integration:
current trends and challenges for pervasive HealthTechnologies. In: Holzinger, A., Ziefle,
M., Röcker, C. (eds.) Pervasive Health, pp. 1–17. Springer, London (2014)

4. Holzinger, A., Dehmer, M., Jurisica, I.: Knowledge discovery and interactive data mining
in bioinformatics - state-of-the-art, future challenges and research directions. BMC
Bioinform. 15(Suppl 6), I1 (2014)

5. Holzinger, A., Stocker, C., Ofner, B., Prohaska, G., Brabenetz, A., Hofmann-Wellenhof, R.:
Combining HCI, natural language processing, and knowledge discovery - potential of IBM
content analytics as an assistive technology in the biomedical field. In: Holzinger, A., Pasi,
G. (eds.) HCI-KDD 2013. LNCS, vol. 7947, pp. 13–24. Springer, Heidelberg (2013)

6. Holzinger, A.: On knowledge discovery and interactive intelligent visualization of
biomedical data - challenges in human–computer interaction and biomedical informatics.
In: DATA 2012, pp. 9–20 (2012)

7. Holzinger, A.: Weakly structured data in health-informatics: the challenge for human-
computer interaction. In: Proceedings of INTERACT 2011 Workshop: Promoting and
Supporting Healthy Living by Design, pp. 5–7. IFIP (2011)

8. Duerr-Specht, M., Goebel, R., Holzinger, A.: Medicine and health care as a data problem:
will computers become better medical doctors? In: Holzinger, A., Roecker, C., Ziefle, M.
(eds.) Smart Health. LNCS, vol. 8700, pp. 21-39. Springer, Heidelberg (2015)

9. Culler, D.E., Mulder, H.: Smart sensors to network the world. Sci. Am. 290(6), 84–91 (2004)
10. Ghrist, R., de Silva, V.: Homological sensor networks. Notic. Amer. Math. Soc. 54(1), 10–

17 (2007)
11. Esling, P., Agon, C.: Time-series data mining. ACM Comput. Surv. (CSUR) 45(1), 12

(2012)
12. Holzinger, A., Schwarz, M., Ofner, B., Jeanquartier, F., Calero-Valdez, A., Roecker, C.,

Ziefle, M.: Towards interactive visualization of longitudinal data to support knowledge
discovery on multi-touch tablet computers. In: Teufel, S., Min, T.A., You, I., Weippl, E.
(eds.) CD-ARES 2014. LNCS, vol. 8708, pp. 124–137. Springer, Heidelberg (2014)

13. Weiser, M.: Some computer science issues in ubiquitous computing. Commun. ACM 36(7),
75–84 (1993)

14. Weiser, M., Gold, R., Brown, J.S.: The origins of ubiquitous computing research at PARC
in the late 1980s. IBM Syst. J. 38, 693–696 (1999)

15. Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38(8), 114–
117 (1965)

16. Wu, F.J., Kao, Y.F., Tseng, Y.C.: From wireless sensor networks towards cyber physical
systems. Pervasive Mob. Comput. 7(4), 397–413 (2011)

17. Schirner, G., Erdogmus, D., Chowdhury, K., Padir, T.: The future of human-in-the-loop
cyber-physical systems. Computer 46(1), 36–45 (2013)

From Smart Health to Smart Hospitals 13



18. Holzinger, A.: Human-computer interaction and knowledge discovery (HCI-KDD): what is
the benefit of bringing those two fields to work together? In: Cuzzocrea, A., Kittl, C., Simos,
D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 319–328. Springer,
Heidelberg (2013)

19. Holzinger, A.: Trends in interactive knowledge discovery for personalized medicine:
cognitive science meets machine learning. Intell. Inform. Bull. 15(1), 6–14 (2014)

20. Milenkovic, A., Otto, C., Jovanov, E.: Wireless sensor networks for personal health
monitoring: issues and an implementation. Comput. Commun. 29(13–14), 2521–2533
(2006)

21. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information
technology. MIS Q. 13(3), 319–339 (1989)

22. Aarts, E., Harwig, E., Schuurmans, M.: Ambient intelligence. In: Denning, J. (ed.) The
Invisible Future, pp. 235–250. McGraw-Hill, New York (2001)

23. Satyanarayanan, M.: Pervasive computing: vision and challenges. IEEE Pers. Commun.
8(4), 10–17 (2001)

24. Ramos, C., Augusto, J.C., Shapiro, D.: Ambient intelligence - the next step for artificial
intelligence. IEEE Intell. Syst. 23(2), 15–18 (2008)

25. Abowd, G.D., Dey, A.K.: Towards a better understanding of context and context-awareness.
In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707, pp. 304–307. Springer, Heidelberg
(1999)

26. Gellersen, H.W., Schmidt, A., Beigl, M.: Multi-sensor context-awareness in mobile devices
and smart artifacts. Mob. Netw. Appl. 7(5), 341–351 (2002)

27. Bardram, J.E., Hansen, T.R., Mogensen, M., Soegaard, M.: Experiences from real-world
deployment of context-aware technologies in a hospital environment. In: Dourish, P., Friday,
A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 369–386. Springer, Heidelberg (2006)

28. Yan, H.R., Huo, H.W., Xu, Y.Z., Gidlund, M.: Wireless sensor network based e-health
system - implementation and experimental results. IEEE Trans. Consum. Electron. 56(4),
2288–2295 (2010)

29. Demiris, G., Rantz, M.J., Aud, M.A., Marek, K.D., Tyrer, H.W., Skubic, M., Hussam, A.A.:
Older adults’ attitudes towards and perceptions of ‘smart home’ technologies: a pilot study.
Med. Inform. Internet Med. 29(2), 87–94 (2004)

30. Demiris, G., Tan, J.: Rejuvenating home health care and tele-home care. In: Tan, J. (ed.) E-
Health Care Information Systems: An Introduction for Students and Professionals, pp. 267–
290. Jossey-Bass, San Francisco (2005)

31. Hood, L., Friend, S.H.: Predictive, personalized, preventive, participatory (P4) cancer
medicine. Nat. Rev. Clin. Oncol. 8(3), 184–187 (2011)

32. Weippl, E., Holzinger, A., Tjoa, A.M.: Security aspects of ubiquitous computing in health
care. Springer Elektrotechnik und Informationstechnik, e & i 123(4), 156–162 (2006)

33. Holzinger, A., Nischelwitzer, A., Friedl, S., Hu, B.: Towards life long learning: three models
for ubiquitous applications. Wirel. Commun. Mob. Comput. 10(10), 1350–1365 (2010)

34. Kieseberg, P., Hobel, H., Schrittwieser, S., Weippl, E., Holzinger, A.: Protecting anonymity
in data-driven biomedical science. In: Holzinger, A., Jurisica, I. (eds.) Interactive
Knowledge Discovery and Data Mining in Biomedical Informatics. LNCS, vol. 8401, pp.
301–316. Springer, Heidelberg (2014)

35. Minsky, M.: Steps towards artificial intelligence. Proc. Inst. Radio Eng. 49(1), 8–30 (1961)
36. Suryadevara, N.K., Mukhopadhyay, S.C.: Determining wellness through an ambient

assisted living environment. IEEE Intell. Syst. 29(3), 30–37 (2014)
37. Sanchez, D., Tentori, M., Favela, J.: Activity recognition for the smart hospital. IEEE Intell.

Syst. 23(2), 50–57 (2008)

14 A. Holzinger et al.



38. Solanas, A., Patsakis, C., Conti, M., Vlachos, I.S., Ramos, V., Falcone, F., Postolache, O.,
Perez-Martinez, P.A., Di Pietro, R., Perrea, D.N., Martinez-Balleste, A.: Smart health: a
context-aware health paradigm within smart cities. IEEE Commun. Mag. 52(8), 74–81
(2014)

39. Weiser, M.: The computer for the twenty-first century. Sci. Am. 265(3), 94–104 (1991)
40. Streitz, N., Magerkurth, C., Prante, T., Röcker, C.: From information design to experience

design: smart artefacts and the disappearing computer. Interactions 12(4), 21–25 (2005)
41. Cowan, D., Turner-Smith, A.: The role of assistive technology in alternative models of care

for older people. In: Sutherland, I. (ed.) With Respect To Old Age: The Royal Commission
for the Long Term Care of the Elderly, Appendix 4, vol. 2, pp. 325–346. The Stationery
Office, London (1999)

42. Holzinger, A., Dorner, S., Födinger, M., Valdez, A.C., Ziefle, M.: Chances of increasing
youth health awareness through mobile wellness applications. In: Leitner, G., Hitz, M.,
Holzinger, A. (eds.) USAB 2010. LNCS, vol. 6389, pp. 71–81. Springer, Heidelberg (2010)

43. Röcker, C., Wilkowska, W., Ziefle, M., Kasugai, K., Klack, L., Möllering, C., Beul, S.:
Towards adaptive interfaces for supporting elderly users in technology-enhanced home
environments. In: Proceedings of the 18th Biennial Conference of the International
Communications Society (2010)

44. Kleinberger, T., Becker, M., Ras, E., Holzinger, A., Müller, P.: Ambient intelligence in
assisted living: enable elderly people to handle future interfaces. In: Stephanidis, C. (ed.)
UAHCI 2007 (Part II). LNCS, vol. 4555, pp. 103–112. Springer, Heidelberg (2007)

45. Kern, N., Schiele, B., Schmidt, A.: Multi-sensor activity context detection for wearable
computing. In: Aarts, E., Collier, R.W., van Loenen, E., de Ruyter, B. (eds.) EUSAI 2003.
LNCS, vol. 2875, pp. 220–232. Springer, Heidelberg (2003)

46. Holzinger, A., Searle, G., Prückner, S., Steinbach-Nordmann, S., Kleinberger, T., Hirt, E.,
Temnitzer, J.: Perceived usefulness among elderly people: experiences and lessons learned
during the evaluation of a wrist device. In: International Conference on Pervasive Computing
Technologies for Healthcare (Pervasive Health 2010), pp. 1–5. IEEE (2010)

47. Muensterer, O.J., Lacher, M., Zoeller, C., Bronstein, M., Kubler, J.: Google glass in pediatric
surgery: an exploratory study. Int. J. Surg. 12(4), 281–289 (2014)

48. Holzinger, A.: Finger instead of mouse: touch screens as a means of enhancing universal
access. In: Carbonell, N., Stephanidis, C. (eds.) UI4ALL 2002. LNCS, vol. 2615, pp. 387–
397. Springer, Heidelberg (2003)

49. Overstall, P.W., Nikolaus, T.: Gait, balance, and falls. In: Pathy, M.S.J., Sinclair, A.J.,
Morley, J.E. (eds.) Principles and Practice of Geriatric Medicine, vol. 2, 4th edn, pp. 1299–
1309. Wiley, Chichester (2006)

50. Ruyter, B.D., Pelgrim, E.: Ambient assisted-living research in carelab. Interactions 14(4),
30–33 (2007)

51. Noury, N., Fleury, A., Rumeau, P., Bourke, A., Laighin, G., Rialle, V., Lundy, J.: Fall
detection-principles and methods. In: 29th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, 2007, EMBS 2007, pp. 1663–1666. IEEE
(2007)

52. Addlesee, M.D., Jones, A., Livesey, F., Samaria, F.: The ORL active floor. IEEE Pers.
Commun. 4, 35–41 (1997)

53. Orr, R.J., Abowd, G.D.: The smart floor: a mechanism for natural user identification and
tracking. In: CHI 2000 Extended Abstracts on Human Factors in Computing Systems, pp.
275–276. ACM (2000)

From Smart Health to Smart Hospitals 15



54. Leusmann, P., Mollering, C., Klack, L., Kasugai, K., Ziefle, M., Rumpe, B.: Your floor
knows where you are: sensing and acquisition of movement data. In: 2011 12th IEEE
International Conference on Mobile Data Management (MDM), pp. 61–66. IEEE (2011)

55. Ziefle, M., Röcker, C., Wilkowska, W., Kasugai, K., Klack, L., Möllering, C., Beul, S.: A
multi-disciplinary approach to ambient assisted living. In: Röcker, C., Ziefle, M. (eds.) E-
Health, Assistive Technologies and Applications for Assisted Living: Challenges and
Solutions. IGI Global, Hershey (2010)

56. Klack, L., Möllering, C., Ziefle, M., Schmitz-Rode, T.: Future care floor: a sensitive floor
for movement monitoring and fall detection in home environments. In: Lin, J. (ed.)
MobiHealth 2010. LNICST, vol. 55, pp. 211–218. Springer, Heidelberg (2011)

57. Baker, A.M., Lafata, J.E., Ward, R.E., Whitehouse, F., Divine, G.: A web-based diabetes
care management support system. Jt. Comm. J. Qual. Patient Saf. 27(4), 179–190 (2001)

58. Donsa, K., Spat, S., Beck, P., Pieber, T.R., Holzinger, A.: Towards personalization of
diabetes therapy using computerized decision support and machine learning: some open
problems and challenges. In: Holzinger, A., Roecker, C., Ziefle, M. (eds.) Smart Health.
Lecture Notes in Computer Science LNCS, vol. 8700, pp. 235–260. Springer, Heidelberg,
Berlin (2015)

59. Morlion, B., Knoop, C., Paiva, M., Estenne, M.: Internet-based home monitoring of
pulmonary function after lung transplantation. Am. J. Respir. Crit. Care Med. 165(5), 694–
697 (2002)

60. Ávila-Funes, J.A., Amieva, H., Barberger-Gateau, P., Le Goff, M., Raoux, N., Ritchie, K.,
Carriere, I., Tavernier, B., Tzourio, C., Gutiérrez-Robledo, L.M.: Cognitive impairment
improves the predictive validity of the phenotype of frailty for adverse health outcomes: the
three-city study. J. Am. Geriatr. Soc. 57(3), 453–461 (2009)

61. Park, S.H., Won, S.H., Lee, J.B., Kim, S.W.: Smart home–digitally engineered domestic
life. Pers. Ubiquit. Comput. 7(3–4), 189–196 (2003)

62. Mynatt, E.D., Melenhorst, A.S., Fisk, A.D., Rogers, W.A.: Aware technologies for aging in
place: understanding user needs and attitudes. IEEE Pervasive Comput. 3(2), 36–41 (2004)

63. Holzinger, A., Nischelwitzer, A.K.: People with motor and mobility impairment: innovative
multimodal interfaces to wheelchairs. In: Miesenberger, K., Klaus, J., Zagler, W.L.,
Karshmer, A.I. (eds.) ICCHP 2006. LNCS, vol. 4061, pp. 989–991. Springer, Heidelberg
(2006)

64. Nischelwitzer, A.K., Sproger, B., Mahr, M., Holzinger, A.: MediaWheelie – a best practice
example for research in multimodal user interfaces (MUIs). In: Miesenberger, K., Klaus, J.,
Zagler, W.L., Karshmer, A.I. (eds.) ICCHP 2006. LNCS, vol. 4061, pp. 999–1005. Springer,
Heidelberg (2006)

65. Nischelwitzer, A., Sproger, B., Holzinger, A.: Assistive text input methods: 3D-space
writing and other text input methods for powerwheelchair users: best practice examples on
the MediaWheelie. In: Kempter, G., Hellberg, P.V. (eds.) Informationen Nutzbar Machen,
pp. 75–80. Papst Science Publishers, Lengerich (2006)

66. Debevc, M., Kosec, P., Rotovnik, M., Holzinger, A.: Accessible multimodal web pages with
sign language translations for deaf and hard of hearing users. In: 20th International
Conference on Database and Expert Systems Application, DEXA 2009, pp. 279–283. IEEE
(2009)

67. Debevc, M., Kožuh, I., Kosec, P., Rotovnik, M., Holzinger, A.: Sign language multimedia
based interaction for aurally handicapped people. In: Miesenberger, K., Karshmer, A.,
Penaz, P., Zagler, W. (eds.) ICCHP 2012, Part II. LNCS, vol. 7383, pp. 213–220. Springer,
Heidelberg (2012)

16 A. Holzinger et al.



68. Holzinger, A., Searle, G., Nischelwitzer, A.K.: On some aspects of improving mobile
applications for the elderly. In: Stephanidis, C. (ed.) HCI 2007. LNCS, vol. 4554, pp. 923–
932. Springer, Heidelberg (2007)

69. Holzinger, A., Searle, G., Kleinberger, T., Seffah, A., Javahery, H.: Investigating usability
metrics for the design and development of applications for the elderly. In: Miesenberger,
K., Klaus, J., Zagler, W.L., Karshmer, A.I. (eds.) ICCHP 2008. LNCS, vol. 5105, pp. 98–
105. Springer, Heidelberg (2008)

70. Nischelwitzer, A.K., Lenz, F.-J., Searle, G., Holzinger, A.: Some aspects of the development
of low-cost augmented reality learning environments as examples for future interfaces in
technology enhanced learning. In: Stephanidis, C. (ed.) HCI 2007. LNCS, vol. 4556, pp.
728–737. Springer, Heidelberg (2007)

71. Sproger, B., Nischelwitzer, A., Holzinger, A.: TeamTable: lowcost team-display hardware
and tangible user interfaces facilitate interaction & learning. In: Kempter, G., Hellberg, P.V.
(eds.) Informationen Nutzbar Machen, pp. 57–60. Papst Science Publishers, Lengerich
(2006)

72. Shyu, C.R., Brodley, C.E., Kak, A.C., Kosaka, A., Aisen, A.M., Broderick, L.S.: ASSERT:
a physician-in-the-loop content-based retrieval system for HRCT image databases. Comput.
Vis. Image Underst. 75(1–2), 111–132 (1999)

73. Ranganathan, S., Schonbach, C., Kelso, J., Rost, B., Nathan, S., Tan, T.: Towards big data
science in the decade ahead from ten years of InCoB and the 1st ISCB-Asia Joint Conference.
BMC Bioinform. 12(Suppl 13), S1 (2011)

74. Dhar, V.: Data science and prediction. Commun. ACM 56(12), 64–73 (2013)
75. Kolker, E., Özdemir, V., Martens, L., Hancock, W., Anderson, G., Anderson, N.,

Aynacioglu, S., Baranova, A., Campagna, S.R., Chen, R.: Toward more transparent and
reproducible omics studies through a common metadata checklist and data publications.
OMICS: A J. Integr. Biol. 18(1), 10–14 (2014)

76. Holzinger, A., Dehmer, M., Jurisica, I.: Knowledge discovery and interactive data mining
in bioinformatics - state-of-the-art, future challenges and research directions. BMC
Bioinform. 15(S6), I1 (2014)

77. Morik, K., Brockhausen, P., Joachims, T.: Combining statistical learning with a knowledge-
based approach-a case study in intensive care monitoring. In: ICML 1999, pp. 268–277
(1999)

78. Sultan, M., Wigle, D.A., Cumbaa, C., Maziarz, M., Glasgow, J., Tsao, M., Jurisica, I.: Binary
tree-structured vector quantization approach to clustering and visualizing microarray data.
Bioinformatics 18(Suppl 1), S111–S119 (2002)

79. Koch, I.: Analysis of Multivariate and High-Dimensional Data. Cambridge University Press,
New York (2014)

80. Olshen, A.B., Hsieh, A.C., Stumpf, C.R., Olshen, R.A., Ruggero, D., Taylor, B.S.: Assessing
gene-level translational control from ribosome profiling. Bioinformatics 29(23), 2995–3002
(2013)

81. Li, W., Godzik, A.: CD-HIT: a fast program for clustering and comparing large sets of
protein or nucleotide sequences. Bioinformatics 22(13), 1658–1659 (2006)

82. Pržulj, N., Wigle, D., Jurisica, I.: Functional topology in a network of protein interactions.
Bioinformatics 20(3), 340–348 (2004)

83. Bullard, J.H., Purdom, E., Hansen, K.D., Dudoit, S.: Evaluation of statistical methods for
normalization and differential expression in mRNA-Seq experiments. BMC Bioinform.
11, 94 (2010)

84. Kiberstis, P.A.: All eyes on epigenetics. Science 335(6069), 637 (2012)

From Smart Health to Smart Hospitals 17



85. Barrera, J., Cesar-Jr., R.M., Ferreira, J.E., Gubitoso, M.D.: An environment for knowledge
discovery in biology. Comput. Biol. Med. 34(5), 427–447 (2004)

86. Holzinger, A., Ziefle, M., Röcker, C.: Pervasive Health. Springer, London (2014)
87. Huppertz, B., Holzinger, A.: Biobanks – a source of large biological data sets: open problems

and future challenges. In: Holzinger, A., Jurisica, I. (eds.) Interactive Knowledge Discovery
and Data Mining in Biomedical Informatics. LNCS, vol. 8401, pp. 317–330. Springer,
Heidelberg (2014)

88. Shaer, O., Nov, O.: HCI for personal genomics. Interactions 21(5), 32–37 (2014)
89. Marr, D.: Vision: A Computational Investigation into the Human Representation and

Processing of Visual Information. Henry Holt, New York (1982)
90. Donoho, D.L.: High-dimensional data analysis: the curses and blessings of dimensionality.

In: AMS Math Challenges Lecture, pp. 1–32 (2000)
91. Holzinger, A.: Extravaganza tutorial on hot ideas for interactive knowledge discovery and

data mining in biomedical informatics. In: Ślȩzak, D., Tan, A.-H., Peters, J.F., Schwabe, L.
(eds.) BIH 2014. LNCS, vol. 8609, pp. 502–515. Springer, Heidelberg (2014)

92. Stocker, C., Marzi, L.-M., Matula, C., Schantl, J., Prohaska, G., Brabenetz, A., Holzinger,
A.: Enhancing patient safety through human-computer information retrieval on the example
of german-speaking surgical reports. In: TIR 2014 - 11th International Workshop on Text-
Based Information Retrieval, pp. 1–5. IEEE (2014)

93. Gondek, D.C., Lally, A., Kalyanpur, A., Murdock, J.W., Duboue, P.A., Zhang, L., Pan, Y.,
Qiu, Z.M., Welty, C.: A framework for merging and ranking of answers in DeepQA. IBM
J. Res. Dev. 56(3–4), 399–410 (2012)

94. Reuss, E., Menozzi, M., Buchi, M., Koller, J., Krueger, H.: Information access at the point
of care: what can we learn for designing a mobile CPR system? Int. J. Med. Inform. 73(4),
363–369 (2004)

95. Choi, J., Chun, J., Lee, K., Lee, S., Shin, D., Hyun, S., Kim, D., Kim, D.: MobileNurse:
hand-held information system for point of nursing care. Comput. Methods Programs
Biomed. 74(3), 245–254 (2004)

96. Young, P.M.C., Leung, R.M.W., Ho, L.M., McGhee, S.M.: An evaluation of the use of hand-
held computers for bedside nursing care. Int. J. Med. Inform. 62(2–3), 189–193 (2001)

97. Moffett, S.E., Menon, A.S., Meites, E.M., Kush, S., Lin, E.Y., Grappone, T., Lowe, H.L.:
Preparing doctors for bedside computing. Lancet 362(9377), 86 (2003)

98. Konstantakos, A.K.: Personal computers versus patient care: at the desktop or at the bedside?
Curr. Surg. 60(4), 353–355 (2003)

99. Holzinger, A., Kosec, P., Schwantzer, G., Debevc, M., Hofmann-Wellenhof, R., Frühauf,
J.: Design and development of a mobile computer application to reengineer workflows in
the hospital and the methodology to evaluate its effectiveness. J. Biomed. Inform. 44(6),
968–977 (2011)

100. Holzinger, A., Errath, M.: Mobile computer web-application design in medicine: some
research based guidelines. Univ. Access Inf. Soc. Int. J. 6(1), 31–41 (2007)

101. Dey, A.K., Abowd, G.D., Salber, D.: A conceptual framework and a toolkit for supporting
the rapid prototyping of context-aware applications. Hum.-Comput. Inter. 16(2–4), 97–166
(2001)

102. Brézillon, P.: Context in problem solving: a survey. Knowl. Eng. Rev. 14(1), 47–80 (1999)
103. Coutaz, J., Crowley, J.L., Dobson, S., Garlan, D.: Context is key. Commun. ACM 48(3),

49–53 (2005)
104. Harper, R., Rodden, T., Rogers, Y., Sellen, A.: Being Human: Human-Computer Interaction

in the Year 2020. Microsoft Research, Cambridge (2008)

18 A. Holzinger et al.



105. Sellen, A., Rogers, Y., Harper, R., Rodden, T.: Reflecting human values in the digital age.
Commun. ACM 52(3), 58–66 (2009)

106. Schmidt, A., Pfleging, B., Alt, F., Sahami, A., Fitzpatrick, G.: Interacting with 21st-century
computers. IEEE Pervasive Comput. 11(1), 22–31 (2012)

107. Selker, T., Burleson, W.: Context-aware design and interaction in computer systems. IBM
Syst. J. 39(3–4), 880–891 (2000)

108. Holzinger, A., Stocker, C., Dehmer, M.: Big complex biomedical data: towards a taxonomy
of data. In: Obaidat, M.S., Filipe, J. (eds.) Communications in Computer and Information
Science CCIS 455, pp. 3–18. Springer, Berlin Heidelberg (2014)

109. Catchpoole, D.R., Kennedy, P., Skillicorn, D.B., Simoff, S.: The curse of dimensionality: a
blessing to personalized medicine. J. Clin. Oncol. 28(34), E723–E724 (2010)

110. Kanerva, P.: Hyperdimensional computing: an introduction to computing in distributed
representation with high-dimensional random vectors. Cogn. Comput. 1(2), 139–159 (2009)

111. Ma, J.H., Wen, J., Huang, R.H., Huang, B.X.: Cyber-individual meets brain informatics.
IEEE Intell. Syst. 26(5), 30–37 (2011)

112. Zhong, N., Liu, J., Yao, Y., Wu, J., Lu, S., Qin, Y., Li, K., Wah, B.W.: Web intelligence
meets brain informatics. In: Zhong, N., Liu, J., Yao, Y., Wu, J., Lu, S., Li, K. (eds.) Web
Intelligence Meets Brain Informatics. LNCS (LNAI), vol. 4845, pp. 1–31. Springer,
Heidelberg (2007)

113. Modha, D.S., Ananthanarayanan, R., Esser, S.K., Ndirango, A., Sherbondy, A.J., Singh, R.:
Cognitive computing. Commun. ACM 54(8), 62–71 (2011)

114. Jones, B., Carvalho, C., Dobra, A., Hans, C., Carter, C., West, M.: Experiments in stochastic
computation for high-dimensional graphical models. Stat. Sci. 20(4), 388–400 (2005)

115. Alaghi, A., Hayes, J.P.: Survey of stochastic computing. ACM Trans. Embed. Comput. Syst.
(TECS) 12(2s), 92 (2013)

116. Yoshida, R., Ueno, G., Doucet, A.: Special issue: bayesian inference and stochastic
computation preface. Ann. Inst. Stat. Math. 66(3), 441–442 (2014)

117. Tehrani, S.S., Mannor, S., Gross, W.J.: Survey of stochastic computation on factor graphs.
In: 37th International Symposium on Multiple-valued Logic, 2007, ISMVL 2007, pp. 54–
54. IEEE (2007)

118. Shanbhag, N.R., Abdallah, R.A., Kumar, R., Jones, D.L.: Stochastic computation. In:
Proceedings of the 47th Design Automation Conference, pp. 859–864. ACM (2010)

119. Adar, R., Benenson, Y., Linshiz, G., Rosner, A., Tishby, N., Shapiro, E.: Stochastic
computing with biomolecular automata. Proc. Natl. Acad. Sci. U.S.A. 101(27), 9960–9965
(2004)

120. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-
agent systems. Proc. IEEE 95(1), 215–233 (2007)

121. Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowl. Eng. Rev.
10(2), 115–152 (1995)

122. Costanza, E., Fischer, J.E., Colley, J.A., Rodden, T., Ramchurn, S.D., Jennings, N.R.: Doing
the laundry with agents: a field trial of a future smart energy system in the home. In:
Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing
Systems, pp. 813–822. ACM (2014)

123. Jennings, N.R., Corera, J.M., Laresgoiti, I.: Developing industrial multi-agent systems. In:
ICMAS, pp. 423–430 (1995)

124. Roche, B., Guegan, J.F., Bousquet, F.: Multi-agent systems in epidemiology: a first step for
computational biology in the study of vector-borne disease transmission. BMC Bioinform.
9, 435 (2008)

From Smart Health to Smart Hospitals 19



125. Kamar, E., Gal, Y.K., Grosz, B.J.: Modeling information exchange opportunities for
effective human–computer teamwork. Artif. Intell. 195, 528–550 (2013)

126. Tambe, M., Bowring, E., Jung, H., Kaminka, G., Maheswaran, R., Marecki, J., Modi, P.J.,
Nair, R., Okamoto, S., Pearce, J.P.: Conflicts in teamwork: hybrids to the rescue. In:
Proceedings of the Fourth International Joint Conference on Autonomous Agents and
Multiagent Systems, pp. 3–10. ACM (2005)

127. Jennings, N.R., Moreau, L., Nicholson, D., Ramchurn, S.D., Roberts, S., Rodden, T., Rogers,
A.: On human-agent collectives. Commun. ACM 57, 80–88 (2014)

128. Gao, H., Barbier, G., Goolsby, R.: Harnessing the crowdsourcing power of social media for
disaster relief. Intell. Syst. IEEE 26(3), 10–14 (2011)

129. Takeuchi, I.: A massively multi-agent simulation system for disaster mitigation. In: Ishida,
T., Gasser, L., Nakashima, H. (eds.) MMAS 2005. LNCS (LNAI), vol. 3446, pp. 269–282.
Springer, Heidelberg (2005)

130. Menzies, T.: Beyond data mining. IEEE Softw. 30(3), 92 (2013)

20 A. Holzinger et al.



Medicine and Health Care as a Data Problem:
Will Computers Become Better Medical Doctors?

Michael Duerr-Specht1(✉), Randy Goebel2, and Andreas Holzinger3

1 Duke University Hospital, 40 Duke Medicine Circle, Durham, NC 27710, USA
mikespecht@me.com

2 Department of Computing Science, University of Alberta, 2-21 Athabasca Hall,
Edmonton, AB, Canada

goebel@cs.ualberta.ca
3 Institute for Medical Informatics, Statistics and Documentation,

Medical University Graz, Auenbruggerplatz 2/V, 8036 Graz, Austria
a.holzinger@hci-kdd.org

Abstract. Modern medicine and health care in all parts of our world are facing
formidable challenges: exploding costs, finite resources, aging population as well
as deluge of big complex, high-dimensional data sets produced by modern
biomedical science, which exceeds the absorptive capacity of human minds.
Consequently, the question arises about whether and to what extent the advances
of machine intelligence and computational power may be utilized to mitigate the
consequences. After prevailing over humans in chess and popular game shows,
it is postulated that the biomedical field will be the next domain in which smart
computing systems will outperform their human counterparts. In this overview
we examine this hypothesis by comparing data formats, data access and heuristic
methods used by both humans and computer systems in the medical decision
making process. We conclude that the medical reasoning process can be signifi‐
cantly enhanced using emerging smart computing technologies and so-called
computational intelligence. However, as humans have access to a larger spectrum
of data of higher complexity and continue to perform essential components of the
reasoning process more efficiently, it would be unwise to sacrifice the whole
human practice of medicine to the digital world; hence a major goal is to mutually
exploit the best of the two worlds: We need computational intelligence to deal
with big complex data, but we nevertheless – and more than ever before – need
human intelligence to interpret abstracted data and information and creatively
make decisions.

Keywords: Medical decision support · Medical reasoning · Big data · Data
centric medicine · Medical informatics · Smart health

1 Introduction: The Case of Watson Winning Jeopardy!

“If our brains were simple enough for us to understand them,
we’d be so simple that we couldn’t.”

Ian Stewart, The Collapse of Chaos: Discovering Simplicity in a Complex World

© Springer International Publishing Switzerland 2015
A. Holzinger et al. (Eds.): Smart Health, LNCS 8700, pp. 21–39, 2015.
DOI: 10.1007/978-3-319-16226-3_2



On January 14th, 2011, the well known game show Jeopardy! offered something
completely new to their large audience. For the first time since its inception in 1964, one
of the participants answering the challenges offered by moderator Alex Trebek was not
human – but a computer.

Watson, an IBM computer system, took the central seat between two human cham‐
pions, Ken Jennings and Brad Rutter. 14 years after the famous victory of “Deep Blue”
over Gary Kasparov in chess, a software system – some would describe it rather as
artificial intelligence, or smart computing device – beat its human counterparts by a
significant margin, though not with a perfect score.

Advances of computer systems have been remarkable since their early beginnings
in the 1950’s. We have advanced far from arrays of soldered transistors on large
circuit boards in air-conditioned rooms shielded with copper plates against interfering
electromagnetic radiation. Capacities in computing power and data storage have
doubled every 18–24 months over the past decades (Moore’s law [1, 2]) and the
computing power today has reached a level that allows systems to compete in the
human field in complex environments. For proponents of computer technology and
artificial intelligence this marks the beginning of a new era in human–computer
interaction; and the next battlefield to be conquered by computer technology is human
medicine and health – smart health [3].

In fact, the challenges in the medical field are enormous [4] and seem to be
increasing daily. Medical knowledge is growing at an exponential rate, far beyond what
an individual medical doctor can be expected to absorb. It is estimated that a family
physician would have to read new medical literature for more than 600 h per month to
stay current [5]. The global availability of information on the press of a button is
tempting, but the cognitive capacity reaches its natural limit. More information does
not lead automatically to better decisions: the US American Institute of medicine (IOM)
estimates that medical errors in the United States alone cost 98,000 lives a year at a
financial cost of $29 billion a year [6]. The financial burden of health care on just the
US economy is staggering and has been steadily increasing over decades raising some
immediate questions:

(1) Are future computer systems going to provide a solution to these issues?
(2) Are we looking at a future where diagnoses and treatment decisions for the

majority of health problems will be rapidly, accurately and efficiently made by
smart Watson-like systems and their offspring?

(3) Or will computer systems, just like technological medical advances in the past,
simply accelerate expenses in the health care arena without significantly impacting
life expectancy or well-being for the average person?

Certainly we first need to understand the limitations of the human decision making
process to understand how to design and build such systems. We also have to face the
challenges of the enormous complexity of the medical domain [7].

22 M. Duerr-Specht et al.



2 Glossary

Abductive Reasoning: a logical inference that leads from an observation to a hypothesis
explaining the observation, seeking to find the simplest and most likely explanation
(allows inferring a as an explanation of b; deduction in reverse) [8].
Big Data: a buzz word to describe growing amounts of large data sets, having strong
relevance from a socio-technical perspective and economy [9] and a recent important
topic in biomedical informatics [10].
Content Analytics: umbrella term for the application of machine intelligence to any
form of digital content.
Deductive Reasoning: logical inference that links premises with conclusions (allows
deriving b from a, where b is a formal logical consequence of a;) [11].
DeepQA: core of the Watson project at IBM on a grand challenge in Computer Science:
to build a computer system, that is able to answer natural language questions over an
open and broad range of knowledge [12].
Evidence Based Medicine (EBM): is about the integration of individual clinical exper‐
tise with the best external evidence [13], originally coming from medical education for
improving decision making strategies [14].
Inductive Reasoning: allows inferring b from a, where b does not necessarily follow
from a; this reasoning is inherently uncertain (e.g. Billo is a boxer, Billo is a dog > all
dogs are boxer)
Machine Learning: field of study and design of algorithms that can learn from data,
operate by building a model based on inputs and using that to make predictions or deci‐
sions, rather than following only explicitly programmed instructions. The more data the
better, hence big data is good for machine learning [15].
Reasoning: associated with thinking, cognition, and intelligence it is core essence in
decision making as it is one of the ways by which thinking comes from one idea to a
related idea (cause-effect, truth-false, good-bad, etc.) [16].
Watson: synonym for a cognitive technology system of IBM, using DeepQA that tries
to process information more like a human than a computer with the goal of understanding
natural language based on hypothesis generation and dynamic learning [17].
Watson Content Analytics: a business solution, based on Watson technology for knowl‐
edge discovery from unstructured information aiming to help enterprises to validate
what is known and reveal what is unknown, having much potential for medicine and
health care [18].

3 What Is This Watson?

In 2007, the IBM Research labs began with the grand challenge of building a computer
system that could eventually compete with human champions at the game quiz show
Jeopardy! In 2011, the open-domain question-answering (QA) system, called Watson
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(in honor of Thomas J. Watson (1874–1956), CEO of IBM from 1914 to 1956), beat the
two highest ranked players in a nationally televised two-game Jeopardy! competition.

Technologically, Watson is the result of a systems integration of many diverse algo‐
rithmic techniques, performed at champion levels [12, 19], and was created to demon‐
strate the capability of so-called DeepQA technology [20]: this architecture was
designed to be massively parallel, with an expectation that low latency response times
could be achieved by doing parallel computation on many distributed computing
systems. A large set of natural-language processing programs were integrated into a
single application, scaled out across hundreds of central processing unit cores, and opti‐
mized to run fast enough to compete in a real-world application [21].

Because Watson cannot hear or see, when the categories and clues were displayed on
the game board, they were inputted manually (as text) to Watson. The program also
monitored signals generated when the buzzer system was activated and when a contestant
successfully rang in. If Watson was confident of its answer, it triggered a solenoid to
depress its buzzer button and used a text-to-speech system to speak out loud its response –
to make the output more appealing. Since it did not hear the host’s judgment, it relied on
changes to the scores and the game flow to infer whether the answer was correct or not.
The Watson interface program had to use what were sometimes conflicting events to
determine the state of the game, without any human intervention [22].

Deep Blue, the computer that played chess and beat world champion Garry Kasparov
in 1996 first, and in 1997 the six-game match [23], was also impressive, but far not as
impressive as Watson [24]. Deep Blue operated in a finite and well specified problem
space. Though the chess problem space is large (estimated to be greater than 10120

positions) making it impossible for computers to calculate every potential outcome [25]
it could certainly calculate the merits of every immediate move and the possible alter‐
natives two or three moves ahead [26]. Combined with some strategic knowledge, it was
able to beat any opponent at chess.

The problem space that Watson took on was much less well defined and required the
interpretation of natural language to form and select an appropriate answer. Exactly this
is the big problem: Whereas chess programs tend towards performing “super-human”,
i.e. perform better than all humans, natural language processing, i.e. word sense disam‐
biguation is traditionally considered an AI-hard problem [27, 28].

For those of us who study both human and artificial intelligence, the question arises
as to what extent to which Watson mimics human intelligence [29, 30]. In the past,
human intelligence researchers and many artificial intelligence researchers have
dismissed the possibility of any strong similarity between artificial and human intelli‐
gence [31]. This was almost certainly correct for any past accomplishment in artificial
intelligence, especially which focused on games and search.

Could Watson be different? It is very likely that Watson would do quite well on many
test items that compose intelligence tests including general information, vocabulary,
similarities, and nearly anything dependent on verbal knowledge. Nevertheless, it is very
likely that Watson would do quite poorly on many other kinds of tests that require
reasoning or insight. In its current state, it would be difficult for Watson to understand
directions for the various and different subtests that usually make up an intelligence test,
something that children as young as three or four do easily.

24 M. Duerr-Specht et al.



Tests of computer intelligence are as old as computers themselves. The most
famous is the Turing test proposed by Alan Turing (1912–1954) more than 60 years
ago. Turing suggested that a machine would be intelligent when an observer would
have a conversation with a computer and a real person and not be able to distinguish
which was which [32].

Numerous other approaches have been proposed, including the construction of a
unique battery of tests that would provide an actual IQ score for artificial intelligence
systems, similar to the way human IQ scores are determined [33]. This challenge is
supported by the editorial board of the journal “Intelligence” and members of the Inter‐
national Society for Intelligence Research.

A recent paper by Rachlin [34] speculates on the abilities Watson would need, in
addition to those it has, to emulate true human behaviour: essential human attributes
such as consciousness, the ability to love, to feel, to sense, to perceive, and to imagine.
Most crucially, such a computer may exhibit self-control and may act altruistically.

At this point, the external perception of Watson’s performance in Jeopardy! exposes
only “question in – single answer out” with no detailed explanation of how the answer
was found. However, internally, Watson uses a form of hypothetical reasoning called
“probabilistic abduction”, e.g., see [35], which creates and ranks alternative answers
based on the alternatives that can be inferred from a variety of text resources within the
time limit for a response.

Currently the IBM team is working on a vision for an evidence-based clinical deci‐
sion support system, based on the DeepQA technology, that affords exploration of a
broad range of hypotheses and their associated evidence, as well as uncovers missing
information that can be used in mixed-initiative dialog [17]. Whereas Watson used
simple but broad encyclopaedic knowledge for the Jeopardy! task, the extended medical
Watson uses medical information gleaned from sources also available to the practicing
physician: medical journals and textbooks.

Considering the fact that medicine is turning more and more into a data intensive
science, it is obvious that integrated machine learning approaches for knowledge
discovery and data mining are indispensable [36].

The grand goal of IBM is having the Watson technology ready as a medical doctor’s
assistant (in German: Arzthelfer) available on a mobile computing device by the year
2020 [37]. This is a grand challenge exactly at the intersection of human-computer
interaction (HCI) and knowledge discovery and data mining (KDD) [38].

4 Computers and Medicine

Undeniably, computers offer ever-increasing capabilities in areas where we as humans
have trouble competing. Information entered can be reproduced accurately and without
degradation innumerable times to as many users as desired. Data elements can be
grouped, parsed, abstracted, combined, copied, and displayed in any conceivable way,
offering seemingly infinite options to view even very large sets of data. Numeric values
can be instantly analyzed and participate in complex calculations, the result of which is
immediately available. Network environments allow multiple users to access and share
identical information in real time.
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Not least, advances in natural language processing allow an increasingly accurate
analysis of data contained within unstructured written documents and reports. In fact,
IBM’s Jeopardy! contestant Watson is the first system to show the power of this tech‐
nology in quasi real time [39, 40].

In medicine, electric and electronic devices as well as computerized systems have
an impressive track record. Assistance in diagnosis dates back to 1895 when Conrad
Wilhelm Roentgen (1845–1923) demonstrated that the use of electromagnetic radiation,
invisible to the naked eye was able to penetrate tissues and visualize the bones [41].
Advances in this basic technology combined with the computing power of modern
semiconductors led to the development of sophisticated imaging technology such as
computerized tomography offering 2-D and 3-D images of internal tissues and organs
as well as real time fluoroscopy, providing essential information for tricky medical
interventions. Magnetic resonance imaging provides digital images constructed from
atomic nuclear resonance of body tissues allowing for accurate visual diagnoses of many
pathological conditions. Computer generated images based on the analysis of ultrasound
waves reflected from body tissues have become an indispensable tool in the evaluation
of internal organs and prenatal care.

In the realm of therapy, computers led to significant medical advances. Cardiac
pacemakers generate a cardiac rhythm in cases of failure of the innate sinus node.
Implanted automatic defibrillators continuously analyze the electrical system of the heart
and sophisticated algorithms determine the selection of multiple response modes which
allow the device to save a failing heart and prolong the patient’s life.

The use of electronic medical records has been steadily growing over the past 10
years. Today about 42 % of US hospitals utilize some type of electronic documentation
[42]. In 2011 the US government introduced the concept of “Meaningful Use” initially
offering financial incentives to increase the adoption of computerized record systems.
The advance of electronic documentation has created a fertile basis for diagnostic and
therapeutic decision support systems, which have diversified significantly over time.
Some projects have taken into account newest findings in neurocognitive research
(“cognostics”) for their human–computer interface development, and are adapting
principles and methods to ideally support the human cognitive process with its inter‐
active analytical and constellatory operations [43]. Most recently, the market penetra‐
tion with small computing devices such as smart phones and table computers has
shifted medical referencing from printed media to electronic devices, though the
analysis of accumulated patient data is yet to be abstracted and codified in a manner
that would easily amplify the abilities of the clinical decision maker – but that is
anticipated to come.

5 The Digital Challenge

In view of these impressive advances in technology and computing it is not surprising
that a debate has been sparked as to whether the continuation of this development will
lead to a future situation in which computers will eventually outperform human doctors
and consequently assume larger roles in medical diagnostics and therapeutic decisions.
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The venture capitalist Vinod Khosla states in an interview published by Techcrunch on
January 10th, 2012 that

“we cannot expect our doctor to be able to remember everything from medical school twenty
years ago or memorize the whole Physicians Desk Reference (PDR) and to know everything
from the latest research, and so on and so forth. This is why, every time I visit the doctor, I like
to get a second opinion. I do my Internet research and feel much better.” [44].

In order to better understand the issues involved in the potential of computing tech‐
nology and artificial intelligence as it is integrated into medical decision making, it might
be worthwhile to differentiate between three different aspects of the process of delivering
health care to a patient: data formats and relationships amongst those, the accumulation
of large volumes of medical data contained within databases, and the reasoning process
used to interpret and apply those data to benefit a specific patient.

6 Data Formats and Relationships

Here we follow the definitions of Boisot & Canals [45], who describe data as originating
in discernible differences in physical states of the world. Significant regularities in this
data constitute information. This implies that the information gained from data, depends
on the expectations, called: hypotheses. A set of hypotheses is called knowledge and is
constantly modified by new information. This definition fits well to the human infor‐
mation processing model by Wickens [46]: The physical stimuli (cues) are selected by
the attentional resources and the perceived information builds working hypotheses H1,
H2, H3 … etc., which are constantly compared and judged against available hypotheses,
already present in the long-term memory. On this basis the best possible alternative will
be chosen and actions A1, A2, A3, … etc., performed according to likelihoods and
consequences of the outcomes – which can be perceived again via the feedback loop.
Wickens described the input “filter” as the “nebula of uncertainty” and this emphasizes
perfectly a general problem in decision making: we deal always with probable infor‐
mation. Each information chunk, item or whatever you call it, has always a certain
probability aspect (refer to lecture 7 in [10]).

Based on these definitions, the commonly used term “unstructured data” might just
capture random state descriptors – uncertainty – noise [47]. In Informatics, particularly,
it can be considered as unwanted non-relevant data without meaning within a given data
model – or, even worse, with an interpretation assigned in error, hence modelling of
artefacts is a constant danger in medical informatics [48].

The question “what is information?” continues to be an open question in basic
research. Any definition depends on the view taken. For example, the definition given
by Carl-Friedrich von Weizsäcker (1912–2007): “Information is what is understood,”
implies that information has both a sender and a receiver who have a common under‐
standing of the representation within a shared modelling system and the means to
communicate information using some properties of the physical systems. His addendum:
“Information has no absolute meaning; it exists relatively between two semantic levels”
implies the necessity of context [49].
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There is a distinct and insurmountable difference between human and computer data
formats. Computers – at least as current electronic methods of computation on the basis
of Von Neumann machines [50] are concerned – operate exclusively with digital data
formats. Content is stored as strings of binary data elements. Meaning and relationships
between content items are added by method of (human) assignment or (machine) calcu‐
lation, i.e., they are subsequently provided as additional data layer to the original content
data.

All data elements are provided to computer systems by means of human interaction
(e.g., keyboard, touch pad, etc.), technical devices (sensors, microphones, cameras, etc.)
or secondary data generated through calculation of previously available data. As outlined
above, regardless of the original data format, making data available to computer tech‐
nology has an absolute requirement of translating data into a binary format, regardless
of the original complexity. All relationships between data elements are initially stripped
from the occurrence observed, though some may be added back and preserved for future
use (e.g. machine learning) by adding additional documentation. As such, every pixel
of a picture file has no “knowledge” of its neighbor pixel and the composition of the
picture is provided by a separate instruction, providing placement of the pixel within a
defined grid format. This feature provides the power and flexibility of digital image
processing, as individual elements can be altered without affecting the remainder of the
composition.

Humans, on the other hand, have the luxury of a primary experience of their envi‐
ronment. We traditionally speak of our five senses, sight, hearing, taste, smell and touch,
though other senses also provide data, such as temperature, balance, pain, time and
another less well-understood class of senses commonly referred to as “intuition”. As we
experience life, it appears that the input from the individual senses interact and is stored
in a complex fashion with a high degree of connectedness between individual data items.
The human subjective experience overrules the (measurable) objective state and data
content is difficult to differentiate from data interpretation. This has been demonstrated
quite impressively in pictures such as the checker-shadow optical illusion [51, 52]. In
spite of the lack of objectivity, however, the skewed data perception by the human
observer has advantages, as it puts acquired data content into a contextual perspective
thereby allowing the all-important differentiation between relevant and irrelevant items.

This ability differentiates human perception from machine analysis. It is used
effectively to block automated software responses, e.g. with the so-called CAPTCHA
(“Completely Automated Public Turing test to tell Computers and Humans Apart”)
[53–55]. It is also the basis of the human ability to analyze visual motion in general
scenes which – as of now – exceeds the capabilities of even the most sophisticated
computer vision algorithms [56].

7 On Data and Context

Regardless of whether examining a computer system or the human brain, calculations
and conclusions can only be based on data available to the system. For technical systems
this means that the basis of all operations is the availability of binary input data. Though
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large computer systems such as IBM’s Watson have access to databases of many tera‐
bytes and can process data at the rate of more than 500 gigabytes per second, access is
still restricted to data published or digitally available in other formats. This makes these
systems vulnerable to the GIGO (“garbage in, garbage out”) phenomenon, which
plagues large data environments [57].

As in other fields with computerized data entry, medical documentation in health
records is biased by documentation guidelines, template requirements and constraints
on entry formats, as well as reimbursement requirements, etc., and does not accurately
reflect the complete array of signs and symptoms of a patient’s presentation.

The human brain, on the other hand, does not rely on single-bit data streams as its
input method. We have a complex and analog (not binary digital) experience of our
surroundings, which delivers simultaneous perception data from all senses. Acquired
information from one sensory organ is therefore never one-dimensional but experi‐
enced in the multidimensional context of the other senses, thereby adding meaning to
the data. In contrast to technical systems however, the human brain reduces the original
environmental data quantity, according to principles of interest or “meaningfulness,”
led by attentional resources [58] though the exact mechanism of information conden‐
sation and subsequent storage still remains poorly understood.

Some catchy numbers shall highlight the comparison between human and computer
(although the following numbers are theoretical and the exact function of human infor‐
mation processing is not known yet):

The human eye has been estimated to be able to perceive 6 Mbits/s of primary visual
information, however less than estimated 1 % of this information reaches the visual
cortex of the brain for further cognitive processing [59, 60]. By the time information
reaches our consciousness, the rate of information flow has been estimated to shrink to
about 100 bits/s for visual sources, 200 bits/s for all sensory sources combined [61]. At
this rate it would take about 300,000 years for a human to obtain the data utilized by
Watson in the 2011 Jeopardy! contest.

8 Reasoning Process

Reasoning is according to the common definition “the process of thinking about some‐
thing in a logical way in order to form a conclusion or judgment” [62, 63]. In medicine,
we apply reasoning to come to a conclusion about which diagnosis would be appropriate
for a patient presenting with a certain constellation of signs and symptoms. The reasoning
process typically applied by medical doctors has been described to include abductive,
deductive and inductive reasoning elements [35]. Upon presentation of the patient, the
physician will first generate domain-specific hypotheses based on an initial set of obser‐
vations (abduction). These initial hypotheses are confirmed and refined by additional
observations (induction). Textbook knowledge of the disease entity is then employed to
select the appropriate treatment to improve the patient’s health (deduction).

Adopting this concept of the medical reasoning process, it can be argued that man
and machine have complementary strengths and weaknesses (see Table 1). The abduc‐
tive component provides the basis for hypothesizing known causes or diseases that
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imply the observed symptoms. This initiates the diagnostic process and is uniquely
supported by the human high dimensional intrinsically correlated mechanism of
perception which includes concrete observations that can be measured and documented
in the record and is highly supported by soft factors (sense of illness severity and
distress, emotional state, social environment, etc.), typically not documented or even
consciously recognized. The human brain is capable of rapidly associating this overall
picture with known disease patterns and can thereby not only very efficiently postulate
the hypotheses within the abductive process but also intuit measures to manage cases
in which the observed pattern does not sufficiently match known entities. The medical
literature is full of examples of unique presentations in which the treating physician
invoked a creative process of expanding hypotheses beyond what had previously been
known or documented (as an example and fun reading please refer to a recently
published report by Rice et al. [64]).

Table 1. Medical Reasoning: Human vs. Computer

Reasoning Process Human Computer
Abductive 
Hypothesis generation 

Uniquely capable of complex 
pattern recognition and 
creative thought. 
“the whole is greater than the 
sum of its parts” 

Matches multiple individual 
correlations from extensive data 
banks based on preconceived 
algorithms. Secondary 
construction of relationships. 
“the whole equals the sum of its 
parts” 

Inductive 
Symptom → Disease 

Limited database. Subject to 
biases - Anchoring bias - Confirmation bias - Premature closure 

Extensive database. Probability 
based on Bayesian statistics, no 
significant bias. Limitation 
based on available data. 

Deductive 
Disease → Symptoms, 
Treatment 

Limited database. Personal 
intuition and experience affect 
decision making. 

Extensive database. Application 
of rules of evidence based 
medicine with potential biases. 

Computerized systems, on the other hand, only can use data supplied as binary code
which is processed in pre-conceived algorithms and have no original perception of
“Gestalt.” Relationships are based on correlations extracted secondarily from extensive
databases, however the whole remains equal to the sum of the parts. What seems elusive
is an information model or structure that emulates the emergence of genuinely novel
concepts and ideas the human mind is capable of, without succumbing to a reductionist
view of acknowledged but unformulated physician insights. At the very least, the infor‐
mation system support would have to consider a wider breadth of feasible hypotheses
guided by the deeper experiences of physicians, which would require a much more
sophisticated and extensive conceptual underpinning of the language in which hypoth‐
eses are expressed.

Human reasoning in the practice of medicine is, however, hampered in the inductive
process of confirming and refining abductive hypotheses due to biases and poor under‐
standing of probability calculations. The tendency of physicians to retain their initial
hypotheses even in the light of contradicting data is a well-described phenomenon [65, 66].
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Multiple concepts of bias are described in this context:

• Anchoring bias: focusing on a single concept before sufficient data is available to
support it,

• Confirmation bias: gathering only information to support an hypothesis, and
• Premature closure: terminating the reasoning process and eliminating evaluation of

alternative explanations prematurely;

Computer systems are not prone to these biases. The computer has no urge to favor
one hypothesis over another but rather uses information from extensive medical data‐
bases as entry data for probability calculations, often along the lines of Bayesian statis‐
tics. Conceptually this approach is supported by the probabilistic nature of information,
and the role of reasoning to calculate and identify the most probable hypotheses. In
contrast to computer algorithms, a recent study reports that most physicians misunder‐
stand the underlying probabilistic logic of significance tests and consequently often
misinterpret their results. The study concludes that a solid understanding of the funda‐
mental concepts of probability theory is becoming essential to the rational interpretation
of medical information per se [48].

One of the earliest software tools in medical reasoning, MYCIN, developed by the
Stanford Medical Center in the 1960’s was based on the concepts of inductive reasoning
[67, 68]. In the same manner, well-designed clinical reasoning software could be of
significant value in alerting physicians about possible bias in their decision process,
assisting in the probability calculations and helping to minimize or avoid clinical error.

Sophisticated access to the knowledge of large medical databases could also assist
in the deductive phase of medical reasoning. In selecting the most likely diagnosis
among a selection of differential diagnostic considerations, specific tests and exams are
necessary. Physicians generally have a very poor track record in selecting the course of
clinical tests that provides for the most efficient information gain. Often studies are
ordered according to individual habits with limited understanding or consideration of
how the test results affect the likelihood of a disease being present or not. Software with
access to extensive data regarding prevalence of disease entities in specific populations
as well as the sensitivity and specificity of diagnostic studies would offer guidance to
an efficient selection of tests to confirm or refute a diagnosis as it relates to a particular
patient presentation.

Once a diagnosis has been established, the decision on therapeutic interventions can
also be assisted by medical software. Unlike their human counterparts, computers have
access to all published information and recommendations and can suggest the interven‐
tion that is most current. In addition, the broader influence of historical data as well as
subtle trends can be considered, which is difficult and time challenging for humans. Since
2011, IBM Watson’s capabilities in assisting in treatment decisions are being studied by
multiple medical facilities, including Columbia University, the Memorial Sloan-
Kettering Cancer Center as well as the Cleveland Clinic [69]. In the German speaking
world progress has been made particularly at Graz University Hospital [18], and Vienna
University Hospital [70] – two of the largest hospitals in Europe.

Computerized assistance in medical treatments are based on the principles of
“evidence based medicine,” an approach that is led by the idea that the best treatment
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is one based on the results of published trials and applies findings to the individual
patient. While this treatment philosophy represents an understandable ideal, it is subject
to significant limitations, among others: selection of study population, publication bias,
bias based on financial incentives and errors in study results due to incomplete under‐
standing of the biological system (e.g., Simpsons paradox [71]). In addition, computer
generated treatment recommendations exclude the personal experience and intuition of
the treating physician. Recent research further elaborates on the dual processing theory
of human cognition [72] and a recent study reports that reasoning and decision-making
can be described as a function of both an intuitive, experiential and affective system
(system 1) and/or an analytical, deliberative processing system (system 2) [73].

9 Future Challenges

Faced with unsustainable costs and enormous volumes of under-utilized data, health
care needs more efficient practices, research, and tools. It is our opinion that there is
tremendous potential in harnessing the power of modern information technology and
applying it to the medical sciences.

We believe that the challenges and future work needed to support medicine, health
and well-being with software products can be categorized in three distinct areas: organ‐
izational (including administrative and political), technological and educational:

Area 1: Organizational/administrative/political
• data access and data ownership issues;
• balancing legitimate privacy concerns with the benefits of access to large amounts

of anonymized open clinical data for public and personal health assessment;

Area 2: Technological
• building new software products based on existing technology and using available

digitally stored data elements, with a special focus on visual representation of
complex clinical data, trending of individual health parameters and weak signal
detection;

• developing intuitive medical record systems to allow for improved documentation
of the process of care and medical reasoning and promoting continuity of care during
the hand-off process between health care providers

• enhancing digital data capture through newly designed intelligent user interfaces and/
or secondary processing by means of natural language processing and content tagging

• developing new hardware products to automatically capture relevant physiological
data, e.g. along the lines of the quantified self movement

• promoting preventative care by analyzing large amount of high quality clinical data
to detect weak signals that serve to risk stratify for future health events

• continuing research in artificial intelligence and machine learning and testing
concepts of software systems acting as legitimate sparring partners in sophisticated
medical decision making, which is still the core area of biomedical informatics [56].
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Area 3: Educational
• promoting and supporting interdisciplinary events in which software engineers and

medical professionals exchange ideas and concepts and develop a common language
in describing domain specific needs.

We envision a future where medical doctors can ask questions to the available data
and have an integrative overview of both the clinical patient data and -omics data (e.g.
genomics, proteomics, metabolomics, etc.) [74]. Software support in personal and global
health data would allow the expert to find and diagnose diseases in advance, before
symptomatically apparent. In this form of data-centric medicine, prevention could really
become efficient, and the dream of a personalized medicine approach can become true
[75]. Although both science and engineering are making significant progress, a lot of
work remains to be done within the coming years for this vision to become a reality.

The integration of technology into clinical medicine includes at least three broad
classes of challenges. In our discussion regarding the role of Artificial Intelligence, it is
clear that there are a large variety of technologies that can begin by augmenting and
amplifying the value of clinical practioners:

(1) improvements in diagnostic sensing and imaging; capture and rapid deployment of
new medical knowledge,

(2) logistics and management improvements in both small clinics and hospitals, and
(3) improvement in the capture, security, and use of medical data.

Not all of these challenges are technical. In fact 2 and 3 are largely organizational
challenges, partly due to educational lag and the pace with which modern medical
management adopts technologies that are already available. These include not just
actionable medical knowledge and technology, but operational management and tech‐
nology procurement. Challenge 3 is largely about the development and exploitation of
patient data, where two major impediments exist. One is simply the evolutionary adop‐
tion of standards of data capture and use, partly at capture time, where capture, storage
and open access must be addressed. Subsequent to that, medical ontology systems, which
provide the foundation for aggregating data, and using analytics (machine learning) to
find trends and help improve clinical practice.

A more serious challenge is the development and deployment of medical data gover‐
nance models, into which public, government, and medical organizations can collaborate
to develop the trust to actually use medical data. Many jurisdictions are recognizing that
data security methods have never been better, so that the governance of medical data,
and building public trust for its value is the key.

Thus, in the effort to achieve superior and cost-effective medical care by virtue of
integration of physician expertise and computerized clinical decision support systems
(CDSS), the following issues need to be addressed:

Issue 1. Negotiating the contradiction between structured digital data capture and the
expressive narrative in clinical documentation: Whereas downstream use and reuse of
clinical data in decision support systems requires data that is highly structured and
standardized, practicing clinicians demand documentation systems that afford flexibility
and efficiency and easily integrates into busy and hectic workflows [76]. In order to

Medicine and Health Care as a Data Problem 33



successfully implement computerized clinical support systems, EHR solutions will have
to be developed in a way that satisfy the needs for clinical workflow support, documen‐
tation of unsuspected circumstances, machine readability and structured data capture.

Issue 2. Development and adoption of a standardized biomedical “language”. Auto‐
mated data capture processes and electronic health records are producing data sets too
large to be manually analyzed or processed. Therefore it is important that clinical data
can be tagged according to a common biomedical ontology to allow for widespread
international data sharing and analysis [77].

Currently several competing ontologies are being used, serving various interests in
the biomedical domain (e.g. UMLS, MeSH, GALEN, SNOMED, ICD), however, all
these are difficult to use and rather impossible to map to each other due to inconsistent
representation.

Issue 3. Regulatory and legal framework. Legal exposure to practicing physicians can
result from errors due to flawed design or functionality of computerized clinical support
systems, or their improper use. Currently there exist few standards for the design and
development of automated decision support systems and there have been calls to enhance
current functionalities and create tools to avoid automation associated errors [78].
Changes to the regulatory framework have been recommended [79]. Furthermore, as
recommendations based on computerized algorithms and decision support systems
become part of the practice reality in the medical field, legal structures need to be adapted
to allow physicians to base diagnostic and treatment decisions on their individual
acumen and expertise, even if in disagreement with machine recommendations, without
immediate legal exposure.

Issue 4. Inhibitory medical data protection regulations. While patients have a valid
interest in protecting confidential medical data, overly protective limitation to access
community health care data thwarts medical research and knowledge development and
can harm general public health interests. In the interest of advancing medical knowledge
and quality of care it will be necessary to increase access to biomedical information
whilst at the same time protecting legitimate individual privacy interests.

Issue 5. Creating a dynamic educational system. It is shocking that the average transfer
time for medical knowledge from initial research to widespread implementation in
medical practice has been estimated to be between 12 and 17 years [80]. As we increase
our ability to fuel computerized clinical decision support systems with real time date,
processes need to be developed to extract knowledge regarding diagnoses and optimal
treatment and make this available to the medical practitioners. Adjusting to this dynamic
decision environment will require a new mind set in programmers, policy makers and
practitioners.

10 Summary

Since their early beginnings, more than half a century ago, computer systems have
evolved into highly complex data environments that are able to rapidly deliver vast
amounts of information. It has been postulated that the computing power of advanced
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systems will be able to provide medical care to patients in the near future that will be
more efficient and of higher quality and lower cost than currently offered by physicians.
While this is probably overly enthusiastic, current developments in medical software
promise an exciting future for physicians. Needed information will be delivered to our
fingertips without delay. Intelligent selection algorithms will allow us to rapidly review
case-relevant studies and protocols.

Unusual constellations of signs and symptoms will be screened for rare diseases and
suggested for consideration. Our electronic medical records will be smart in prompting
us to answer only the questions that are relevant for case-specific decision-making.
Graphical user interfaces will make it easy to detect and review even subtle trends and
compare symptom constellations of the differential diagnoses under consideration.

Software capabilities have graduated to the professional league of medical care. As
the pilots in the diagnostic and therapeutic process, we as physicians are now called to
step up to the plate and engage in active conversations with software developers and IT
departments. Mustering this initiative will allow us to leverage the unique strengths and
capabilities of both information technologies and medical sciences into powerful and
effective health care services of the future in which doctors will be able to navigate the
complex landscape of a patient’s health information similar to how an airline pilot
manages a complex flying machine with the assistance of a the sophisticated flight data
display of a computerized glass cockpit.

Computers cannot become better medical doctors. Medical doctors can become
better medical doctors with the support of smart hospital systems [3]. Information tech‐
nology and medical sciences are not battling for territory in a zero sum game. If we
approach it correctly, everyone wins, most importantly: our patients!

11 Epilogue

As for the triumph of IBM Watson in the Jeopardy! game show: the amazing observa‐
tion, one may argue, is not that Watson won, employing its database of four terabytes,
cluster of 90 IBM Power 750 serves each using a 3.5 GHz Power7 eight core processor
and able to push the response button within 5 ms, 20 times the human response time.
The amazing thing is that the human contestants scored. Just imagine what the two forces
combined could achieve [38].
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Abstract. This chapter outlines spatial health systems and discusses
issues regarding their technical implementation and employment. This
concerns in particular diseases which manifest themselves in the spa-
tiotemporal behaviours of patients, showing patterns that enable con-
clusions about their underlying well-being. While a general overview is
given, as an example the case of patients suffering from Alzheimer’s dis-
ease is examined more carefully in order to treat different aspects detailed
enough. Especially, wearable and ambient technologies, activity recogni-
tion techniques as well as ethical aspects are discussed. The given litera-
ture review ranges from basic methods of Artificial Intelligence research
to commercial products which are already available from the industry.

1 Introduction

In the last two decades significant progress has been made in pervasive computing
technologies and Artificial Intelligence research. Many application areas benefit
from these developments and encounter their challenges with new technologies.
One such area is the field of health that itself divides into many subareas, one
of which being concerned with the application of pervasive technologies.

The employment of pervasive computing technologies in the health sector
motivated the introduction of the dichotomy between health information sys-
tems and spatial health systems [38–40]: While the former enables health organi-
sations to interchange information and provide patients information about health
c© Springer International Publishing Switzerland 2015
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care, spatial health systems are about the gathering and evaluation of informa-
tion about the spatial behaviours of patients. In particular the spatiotemporal
dimension of the behaviours of patients gain support by these technologies which
monitor, interpret, or even directly aid patients acting in space and time. Indeed,
the way how humans move around shows to be the fundamental objective for
spatial health systems and is therefore of great importance for the design of
spatial health systems.

2 Glossary

– Activities of daily living (ADL): common activities, usually self care activities,
that an individual performs during a day. Typical activities include eating,
bathing, dressing, grooming, working, and homemaking.

– Ambient intelligence (AmI): refers to environments that are sensitive and
responsive to the activities of people; AmI is realised by a diversity of methods
it brings together from different areas like pervasive computing, ubiquitous
computing, context awareness, profiling, and human-centric computing.

– Ambient technologies: a collection of technologies that are placed in the envi-
ronment for monitoring occupants; it is conceived of as one of the subareas
of AmI. In the present paper this notion is employed in order to make the
distinction between ambient and wearable technologies.

– Context information: spatial, temporal, or other information, such as vital
signs, relevant for interpreting a specific situation, for example to recog-
nise ADLs. Context information is either obtained through sensors or other
sources. Artificial intelligence research investigates methods for reasoning
about context information.

– Intelligent biomedical clothing (IBC): clothes with sensors that are close to
or in contact with the skin, measuring vital signs, such as the heartbeat.
Intelligent biomedical clothing fall within the scope of wearable technologies.

– Mini-mental state examination (MMSE) or Folstein test: a 30-point question-
naire test which is employed to detect cognitive impairments, in particular
dementia. It is employed for both to determine the severity of impairment
and to monitor its course of changes.

– Neurodegenerative disorders: disorders of the central nervous system, for
example Alzheimer’s disease (AD), Parkinson’s disease (PD), or multiple
sclerosis (MS) all of which affecting motor behaviours.

– Sensory impairments: visual and hearing impairments. Both kinds of impair-
ments do influence the spatiotemporal behaviours of individuals to a particu-
larly high degree. They are therefore of interest for spatial health systems.

– Spatial health systems: those systems that monitor and evaluate the spa-
tiotemporal behaviours of patients. This notion is to be distinguished from
health information systems which are basically about the management of
health information.

– Wearable technologies: mobile technologies attached to the mobile patient. An
example is intelligent biomedical clothing. One of the most common applica-
tion areas of wearable technologies is the monitoring of movements.
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3 State-of-the-Art

In the following, an overview is provided about typical diseases affecting the
motion behaviours of patients. To get a more comprehensive view on how the
analysis of motion behaviours can be analysed, the succeeding section presents
a study about the detection of changes in the motion of patients suffering from
Alzheimer’s disease. Besides the analysis of motion behaviours there are also
technologies that can be worn by patients in order to monitor their vital signs
while moving around. Such technologies are shown in the next section. Typical
interpretation methods of motion behaviours are presented afterwards. Eventu-
ally, ethical aspects are discussed which are of particular importance when it
comes to the monitoring of how and where patients move around.

3.1 Diseases Affecting Motion Behaviours

Worldwide, the population is aging and the number of persons above the age of
60 years was estimated at 605 million in 2000 to increase to 2 billion in 2050 [75].
With age the cognitive and sensory functions change as observed in longitudi-
nal studies [26]. The number of persons with dementia was estimated at about
25 million in 2000 [110]. About 6.1 % of the population 65 years of age and older
suffered from dementia. The predictions indicated a considerable increase in the
number of demented elderly from 25 million in the year 2000 to 63 million in
2030 (41 million in less developed regions) and to 114 million in 2050 [110].

The WHO’s International Classification of Functioning, Disability and Health
recognises a broad definition of mobility, including both indoor and outdoor
movement as well as the use of assistive devices and transportation [58,72].
The following key determinants of mobility have been detected by [29]: cogni-
tive, psychosocial, physical, environmental, and financial influences. The relative
impact of these factors depends on the specific mobility context for each indi-
vidual. Moreover an important role in the mobility context is played by the
chronic medical conditions and the cognitive or sensory impairment caused by
the chronic condition. That is, in cognitively, visually, or hearing impaired peo-
ple, the level of mobility particularly decreases, affecting the ability to travel
independently and to conduct activities in daily life outside the house [23].

The three main groups of these disorders, namely neurodegenerative disor-
ders, sensory impairments, as well as chronic diseases are discussed in turn.

Neurodegenerative Disorders. In particular motor behaviours encompass a
range of phenomena which are observable in spacetime at different levels of detail,
ranging from the spatiotemporal trajectories of body parts during a motion act –
such as the motion of the knee joint while walking – to the causal structure of a
composite activity such as commuting from home to work using multiple modes
of transport.

Several neurodegenerative disorders of the central nervous system, for instance
Alzheimer’s disease (AD), Parkinson’s disease (PD), or multiple sclerosis (MS)
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affect motor behaviours. Depending on the specific disorder, the changes express
themselves at different levels of detail. The characteristic tremor caused by PD
affects motion trajectories of body parts (where the tremor can be considered a
superimposed high frequency signal). Spastic palsies caused by diseases such as
MS reduce the range of motion of affected limbs and joints, and show a specific cor-
relation between joint motion and EMG data (cp. [102,103]). Wandering episodes
caused by AD affect the spatial structure of indoor motion paths [38,56]. Finally,
disorientation during outdoor activities causes discrepancies between predicted
and observed geographic positions in transport routines – such discrepancies can
be used by assistive systems supporting outdoor navigation for detecting disori-
entation and for providing appropriate orientation hints [48,79].

Sensory Impairments. Another aspect of functional decline is the visual
impairment with a significant increased prevalence with the age. Worldwide,
about 314 million adults are visually impaired: 82 % of them are aged 50 years
and older and it is expected that this number will double in the next 25 years [15].
Moreover, individuals with visual impairments caused by aging have frequent
hearing impairments as well. Loss of hearing acuity is part of the natural aging
process: hearing impairment was experienced by approximately 24 % of those
aged 65 to 74 and almost 40 % of the persons over age 75 [105]. In addition,
declines in cognition, vision or hearing are associated with decline in functional
status [105] and mobility [69].

Chronic Diseases. Chronic diseases are long-term, which is usually defined as
lasting more than 6 months, and might have a significant effect on a person’s
life. Management to reduce the severity of both the symptoms and the impact is
possible in many conditions. This includes medication or lifestyle changes, such
as diets, exercises, and stress management. At the same time, it should be noted
that chronic diseases may get worse, lead to death, be cured, remain dormant,
or require continual monitoring.

Chronic disease management tools are mainly home care systems, which
focus on vital sign monitoring and the reports of patients on specific situations.
Fewer of them are accompanied with patient interfaces for communication and
education purposes. The generic system architecture of Chronious [4,114] sup-
ports chronic disease management: Apart from vital sign monitoring and patient
reporting, the system exploits significant environmental measurements, such as
those concerning the context of the patient in order to classify events as alerts or
not. Chronious developed a smart wearable platform, based on multi-parametric
sensor data processing and fusion for monitoring people suffering from chronic
diseases in long-stay setting. In addition, the proposed platform offers interfaces
for monitoring, drug intake, dietary habits, and bio-chemical parameters con-
cerning the health situation. Although not investigated yet, the correlation of
those parameters with motion behaviours of patients can be seen as another
application of spatial health systems.
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3.2 Motion Behaviours of Patients Suffering from Alzheimer’s
Disease

After having summarised a number of disease patterns which influence observ-
able behaviours, this section outlines a recent study [57] that provides evidence
that the spatiotemporal structure of activities is indeed affected by AD. Inter-
estingly, those activities are measured at a stage where such behavioral changes
are not evident to a human observer. This is a fundamental argument for the
employment of monitoring technologies in spatial health systems.

Background. AD leads to significant changes in the temporal structure of activ-
ities. Abnormal motion behaviour and degeneration of the sleep-waking cycle are
among the most severe behavioral symptoms [32]. An early detection and even
a prediction of these behaviours would allow a timely onset of interventions
that aim to delay the manifestation or exacerbation of symptoms and reduce
the need of institutionalized care [99]. To date, medical history and behavioral
rating scales are the main diagnostic instruments to detect abnormal motion
behaviours [60].

It is therefore of interest to establish behavioral measures that are less depen-
dent on human observers. Although there is a substantial number of actigraph-
ical studies aiming at establishing behavioral markers at the population level,
cp. [25,61,73], these studies did not yet analyse the capabilities of the identified
markers to reliably classify individuals as “AD” or “not AD”. Using behavioral
cues as determined by automated sensor-based monitoring as diagnostic instru-
ments is interesting for three reasons:

– data can be acquired in the everyday environment of a person without observer
interaction,

– behavioral cues may be predictive for the manifestation of behavioral distur-
bances,

– once behaviour analysis is in place, assistive functionality can be added for
compensating errors in daily routine activities and for other forms of ambient
assisted living [13,46–48].

Subjects and Data. A conducted study was based on 23 dyads (n = 46 sub-
jects) with one partner diagnosed with AD and one partner with no cognitive
abnormality detected (healthy controls, HC). By using a dyad setup, we intended
to ensure that for every lifestyle present in the study one subject diagnosed with
AD and one healthy control were available, thus alleviating the variance induced
by differences in lifestyle. Severity of cognitive impairment was assessed by a
comprehensive set of instruments including the MMSE score [33], which serves
as widely established measure for the severity of overall cognitive impairment.

The partners in a dyad were asked to simultaneously record about 50 contin-
uous hours of everyday activity using an ankle-mounted 3 axes accelerometric
sensor with 50 Hz sampling rate. This schedule guaranteed that we were able
to record a complete day-night cycle (from 22:00 at day 1 to 22:00 at day 2)
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for each subject. The average recording duration for the accelerometric motion
protocols was 53.4 h (SD = 8.9 h), resulting in an average number of 9.61 × 106

samples (SD = 1.61 × 106 samples) in a data set. In total, 2455.8 h of data were
recorded, with a total data volume of 18.4 GByte.

Signal Processing. For building a discrimination model we chose to use spec-
tral features of the activity level obtained from the recorded motion protocols.
This activity level is given by the envelope curve of the acceleration magnitude.
Analysis of the envelope curve is a well established method for activity analysis
based on accelerometric data, cp. [104]. We converted the three-axes acceleration
sample vectors (x, y, z) to a scalar signal by computing the acceleration mag-
nitude m =

√
x2 + y2 + z2. In order to remove gravitational artifacts and high

frequency noise from the magnitude signal, we applied a sinc band-pass filter
with band edges of 0.5 Hz and 5 Hz (cp. [104]). (We chose an upper band edge
of 5 Hz rather than 11 Hz as [104] because the main carrier signal component
is created by the individual’s walking motion, which will have a frequency well
below 2.5 half-steps per second, being the Nyquist limit induced by the 5 Hz
upper band-pass edge.) The resulting signal can be considered as a carrier for
the activity level, which we recovered by rectifying and low-pass filtering using
a sinc low-pass. Two examples for the resulting envelope curve signals are given
in Fig. 1.

We assumed that behavioral episodes specific to AD could occur at any
point in time. We therefore needed a time-invariant feature set, which is for
instance provided by the magnitude values of the complex coefficients given by
the envelope signal’s discrete Fourier transform. Assuming an upper band limit
of 50 mHz for the envelope (20 s per cycle), the discrete Fourier transform of
the envelope signal in the 22:00-22:00 window will contain coefficients X0 to
X4320. Coefficient X0 can be dropped (it contains the constant offset, known as
“DC offset”). The remaining coefficient vector X1:4320 was scaled to unit energy.
Thus, any effects of “more” or “less” activity (including variances in sensor
sensitivity and sensor bias) are removed from the data, leaving just the relevant
spectral structure for further consideration by the classification methodology.
The magnitudes of the scaled coefficients span a feature space of 4320 dimensions.
We observed that neither individual Fourier coefficients nor simple derived scalar
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Left: female person, diagnosis AD (GFD1). Right: male person, diagnosis HC (GMD0). X axis:
recording hours, Y axis: activity level. Grey regions signify night (22:00–7:00).

Fig. 1. Preprocessed data sample from a dyad
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features (entropy, spectral centroid, bandwidth) did show a significant group
separation, requiring the use of discrimination models with higher dimensionality
for achieving reasonable classification performance.

The number of samples (46 subjects, 23 per class) is much lower than the
number of Fourier coefficients (4320). Therefore, we used principal component
analysis (PCA) to reduce the number of dimensions. PCA computes eigenvectors
of the correlation matrix, which intuitively can be understood as independent
“activity structures” from which daily routines are composed. Each eigenvector
is a dimension of the transformed feature space. We refer to the coefficients of a
transformed feature vector as “PC features”.

Classification Models. Our core objective was to determine the association of
motion behaviours with a diagnosis of AD. We reframed this into the problem to
classify a given subject into the AD or HC group, based on his/her PC features.
We built classification models for several popular classifiers that were allowed
to use up to five PC features to discriminate between AD and HC subjects.
We limited the number of features to five to avoid an overfitting of the limited
number of samples [35]. Quadratic discriminant analysis (QDA) achieved a clas-
sification accuracy of 91 % in leave-one-out cross-validation (specificity = 0.96,
sensitivity = 0.87; see also Fig. 2). In absolute numbers: 22 true positives (AD
subjects classified as AD), 20 true negatives, 3 false positives, and 1 false neg-
ative. QDA achieves the highest performance considering ROC plots, accuracy,
F1 score, and AUC (cp. Fig. 2).

Regression Models. We were additionally interested in the association between
the MMSE score and the activity envelopes.

Based on the Fourier coefficients as predictor variables, we built linear models
using MMSE as regression target. Predictor variables for the model were selected
by applying the step function of the statistics system R to an initially empty
model. Again we restricted the number of predictor variables to at most five to
avoid overfitting.

With respect to predicting the MMSE, we found Fourier coefficients to per-
form better than PC features. This mode explains 70.3 % of the variance in
MMSE (R2 = 0.703, F(5,40) = 18.9, p < 0.001). For the AD subset values of R2

up to 0.95 (22:00–22:00 window,
√

MMSE target) were achieved. A comparison
of predicted and true MMSE using is given in Fig. 3.

Discussion. Our data indicate a high classification accuracy over a range of clas-
sification approaches and parameters based on spectral motion features, suggest-
ing that the spectral structure of activity is associated with a clinical diagnosis of
AD. Although the resulting surrogate markers of motion behaviours do not easily
offer themselves to a clinical interpretation, the overall concept of an impairment
of the temporal structure of everyday motion behaviours agrees with a range of
neurobiological and clinical studies in AD. AD patients exhibit altered synchro-
nisation among multiple circadian oscillators associated with altered clock gene
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expression [100,116]. In particular, degeneration of the suprachiasmatic nucleus
(SCN) of the hypothalamus, the master clock of the brain, and its disconnection
with other circadian pace makers, such as the pineal gland, has been documented
in AD dementia [113].

The available signal resolution is high enough to discriminate individual steps
in a motion protocol, thus providing the option to recreate the spatial trajectory
followed by the subject during the recording period. For instance, Foxlin [34]
has developed an algorithmic approach for reconstructing such trajectories from
foot-mounted accelerometers and gyroscopes. Using a different sensor modality,
Kearns et al. [56] show that spatial trajectories can be employed for analysing
wandering behaviours of dementia patients.

In summary, behavioral consequences of AD manifest themselves as impair-
ments in everyday behaviours. They are important determinants of further dis-
ease course and institutionalisation. However, semiquantitative rating scales,
such as the CMAI [108] or the NPI [24], only detect the late stages of these
behaviours when they lead to social and clinical disabilities. Our findings are
encouraging as they suggest that the easily accessible assessment of early signs
of forthcoming decline of motion behaviours using automated sensors may be
possible and could have a major impact on the development and application of
interventions to prevent or attenuate behavioral impairments in AD.

Note that providing on-line assistance – the last point mentioned in the Back-
ground section – requires fine-grained analysis with high temporal resolution, as
such systems have to react within minutes or seconds after the onset of specific
motor behaviours. The envelope curve analysis used in the study presented here
does not provide the required detail. Although we have shown that the spatial
level of motion detail does not necessarily enforce a specific methodological app-
roach, there remains a gap at the temporal level – the gap between gross motor
behaviour analysis required for the purposes of behaviour detection and predic-
tion as well as detailed motion behaviour analysis for assistive purposes such as
presented in [47].

3.3 Moving Around with Wearable Technologies

Wearable sensors, such as activity sensors used in fitness monitoring devices,
have been in use for quite some time. For example, the pedometer, perhaps the
most simple physical activity sensor, was invented in 1780 by Abraham-Louis
Perrelet [1]. However, commercial activity monitoring technology that employs
modern integrated electronics is a relatively recent invention and has been largely
targeted toward the fitness market [5,7,8]. These technologies rely on a combi-
nation of accelerometers and gyroscopes to determine the type of movement the
user is performing and act as data loggers to monitor the activity level of a person
throughout the day. Most newer devices also offer wireless synchronisation with
other devices, such as smartphones, typically using Bluetooth for the purposes
of visualising and tracking fitness levels and setting fitness goals [5,7,8]. Some
of these wearable fitness monitors [5] also act as sleep monitors, which measure
the duration and quality of sleep by detecting movements or sleep interruptions
at night.
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Current research into using wearable sensors for movement detection have
mainly concentrated on extracting useful characteristics from wearable accelero-
meters and gyroscopes [36,51,54,68,101,118–120]. These sensors are typically
part of a wireless sensing module attached to multiple points on the body of a
person to track the movement characteristics of that person as she goes about
her daily activities. One of the most important characteristics that researchers
have focused on is the gait of a person, with a specific interest in the gait of the
elderly and those suffering from Parkinson’s disease [36,51,68,81,82,91,94,118].
The importance of gait measurements lies in the fact that gait is an important
indicator of frailty and fall risk for the elderly [90]. There have been a number of
studies [45,70] which suggest gait variability as a key predictor of falls and that
reduced gait velocity can be seen as an indicator of cognitive impairments [19,94].
Additionally, activity patterns of the sensorimotor cortex which are involved
in movements have been analysed [49]; such studies become important in the
context of rehabilitation in order to investigate the reorganisation of the cortex
after a stroke.

More complex wearable GPS tracking systems can generate data from which
the mobility patterns of individuals can be derived, which would provide more
context for the physical activities of an individual [77]. These small devices typ-
ically contain a GPS receiver with a data logger, for example obtaining location
information every 10 s, inertial motion trackers, and a haptic indicator able to
generate acceleration. These sensors are present in most smart phones, which
enables a person not only to be tracked but also allows for the integration with
other devices [80]. Such systems not only give information on specific locations
and provide assessment of individual trips into the community, but enable the
assessment of mobility patterns, such as the day and time of walking to specific
places, the number of steps, or the walking frequency [88]. Further technical
solutions even enhance the mobility of specific target groups, for example, track-
ing combined with electronic tagging assist patients suffering from dementia [72]
and others have developed devices that assist visually impaired elderly [55].

In addition to wearable devices that measure the positions or movements of
an individual, there is a great deal of commercial wearable sensor platforms tar-
geted at measuring physiological signals to monitor various medical conditions.
These are relevant for spatial health systems since vital signs are normally corre-
lated with body motions and locomotion. Measuring these vital signs is possible
through intelligent biomedical clothing (IBC) which refers usually to clothes with
sensors that are close to or in contact with the skin. The sensors are enclosed in
the layers of fabric or it is the fabric itself that is used as the sensors. To such
sensors pertain piezo-resistive yarns, optic fibers, and coloured multiple layers.
IBCs have several advantages, starting with removing the task of placing the
sensors by nurses or other experts, providing a natural interface with the body.
Commonly, IBC is understood as the integration of sensors, actuators, comput-
ing, and power sources into textiles, with the whole being part of an interactive
communication network. Major prototypes are VTAM and WEALTHY [78,107]
as well as the Lifeshirt and SmartShirt [65,98]:
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– VTAM is a T-shirt made from textile with woven wires, dry ECG electrodes,
a breath rate sensor, a shock/fall detector, and two temperature sensors [107].

– Wealthy is a wireless-enabled garment with embedded textile sensors for simul-
taneous acquisition and continuous monitoring of biomedical signs like ECG,
respiration, EMG, and physical activity. It embeds a strain fabric sensor
based on piezo-resistive yarns and fabric electrodes realised with metal-based
yarns [78].

– LifeShirt is a miniaturised, ambulatory version of respiratory inductance
plethysmography. The garment is a lightweight, machine washable, formfit-
ting shirt with embedded sensors to measure respiration. A modified limb
two-lead ECG quantifies cardiac performance and a three-axis accelerometer
measures posture and activity [65].

– SmartShirt is a garment equipped with wearable computing devises that mea-
sure human heart rhythm and respiration using a three lead ECG shirt. The
conductive fiber grid and sensors are fully knitted in the garment [98].

Wearable sensors are able to capture personal physiological data from patients,
however the key limitation of such sensors is power and context. Since they are typ-
ically battery powered, wearable sensors require regular maintenance to ensure
functionality. Additionally, any wearable device requires the compliance of the
person wearing it, to ensure that the sensors are used as intended. Accelerometer
and gyroscope base sensors also cannot directly observe the world around them,
so that the context of the actions of a person in the environment is difficult to
infer. To compensate for this weakness, some researchers have tied accelerome-
ters to other more capable sensors to get context, such as outward facing video
cameras [66] and smart phones [67] to capture the locations and actions of a per-
son. There have also been hybrid approaches that use both wearable and ambient
sensors to detect falls [28] with the ability to verify falls using cameras. Such ambi-
ent technologies are discussed in the following section.

3.4 Moving Around with Ambient Technologies

Ambient sensors are a collection of technologies that are designed to be placed
in the environment for the purposes of monitoring any occupants by measuring
how the occupants interact with or change that environment. For the purpose
of understanding human health and well-being, we will limit our discussion to
technologies that focus on detecting the characteristics of how the occupants
move around in the environment. Even with this narrow scope, a wide variety
of sensors can be used, depending on the granularity of data that is desired.
For example, one could equip the environment with motion sensors in order
to sense what areas a person occupies during the day and to determine the
level of motion in those areas for the purposes of activity recognition. This type
of ambient sensor deployment has been extensively researched in academia for
the purposes of detecting Activities of Daily Living (ADL), defined as common
activities that a person performs to care for themselves [22,53,83,84,87].

On the other side of the spectrum, rich sensors such as cameras can be
employed to capture the motion of occupants in some environment. Human
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motion capture is perhaps the most comprehensive way of capturing movement
characteristics, as such systems are designed to track points on a human body
with high fidelity instead of just determining the regions being occupied. Using
commercially available technology, it is possible to recover the position and ori-
entation of all parts of the body of a person and her location in the environment.
These commercial technologies are commonly used for performance capture for
computer graphics animations [2,9,10] and leverage a variety of different tech-
nologies.

A commercial optical motion capture system to track key points on the body
of a user is deployed in [10]. This particular system uses a motion capture suit
that has optical registration devices embedded, which can be seen as the glowing
dots on the face and suit of the person. Systems that rely on this type of motion
capture require complex configurations of multiple cameras since each glowing
dot must be seen by several cameras in order for its position to be calculated.
Marker based motion capture systems can be highly accurate, since the points
they are tracking have a known appearance and simplistic motion capture suits
provide a uncomplicated background for tracking. In contrast, commercial tech-
nologies exist that do not require optical registration devices. Instead, such sys-
tems typically work by fitting a model of a human body to visual data acquired
by a computer vision system [95,106]. The last type of common commercial
motion tracking hardware uses wearable inertial sensors that sense acceleration
and rotation and does not use optical tracking at all. This type mounts the sen-
sors in a close fitting suit, both for repeatability and to prevent the sensors from
shifting away from where they are attached [2].

On the research side, much effort has been devoted to novel applications of
consumer grade technologies [16,89,94]. For instance, there are platforms which
were originally created for the video game market to provide a way for users
to interact with their games without a controller [6]. The result was an inex-
pensive depth camera, which is a camera that can measure the distances of
the viewable environment in front of the camera. Using a depth camera allows
applications to easily segment and extract a person from the background of an
image for applications such as gait analysis [6,94]. Other researchers employed
such platforms for activity recognition as well as for tele-medicine [121] in the
context of remote evaluation of mobility [16] and supervised rehabilitation exer-
cises [3,89]. Additionally, other researchers leveraged more conventional multiple
camera configurations in order to capture the positions and postures of users for
gait analysis and tele-therapy applications [18,94,111,115].

Ambient sensing technologies enable researchers to gather movement charac-
teristics and behaviours of a person and her interactions with the environment.
Thus, ambient sensors can be used to detect the context of the actions of a user
by measuring where she is moving in space and what she is interacting with.
Additionally, for optical based sensing systems, recordings can be kept for later
analysis by researchers to characterise more nuanced movements and behaviours.
Unfortunately, since the sensors are not attached to a person, physiological infor-
mation is typically not detectable, which limits detailed medical observations
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and the capturing of fine movements. But researchers at MIT’s Media Lab have
developed a system that detects the heartbeat of a person through variations of
the colour of the skin that correlates with the pulse; this provides a method to
add limited medical sensing to existing movement tracking systems [112].

3.5 Interpreting Motion Behaviours

The approaches to behaviour recognition that have been developed over the last
ten years range from logic-based to probabilistic machine learning approaches
[11,21,31,37,86,96]. Although the reported successes are promising, determining
the correct behaviour from sensor data alone is often impossible, since sensors
can only provide very limited information and human behaviours are inherently
complex. This holds especially for the behaviours of patients suffering from neu-
rodegenerative disorders which significantly affect the motor behaviours. Instead
of discussing the broad area of interpretation methods investigated in Artifitical
Intelligence research, we shall here focus on a number of approaches which are
of particular interest in spatial health systems.

Several researchers have realised that context information, in particular spa-
tial and temporal information, can be useful to improve the behaviour recog-
nition process [14,43,44,52,97]. It is then not a precise motor behaviour which
needs to be accurately determined but rather the location where it takes place,
in order to come to meaningful conclusions. A simple example is the intake of
breakfast that usually occurs in the kitchen, which means that if something is
happening in the kitchen, it is more likely to be breakfast than taking a shower.

Context information can be represented in a number of ways. Since it is
often imprecise or uncertain, the representations need to be of a probabilistic or
fuzzy nature. In the following, we discuss the advantages and disadvantages of
several approaches. We argue that using a probabilistic approach has shortfalls,
due to incomplete context information, and that using an approach based on
the concept of beliefs fails due to its complexity. We then make a case for fuzzy
logic, which not only provides a simple and robust mechanism for reasoning
about context information but also provides a means to represent imprecise
information.

Behaviours often take place in particular contexts, but there is usually no
one-to-one relationship between a behaviour and the context it occurs in. Rather,
given a certain behaviour, context information is determined according to some
probability distribution. If B is a behaviour (e.g. making breakfast) and C some
context information (e.g. in the kitchen), then P (C|B) is the probability that C
is true if B occurs (e.g. the behaviour takes place in the kitchen if we know that
the behaviour is making breakfast).

Given the conditional probabilities P (C|B), we can calculate conditional
probabilities P (B|C) using Bayes’ rule. This assumes that we know the con-
ditional probability for each context and behaviour. Moreover, we not only need
P (B|C) but also P (B|C1, . . . , Cn), since context information is usually corre-
lated. For example, an activity in the kitchen usually takes place while the
person is standing (e.g. to prepare a meal), but an activity in the living room
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is usually performed in a sitting position (e.g. to watch TV). Assuming that we
have knowledge of all the necessary conditional probabilities is unrealistic. In
addition, the result of using conditional probabilities might be counterintuitive,
as it does not align with how humans combine evidence.

Another shortcoming of probability theory is that probabilities have to add
up to 100 %. In cases where we have perfect information, this is not a problem.
However, when we do not have complete knowledge, this may lead to counterin-
tuitive results. For example, if we do not have any information that a behaviour
normally occurs in the kitchen, we cannot assign a probability of 0 % to P (B|C),
since this would imply that P (¬B|C) equals 100 %, which would mean that the
behaviour happens outside the kitchen (if it happens at all). From the viewpoint
of probability theory, P (B|C) = 0 does in fact not suggest lack of knowledge
about B occuring in C but the perfect knowledge that B never occurs in C.
It is therefore more adequate to assign a probability of 50 % to both P (B|C)
and P (¬B|C). However, this trick might produce inconsistencies in cases where
there are more than two hypotheses.

The Dempster-Shafer theory [27,92] offers a way out of this dilemma. It uses
the concept of belief (Bel) and plausibility (Pl) instead of probability to formu-
late uncertainty, where classical probability lies between belief and plausibility:

Bel(B|C) ≤ P (B|C) ≤ Pl(B|C)

Belief and plausibility is defined in the Dempster-Shafer theory on the basis of
a mass function, which assigns basic probabilities to the power set of the frame
of discernment.

Although the Dempster-Shafer theory has been applied successfully in the
context of activity recognition in smart homes [71], it is not a solution to rea-
soning about context information in general, since the Dempster-Shafer theory
is an even more complex framework than probability theory. In the following,
we discuss a simpler framework, which is not as rigorous from the mathematical
point of view but which provides a simple and robust way to deal with context
information. This framework is based on Zadeh’s fuzzy set theory [117].

Unlike traditional sets, fuzzy sets allow their elements to belong to the set
with a certain degree. Rather than deciding whether an element d does or does
not belong to a set A of a domain D, we determine for each element of D
the degree with which it belongs to the fuzzy set Ã. In other words, a fuzzy
subset Ã of a domain D is a set of ordered pairs, (d, μÃ(d)), where d ∈ D and
μÃ : D → [0, 1] is the membership function of Ã. The membership function
replaces the characteristic function of a classical subset A ⊆ D.

Rather than asking the question of what is the probability of a certain behav-
iour occurring in a particular context, we now pose the question as follows.
Given some context information C, to which degree is a particular behaviour
a C-behaviour? For example, if C is the day of the week, then we can ask for
the degree of the behaviour to be a Monday behaviour, Tuesday behaviour, and
so on. In terms of fuzzy sets, we define D as the set of the seven days of the



Spatial Health Systems 55

Fig. 4. Graphical representation of a membership functions that determines the degree
to which the visit of a relative falls on a particular day of the week.

week and μÃ as the membership function that determines to which degree the
behaviour or event occurs on a particular day.

For example, we might want to define a fuzzy set that reflects the degree to
which an AD patient is visited by a relative falls on a particular day, influenc-
ing his behaviour that is different when he stays home alone. The membership
function of such a fuzzy set is shown graphically in Fig. 4. Unlike probabilities,
the membership grades do not need to add up to 100 %.

In the example above, the context information is still crisp information,
despite the fact that it is used in a fuzzy set: for any visit, we can determine
precisely on which day of the week it occurs. Other context information might
not be precise, but rather conveys some vague information. For example, if we
know that a behaviour occurs near the kitchen, we usually do not know exactly
how many metres away from the kitchen the behaviour occurs. In this case, we
can represent the context information itself as a fuzzy set, as illustrated in Fig. 5.

Similarly, we can define a fuzzy set that expresses distances by rounding them
to the closest half metre – something we as humans often do when we perceive
distances, although not necessarily always on the same scale (see Fig. 6).

As the examples have shown, fuzzy sets can be used for associating behaviours
with context information and for representing imprecise context information.
Fuzzy set theory also provides us with a means to convert fuzzy sets back to
crisp sets, which is achieved with the notion of an α-level set. Let Ã be a fuzzy
subset in D, then the (crisp) set of elements that belong to the fuzzy set Ã with
a membership grade of at least α is called the α-level set of Ã:

Aα = {d ∈ D | μÃ(d) ≥ α}
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Fig. 5. A fuzzy set that maps distances to the qualitative values.

Fig. 6. A fuzzy set that approximates distances with a granularity of half a metre.

If the membership grade is strictly greater than α, then the set is referred to as
strong α-level set.

When reasoning with context fuzzy sets, we need to address the potential
problem of accumulating values, which we encounter in probability theory and
the Dempster-Shafer theory. To avoid this problem, we choose one of the schemes
for combining fuzzy sets that was originally proposed by Zadeh [117]. Given two
fuzzy sets Ã1 and Ã2 with membership functions μÃ1

(d) and μÃ2
(d), respectively,

then the membership function of the intersection Ã3 = Ã1 ∩ Ã2 is pointwise
defined by:

μÃ3
(d) = min{μÃ1

(d), μÃ2
(d)}

Analogously, the membership function of the union Ã3 = Ã1 ∪ Ã2 is pointwise
defined by:

μÃ3
(d) = max{μÃ1

(d), μÃ2
(d)}

The membership grade for the complement of a fuzzy set Ã, denoted as ¬Ã, is
defined in the same way as the complement in probability theory:

μ¬Ã(d) = 1 − μÃ(d)

In [117], Zadeh stresses that the min/max combination scheme is not the only
scheme for defining intersection and union of fuzzy sets, and that it depends on
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the context which scheme is the most appropriate. While some of the schemes
are based on empirical investigations, others are the result of theoretical consid-
erations [30,59]. However, [74] proved that the min/max operations are the most
robust operations for combining fuzzy sets, where robustness is defined in terms
of how much impact uncertainty in the input has on the error in the output.

To summarise, context information is often incomplete and imprecise. Proba-
bilistic approaches are widespread but frequently impractical and therefore some-
times not useful in real-world applications. Fuzzy logic can offer a way out of this
problem, as it provides robust mechanisms for dealing with uncertainty. While it
is the purpose of this section to outline a number of methods employed in order
to interpret behaviours of moving people under imprecise conditions, the spe-
cific conditions might significantly vary from application context to application
context [17,20,42], requiring adapted methods coping with specific application
constraints. Here, context information of locations are considered as a vehicle
to deal with the interpretation of behaviours. Another option is to precisely
analyse the trajectory of moving people [41,85]. However, this requires much
more precise sensor data which are often difficult to acquire.

3.6 Ethical Aspects When Monitoring Humans Moving Around

The fact that tracking systems such as GPS or Radio-frequency identification
(RFID) [50] are used in elderly population arise an ethical dilemma and an
impact on family or professional caregiver. Regarding this subject studies are
focused on:

– the attitude of the caregivers and the decision about the use of a tracking
system for people with cognitive impairments [62,64],

– the attitudes of older people towards the use of tracking devices [93],
– reflexions on different devices used in daily care of persons with dementia [76],

and
– providing recommendations for the question about who should decide about

the usage of tracking technology [63].

Findings were reported based on questionnaires in [62–64,93], and a qualita-
tive approach based on individual interviews [76]. One example of such a ques-
tionnaire included 23 items, each ranked on a 4-point Likert scale (1 = “do not
agree at all”, 4 = “very much agree”). The items covered several factors such as:
respect for the elderly person’s autonomy (“An individual has the right not to
be tracked.”), use of the device for patient safety (“Use the device as it pro-
tects patients from risk.”), support for restricted use (“Tracking devices should
be used only if there are no alternatives”.). The qualitative approach based on
individual interviews included initial interview questions, a presentation of infor-
mation and communication technology devices, and a second round of interview
questions.

First, caregivers’ views ranged from feeling obligated to use the tracking
device for the sake of patients’ safety through support of the use of the device
for the sake of the caregivers’ peace of mind and restricted support, to objection
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to the use of the device and respect for a person’s autonomy. Family caregivers
provide higher support for the use of GPS and RFID, in the contrary profession-
als attached higher value to respect to the person’s autonomy [64]. The study
was done on two groups: family caregivers (N = 69, age 61.26 SD 12.91 years) and
professionals (N = 96, age 43 SD 12.89 years) such as family physicians, psychia-
trists, neurologists, geriatrists, social workers, or legal guardians.

Regarding who should decide about the use of electronic tracking, persons
inside the family were perceived significantly more important in the decision-
making process than other persons outside the family [62]. The study groups
in this case included cognitively intact elderly (N = 44, age 70.94 SD 7.69 years),
family caregivers (N = 94, age 59.62 SD 14.11 years), social workers (N = 51, age
33.76 SD 10.92 years), other professionals (N = 48, age 44.52 SD 10.89 years), and
social work students (N = 59, age 24.88 SD 2.29 years). Overall, in order to reach
a balance between the wishes and interest of both people with dementia and
their family caregivers, the professionals need to be more involved in order to
facilitate the family decision-making process.

Furthermore, cognitively intact older people favour the idea of tracking peo-
ple with dementia. To facilitate family decision-making on the use of tracking
devices, structured meetings guided by professionals and including persons with
dementia and their family caregivers were suggested [93]. Data were collected
from cognitively intact older people, from two sources: 42 participants completed
a structured questionnaire and 23 participants provided qualitative data. Quali-
tative data was gathered from two focus groups of cognitively intact older people
in Israel: the first focus group was based in an upscale retirement home (N = 11,
age 84.9 SD 4.25 years) and the second one in a more modest home (N = 12, age
83.3 SD 6.8 years). The relatives of the persons with dementia were most likely
to be informed about various kinds of information communication technology
devices. The central issue from the perspective of the relative and the perceived
of the person with dementia is the need for safety and security [76]. Participants
of the individual interviews consisted of 14 spouses of persons with dementia
(age 73 SD 10 years).

Finally, the main recommendations derived from the mentioned study regard-
ing the patients and caregivers are:

– it is important to maintain balance between the needs for protection and
safety and the need for autonomy and privacy [109];

– the decision on using tracking technology should be made jointly by the patient
and caregivers and prior attitudes and values of both people with dementia
and family caregivers must be considered;

– from the beginning of the treatment program for dementia formal structured
meetings should be conducted in which all involved persons make together
important decisions (i.e. the use of a GPS tracking system should be made in
the early stage of the disease [63]).

Overall, this discussion focuses on ethical issues from a qualitative point of view,
as derived from the feedback of users. A complete analysis would have to con-
sider also legal aspects, such as guidelines provided by governments and their
practicability. But this is outside the scope of this paper.
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4 Open Problems

The development of areas like pervasive and ubiquitous computing brought
computing science and in particular Artificial Intelligence research more closely
in touch with real life problems which affect directly the everyday life of
patients [12]. A substantial part of the creation of automated services in this
area rely on the need to precisely locate humans and to determine what their
relation with the surroundings is, has been and is likely to be. The previous
sections provided insights into the basic concepts of this challenge and on how
the understanding of this challenging process enables us to build services in the
real world. However, as a relatively recent area there are still more questions
than answers, but some progress has been achieved in terms of understanding
the use of different technologies available.

Although technology has been made significant advances in the last decade,
there are limitations in the infrastructure we can use today, some of which take
the level of a barrier. An example of this is tracking the location of a person.
Outdoors the best tools available are GPS services offered through satellite sup-
port. One problem is that it does not work in certain areas like wilderness and
tunnels and even in some places near towns and cities. To this we need to add
that in occasions when it works it is not necessarily accurate. Inside homes and
buildings there are many devices which are capable to offer information on the
whereabouts of individuals with different degrees of precision, from worn devices
to triangulation techniques for mobile devices and video cameras.

A further complication is that many services will strongly benefit with the
possibility to track an individual trajectory inside and outside the home seam-
lessly. This will allow to make sure that people with cognitive frailty do not get
lost or can find their way through the city, including a way back home, more
safely. It also allows a more comprehensive understanding of the activity levels
of a person, which provide important information on the health and well-being
of an individual. However, technology which tracks people outdoors and indoors
are quite different and it will be unrealistic to ask people experiencing cogni-
tive decline to become technical experts and to remember to switch technolo-
gies as leaving or entering home. “Change” is a notion which brings interesting
challenges, in this cases managing transitions between regions reliably.

The infrastructure available and its intrinsic limitations affects how much we
can aspire to do with our theories and algorithms. It is not easy to influence tech-
nology with our theories and algorithms and expect industry will implement the
devices which make lazy methods workable as there are powerful market forces
governing what devices are materialised. If we have to fill in the technological
gaps with clever algorithms, what should they be like? Should there be a cloud
service which has built in increased capability for inter-operability? A user can
have more than one device registered to track her whereabouts. Those devices
can recognise where a registered person is, as long as one of those devices pro-
vides information, which can have a smaller or bigger circle of uncertainty. The
level of certainty might degrade under a certain threshold, for example, when
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going out of the home without a phone means the person cannot be identified
being at home by home devices nor outside as the phone is left behind.

Despite the interesting range of technology available this is a problem which
will remain for the foreseeable future. No current technology ensures continuous
tracking, even a wearable device which is equipped with technology for both
indoor and outdoors cannot guarantee the person in question will wear it, like
no current pill dispensers can guarantee the person has swollen the medicine
pill. May be a solution to this problem will be implants but this is still a far
fetched scientific option, not because it is not possible but because people in
general are not accepting this level of body intrusion at this time in history.
Given the current limitations discussed above, software is the only apparent way
to temporarily ameliorate the problem.

5 Future Outlook

Future challenges have been outlined implicitly in the previous sections. Two
particularly challenging factors, at the technological level as well as at the level
of the users, can be identified from the previous discussions and summarised as
follows:

– The technological factor: The realtime gathering of enough context infor-
mation as well as appropriate fast interpretation methods pose great chal-
lenges. Thereby, the main questions concern the kind of context information to
collect and how to interpret it in a sufficiently precise and robust way despite
of imprecise or even incomplete location and context information. Though
advances in Artificial Intelligence research, in particular in spatiotemporal
reasoning have been made, these have not yet sufficiently translated into pop-
ular tools used by other communities like in Ambient Intelligence in order to
exploit them for assistive technologies.

– The human factor: Apart from ethical issues another problem with the use
of wearable technologies for managing the life of people who, for example,
suffer from dementia arises. Such patients often have difficulties in accepting
anything new in their environment, and even much more, any foreign objects
which are attached to their body. This concerns the notion of unobtrusiveness
regarding a particular sensitive issue, inasmuch at some state, patients are
not anymore able to let other people know about their anxieties. It is a major
challenge beyond the development of new technologies to appropriately deal
with such issues.
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Reading

– Behaviour Monitoring and Interpretation – Well-Being, Editors:
B. Gottfried and H. Aghajan, IOS Press, 2011.

This volume offers state-of-the-art contributions in the application area of
well-being. The notion of well-being has been treated in diverse disciplines
such as engineering, sociology, psychology, and philosophy. With this book
a perspective is offered to the latest trends in this field from a few different
viewpoints. Well-being is an omnipresent concept that reaches out to a myr-
iad of aspects of our daily lives. In addition to supporting a healthy lifestyle,
the concept of well-being extends to the selections involving the type of the
environment we live in, the interactions we have with other humans, and the
practices we engage in to achieve our plans for future. Well-being concerns us
in our daily life, and hence, plays a fundamental role at all times and places.
This fact in turn needs to be taken into account when designing ubiquitous
computing technologies that pervade our life. With the presented articles the
book provides a survey of different research projects that aim to address the
many influential aspects of well-being that are considered in todays designs
or play an essential role in the designs of the future.

– Handbook of Ambient Assisted Living – Technology for Health-
care, Rehabilitation and Well-being, Editors: J. C. Augusto et al., IOS
Press, 2012.

The world’s population is aging dramatically, and in most countries the cost
of care is rising rapidly. We need a system which helps to minimize the onset
of chronic conditions which are costly to treat and diminish quality of life,
rather than one primarily directed towards the care of the sick. Innovative
use of new technologies may be the only way to provide care affordably in
future, and to scale that care to far greater numbers as our societies adapt
to change. Ambient Assisted Living (AAL) can provide a solution. More inte-
gration between the health system and life at home and work will benefit
everybody, providing better, more holistic lifelong care at lower cost.
This book presents and summarizes the achievements of an accomplished
group of researchers around the globe and from diverse technical backgrounds.
They use a wide range of approaches to optimize the use of healthcare technol-
ogy and integrate such technology into human lives in a way that will benefit
all. The book is divided into seven main sections:

• AAL in the health space
• Devices and infrastructure to facilitate AAL
• AAL in gerontology
• Smart homes as a vehicle for AAL
• Applications of AAL in rehabilitation
• AAL initiatives
• Novel developments and visions for the area.

Developing technologies which cater for the broad range of individuals in
our complex societies is a major challenge which poses many problems.
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The research described here pushes the boundaries, and will inspire other
researchers to continue their exploration of technologies to improve lives.

– Situational Awareness for Assistive Technologies, Editors: M. Bhatt
and H. W. Guesgen, IOS Press, 2012.

The development of smart assistive technology for personal living and public
environments is an opportunity that has been recently recognised by research
labs across the world. A particular theme that has garnered attention in many
countries is the problem of an aging population. The combination of a much
larger elderly population and the ever increasing cost of providing full-time
human care for them means that finding practical assisted living solutions
for this group is becoming increasingly important. Computing is the obvi-
ous choice to provide an answer to this growing problem, but to have a real
impact, computer-based assistive technologies will need to possess the ability
to interact with, and interpret, the actions and situations of those they are
designed to assist.

The papers in this book explore the diversity of the field of ambient intel-
ligence, as well as the wide range of approaches and variety of applications
that may prove to be possible. Consideration is given to how space, action,
time, and other contexts can be represented and reasoned about for use in sen-
sory mapping, multi-agent interactions, assisted living, and even emergency
responses. Many techniques are examined; variety represents one of the most
important strengths of this area, meaning that the weakness of one approach
can be offset by the capability of others.

The book consists of research contributions dealing with the crucial notion of
situational awareness within assistive smart systems emerging as an overarch-
ing concept. An applied computer science character has been retained, whilst
bringing to the fore research projects where formal knowledge representation
and reasoning techniques have been demonstrated to be applicable to areas
within the broader field of ambient intelligence and smart environments.
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Abstract. This paper provides an overview of current research and open
problems in sensor-based mobility analysis. It is focused on geriatric
assessment tests and the idea to provide easier and more objective results
by using sensor technologies. A lot of research has been done in the field
of measuring personal movement/mobility by technical approaches but
there are few developments to measure a complete geriatric assessment
test. Such automated tests can very likely offer more accurate, reliable
and objective results than currently used methods. Additionally, those
tests may reduce costs in public health systems as well as set standards
for comparability of the tests. New sensor technologies and initiatives for
data standardization in health processes offer increased possibilities in
system development. This paper will highlight some open problems that
still exist to bring automated mobility assessment tests into pervasive
clinical and domestic use.

Keywords: Assessment · Geriatrics · Clinical · Domestic · Body-worn ·
Ambient · Sensor · Technology

1 Introduction

1.1 Medical Background

Personal mobility, i.e., the ability to move around and get into and keep up
certain body positions, is known to be an important prerequisite for pursuing
an independent lifestyle [40]. Mobility normally changes during age. There is
no pathological reason for that change at all. Starting at the age of 60 years,
elderly peoples’ mobility characteristics change [14], i.e., the self-selected gait
velocity decreases each decade by 12 %–16 % during self-imposed activities. The
decrease is often caused by a reduced step length whereas the step frequency
remains stable. This age-related change in gait patterns contributes to a more
c© Springer International Publishing Switzerland 2015
A. Holzinger et al. (Eds.): Smart Health, LNCS 8700, pp. 71–98, 2015.
DOI: 10.1007/978-3-319-16226-3 4



72 M. Isken et al.

stable gait and it is not pathological [52]. If there are pathological reasons for
an impairments of mobility the changes of gait parameters are more significant
than in age-related changes [52]. Neurological diseases, especially dementia where
mobility impairments are an early indicator [111], are one of the most frequent
pathological reasons for mobility impairments. In general, severity of gait and
balance disorders increases with severity of neurological disorders [100]. Gait and
balance disorders have shown being related to a higher risk of falling. Especially
slow self-selected gait velocity has found being related to an increased risk for
falls and need of care [75]. Due to their often severe gait and balance disorders
dementia patients suffer from an increased risk of falling [110].

Costs due to the high need of care of demented people [3] and fall-related
costs are two of the major factors influencing the proportionally higher costs to
the health care system caused by elderly people. From a clinical perspective long-
term monitoring of changes in mobility has a high potential for early diagnosis
of various diseases and for assessment to determine the risk to fall [8]. This may
help delaying need of care or preventing acute incidents like falls and may thus
help saving costs. On a more personal level early detection may help supporting
an independent lifestyle by enabling early and purposeful prevention and may
therefore increase quality of life for affected people, relatives, and carers.

Therefore, assessment of mobility is an important part of treatments in var-
ious medical branches. In the medical domain, mobility is diagnosed in terms of
gait and balance respectively in spatio-temporal parameters quantifying these
domains. Today, those parameters are either assessed by a medical professional
performing a visual analysis or by using highly specialized technical equipment
performing either kinetic or kinematic gait or balance analysis. Both alterna-
tives are often not available in less specialized wards and a visual gait analysis
is known to be dependent on the subjective capabilities of the analyzing profes-
sional. Therefore, some branches of medicine have developed so-called assessment
tests in order to enable less specialized physicians to assess a patient’s mobility to
a certain degree. Geriatrics, the branch of medicine that deals with the illnesses
of elderly and multimorbid patients, is such a branch that uses standardized
assessment tests in the field of mobility. However, execution of such assessment
tests also yields several problems like the required time effort due to manual doc-
umentation and the need to deliberately ignore details of a patient’s mobility in
order to keep the tests easy to use. Additionally, if physicians want to provide
prevention and rehabilitation in patients homes most of such assessment tests are
not suitable for being executed in domestic environments and cannot be easily
executed unsupervised or at least lose their reliability if executed without super-
vision. Therefore, research was pursued in biomedical engineering of devices for
supporting mobility assessment (tests) in clinical and domestic environments.

1.2 Scope of This Paper

The general analysis of personal movement is a wide area (for example sports
movement analysis). This paper explicitly focuses on measuring mobility (or sin-
gle parameters of mobility) in elderly persons using sensor technologies. Since
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this can be done in various ways, three gold-standard assessment tests are taken
as measure for checking the state-of-the-art in technical assessment execution.
These three belong to the most common assessment tests used in judging per-
sonal mobility: the Timed-up-and-Go test [88], Tinetti test [108] and Berg-
Balance-Scale test [10]. A common ground of these tests is to observe people
doing several mobility-related tasks like walking, standing or balancing. The
tests gain scores which lead to an estimation of the mobility state of a person.
More details can be found in the original test descriptions, an extensive selection
of those tasks (which are, or can be broken down into, so-called components) is
listed in Table 2. This state-of-the-art overview first lists the technologies avail-
able and then is matched against the requirements the assessment tests are
setting up.

2 Glossary

– Ambient Sensors - Sensors that are attached in the environment of the user,
usually installed in homes etc. For example presence detectors, motion detec-
tors or cameras.

– Berg-Balance-Scale (BBS) - Assessment test invented by Katherine Berg et al.,
detailed description see [10].

– Body-worn Sensors - Sensors that are attached directly to the body or inte-
grated in clothing etc. For example accelerometers, gyroscopes or strain gauges.

– Clinical Document Architecture (CDA) - standardized XML-based markup
format for specifying the encoding, structure and semantics of clinical docu-
ments for exchange.

– International Classification of Functioning, Disability and Health (ICF) -
classification of the health components of functioning and disability coordi-
nated by World Health Organization WHO.

– Kinematic (approaches) - classical mechanics describing the motion of points,
and objects without consideration of the causes of motion.

– Kinetic (approaches) - classical mechanics concerned with the relationship
between forces and torques.

– Light Detection And Ranging (LIDAR) - sensor measuring distance by calcu-
lating times between emitting and receiving light (laser) impulses.

– Mobility - in this context the term mobility relates to personal mobility, i.e.,
the ability of a person to change its body position. Infrastructural mobility in
terms of being able to change places e.g., by using transport systems is not
considered here.

– Personal Health Record (PHR), Electronic Health Record (EHR); record
where health data and information related to the care of a patient is stored
and made accessible to involved third parties.

– Three Dimensional Layer Context Model (3DLC), model which defines the
appropriate level of abstraction of data generated by medical applications to
be stored inside the PHR, for details see [46].

– Timed Up & Go (TUG) - Assessment test requiring both static and dynamic
balance, detailed description see [88].
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– Tinetti-Test (TTI) - Assessment test invented by Mary Tinetti et al., detailed
description see [108]. Also known as Tinetti Gait and Balance Examination,
Tinettis Mobility Test, Tinetti Balance Test or Performance Oriented Mobility
Assessment (POMA).

– Ultrasonic sensor (US) - Sensor measuring distance by calculating times
between emitting and receiving high-frequency sound waves.

3 State-of-the-Art

3.1 Overview

This state-of-the-art will try to give an overview of current sensor technolo-
gies and approaches to measure personal movement parameters. In [33], sensor
technologies for measuring single or multiple mobility parameters have been
evaluated. Those technologies have been divided into kinetic and kinematic sen-
sors as well as body-worn/ambient usage. An overview is given in Table 1. This
section is followed by a comparison of requirements of assessment tests and which
requirements are matched by these sensor technologies up to now.

Table 1. Classification of approaches for mobility analysis [33]

Body worn Ambient

K
in
e
ti
c 1. Pressure and force sensors

in shoes [59, 21, 7, 50, 107, 83, 95,
44, 127]

1. Pressure and force sensors
on the ground [107, 29] /
in treadmills [57, 29] /
in furniture [16, 76, 123, 58] /
in walkers [20, 86, 2, 109]

K
in
e
c
m
a
ti
c

1. Time of flight
ultrasound [114, 60, 1, 53, 51, 118]

2. Visual
marker based [6, 79, 106, 29]

3. Electrical impulse
electromyography [105, 29]

4. Inertial forces
(accelerometers, gyroskopes)
body worn [69, 28, 12, 92, 47, 71,
128, 74, 129, 5, 77, 13, 121, 4, 24,
54, 72, 122, 26]
in clothing [65, 92]

5. Bending forces
electro-goniometer [105, 29, 19]

1. Time of flight
RADAR [64, 124, 32, 112, 49, 90,
130, 81, 39]
LIDAR [82, 93, 37]

2. Visual
marker less [61, 98, 102, 63, 116,
41]
fluoroscopic [6]

3. Presence sensors
home automation [84, 85, 92, 87,
15, 17, 113, 94, 18]
RFID [22]

Commonly used technical approaches to the assessment of mobility like
marker-based vision systems, force plates, and electromyographs, are very
expensive, time-intensive in use and not mobile. This means that they are only
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available in specialized wards, can only be used by trained personal, and cannot
be executed at point of care which makes their use time-intensive. Therefore,
new technical approaches were developed which either use body-worn or ambi-
ent, i.e., integrated into the environment, sensor systems. Body-worn sensor, i.e.,
accelerometers and gyroscopes, are used more widely due to their advantage of
being clearly linked to a single person in any environment. Several approaches
(e.g., [65,129]) have demonstrated the ability to support the execution of mobil-
ity assessment tests and to compute spatio-temporal parameters of gait and
balance using body-worn sensors. Some research projects meanwhile made their
way into products. However, results of all approaches are very sensitive to sensor
placement and even small misplacements can invalidate all assessment results.
Over longer time periods assessment results perish due to sensor drift. Addi-
tionally, regarding unsupervised use in domestic environments it is questionable
whether layman and especially elderly or demented people may be able to han-
dle those sensors on their own or will be willing to wear those sensors in their
daily life. Only a single approach to executing mobility assessments in domestic
environments unsupervised by use of body-worn sensors, called Directed Routine
(DR), has been proposed so far but was not evaluated yet [126]. Ambient sen-
sors are placed in the environment and do thus not require any explicit handling
by patients and results are not dependent on correct sensor placement. Sensors
used for mobility analysis include home automation sensors [22,84], cameras
[61,104], and laser range scanners [34,84] and have been evaluated in domestic
environments several times. However, ambient sensor data are not assigned to
a certain person and often sophisticated algorithms are required to filter those
sensor recordings which represent a person to be monitored. Currently, there is
neither a body-worn nor an ambient sensor system available that supports the
execution of mobility assessment (tests) in supervised clinical and unsupervised
domestic environments. However, some approaches are currently evaluated and
will be available in the near future.

3.2 Kinetic Approaches

The following sections give a short overview of sensor technologies that are used
in mobility analysis, for references to current research, see Table 1.

Pressure and Force Sensors. Three types of sensors can be distinguished:
binary switches, pressure sensors and force reaction systems. Binary switches
are the simplest form using binary information e.g., if a step was made or not.
Pressure sensors can provide more detailed information, e.g., the weight distribu-
tion and sequence of movements. Force reaction systems are usually mounted on
ground plates and not only measure weight forces but shear forces as well which
is especially interesting in balance analysis. The most common use of body-worn
pressure and force sensors is integration of those sensors in shoes. In ambient
setups the sensors can be placed in furniture or moving aids so that pressure
information is generated. Pressure and force sensors are relatively cheap and
easy to use so they are adequate for being used in pervasive systems.
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3.3 Kinematic Spproaches

Time-of-Flight Sensors. Time-of-flight sensors use a system of sending and
receiving signals and calculating distance information. Classical types are ultra-
sound (US), light detection and ranging (LIDAR) and radio detection and rang-
ing (RADAR) sensors. US sensors emit an ultrasound impulse and record the
reflection of that impulse. Typically the sound beam has a quite broad disper-
sion so detection of small objects is difficult. Additionally detected objects can
not exactly be localized (using one sensor), because the exact direction of the
reflected signal is not known. The same holds for RADAR sensors which use an
electromagnetic wave impulse. The advantage of RADAR sensors is that they are
able to measure through walls for example. LIDAR sensors usually emit a laser
beam which is quite narrow and so a relatively detailed environment recognition
can be performed.

Since LIDAR and RADAR sensors are usually not suitable to be worn at
the body up to now, only ultrasound sensors are available in the body worn
category. This normally means that US markers are attached at the body and
a fixed base-station is used to provide exact localization [53,60,114]. Ambient
approaches attach US sensors e.g., to the ceiling and try to recognize persons and
their movements [99]. Multiple sensors have to be used to be able to calculate an
exact position of an object. RADAR sensors are rarely used compared to US and
LIDAR but some researchers were able to extract gait information from RADAR
data [97,117]. LIDAR sensors are quite common in robotics and industry mostly
for navigation and safety purposes. Due to the exact data object recognition
and tracking is relatively easy. In contrast, most systems are producing only 2D
information, 3D-LIDAR sensors are quite expensive at the moment.

Visual Sensors. Visual observation of movement is based on video-frame data
where movement is calculated by comparing each frame and checking for moved
objects. In general this can be divided into tracking based on markers (body-
worn, e.g., [29,106]) or marker-less (ambient, e.g., [38,89,102,103]) approaches.
Marker-based systems extract movement by tracking active or passive mark-
ers that are attached to the observed body parts. The advantage is the exact
and defined recognition of the selected moving objects. The attachment of the
markers can be a drawback as well because the position is crucial and should
not change during a test. Since human skin is not fixed to the bone structure
it may be necessary to attach the markers to the bones directly which is inva-
sive. Marker-less techniques use image recognition algorithms to extract moving
objects without the need of invasive marker positioning. On one hand this is
easier to set up but on the other hand the recognition precision is usually not as
high as marker systems provide. Visual sensors are a common tool for movement
observation, the cost heavily depends on the accuracy.

Electrical Impulse. Electromyography detects activity by measuring electrical
power/impulses that are used to contract muscles. The measurement can be
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performed by attaching either non-invasive electrodes or needle electrodes which
are able to measure in deeper muscle areas but also cause pain during muscle
movement. The attachment of the electrodes though requires good expertise of
the investigator. Since there is no general correlation of electrical energy and
muscle movement, electromyography is only used in combination with a second
modality to observe the actual movement (e.g., camera systems). In general this
setup is only suited for laboratory (clinical) environments.

Inertial Forces. Inertial forces are detected by accelerometers and gyroscopes.
Since such sensors are small and use few energy, a lot of research has been done
on using inertial forces for movement analysis (see Table 1; e.g., [5,92,121]).
Those developments and products nearly completely belong to the category of
body-worn sensors because inertial forces can’t be measured from distance (using
accelerometers or gyros). Sensors can be directly attached to the body or inte-
grated in clothing. Multiple sensors can be integrated into sensor networks (e.g.,
body area network). Developed systems mainly differ in number of sensors and
area of attachment. The accuracy of measurements depends on correct attach-
ment of the sensors and in general only relative movement can be measured
because no absolute position is available. These sensors are also relatively low
priced and wide spread.

Bending Forces. Bending forces as used in electro-goniometers are mostly used
to measure angles of extremities (arm, leg). Since the sensors are attached to
the joints directly, they are filed to body-worn sensors. Electro-goniometers are
precise in general but not all joint movements of the body can be measured. Most
common use is on elbow and knee joints (e.g., [55]). Since there is only relative
information, a second modality is necessary to get absolute position information.

Presence Sensors. Presence sensors are ambient sensors that can be placed in a
variety of environments. Common presence sensors are cheap but normally inac-
curate as there is the information about a detected movement but no directional
information is provided. By adding more sensors positions can be determined
more accurately. Single body parts can’t be observed so information is reduced
to movement of a person through an environment (e.g., gait speed) [18,43]. Such
sensors are often included in smart home setups.

3.4 From Assessment Test to Assessment Components

To be able to track and quantify assessment tests with technical approaches it
makes sense to break a single assessment test down into different components.
These components are sequences of movements that can be distinguished from
other movements within the same test. In case of the TUG test this means
that a set of small components are combined to a complete test: Stand up -
walk there - turn around - walk back - sit down. Each of those components
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can be analyzed separately to gain more information than the complete test
itself. A usual TUG test only provides the duration of the complete test in
seconds. The division into single components enables the measurement system
to provide much more detailed information: time duration of single components,
movements, movement speeds, balance parameters etc. are a few examples of
such information. Each of such movements can be measured by one or more of
the sensor technologies mentioned above. Up to now, no approach is able to track
all required components with a single sensor setup. Table 2 therefore provides a
classification of identified components, technologies that are currently used to
measure them and references to research work.

3.5 Assessment Components and Measurement Approaches

Systems to perform a complete mobility assessment test either in a clinical or
domestic environment are rare. As shown before, a lot of research has been done
in using different kinds of sensors to measure individual movement parameters.
Few systems use one single or a combination of sensors to measure a complete
assessment test. Table 2 shows the components that are assessed during the tests
and recent approaches to observe them. It also includes a list of sensor technolo-
gies that are used to measure the according physical movement. The list of
commercial systems is used as an example, more systems exist that mostly have
at least a slight different focus (like rehabilitation or sports movement analysis).
Four main categories of movement have been identified: transfer sit/stand, gait,
balance and turning/moving (body motion). It is obvious that the three selected
mobility assessment tests focus on different types of movement but are overlap-
ping in most areas. A combination of all three tests covers the whole spectrum
of movements. It can be observed as well that there is no system that is capable
of measuring all components and consequently there is no system that could
perform all three assessments even if they have quite an overlap in necessary
components. Additionally, there are some movement components that are cur-
rently not explicitly considered by any research the authors know of. Though
technically most of them are measurable.

A result of this overview is the obvious fact that some movement parameters
are more intensive investigated than others. It seems that instead of concentrat-
ing on single movement analysis, an overall effort should be made to coordinate a
complete assessment setup. For example gait analysis is quite common in mobil-
ity analysis whereas ‘reaching with arm forward’ is not tracked by any approach.
In some cases it may even be necessary to adapt the test descriptions to match
the requirements of technical analysis. But since the less examined components
are not completely out of reach from a technical point of view it seems possible
to develop a system that is capable of analyzing the used group of assessment
tests. Regarding sensor types there is a distribution as well (e.g., preferred usage
of accelerometers and pressure sensors) this might be an indication of availability
(price, usage) of such sensor technologies.
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Fig. 1. aTUG apparatus as approach to offer standardized TUG assessments in clinical
environments

3.6 Own Approach and Work Conducted

Our own novel approach, called Automated Timed Up & Go (aTUG, see Fig. 1),
to supporting the execution of mobility assessment tests in clinical and domestic
environments utilizes exclusively ambient sensor technologies and may be per-
formed in domestic environments without creating a test situation. Compared to
approaches using body-worn sensors, aTUG saves more time since no calibration
or donning of sensors is required. Patients are not directly aware of being techni-
cally measured. Additionally, the technical support provides more details about
the patients than a manually executed test by performing a gait and balance
analysis, if requested.

Part of the aTUG approach is the aTUG apparatus which was developed
from sketch starting in 2008 by demand of physicians from the field of geriatrics
in order to make the aTUG approach applicable in daily clinical practice. The
general idea of the apparatus is to integrate required sensor technologies with
a battery and a display in order to enable physicians to transport all required
equipment for performing an assessment and gait analysis at point of care. The
basis of the apparatus is a blood withdrawal chair. A laser range scanner is
used for performing kinematic gait analysis and is installed under the seat of the
apparatus. Four force sensors are integrated into the legs of the chair and enable
performing kinetic balance analysis while standing up and sitting down. The
apparatus may be accompanied with a set of home automation sensors i.e., light
barriers in order to provide even more details and to validate computations. For
long-term use at home those sensors can be placed in the environment. After an
initial proof of concept, the prototype was used as a basis for a complete redesign
with the objective of putting the aTUG chair into circulation as a medical prod-
uct. After a risk analysis, the construction, and safety tests, a new prototype
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was technically validated for support of the TUG tests in a residential care facil-
ity [36] and its gait analysis results were compared to a commercially available
marker-based tracking system. Additionally, the approach was evaluated in a
field trial in order to demonstrate the ability to perform TUG unsupervised dur-
ing daily life [35]. Currently, the aTUG apparatus is in a clinical trial of medical
products [56] in which it is clinically validated against manual measurements
and the GaitRite system at the Charité in Berlin.

The aTUG device can easily be placed and used in clinical environments.
Regarding the integration into domestic environments the aTUG has its draw-
backs. First of all, the device is certainly recognized as medical analytic device.
Persons using the apparatus are aware of being monitored. As already men-
tioned, this can lead to biased results since the persons try to perform as good
as possible in the case they are observed by someone. Additionally, the aTUG
device has a (somewhat) fixed position and recognition area so it has special
requirements for being installed (e.g., free path of 3–4 m) so it can’t be placed
in narrow spaces. As a consequence of these drawbacks the idea of the aTUG
apparatus was extended to use the same algorithms on a mobile robot platform
(see Fig. 2). The main task of doing gait analysis with aTUG is accomplished by
using a LRF sensor. This type of sensor is used in most of current state-of-the-art
mobile robot systems for navigation purposes. So this sensor is already available
on most robot systems and can easily be used to do the same gait analysis. The
major difference to aTUG is the mobility of the platform. The robot is able to
follow a person through the home, monitoring gait at various places, under dif-

Fig. 2. Mobile robot platform equipped with LRF and Kinect sensor. Approach to
bring the aTUG idea to domestic environments.
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ferent circumstances and over longer distances even if there is no straight line to
perform a classic TUG test. To extend the system even more, 3D sensor infor-
mation was added to analyze balance parameters and movement characteristics.
In this case, the well known Microsoft Kinect sensor was used. The idea is to
enable every typical mobile service robot to do such analysis, not to create a
new type of robot. So people buy the robot to fulfill any type of service (e.g.,
cleaning, personal assistance, telepresence) and the mobility monitoring is done
in the background (with approval by the user) and after some time the user is
not aware of the test situation anymore. So the results of the measured mobility
parameters are much more realistic than any test can provide. Using this sys-
tem, the following major advantages are gained: (1) mobile data acquisition (no
need to place many sensors at different locations in the home), (2) gait and full
body movement analysis, (3) monitoring over long periods of time, (4) getting
mobility data in everyday life, no test situation.

The robot is designed to record the observed movements in a data base so
that further analysis can be done by e.g., medical personnel. Open questions are
still the communication with medical personnel in terms of data standards and
comparability of test results. See Sect. 4 for a more detailed analysis of problems.

4 Open Problems

aTUG and some other body-worn approaches are close to being available as
medical products. In daily clinical practice their main advantage will be to pro-
vide more detailed and more objective results than manual assessment tests and
to save time by digital documentation of results. However, in order to save costs
in the future, only more effective procedures in clinical environments are not
sufficient. One possibility to save more costs is by early prevention and more
sustainable rehabilitation on an individual basis for which domestic assessments
may provide the required data. Currently, there are three main open problems
in this field: (1) How to implement clinical assessment tests in domestic envi-
ronments unobtrusively, (2) how to document domestic assessment results in a
standardized manner and (3) how to compare these to clinical assessment results.

4.1 Acceptance of Technical Innovations

First of all - if a system shall be used either in clinical or in domestic envi-
ronments, without acceptance by the users the system will fail. This is even
more crucial in the case of domestic environments. It is very hard to predict
reactions of users to new technologies brought into their own homes. If there
is no real use-case and obvious benefit the system will be rejected usually. In
professional environments this is not as serious as in home environments but
especially medical personnel is used to work with common tools and new tools
are accepted mostly if there is also a benefit for the operator (e.g., faster exe-
cution, less stress). So the selection of sensors has to be made in the first place
based on acceptance, prices are less important and get even less important due
to price decreases through industrial developments.
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General Technology Acceptance. Of course all conclusions of acceptance
research have to consider the fact that technical developments in recent years
also changed the way people react to them [48]. People that will reach the age
of the target group of geriatric treatment in 10 or 20 years will have a totally
different perspective to new technology than people that are in need of care at
present. For example even today’s elderly people are used to computer systems
etc. since they already worked with them. Ten years ago, this was not the case.
The more experience people have, the better they can estimate how this could
effect their lives. Perspectively, the group of technically experienced elderly will
grow and the other group will scale down [27]. Anyhow, technology is accepted
to a greater extend if the benefit of usage is clearly visible [27,73].

In a meta study called Body-Worn Sensor Design: What Do Patients and
Clinicians Want? Bergmann and McGregor examined the results of multiple
studies regarding sensor and technology acceptance of body-worn sensors in med-
ical application areas [11]. They identified 11 studies that provide information
about this specific user acceptance. Since the focus of such studies was broad
they ware able to draw some overall conclusions like one of the main recurring
factors was the preference for small and embedded sensors, indicating that user
are keen to minimize the physical impact of any wearable system, as well as the
less notable the device is the higher the patient’s acceptance will be, which in
turn will improve the quality of gathered data, as patient’s behavior will then be
closer to his/her normal routines. As already mentioned, this has to be taken
into account when designing person monitoring systems. On the other hand,
clinicians were concerned with issues such as restricted recording time due to a
limited storage capacity, techniques for attaching the device to the patient and the
fact that data should be available in real-time to make instant diagnosis possible.
Which again sets some crucial requirements for hardware and software design.

Robotic Acceptance. An intense study regarding acceptance of robots was
conducted in 2011 [9]. It was not focused on elderly but on a broader selection of
people. The result of this study was a list of open questions for robot development
which also included age dependent acceptance as open problem.

In 2009 there was a survey of the acceptance of service robots comparing
different age groups (ages 18–25 and 65–86) [31]. There was no significant differ-
ence between these groups as long as the benefit is sufficiently visible. However,
elderly persons were more open-minded regarding critical functionality (emer-
gency services) of robots. Another study of the same research group revealed
similar results [30].

Smarr et al. gave an overview of robotic assistance systems for elderly people
in 2011 [96]. Especially robots assisting at activities of daily living were selected.
The study was based on internet and database research which lead to, depending
on usage of the system, from 61 to 147 different robot systems. This shows high
interest in technological assistance however one conclusion was that there is no
comprehensive study that concentrates directly on needs and requests of elderly
people.
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Concluding this short selection of acceptance research it can be stated that
acceptance is crucial for (medical) technical systems but there is still a lack of
comprehensive studies which can provide a general guideline for designing such
systems. This does not mean that there is no research of acceptance in general,
there is a lot, but the diversity of technical solutions is huge and it is hard to
create general statements by studying single applications. So every system has
to be elaborated carefully for meeting the expectations users have in each case.

4.2 Clinical Assessment Tests in Domestic Environments

Today, several technical approaches to conduct domestic (mobility) assessments
have been implemented and are currently evaluated in the field - many will still
follow. The most important remaining technical problem is how to implement
tests in a way that patients accept these in their daily life. Tests will have to
be unobtrusive and should ideally be performed continuously without requiring
patients to perform an explicit test. Some researcher i.e., our own work [35] and
the work of Stone and Skubic [104] have already shown that assessment tests may
be implemented without creating a test situation and thus can be implemented
unobtrusively. Some of the lessons learned from the first real world experiences
are considered here.

If sensors are used to precisely analyze personal movements those should be
broken down into single movement aspects (e.g., the before mentioned compo-
nents) this will allow better comparability between established test scenarios.
The measurement results itself should not remain on a detailed technical level,
they should be classified into categories. The ICF already provides a framework
for such classification (see next section). Another aspect is data integration.
In clinical environments there are established data communication and sharing
standards but in home environments there is no such infrastructure. This needs
to be considered when systems shall be deployed at home environments but still
be useful in the complete medical service environment.

It should not be the goal to try to recreate established tests completely. In
fact the original test descriptions have been designed in such a way (being sim-
ple) to compensate the lack of technical capabilities. So it is more important to
understand the ideas behind the tests and to transfer these to the new circum-
stances (e.g., home environment). Technical approaches can deliver much more
detailed analysis which may provide new insights whereas classical approaches
are not able to.

Working within the health sector is often driven by the need of reducing
costs. This can be accomplished by introducing automated assessment tests both
in preventive as well as actual care scenarios. Though this heavily depends on
the costs of the final automated measurement system. Additionally, as men-
tioned above, in professional medical environments a two-step approach seems
to be more realistic. Firstly common techniques should be supported by the
new developments which then can be extended to fully replace the former com-
mon strategies. Only known and proven technologies are accepted. So adding a
completely new technology can face high barriers.
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Fig. 3. Sit-stand-sit cycle analyzed by Kerr et al. [55] in laboratory environment (a)
and same analysis performed by mobile robot in domestic environment (b, own work).
Results seem to be comparable but how to compare such results with clinical practice?

The use of service robots in domestic environments is intensively investigated
currently. Using a service robot to perform assessment test analysis is quite new.
Since the development of domestic service robots is still at the early stages,
questions about acceptance and usability of such a special service is highly spec-
ulative. First user tests with robot prototypes have been conducted and results
are promising but still far from real world usage (see Fig. 3). This figurative
example shows that state-of-the-art systems like robots are able to reproduce
results that coincide with former approaches but there is still no way to actually
compare both of them. Even more important - there is currently no connection
to standard medical procedures that would incorporate these results.

In general an assessment analysis with either robot or other ambient technol-
ogy can be regarded as feasible. However, the results of different domestic and
clinical assessment systems are not comparable to each other today. The main
reason for this and another open question is a missing common classification and
document format for the results.
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4.3 Standardization of Results

Even if technologies for performing mobility assessments in peoples’ homes are
available, results of such domestic assessments are not directly comparable to
clinical assessment tests. Three main problems can be found:

1. Incompleteness of assessment results: Assessments in domestic environments
will have to be performed as part of every-day activities without creating a
test situation in order to be accepted by patients. Often, not all aspects of
clinical assessment tests can be tested during every-day activities.

2. Contextual dependency on assessment results: While clinical assessment results
are obtained under standardized conditions during a test, domestic assess-
ment data is gathered in peoples’ homes which may contain unclear influence
factors even if people have to perform a test at home. Such unknown con-
textual influences factors may have an unclear influence on the assessment
results.

3. Uncertainty of assessment results: Assessments in domestic environments will
have to be performed unsupervised by use of sensor technologies in order to
be cost-efficient. Such implementation implies that there will always remain
a certain amount of uncertainty whether sensor recordings and evaluations
do really reflect the abilities of a patient in a certain assessment domain.

Therefore, a common classification for aspects of clinical and domestic assess-
ment results and for expressing contextual influence on these and their uncer-
tainty is currently missing. Additionally, as soon as assessment information has
been obtained in peoples’ homes it has to be transferred to physicians and care-
givers for being considered when making a medical decision. Personal Health
Records (PHRs) have the ability to store and exchange this user generated data
with Electronic Health Records (EHRs) of the professional domain. Mapping
a classification for assessment results to an established semantically annotated
document format would enable long-term storage and transfer of fine-grained
assessment information on a machine interpretable level. Providing such a com-
mon classification and a mapping to standardized document-format would not
only enable physicians to use domestic assessment data in their every-day deci-
sion making but maybe also enable them to gain new insights into people’s daily
performance.

In order to make data from clinical and domestic assessments comparable, a
common classification for the results is required. Such a classification will have
to solve the three described problems of incompleteness, contextual dependency,
and uncertainty of assessment results. Additionally, a standardized document-
format for transferring and presenting assessment results encoded by a common
classification is required. Therefore, we propose three main methods for making
clinical and domestic assessment results comparable by machines and medical
decision makers:

1. To use component codes from the International Classification of Functioning,
Disability and Health (ICF) [80] to decompose clinical and domestic assess-
ment tests into common parts. Therefore, an assessment test will comprised
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a sequence of several components from the ICF. Such break down of assess-
ment tests solves the first described problem by enabling the standardized
description of even incomplete assessments.

2. To use qualifiers from the ICF’s list of activities and participation, i.e., capac-
ity and performance, for expressing contextual influence on assessment results.
Encoding assessment results as capacity values expresses low environmental
influence; performance values indicate high environmental influence. Usage of
aid may be encoded as well.

3. To map assessment results encoded according to our first two methods to
the Clinical Document Architecture (CDA) [45] in order to enable a stan-
dardized transfer of results between PHRs/EHRs and to provide a machine-
interpretable and human-readable representation of results. Additionally, to
use CDA in order to annotate uncertainty of assessment results, an extension
of CDA must be made.

4.4 Integration and Co-Existence of Clinical and Domestic
Assessments

Even if domestic assessment results will be available to physicians in the near
future in a common document format, a third open question is how recognized
changes over time and differences to clinical assessment results will influence
a medical decision. The explanatory power of domestic assessment results and
their relationship to clinical results have to be investigated. In order to foster this
process, the 3DLC model was developed [46]. 3DLC is a first step towards cate-
gorizing available assessment results and to explaining the relationship between
clinical and domestic results. Within the proposed model, assessment data is
categorized on three axes: relevance to clinical decision, recording frequency,
and context dependence of results. Recording frequency refers to the tempo-
ral intervals in which the assessment results are obtained. While assessments in
professional environments have a low frequency, i.e., once per week or twice per
hospital stay, domestic assessments can be performed continuously or at least
one per day. The higher frequency should provide a better insight into patients’
abilities. However, domestic assessment results are more context-dependent. In
a clinical setting a standardized test situation is created which makes results
comparable. In a domestic setting, unclear influences, e.g., different floor covers,
may results in different assessment results. Since those influences may not be
clear, context dependence of results is high. These former two axes influence the
third axis - the relevance to the clinical decision. The higher the result frequency
and the lower the context dependence the more relevant are assessment results
to a clinical decision. New technical systems for implementing both clinical and
domestic (mobility) assessment tests should adhere to a common results classifi-
cation and document-format in order to make their results comparable to other
approaches and usable during medical decision making. In order to be accepted
by patients in their homes, domestic assessment systems should be implemented
unobtrusively. The question how obtained results are used during clinical deci-
sion making and how changes over time and differences between clinical and
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domestic assessment results have to be interpreted remains future work after
more usable data was collected.

5 Future Outlook

Summarizing the current open problems and development activities, the fol-
lowing conclusions can be drawn (see Sect. 4 Open Questions for more detailed
analysis):

1. A lot of different approaches for mobility analysis already exist. It lacks of a
combined effort to bring these single-focused approaches into complete assess-
ment systems.

2. A major factor of providing domestic technology is user acceptance - research
has to put emphasis on acceptance by end-users as well as professionals for
seamless integration in common work flows so that high user-acceptance is
achieved. In the field of automated assessment execution there is no reliable
data on user acceptance available.

3. The results of technical analysis have to be transferred into a common lan-
guage which allows consistent processing. The ICF provides parts of such a
tool set. This should be discussed for inclusion.

4. If data is exchanged between home and professional environments, compre-
hensive standards are necessary. Currently an equivalent to the PHR/EHR
systems of the professional domain is missing/not sufficiently integrated in
the home environment.

5. The focus should not be to completely copy common procedures but enhance
them with the additional information that can be provided by technical analy-
sis systems.

6. One future way of bringing sensors in domestic environments will be service
robots. These robots usually will be designed for a different major task but
they bring a set of sensors ’for free’ that can clearly enhance domestic mobility
analysis. Of course, robot technology itself has a lot of open research questions
to be solved as well before they can be used as reliable source.
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Abstract. It is a well-known fact that exercising helps people improve
their overall well-being; both physiological and psychological health. Reg-
ular moderate physical activity improves the risk of disease progression,
improves the chances for successful rehabilitation, and lowers the levels
of stress hormones. Physical fitness can be categorized in cardiovascular
fitness, and muscular strength and endurance. A proper balance between
aerobic activities and strength exercises are important to maximize the
positive effects. This balance is not always easily obtained, so assistance
tools are important. Hence, ambient assisted living (AAL) systems that
support and motivate balanced training are desirable. This chapter
presents methods to provide this, focusing on the methodologies and con-
cepts implemented by the authors in the physical activity monitoring for
aging people (PAMAP) platform. The chapter sets the stage for an archi-
tecture to provide personalized activity monitoring using a network of
wearable sensors, mainly inertial measurement units (IMU). The main
focus is then to describe how to do this in a personalizable way: (1) mon-
itoring to provide an estimate of aerobic activities performed, for which
a boosting based method to determine activity type, intensity, frequency,
and duration is given; (2) supervise and coach strength activities. Here,
methodologies are described for obtaining the parameters needed to pro-
vide real-time useful feedback to the user about how to exercise safely
using the right technique.
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1 Introduction

Regular physical activity is highly recommended and is known to improve both
physiological and psychological health [41]. Physical exercise can be divided into
two categories, aerobic activity (promoting mainly cardiovascular health) and
strength training (beneficial for the whole musculoskeletal system [45], not only
muscle strength). These are all good arguments to exercise [13], but it is espe-
cially important for frail populations to help them maintain functional indepen-
dence [20,41]. However, improperly executed, physical activity may cause injury
[9,16]; hence, tools to allow for exercising efficiently and at minimal risk are
desirable, still no general purpose systems are yet available for purchase.

In this chapter, this lack is addressed by describing the PAMAP system. The
system’s modular design allows for efficient customization, which could enable
support tools as described above. Two use cases are studied in more detail:
(1) monitoring of aerobic activities and (2) monitoring of strength exercises.
For the former, a state-of-the-art boosting algorithm is provided. For the latter,
different methodologies necessary for supervising exercises are outlined. In both
cases, personalization is emphasized and the described methods are evaluated
using data from field trials.

This chapter is intended to be interesting for both generally knowledgeable
readers with a general interest for current advances in (AAL) solutions to activ-
ities of daily living ADL monitoring and support for strength activities using
inertial sensing. Specialists in the field with interest in machine learning and
multivariate signal pattern recognition looking for detailed algorithm descrip-
tions to solve the aforementioned exercise monitoring problems.

This book chapter is organized as follows: Sect. 2 provides a short overview
and the definitions of the most important terms that will be used throughout this
chapter. Section 3 starts by presenting a generic platform concept for (AAL) sys-
tems. It describes the important components as well as the modular and flexible
architecture for a physical activity monitoring using wearable sensors. Follow-
ing, Sect. 3.2 showcases the implementation of the generic platform concept for
the aerobic activity monitoring use case. Then, Sect. 3.3 illustrates the imple-
mentation for the strength exercise monitoring use case. Both use cases focus
on the objectives, the initial requirements as well as the personalization of the
(AAL) system. Section 4 briefly outlines the problems of the current setup, its
implementations and the research challenges that should be addressed in future.
Finally, for the general reader, a recommended reading list is presented in Sect. 4.

2 Glossary

ADL. The term activities of daily living summarizes daily activities within an
individual’s place or in outdoor environments. The term is mainly related to
health care.

EHR. An electronic health record is a computerized record of a person or
patient. Generally, it includes the history of illnesses, diagnosis, medical treat-
ments, etc.
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Fig. 1. The proposed modular monitoring platform architecture.

FITT. The frequency, intensity, time, type principle can be considered as a set
of rules in order to benefit from any form of fitness training and is applicable
to individual exercise training.

IMU. An inertial measurement unit usually combines multiple accelerometers,
gyroscopes, and magnetometers providing measurements of linear accelera-
tion, angular rate, and magnetic field.

GPS. A global positioning system determines the position (latitude and longi-
tude) of a receiver on earth by calculating the time difference for signals from
different satellites to reach the receiver.

MET. The metabolic equivalent of task is a unit to measure the energy cost of
physical activities. It is used to estimate the amount of oxygen used by the
body during physical activity and is defined as the ratio of metabolic rate
during a specific physical activity to a reference metabolic rate.

PSD. The power spectral density describes how the power of a signal or time
series is distributed over the different frequencies.

3 A State-of-the-Art System Example

This section first proposes an AAL system architecture for physical activity
monitoring using wearable sensors. It then details the two use cases, monitoring
of aerobic activities and supporting strength activities, in terms of requirements,
hardware platform, and monitoring methodology. The discussion is supported
with experimental results.

3.1 System Overview

The proposed system is modular and flexible. As illustrated in Fig. 1, it comprises
four major components that communicate with each other over network using
efficient protocols. The individual components (data collection, data processing,
data presentation, and data management) are outlined in the following.

The data collection component is based on a network of sensors and possi-
bly a mobile processing unit worn by the user. The sensor network can include,
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e.g., miniature inertial sensors and global positioning system (GPS) for mea-
suring the users’ motions and/or physiological sensors, such as a heart rate
monitor, ECG, skin conductivity sensor. During the data collection the data
is preprocessed; the raw sensor data is corrected, filtered, and synchronized, and
higher-level information, such as body pose based on multiple body-worn inertial
sensors, is derived.

The data processing component analyzes and characterizes the physical activ-
ity of the user using preprocessed data. This component encapsulates algorithms
developed for enabling sophisticated analysis. This can range from the deriva-
tion of the general frequency, intensity, time, type principle (FITT) parameters
to the accurate evaluation of strength exercises. One of the key points in this
context is to provide easy means for personalization in order to be able to target
individuals or groups with specific needs.

The data presentation component provides reminders and physical activity
visualization, guidance, and feedback to the user while training. Online user
interfaces can range from a simplistic mobile device interface (a smartphone
app), that provides alerts and just-in-time information about the current activ-
ity or daily profile. While being on the move, to a complete digital exercise
trainer shown on a stationary display at home or in the gym, that guides a user
through an exercise session whilst providing feedback on the way the exercises
are performed.

The data management component connects the monitoring system to a pri-
vate or public cloud. In a medical context, this could include uploading activity
data to an electronic health record EHR enabling reviewing of this data by health
care professionals. In a private context, activity data could be uploaded to social
communities and shared with informal carers, such as family or friends. This
sharing could promote friendly competition and motivate users to improve their
performance.

By providing standards for the system components described above, the dif-
ferent components can easily be exchanged. This way the functionality of the
system can be easily extended and specialized to create various target applica-
tions based on the same generic architecture.

The following sections showcase the implementation for the use case of aero-
bic activity monitoring Sect. 3.2 and strength exercise monitoring Sect. 3.3. The
topics data collection and data processing will be described in detail.

3.2 Aerobic Activity Monitoring

In the field of physical activity monitoring, the recognition of basic aerobic activi-
ties (such as walking, running or cycling) and basic postures (lying, sitting, stand-
ing) is well researched and is possible with just one 3D-accelerometer [11,18].
However, since these approaches only consider a limited set of similar activities,
they only apply to specific scenarios. Therefore, current research focuses among
others on increasing the number of activities to recognize, with the goal to give a
more accurate and more detailed description of an individual’s daily routine [3].
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Another challenge in this research field is the monitoring of physical activities
in real life scenarios, which is usually neglected or even completely ignored.
Moreover, recent benchmark results on physical activity monitoring datasets
show that the difficulty of the more complex classification problems appearing
in real life situations exceeds the potential of existing classifiers [32,33].

This section addresses these shortcomings by describing a robust activity
monitoring system for everyday life, as instantiation of the above described over-
all system architecture for the aerobic activity monitoring use case. The focus
lies thereby on the presentation and evaluation of algorithms for monitoring a
large and extensible set of activities of daily living based on a system for long-
term and everyday use. Furthermore, the personalization of activity recognition
algorithms — a new topic of interest in this field [19,23] — will also be addressed,
considering its feasibility in mobile applications and its applicability in everyday
life situations.

Objectives and Requirements. The aerobic activity monitoring use case
has two main objectives: to estimate the intensity of performed activities and
to identify the aerobic activities traditionally recommended. The former objec-
tive is motivated by the goal to tell how far individuals meet physical activity
recommendations, such as given in [13]. For this purpose, the system should dis-
tinguish activities of light, moderate, and vigorous effort. The ground truth for
this rough intensity estimation is based on the metabolic equivalent (MET) of
physical activities, provided by [1]. Moreover, to give a more detailed descrip-
tion of an individual’s daily routine, an activity recognition task is defined. The
goal thereby is the recognition of a few (recommended) activities and postures
of interest, but as part of a classification problem where a large amount of other
activities are included as well. This simulates the common behavior of how activ-
ity monitoring systems are used in real life scenarios.

Due to the special characteristics of classification problems defined on aerobic
activity monitoring tasks, the evaluation methodology of such systems deserves
a few remarks. The commonly used standard k-fold cross-validation (CV) only
simulates the scenario in which a classifier was trained. The evaluation this
way is limited to the known set of users and activities, thus delivering “opti-
mistic” results for real life scenarios. The simulation of subject independence
can be achieved with leave-one-subject-out (LOSO) CV. Moreover, to simulate
when unknown activities are performed, leave-one-activity-out (LOAO) CV is
recommended. The combination of LOSO and LOAO evaluation gives the best
simulation of how developed methods would behave in everyday life scenarios, as
described in [30]. Finally, it should be noted that traditional performance mea-
sures are used in this section to quantify the classification performance: precision,
recall, F-measure, and accuracy.

Data Collection. Since aerobic activities are monitored over a long period in
daily life, the hardware system for this use case has important constraints to
adhere: only a limited number of sensors can be used and only relaxed require-
ments can be defined for calibration and fixation of the sensors. Therefore, a
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mobile and unobtrusive system is proposed, consisting of the following compo-
nents: three wireless inertial sensors (attached on the chest, over the wrist on
the dominant arm and on the dominant side’s ankle, respectively), a wireless
heart rate monitor, and a mobile unit for data collection, processing, and online
feedback. An analysis of the necessity of the different sensors showed that this
proposed sensor setup is the minimum required to achieve an accurate monitor-
ing and assessment of the user’s aerobic activities in daily life [31].

Due to the lack of commonly used, standard datasets in the field of physical
activity monitoring the described hardware system was used to record a new
dataset [32,33]. The created PAMAP2 dataset includes inertial and heart rate
data from 9 subjects performing 18 different physical activities. The categoriza-
tion of the latter into intensity classes is given in Table 1. The dataset not only
includes basic activities and postures (lying, sitting/standing, walking, running,
cycling and Nordic walking) traditionally used in the activity monitoring field,
but also a wide range of everyday, household and fitness activities (e.g., car
driving, vacuum cleaning or playing soccer). Therefore, it is suitable for defining
complex classification tasks and to simulate developed methods under realistic
conditions. The dataset has been made publicly available in the UCI machine
learning repository [27] and will be used in the rest of this section for evaluation
purposes.

Data Processing. The PAMAP2 dataset provides raw sensory data. There-
fore, a common data processing chain (DPC) is applied to obtain the aimed inten-
sity and activity class. The DPC consists of preprocessing, segmentation, feature
extraction, and classification steps, as depicted in Fig. 2. The preprocessing step
provides synchronized, timestamped, and labeled acceleration and heart rate data.
This data is then segmented using a sliding window. Previous work shows (e.g.,
[15]) that for segmentation there is no single best window length for all activities.

Table 1. Definition of the intensity estimation task: mapping of physical activities
included in the PAMAP2 dataset to the three intensity classes.

Light effort Moderate effort Vigorous effort

(< 3.0 METs) (3.0–6.0 METs) (> 6.0 METs)

lie walk run

sit cycle ascend stairs

stand descend stairs rope jump

drive car vacuum clean play soccer

iron Nordic walk

fold laundry

clean house

watch TV

computer work
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Fig. 2. The data processing chain applied in the aerobic activity monitoring use case.

To obtain at least two or three periods of all different periodic movements, a win-
dow length of about 3 to 5 s is reasonable. Furthermore, to assure an effective dis-
crete Fourier transform computation for the frequency domain features, a window
size of 512 samples was selected. Since the sampling rate of the raw sensory data
was 100 Hz in the recorded PAMAP2 dataset, the segmentation step results in
signal windows of 5.12 s length. Thus, the preprocessed data is segmented using
a sliding window with the defined 5.12 s of window size, shifted by 1 s between
consecutive windows. On each of these segments, various signal features are com-
puted in both time (e.g., mean, standard deviation) and frequency domain (e.g.,
energy, entropy). In total, 137 features are extracted, which then serve as input to
the classification step. The entire DPC is described in more detail in [32].

To deal with the other activities in the activity recognition task different
models have been proposed. Common approaches include regarding all back-
ground activities as separate activity classes (‘allSeparate’ model), introducing
a single background activity class (‘bgClass’ model, basically a null-class app-
roach) or separating the basic and background activities in a classification step
before or after the actual differentiation of the activities of interest (‘preReject’
or ‘postReject’ model, respectively). With the application of the above described
LOSO and LOAO evaluation techniques the model with best generalization
characteristics can be identified. As shown in [30], the ‘bgClass’ model behaves
the most robust in real life scenarios and will thus be used hereafter.

A wide range of classification methods has been proposed and applied in the
literature of physical activity monitoring. Most common choices are supervised
learning approaches such as decision trees, Bayesian or instance based classifiers,
support vector machines, neural networks, etc. A comparison of different meth-
ods applied for activity recognition can be found, e.g., in [2,24]. Moreover, some
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of the above listed classifiers have been used as part of an ensemble or meta-
level classifier. A benchmark on the previously defined intensity estimation and
activity recognition tasks, comparing different base- and meta-level classifiers, is
presented in [32,33]. Overall, the best performance is achieved with boosted deci-
sion trees and k-nearest neighbors. However, the boosted decision tree classifier
has further benefits: it is a fast classification algorithm with a simple structure
and is thus easy to implement. These benefits are especially important for aerobic
activity monitoring applications, since they usually run on mobile systems with
limited computational resources. Therefore, boosted decision trees are applied
in the classification step of the DPC for the rest of this section.

Algorithm 1. ConfAdaBoost.M1
Require: Training set of N instances: (xi, yi) i = 1, . . . , N (xi: feature vector, yi ∈ [1, . . . , C])

New instance to classify: xn
1: procedure Training((xi, yi) i = 1, . . . , N)

2: Assign equal weight to each training instance: wi = 1
N , i = 1, . . . , N

3: for t ← 1, T do
4: Fit weak learner on the weighted dataset: ft(x) ∈ [1, . . . , C]
5: Compute the confidence of the prediction that instance xi belongs to the

predicted class: pti, i = 1, . . . , N
6: Compute error et of model on weighted dataset: et =

∑
i:yi �=ft(xi)

ptiwi

7: if et = 0 or et ≥ 0.5 then
8: Delete last ft(x) and terminate model generation.
9: end if

10: Compute αt = 1
2 log

1−et
et

11: for i ← 1, N do

12: wi ← wie

(
1
2 −I(yi=ft(xi))

)
ptiαt

13: end for
14: Renormalize the weight of all instances so that

∑
i wi = 1

15: end for
16: end procedure

17: procedure Prediction(xn)
18: Set zero weight to all classes: μj = 0, j = 1, . . . , C
19: for t ← 1, T do
20: Predict class with current model: [c, pt(xn)] = ft(xn), where pt(xn) is the

confidence of the prediction that instance xn belongs to the predicted class c
21: μc ← μc + pt(xn)αt

22: end for
23: The output class is arg maxjμj j = 1, . . . , C
24: end procedure

One of the key challenges identified by the benchmark is the necessity to
improve existing algorithms to achieve good performance results on complex
activity monitoring classification problems. Therefore, a novel boosting method
called ConfAdaBoost.M1 is presented here. ConfAdaBoost.M1 (cf. Algorithm 1)
is a confidence-based extension of the well-known AdaBoost.M1 algorithm. It
is a direct multiclass classification technique, keeping the algorithmic structure
of AdaBoost.M1. The main idea of ConfAdaBoost.M1 can be described as fol-
lows. In the training part of the algorithm, the confidence of the classification
estimation is returned for each instance by the weak learner (line 5). These pti

confidence values are used when computing the error rate of the weak learner
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(line 6): the more confident the model is in the misclassification the more that
instance’s weight counts in the overall error rate. Moreover, the pti confidence
values are used to recompute the weights of the instances. The more confident
the weak learner is in an instance’s correct classification or misclassification,
the more that instance’s weight is reduced or increased, respectively (line 12).
Finally, the confidence values are used in the prediction part of the algorithm:
the more confident the weak learner is in a new instance’s prediction the more
it counts in the output of the combined classifier (line 21).

The ConfAdaBoost.M1 algorithm has been evaluated on various benchmark
datasets, comparing it to the most commonly used boosting techniques. Results
achieved on the defined activity recognition (PAMAP2 AR) and intensity esti-
mation (PAMAP2 IE) classification problems are shown in Table 2. It is clear
that ConfAdaBoost.M1 performed significantly best among the compared algo-
rithms. For example, on the activity recognition task the test error rate was
reduced by nearly 20% compared to the second best performing classifier. A more
detailed description of ConfAdaBoost.M1 and further results of its thorough
evaluation can be found in [29].

Personalization of Physical Activity Recognition. The benchmark results
on the PAMAP2 dataset show that although good overall performance is achieved
on various activity monitoring tasks, the individual performance of the included
subjects varies a lot [32,33]. Therefore, personalization approaches are highly
encouraged, thus to adapt a general activity monitoring model to a new user.
This has become a topic of interest recently, suggesting personalization either in
the feature extraction or classification step of the DPC. Drawbacks of existing
approaches are that either the general model is simple (allowing only low perfor-
mance on complex classification tasks) or too complex for mobile applications,
resulting in unfeasible computational costs.

This section presents a novel general concept of personalization, applying it
in the decision fusion step of the DPC. In this concept the general model consists
of a set of S classifiers (experts), all weighted the same (wi = 1, i = 1, . . . , S).
Using new labeled data from a previously unknown subject, only the weights of
the experts are retrained, the classifiers themselves remain the same. To show
that this concept is a valid approach for personalization, different methods based
on the idea of weighted majority voting are applied to increase the performance
of the general model for new individuals. The baseline performance is given by

Table 2. Comparison of ConfAdaBoost.M1 to common boosting algorithms: test error
rates [%] on the PAMAP2 activity recognition and intensity estimation tasks.

Task AdaBoost.M1 Quinlan- Conf- SAMME

AdaBoost.M1 AdaBoost.M1

PAMAP2 AR 29.28 ± 1.4 27.9 ± 1.06 22.22 ± 0.77 27.98 ± 1.34

PAMAP2 IE 7.98 ± 1.04 7.73 ± 0.66 5.60 ± 0.31 7.81 ± 0.6
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majority voting (MV), thus when no retraining is performed. Using a set of
N labeled samples from the new subject, three existing approaches are applied
to retrain the general model: weighted majority algorithm (WMA), randomized
weighted majority algorithm (RWMA) and weighted majority voting (WMV).
Moreover, based on the proposed general concept, a novel algorithm called depen-
dent experts (DE, cf. Algorithm 2) is introduced. The main idea of the DE algo-
rithm is that the confidence of an expert’s prediction depends on the decision
of all other experts. Therefore, the result of training the weights is a matrix of
size SC (W, line 13), where wi,c stands for the weight of the ith expert when the
majority vote of all other experts is the class c (defined as the performance rate
of the ith expert on this subset of samples, cf. line 8–10). This way, DE is more
flexible compared to existing algorithms: it supports the case when an expert is
performing good on some classes, but poorly on others.

The described general concept of personalization and the novel DE algo-
rithm have been thoroughly evaluated on the PAMAP2 activity recognition
task, using the LOSO evaluation technique [34]. The results show the validity
of the proposed methods: compared to MV, the overall performance measures
and especially the lowest individual performance increases significantly. More-
over, the new DE algorithm clearly outperforms all other methods and is thus a
very promising approach for personalization. Since the presented algorithms are
computationally not intensive, they are feasible for mobile activity monitoring
systems. Finally, the proposed personalization approach requires less interaction
from a new user than existing solutions and has a short response time [34].

Algorithm 2. Dependent Experts
Require: S is the set of S different experts (classifiers): si, i = 1, . . . , S

C is the set of C classes the classification task is composed of: ci, i = 1, . . . , C
N is the set of N new labeled samples: ni = (xi, yi), i = 1, . . . , N

(xi: feature vector, yi ∈ [1, . . . , C])
New instance to classify: xnew

1: procedure training weight(S,C,N)
2: for i ← 1, S do
3: for j ← 1, N do
4: Predict label of xj with expert si: ŷj

5: Predict label of xj with the ensemble S ∩ si, using majority voting: ˆ̃yj

6: end for
7: for c ← 1, C do
8: Pc = {∀n ∈ N |ˆ̃y = c}
9: Pc good = {∀n ∈ Pc |ŷ = y}

10: wi,c = |Pc good|/|Pc|
11: end for
12: end for
13: W is the return weight matrix, composed of wi,c i = 1, . . . , S and c = 1, . . . , C
14: end procedure
15: procedure prediction(S,C,W,xnew)
16: μc = 0, c = 1, . . . , C
17: for i ← 1, S do
18: Predict label of xnew with expert si: class ĉ

19: Predict label of xnew with the ensemble S ∩ si: class ˆ̃c
20: μĉ ← μĉ + wi,ˆ̃c

21: end for
22: The output class is arg maxcμc c = 1, . . . , C
23: end procedure
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3.3 Strength Exercise Monitoring

Different systems and methodologies for monitoring and supervising home-based
motor retraining and coordination exercises have been proposed during the past
years. See [25] for a thorough review of wearable sensors and systems for rehabil-
itation applications. Examples of rehabilitation solutions that have entered into
the market are Hocoma’s ValedoMotion [14] and CoRehab’s Riablo [8]. Using few
wearable IMUs, both system monitor specific body parts, such as back, knee,
or elbow, with respect to range of motion and use gamification techniques to
motivate the user.

Current video games include feedback based on wearable motion or external
vision sensors in order for users to follow fitness exercises of general interest.
While such gaming systems are motivating and can have a positive effect on
strength, balance, and overall fitness, the considered parameters are undocu-
mented leading to a lack of proper monitoring and helpful feedback. Moreover,
the available systems cannot be personalized for users with specific needs and
individual limitations and their use in frail populations has led to injuries as
reported in a recent survey [38]. Finally, external vision sensors suffer from the
line-of-sight problem and therefore restrict the set of available exercises to those
which allow full visibility of the user in the relevant plane.

To summarize, previous work has mostly focused on a single body joint
rather than providing a flexible solution for the whole body. Moreover, it has
concentrated on the motivational aspect of the system rather than on devel-
oping sophisticated monitoring methodology. Therefore, this section focuses on
a recently developed methodology, which takes both exercise load and tech-
nique into account and stands out due to the complexity of evaluation parame-
ters, the inclusion of the complete body, and its generic concept with inherent
personalization.

Objectives and Requirements. The aim of the strength exercise use case
is to guide a user through a training session and to provide valuable online
feedback in order to ensure positive training effects and prevent injuries through
correct exercise execution. For this, the exercise load, as well as, the performed
movement have to be monitored and evaluated. The latter includes verifying that
the muscles loaded during the exercise are the targeted ones and that the range
of motion and the assumed postures are correct. Monitoring these parameters
requires, in contrast to the aerobic activity use case, short-term, but accurate
tracking of relevant body segments.

The following paragraphs describe the technical realization of these require-
ments in terms of the back-end components depicted in Fig. 1. Data collection
addresses the hardware platform, as well as, full-body motion tracking, while
data processing encapsulates methods for: (1) to learn and then recognize motion
patterns (single exercise repetitions) in continuous motion data streams; and
(2) to compare segmented patterns to previously learnt reference motions and
to evaluate their execution in terms of the above mentioned parameters.
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Data Collection. Strength exercises are monitored over a short period of time,
typically during training indoors and require accurate tracking of all involved
body segments. Therefore, the hardware system for this use case is based on a
stationary processing and display infrastructure (e.g., a laptop and a television)
and a comparably complex wearable inertial sensor setup.

Any commercially available IMU, providing sufficient measurement quality
can be in the system. While the latest generation wireless sensors, such as [39,46],
are rather costly and obtrusive due to their form factor, recent developments in
sensor miniaturization enable low-cost and light-weight solutions [36].

The number of sensors, the sensor positioning, fixation, and calibration, is
a trade-off between ease of use and data accuracy. The latter receives more
emphasis here compared to the aerobic monitoring use case. To precisely capture
the user’s movements, it is typically assumed to have one IMU on each major
body segment that should be monitored. Moreover, sensors should be placed
on bones, ligaments, and between muscles in order to be unobtrusive and limit
the skin and muscle motion artifacts. Furthermore, an easy, fast and repeatable
fixation method is required that neither allows for too many degrees of freedom
nor is too size-dependent.

While previous systems emphasize flexibility and are mostly based on Velcro
straps on top of the normal cloths [8,14], the system in focus here, the solution
proposed in [6], uses a modified sports suit with pre-defined sensor fixation points
in order to reduce the burden on the user to remember the correct positioning.
Moreover, an interactive, but easy-to-perform calibration procedure is used to
improve data accuracy. Recent developments in the direction of smart garment
with highly integrated miniaturized sensors provide a promising future platform
for the considered application [36].

Fig. 3. Functional upper body model with indicated IMU placement (red cubes) (Color
figure online).
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A conventional approach to body motion tracking is to determine the joint
angles and angle kinematics by comparing the IMU measurements (accelerations,
angular velocities, and magnetic fields) to predictions based on a biomechanical
body model using model based sensor fusion. This biomechanical model is typi-
cally a functional model consisting of rigid bodies and joints, such as the upper-
body model illustrated in Fig. 3 in relation to the sensor positions. To capture
more detailed motions or additional body parts, the model complexity can be
increased by including additional segments and respective IMUs. While commer-
cially available inertial motion capturing systems based on the aforementioned
type of IMUs [40,47] provide rather closed solutions, dedicated implementations
of the underlying method as described in e.g., [10,21,28] provide more flexibility.
In particular, [21] describes a generic method for tracking arbitrary kinematic
chains based on IMUs.

The inertial motion capturing system used in this section is based on the
model illustrated in Fig. 3, while assuming the same structure also for the lower
body. The full-body model consists of ten rigid bodies (torso, pelvis, upper-
arms, forearms, upper-legs, and lower-legs) connected by anatomically motivated
restricted joints. The orientations of torso and pelvis, as well as, the shoulder
and hip joints are modeled with three degrees of freedom, while elbow and knee
joints are modeled as pivot joints with two degrees of freedom. Hence, in total,
26 angles are available for data processing.

Due to a lack of commonly available datasets for the type of application
described here, a new dataset has been created using this setup. This dataset is
particularly interesting, since it has been generated in the context of a clinical
study with an extremely relevant target group of elderly people between the ages
of 55 and 86. The dataset contains motion tracking data (26 joint angles at 100 Hz)
from 30 participants performing 10 to 13 different upper and lower body exercises.
These exercises were performed once under the supervision of a physical activity
teacher and once autonomously. Labels indicate the start and end of each exercise
repetition. From the 30 participants, ten were fit and healthy, ten were cardiac
patients and ten suffered from upper or lower body functional disabilities. Hence,
this dataset is suitable for evaluating personalized monitoring methodologies and
will be used in the rest of this section for evaluation purposes1.

Data Processing. From a technical point of view, monitoring both exercise
load and performed movement requires to automatically detect single exercise
repetitions and to accurately evaluate each repetition with respect to certain
parameters. A promising concept for achieving personalized monitoring is to
learn personalized exercise models from example executions of individual users.
This is illustrated in Fig. 4: During a teach-in phase, training data is collected
from a user, while he/she performs a certain number of exercise repetitions (per
exercise), e.g., under supervision of a physical activity specialist. The training
data is then used to automatically construct a personalized exercise model, which
1 The dataset is publicly available at http://www.pamap.org/PAMAP trials.tar.gz.

http://www.pamap.org/PAMAP_trials.tar.gz
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serves as gold standard during the trainer mode, i.e., during online exercise mon-
itoring. This generic reference model concept not only enables personalization,
but it also provides independence of a fixed exercise selection with pre-defined
parameters for each exercise.

Fig. 4. Concept for personalized strength exercise monitoring.

Subsequently, the technique to automatically generate a personalized exercise
model from training data is described. This includes finding all repetitions of the
performed exercise in the recorded sequence and then creating a statistical model
from the detected repetitions. Afterwards, it is explained, how this model is used
to detect and evaluate motion cycles during online monitoring.

Teach-in Mode. The following paragraphs describe a fully automated method
for reliably extracting known numbers of exercise repetitions within continu-
ous motion sequences. Technically, this corresponds to the problem of detecting
motifs in multivariate training sequences, which is also referred to as unsuper-
vised motif discovery. A motif is here a recurring motion segment, representing
one repetition of strength exercise execution. The detected segments can then be
used to generate a personalized statistical model, which can serve as reference
for both online motion cycle detection and evaluation.

In the following, the different steps of motif discovery will be described.
First, the dimensionality of the motion data is reduced. Figure 5a shows an
example recording of the 26 angles for the full body. Based on the assumption
that the most moving joints contain the most relevant information, the angles
with highest variances are extracted (see Fig. 5b). Let

Ci = {ci,1, ci,2, · · · , ci,n},

with 0 ≤ i < b, be a time series of angle values for joint angle i, where b is the
number of tracked angles and n the length of the sequence. Then, each channel
with var(Ci) > μvar is considered to be relevant, with

μvar =
1
b

·
b∑

i=0

var(Ci).

Since, in this case, the length of the pattern (one exercise repetition) is unknown,
the second step is to estimate a suitable window size west, i.e., the length of one
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motion cycle. This is an extension to most previous approaches, which are based
on a predefined window size [22]. Here, the windows size depends on the sampling
rate of the system and is measured in number of samples.

Based on the assumption that the repetitions in the training sequence are
performed consecutively with roughly the same speed, a dominant frequency
should be present in the signal. This can be extracted using the combined power
spectral density (PSD) [44] (cf . Fig. 5b). The window length west is then initial-
ized as the wavelength of the dominant frequency, west = λ = v

fdominant
, with v

being the sampling rate; i.e., here 100 Hz.
The next step detects the motif candidates. For this, an extended version of

Minnen’s method [22] parametrized with west is used. The method collects over-
lapping sub-sequences, Si, of length west from the training signal, S, and deter-
mines the k-nearest neighbors for each subsequence as kNN(Si) = Si,1...k. Here, k
is the predefined number of repetitions. In order to reduce the sensitivity to local
time shift and slightly varying execution speed, dynamic time warping (DTW) is
used as distance measure. A real motif should have at least k similar sub-sequences.
Hence, in order to find good motif candidates, for each subsequence, Si, the dis-
tance density is estimated as the reciprocal of the distance to the least similar
neighbor k: den(Si) ∝ 1

dist(Si,Si,k) . The motif candidates, candi, are then identi-
fied as the local maxima of the densities among their k nearest neighbors:

maxima(Si) = {Si : ∀ Si,j den(Si) > den(Si,j)},

where j = [1, k]. Motif candidates are highlighted in Fig. 5c.
In the next step of the algorithm, a model for each candidate is generated and

used to segment the signal. As most of the learning approaches fail, if there are only
few training samples available, either constructed models [42] or template-based
approaches are feasible. Here, a template approach, based on the online dynamic
time warping (ODTW) [17] is described. The motif candidate is chosen as the
template for the DTW and its k-neighbors are used for defining the cost threshold.

Finally, the candidate, which model provides the best signal segmentation, is
chosen as the motion motif. As criteria, the difference between the number of seg-
mented patterns and the known number of executions in the training sequence,
as well as, the average normalized DTW costs are used. In Fig. 5c, the selected
candidate is marked red.

The chosen motif and its nearest neighbors can now be either used to generate
a class template from a set of the best templates, e.g., extract the templates from
the nearest neighbors that have the best minimum inter-class DTW distances [17],
or they can be used to generate a hiddenMarkovmodel (HMM) as proposed in [42].
Both approaches are suitable for an online real-time segmentation.

The proposed motif discovery method was evaluated on the previously men-
tioned dataset in terms of precision, recall, and overlap. Precision is defined as
the fraction of segmented exercise executions that are relevant, while recall is
defined as the fraction of correctly retrieved executions. A segment, i.e., a motion
cycle, is considered as correctly retrieved, if it overlaps with the ground truth
segment exceeds 30 %.
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Fig. 5. Consecutive steps of the motif discovery on a sample teach-in sequence: (a) plots
26 joint angles recorded during a teach-in session for one exercise; (b) illustrates the
reduced motion tracking signal, i.e., the most moving joint channels (top) and the
PSD (bottom), where the dominant frequency is marked with a red circle (estimation
of west); in (c), the annotated area shows the result of the motif candidate (green)
selection, as well as the finally selected motif (red) (Color figure online).
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Fig. 5. (Continued)

Table 3. Exemplary motif discovery results averaged over all performed exercises in
terms of precision, recall, and percental overlap.

# Precision Recall Overlap

μ ± var μ ± var μ ± var

1 0.77 ± 0.10 0.80 ± 0.10 0.59 ± 0.06

2 0.85 ± 0.08 0.86 ± 0.08 0.71 ± 0.08

3 0.98 ± 0.00 0.97 ± 0.01 0.75 ± 0.03

4 0.93 ± 0.02 0.95 ± 0.02 0.76 ± 0.02

5 0.98 ± 0.00 0.90 ± 0.01 0.73 ± 0.03

...
...

...
...

30 0.95 ± 0.01 0.88 ± 0.01 0.59 ± 0.04

ø 0.93 ± 0.00 0.91 ± 0.00 0.72 ± 0.00

Table 3 exemplifies the experimental results for selected participants rep-
resented in the dataset, averaged over all performed exercises. A more detailed
analysis of the results is given in [43]. In the following the methods for generating
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personalized models for real-time, online motion cycle detection, as well as, for
motion cycle evaluation are introduced.

Model Construction and Motion Cycle Detection. Based on the motion segments
extracted in the teach-in mode, a method for constructing an HMM for a motion
pattern, is discussed in this section. The HMM representation is chosen for two
reasons: (1) it naturally takes variations in motion into account by allowing for
time-warping and has thus been successfully applied in domains such as speech,
gesture, and handwriting recognition; (2) standard algorithms, such as the short-
time Viterbi algorithm [7] can be applied for online, real-time monitoring.

The observation probabilities of the HMM are modeled using Gaussian mix-
ture models (GMM), as illustrated in the left plot in Fig. 6. Here, the different
joint angle components of the multivariate signal are handled separately.

Let RM be the set of reference motions recorded for one exercise performed
by one individual, during the teach-in phase. Now, a model MRM is learnt from
the reference motion RM . Since traditional parameter estimation methods for
HMMs, such as the Baum-Welch algorithm, typically fail when applied to too
few training examples, a simple construction algorithm is applied to capture
the characteristics of each reference motion RMi. This algorithm builds a HMM
with left-right topology, which is a wide-spread approach to model time-varying
sequential data [26]. Self-transitions and skip-transitions are added to allow for
a faster and slower execution of the pattern. The number of states, N , is cho-
sen as half the average sample length lavg: N = � lavg

2 � of the reference motion
patterns RM . For each state, STi, a GMM is then trained using an expectation-
maximization algorithm on all respective elements of RMi[j : j + lavg]. Thus,
each segment is described by one normal distribution N (μj , σj).

The HMMs obtained during the personalized model creation enable online
detection of the represented reference motion within continuous motion data
by utilizing the short-time Viterbi algorithm [7]. In general, the Viterbi algo-
rithm computes the most likely path of states given a sequence of observations.
Here, the observations are given by the continuous joint angles as streamed by
the data collection component. Thus, the algorithm can determine, to which
state, respectively frame, of the reference motion the current motion matches.
If the probability of the Viterbi algorithm is below a defined threshold, the
current observation is considered represent an incorrect motion. The motion
cycle detection immediately allows for counting exercise repetitions and deduc-
ing their duration. Whenever a complete motion cycle has been detected, the
detailed evaluation starts as will be detailed below.

Motion Cycle Evaluation. According to the system requirements, it is fundamen-
tal to evaluate the load of the exercise, the muscles that work, as well as, the
posture assumed during the exercise in order to ensure effectiveness and safety.
Translating these constraints into objective data that can be derived from the
measured motion data resulted in the following criteria: For movement load,
the exercise intensity is quantified by the number of repetitions, the movement
speed, the movement amplitude, and the movement smoothness. Whether the
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Fig. 6. HMM for one angle of the motion signal.

muscles that work are the correct ones is evaluated based on the axes of rotation
during motion. Finally, for safety issues, the posture is evaluated based on a
number of fixed distances or angles to be kept when performing the movement.
This could, for instance, be the distance between the feet during squat exercises,
or the angle at the pelvis during push-ups.

The number of repetitions and their duration are given by the motion cycle
detection step described above. For the other criteria, an algorithm has been
proposed in [6], which evaluates each detected motion cycle using the model
constructed during the teach-in mode as reference. The different steps of the
algorithms are the following. First, different angles and distances that must be
respected during the movement in order to avoid injuries are computed and
compared with those obtained during the reference movement. Afterwards, the
principal rotation axis is computed for the current cycle at each joint. The prin-
cipal rotation axes are then compared to the ones obtained during the refer-
ence movement. Using the same formalism, the rotation amplitudes are also
compared. Finally, the number of local extrema of the time derivative of the
joint trajectory (i.e., its velocity) that has the greatest range of motion dur-
ing the movement is evaluated and compared in order to determine movement
smoothness. The procedure is illustrated in Fig. 7. The movement duration used
to evaluate velocity, the pose (fixed angles and distances), and the rotation
amplitudes of the movement to evaluate should not differ by more than a cer-
tain threshold from the reference model. The principal rotation axes should not
deviate more than a certain threshold from those obtained from the reference.
For the smoothness, the same number of extrema has to be found, since any
other number of extrema indicates a deviation from the prescribed movement,
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Fig. 7. Motion cycle evaluation: Detected motion cycles are evaluated separately by
comparing them to a reference motion. The cycles overlaid with a red area show a
significant deviation from the reference movement (illustrated as dashed red lines)
(a), either in amplitude (b) or in the number of extrema (c). The green area indicates
a correctly performed cycle (Color figure online).

e.g., in the form of a parasite movement or a break in motion flow during the
execution of the exercise. For providing online user feedback, if any of these
above mentioned criteria are not met, an alert can be generated and sent to
the user interface, which translates this into explanatory feedback. The motion
cycle evaluation concept is summarized in Table 4. Moreover, a technical evalua-
tion of the proposed algorithm in terms of a confusion matrix for the considered
parameters within a small-scale study can be found in [6].

4 Open Problems and Future Outlook

This chapter has outlined a platform for personalized physical activity monitor-
ing by means of wearable sensors and has showcased different possible use cases.
Even though promising results have been shown that indicate the potential of
the technology, there are still open problems and challenges to be solved before
this technology can be widely applied.

In the aerobic exercise monitoring use case, it should be investigated how well
the developed methods and algorithms perform with different user groups. The
evaluation on a publicly available physical activity monitoring dataset — including
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only young, healthy adult subjects — indicate good performance results.
However, the ability to generalize the developed approaches with significantly
different user groups (e.g., elderly) remains an open question. Moreover, it is
also planned to investigate the effect of increasing the number of known (thus
in the training included) other activities, with the goal to improve even more
the robustness with respect to unknown other activities while sustaining the
high performance regarding the basic activity classes of interest. Furthermore,
although the mobile aerobic activity monitoring system in its current form (using
small wireless sensor units and a smartphone as mobile control unit) is as unob-
trusive as possible with today’s technology, its acceptance amongst different user
groups needs to be evaluated in a user study.

Table 4. Motion cycle evaluation concept: The fixed angles and distances are pro-
vided by physical activity experts. The other measures are directly deduced from the
movement of reference. The values x and θ are parameters of the algorithm.

Constraints Parameters Measures Thresholds

Safety Posture Fixed angles and distances

at/between joints

±x% of reference value

Load of exercise Number of repetitions Number of cycles Same as reference

Movement velocity Movement duration ±x% of reference value

Movement amplitude Range of motion from

quaternions at

moving joints

±x% of reference value

Movement smoothness Number of extrema in

velocity of most

moving joint

Same as reference

Muscles to work Joint rotation axes Quaternion axes at

moving joints

Angle deviation, θ,

from reference axis

In the strength exercise use case, for instance, the detailed motion capturing
needs to be more robust and the wearable sensory equipment even less obtrusive
to be reliably deployed in the users’ homes. Current developments in miniatur-
ized sensors and smart clothes are fully in line with the latter requirement and
open up for new possibilities. Moreover, stationary vision and depth sensors used
in current gaming consoles could be fused with wearable motion sensors in order
to create synergies and increase precision and robustness or reduce the number
of required wearable sensors. A purely vision-based approach, however, is not
feasible for the type of motions performed, due to the line-of-sight problem.

Another challenge is posed by the machine learning algorithms used to learn,
segment, and evaluate motion cycles of arbitrary exercise motions. Today, these
algorithms require engineering know-how to some extend to tune various
parameters and thresholds. Here, further experiments and the development of
data-driven parameter selection methods are crucial in order to improve the
usability of such technologies for e.g., health care professionals.

A last aspect to mention for the strength exercise use case is the fact that
recognition algorithms sometimes fail. This raises the question how this should
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be handled by both the monitoring system and the user interface. Here, in par-
ticular false negative motion cycle detections or false positive incorrect motion
detections could decrease the motivation of the user rather than providing sup-
port. Furthermore, a system accepting incorrect motions could be even more
dangerous and could encourage the user to hurt himself. A forgiving user inter-
face and the possibility for online learning based on some type of feedback from
the user could be subject of future research.

Even though open problems still exist, monitoring technologies, such as the
ones presented in this chapter, have taken a big step forward and in view of
today’s societal challenges, the aging society and the aging workforce, it is to be
expected that mobile health technologies will gain even more importance and
enter various application fields from personal health and fitness over work-life-
balance support to human factor research.
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Reading

The generic platform concept for physical activity monitoring using wearable sen-
sors, as well as the two implemented use cases have been presented in
the previous Sect. 3. Especially the technical requirements in terms of the hard-
ware platform and monitoring methodology have been addressed. However, in
order to design such a system it is inevitable to consider end user requirements
and to evaluate its overall usability. Particularly, when designing for diversity
(e.g., elderly population) additional requirements have to be considered.

Targeting the elderly population various aspects and effects of aging on men-
tal and physical health and fitness have to be considered. Among others the
book

K. Berger. The developing person: Through the life span. Worth Publishers,
2008

describes the cognitive changes with aging (decreased ability to perceive a high
amount of information at the same time, decrease of memory), the physiological
changes (decrease of sensory abilities, e.g., vision and hearing, decrease of move-
ment accuracy and coordination) and the ability to deal with recent technology.
The cognitive and the physiological changes should be taken into account during
the conception of the user interface and the conception of the wearable sensors.
Regarding the user interface, the quantity of information presented to the user
should be reduced to the most useful and simplest form and should be presented
by different sensory means (visual, auditive). The interaction with the system,
as well as the manipulation and the fixation of the wearable sensors, should not
require any fine movements. Finally, the user interface should be integrated into
a system familiar to the user in order to limit the required learning of unknown
technology. For a detailed description regarding the above mentioned require-
ments the interested reader is referred also to the following books

A. D. Fisk, W. A. Rogers, N. Charness, S. J. Czaja, and J. Sharit. Designing
for older adults: Principles and creative human factors approaches. CRC
press, 2009

and

A. Sears and J. A. Jacko. The Human-Computer Interaction Handbook: Fun-
damentals, Evolving Technologies and Emerging Applications. CRC Press,
2007

Moreover, recent advances in the miniaturization of sensors have made it
possible to realize a great variety of new applications and open up new possibil-
ities. However, this vast amount of sensor data has to be captured, stored and
analyzed. Finding patterns and trends in this data is a challenging task. Witten
et al. presents in

I. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques, Second Edition. The Morgan Kaufmann Series in Data Manage-
ment Systems. Elsevier Science, 2005
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a description of the Weka toolkit, along with a thorough foundation for the
machine learning concepts the toolkit uses, and practical advice for using the dif-
ferent tools and algorithms. Weka is a collection of machine learning algorithms
for data mining tasks. It includes tools for data pre-processing, classification,
regression, clustering, association rules, and visualization. It is also well-suited
for developing new machine learning systems.

A comprehensive and up-to-date introduction to the theory and practice of
artificial intelligence is given by Russell and Norvig in

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall series in artificial intelligence. Prentice Hall, 2010

A great introduction to ubiquitous computing is given by Krumm in

J. Krumm. Ubiquitous Computing Fundamentals. Taylor & Francis, 2009

This book covers the contributions of 11 of the most prominent researchers in
the field of ubiquitous computing. Based on the categories systems, experience,
and sensors the authors describe various research topics in the field of ubiquitous
computing.

Finally, pattern recognition from the Bayesian viewpoint is addressed in the
book

C. Bishop. Pattern Recognition and Machine Learning. Information Science
and Statistics. Springer, 2006

This book does not require any previous knowledge of pattern recognition or
machine learning concepts. Furthermore, it includes a self-contained introduction
to basic probability theory.
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Abstract. Human body has an interesting potential to provide energy
to micro-electronic systems. There are several techniques that can har-
vest energy from human body and convert it in energy to be used by
electronic systems. Usually this energy cannot be used immediately and
needs to be conditioned. This chapter summarizes about current trends
of energy storage systems. Techniques for extracting energy from human
body, estimations and experimental results based on previous works are
discussed. The merge of all the above mentioned concepts, providing a
general idea to the reader about the state of the art in energy harvesting
from human bodies.

Keywords: Energy harvesting · Energy storage · Human body systems

1 Introduction

Based on techniques and analysis of recent research results, this chapter gives
a detailed overview of the different energy flows on human bodies and how to
scavenge energy from them. Several experimental results and estimations are
presented and discussed, providing an easy to grasp approach to this topic.
At the same time this chapter presents a sketchy approach to energy storage
systems. Also, a special section focused on energy harvesting and energy usage
on human body, can be read.

Several flows of energy can be found on the human body. Each flow is presented
in a separate section focusing on the particular scavenging technique. Following
an intuitively classification makes it for the reader easy to follow. This chapter
is specially recommended to people who are interested in an introduction to this
topic, people with a good level of knowledge on this topic and researchers. Readers
can find a lot of summarized information with helpful suggestions and represen-
tations.

2 Glossary

Following, the main concepts used in this chapter are explained in order to help
the reader in the comprenhension of this work.
c© Springer International Publishing Switzerland 2015
A. Holzinger et al. (Eds.): Smart Health, LNCS 8700, pp. 125–159, 2015.
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ATP: Adenosine triphosphate is a nucleoside triphosphate used in cells as a
coenzyme. It is called the molecular unit of currency of intracellular energy
transfer.

ADP: Adenosine diphosphate is an organic compound used in the flow of energy
to living cells.

DVB-T: Digital video broadcasting – terrestrial is the European-based consor-
tium standard for the broadcast transmission of digital terrestrial television.

DSP: Digital signal processing is the mathematical manipulation of an informa-
tion signal to modify or improve it in some way.

Exoskeletons: It is an external skeleton that supports and protects an animal’s
body. It is used in several purposes with humans.

Gravimetric energy density: Battery capacity in weight (Wh/Kg).

MEMS: Microelectromechanical system is the technology of very small devices.
It merges at the nano-scale into nanoelectromechanical systems (NEMS).

mmHg: Unit used to measure the blood pressure. It is usually expressed in terms
of the systolic pressure over diastolic pressure and is measured in millimeters of
mercury.

Mole: It is an unit of measurement used in chemistry to express amounts of a
chemical substance. It is defined as the amount of any substance that contains
as many elementary entities as there are atoms in 12 g of pure carbon−12.

MPPT: It is a technique that grid connected inverters, solar battery chargers
and similar devices use to get the maximum possible power from one or more
photovoltaic devices, typically solar panels.

Peltier Element: It is an electronic device consisting of metal strips between
which alternate strips of n-type and p-type semiconductors are connected. Pas-
sage of a current causes heat to be absorbed from one set of metallic strips and
emitted from the other by the Peltier effect.

PVDF: Polyvinylidene fluoride (or difluoride) is a highly non-reactive and pure
thermoplastic fluoropolymer. It is used in applications requiring the highest
purity, strength and resistance to solvents, acid, bases and heat.

RF: Radio frequency is a rate of oscillation in the range of about 3 kHz to
300 GHz, which corresponds to the frequency of radio waves.

RFID: Radio frequency identification is the wireless non-contact use of radio-
frequency electromagnetic fields to transfer data. The purposes of automatically
identifying and tracking tags attached to objects, animals or people.

TEG: Thermoelectric generator is a device that converts heat directly into elec-
trical energy, using a phenomenon called the Seebeck effect.

Thermopile: It is an electronic device that converts thermal energy into electrical
energy. It is composed of several thermocouples connected usually in series.
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Wi-Fi: Wireless Fidelity is a technology that allows an electronic device to
exchange data or connect to the internet wirelessly using radio waves.

3 State of the Art

The human body comprises quite a few potential power sources. Figure 1 shows
an overview of the different available power sources which can be found on
human bodies. In the above mentioned figure, brackets show the total amount
of generated power. The figure above gives the amount of harvestable energy by
use of state of the art harvesting technology. The amount of power available for
energy harvesting must be much less than the total amount to avoid negative
physical effects on the user [3]. Also, an up to date overview of energy storage
concepts available for storing energy in human body applications, is presented.

3.1 Chemical Energy

Food is the energy source of human bodies. It has nearly the same gravimet-
ric energy density as gasoline and 100 times greater than batteries [1]. Human
bodies store energy in fat cells distributed in various regions. Each gram of fat
stores and equivalent of 37.7 kJ. An average person of 68 kg (150 lbs) with 15 %
body fat stores an approximate equivalent of 384 mega joule [3]. Fat cannot

Fig. 1. Energy sources on human body [3]
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be directly consumed by body cells. Fat molecules are long chains of glucose
molecules (C6H12O6). These are cut into single molecules and injected into the
bloodstream. Glucose is the main source of energy for the brain and a basis for
smaller molecules like ATP. One glucose molecule stores an energy equivalent of
16 kilo joules. In the human body, it can be converted into two ATP molecules
(C10H16N5O13P3) in anaerobic respiration and into 32 ATP molecules in aero-
bic respiration. The ATP is then usable for muscle contraction. Both enzymatic
breakdown processes require two ATP molecules for processing. In aerobic res-
piration, a glucose molecule is much more profitable than in its anaerobic form
[5]. The total quantity of ATP in the human body is about 0.2 mol, providing
roughly the same amount of energy as a AA battery [8]. At any given time,
the total amount of ATP and ADP (a similar type of energy molecule) is fairly
constant and recycled continuously. Within 24 h, all cells in the human body
consume about 100–150 mol of ATP which is around 50–75 kg [7]. A human will
typically use up his or her body weight of ATP over the course of the day.

3.2 Energy from Liquid Fuels

Common liquid fuels are formic acid, ammonia or methanol. They show energy
densities of 1.6, 5.2, and 5.6 kWh/Kg. Liquid hydrocarbon fuels have gravimetric
energy densities around 13 kWh/Kg. Typical electric generators based on these
fuels provide a conversion efficiency of 25 %. Electric energy generators powered
from liquid fuel can provide energy densities of 3.25 kWh/Kg. This value is near
the upper end of the desired personal power range. This high gravimetric energy
density is the often stated reason for exploring combustion as a superior power
source to batteries at small scales [58]. For individual applications, the entire
power system has to be evaluated including fuel, fuel storage delivery and power
conversion. When complete power systems are taken into the equation, batteries
remain a strong personal power option for many applications.

3.3 Mechanical Energy

Power from Human Gait: Muscles in the human body convert food into
mechanical work at efficiencies up to 25 %. The usable mechanical output of
human bodies can reach 100 W for average persons and 200 W for elite athletes
[1]. A 68 kg man walking at 3.5 mph (2 steps/s) uses 1.1 mega joule per hour
or 324 W of power. The raw physical energy required to lift the heel through
5 cm during a walk is only 67W. Obviously only a small portion of these 67 W
can be detoured to power an electric device without disturbing the human gait.
According to Starner and Paradiso, a maximum of 13 W is available for energy
harvesting for a 1 cm stroke [3].

Several prototyping designs implemented in shoes have been designed by the
MIT Media Lab team leaded by Paradiso. It uses a PVDF piezo electric foil as
a shoe insole as shown in Fig. 2. Power is generated through mechanical bending
of the sole. Their prototype is able to generate an average power of 1.3 mW at
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Fig. 2. Prototype PVDF bimorph generator Fig. 3. Prototype piezoceramic
composite on spring steel

an optimum load resistance of 100 kOhm per shoe. The user weighted 52 kg and
was walking at 1 Hz per leg.

The team also produced another prototype that inserts a generator into the
heel of a shoe. The generator was built of a flexible piezo-ceramic composite lam-
inated on a curved piece of spring steel. The spring steel placed flat when the heel
came down. The power generated by this design was measured as 60 mW peak
and 1.8 mW on average [3,20]. An improved design from Shenck and Paradiso
uses two generators placed back-to-back (see Fig. 3). It generates power by the
user’s heel striking and flattening of the clamshell.

To this prototype, the material used is an EAP [35], which is similar to piezo-
electrics. In that material, mechanical stress produces a voltage which one is
stored in capacitors. The latest studies confirm that polymers have more strains
and are more versatile than piezoelectric. This design generates 8.4 mW of power
in average [3,21].

Continuing with EAPs, these are similar to electrostatic generators, it is
necessary to maintain a constant voltage to change on the electrodes. For a
dielectric elastomer generator is necessary a relatively high voltage, between 1
and 6 KV for operation [36]. Those ones give us more energy per compression
and, for extension, more power generation.

In this class, we have dielectric elastomers, these are basically electrostrictive
elements. Usually they are made of silicone rubber or soft acrylics, trying always
to have flexible materials, and they are extremely compliant. They have a similar
performance as piezoelectric materials when they accumulate enough strain, but
in these devices it is easy to drive a 50–100 % area strain. Like electrostatic
mechanisms, these designs require a very high potential to be applied across the
dielectric. Current is produced as the material is compressed and its capacitance
changes, this is the same process that variable capacitor follows. However, they
can produce higher voltage and are more versatile, thus they have excellent
properties allowing much strain energy to be stored for power generation.
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One important note is energy density of the generator, that can be increased
by decreasing the capacitor spacing, increasing miniaturization, but energy
density decreases when we reduce the capacitor surface area. Electrostatic gen-
erators also require also an initial voltage. This is not an issue in applications
that use the generator to charge a battery, as this can be used to provide the
necessary initial excitation level.

Pelrine, Kornbluh and others [24,37], have developed electrostatic generators
around materials called dielectric elastomers for the Defense Advanced Research
Projects Agency (DARPA). Dielectric elastomers are made from silicone rubber
or soft acrylic. A displacement of 2–6 mm can drive these materials to 50–100 %
area strain. This makes them ideal to be built into the elastic heel of a shoe as
shown in Fig. 4. The prototype generated an energy output of 0.8 J per step for
a heel compression of only 3 mm. The generated power was 800 mW per shoe at
2 Hz. For higher compressions up to 9 mm, up to 1 W of output power has been
anticipated [19,24].

Fig. 4. Dielectric elastomers built into heel of a shoe [3]

3.4 Power from General Movement

Inertial Systems: These kind of systems generate power when moved cycli-
cally. Despesse et al. [30] research analyses a structure for electrostatic trans-
duction with high electrical damping. This electrostatic transduction is designed
to operate with low frequencies, typically less than 100 Hz. The structure used,
was an in-plane gap with a charge constrained cycle. In the proposed scenario,
the electrostatic force is linearly proportional to the inertial mass displacement
in the same way. This allows two forces to be balanced for all displacements
of the inertial mass. If the electrical stiffness is close to mechanical stiffness is
achieved a high electrical damping. Beeby et al. [31] explain how an 18 cm2 1 cm
volume device with a 0.104 kg inertial mass was electro discharge machined from
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tungsten and produced a scavenged power of 1052µW for a vibration amplitude
of 90µm at 50 Hz. This represents a scavenged efficiency of 60 % with the losses
being accounted for by charge/discharge losses and transduction losses. A simi-
lar geometry silicon micro structure of volume 81 mm2 0.4 mm with a 2 · 103Kg
inertial mass excited by a vibration amplitude of 95 µm at 50 Hz is predicted to
produce a scavenged power of 70µW. Pelrine et al. [19] presented a design of an
electrostatic generator for linear movement as shown in Fig. 5.

There are other experiments using electrostatic generators that show how
to use this technology on inertial systems. Meninger et al. [28] simulated an
in-plane overlap varying electrostatic generator based on a comb-driven structure
and generated 8µW from 2.5 kHz input motion. The limit to operate on the
electrostatic generator is the high voltage produced. An integrated circuit was
used and limited to the voltage of 8 V in this structure. It was necessary to charge
and discharge the electrostatic generator at several points. In order to do this,
Meninger et al. used several feedback algorithms in addition to a measurement
technique to take threshold and to choose the specific points to charge and
discharge.

Ma et al. [29] predict 1µW load for a 5µm displacement at 4.3 kHz. The
inertial mass is 2107 kg and the device is operated at resonance with a damping
coefficient of 0.002 kg s1. The floating gate is charged by electron tunneling and
power is generated by a variable capacitor of which one plate is a moving gold
proof mass and the other is the fixed floating gate.

Experiments at the ETH in Zrich showed a theoretical harvest of 200 µW
during normal walking using a mass of 1 g [13]. Another study showed that the
available power output from walking is over 0.5 mW/cm for most body locations
and over 10 mW/cm when running. The ankle and knee locations showed an
up to 20 times larger amount of available power [15].

Inertial microsystems can be attached at various positions on the human
body. Positions exposed to higher accelerations will generate more power.

Fig. 5. Left: In-plane overlap varying type. Center: In-plane gap closing type. Right:
Out-of plane gap closing type
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The best mounting position is at the wrist. Todays self-winding wrist watches use
a 2 g mass mounted off-center on a spindle. As the user walks around, the mass
swings around the spindle and winds up the watch. Several electro-mechanical
generators exist that fit into a watch [3]. The ETA Autoquartz Self-Winding
Electric Watch generates 16 V at 6 mA in 50 ms pulses [11]. Another watch size
generator is the Seiko AGS that creates 5µW on average and 1 mW if shaken
hard [12].

A study from 2010 build a 50 g mass on a piezo electric bender attached to
an AC-DV converter electronics and tested it on various body positions. The
measures of generated average power are shown in Table 1.

Electromagnetic Generators: Compared with electrostatic generators, elec-
tromagnetic generators (see Fig. 6) are heavier and more difficult to tailor and
require rotary movements. But magnetic machines running at sufficient speed
can provide much higher efficiencies.

Some motions of human body are rotary, though not fully 360◦, and the
speed of motions is cyclic and relatively slow. Other motions, such as heel strike,
are distinctly linear requiring a linear machine or some mechanical converter to
use a rotary machine. The best position to harvest power from cyclic movement
on the human body is the wrist. The wrist moves faster than any other part of
the human body. Power can be harvested whenever the user is walking.

Though this seems unpromising for magnetic machines, the rotation speed
can be increased by using flywheel arrangements in rotary motions. For linear
motions, a mechanical spring can give high bursts of speed by releasing stored
energy. The machine speed is not limited by the 1 Hz walking as some have pro-
posed [38]. Better than 90 % efficiency is routinely obtained in good machines

Table 1. Average generated power at different body positions [26]

Activity Position Average power

Walking Hip 1.40 µW

Shank 10.30 µW

Foot instep 11.52 µW

Wrist 0.04 µW

Slow running Hip 9.65 µW

Fast running Hip 22.89 µW

Shank 28.74 µW

Foot instep 28.44 µW

Knee rehab (sitting) Shank 0.02 µW

Foot instep 0.39 µW

Knee rehab (lying) Shank 0.36 µW

Foot instep 0.44 µW

Arm swinging Wrist 3.08 µW

Arm trembling simulation Wrist 0.62 µW
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Fig. 6. A silicon electromagnetic generator [39]

with sufficiently high speed. An important disadvantage of magnetic methods is
that the material is relatively heavy compared to other methods. Several prob-
lems exist with such energy systems. They tend to be big and heavy. Their power
output is proportional to the scale of coils or length of stroke. Rotary magnetic
power generators have a long tradition in the history of electrical generators.
A wide variety of spring/mass configurations can be used with various types
of material that are well suited and proven in cyclically stressed applications.
Comparatively high output current levels are achievable at the expense of low
voltages. These systems, however, are quite difficult to build because the num-
ber of turns on planar coils are limited and because the magnet/coil velocity is
restricted.

Linear Motors: This kind of design is able to convert linear motion directly into
electrical energy. A linear motor consists of sets of coils and magnets arranged on
a line [40]. Induction is based on Faradays law about the variation in magnetic
flux. When the magnetic flux changes, a current is induced in the inductor.
Traditionally, conductors are shaped like a coil. An output current is generated
when either the relative movement of the magnet and coil, or when the magnetic
field changes.

Low transduction efficiency yet high power output due to cumbersome mount-
ing and bulk scale has been described in many applications [41]. Their power
generation ability is characterized by direct proportion to the scale of coils or
length of stroke. However, new designs outperform their predecessors several
times.

In a scenario with permanent magnet generators, it is clear that they are
most efficient at higher speeds and in a rotary arrangement, like wrist move-
ments. Kulah and Najafi [42] focused on low frequency resonant structures but
only measured 4 nW from a millimeter-scale mock-up with an efficiency less than
2 %. For an excitation level provided, for example by finger typing, a device can
generate 0.16µW like Huang et al. have demonstrated [43]. On a larger scale,
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Fig. 7. PEH20W piezo electric generator from Midé Technologies [26]

Amirtharajah et al. [44] described a moving coil electromagnetic generator con-
tained in a low-power DSP application. The resonant frequency of the genera-
tor was 94 Hz, but the model of its performance predicted that an average of
400µW could be generated from a 2 cm movement at 2 Hz in human-powered
applications.

Magnetostrictive Materials: These kind of systems, are often used in com-
bination with piezoelectric generators (see Figs. 7, 8, and 9). These materials
possess suitable characteristics to be used on human energy scavenging. They
deform when placed in a magnetic field and conversely if strained can induce
changes in a magnetic field (see Fig. 10). Magnetostrictive materials can be used
independently but usually have been employed in piezoelectric-magnetostrictive
composites. Staley and Flatau generated a maximum DC output voltage of less
than 0.35 V with Terfeno-D. Piezoelectric-magnetostrictive composites were orig-
inally intended for use in magnetic field sensors [55].

Ferromagnetic Materials: Exhibit only low energy conversion. As a result,
Metglas 2605SC [56] outperforms its predecessors, with a maximum output
power and power density of 200 µW/cm3 and 900 µW/cm3, respectively, in
low frequency. Huang et al. [43] report that the frequency of the rotary reso-
nance depends upon the spring constant of the springs that control the motion
of the disc and the size of the eccentric proof mass used to achieve rotary motion.
This device achieved 1.2 mW of power at 30 Hz at 5 ms2 and claims were made
that more than 10 mW could be harvested from a volume of 1 cm3 at 5 m s2.

Power from Respiration: Breath pressure is 2 % above atmospheric pressure.
The power consumption of human breathing ranges from 0.1 to 40 W. Because
of physiological effects, only exhalation can be used as an energy source. The
maximum available power from exhalation is 1.0 W. Use of an aircraft-style pres-
sure mask can increase available power 2.5 times, but also puts the user under
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Fig. 8. WAGYRO energy harvesting
device [26]

Fig. 9. WAGYRO with mounted
PEH20W [26]

significant stress. These devices are already in use but combinations of turbine
and generator only achieve a total efficiency of 40 % [3].

Another approach to harvest energy from breathing applies a tight band
around the chest of the user. Empirical measurements show a 2.5 cm change in
chest circumference (5 cm for heavy breathing). Given an average breathing rate
of 10/s and an ambitious 100 N force over 5 cm distance calculates as 0.83 W. Due
to friction losses, the effectively harvested power reduces to less than 0.42 W [3].

Power from Blood Pressure: Typical physical measures of human blood flow
show a blood pressure of 100 mm Hg, a resting heart rate of 60 beats per minute
and a heart stroke volume of 70 ml passing through the aorta at every heart
beat. The power generated from blood stream is 0.93 W. Harvesting only 2 % of
this power would be enough to run a microprocessor [3].

Fig. 10. Magnetostrictive effect-based vibration harvester [10]
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An out-of-plane gap closing electrostatic generator type was depicted by
Miyazaki [32], this kind of generators is very interesting for blood pressure energy
scavenging systems. Miyazaki presented an out-of-plane cantilever based gener-
ator with a base capacitance of 1 nF and a variable capacitance in the range
of 30 and 350 pF. The device resonated at 45 Hz with a Q factor of 30. The
device was tested on a wall with a 1µm displacement up to 100 Hz. 120 nW was
harvested for the wall acceleration of 0.08 ms2.

Tashiro et al. [33] described a honeycomb structure made up by folding a strip
of a polyester film with aluminium evaporated on one surface. This structure has
a variable capacitor was suspended between acrylic boards using 12 springs and
an inertial mass attached to one of the acrylic boards. The spring constant of the
resonator was 1100 Nm−1 with a total mass of 0.78 Kg resulting in a resonant
frequency of 6 Hz.

Experiments performed by Tashiro [34] report the generation of 58µW from
the simulated heart movements of a goat after an initial charging voltage of
24 V. They used a similar structure honeycomb generator which had an initial
capacitance of 32 nF varying to 200 nF and was resonant at 4.76 Hz. In this study
the inertial mass was 1.2 kg and the resonator spring constant was 570 Nm1.
Newer designs can harvest up to 4.15µW/cm3 at 1.5 Hz and tens of micro watts
per cubic centimeter of blood are predicted [10].

Power from Finger Press: Though not directly connected to the human
body, keyboards can be used to generate power from key presses, e.g., a user
could wear a device that shows a keyboard for interaction. The keyboard could
also be used for energy harvesting. A design from Paradiso and Feldmeier uses a
piezoelectric element with resonantly-matched transformer and electronics that
generates 0.5 mJ at 3 V for each 15 N push. This amount of energy allows to
transmit a digital RF code after a single push [14]. The german company EnO-
cean sells a magnetic energy converter called ECO 200 for linear movements.
The ECO 200 is less than 30207 mm in size and outputs 120–210µJ at 2 V for
each finger press at <3.9 N in 1.2 mm [23].

Power from Arm Movement: During housekeeping, the human body requires
35 W more power than for still standing. Most of this power is used to move
the upper limbs. The power required for biceps curls is approximately 24 W
for both arms. The maximum power consumption for a single arm lift is 30 W.
An arguable amount of harvested energy is 0.75 W for a single arm without
disturbing the user too much. Harvesting energy from arm movements requires
bulky and uncomfortable exoskeletons that add significant mass to the user. Such
designs may use jackets with pulley systems in the elbows. The take-up reel of the
pulley system could be spring-loaded. This would counter balance the arm and
generate energy only on the down stroke. The electronic and mechanical parts
can be incorporated into the jacket [3]. Another approach might use piezoelectric
polymers like PVDF or dielectric elastomers because they do not require complex
mechanical parts like reels. If piezoelectric foils are stretched along their most
sensitive axis, their maximum extension is limited to 1 %–2 %. This makes them
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Fig. 11. TEG with attached heat sink

incompatible to human movements. Dielectric elastomers on the other hand are
soft and rubbery materials providing 50 %–100 % of area strain. The elastomers
are placed between capacitor plates. When the plates of a charged capacitor
are stretched, the voltage increases as energy is put into the electrical field.
Power scales with the square of capacitor voltage. Typical operating voltages
for elastomers are 1–6 kV. A full compression/expansion cycle can produce more
than 1 J of energy [3,19].

3.5 Thermal Energy

The human body produces waste heat in the range from 81 W (sleeping) up to
1630 W (sprinting). Table 2 shows the individual energy consumption of a typical
human in various situations. During sitting, a mere of 116 W is available [3].

Carnot efficiency limits the amount of power that can be harvested. Har-
vesting thermal energy always requires a temperature difference. The bigger the
difference the more energy can be harvested. Assuming normal body tempera-
ture of 37 ◦C, the Carnot efficiency is 5.5 % for 20 ◦C (difference of 17 ◦K) and
3.2 % for 27 ◦C (difference of 10 ◦K) room temperature. Using a Carnot heat
engine to model the recoverable energy yields 3.7–6.4 W of power. Carnot effi-
ciency defines a theoretical upper limit to the efficiency of every thermoelectric
generator. Todays standard thermo piles provide 0.2 %–0.8 % for temperature
differences of 5–20 ◦K [17]. A design of a micro machined thermopile from 2007
shows output voltage of 13 mV/K/cm2. Simulations showed an output power
around 1.5µW at 1 V for a watch sized TEG placed on a human body. For a
temperature difference of 10 ◦K, an output voltage of 130 mV was measured [18].
Another kind of design uses the commercially available Peltier element PKE 128
A 1030 with an attached heat sink as shown in Fig. 11. The TEG setup generated
2.05 mW at 334 mV for 6.71 ◦K temperature difference and 4.97 mW at 530 mV
for 11.36 ◦K [23].
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3.6 Incoming Radiation

Human bodies are constantly receiving energy in form of radiation of different
wavelengths. Sunlight is just one small spectrum of incoming radiation. One of
the available solutions uses a wireless energy transmission (see Fig. 12). This
technique offers the possibility for sending energy from one point to another
one. A well known technology which uses this design is RFID [45], which derives
their energy inductively, capacitively, or radiatively from a tag reader. Most
RFID chips talk back to the reader changing their impedance or reflection coef-
ficient. These chips are low power devices on the consumption range of 1–100µW,
depending of their configuration. Several examples from today are keyless access
systems, sensors [46], interfaces [47], crystal bulk resonators [48] or new proposals
like blood pressure monitors [49].

It is also possible to use the above mentioned method for wireless transmis-
sion for systems based on IEEE 802.15.4. To scavenge enough energy a dipole
antenna and an impedance are required on the receiver side. The received signal
is rectified and mixed down to a lower frequency.

Signals in a frequency range between 500 MHz and 10 GHz from different
electromagnetic sources have been led in practice and failed to produce any useful
results, because the signal strength of DVB-T, WiFi or mobile network is very
high and disturb other smaller signals for that hereby energy harvesting could
operate. A different situation exists when a transmission signal whose energy is
to be used for the comparison supply of an embedded system, is itself produced.
One example is a wireless system from PowerCast company. The wireless sensor

Table 2. Human energy consumption [3]

Activity Power (W)

Sleeping 81

Lying quietly 93

Sitting 116

Standing at ease 128

Conversation 128

Eating meal 128

Strolling 163

Driving a car 163

Playing a violin or piano 163

Housekeeping 175

Carpentry 268

Swimming 582

Mountain climbing 698

Long distance run 1048

Sprinting 1630
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Fig. 12. A proposal of RF energy harvesting schema

nodes work at 915 MHz frequency and they are put to the power harvester boards
that work with a P2110 receiver, which supplies them with energy. The chip
constitutes P2110 received RF energy into a DC voltage, which is stored in a
capacitor on the board, so that the supply of the sensor node is made possible
[59]. The required energy is self-generated, but this approach actually does not
comply with the principle of energy harvesting. The P2110 Receiver converts
signals in 850–950 MHz at a DC voltage.

On the other hand, the use of solar cells could be another possibility on
radiation systems. This system involves several factors such as chemistry of the
batteries, power management features of the system and the own characteris-
tics from solar cells. Solar energy harvesting through photo-voltaic conversion
technique provides up to 15 mW/cm3 of power [50]. Solar cells make use of pho-
tons, which come from sunlight radiations and hit the solar panel to be absorbed
by semi conducting materials, such as silicon. Electrons are energized and flow
through the material to produce electricity. Due to the special composition of
solar cells, the electrons are only allowed to move in a single direction. This
energy includes the electromagnetic spectrum between infrared and ultraviolet
light. Indoor power density typically ranges from 100µW/cm2 to 1000 µW/cm2,
and outdoors can be up to 100 mW/cm2. Solar cells efficiency can be up to
more than 30 % [51]. Power densities are similar for indoor solar cells, around
0.017 mW/cm2, and batteries. On the other hand, outdoor solar cells provide
around 1.42 mW/cm2, this is more than 80 times more power [52].

There is a very interesting case that Hande et al. [53] have presented. Indoor
application for solar cells using fluorescent lights. This indoor light harvesting
is aimed to power wireless sensor networks for biomedical sensing applications.
A testbed using indoor lighting was presented for hospital use employing mono-
crystalline solar panels. Mono-crystalline solar cells with typical efficiencies of
less than 3 % under indoor lighting conditions have a power density between 0.5
and 1 mW/cm2, under light conditions of 1–5 W/m2, which still surpasses other
energy scavenger devices. Hande et al. employed commercial mono-crystalline
solar panels placed at 1 cm distance from overhead 34 W fluorescent lights. Two
crossbow MICAz router nodes operating at a 50 % duty cycle were powered by
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eight solar panels placed in close proximity to fluorescent lights, they tested
satisfactorily for over 24 h.

A design from NASA Jet Propulsion Laboratory uses a combination of a
thermo-electric and solar panel called Power Tile [54]. The system is packaged
in a less than 2 mm thick volume. The thermo-generator can scavenge some
of the thermal energy incurred when solar radiation raises the temperature on
the photovoltaic cell. It can also work as heat pump to keep batteries within a
desired temperature range. The integrated circuit includes dc-dc converters, a
battery-charging circuit, a thermo-electric heater driver with the required sense,
and control circuits. In full sunlight, the photo voltaic cell produces 125 mA at
2.1 V and the thermo-generator generates 20 mA at 0.8 V, when a temperature
difference of 35 ◦C is present.

3.7 Conversion

Energy harvesting on the human body is a tough job. The different generator
designs described in the previous chapter deliver minimal quantities of energy.
The energy flows are neither constant nor can they be directly consumed by
micro controllers. Some generators provide voltages of just a few hundred milli-
volts while others output several kilovolts in short spikes. Efficient voltage con-
verters and energy storages are required to operate sensors, micro controllers
and transmitters.

DC/DC Step-Up Converters: A step-up (boost) converter basically consists
of an inductor, a diode and a switch as shown in Fig. 13. When the switch is
activated, the power supply causes an increasing current through the inductor.
When the switch is deactivated, the current through the inductor cannot stop
immediately because of its established magnetic field. The energy in the magnetic
field causes the current to continue and thus increasing the voltage at the diode.
Once the voltage at the diode is higher than UFlow +ULoad then the current will
flow through the diode and increase ULoad too. If the switch is alternating at
high frequency, ULoad will see a nearly constant voltage that is flattened by the
capacitor and is higher than USupply. In practical circuits, the switch is controlled
by a feedback network that constantly compares ULoad to a configured voltage
reference and adapts on and off time of the switch automatically [72].

Commercial step-up converters start at input voltages of 0.7 V due to the
minimum threshold value of their switching transistors. This is too high for
the output of TEGs which output typically less than 300 mV for temperature
differences less than 10 K.

For input voltages lower than 0.7 V a charge pump (see Fig. 15) with special
low-threshold transistors has to be used. Loreto Mateu et al. [27] presented a
design especially for TEGs as shown in Fig. 10. His charge pump started switch-
ing at 150 mV and provided an output of 3.7 V at an efficiency of 63 %–40 % [22].
Measures of input voltage and current are shown in Table 3.

A more advanced step–up DC–DC converter has been presented by Pollack,
Mateu and Spies provides up to 70 % efficiency in the range of 200–500 mV for
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Fig. 13. Simplified circuit of a boost converter [72]

Table 3. Input voltage and charge pump current consumption [22]

VN 300 mV 250 mV 200 mV 150 mV 130 mV

IN 0.35 mA 1.5 mA 3.5 mA 2.6 mA 6.4 mA

a minimum startup at 70 mV. Schematics of this boost converter are shown in
Figs. 14 and 16. The converter can turn a 300–500 mV input to 2 V output at an
efficiency greater than 70 % [27].

DC/DC Step-Down Converters: A Step-Down (Buck) converter converts
an input voltage into a lower output voltage. In contrast to a linear regulator, a
Buck converter is more efficient and the output current can be higher than the
input current. In an idealized converter, all of its components are considered to
be perfect. Especially the switch, the inductor and the diode have zero voltage
drop when on and no current when off.

A simplified circuit of a Buck converter is shown in Fig. 17. At start, when the
switch is off, no current flows through the circuit. When the switch is turned on,
current cannot start immediately because the inductor needs time to build up
its magnetic field. So the inductor causes a voltage drop UInductor. This voltage
drop will constantly decrease while the magnetic field builds up until only the
internal resistance of the inductor is limiting the current. As the voltage drop
decreases, ULoad will increase. When the switch is turned off before the inductor
has completely build up its field, then ULoad will stay lower than USupply. In
practical circuits, the switch is controlled by a feedback network that constantly
compares ULoad to a configured voltage reference and adapts on and off time of
the switch automatically.

In the area of human body applications step-down converters are mostly
used to convert the high output voltages of piezoelectric foils and dielectric
elastomers which can provide several kilovolts, down to a value that is suitable
to run electronics in the range of 1.8 V–5 V.
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Fig. 14. Simplified schematic of boost converter [27]

Fig. 15. DC-DC charge pump

A design from Ottman, Hofmann and Lesieutre in 2002 uses a step-down
converter build up around an NE555 timer device to convert the output of a
piezoelectric generator down to 3.3 V to charge a battery. Through of a con-
verter, the amount of energy stored in the battery increased by 325 % compared
to connecting the battery directly to the rectified output of the generator. Their
control circuit theoretically consumed 5.74 mW. Experiments showed a conver-
sion efficiency of 60–70 % for input voltages in the range of 35–70 V [74].

Maximum Power Point Circuits: The previous chapter provided a variety of
energy harvesting generators for using it on the human body. Each generator can
act as a power supply for an application circuit. For a given power supply, only an
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Fig. 16. Regulation loop circuit of boost converter [27]

Fig. 17. Simplified step-down converter

optimal matched load resistance will extract the maximum available power. This
resistance varies for many energy harvesting generators when the energy flow of
its energy source (amplitude/ frequency of vibrations, temperature difference)
changes. A maximum power point tracking circuit can adapt its input resistance
dynamically to the actual internal resistance of the power supply to always
operate in the optimum setting. Mateu, Pollack and Spies provided the design
of a Maximum Power Point Tracker (MPPT) circuit that uses only for low power
operational amplifiers. The circuit automatically adapts its duty cycle to achieve
the MPP whenever the input voltage increases or decreases. Due to their tracking
nature, MPPTs cannot stay at the ideal maximum power point. Simulations
show that this MPPT will not deviate more than 5 % of the theoretical maximum
power point of a selected, state of the art TEG [28].

3.8 Energy Storage

The amount of harvestable power shows great variation over time for all types
of power harvesting. If an electronic device should be powered constantly, the
harvested energy must be stored somewhere. This chapter lists various avadilable
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Fig. 18. Charging a capacitor Fig. 19. Discharging a capacitor

energy storage technologies. Each technology has its advantages and disadvan-
tages.

Capacitors as Energy Storage: Capacitors are widely used in electronics to
stabilize supply voltages directly at each chip. But they can also be used to stabi-
lize the fluctuating output of harvesting generators. The main unit for capacitors
is Capacitance, C, which is given in Farad (F). 1 F = 1 As/V. Energy is stored in
the electric field between two plates. When a capacitor is charged at a constant
voltage, the charge current starts like a shortcut with the maximum current.
While the electric field is built up, the voltage at the capacitor poles increases.
When this voltage increases, automatically decreases the current charge expo-
nentially as shown in Fig. 18. When the power supply is disconnected and a load
resistance is connected, discharging starts at high negative current. While the
electric field diminishes, voltage at the capacitor poles reduces exponentially as
shown in Fig. 19.

The classical capacitor uses two parallel plates in a fixed distance. The space
between the plates is filled with air or special material. The capacity of a classical
capacitor is calculated as shown in Eq. (1). The effective electrode surface is
denoted by A, d is the thickness of the dielectric. ε0 is the dielectric constant of
the vacuum with 8.85·1012 As/Vm. Usually, it is necessary as an indication of the
relative dielectric constant (εr), which is referred to as permittivity, ε = ε0 · εr.
This value is used to indicate the increment of dielectric constant when another
dielectric, different to air, is used.

C = ε0 · εr · A

d
Capacity of classic Capacitor (1)
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Capacitors and elastic elements have high power densities because they can
release all their stored energy in a short time, but these devices do not have a
good storage capabilities on a mass basis. Chang et al. [61] reported that the
energy density of hybrid capacitors was in the range from 0.074 to 0.233 J/g and
the power density was in the range from 19 to 259 W/g. Both energy density
and power density increased when increasing the maximum operational voltage.
But exceeding the maximum allowed operating voltage will decrease the lifetime
dramatically. Hoffman et al. analyzed hybrid capacitors response to over volt-
ages. Lifetime of the tested supercharge capacitors reduced from 5023 days at
2 V to 13 days at 2.3 V, at constant temperature [60].

Li-Ion Capacitors: A lithium-ion capacitor (LIC) is a hybrid type of capacitor.
Activated carbon is used as a cathode. The anode of the LIC consists of carbon
material which is pre-doped with lithium ion. This pre-doping process lowers the
potential of the anode and allows a high output voltage. The positive electrode
(cathode) employs activated carbon material in which charges are stored in an
electric double layer which is developed at the interface between the carbon
and the electrolyte similar to electric double-layer capacitors (EDLC). The pre-
doping process of the anode lowers the anode potential and results in a high cell
output voltage. Typically, output voltages for LICs are in the range of 3.8–4.0 V.
As a consequence, LICs have a higher energy density than EDLC. Furthermore,
the capacity of the anode is several orders of magnitude larger than the capacity
of the cathode. As a result, the change of the anode potential during charge
and discharge is much smaller than the change in the cathode potential. The
electrolyte used in an LIC is a lithium-ion salt solution. In order to avoid direct
electrical contact between anode and cathode, a separator material is used.

Lithium-ion capacitors have a higher power density as compared to batteries,
and LICs are safer in use than lithium ion batteries, in which thermal runaway
reactions may occur. Compared to the electric double-layer capacitor (EDLC),
the LIC has a higher output voltage. They have similar power densities, but
energy density of an LIC is much higher.

Figure 20 shows that the lithium-ion capacitor combines the high energy of
lithium-ion batteries with the high power density of EDLCs [70,71]. They provide
a superb cycle life compared to other technologies, but lifetime highly depends on
operating voltage [65]. Lithium-ion capacitors possess very high power densities
of over 3,000 Wh/kg (see Fig. 20). The charging efficiency reaches more than
95 %. Short charging times of below 1 min are attainable. Charging an LIC is
simple, because no full-charge detection is needed thus avoiding the danger of
overcharging. When used in conjunction with rechargeable batteries, in some
applications the LIC can supply energy for a short time, reducing battery cycling
duty and extending life. LIC experience almost no degradation when completely
discharged [65].

Batteries as Energy Storage: Batteries are an electrochemical energy storage
that consist of one or more voltaic cells. Each cell consists of two half-cells that
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Fig. 20. Power density VS energy density for different storage technologies

are connected in series by a conductive electrolyte. Conductivity of the electrolite
is given by containing anions (negatively charged ions) and cations (positive
charged ions). One half-cell contains the electrode that attracts anions and the
electrode in the other half-cell attracts cations. The battery is powered by a
redox-reaction. Cathions are reduced at the cathode (electrons are added) and
anions are oxidized (electrons are removed) at the anode [63].

A cell provides a certain voltage that is typical for the active chemical ele-
ments in it. Batteries are divided into primary and secondary cells. Most pri-
mary cells cannot be recharged (except Alkali-Mangan cells). Secondary cells
can be recharged for different times. Typical examples of secondary cells are
Nickel-Cadmium (NiCd), Lead-Acid, Nickel-Metal Hydride, Nickel-Zinn (NiZn),
Silver-Oxide (AgZn) and Lithium-Ion (LiIon).

Nickel Metal Hydride (NiMH) Batteries: Nickel-metal-hydride batteries
are related to sealed nickel-cadmium batteries and only differ from them in
that instead of cadmium, hydrogen is used as the active element at a hydrogen-
absorbing negative electrode (anode). This electrode is made from a metal hydride
usually alloys of Lanthanum and rare earths that serve as a solid source of reduced
hydrogen that can be oxidized to form protons. The electrolyte is alkaline potas-
sium hydroxide. Cell voltage is 1.2 V. The low self-discharge nickel-metal hydride
battery (LSD NiMH) was introduced in November 2005. These batteries were
developed by Sanyo, who called them “eneloop”. Subsequently, other manufac-
turers also offered LSD NiMH.

Low Self-discharge (LSD) NiMH Batteries: This kind of battery reduces
self-discharge and, therefore lengthens shelf life compared to normal NiMH bat-
teries. By using an improved electrode separator and improved positive electrode
the batteries retain 70–85 % of their charged capacity after one year when stored
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at room temperature. Standard NiMH batteries may lose half their charge in
the same time period (see Fig. 21) [64]. Retention of charge depends a lot on the
battery’s impedance or internal resistance and on the size of the battery. High
quality separators are very important for battery performance. Thick separators
take up space and reduce capacity, while providing a low-tech way of reducing
self discharge, while thin separators tend to raise the self discharge rate. Some
batteries may have overcome this obstacle with more precise manufacturing tech-
niques and by using a more advanced sulfonated polyolefin separator [64]. Speci-
fications for the self discharge rate are not always clear or widely published, and
virtually any LSD may claim to maintain some level of charge after 12 months.
A non-LSD battery typically self discharges at a rate of about 20 % within the
first 24 h, then from 1 %–4 % per day thereafter. In devices not accurately cal-
ibrated to closely predict battery level, run-times for LSD NiMH batteries can
be as well or even better than normal cells with higher rated capacity, because
the slightly higher operating voltage doesn’t trip a device’s under-voltage shut
off circuit [66,67]. Figure 21 reveals exemplary different discharge curves with
invariant cell potential and, Fig. 22 sloped cell potential. LSD NiMH batteries
were introduced in November 2005 by Sanyo [64].

Rechargeable Lithium Batteries: Lithium is the lightest of metals and it
floats on water. It also has the greatest electrochemical potential which makes it
one of the most reactive of metals. These properties give Lithium the potential to
achieve very high energy and power densities in high power battery applications
such as automotive and standby power.

Many variations of the basic Lithium chemistry have been developed to opti-
mize the cells for specific applications or perhaps in some cases to get around
the patents on the original technology. Lithium metal reacts violently with water
and can ignite into flame. Early commercial cells with metallic lithium cathodes
were considered unsafe in certain circumstances. However, modern cells don’t use

Fig. 21. Discharge characteristics LSD VS Standard NiMH batteries [64]
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Fig. 22. Discharge characteristics LSD vs. Standard NiMH batteries [64]

free Lithium but instead the Lithium is combined with other elements into more
benign compounds which do not react with water. The typical Lithium-ion cells
use Carbon for their anode and Lithium Cobalt dioxide or a Lithium Manganese
compound as the cathode. The electrolyte is usually based on a Lithium salt in an
organic solvent. Lithium batteries have now taken their place as the rechargeable
battery of choice for portable consumer electronics equipment. Though they were
expensive when introduced, volume production has brought the prices down.

The high cell voltage of 3.6 V allows the use fewer cells to supply electron-
ics. Thus reducing the amount of associated connections and electronics. One
Lithium cell can replace three NiMH cells which have a cell voltage of only
1.2 V. The lack of liquid electrolyte means that Li-Ion batteries are immune
from leaking. Their energy density is about 4 times greater than Lead acid.

The availability of extra small Li-Ion batteries make them ideally suited
for mobile applications on human bodies. Solid state chemistry can even be
printed on to ceramic or flexible substrates to form thin film batteries with
unique properties.

The low weight of these batteries allow to build lightweight mobile applica-
tions. A discharge rate of 40◦C or more allow to drive high currents of accumu-
lated energy.Li-Ion cells maintain a constant voltage for over 80 % of their dis-
charge curve. It thus delivers full power down to 80 % depth of discharge (DOD)
versus 50 % for Lead acid. Because of their very low self discharge rate, charge
can be retained for up to ten years. And their high coulombic efficiency (Capacity
discharged over Capacity charged) up to 95 % or more makes them a very effi-
cient energy storage. Thus very little power is lost during the charge/discharge
cycles.

The absence of a memory effect avoids the need of regular reconditioning,
as do nickel based batteries, which allows to simplify charge circuits. As these
batteries tolerate microcycles, they can be charged with very low currents from
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energy harvesters over a long period of time. A long cycle life possible. The
cycle life can be extended significantly by using protective circuits to limit the
permissible DOD of the battery.

This mitigates against the high initial costs of the battery.
They are available in a wide range of cell constructions with capacities from

less than 500 mAh–1000 Ah from a large number (over 100) of suppliers world-
wide.

Stability of the chemicals has been a concern in the past. Because Lithium
is more chemically reactive special safety precautions are needed to prevent
physical or electrical abuse and to maintain the cell within its design operating
limits. Lithium polymer cells with a solid electrolyte overcome some of these
problems. Though stricter regulations on shipping methods exists than for other
cell chemistries.

Some of the negative aspects of Li-Ion batteries are:

– Degrades at high temperatures.
– Capacity loss or thermal runaway when overcharged.
– Degradation when discharged below 2 V.
– Venting and possible thermal runaway when crushed.
– Need for protective circuitry.

Measurement of the state of charge of the cell is more complex than for most
common cell chemistries. The state of charge is normally extrapolated from a
simple measurement of the cell voltage, but the flat discharge characteristic of
lithium cells, that is so desirable for applications, renders it unsuitable as a
measure of the state of charge and other more costly techniques such as coulomb
counting have to be employed.

Although Lithium cell technology has been used in low power applications
for some time now, there is still not a lot of field data available about long term
performance in high power applications. Reliability predictions based on accel-
erated life testing show that the cycle life matches or exceeds that of the most
common technologies currently in use [68]. These drawbacks are far outweighed
by the advantages of Lithium cells and several variations of Li-Ion batteries have
been developed which overcome some of them.

Charging Lithium Batteries: Lithium batteries should be charged regularly.
The cell voltage is typically 4.2 V. A battery lasts longer with partial charges
rather than full charges. Charging to 4.1 V increases the lifecycle but reduces
the effective cell capacity by about 10 % [69]. These kind of batteries can not
tolerate overcharging and hence should not be trickle charged.

Charging method (Constant Current - Constant Voltage): Fast chargers
typically operate during the constant current charging phase only when the
charging current is at a maximum. They switch off at the point when the
constant voltage, reducing current phase starts. At this point the battery
will only be charged to about 70 % of its capacity.
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Lithium’s unique properties have been used as a basis of numerous battery
chemistries both for primary and secondary cells. Using nano - electrode mate-
rials provides a bigger active surface area and hence a higher current carrying
capacity. This technology allows current rates of 10 ◦C or more making the cells
even suitable for hybrid electric vehicles (HEV) applications.

Lithium-Ion: Lithium-ion batteries were designed to overcome the safety prob-
lems associated with the highly reactive properties of Lithium metal. The essential
feature of the Lithium ion battery is that at no stage in the charge-discharge cycle
should there be any Lithium metal present. Rather, Lithium ions are intercalated
into the positive electrode in the discharged state and into the negative electrode
in the charged state and move from one to the other across the electrolyte.

Lithium-ion batteries therefore operate based on what is sometimes called
the “rocking chair” or “swing” effect. This involves the transfer of Lithium ions
back and forth between the two electrodes. The anode of a Lithium-ion battery
is composed of Lithium, dissolved as ions, into a carbon or in some cases metallic
Lithium. The cathode material is made up from Lithium liberating compounds,
typically the three electro-active oxide materials, Lithium Cobalt-oxide LiCoO2,
Lithium Manganese-oxide LiMn2 O4 and Lithium Nickel-oxide LiNiO2. Lithium
salt constitutes the electrolyte.

The origin of the cell voltage is then the difference in free energy between
Li + ions in the crystal structures of the two electrode materials. Lithium-ion
cells have no memory effect and have long life-cycles and excellent discharge
performance. For safety reasons, charge control circuitry is required for virtually
all Lithium-ion applications.

Lithium-ion technology uses a liquid or gel type electrolyte. This cell chem-
istry and construction permits very thin separators between the electrodes which
can consequently be made with very high surface areas. This in turn enables the
cells to handle very high current rates making them ideal for use in high power
applications. Some early cells used flammable active ingredients which required
substantial secondary packaging to safely contain these potentially hazardous
chemicals. This additional packaging not only increased the weight and cost,
but it also limited the size flexibility. Modern cell chemistries and additives have
essentially eliminated these problems.

Lithium-Ion Polymer: Lithium-ion polymer batteries use liquid Lithium-ion
electrochemistry in a matrix of ion conductive polymers that eliminate free elec-
trolytes within the cell. The electrolyte thus plasticises the polymer, producing
a solid electrolyte that is safe and leak resistant. Lithium polymer cells are often
called Solid State cells [69].

Because there’s no liquid, the solid polymer cell does not require the heavy
protective cases of conventional batteries. The cells can be formed into flat sheets
or prismatic/rectangular packages or they can be made in odd shapes to fit
whatever space is available. As a result, manufacturing is simplified and batteries
can be packaged in a foil. This provides added cost and weight benefits and design
flexibility. Additionally, the absence of free liquid makes Lithium-ion polymer
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batteries more stable and less vulnerable to problems caused by overcharge,
damage or abuse. Solid electrolyte cells have long storage lives, but low discharge
rates.

There are some limitations on the cell construction imposed by the thicker
solid electrolyte separator which limits the effective surface area of the electrodes
and hence the current carrying capacity of the cell, but at the same time the
added volume of electrolyte provides increased energy storage. This makes them
ideal for use in high-capacity low-power applications [69].

Despite of the above comments, there are some manufacturers who make cells
designated as Lithium polymer which actually contain a liquid or a gel. Such
cells are more prone to swelling than genuine solid polymer cells.

Other Lithium Cathode Chemistry Variants: Numerous variants of the
basic Lithium-ion cell chemistry have been developed. Lithium Cobalt and
Lithium Manganese were the first to be produced in commercial quantities, but
Lithium Iron Phosphate (LiFePO4) is taking over for high power applications
because of its improved safety performance. The rest are either at various stages
of development or they are awaiting investment decisions to launch volume pro-
duction.

While the basic technology is well known, there used to be a lack of operating
experience and hence system design data with some of the newer developments
which also hampered their adoption.

Lithium Cobalt LiCoO2: Lithium Cobalt is a mature, proven, industry-
standard battery technology that provides long cycle life and very high energy
density. The polymer design makes the cells inherently safer than “canned” con-
struction cells that can leak acidic electrolyte fluid under abusive conditions.
The cell voltage is typically 3.7 V. Cells using this chemistry are available from a
wide range of manufacturers [69]. Unfortunately, the use of Cobalt is associated
with environmental and toxic hazards.

Lithium Manganese LiMn2O4: Lithium Manganese provides a higher cell
voltage than Cobalt based chemistries at 3.8–4 V but the energy density is about
20 % less. It also provides additional benefits to Lithium-ion chemistry, including
lower cost and higher temperature performance. This chemistry is more stable
than Lithium Cobalt technology and thus inherently safer but the trade off is
lower potential energy densities. Lithium Manganese cells are also widely avail-
able but they are not yet as common as Lithium Cobalt cells [69]. Manganese,
unlike Cobalt, is a safe and more environmentally benign cathode material. Man-
ganese is also much cheaper than Cobalt, and is more abundant.

Lithium Nickel LiNiO2: Lithium Nickel based cells provide up to 30 % higher
energy density than Cobalt but the cell voltage is lower at 3.6 V. They also have
the highest exothermic reaction which could give rise to cooling problems in
high power applications. Cells using this chemistry are therefore not generally
available [69].
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Lithium (NCM)NickelCobaltManganese - Li(NiCoMn)O2: Tri-element
cells combine slightly improved safety (better than Cobalt oxide) with lower cost
without compromising the energy density but with slightly lower voltage. Differ-
ent manufacturers may use different proportions of the three constituent elements,
in this case Ni, Co and Mn [69].

Lithium (NCA) Nickel Cobalt Aluminium - Li(NiCoAl)O2: As above,
another tri-element chemistry which combines slightly improved safety (better
than Cobalt oxide) with lower cost without compromising the energy density
but with slightly lower voltage [69].

Lithium Iron Phosphate LiFePO4: Phosphate based technology possesses
superior thermal and chemical stability which provides better safety character-
istics than those of Lithium-ion technology made with other cathode materials.
Lithium phosphate cells are incombustible in the event of mishandling during
charge or discharge, they are more stable under overcharge or short circuit con-
ditions and they can withstand high temperatures without decomposing. When
abuse does occur, the phosphate based cathode material will not burn and is
not prone to thermal runaway. Phosphate chemistry also offers a longer lifecy-
cle. Recent developments have produced a range of new environmentally friendly
cathode active materials based on Lithiated transition metal phosphates for
Lithium-ion applications [69].

The operating performance of the cell can also be “tuned” by changing the
identity of the transition metal. This allows the voltage as well as the specific
capacity of these active materials to be regulated. Cell voltages in the range
2.1–5 V are possible.

Phosphates significantly reduce the drawbacks of the Cobalt chemistry, partic-
ularly the cost, safety and environmental characteristics. Once more the trade off
is a reduction of 14 % in energy density. Due to the superior safety characteristics
of phosphates over current Lithium-ion Cobalt cells, batteries have been designed
using larger cells and with a reduced reliance upon additional safety devices [69].

Summary of Batteries as Energy Storage: This section has provided an
overview of the current state of battery technologies. A system designer can
choose from a variety of battery types depending on the requirements of the
actual energy source and appliance. Table 4 shows an overview of the character-
istics of commonly used battery types.

4 Outstanding Issues

Researchers among the world have dealed with the problem of energy scavenging
from human bodies. Nevertheless, not all the human energy-scavenging problems
have been solved. Most of these problems are related to quantity, availability and
reliability of the energy.

As it has been described among this book chapter, human body can be used
as source of electric energy. To achieve that, a merge between hardware and
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Table 4. Most commonly used batteries characteristics

NiMH w/wo Li-Ion Li-Ion LiFePo 4 LIC

LSD Polymer

Commercial use since 2005/1986 1991 1999 2008 1995

Gravimetric energy 210–360 430–750 360–720 320–400 36–54

Density (J/g)

Gravimetric power 250–1000 250–340 250–340 >300 >3000

Density (mW/g)

Lifecycle (to 80% 500 500–1000 300–500 >1000 >10000

of initial capacity)

Coulombic efficiency 70% 90% 90% 90% 95%

(charging efficiency)

Typical fast change time 2 h/1 h 1 h 1 h <1 h <1min

Overcharge tolerance Low Very low Low Moderate High

Nominal cell Voltage 125V 3.6V 3.6V 3.2V–3.3V 2.5V–3.8V

Self-discharge/month <2/20% 5–10% 5–10% 5–10% <5%

@ room tmp

Operating Temperature −20◦C–60◦C −20◦C–60◦C 0◦C–60◦C −30◦C–60◦C −20◦C–70◦C

software focused on human energy scavenging is required. Applications have to
be tailored to fit to the potentially small footprint of the system and to the
available energy source.

In order to obtain the best solutions, an interrelated optimization of trans-
ducer, electronics and storage elements have to be addressed. The following
paragraphs are focused on explain the main solutions which can be found to
solve the above mentioned issues.

4.1 Energy Limitation

Efficiency of current available scavenging approaches is far from being optimal.
Most of these systems can scavenge and store between 25 %–40 % of the the-
oretically available electrical energy. Typical ambient energy sources (e.g. such
as light, temperature gradients, motion/vibrations, etc.) need to be transformed
into electrical energy. Environmental conditions on the human body will deter-
mine the choice of the necessary energy converter. Also, as another constraint,
the energy converter should be very small and lightweight to be comfortable for
the user. Finally, the position and system functionality will determine the power
source.

4.2 Intermittent Energy Supply

The own nature of human bodies impede the continuous harvesting of energy
from them. Not all the human beings movements have the same capability to
harvest energy and, in consequence, the best or worse location of the harvest
devices will determine the amount of energy scanvenged. Locations as, e.g., wrist,
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feet, hit or schrank are the most interesting to obtain the best results in terms of
scavenging. If the user is barely moving, the available energy from these positions
is insignificant.

Generated by heat gradiants on the human body, the heat gradients are
another kind of source power. These gradients harvest energy in ranges between
81 W–1630 W. Special applications may be able to profit from a high power
output for a limited time.

Scavenging from radio frequencies depends on a steady level of incoming
radiation. Energy transmitters have very short ranges. If the user is moving a
lot. The amount of harvestable radiation will vary several orders of magnitude.
Another aspect is the short band sensitivity of current radio harvesting circuits
which prevents them from harvesting over multiple radio frequency bands.

In any case, an average user, can not ensure a constant and stable power
supply. This situations have to be studied by the research community in order
to obtain better solutions.

4.3 Limitted Experience of Reliability

Currently, most promising energy harvesting systems seem to be mechanical
systems. These systems directly use the movement from the human body and
convert it into electrical energy. These systems give a promissing conversion rate
and can be installed as practical devices, e.g., in the heel of a shoe. The main
drawback on these promising systems is the limited reliability, since the used
rubbery materials are exposed to high mechanical stress. The reliability of these
materials is not high enough in a practical sense.

4.4 Annoying Systems

Most of the current devices are not comfortable for the user. Several studies
declare that the compromise point to have an effective system is when the user
is not annoyed and it is possible to scavenge enough energy to supply the device.
Currently no suggested approach reaches this trade-off point. Existing devices
either annoy the user or produce too less energy. More research efforts and better
technologies will be required to solve this contradiction.

5 Future Directions

Future research in this area will aim the main open problems described in the
previous chapter. Major efforts are needed in order to improve the amount of
harvestable energy from human body.

Latest trends are focused on blood pressure, thermal and radio frequency
scavenging techniques. Also, there are, advances in new materials that can be
used to harvest energy more efficiently and make wearable harvester devices
more comfortable for the human beings.

To sum up, the main goals to be achieved in the next decade are the improve-
ment of energy harvesters and the reduction of energy consumption of electronic
devices in order to make viable autonomous human-powered systems.
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Abstract. In the framework of Ambient Assisted Living, home automa-
tion may be a solution for helping elderly people living alone at home.
This study is part of the Sweet-Home project which aims at developing a
new home automation system based on voice command to improve sup-
port and well-being of people in loss of autonomy. The goal of the study
is vocal order recognition with a focus on two aspects: distance speech
recognition and sentence spotting. Several ASR techniques were eval-
uated on a realistic corpus acquired in a 4-room flat equipped with
microphones set in the ceiling. This distant speech French corpus was
recorded with 21 speakers who acted scenarios of activities of daily living.
Techniques acting at the decoding stage, such as our novel approach
called Driven Decoding Algorithm (DDA), gave better speech recogni-
tion results than the baseline and other approaches. This solution which
uses the two best SNR channels and a priori knowledge (voice commands
and distress sentences) has demonstrated an increase in recognition rate
without introducing false alarms. Generally speaking, a short overview
allows then to outline the research challenges that speech technologies
must take up for Ambient Assisted Living and Augmentative and Alter-
native Communication, and the current reseach avenues in this domain.

Keywords: Distant speech recognition · Keyword detection · Triggered
language models · Home automation · Smart home · Application of
speech processing for assistive technologies · Ambient assisted living

1 Introduction

Demographic change and ageing in developed countries are challenging the society
effort in improving the well being of its elderly and frail inhabitants. The evolu-
tion of the Information and Communication Technologies led to the emergence
of Smart Homes equipped with ambient intelligence technology which provides
high man-machine interaction capacity [1]. However, the technical solutions imple-
mented in such Smart Homes must suit the needs and capabilities of their users
in the context of Ambient Assisted Living. Under some circumstances, classic tac-
tile commands (e.g., the switch of the lamplight) may not be adapted to the aged
population who have some difficulties in moving or seeing. Therefore, tactile com-
mands can be complemented by speech based solutions that would provide voice
c© Springer International Publishing Switzerland 2015
A. Holzinger et al. (Eds.): Smart Health, LNCS 8700, pp. 161–188, 2015.
DOI: 10.1007/978-3-319-16226-3 7
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command and would make it easier for the person to interact with her relatives
or with professional carers (notably in case of distress situations) [2]. Moreover,
analysis of sounds emitted in a person’s habitation may be useful for activity mon-
itoring and context awareness.

The Sweet-Home project was set up to integrate sound based technology
within smart homes to provide natural interaction with the home automation
system at any time and from anywhere in the house. As emphasized by Vacher
et al. [3], major issues still need to be overcome. For instance, the presence of
uncontrolled noise is a real obstacle for distant speech recognition and identifica-
tion of voice commands in continuous audio recording conditions when the person
is moving and acting in the flat. Indeed, it is not always possible to force the
user to take up a position at a short distance and in front of a microphone when
he has to manage a specific device, such as a remote control device. Therefore,
some microphones are set in the ceiling to be available without any action of the
user.

This paper presents preliminary results of speech recognition techniques
evaluated on data recorded in a flat by several persons in a daily living con-
text. A glossary is given in Sect. 2 in order to define all specific terms used in
this chapter. The background, the state of the art and the challenges to tackle
are given in Sect. 3. The data recording and the corpus are presented in Sect. 4.
In Sect. 6, several techniques of multisource speech recognition are detailed and
evaluated. Section 6.5 is devoted to word spotting needed to recognize voice com-
mands in sentences. The chapter finishes with Sect. 7 which makes a review of
the open problems with regard to the application of speech processing for Assis-
tive Technologies and with Sect. 8 which emphasizes the future work and studies
necessary to design a usable system in the real world.

2 Glossary

Activities of daily living (ADL) are, as defined by the medical community, the
things we normally do in daily living, including any daily activity we perform
for self-care (such as feeding ourselves, bathing, dressing, grooming), work, and
leisure. Health professionals routinely refer to the ability or inability to perform
ADLs as a measurement of the functional status of a person, particularly in
regard to people with disabilities and the elderly. A well known scale for ADL
was defined by Katz and Akporn [4].

Ambient Assisted Living (AAL) aims to help seniors to continue to manage their
daily activities at home thanks to ICT solutions for active and healthy ageing.

Automatic Speech Recognition (ASR) is the translation of spoken words into
text by an automatic analysis system.

Blind Source separation (BSS) is the separation of a set of source signals from
a set of mixed signals, without the aid of additional information (or with very
little information) about the source signals or the mixing process.
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Driven Decoding Algorithm (DDA) is a method that allows to drive a primary
system search by using the one-best hypotheses and the word posteriors gathered
from a secondary system in order to improve the recognition performances.

Distant Speech Recognition is a particular case of Automatic Speech Recognition
when the microphone is moved away from the mouth of the speaker. A broad
variety of effects such as background noise, overlapping speech from other speak-
ers, and reverberation are responsible of the high degradation of performances
of the conventional ASR in this configuration.

Hidden Markov Model (HMM) is a statistical Markov model in which the system
being modelled is assumed to be a Markov process with unobserved (hidden)
states.

Home Automation is the residential extension of building automation. Home
automation may include centralized control of lighting, appliances and other sys-
tems, to provide improved convenience, comfort, energy efficiency and security.

Home Automation Network is a network specially designed to ensure the link
between sensors, actuators and services.

KNX (KoNneX) is a worldwide ISO standard (ISO/IEC 14543) for home and
building control.

Maximum A Posteriori (MAP) estimator, as the maximum likelihood method,
is a method that can be used to estimate a number of unknown parameters, such
as parameters of a probability density, connected to a given sample. This method
is related to maximum likelihood however, it differs in the ability to take into
account a non-uniform a priori on the parameters to be estimated.

Maximum Likelihood Linear Regression (MLLR) is an adaptation technique
that uses small amounts of data to train a linear transform which, in case of
Gaussian distribution, warps the Gaussian means so as to maximize the likeli-
hood of the data.

Recognizer Output Voting Error Reduction (ROVER) is based on a ‘voting’ or
re-scoring process to reconcile differences in ASR system outputs. It is a post-
recognition process which models the output generated by multiple ASR systems
as independent knowledge sources that can be combined and used to generate
an output with reduced error rate.

Smart Home is a house that is specially equipped with devices giving it the
ability to anticipate the needs of their inhabitants while maintaining their safety
and comfort.

Signal to Noise Ratio (SNR) it is a measure that compares the level of a
desired signal to the level of a reference or to background noise: SNR = Psignal

Preference

The signal and the noise are usually measured across the same impedance and
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the SNR is generally expressed in dB scale: SNRdB = 10. log10
(

Psignal

Preference

)
=

20. log10
(

Asignal

Areference

)
, where P and A denote respectively the power and ampli-

tude of signal or reference.

Wizard of Oz It is an interaction method in which the user is not informed that
the reaction of a device is actually controlled by a human (the ‘wizard’). This is
a reference to the 1939 American musical fantasy film “The Wizard of Oz”.

Word Error Rate (WER) is a common metric of the performance of a speech
recognition or machine translation system. WER = S+D+I

N , where S is the
number of substitutions, D the number of deletions, I the number of insertions,
N the number of words in the reference.

Word Spotting is related to search and retrieval of a word in an audio stream.

3 Background and State of the Art

As reported in Sect. 1, Smart Homes have been designed with the aim of allowing
seniors to keep control of their environment and to improve their autonomy.
Despite the fact that audio technology has a great potential to become one of
the major interaction modalities in Smart Home, this modality is seldom taken
into consideration [5–8]. The most important reason is that audio technology as
not reached a sufficient stage of maturity and that there is still some challenges to
overcome [3]. The Sweet-Homeproject presented in Sect. 3.1 aims at designing
an audio analysis system running in real-time for voice commands recognition
in a realistic home automation context. The state of the art and the challenges
to tackle are developed in Sect. 3.2 while Sect. 3.3 focuses on keyword spotting.

3.1 The Sweet-Homeproject

MainGoals. The Sweet-Home project is a French national supported research
project (http://sweet-home.imag.fr/). It aims at designing a new smart home
system by focusing on three main aspects: to provide assistance via natural man-
machine interaction (voice and tactile command), to ease social inclusion and
to provide security reassurance by detecting situations of distress. If these aims
are achieved, then the person will be able to pilot his environment at any time
in the most natural way possible [9].

Acceptance of the system is definitely a big issue in our approach there-
fore, a qualitative user evaluation was performed to assess the acceptance of
vocal technology in smart homes [10] at the beginning of the project and before
the study presented in Sect. 4. Height healthy persons between 71 and 88 years
old, seven relatives (child, grand-child or friend) and three professional car-
ers were questioned in co-discovery in a fully equipped smart home alternating
between interview and Wizard of Oz periods. Important aspects of the project

http://sweet-home.imag.fr/
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have been evaluated: voice command, communication with the outside world,
domotic system interrupting a person’s activity, and electronic agenda. In each
case, the voice based solution was far better accepted than more intrusive solu-
tions. Thus, in accordance with other user studies [11,12], audio technology
seems to have a great potential to ease daily living for elderly and frail persons.
To respect privacy, it must be emphasized that the adopted solution will analyse
the audio information on the fly and is not designed to store the raw audio signal.
Moreover, the speech recognizer must be made to recognize only a limited set of
predefined sentences in order to prevents recognition of intimate conversations.

Specialized devices
− Communication
− Alarm

Adapting
Stage

Domotic
Management

The user

SMART HOME

Switches
SensorsActuators MicrophonesSpeaker

Connection with Relatives,
Physicians or Carers

Home Automation Network

Decision Stage

Filtering &
Layout

Speech
Processing

Sound 
Processing

Sound Quality Analysis

Fig. 1. The general organisation of the Sweet-Home system

Sweet-Home Technical Framework. The Sweet-Home system is depicted
in Fig. 1. The input of the system is composed of the information from the
domotic system transmitted via a local network and information from the micro-
phones transmitted through radio frequency channels. While the domotic system
provides symbolic information, raw audio signals must be processed to extract
information from speech and sound. This extraction is based on our experience in
developing the AuditHIS system [13], a real-time multi-threaded audio process-
ing system for ubiquitous environments. The extracted information is analysed
and either the system reacts to an order given by the user or the system acts
pro-actively by modifying the environment without an order (e.g., turns off the
light when nobody is in the room). Output of the system thus includes domotic
orders, but also interaction with the user when a vocal order has not been under-
stood for instance, or in case of alert messages (e.g., turn off the gas, remind the
person of an appointment). The system can also make it easier for the user to
connect with her relative, physician or caregiver by using the e-lio1 or Visage2

systems. In order for the user to be in full control of the system and also in
order to adapt to the users’ preferences, three ways of commanding the system
are possible: voice order, PDA or classic tactile interface (e.g., switch).

The project does not include the definition of new communication proto-
cols between devices. Rather than building communication buses and purpose
1 www.technosens.fr.
2 camera-contact.com.

www.technosens.fr
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designed material from scratch, the project tries to make use of already stan-
dardised technologies and applications. As emphasized in [14], standards ensure
compatibility between devices and ease the maintenance as well as orient the
smart home design toward cheaper solutions. The interoperability of ubiquitous
computing elements is a well known challenge to address [15]. Another exam-
ple of this approach is that Sweet-Home includes systems which are already
specialised to handle the social inclusion part. We believe this strategy is the
most realistic one given the large spectrum of skills that are required to build a
complete smart home system.

3.2 Automatic Speech Recognition in Smart Homes

Automatic Speech Recognition systems (ASR) are especially good with close
talking microphones (e.g., head-set), but the performances are significantly lower
when the microphone is far from the mouth of the speaker such as in smart homes
where microphones are often set in the ceiling. This deterioration is due to a
broad variety of effects including reverberation and presence of undetermined
background noise. All these problems are still to solve and should be taken into
account in the home context.

Reverberation. Distorted signals can be treated in ASR either at the acoustic
model level or at the input (feature) level [16]. Deng et al. [17] showed that
feature adaptation methods provide better performances than those obtained
with systems trained with data with the same distortion as the ones coming
from the target environment (e.g., acoustic model learned with distorted data)
for both stationary and non stationary noise conditions. Moreover, when the
reverberation time is above 500 ms, ASR performances are not significantly
improved when the acoustic models are trained on distorted data [18]. In the
home involved in the study, the only glazed areas that are not on the same
wall are right-angled, thus the reverberation is minimal. Given this and the
small dimensions of the flat we can assume that the reverberation time stays
below 500 ms. Therefore, only classic ASR techniques with adaptation using
data recorded in the test environment will be considered in this study.

Background Noise. When the noise source perturbing the signal of inter-
est is known, various noise removal techniques can be employed [19]. It is then
possible to dedicate a microphone to record the noise source and to estimate
the impulse response of the room acoustic in order to cancel the noise [20].
This impulse response can be estimated through Least Mean Square or Recur-
sive Least Square methods. In a previous experiment, these methods showed
promising results when the noise is composed of speech or classic music [21].
However, in case of unknown noise sources, such as washing machine or blender
noise, Blind Source Separation (BSS) techniques seem more suited. The audio
signals captured by the microphones are composed of a mixture of speech and
noise sources. Independent Component Analysis is a subcategory of BSS which
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attempts to separate the different sources through their statistical properties
(i.e., purely data driven). This method is particularly efficient for non-Gaussian
signals (such as speech) and does not need to take into account the position of
the emitter or of the microphones, but it assumes signal and noise to be linearly
mixed, this hypothesis seems to be not suited in realistic recordings. Therefore,
despite the important effort of the community, noise separation in realistic smart
home condition remains an open challenge.

3.3 Word Spotting

Spoken word detection has been extensively studied in the last decades especially
in the context of spoken term detection in large speech databases and in contin-
uous speech streams. Performances reported in the literature are good in clean
conditions, especially with broadcast news data however, when experiences are
undertaken in users’ home conditions such as with noisy or spontaneous speech,
performances decrease dramatically [22]. In [23], an Interactive Voice Response
system was set up to support elderly people to deal with their medication. Over
the 300 persons recruited, a third stopped the experiment because they com-
plained about the system and only 38 persons completed the experiment.

In this study, some aspects of both spotting and Large Vocabulary Continu-
ous Speech Recognition are considered. A Large Vocabulary Continuous Speech
Recognition system was used in the approach to increase the recognition robust-
ness. Language and acoustic models adaptation and multisource based recogni-
tion were investigated. Finally, we designed an original approach which integrates
word matching directly inside the ASR system to improve the detection rate of
domotic order, this will be described in Sect. 6.5.

4 Recorded Corpus and Experimental Framework

One experiment was conducted to acquire a multimodal corpus by recording
individuals performing activities of daily living in a smart home. The speech
part of the corpus, called the Sweet-Home speech corpus, is composed of utter-
ances of domotic orders, distress calls and anodin sentences in French recorded
using several microphones set in the ceiling of the smart home. This corpus
was used to tune and to test a classic ASR system in different configurations.
This section briefly introduces the smart home, the Sweet-Home speech corpus.
The monosource ASR system is described in Sect. 5.

4.1 Data Acquisition in the Smart Home

The Domus smart home. The Sweet-Home speech corpus was acquired in
realistic conditions, i.e., in a smart-home and in distant speech condition inside
the Domus smart home. This smart home was designed and set up by the Multi-
com team of the Laboratory of Informatics of Grenoble to observe users’ activities
interacting with the ambient intelligence of the environment. Figure 2 shows the
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Fig. 2. The Domus Smart Home used during the Sweet-Home project

details of the flat. It is a thirty five square meters suite flat including a bathroom,
a kitchen, a bedroom and a study, all equipped with sensors and effectors.

More than 150 sensors, actuators and information providers are managed
in the flat. The flat is fully usable and can accommodate a dweller for several
days so that it is possible to act on the sensory ambiance, depending on the
context and the user’s habits. The technical architecture of Domus is based on
the KNX bus system (KoNneX), a worldwide ISO standard (ISO/IEC 14543)
for home and building control. The flat has also been equipped with 7 radio
microphones for the need of the Sweet-Home project; the microphones are
set into the ceiling (2 per room except for the bathroom). Audio data can be
recorded in real-time thanks to a dedicated PC embedding an 8-channel input
audio card [13]. The sample rate is 16kHz and the bandwith 8kHz. It must
be noticed that the distance between the speaker and the closest microphone is
about 2 m when he is standing and about 3 m when he is sitting. Figure 3 shows
the position of the microphones and of some sensors in the flat.

Corpus Recording. 21 persons (including 7 women) participated to a 2-phase
experiment to record, among other data, speech corpus in the Domus smart
home. To make sure that the audio data acquired would be as close as possible

Bedroom
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Kitchen

Bathroom
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2
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3

Window

Passive Infrared Detector

MicrophoneSwitch

Contact sensor

2
3

41

1m

Fig. 3. The Domus Smart Home and the position of the sensors
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to real daily living sounds, the participants performed several daily living activ-
ities. Each experimental session lasted about 2 h. The average age of the par-
ticipants was 38.5 ± 13 years (22–63, min-max). No instruction was given to
any participant about how they should speak and in which direction. Conse-
quently, no participant emitted sentences directing their voice to a particular
microphone.

A visit, before the first phase of the experiment, was organized to make the
participants accustomed to the home in order to smoothly perform the experi-
ment. During this first phase, participants uttered forty predefined French casual
sentences on the phone such as “Allo” (Hello), “J’ai eu du mal à dormir” (I slept
badly) but were also free to utter any sentence they wanted (some did speak
to themselves aloud). Then, the first phase consisted in following a scenario of
activities without condition on the time spent and the manner of achieving them
(having a breakfast, listening to music, get some sleep, clean up the flat using
the vacuum, etc.). Note that the microphone of the telephone was not recorded,
only the 7 microphones set on the ceiling were used.

The second phase consisted in reading aloud a list of 44 sentences:

– 9 distress sentences such as “A l’aide” (Help), “Appelez un docteur” (call a
doctor);

– 3 orders such as “Allumez la lumière” (turn on the light);
– 32 colloquial sentences such as “Le café est très chaud” (The coffee is hot).

This list was read in 3 rooms (study, bedroom, and kitchen) under three condi-
tions: no background noise, vacuum on or radio on. 396 sentences were recorded
but only those in the clean condition were used in this paper, the noisy condition
records having been designed for other experiments.

4.2 The Sweet-Home French Speech Corpus

Only the sentences uttered in the study during the phone conversation of the
phase 1 were considered. For the phase 2 record, only the sentences uttered
in the kitchen without additional noise (vacuum or radio) were considered.
Each speaker did not follow strictly the instructions given at the beginning of the
experiment, therefore this corpus was indexed manually. Some hesitations and
word repetitions occurred along the records. Moreover, when two sentences were
uttered without a sufficient silence between them, they were considered as one
sentence. A complete description of the corpus according to each speaker is given
in Table 1. The Sweet-Home speech corpus is made of 862 sentences uttered by
21 persons in the first phase, 917 sentences in the second phase; it lasts for each
channel 38 min 46 s in the case of the first phase, and 40 min 27 s in the case of
the second phase. The SNR (Signal-to-Noise Ratio) is an important parameter
which was used for the combination of several sources. For Phase 1 (when the
speaker was in the study) mean SNR was 21.8 dB/20.0 dB (channels 6 and 7), for
Phase 2 (when the speaker was in the bedroom) mean SNR was 22.1 dB/22.1 dB
(channels 4 and 5).
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Table 1. Sweet-Home speech corpus description

Spkr. Phase 1 Phase 2

ID Duration (s) SNR mean SNR mean Duration (s) SNR mean SNR mean

(dB) (dB) (dB) (dB)

Channel 6 or 7 Channel 6 Channel 7 Channel 4 or 5 Channel 4 Channel 5

1 145.78 23.5 22.1 96.66 24.7 26.2

2 119.36 22.6 21.0 110.42 21.2 22.0

3 112.08 14.8 12.2 119.76 15.9 16.7

4 141.32 16.5 16.5 119.04 22.1 24.0

5 159.32 29.7 26.8 122.21 26.8 28.6

6 122.10 17.7 16.1 108.61 19.7 18.7

7 110.90 19.0 17.5 116.00 20.7 21.2

8 114.54 20.3 19.0 114.64 18.9 20.6

9 121.58 26.8 24.7 135.36 24.5 25.3

10 77.50 20.3 18.0 104.54 23.4 18.8

11 106.52 20.2 21.0 105.76 20.6 23.9

12 90.48 24.5 21.1 108.44 25.1 24.3

13 96.46 26.2 19.9 116.52 17.3 13.2

14 97.74 17.7 17.7 113.40 18.5 15.3

15 96.48 22.6 21.4 101.98 25.0 26.9

16 96.86 21.4 17.6 106.72 18.2 10.7

17 111.08 21.7 20.0 144.46 28.3 24.6

18 169.14 20.0 19.0 124.52 23.0 24.2

19 146.98 25.1 23.4 125.58 24.4 22.4

20 89.80 27.5 24.8 120.60 29.0 27.4

21 99.48 19.5 19.2 109.56 17.4 14.4

Average 115.50 21.8 20.0 115.47 22.1 20.4

The databases recorded in the course of the Sweet-Home project are
devoted to voice controlled home automation, they will be distributed for an
academic and research use only [24].

5 Monosource ASR Techniques

The architecture of an ASR is described by Fig. 4. A first stage is the audio
interface in charge of acoustical feature extraction in consecutive frames. The
next 3 stages working together are:

– the phoneme recognizer stage;
– the word recognition stage constructing the graph of phonemes; and
– the sentence recognition stage constructing the graph of words.
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The data associated with these stages are respectively the acoustic models, the
phonetic dictionary and the language models. The output of the recognizer is
made of the best hypothesis lattices.

Feature
extraction

dictionary
PhoneticAcoustic

models
Language model
(n−grams)

Audio Input

(Speech)

Best
Hypothesis
(Words)

Decoder

Fig. 4. General organisation of an ASR

5.1 The Speeral ASR System

The ASR system used in the study is Speeral [25]. The LIA (Laboratoire d’Infor-
matique d’Avignon) speech recognition engine relies on an A∗ decoder with
HMM-based context-dependent acoustic models and trigram language models.
HMMs are classic three-state left-right models while state tying is achieved by
using decision trees. The acoustic features, for each 30 ms-length frame with
20 ms overlay (10 ms-time shift), were composed of 12 Perceptual Linear Predic-
tive coefficients, the energy, and the first and second order derivatives of these
13 parameters, this represent in total 39 parameters. The acoustic models were
trained on about 80 h of annotated French speech. If the participants were elderly
people, the use of adapted data would be required [26], but this was not the case
for this study. Given the targeted application of Sweet-Home the computation
time should not be a breach of real-time use. Thus, the 1 � RT Speeral configu-
ration was used. This this configuration, by using a strict pruning scheme, the
time spent by the system to decode one hour of speech signal is real-time.

Language Models. Two language models were built: the generic and the spe-
cialized models. The specialized language model was estimated from the sen-
tences that the 21 participants had to read during the experiment (domotic
orders, casual phrases, etc.). The generic language model was estimated on about
1000 M of words from the French newspapers Le Monde and Gigaword.

5.2 Baseline System

In order to propose a baseline system, the adaptation of both acoustic and
language models were tested. Then, to improve the robustness of the recognition,
multi-streams ASR was tested. Finally, a new variant of a driven decoding algo-
rithm was used in order to take into account a-priori information and several
audio channels for each speaker.
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The phase 1 of the corpus was used for development and acoustic model
adaptation to the speaker while the phase 2 was used for performances esti-
mation. Results obtained on the phase 2 of the corpus were analysed using two
measures: the Word Error Rate (WER) and the Classification Error Rate (CER).
The WER is a good measure of the robustness, while the CER corresponds to
the main goal of our research (i.e., detection of predefined sentences).

Acoustic Models Adaptation: MAP Versus MLLR. Acoustic models were
adapted for each speaker by using two methods: Maximum A Posteriori (MAP)
and Maximum Likelihood Linear Regression (MLLR) by using data of the first
phase. These data were perfectly annotated, allowing to perform correct targeted
speaker adaptation.

The Maximum Likelihood Linear Regression (MLLR) is used when a limited
amount of data per class is available. MLLR is an adaptation technique that uses
small amounts of data to train a linear transform which warps the Gaussian
means so as to maximize the likelihood of the data: acoustically close classes
are grouped and transformed together. In the case of the Maximum a posteriori
approach (MAP), initial models are used as informative priors for the adaptation.

Table 2 shows different results with and without acoustic models adaptation.
Results are presented for the two best streams (high SNR). Experiments were
carried out with the generic language model (GLM) lightly interpolated with
predefined sentences (PS) presented in the next section. Without acoustic adap-
tation, the best average WER is about 36 %. The results show that MAP is not
very performing in this case. With MAP, the WER about 27 %. The best average
WER is about 18 % with MLLR adaptation, which is the best choice for sparse
and noisy data whatever the channel.

Two aspects explain the MAP performance:

– The noisy environment is not adapted to MAP adaptation [27].
– The lack of parameter tying in the standard MAP algorithm implies that the

adaptation is not robust.

Linguistic Variability. Large vocabulary model languages such as the generic
language model, are known to perform poorly on specific tasks because of the
large number of equi-probable hypotheses. Better recognition can be obtained
by reducing the overall linguistic space by estimating a language model on the
expected sentences such as with the specialized language model. However, such a
language model would be probably too specific when the speaker deviates from
the original transcript. To benefit from the two language models, we propose
a linear interpolation scheme where specific weights are tested on specialized
and generic language models. The reduction of the linguistic variability thanks
to the contribution of known predefined sentences is explored. Therefore, we
interpolated the specialized model with the generic large vocabulary language
model.

Two schemes of linear interpolation were considered: in the first one, the
generic model had a strong weight while in the second one, the impact of the
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generic model was low. The ASRs were assessed after MLLR adaptation using
the data of phase 1 of the corpus. Table 2 presents the WER with the generic
language model (Baseline). As expected, the baseline language model obtained
poor results: about 74 %. Without reliable information, the ASR system, in noisy,
speaker independent and large vocabulary condition is unable to perform good
recognition.

Table 2. Average WER according to different configurations by using monosource
techniques

Method WER stream 1 WER stream 2

channel 4 (%) channel 5 (%)

Generic LM 75.3 73.4

Interpolated LM 38.8 35.0

Interpolated LM 28.5 25.9

with MAP adaptation

Interpolated LM 18.6 18.0

with MLLR adaptation

Specialized LM 19.2 19.0

with MLLR adaptation

With the specialised language model the system is able to detect more pre-
defined sentences. However, when the speaker deviates from the scenario, the
language model is unable to find the correct uttered sentence. The specialised
language model was thus too specific.

Finally, a light (10 %) interpolated language model led to the best results.
This model combined the generic language model (with a 10 % weight) and
the specialised model (with 90 % weight). These results show that a decoding
based on a language model mainly learnt from the predefined sentences improves
significantly the WER. The best WER is obtained when a generic language
model is also considered: when the speaker deviates, the generic language model
makes it possible to correctly recognise the pronounced sentences.

5.3 Conclusion About Monosource ASR

Speeral ASR system was evaluated taking into account realistic distant-speech
conditions and in the context of a home automation application (voice com-
mand). The system had to perform ASR with several constraints and challenges.
Indeed, the noisy, distant-speech conditions, speaker independent recognition,
continuous analysis and real-time aspects, the analysis system must operate in
more difficult conditions than with the classic head-set one. Therefore, it is clear
that obtained results are insufficient and must be improved, multichannel analy-
sis is an avenue worth exploring.
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The application conditions also make it possible for the ASR system to benefit
from multiple audio channels, from a reduced vocabulary and from the hypoth-
esis that only one speaker should utter voice commands. Lightly interpolated
language model and a MLLR acoustic adaptation did improve significantly the
ASR system performance. In the next section, we propose several techniques
based on this baseline in order to perform multisource ASR.

6 Techniques for Multisource Speech Recognition and
Sentence Detection

Multisource ASR can improve the recognition performances thanks to infor-
mation extracted in more than one channel. The ROVER method presented in
Sect. 6.1 analyses the outputs of ASR performed on all channels separately. In the
DDA method presented in Sect. 6.2, the information of one channel is used to
guide the analysis on another channel. We also present an improved DDA method
in Sect. 6.3 were a priori information about the task is taken into account.

6.1 ROVER

At the ASR combination level, a ROVER [28] was applied. ROVER is expected
to improve the recognition results by providing the best agreement between the
most reliable sources. It combines systems output into a single word transition
network. Then, each branching point is evaluated with a vote scheme. The words
with the best score are selected (number of votes weighted by confidence mea-
sures). However, this approach necessitates high computational resources when
several sources need to be combined and real time is needed (in our case, 7 ASR
systems must operate concurrently).

A baseline ROVER was tested using all available channels without a priori
knowledge. In a second step, an a priori confidence measure based on the SNR
was used: for each decoded segment si from the ith ASR system, the associated
confidence score φ(si) was computed according to Eq. 1 where R() is the function
computing the SNR of a segment and si is the segment generated by the ith ASR
system:

φ(si) = 2R(si)/

7∑

j=1

2R(sj) (1)

For each annotated sentence a silence period Isil at the beginning and the end
is taken around the speech signal period Ispeech. The SNR is thus evaluated
through the function R() according to Eq. 2.

R(S) = 10 ∗ log(

∑
n∈Ispeech

S[n]2

|Ispeech| /

∑
n∈Isil

S[n]2

|Isil| ) (2)

Finally, a ROVER using only the two best channels overall was tested in order
to check whether other channels contain redundant information and whether
good results can be reached with low computational cost.
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The ROVER combination led to great improvements. The results show that
the ROVER made ASR more robust with an average WER of 13.0 %. This aspect
shows the complementarity of the streams. However, the ROVER stage increased
the computation time proportionally to the number of ASR systems used. Given
that the objective of the project is to build a real-time and affordable solution,
computational resources are limited. Moreover, ROVER combination for two
streams reduces the problem to picking the word with the highest confidence
when two systems disagree. Thus, when the recogniser confidence scores are not
reliable, the ROVER between two streams does not perform well and the final
performance is likely to be similar to a single system. Thus, we propose in the
next section a method allowing low-cost computations with only two streams,
based on the Driven Decoding Algorithm. In the following, ROVER results are
used as baseline.

6.2 Driven Decoding Algorithm

The Driven Decoding Algorithm (DDA) [29,30] is able to simultaneously align
and correct the imperfect ASR outputs [31]. DDA has been implemented within
Speeral: The ASR generates assumptions as it walks the phoneme lattice.
For each new step, the current assumption is aligned with the approximated
hypothesis. Then, a matching score α is computed and integrated within the
language model:

P̃ (wi|wi−1, wi−2) = P 1−α(wi|wi−1, wi−2) (3)

where P̃ (wi|wi−1, wi−2) is the updated trigram probability of the word wi given
the history wi−2, wi−3, and P (wi|wi−1, wi−2) is the initial probability of the
trigram. When the trigram is aligned, α is at a maximum and decreases according
to the misalignments of the history (values of α must be determined empirically
using a development corpus).

In the Domus smart home, uttered sentences were recorded using two micro-
phones per room. Thus, two microphones can be used as input to DDA in order
to increase the robustness of the ASR systems as presented in Fig. 5. We propose

H1 H2 Hn

Hypothesis

Stream 2

Driven decoding

Automatic transcripts
biased by the first
microphone

Stream 1

First pass decoding

Fig. 5. Driven Decoding Algorithm used with two streams: The first stream drives the
second stream
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Table 3. ASR system recognition WER by using multisource techniques

Method WER (%)±SD

Baseline 18.3±12.1

Oracle Baseline 17.7±10.3

ROVER Full 20.6±8.5

ROVER 2 channels + SNR 13.0±6.6

ROVER +SNR 12.2±6.1

DDA +SNR 11.4±5.6

DDA 2 levels + SNR 8.8±3.7

to use a variant of the DDA where the output of the first microphone is used to
drive the output of the second one. This approach presents two main benefits:

– The second ASR system speed is boosted by the approximated transcript
(only 0.1 � RT)

– While a ROVER does not allows to combine efficiently two systems without
confidence scores, DDA combines easily the information

The Fig. 5 explains the Driven Decoding solution: the first Speeral pass on
the stream 1 is used to drive a second pass on the stream 2, allowing to combine
the information of the two streams.

Results using the 2-stream DDA are presented in Table 3. In most cases,
DDA generated hypotheses that led either to the average WER of the two initial
streams or to better WER. The average WER is 11.4 %. We propose to extend
this approach in the next section by driving the ASR system by a priori sentences
selected on the first stream.

6.3 Two Level DDA

In the previous approach, the first stream of decoding was used to drive the
second one: DDA aims to refine the decoding achieved during the first stream
decoding. Word spotting using ASR systems is known to be focused on accuracy,
since the prior probability of having the targeted terms in a transcription is low.
On the other hand, transcription errors may introduce mistakes and lead to
misses of correct utterances, especially on large requests: the longer the searched
term, the higher the probability of encountering an erroneous word. In order
to limit this risk, we introduced a two-level DDA: speech segments of the first
pass are projected in 3 − best spotted sentences and injected via DDA into the
ASR system for the second decoding pass. The first decoding pass allows to
generate hypotheses. By using the edit distance explained in 6.5, closed spotted
sentences are selected and used as input for the fast second pass as presented in
Fig. 6. In this configuration, the first pass is used to select some sentences used to
drive the second pass. In the Fig. 6, the first system outputs “Allumer la lumière”
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W2 WnW1

Domotic order N

W2 WnW1

Domotic order 1
H1 H2 Hn

Hypothesis

Stream 2

Alignment module

Allumez la lumière
Allumez la télévision

Stream 1

First pass decoding

Driven decoding

Automatic transcripts
biased by the first
microphone

Selection of best confidence scores

Allumez la lumière

Allumez l’arrière

Fig. 6. Driven Decoding Algorithm used with two streams and a priori sentences: The
first stream drives the second stream according to a refine selection of spotted sentences

(Turn on the light). The edit distance allows to find two close sentences: “Allumez
la lumière” and “Allumez la télévision” (Turn on the TV). These sentences drive
the second pass and allows one to find the correct output “Allumez la lumière”.

Results using this approach are showed in Table 3. According to the WER,
this approach improved significantly the ASR system quality, by taking advan-
tage of the a priori information assessed by the predefined spotted sentences.
WER is improved significantly for all speakers: the mean WER is 8.8 %. By using
the two streams available the ASR system is able to combine them efficiently.
The best results are obtained with the two level approach were the ASR system
is driven by both the first stream and the potential spotted sentences. The next
section investigates the impact of each previous proposed method on the detec-
tion of pronounced sentences.

6.4 Multisource Speech Recognition: Results

For each approach, the presented results are the average over the 21 speakers
(plus standard deviation for the WER). For the sake of comparison, results of a
baseline and an oracle baseline systems are provided. The baseline system out-
puts the best decoding amongst 7 ASR systems according to the highest SNR.
The oracle baseline is computed by selecting the best WER for each speaker.
The best results are achieved with DDA because the search for the best hypoth-
esis in the lattice uses data from several channels and has more information than
when decoding for each channel.

6.5 Detection of Predefined Sentences

In order to spot sentences into automatic transcripts T of size m, each sentence
of size n from predefined sentences H was aligned with T by using a Dynamic
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Time Warping (DTW) algorithm at the letter level [32]. Sequences were aligned
by constructing an n-by-m matrix where the (ith, jth) element of the matrix
contained the distance between the two words Ti and Hj using the distance
function defined below.

d(Ti,Hj) = 0 if Ti = Hj

d(Ti,Hj) = 3 in the insertion cases
d(Ti,Hj) = 3 in the deletion cases
d(Ti,Hj) = 6 in the substitution cases

(4)

The deletion, insertion and substitution costs were computed empirically.
The cumulative distance γ(i, j) between Hj and Ti is computed as:

γ(i, j) = d(Ti,Hj) + min{γ(i − 1, j − 1), γ(i − 1, j), γ(i, j − 1)} (5)

Each predefined sentence is aligned and associated with an alignment score:
the percentage of well aligned symbols (here letters). The sentence with the best
score is then selected as best hypothesis.

This approach takes into account some recognition errors such as word dec-
lination or light variations (téléviseur, télévision etc.). Moreover, miss-decoded
word are often orthographically close from the good one (due to the close pro-
nunciation).

To test the detection of a-priori pronounced sentences, such as domotic
orders (e.g., “allume la lumière”), the detection methods were applied in the
following ASR configurations:

– Baseline: Speeral system with acoustic and language model adaptation.
– ROVER: Consensus vote between all streams.
– DDA1: DDA drived with the first stream.
– DDA2: DDA drived by the first stream and the spotted sentences.

The three systems based on ROVER and DDA gave the best performances,
with respectively 88.2 %, 87,4 % and 92.5 % of correct classifications while the
baseline system obtains 85 % of correct classification. It can be observed that the
2-level DDA based ASR system was able to detect more spotted sentences with
less computational time and with more accuracy than the ROVER based one.

Sentence Detection: Results. In all best-configurations, predefined sentence
recognition showed a good accuracy: the baseline recognition gave 85 %. It can
be observed that in other configurations the spotting task correlated well with
the WER. Thereby, ROVER and the two DDA configurations led to a significant
improvement over the baseline. The best configuration based on the two-level
DDA gave 92.5 % of correct classifications.

6.6 Discussion and Future Works

The goal of this study is to provide a path for vocal command recognition
improvement with a focus on two aspects: distance speech recognition and sen-
tence spotting. A distant speech French corpus was recorded with 21 speakers
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playing scenarios of activities of daily living in a real flat, this corpus is made of
colloquial sentences, vocal commands and distress sentences. This realistic cor-
pus was acquired in a 4-room flat equipped with microphones set in the ceiling
thanks to 21 speakers. Several ASR techniques were evaluated, such as our novel
approach called Driven Decoding Algorithm (DDA). They gave better results
than the baseline and other approaches. Indeed, they analyse the signal on the
two best SNR channels and the use of a priori knowledge (specified vocal com-
mands and distress sentences) increases the recognition rate in the case of true
positive sentences and doesnt introduce false positive.

Evaluation in Real Conditions. The technology developed in this study was
then tested thanks to two other experiments in an Ambient Assisted Living con-
text at the end of the Sweet-Home project. These experiments involved 16
non-aged participants for the first one and 11 aged or visually impaired people
for the second one [33]. Each participant followed a scenario including various
situations and activities of the daily life. The objective of these experiments was
to evaluate the use of voice command for home automation in distant speech
conditions, in real-time and in context aware conditions [34]. Unfortunately, we
were not able to integrate the DDA method in time in the real-time analysis
software PATSH before the beginning of these experiments. Therefore, the per-
formance of the system was still low, the Home Automation Command Error
Rate was about 38 % [33], but the results showed there is room for improvement.
But, although the participants had to repeat, sometimes up to three times, the
voice command, they were overall very excited about commanding their own
home by voice. These results highlight the interest of the methods discussed
above and especially DDA2 that chooses among available channels those that
have the best SNR in order to refine the data analysis. One of the biggest prob-
lems were the response time which was unsatisfactory (for 6 participants out of
16) and the mis-understanding of the system which implied to repeat the order
(8/16). These technical limitations were reduced when we improved the ASR
memory management and reduced the search space. After this improvement,
only one participant with special needs complained about the response time.

Interest of the Recorded Corpus. During these experiments, all data were
recorded. This acquired corpus was used to evaluate the performance of the audio
analysis methods presented in this chapter. It constitutes a precious resource
for future work. Indeed, one of the main problems that impede researches in
this domain is the need for a large amount of annotated data (for analysis,
machine learning and benchmark). It is quite obvious that the acquisition of such
datasets is highly expensive both in terms of material and of human resources.
For instance, in the experiment presented in Sect. 4, the acquisition and the
annotation of the 33-hours corpus costed approximatively 70 ke.

Therefore, the Sweet-Home multimodal corpus is a dataset recorded in
realistic conditions in Domus, the fully equipped Smart Home with microphones
and home automation sensors presented in Sect. 4.1 will be available for the
research community [24]. This corpus was recorded thanks to participants which



180 M. Vacher et al.

performed Activities of Daily living (ADL). This corpus is made of a multimodal
subset, a French home automation speech subset recorded in Distant Speech
conditions, and two interaction subsets, the first one being recorded by 16 persons
without disabilities and the second one by 6 seniors and 5 visually impaired
people. This corpus was used in studies related to ADL recognition, context
aware interaction and distant speech recognition applied to home automation
controlled through voice.

Future Projects. Our future project aims to develop a system capable of
operating under the conditions encountered in an apartment. For this we must
firstly integrate BSS techniques to reduce the noise present in the everyday life
context and secondly improve the DDA2 method to detect and recognize the
voice commands as well as distress calls.

7 Application of Speech Processing for Assistive
Technologies

The applications of speech processing may present a greet benefit for smart
homes and Ambient Assisted Living (see Sect. 7.1) but Augmentative and Alter-
native Communication (AAC) retains involvement from a broad community of
researchers (see Sect. 7.2).

7.1 Smart Home and AAL

Anticipating and responding to the needs of persons with loss of autonomy with
ICT is known as Ambient Assisted Living (AAL). ICT can contribute to the
prevention and/or compensation of impairments and disabilities, to improve the
quality of life, safety, communication and social inclusion of end users. They
must relieve the isolation and caregiver burden. They also participate in the
modernization of health and social services by facilitating home or institutional
organization of professional care, their implementation, their tolerance and per-
formance [35]. In this domain, the development of smart homes is seen as a
promising way of achieving in-home daily assistance [1]. Health Smart Home
has been designed to provide daily living support to compensate some disabili-
ties (e.g., memory help), to provide training (e.g., guided muscular exercise) or
to detect potentially harmful situations (e.g., fall, gas not turned off). Basically,
a health smart home contains sensors used to monitor the activity of the inhab-
itant. Sensor data are analyzed to detect the current situation and to execute
the appropriate feedback or assistance.

A rising number of studies about audio technology in smart home were con-
ducted. This includes speech recognition [36–39], sound recognition [3,40,41],
speech synthesis [42] or dialogue [7,8,11,43]. These systems are either embedded
into the home automation system or in a smart companion (mobile or not) or
both as in Companions [44] or CompanionAble [41] projects.
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However, given the diverse profiles of the users (e.g., low/high technical skill,
disabilities, etc.), complex interfaces should be avoided. Nowadays, one of the
best interfaces, is the VoiceUser Interface (VUI), whose technology has reached
a stage of maturity and that provides interaction using natural language so that
the user does not have to learn complex computing procedures [10]. Moreover, it
is well adapted to people with reduced mobility and to some emergency situations
(hand free and distant interaction). Indeed, a home automation system based on
voice command will be able to improve support and well-being of people in loss
of autonomy. But, despite the interest presented by sound analysis techniques,
the use of ASR for voice command for home automation in a real environment
is still an open challenge.

Voice-User Interface in domestic environment has recently gained interest
in the speech processing community as exemplified by the rising number of
smart home projects that considers Automatic Speech Recognition (ASR) in
their design [5,6,8,37–39,45–49]. However, though VUIs are frequently employed
in close domains (e.g., smart phone) there are still important challenges to over-
come [3]. Indeed, the task imposes several constraints to the speech technology:

– distant speech conditions [16],
– hand free interaction,
– adaptation to potential users (elderly),
– affordable by people who can have low resources,
– noise conditions in the home,
– real-time,
– respect of privacy.

In recent years, the research community shows an increased interest with
regards to the analysis of the speech signal in noisy conditions like the organizing
of Challenges CHiME shows. The first CHiME Challenge held in 2011 was the
first concerted evaluation of ASR systems in a real-world domestic environment
involving both reverberation and highly dynamic background noise made up of
multiple sound source [50]. The second CHiME Challenge in 2013 was supported
by the IEEE AASP, MLSP and SL Technical Committees [51]. The configuration
considered by this Challenge was that of speech from a single target speaker being
binaurally recorded in a domestic environment involving multisource background
noise. These challenges reported here are still no close enough to real conditions
and future editions of the challenge will attempt to move closer to realistic
conditions.

Ageing has effects on the voice and movement of the person and thereby, aged
voice is characterized by some specific features such as imprecise production
of consonants, tremors, hesitations and slower articulation [52]. Some studies
have shown age-related degeneration with atrophy of vocal cords, calcification
of laryngeal cartilages, and changes in muscles of larynx [53,54]. For there reason,
some authors highlight that ASR performance decreases with elderly voice. This
phenomenon has been observed in the case of English, European Portuguese,
Japanese and French [26,55–57]. Vipperla et al. [58] made a very useful and
interesting longitudinal study by using records of defence speech delivered in the
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Supreme Court of the United States over a decade by the same judges. This
study showed that an adaptation to each speaker can get closer to the scores
of non-aged speakers but this implies that the ASR must be adapted to each
speaker. Nevertheless, some authors established that many other effects can also
be responsible for ASR performance degradation such as decline in cognitive and
perceptual abilities [59,60].

Moreover, since smart home systems for AAL often concern distress situa-
tions, it is unclear whether distress voice will challenge the applicability of these
system. Speech signal contains linguistic information but it may be influenced
by the health, the social status and the emotional state [61,62]. Recent studies
suggests that ASR performance decreases in case of emotional speech [63,64],
however it is still an under-researched area. In their study, Vlasenko et al. [63]
demonstrated that acoustic models trained on read speech samples and adapted
to acted emotional speech could provide better performance of spontaneous emo-
tional speech recognition.

Moreover, such technology must be validated in real smart homes and with
potential users. At this time, validation studies in such realistic conditions are
rare [33]. In the same way, there are few user studies reported in the literature
and related to speech technology application [10], they are generally related to
ICT [65].

7.2 Assistive Technologies

The field of Augmentative and Alternative Communication (AAC) is multidisci-
plinary and vast, its focus is to develop methods and technologies to aid commu-
nication for people with complex communications needs [66]. Potential users are
elderly and all people who may acquire a disability or have a degenerative dis-
ability which affects communication, this disability can result from both motor
and cognitive impairments (i.e., paralysis, hearing or visual impairment, brain
injury, Alzheimer. . . ).

Speech and language processing play a major role to improve function for
people with communication facilities [67]. This is highlighted by the publication
of special issues of journals and by the regular organisation of workshops and
conferences on this topic. In 2009, the third issue of the ACM Transactions
on Accessible Computing was devoted to AAC (Volume 1, Issue 3). In 2011,
the relationship between assistive technology and computational linguistics was
formalized with the formation of an ACL Special Interest Group on Speech and
Language Processing for Assitive Technology (SIG-SLPAT3) which gained SIG
status from the International Speech Communication Association (ISCA). The
last workshops SIG-SLPAT bringing together Computational Linguistics, Speech
Processing and Assistive Technologies took place in Montreal, Quebec (2012),
in Grenoble, France (2013) and in Baltimore, U.S. (2014). In the same way, a
special session of Interspeech4 “Speech technologies for Ambient Assisted Living”
3 http://www.slpat.org/.
4 http://www.interspeech2014.org/.

http://www.slpat.org/
http://www.interspeech2014.org/
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is organized in 2014. This special session aims at bringing together researchers
in speech and audio technologies with people from the ambient assisted living
and assistive technologies communities to meet and foster awareness between
members of either community, discuss problems, techniques and datasets, and
perhaps initiate common projects.

Regarding speech recognition, the most important challenges are related to
the recognition of speech uttered by elderly, dysarthric or cognitively impaired
speakers.

8 Future Outlook

Future challenges have been outlined in the previous Sect. 7. These challenges
are essentially related to scientific and technological problems to solve, but the
human aspect must not be neglected.

8.1 Scientific and Technical Challenges

In real home environment the audio signal is often perturbed by various and
undetermined noises (e.g., devices, TV, music, roadwork...). But this also shows
us the challenges to obtain a usable system that will not be set-up in lab con-
ditions but in various and noisy ones. Of course, in the future, smart homes
could be designed specifically to limit these effects but the current smart home
development cannot be successful if we are not able to handle these issues when
equipping old-fashioned or poorly insulated home. Finally, one of the most dif-
ficult problems is the blind source separation. Some techniques developed in
other areas of signal processing may be considered to analyze speech captured
with far-field sensors and to develop a Distant Speech Recogniser (DSR) such as
blind source separation, independent component analysis (ICA), beam-forming
and channel selection.

Two main categories of audio analysis are generally targeted: daily living
sounds and speech. These categories represent completely different semantic
information and the techniques involved for the processing of these two kinds of
signal are quite distinct. However, the distinction can be seen as artificial and
there is a high confusion between speech and sounds with overlapped spectrum.
For instance, one problem is to know whether scream or sigh must be classified
as speech or sound.

Moreover, the system must react as quickly as possible to a vocal order. For
example, if the user says “Nestor allume la lumière” (Nestor turn on the light),
the sentence duration is about 1s, and the processing time last generally between
1.5 and 2 s. This duration seems low but this is not true in real conditions when
the user in the obscurity is waiting for the light. Thus, optimisation are needed
to obtain fast recognizers.
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8.2 Human Aspect

One of the main challenges to overcome for successful integration of VUI in AAL,
is the adaptation of the system to the elderly users. Indeed, the ageing process
is characterised by a decay of the main bio-physiological functions, affecting the
social role and the integration of the ageing person in the society. Overall elderly
people will be less inclined to adapt to a technology and its limitation (e.g., the con-
straint to pronounce words in a certain way) than younger adults and will present
a very diverse set of profiles that make this population very difficult to design for.

For the elderly, there is a balance between the benefit of a monitoring through
sensors and the correspondent intrusion into privacy. The system has to be pro-
tected against intrusion and has to make sure that the information reaches only
the right people or can not go out of the smart home.

This is the most important aspect because if the system is not accepted by
its potential users, it will never be used in practice.
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35. Franco, A.: Conférence invitée: Nouveaux paradigmes et technologies pour la santé
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Abstract. Our goal is to develop a system for coaching human motions
(e.g., for rehabilitation and daily health maintenance). This paper focuses
on how to coach a user so that his/her motion gets closer to the good tem-
plate of a target motion. It is important to efficiently advise the user to
emulate the crucial features that define the good template. The proposed
system (1) automatically mines the crucial features of any kind of motion
from a set of motion features and (2) gives the user feedback about how
to modify the motion through an intuitive interface. The crucial features
are mined by feature sparsification through binary classification between
the samples of good and other motions. An interface for motion coaching
is designed to give feedback via different channels (e.g., visually, aurally),
depending on the type of error. To use the total system, all the user must
do is just move and then get feedback on the motion. Following experi-
mental results, open problems for future work are discussed.

Keywords: Motion coaching · Error feedback · Physical rehabilitation

1 Introduction

1.1 Background

The number of people suffering from chronic diseases is constantly rising [1–3].
Today, more than three quarters of the elderly population are suffering from
chronic diseases, independent of the economic, social, and cultural background
[4]. However, not only the prevalence of chronic illnesses increases with age but
also the likeliness of suffering from physical as well as mental disabilities. Statis-
tical data from Great Britain [5] shows that around half of all disabled persons
are 65 years or older.

A serious problem closely connected with declining physical abilities is an
increased risk of falls. Statistics of the World Health Organization [6] show that
approximately one third of the people over 65 years and half of the people over
80 years of age fall each year. Similar data is reported by Nehmer et al. [7].
Around 20 % to 30 % of the falls lead to serious injuries with long-term conse-
quences for the patients [8]. Statistical data from the UK [9] shows that fallsare
the major cause for disability in the age group of people over 75 and a lead-
ing cause of mortality due to injury. The most common serious injuries related
c© Springer International Publishing Switzerland 2015
A. Holzinger et al. (Eds.): Smart Health, LNCS 8700, pp. 189–208, 2015.
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to falls in older people are hip fractures, which result in annual costs of over
2 billion Euros for England alone [10].

The demographic change, which can be observed in most industrialized coun-
tries around the globe, does not only lead to an increased number of elderly
people but also contributes to a continuous decline of the working population.
For example, it is expected that the working force in Europe will decrease by
48 million people until 2050 while the dependency ratio is expected to double,
reaching 51 % in the same time [11]. Consequently, the ratio between the working
population and older citizens above 65 will shrink from currently 4:1 to only 2:1
in the coming 40 years. This development will inevitably result in a reduction
of the number of people who can provide care to older and disabled people [8].
Together with the financial constraints that most are currently facing, it will
become increasingly difficult to find enough caregivers for the growing number
of elderly people [12].

In this context, pervasive homecare environments are often cited as a promis-
ing solution for providing automated and personalized healthcare solutions for a
growing number of elderly people [7,10,12]. Pervasive healthcare environments
are usually equipped with different types of sensors for automated data captur-
ing as well as different types of output devices including large screens [13–15],
mobile devices [16,17], and ambient displays [18,19]. Over the last decade, several
prototype systems have been developed (e.g., [2–5,8,11]), which demonstrate
the potential of such environments for individually supporting different user
groups [6,20].

Within this paper, we describe the development of an automatic motion
coaching system which makes use of typical input and output technologies avail-
able in pervasive homecare environments in order to provide new user-centered
training and rehabilitation concepts [9]. For easy-to-use coaching systems [1], it is
important to efficiently advise a user to emulate the crucial features that define
the good template. This is because many other features of the target motion
might be varied among individuals, but those variations give less impacts on
evaluating the target motion. The proposed method automatically mines the
crucial features of any kind of motion. The crucial features are mined based on
feature sparsification through binary classification between the samples of good
and other motions. The following section provides a more detailed overview of
the proposed system.

1.2 Our Approaches and Related Work

Motion Measurement. We aimed at developing a user-centered system for
coaching human movement. For motion measurement in the laboratory stage,
multi-camera systems, [21–23], allow us to acquire highly accurate results, but
they are too expensive for realizing pervasive health systems. We have seen
a tremendous improvement of commercial real-time motion tracking devices.
Systems like Microsoft Kinect, Nintendo Wiimote, or PlayStation Move provide
low-cost solutions for end-users in home environments. The proposed system
utilizes an inexpensive depth-measurement sensor (i.e., Microsoft Kinect) in
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order to get high-measurement accuracy without devices attached to the body
for easy-to-use operation.

MotionCoaching Systems. During the last years, several motion coaching sys-
tems have been developed. Most systems focus on a special type of motion or exer-
cise. This is due to the fact that there are tremendous differences between motions
that have to be considered when analyzing motion data programmatically.

A review of several virtual environments for training in ball sports was intro-
duced in [24]. They stressed that coaching and skill acquisition usually involve
three distinct processes: conveying information (i.e., observational learning),
structuring practice (i.e., contextual inference), and the nature and administra-
tion of feedback (i.e., feedback frequency, timing, and precision). Additionally,
general possibilities when to provide feedback were identified. Concurrent feed-
back (during), terminal feedback (immediately following), or delayed feedback
(some period after) can be used to assist the subject in correcting the motion.

One recent concurrent feedback approach was taken by Velloso et al. [25].
Another example for concurrent feedback was presented by Matsumoto et al. [26]
who combined visual and haptic feedback. Even though their device greatly
improved the performance, it was very awkward to perform the exercises with
it due to its weight.

How to assist weightlifting training by tracking the exercises with a Kinect
and using delayed feedback is proposed by Chatzitofis et al. [27]. However, there
is still need for a human trainer to interpret those values in order to give feedback
to the subject. The tennis instruction system developed by Takano et al. [28]
also uses a delayed feedback approach but the focus is put on the process of
observational learning. Due to the absence of any explicit feedback in [28], it is
hard to determine how to actually correct the motion.

An example for terminal feedback can be found in [29] where the focus is put
on the correct classification of motion errors while feedback is given immediately
after the completion of the motion. However, this only allows the correction of
previously known and trained error types.

To systematically analyze possible designs of motion coaching systems, the
related work can be classified in a three-dimensional design space of multimodal-
ity [30]. The modality (visual, auditory, haptic) is chosen depending on the type
of input that the computer or human needs to perceive or convey information.

A single system generally consists of multiple points in this design space
(represented as a connected series of points). For example, the system developed
by Chatzitofis et al. [27] can be controlled with mouse and keyboard (haptic
input of control), visualizes performance metrics (visual output of data), and
captures motion data by using the Kinect system (visual input of data).

In some cases, the differentiation between output of control and data is not
unambiguous. Nevertheless, this can still be visualized. For example, in [25] the
output of an arrow indicating the direction in which to move the left or right
arm can be regarded as both, output of data and control. In the following, this
type of visualization will be referred to as output of control.
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2 Glossary

Depth sensor is an optical sensor that measures 3D distance from the sensor
to 3D points in a scene. The measured results are obtained as a gray-scale
image in which each pixel value represents the 3D distance. The examples
of the depth image are shown in Fig. 1 (i.e., “Depth images” in the figure).
There are several kinds of depth sensors, which are classified by a mechanism
for measuring 3D distance.

Expensive but accurate sensors are based on Time-Of-Flight (TOF) mea-
surement. A TOF sensor measures 3D distance by measuring the lapse of
time after the sensor emits light and before the light returns to the sensor.

Some other depth sensors are based on triangulation. Unlike human eyes
that observe a 3D point from different view points for triangulation (which
is often called stereo vision), many triangulation-based depth sensors emit
light and observe it from a different viewpoint for triangulation. This app-
roach allows us to easily measure 3D distance because point correspondence
is easy; in stereo vision, on the other hand, we must make a pixel correspon-
dence between different views (i.e., different images) based on noisy image
features so that pixels observing the same 3D point are paired.
Structured-light based sensors are also popular. These sensors emit a known

spatial light pattern and observes it. Based on its deformation projected on
a 3D surface in a scene, depth measurement can be achieved.

Kinect is a world-wide popular depth sensor developed by Microsoft. It can
capture color and depth images simultaneously. Its depth measurement is
based on the structured-light mechanism.

Motion capture system is used for obtaining the 3D human pose of a real
person. A number of commercial products have been already developed, but
all of them are still expensive. Several kinds of motion capture systems have
been developed, namely optical systems with passive/active markers, inertial
systems, mechanical systems, and magnetic systems.

Support Vector Machine (SVM) is a pattern classifier [31]. Any pattern is
computationally expressed by a vector. In pattern classification, each pattern
is attributed to a class (e.g., “good” or “bad”).

3D Human Pose (aka a 3D skeleton) is computationally represented by a set
of 3D joint positions and links that connect physically-connected joints. Its
examples are illustrated in Fig. 1 (i.e., “Pose sequence” in the figure).

3 State-of-the-Art

3.1 System Overview

Figure 1 illustrates the overview of the proposed system consisting of two steps.
An offline model-learning step is performed before users are coached by the

system. In this step, two kinds of computational models are trained. For learning
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Fig. 1. Overview of the system.

the pose estimation model (i.e., “Pose models” in Fig. 1) that represents the
relationship between human poses and features extracted from depth images, the
samples of a target motion are captured by a synchronized Kinect and motion
capture system (i.e., “Kinect” and “Motion capture system” of “Offline model
learning” in Fig. 1). The pose classification model (“Classification models” in
Fig. 1) is acquired by the Support Vector Machine [32] (“SVM” in Fig. 1) to
evaluate whether the human pose at each frame is good or not.1. In addition,
the crucial features of the target motion (i.e., “Crucial components” in Fig. 1)
are mined by a sparse coding regularization in the SVM.

In an online coaching step, with the model learned beforehand, the system
observes the motion of a user with a Kinect camera (i.e., “Kinect” of “Online
coaching” in Fig. 1), estimates the human pose at every frame (i.e., “Pose esti-
mation” in Fig. 1), evaluates whether or not each pose is required to be modified
(i.e., “Motion evaluation at each frame” in Fig. 1), and coaches the user. In the
online coaching step, the three modules interact with a user as follows:

3D human pose estimation: A 3D human pose at each frame is estimated
from a depth image captured by a Kinect. The estimation method is based
on [33,34]. The accuracy of the pose estimation is improved by using real
pose data captured by the motion capture system instead of synthesized CG
data employed in [33,34].

1 We assume that a target motion can be classified into good and other motions. For
example, any motion in rehabilitation should be as correct (i.e., good) as possible.
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Motion evaluation: The user’s pose is evaluated by the SVM whether it is
good or not. If the pose is not good, it must be modified so that it gets
closer to a good template. Before evaluation, the pose sequence of the user
is synchronized with that of the template by dynamic time warping [35].

Motion coaching: At each subsequence (i.e., several sequential frames) that
must be modified, the interface system [36] gives feedback to the user. Note
that there might be a number of differences between the user’s motion and
the good template motion and that it is actually impossible to understand
all of them simultaneously. The proposed interface system gives feedbacks
one by one, depending on their priority. More crucial features are given first.
The priority of a feature is determined by how crucial the feature is for a
well done execution of the good template motion.

3.2 3D Human Pose Estimation

The estimation method is based on [33,34]. In this previous method, all training
data (i.e., “Depth images” and “Pose data” in Fig. 1) are generated from simu-
lation computer graphics data. This approach is useful for estimating arbitrary
human poses for gaming proposes because

– it is difficult to collect the synchronized human pose and depth data of a large
variety of arbitrary human poses, and

– even if the pose estimation error is relatively large due to modeling errors of
a variety of human poses, it might still be acceptable for gaming purposes.

In contrast to pose estimation for gaming purposes, for motion coaching it
should be more accurate. In particular, accurate pose estimation is required for
rehabilitation purposes.

In the proposed system, accuracy in pose estimation is improved by using
real observation data of human motions. The real depth images and human data
are captured by Kinect and a motion capture system. The left and right images
in Fig. 2 show a 3D point cloud computed from a captured depth image and a
skeletal human pose, respectively.

From a technical point of view, spatial alignment and temporal synchroniza-
tion between the point cloud and the pose are required.

Temporal Synchronization. Since a moving human body is captured by two
independent sensors, their captured data must be synchronized; a depth image
and pose data in the same frame of an image sequence and a pose sequence must
be captured at the same moment.

Unfortunately, Kinect does not have a hardware synchronization mechanism.
Instead, in the proposed system a software synchronization between those two
data sets is established.

For this synchronization, a predefined motion is performed by a subject. This
predefined motion is required to have a key frame that can be easily identified in
both depth image and pose sequences. The depth image and pose sequences are
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Depth data extracted from a depth image
captured by Kinect

Human pose data (skeleton) obtained by
a motion capture system, IGS-190

Fig. 2. Real depth and pose data, necessary to create a 3D pose model.

synchronized so that each of their key frames is a first frame in each sequence.
After the first frame, fI -th frame of the image sequence is temporally aligned
with fP = FP

FI
(f−1)+1-th frame, where FP and FI denote the frames-per-second

of the motion capture system and Kinect, respectively. In the experiments shown
in this paper, the subjects had to raise their right arm so that the key frame
where the hand was located in the highest position could be identified.

Spatial Alignment. Kinect and the motion capture system have their own
coordinate systems. They must be aligned in order to completely overlap the 3D
point cloud and the pose of a subject.

Assume that the temporal synchronization is established. Spatial alignment
is achieved by translating and rotating the coordinate system of one of the two
sensors (i.e., in our experiments the motion capture system) so that the 3D
positions of several key points coincide with each other between the two coordi-
nate systems. Since the number of unknown parameters is 6 (i.e., 3 degrees
of freedom in translation and 3 degrees of freedom in rotation), at least 2
pairs of corresponding points between the point cloud and the human pose are
needed for estimating those unknown parameters; each pair gives us 3 equations
(i.e., x, y, and z matching).

The following Eq. (1) expresses the translation and rotation of a 3D point M :

M ′ = T + RM , (1)
T = (tx, ty, tz)T , (2)

R =

⎛

⎝
1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

⎞

⎠

⎛

⎝
cos(β) 0 sin(β)

0 1 0
− sin(β) 0 cos(β)

⎞

⎠

⎛

⎝
cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1

⎞

⎠ (3)

Here, tx, ty, tz, α, β, and γ are 6 unknown parameters. Given a 3D position MP

of the human pose, these 6 parameters are optimized so that M ′
P is equal to

the corresponding 3D position M I of the point cloud. Note that MP and M I
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are extracted from the same 3D point captured by the motion capture system
and Kinect, respectively. In reality, M ′

P might not be equal to M I due to noise.
Therefore, the 6 parameters are optimized so that ||M ′

P−M I || gets close to zero.
Since the above-mentioned problem is a non-linear optimization, we have

a variety of options for its solution. The LevenbergMarquardt algorithm was
used in our experiments. If three or more corresponding points are available,
parameter estimation can be robust to noise.

Random Forest Regression for 3D Pose Estimation. Given two spatially-
aligned and temporally-synchronized sequences (i.e., 3D point cloud and human
pose sequences), 3D pose estimation can be achieved in the exact same way with
[34]. All frames in the sequences are used for model learning.

With the model learned, we can obtain the 3D human pose at each frame
only from a depth image captured by the Kinect. The sequence of the estimated
human poses is employed for motion evaluation described in the following section.

3.3 Mining Crucial Features for Motion Evaluation

Mining Crucial Features via Sparse Coding. For evaluating the motion
of a user (i.e., classifying the motion to good or other motions), the SVM is
used in the proposed system. This classification is performed with a number of
features that represent the 3D pose and the motion of a human body. Since (1)
the system should be applicable to any kind of motion and (2) we do not know
which features of a target motion are crucial for defining the target motion, it is
better to exhaustively use all features that possibly represent a body motion.
In experiments, the concatenation of the following components was used as a
621D feature vector which consists of:

– 3D positions of all joints (3D × 18 joints = 54D)
– 3D velocities of all joints (3D × 18 joints = 54D)
– 3D accelerations of all joints (3D × 18 joints = 54D)
– 3D displacement between any pairs of joints (3D × 153 = 459D).

From these 621 features, the proposed method automatically mines which
body parts and/or motions are crucial for improving the movement of a user.
This mining is achieved by the sparse coding regularization in the SVM, as
proposed in [37]. In classification, the inner product of the feature vectors of
a test pose (denoted by v) and the weight vector w is computed. If the inner
product is above/below 0, the test pose is regarded as a positive/negative class
(e.g., good/others). Therefore, components with a larger absolute value in w
correspond to crucial features that have a large impact on the inner product. In
learning the SVM, the l1-regularized logistic regression [37] is employed so that
the gap between larger and smaller absolute values of w gets much greater.

This sparsification can be regarded as dimensionality reduction because the
dimensions with smaller values can be neglected. For dimensionality reduction,
many other techniques have been proposed (e.g., PCA, LLE [38], Isomap [39],
GPLVM [40]). Those techniques, however, cannot provide a user intuitive
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feedbacks for understanding how to modify the motion. This is because these
techniques project a vector from a high-dimensional space to a low-dimensional
space defined by an arbitrary subspace in the high-dimensional space. That is,
each axis in the low-dimensional space might correspond to multiple axes in
the original high-dimensional space. As a result, even if a motion feature corre-
sponding to only one axis in a subspace obtained by PCA or similar techniques
is selected, a user might be required to move the body as follows: “you should
move the right hand, the right elbow, the left toe, and the hip so that ...”. On
the other hand, in the proposed method, only one motion feature (e.g., “the
right hand” or “the right elbow”) is selected from the low-dimensional space
generated by the sparse coding regularization.

Experiments of Feature Mining. Experiments were conducted with baseball
pitching motions2 captured from 34 people; 13 good (i.e., expert) players and
21 beginners. From these 34 people, 445 sequences were captured in total. Both
pose estimation and classification models were trained by the data of 33 people,
and the data of the remaining one person was used for testing. Note that all 621
features were normalized.

The following two ways were tested for selecting crucial motion features:

(a) Naive selection: The distance between features of a user’s pose and a good
template is computed at each feature component (e.g., 3D position of the
right hand); the distance at i-th feature is denoted by df . Features having
the larger distance are regarded as crucial features.

(b) Selection with the sparsification: df is multiplied with the weight of
f -th feature (i.e., f -th component of w). Features having the larger product
are regarded as crucial features.

Motions selected by the above two criteria, (a) and (b), were checked by
expert players. In examples shown in Fig. 3, naive selection recommended the
left toe velocity as the most crucial motion (i.e., (a) in Fig. 3), while the right
hand was selected by the proposed method (i.e., (b) in Fig. 3). It is natural that
the motion of the hand holding a ball is more important for pitching. The experts
also validated the selection of the proposed method.

time

(a) Crucial feature of naive selection (i.e.,
left toe velocity)

time

(b) Crucial feature selected by the pro-
posed method (i.e., right hand velocity)

Fig. 3. Visual feedbacks illustrating the difference between the user’s motion (shown
with red) and the good template (shown with blue) in pitching motions (Colour figure
online).

2 To validate the system, a sport motion is a good example because its exercise is
important for skill proficiency of beginners as well as rehabilitation of experts.
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Experiments of Using Features for Motion Evaluation. We also demon-
strate the effectiveness of the sparsification in motion evaluation. The mean
classification rate of all 445 sequences, each of which was evaluated by leave-
one-out cross-validation, is computed. The means over all frames were 67 % and
76 % in (a) and (b), respectively. These results demonstrate the effectiveness of
the sparsification also in motion classification. This effect is gained because a
low-dimensional feature space allows us to improve the generalizing capability
of classifiers such as the SVM, as described in [41].

3.4 Motion Coaching Interface

Just a simple visualization of a motion difference (e.g., Fig. 3) might not be
intuitive for motion coaching, depending on the type of motion error. This section
discusses what kind of feedback is appropriate for each type of motion error.

Interface Design. To combine the ideas of motion errors and different types of
motion feedback, a prototype system was implemented that enables first exper-
iments with some of the proposed feedback types.

JavaFX was used as an underlying framework since it allows fast creation of
user interfaces with JavaFX Scene Builder and provides built-in support for ani-
mations and charts. For the user to be able to concentrate on the visualization,
the system takes two synchronized motion sequence files that contain informa-
tion about joint positions at each point in time as input. Synchronized in this
context means that frame number i in the template motion corresponds with
frame number i in the comparison motion. Figure 4 shows a screenshot of the
system. In this interface, joints that are not relevant for a special motion can be
de-selected manually.

Motion Errors and Feedback Types. The first step when thinking about
how to provide motion error feedback is to become aware of different types of

Fig. 4. Screenshot of the motion coaching system.
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motion errors (i.e., deviation between a template and comparison motion) that
need to be addressed. To that extent, it is obvious to differentiate between the
spatial and temporal dimension.

When just considering the spatial dimension, there are three main types
of motion errors that can occur. First, the absolute position of a joint can be
wrong. When only the spatial collocation of several joints is important, the
relative position of them should be taken into account instead. For example,
a clapping motion can be defined only by the spatial relationship between the
palms (i.e., the palms touch each other or not). The last main error type is a
wrong angle between neighboring joints. Naturally, the angle is influenced by
the actual positions of the joints, but it is expected that a different type of
visualization is required depending on whether the focus is put on the angle or
the absolute joint position.

In a next step, several general ways to provide feedback by using different
modalities were elaborated.

The most natural but technically the most complex way when using the
visual channel is to either extract only the human body or to use the complete
real scene and overlay it with visual feedback (e.g., colored overlay of body parts
depending on the distance error). The natural scene reduces the cognitive load
for the subject as the mapping between the real world and the visualization is
trivial. Displaying the human body as a skeleton makes this mapping a bit harder
but allows to put the focus on the motion itself. To compare a template with a
comparison motion, the abstracted skeletons can be visualized side by side or in
an overlaid manner, as shown in Fig. 5. It is expected that the overlaid view is
mainly applicable when trying to correct very small motion errors. At a higher
abstraction level, performance metrics such as speed or distance deviation per
joint or body part can be displayed textually or graphically (i.e., with the aid of
charts). There is, however, no information on how to correct the motion and the
subjects need to interpret those values to improve their motion. To overcome
this weakness, it is desirable to be able to visualize instructions (i.e., visual
output of control) that guide users in correcting their motion. Two possible

Fig. 5. Visualization of two skeletons, one captured online and one of a template
motion. Left: side-by-side comparison. Right: overlay.
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approaches are simple textual instructions [42] or graphical instructions such as
arrows indicating the direction in which the motion should be corrected [25].

Audio feedback can be used in several ways to give motion error feedback.
Spoken instructions (i.e., auditory output of control) are one possible way to
which most people are already used to from real training situations. Note that
the bandwidth of the auditory channel is much lower than the one of the visual
channel and therefore not much information can be provided at the same time.
Nevertheless, the audio feedback has the big advantage that it easily catches
human attention and users do not have to look in a special direction (e.g., for
observing a screen). In terms of auditory output of data, different parameters of
sound (i.e., frequency, tone, volume) can be modified to represent special motion
errors. A first step in this direction was taken by Takahata et al. [43] in a karate
training scenario.

Another important point of research is the question of how to motivate people
to use a motion coaching system. As it is commonly accepted that the use of
multiple modalities increases learning performance (see [44], for example), a
motion coaching system should aim at addressing multiple senses. Therefore,
several of the ideas above are combined in the proposed interface.

The use of haptic output devices is not treated as applicable for a motion
coaching system used to teach a wide range of different exercises due to two main
reasons: First, there is no reliable and generic way to translate instructions into
haptic patterns (see [45], for example). Second, specially adapted hardware is
required to provide appropriate haptic feedback, which is then often considered
disturbing [26].

Multimodal Feedback Types Visual Output of Data 1 – Metrics
(Textual). The performance metrics illustrated in Fig. 6 provide basic infor-
mation such as 3D and 2D distance deviations per joint and a comparison of the
template and sample speed per joint. Due to the perspective projection of the
real-world 3D coordinates to the joint positions in the visualized 2D skeleton on

Fig. 6. Distance and speed metrics for a single pair of frames for currently loaded
motion sequences.
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the screen, it may occur that there are large 3D deviations that are not recog-
nizable in the skeleton representation. The data helps to get an understanding
of this relation and allows for a very detailed motion analysis. Nevertheless, this
high precision is not necessarily needed for a motion coaching scenario and a
subject may only use this type for terminal or delayed feedback.

Visual Output of Data 2 – Metrics (Graphical). Charts are used to visu-
alize distance and speed metrics over time. Multiple joints can be selected to
be included in a single chart to compare the respective deviations. From a
motion coaching perspective, this type of feedback is mainly suited for terminal
or delayed feedback. Figures 7 and 8 visualize the deviations of the distance and
the speed (between the template and comparison motion) of two different joints
for a small frame interval, respectively. As real-world data is often subject to
large fluctuations, values are smoothed for visualization purposes by calculating
a weighted average for the k-step neighborhood (k between 5 and 10), see an

Fig. 7. Distance deviation chart for right forearm (selected series)and right hand.

Fig. 8. Speed deviation chart for right forearm (selected series) and right hand.
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Fig. 9. The effect of temporal smoothing. Upper: original data. Lower: smoothed data.

Fig. 10. Exemplary skeleton-based distance error visualizations (left: colored joint over-
lay, center: overlay of template and comparison skeleton, right: static result of animated
joint moving to its correct position).

example in Fig. 9. While the original data was noisy (the upper graph in the
figure), its smoothed graph is better for understanding the motion (the lower
graph in the data).

Visual Output of Data 3 – Colored Joint Overlay. All joints with devi-
ations larger than upper and lower thresholds, which are given manually, are
respectively colored in red and green (applicable for speed and distance
deviations). The coloring of joints with values in between those thresholds is
determined gradually (i.e., vary from red over orange to green). An example can
be found in Fig. 10 (left skeleton): the largest deviations occur for joints located
in the right arm. This visualization approach can be used either for concurrent,
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terminal, or delayed feedback and allows to easily determine joints with high
deviations.

Visual Output of Data 4 – Skeleton Overlay. Visualizing the template and
comparison skeleton in an overlaid manner (instead of side by side which is the
default behavior of the proposed system) turned out to be only suitable to correct
very small motion errors. Otherwise the mapping between the intended and
actual joint position is not directly visible. Oftentimes, it is hard to differentiate
between the two skeletons. To overcome this weakness, the opacity value of the
template is lower than the one of the comparison skeleton (see Fig. 10, center).

Visual Output of Control – Distance Error Animation. So far, no direct
information on how to correct the motion was given. The initial idea of Velloso
et al. [25] that uses directed arrows to indicate how to correct the motion was
adapted and replaced by an animated joint that moves to its correct position
and thus gradually changes its color from red (wrong position) to green (correct
target position is reached). Even though this is still a quite technical represen-
tation, this approach is considered to be more natural than using arrows (see
Fig. 10, right). However, it is only applicable for terminal or delayed feedback.

Auditory Output of Control – Speed Feedback. For the most striking
speed deviation, a verbal feedback phrase is provided by using a text-to-speech
library. However, even if humans are used to this type of auditory feedback, such
a specific per-joint feedback is not applicable in practice. Therefore, several joints
are clustered to body parts and feedback is provided accordingly (e.g., “Move
your right arm faster” instead of “Move your right hand and elbow faster”).
Auditory feedback in general is best suited for concurrent feedback.

Combination of Visual and Auditory Output of Data. As stressed in
the previous section, per-joint speed feedback is regarded as too technical. In
this approach that combines visual and auditory output, joints are clustered
to body parts (by using the charts for analyzing deviation dependencies) and
considered as a whole during motion error feedback. The animated illustration
is embedded in a video playback of the motion sequences and supported by
corresponding speech output, as illustrated in Fig. 11. Note that the coloring
allows to easily determine the affected body part and the blinking speed of the
highlighted joints depicts the type of speed deviation (too fast: fast blinking, too
slow: slow blinking).

4 Open Problems

Our goal is to develop a user-centered physical motion coaching system which
can be used for supporting private rehabilitation and training. For this coach-
ing system, this chapter described (1) accurate 3D human pose estimation, (2)
mining crucial motion features for efficient coach, and (3) intuitive motion-error
feedback interface.

For 3D human pose estimation, its accuracy is improved by using real obser-
vation data (i.e., 3D point cloud captured by Kinect and 3D human pose data
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Fig. 11. Example of embedded multimodal speed feedback in motion sequence play-
back (Note: text in the figure is provided by speech output and is not visualized).

obtained by a motion capture system) as training data. Since the two data are
captured independently by different devices, spatial alignment and temporal syn-
chronization are inevitable. While the system proposed in this chapter achieves
these alignment and synchronization, the following questions remain open:

– Frame rate: Are the frame rates of the Kinect and the motion capture system
completely identical?

– Drift: Does the 3D pose obtained by the motion capture system temporally
drift at all?

– Frame(s) for temporal synchronization: Are the frames of the coordinate sys-
tems of the Kinect and the motion capture system appropriate for spatial
alignment? Are there measurement errors in that frame? Would another frame
be better suited for the alignment? Would it be better to use multiple frames
for the alignment to cope with drift?

The crucial motions are mined by the sparse coding regularization during
training of the SVM that classifies target motions into good or not. The weight
vector of the SVM shows which features are crucial for classifying whether a
user’s motion is good or not. In particular, the sparse coding regularization
allows us to enhance the difference between crucial and non-crucial features.
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In reality, however, it is not so easy to extract only crucial features correctly
from a huge number of possible features. While the ultimate goal of the system
is to apply to any kind of motion fully automatically, it might be possible to
reduce the possible features manually, based on knowledge of the motion so that
only meaningful features (i.e., features that might be crucial) remain. Otherwise,
for realizing a fully-automatic system, we might be able to reduce the possible
features independently of the motion, based on the structure and general kine-
matics of a human body.

From a technical point of view, important issues for developing an intuitive
motion-error feedback interface are not clear yet. In particular, how to auto-
matically select a feedback type depending on the motion is an open problem.
We need extensive user tests in order to address this.

5 Future Outlook

Future work for improving feature mining includes using knowledge of a human
body (e.g., kinematics and joint structures) as heuristics, extensive user tests,
and verification with many other kinds of motions. In terms of using the knowl-
edge of a human body, it is expected that the knowledge is helpful for mining
more discriminative features. Since this knowledge does not depend on the type
of motion, usability of the system is not damaged.

For an intuitive interface system, different ways to provide motion error feed-
back were analyzed. The results from this first prototype can be used for an initial
evaluation that may allow to exclude several feedback possibilities or reveal the
need for analyzing others in more detail.

However, technology acceptance is a quite complex phenomenon and the suc-
cess of a motion coaching system does not only depend on the interface alone.
Final statements are only possible when a complete system has been developed
and tested in detail. The development of such a system requires an interdiscipli-
nary approach with scientific contributions from the fields of machine learning,
computer vision, human-computer interaction, and psychology.
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Abstract. The application of Knowledge Discovery and Data Mining
approaches forms the basis of realizing the vision of Smart Hospitals.
For instance, the automated creation of high-quality knowledge bases
from clinical reports is important to facilitate decision making processes
for clinical doctors. A subtask of creating such structured knowledge is
entity disambiguation that establishes links by identifying the correct
semantic meaning from a set of candidate meanings to a text fragment.
This paper provides a short, concise overview of entity disambiguation in
the biomedical domain, with a focus on annotated corpora (e.g. CalbC),
term disambiguation algorithms (e.g. abbreviation disambiguation) as
well as gene and protein disambiguation algorithms (e.g. inter-species
gene name disambiguation). Finally, we provide some open problems and
future challenges that we expect future research will take into account.

Keywords: Linked data cloud · Entity disambiguation · Text annota-
tion · Natural language processing · Knowledge bases

1 Introduction

The amount of digital data, also called the digital universe, grows rapidly,
amounting to 4.4 Zetabytes in 20131. Thus, medical doctors and biomedical
researchers of today are confronted with increasingly large volumes of high-
dimensional, heterogeneous and complex data from various sources, which pose
substantial challenges to the computational sciences [1]. Overall, the majority
of such information (e.g. medical reports) is transmitted through unstructured
documents [2], more suitably defined as non-standardized data [3]. The task of
Knowledge Discovery is to extract implicit, previously unknown, and potentially
useful information from such unstructured data [4].

The application of Knowledge Discovery and Data Mining approaches forms
the basis of realizing the vision of Smart Hospitals [1,5]. A prominent example
is the (automated) creation of high-quality knowledge bases (KB) from clinical
reports. The Comparative Toxicogenomics Database (CTD) [6], for instance, is
a high-quality data base for researching the influence of chemicals on human
health, but is manually curated and therefore restricted in its coverage of the

1 The digital universe of opportunities http://www.emc.com/collateral/analyst-
reports/idc-digital-universe-2014.pdf.
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documents annotated by experts. Providing high-quality, automatic methods for
populating the KB from clinical reports would facilitate decision making pro-
cesses for clinical doctors [1]. The demand for automatic methods is also reflected
in the natural language processing challenges posed by various initiatives, like
the BioCreative initiative2 and the BioNLP shared tasks [7]. For instance, in the
domain of biomedical research, the understanding of two-component regulatory
systems (TCSs), a mechanism widely used by bacteria to sense and respond to
the environment, can be facilitated [8]. TCSs are of particular interest for infec-
tious disease researchers including virulence, response to antibiotics, quorum
sensing and bacterial cell attachment [9].

For these purposes, the recognition and assignment of symptoms, chemicals,
genes, proteins etc. to a unique identifier in a KB is an important subtask.
This chapter gives an overview of the state-of-the art of linking unstructured
biomedical data to the Linked Data Cloud, with a special emphasis on biomedical
entity disambiguation.

The remainder of the chapter is structured as follows: Sect. 2 defines the tech-
nical terms required for understanding the chapter. Section 3 gives a clear defini-
tion of the problem that should be solved and illustrates why linking biomedical
entities to the cloud is a challenging task by examples. Section 4 then provides
the foundations for understanding the reviewed algorithms by exemplifying the
data structures used by disambiguation methods. The state-of-the-art review in
Sect. 5 is divided into four subsections:

– The state of the biomedical Linked Data Cloud is described in Sect. 5.1,
– Section 5.2 presents annotated corpora for training linking algorithms,
– Algorithms for biomedical term disambiguation are reviewed in Sect. 5.3,
– Algorithms for gene and protein disambiguation are presented in Sect. 5.4.

The chapter concludes with an overview of open problems in Sect. 6 and an
outlook on future work is given in Sect. 7.

2 Glossary and Key Terms

Automatic Term Recognition (ATR) Recognition and linking of terms to
domain specific data bases [10], synonym to ↑ NED.

Disambiguation The process of linking a ↑ surface form to a ↑ URI.
Entity A modeled abstract or concrete object of the real world, for example a

specific gene. In the context of ↑ disambiguation also called label [11].
Knowledge Base (KB) describes a knowledge repository that stores facts

about the world. Knowledge bases can be coarsely classified into structured
and unstructured knowledge bases depending on the form of the data repre-
sentation. An orthogonal classification is specific for general-purpose knowl-
edge bases, depending on the type of knowledge stored.

2 http://www.biocreative.org.

http://www.biocreative.org
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Linked (Open) Data describes the concept of providing semantic information
for data sets. The goal is to support automatic sharing and linking pieces of
the data on a semantic level. The basic technologies for Linked Data are ↑
URIs and ↑ RDF. Linked Open Data (LOD) encompasses the idea that these
data sets should be openly accessible.

Linked (Open) Data Cloud subsumes the (openly accessible) data sets rep-
resented as ↑ Linked Data.

Named Entity A modeled, concrete object of the real world, referenced by
proper names or acronyms in the text. Originally introduced in the Message
Understanding Conference (MUC) Challenges, the commonly agreed types
were person, location and organization, later date and time, measures and
email addresses were added [12]. Depending on the application domain, other
domain-specific named entities exist. These are for instance names of drugs
or proteins in the biomedical domain.

Named Entity Recognition (NER) The process of identifying a ↑ named
entity, i.e. identifying that a surface form represents a named entity (but not
yet knowing, which entity exactly).

Named Entity Disambiguation (NED) The process of linking a ↑ surface
form representing a ↑ named entity to a unique meaning [13].

Resource Description Framework (RDF) is a general concept for the seman-
tic description of resources. The building blocks of RDF are triplets consisting
of subject (the thing that is described), the object (to which it is related)
and a relation (specifying the relationship between subject and object). Rela-
tions are unidirectional. All parts of a triplet are uniquely identifiable by the
means of ↑ URIs.

Surface Form refers to the piece of textual information (words or phrases) that
should be linked to a semantic entity [14,15]. Also called mention, entity
mention, mention occurrence, spot [11], or lemma [16].

Uniform Resource Identifier (URI) is a string of characters identifying
a resource. The most prominent example is the Uniform Resource Locator
(URL) used in the World Wide Web.

Word Sense Disambiguation (WSD) The process of linking a ↑ surface form
to a unique entry in a dictionary. In general, the linked ↑ surface forms are not
↑ entities. Consider for instance the different meanings of the word “mind”
(depending on the context it could be used as verb or noun and may have
different meanings in each grammatical form.).

3 Problem Statement

Entity annotators undertake a crucial processing step in producing structured
knowledge. They “ground” the underlying texts with respect to an adequate
semantic representation. The entity annotation task can be subdivided into the
following two sub steps:
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– Entity Recognition: The identification of short-and-meaningful sequences
of terms, also called surface forms, which can be linked to entities in a catalog.

– Entity Disambiguation: The annotation of surface forms with unambiguous
identifiers (entities) drawn from a catalog.

Entity Recognition. Entity recognition forms the first step of creating entity
annotations. It identifies proper nouns that can be linked to a semantic meaning.
Proper nouns often exhibit structural ambiguity that complicates the correct
identification. For example, the components of “Victoria and Albert Museum
and IBM and Bell Laboratories” look identical. The term “and” is part of the
name of the museum in the first example, but a conjunction joining two computer
company names in the second [17]. The task of named entity recognition (NER)
focuses on identifying surface forms in a text which are the names of things,
such as person, organization, gene or protein names. Overall, (named) entity
recognition is a well studied research topic. State-of-the-art algorithms for generic
knowledge entities score ≈90 % of F-measure [18], while accuracy of biomedical
NER strongly depends on the entities’ types (e.g. proteins, genes, diseases) [19].

Entity Disambiguation. The task of entity disambiguation establishes links
between identified surface forms and entities within a catalog (KB) and faces
the problem of semantic ambiguity [17]. Formally, entity disambiguation inher-
ently involves resolving many-to-many relationships. Multiple distinct surface
forms may refer to the same entity. Simultaneously, multiple identical surface
forms may refer to distinct entities [20]. Figure 1 shows a specific example of
this relationship. We assume a sentence containing the surface forms “Ford”
and “CART” (depicted in the yellow rectangle). Both surface forms may refer
to different entities, e.g. Ford by itself could be an actor (Harrison Ford), the

Fig. 1. Surface forms (bold) within a sentence (yellow rectangle) may refer to different
entities (rectangles in the middle) depending on the context. Additionally, an entity
may be addressed by various surface forms (rectangles on the right) (Colour figure
online).
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38th President of the United States (Gerald Ford), an organization (Ford Motor
Company) or a place (Ford Island). In our context, we assume “Gerald Ford”
to be the correct entity, which may be expressed in several ways, e.g. “Gerald
Rudolph Ford, Jr.”. However, similar to NER, the task of named entity dis-
ambiguation (NED) focuses on surface forms constituting the names of special
entity classes. The ever-increasing publication rate of biomedical documents now
means that entity disambiguation in the biomedical domain is becoming more
and more important. Biomedical NED is constrained to biomedical entities only,
but is extremely challenging [21] since a surface form

1. could refer to another type of biomedical entity, such as a protein or pheno-
type, e.g. the mouse gene “hair loss”.

2. could be other types of concepts in closely related domains, such as the clinical
field, e.g. the mouse gene “diabetes”.

3. could be the same as common English words, e.g. fly genes “can” and “lie”.
4. could refer to several, different genetic entities, either from the same or from

other species, e.g. cow or chicken.

In biomedical entity disambiguation, genes and gene products (i.e. proteins) form
an important class of entities. To map surface forms of these entity classes to
an entity within a KB, it is important to identify what organisms (species) the
genes and proteins belong to, and on what species the experiments are carried
out to understand particular biological phenomena. There are dozens of species
commonly used in biological studies, such as Escherichia coli, Caenorhabditis ele-
gans, Drosophila melanogaster, Homo sapiens and hundreds more are frequently
mentioned in biological research papers. For example, without context, “tumor
protein p53” may associate to over 100 proteins across 23 species3. To identify
the proteins (i.e. the underlined terms) in the following sentence, knowing the
“focus” species of the article is not sufficient, as they belong to three different
species: human, mouse and rat.

The amounts of human and mouse CD200R-CD4d3+4 and rCD4d3+4 pro-
tein on the microarray spots were similar ...

The authors of [21] investigated the extent of the ambiguity problem in the
biomedical domain. They obtained genes from 21 species and quantified nam-
ing ambiguities within and across species, with English words and with medical
terms. The results revealed that official gene symbols display negligible ambi-
guity within a specific species (0.02 % regarding uppercase letters) and a high
ambiguity across-species (14.20 %). Additionally, the results showed a moderate
ambiguity rate with general English words (0.57 %) and medical terms (1.01 %).
The analysis of correct gene disambiguation results within abstracts of biomed-
ical research paper also showed a very high number of ambiguous genes across
species [21] (85.1 %).

Overall biomedical NED is a challenging task and thus has attained much
attention in research in the last decade.

3 Querying RefSeq database (http://www.ncbi.nlm.nih.gov/refseq/). The number of
species was manually counted.

http://www.ncbi.nlm.nih.gov/refseq/
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4 Entity Representation

A crucial factor for creating a disambiguation system is the way entities are
represented within a KB. Generally an entity can be defined intensionally, i.e.
through a set of describing properties, or extensionally, i.e. through instances and
usage in documents [22]. In the following we differentiate more precisely between
these representations and give examples of how entities might be represented
within disambiguation KBs in practice.

4.1 Intensional Description

An intensional definition of an entity can be understood as a thesaurus or log-
ical representation, as it is provided by Linked Open Data repositories. In the
context of entity disambiguation, KBs comprising intensionally defined entities
are referred to as entity-centric KBs [23]. Formally, an entity-centric KB can be
described as

Kbent = {e0, ..., en|ei ∈ E,n ∈ N} (1)

The set of all entities available in the entity-centric KB Kbent is denoted as E,
with ei being a single entity [23]. All entities ei ∈ Kbent usually provide a unique
primary key ID which combines the name of the knowledge source as well as
its identifier in the knowledge source. Additionally, a variable number of fields k
contain domain-independent attributes, e.g. descriptions, and domain-dependent
information, e.g. the sequence length of genes. Formally, such an entity can be
denoted as

ei = (ID, F ield1, ..., F ieldk) (2)

Table 1 shows a specific example of how the entity “Phenylalanyl-tRNA–protein
transferase” might be represented in an entity-centric KB. The entity contains
standard attributes, i.e., name, synonyms, description, link to web resource,
type, as well as occurrence information. More specifically, all referenced surface
forms for this entity and the respective amount of occurrences with this surface
form are stored in Occurrences. The field Cooccurrences contains surface forms
of entities that appeared near the described entity in any text and the amount of
appearances of the respective surface form in the context range (i.e. 300 words).

4.2 Extensional Description

An extensional entity definition resembles information on the usage context of
an entity. For instance, natural language text documents annotated with entities
can be used as such usage context. KBs containing extensional entity definition
are referred to as document-centric KBs [23]. Formally, a document-centric KB
is defined as

Kbdoc = {d0, ..., dn|di ∈ D,n ∈ N} (3)

An entry di in a document-centric KB Kbdoc consists of the document content
representing a text string and a list of annotations of surface forms tlei , with
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Table 1. Example of an entity-centric KB entry

Field Content

ID UNQ9A741

Name Phenylalanyl-tRNA–protein transferase

Synonyms Leucyltransferase

Description Functions in the N-end rule pathway of protein degradation where
it conjugates Leu, Phe and, less efficiently, Met from aminoacyl-
tRNAs to the N-termini of proteins

Mainlink http://www.uniprot.org/uniprot/Q9A741

Type Caulobacter

Occurrences aat:::3

Co-Occurrences substrate:::3, Leu:::6, Phe:::6

l denoting the lth annotation in the document. Annotated surface forms are
described by their position in the document and a list of their entity references.
An entry in a document-centric KB is denoted as

di = (Document, {(Start, End, {ID}), ...}) (4)

Table 2 shows an example of a biomedical document containing the surface
form“‘Myeloma”’ in a document-centric KB. The document’s content is sub-
divided in title and titleandtext, which is a concatenation of the document’s title
and main content. Furthermore, all available annotations (and its respective
properties) are stored in the field Annotations. The field ID depicts a unique
document identifier.

Table 2. Example of a document-centric KB entry

Field Content

ID 174996

Title Antibody therapy for treatment of multiple myeloma

Abstract Monoclonal antibody therapy antibody therapy has emerged as a
viable treatment option for patients with lymphoma and some
leukemias. It is now beginning to be...

TitleAndAbs Antibody therapy for treatment of multiple myeloma. Monoclonal
antibody therapy antibody therapy has emerged as a viable
treatment option for patients with...

Keywords Myeloma::43::50::diso:umls:C0026764:T191:diso

http://www.uniprot.org/uniprot/Q9A741
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5 State-of-the-Art

In this section the state-of-the-art is reviewed along three dimensions. First, we
review the state of the biomedical linked data cloud in Sect. 5.1. Second, we
describe available annotated corpora for training algorithms in Sect. 5.2. Third,
we review the algorithms for for biomedical term disambiguation in Sect. 5.3
and for gene and protein disambiguation in Sect. 5.4. We note that we do not
describe and review text (pre-)processing steps (e.g. tokenization, normalization,
stemming) which are necessary for entity recognition and disambiguation. An
overview of relevant steps for text processing in the biomedical domain can be
found in [1].

5.1 The Biomedical Linked Data Cloud

According to the “State of the LOD Cloud 2014”4 the Linked Open Data cloud
comprises 1014 data sets, 83 (8.19 %) belong to the life sciences domain as of
April 2014. Data sets use different vocabularies, proprietary or non-proprietary.
Proprietary vocabularies are only used by one data set and thus are not useful
for interlinking differently linked data repositories. Non-proprietary vocabularies
are used by at least two data sets and comprise only 41.76 % of all encountered
649 vocabularies. In terms of data sets, 23.17 % (241) data sets use proprietary
vocabularies, but also nearly all of the data sets (99.87 %) use non-proprietary
vocabularies. In the life sciences this amount is slightly higher. 35 different pro-
prietary vocabularies are used in 26 data sets (these amount to 29.21 % of all
life sciences data sets). Only 28.57 % of these data sets are fully linkable to other
data sets, i.e. can be fully interpreted by automatic mechanisms. 65.71 % of these
data sets are not linkable at all.

5.2 Annotated Corpora

This section presents an overview of annotated corpora for biomedical entity
disambiguation. We omitted corpora that were not, or are no longer publicly
available.

GENIA Corpus

The GENIA corpus [24], released in 2003, contains ≈2000 MEDLINE abstracts
from the domain of molecular biology. The corpus is freely available for down-
load5. The MEDLINE abstracts were collected by querying PubMed for the three
MeSH terms “human”, “blood cells”, and “transcription factors“. They were
syntactically and semantically annotated, resulting in six different sub-corpora
corresponding to the specific annotations:

4 http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/.
5 http://www.nactem.ac.uk/genia/genia-corpus.

http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
http://www.nactem.ac.uk/genia/genia-corpus
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Table 3. Statistics of the GENIA corpus (term annotations)

GENIA

Documents 2,000

Document Type MEDLINE abstract

Surface Forms 89,862

Release Date 2003 (version 3.0)

– Part-of-Speech annotation subcorpus,
– Constituency (phrase structure) syntactic annotation subcorpus,
– Term annotation subcorpus,
– Event annotation subcorpus,
– Relation annotation subcorpus,
– Coreference annotation subcorpus.

Linguistic structures are annotated with biological terms from the GENIA ontol-
ogy in the term annotation subcorpus, which represents the corpus for entity
disambiguation. Table 3 provides an overview of the GENIE term annotation
subcorpus.

BioCreative Corpora

The BioCreative (Critical Assessment of Information Extraction in Biology)
community has released various annotated corpora since 2004. The data sets
are freely available for non-commercial purposes6.

GM Corpus (BioCreative I and II): The BioCreative I data set [25] for the
Gene Mention (GM) task was released in 2005 and consists of sentences from
MEDLINE abstracts annotated with gene mentions. The provided sentences
have already been tokenized. The BioCreative II data set [26] is an extended
and refined version of the BioCreative I data set and was released in 2008.
The changes include an addition of 5000 sentences, a review of the annotations
with ≈13 % changes and linkage of the gene mentions to either the GENE or
ALTGENE KB. Further, in the BioCreative II data set the sentences were not
tokenized a-priori. An overview of the basic statistics for the BioCreative I+II
data sets can be found in Table 4.

Table 4. Statistics of the GM I and II corpus (aggregated training, test and develop-
ment set)

GM I GM II

Documents 1,500 2,000

Document Type MEDLINE abstract MEDLINE abstract

Surface Forms 1,800 44,500

Release Date 2005 2008

6 http://www.biocreative.org/resources/.

http://www.biocreative.org/resources/
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Table 5. Statistics of the ChemDNER corpus (aggregated training, test and develop-
ment set)

ChemDNER

Documents 10,000

Document Type PubMed abstract

Surface Forms 84,355

Entities 19,805

Release Date 2013

ChemDNER Corpus (BioCreative IV): The ChemDNER (Chemical and Drug
Named Entity Recognition) corpus [27], released by the BioCreative community
in 2013 (part of BioCreative IV), contains PubMed abstracts manually anno-
tated with chemical compounds and drugs. Each abstract was annoated by at
least two experts with an overall inter-annotater agreement of 91 %, thus the
corpus can be considered a gold standard for chemical NER. Table 5 provides a
summary statistics of the corpus with all values aggregated over training, test
and development set. More details on corpus construction and statistic can be
found in [27].

BC4GO Corpus (BioCreative IV): The Gene Ontology (GO) corpus [28] was
released by the BioCreative community in 2013 as part of the BioCreative IV
challenge. The corpus consists of 200 annotated full-text articles from PMC. The
task associated with this corpus involves extracting gene function terms and the
associated evidence sentences. Table 6 provides an overview of the corpus.

CalbC Corpus

The CalbC (Collaborative Annotation of a Large Biomedical Corpus) corpus is a
very large, community-wide shared text corpus annotated with biomedical entity
references [29]. CalbC represents a silver standard corpus which results from the

Table 6. Statistics of the BC4GO corpus (aggregated training, test and development
set)

BC4GO

Documents 200

Document Type PMC full-texts

Gene mentions 5,162

Entities (Genes) 665

GO term mentions 5,275

Entities (GO terms) 1,311

Release Date 2013
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harmonization of automatically generated annotations and is freely accessible7.
The data set is released in 3 different sizes: small (CalbCSmall), big (CalbCBig)
and pilot, with the former two being the most widely used. Table 7 provides an
overview of the basic properties of CalbCSmall and CalbCBig. A comparison
regarding the overlap of entities within both corpora shows that a very high
percentage of entities occurs in both data sets. Hence, there are few entities
which occur in CalbCBig but are not present in the small corpus. In contrast
to other disambiguation corpora like Dbpedia, a surface form may be linked to
more than one entity resource per annotation. Due to a comprehensive taxon-
omy and classification system a surface form provides 9 entity annotations on
average. Figure 2 presents an overview of the distribution of surface forms and
their corresponding entities. The histogram axis showing the number of entities
is truncated at 40 entities due to very few existing surface forms which contain
a lot of different meanings (maximum 9895). Nearly half of all surface forms
may attain between 2 and 7 different entities. The other half of surface forms
attains up to 9895 different entity meanings. Figure 3 shows an overview of the
distribution of surface forms over entities. More than 10,000 different surface
forms address general entities like “kinase” or “protein”.

Table 7. Statistics of the CalbCSmall and CalbCBig corpora

CalbCSmall CalbCBig

Documents 174,999 714,282

Document Type MEDLINE abstract MEDLINE abstract

Surface Forms 2,548,900 10,304,172

Unique Surface Forms 50,725 101,439

Entities 37,309,221 96,526,575

Unique Entities 453,352 308,644

Used Unique Entities 265,532 228,744

Namespaces 14 16

Release Date 2011 2011

CRAFT Corpus

The CRAFT (Colorado richly annotated full text) corpus [30] is an annotated
corpus consisting of 67 full-text journal articles from the biomedical domain. The
corpus contains ≈100,000 annotations from the biomedical domain, linking it to
7 different repositories (Chemical Entities of Biological Interest, Cell Ontology,
Entrez Gene, Gene Ontology, NCBI Taxonomy, Protein Ontology and Sequence
Ontology). Table 8 provides an overview of the data set. The corpus is licenced
under the Creative Commons Attribution 3.0 license (CC BY) and is available
online8.
7 http://www.calbc.eu/.
8 http://bionlp-corpora.sourceforge.net/CRAFT/.

http://www.calbc.eu/
http://bionlp-corpora.sourceforge.net/CRAFT/
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Fig. 3. Number of entity annotations (Only entities annotated for more than 2000
different entities are shown.)

BioNLP Shared Tasks Corpera

The BioNLP Shared Tasks corpora originates from the GENIA corpus (see
above). In 2004, 2009 and 2011, the initiative covering different natural lan-
guage tasks for the biomedical domain released several corpora. The data sets
are available online9. Here, we describe subcorpora from the release in 2011 [8],
which is also publicly available10.

EPI Corpus: The EPI corpus (Epigenetics and Post-translational Modifications)
was crafted to research automatic extraction of events related to epigenetic
changes. The corpus consists of 1,200 MEDLINE abstracts, annotated with
entities representing proteins or genes. Additional annotations are made for
events (e.g. hydroxylation, DNA methylation), and event modifications (e.g.

9 http://www.nactem.ac.uk/genia/shared-tasks.
10 http://2011.bionlp-st.org/.

http://www.nactem.ac.uk/genia/shared-tasks
http://2011.bionlp-st.org/
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Table 8. Statistics of the CRAFT corpus

CRAFT

Documents 67

Document Type PubMed full-texts

Surface Forms ≈100,000

Namespaces 7

Unique Entities 4,319

Release Date 2012

catalysis, positive regulation, negation or speculation). An overview of the EPI
corpus is presented in Table 9.

Table 9. Statistics of the EPI corpus from the BioNLP Shared Task (aggregated
training, test and development set)

EPI

Documents 1,200

Document Type PubMed abstract

Surface Forms (Protein, Gene) 15,190

Surface Forms (Event) 3,714

Surface Form (Modification) 369

Release Date 2011

ID Corpus: The ID (infectious diseases) corpus was designed to study the molec-
ular mechanism of infectious diseases. It consists of 30 full-text documents from
the PMC data base. The documents are annotated with five types of entities
(protein, two-component system, regulon-operon, chemical and organism), event
types (e.g. for example gene expression, binding, regulation) and modifications.
The latter indicates whether a statement is a speculation or a negation. Table 10
provides an overview of the ID corpus.

CDT Corpus

The Comparative Toxicogenomic Database (CTD) [6] is a publicly available
database11 containing the following types of manually curated annotations:

– Chemical-gene interactions,
– Chemical-disease associations,

11 http://ctdbase.org/.

http://ctdbase.org/
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Table 10. Statistics of the ID corpus from the BioNLP shared Task (aggregated train-
ing, test and development set)

ID

Documents 30

Document Type PMC full-texts

Surface Forms (Entity) 12,740

Surface Forms (Event) 3,714

Surface Form (Modification) 369

Release Date 2011

– Gene-disease associations,
– Chemical-phenotype associations.

The manual data collection started in 2004 and is constantly updated. An
overview of the data sets as of July 2014 can be found in Table 11.

Table 11. Statistics of the CDT corpus (figures correspond to the version from July
2014)

CDT

Documents 109,701

Document Type PubMed full-texts

Chemicals 13,446

Diseases 6,347

Genes 36,393

Release Date Silent releases, constantly updated

5.3 Biomedical Term Disambiguation

Biomedical term disambiguation focuses on disambiguating all classes of biomed-
ical entities (e.g. medical terms, abbreviations, genes, chemicals). Official biomed-
ical symbols display only a moderate degree of ambiguities with general English
words, medical terms and concepts [21]. Thus, the number of works resolving
these ambiguities is limited.

String Matching Algorithms. String Matching algorithms are able to map case-
sensitive surface forms to the respective KB entries. The work by Tsuruoka et
al. [31] focused on learning a string similarity measure from a dictionary with
logistic regression. The experiments were conducted on several large-scale gene
and protein name dictionaries. Results showed that a logistic regression-based
similarity measure outperforms existing similarity measures like Hidden Markov
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Model [32], SoftTFIDF [33], Jaro-Winkler [34] and Levenshtein in dictionary
look-up tasks.

Another work from Rudniy et al. [35] describes the problem of mapping
entities in biomedical data to the UMLS Metathesaurus. The work introduces
the Longest Approximately Common Prefix (LACP) method as an algorithm for
approximate string matching that runs in linear time. The authors compare the
LACP method to nine other well-known string matching algorithms (e.g. TF-
IDF [36], Jaro-Winkler [34], Needleman-Wunsch [37]) in terms of precision and
performance. As a result, LACP outperforms all nine string similarity methods
in both disciplines, performance and accuracy. It attains the best F1 values (up
to 92 %) when evaluated on three out of the four data sets.

A major disadvantage of these approaches is the non-availability of disam-
biguation techniques. In other words, if surface forms are ambiguous these algo-
rithms are hardly able to determine the potential entity candidate.

Abbreviation Disambiguation. There are a number of systems that have been
developed to map biomedical abbreviations to appropriate entities. Methods for
mapping abbreviations to full forms fall into two broad categories [38]: abbrevia-
tions are linked to entities with the help of pattern or rules when the entities’ full
forms appear nearby in the text [39,40], or statistical disambiguation methods
choose entities for an abbreviation based on the context the abbreviation occurs
in [38,41].

The intention of the AbbRe system [39] (Abbreviation Recognition and
Extraction) was to map abbreviations to entities when the entities’ full forms
are explicitly defined in biomedical full-text articles. AbbRE operates through a
set of manually annotated rules assigning matches between letters in the abbre-
viations and words in the full form. AbbRE was evaluated in full-text biomedical
articles and found to have 70 % recall and 95 % precision.

Fig. 4. Distribution (from eleven million MED-
LINE records) of the numbers of abbreviations
paired with different numbers of full forms [38].

Yu et al. [38] proposed the
first model that resolves the
problem of abbreviation ambi-
guity in full-text journal arti-
cles. The approach is built
upon the earlier work AbbRe
and presents a semi-supervised
method that applies MED-
LINE as a knowledge source
for disambiguating abbrevia-
tions and acronyms in full-text
biomedical journal articles. The
authors trained supervised
learning algorithms (i.e. Naive
Bayes and Support Vector
Machines) on 11 million MED-
LINE abstracts which were
annotated with AbbRe first.
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Figure 4 shows the distribution of the numbers of abbreviations paired with
different numbers of full forms occurring in the annotated MEDLINE abstracts.
The abbreviations “or” and “ca” correspond to the largest numbers of different
full forms. Overall, the authors report up to 92 % precision when disambiguating
biomedical abbreviations.

General Biomedical Term Disambiguation. Few works focused on general bio-
medical term disambiguation, which comprises all kinds of biomedical surface
forms that can be linked to an entity (i.e. medical terms, gene names, abbrevi-
ations).

The work of Chen et al. [42] presents a simple method for biomedical term
disambiguation, which can be viewed as a context-based classification approach.
Instead of directly using all of a words’ surrounding words, the authors only select
certain words with high “discriminating” capabilities as features. By using this
method, unimportant surrounding words are discarded to improve disambigua-
tion quality. The top-n influential context terms are used as feature vector. These
feature vectors serve as input to a classification method for creating classifiers
(i.e. Support Vector Machine, Naive Bayes, Ripper and C4.5), which map each
surface form to an entity in the KB. A major contribution of this method is its
unique way of selecting the features of the ambiguous terms and building feature
vectors.

Zwicklbauer et al. [23] investigated biomedical entity disambiguation with
entity- and document-centric KBs. The authors state that document-centric KBs
outperform laboriously constructed entity-centric KBs if an adequate amount
of annotations is available. In this context, they investigated to which degree
disambiguation results depend on the quality of entity repositories [23]. They
showed that the quality of disambiguation results with an entity-centric KB is
distinguished from the use of different repositories and biomedical subdomains
(e.g. UMLS, Uniprot, Entrez Gene). A major limitation is the non-use of machine
learning algorithms. Instead, the authors apply standard approaches like the
Vector Space Model [43] with TF-IDF [36] and BM-25 [44].

5.4 Gene and Protein Disambiguation

A bulk of works specialized on disambiguating genes and proteins, which consti-
tutes a challenging task due to a high degree of ambiguous gene/protein mentions
across species [21]. The goal of gene and protein disambiguation, a subtask of
the Gene Normalization (GN) process (also comprises gene and protein recogni-
tion [45]), is to determine the unique identifiers of genes and proteins mentioned
in scientific literature. A unique identifier comprises a unique species id as well
as a unique id for the respective gene or protein. Basically, the gene and pro-
tein disambiguation (in the following denoted as gene disambiguation) faces the
following ambiguity problems:

1. Gene-Protein name ambiguity: a surface form may refer either to a gene or a
protein, but is unambiguous within the set of all genes or proteins across all
species.
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2. Intra-species gene name ambiguity: a surface form could be the identifier
of several genes or proteins belonging to a specific species when the species
identifier is provided.

3. Inter-species gene name ambiguity: a surface form could be the identifier of
several genes or proteins across species.

In the following we describe the most important works addressing the respec-
tive ambiguities.

5.4.1 Gene-Protein Name Ambiguity

The simplest form of ambiguity occurs if a surface form either refers to a gene or
a protein while being unambiguous within the set of all genes or proteins across
all species. This assumption can be modeled as a binary classification problem
which classifies the surface form into the gene or protein class.

While recent work do not explicitly distinguish between both classes, the
authors of [46] conducted experiments on how standard classification approaches
like Naive Bayes and C4.5 [47] perform on this disambiguation task. When
Naive Bayes was combined with a well-chosen smoothing function, it attained
≈80 % accuracy in the classification task on different data sets. Ginter et al. [48]
introduced a new classifier based on ordering and weighting the feature vectors
obtained from word counts and work co-occurrence in the text. An additional
improvement was attained after weighting by positions of the words in the con-
text of annotated article abstracts downloaded from the PubMed [49] database.
Pahikkala et al. [50] further improved accuracy by incorporating a weighting
scheme based on distances of context words into a conventional Support Vector
Machine.

Overall gene-protein classification is quite simple and thus attains accuracy
values between 85 % and 90 % with standard approaches.

5.4.2 Intra-species Gene Name Ambiguity

It is more likely that a surface form could be the identifier of several genes or
proteins belonging to a specific species when the species identifier is provided.
Algorithms that resolve an intra-species gene name ambiguity do not explicitly
distinguish between the gene and protein class. The BioCreative I and II chal-
lenges [45] were conducted to map genes from the EntrezGene KB when specific
sets of species are provided. Focusing on gene recognition in text and gene disam-
biguation (and also on protein-protein interactions), the BioCreative II dataset is
commonly used for evaluation purpose of intra-species gene-protein name ambi-
guity. However, by also including the gene recognition task, the result values of
the evaluated systems are not applicable to the disambiguation task in general.

Semantic Approaches Xu et al. [51] proposed a gene profile-based approach which
examines gene name disambiguation under several idealistic assumptions:
1. Perfect gene mentions are assumed with most being restricted to short string
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gene symbols, and 2. among the possible gene candidates in their disambigua-
tion task one candidate is always the correct answer, which ignores the fact that
an apparent gene mention in a text may not denote a gene at all [52]. How-
ever, in their approach, they extract a profile with different types of information
(e.g. context terms, context ontological semantic concepts) from each gene from
already annotated knowledge sources. Their disambiguation approach describes
an information retrieval approach which ranks the similarity scores between the
context of the surface form and the candidate gene profiles. A look at their
results, however, reveals that a plain bag-of-words approach performs almost
equally well.

A complex semantic disambiguation approach was introduced by Hakenberg
et al. [53,54]. They identify genes by using background knowledge from Entrez-
Gene, UniProt and GeneOnthology (GO). For each candidate ID that is assigned
to a gene surface form and thus to a text, the approach tries to find all informa-
tion in the text and picks the ID with the highest likelihood. To calculate the
similarity based on GO terms, GO terms in the surface form context are com-
pared with gene candidate GO terms. For each potential tuple taken from the
two sets, the system calculates a distance of the terms in the ontology tree. These
distances yield a similarity measure for two terms, even if they do not belong
to the same sub-branch or are immediate parents/children of each other. The
distance takes the shortest path via the lowest common ancestors into account,
as well as the depth of this lowest common ancestor in the overall hierarchy. The
distances for the closest terms from each set then define a similarity between the
gene and the text [54]. The approach currently achieves an F-measure of 86.4 %
on the BioCreative II gene normalization data and, thus, belongs to the best
intra-species gene name disambiguation systems.

Machine Learning Approaches. There are also a few machine-learning approaches
for intra-species gene ambiguity. One system is Azure, which is able to automat-
ically assign gene names to their LocusLink12 ID in previously unseen MED-
LINE abstracts [55]. Azure contains a supervised learning approach that covers
tens of thousands of genes and proteins. Apparently, it is possible to achieve
high quality gene disambiguation using scalable automated techniques. Wermter
et al. [52] developed GeNo, a highly competitive system for gene name normal-
ization. The authors apply a Maximum Entropy string similarity measure for
candidate retrieval and calculate a semantic similarity score for checking seman-
tic matches. Additionally, the authors show that (i) machine learning methods
perform superiorly when integrated with publicly available training data in a
well-designed manner and (ii) a simple bag-of-words semantic approach to bio-
logical background knowledge performs as well as more complex semantic dis-
ambiguation [52].

Major disadvantages for machine learning and profile-based approaches are:
As new biological entities are discovered very quickly, there may be no mention
in the previous existing literature for that sense or for that symbol. A partial

12 http://www.ncbi.nlm.nih.gov/Web/Newsltr/Summer99/locus.html.

http://www.ncbi.nlm.nih.gov/Web/Newsltr/Summer99/locus.html
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solution is to perform updates to the profiles and machine learning models
regularly.

5.4.3 Inter-species Gene Name Ambiguity

In inter-species gene name ambiguity tasks the species information for genes is
not provided. Hence, a surface form could be the identifier of several genes or
proteins across species. The disambiguation task requires the disambiguation
of species first, and the resolution of the intra species gene name ambiguity in
the second step (cf. Sect. 5.4.2). Species disambiguation faces the problem that
multiple species assignments may be correct and that therefore multiple cor-
rect entities may exist. Hence, determining the parameter of how many results
should be retrieved for each disambiguation task is a challenge. If not explic-
itly mentioned the proposed algorithms return a single species with the most
likelihood.

Rule-Based Approaches. A simple approach to link surface forms to a species is
by looking for species words in the context. More specifically, several works use
one of the following rules as a baseline system [56]:

1. Previous species word: if the word preceding an entity is a species word,
assign the species ID indicated by that word to the entity.

2. Species word in the same sentence: if a species word and an entity appear in
the same sentence, assign its species ID to the entity. When more than one
species word co-occurs in the sentence, priority is given to the species word
to the entity’s left with the smallest distance. If all species words occur to
the right of the entity, take the nearest one.

3. Majority vote: assign the most frequently occurring species ID in the docu-
ment to all entity mentions.

A well-known system to detect the species of genes in scientific publications
is GNAT and was proposed by Hakenberg et al. [54]. Their approach relies on a
multi-stage procedure with descending reliability to assign species to genes. For
instance, a gene and a species could occur in the same phrase, including enumer-
ations: “rat and murine Eif4g1”. If no rule can be applied, the approach checks
the abstract for general mentions of kingdoms, classes, etc. The system obtained
one of the best performance for the Gene Normalization task in BioCreative II.

A recent approach [57] defines a three-step species disambiguation system.
First, a preprocessing step including tokenization and cue word extraction for
each gene surface form is performed. Second, the algorithm estimates focus
species with the proposed EF-AISF coefficient, the entity frequency-augmented
invert species frequency, to calculate the relevance between the cue words of a
surface form and species. The species with the highest correlation coefficient is
chosen as the probable focus species. Third, an appropriate species is assigned to
each gene surface form with the help of the introduced Relational Guide Factor
which enhances the capability of species assignment. An evaluation shows that
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the usage of EF-AISF may significantly outperform other (machine-learning)
approaches like SVMs in the task of entity species disambiguation.

Wang et al. [58] introduced and compared a number of rule-based and machine-
learning based approaches to resolve species ambiguity in mentions of biomedical
named entities, and demonstrated that a hybrid method achieves the best overall
accuracy at 71.7 %, as tested on the gold-standard ITI-TXM corpora [59]. The
authors performed multiple species assignments and investigated the average rank
of the first correct species annotation.

They also introduced a hybrid species information tagging system (a combi-
nation between rule-based and machine learning approach), which improved the
rule-based term identification system by up to 10 % [58].

Machine Learning Approaches. The authors of [60] describe a generic approach
to disambiguate specific entity classes (e.g. species). Instead of classifying each
individual occurrence of an entity, it classifies pair-wise relations between the
surface form in question and the cue words in its adjacent context, where each
cue word is assumed to bear a semantic class (e.g. a specific species). If a cue
word features a “positive” relation with the surface form, the corresponding
semantic tag of the cue word is assigned to the surface form. While an individual
surface form may belong to a large number of semantic classes, a relation can
only take one of two values: positive or negative, hence transforming a complex
multi-classification problem into a less complicated binary classification task.
The binary classification problem was solved with Support Vector Machines.
One drawback of the relation classification systems is that they cannot cover
all surface forms but only the ones with informative keywords co- occurring in
the same sentence. The authors overcame that drawback by using spreading
rules [60].

The approach by Harmston et al. [61] transforms a MEDLINE record into
a mixture of adjacency matrices. By performing a random walk over the result-
ing graph, the authors are able to perform multi-class supervised classification,
allowing the assignment of taxonomy identifiers to individual gene mentions.
This method does not require training data for all potential classes in order
to achieve high performance and does not only perform classification but also
provides a probability, which serves to quantify the certainty attached to a clas-
sification. This species disambiguation approach shows significant improvements
over the relation method proposed by Wang et al. [60]. Once the reliable cor-
pora are in place, the approach can be applied in an automatic fashion without
any user intervention, which will aid its employment in the context of novel
organisms [61].

Wang et al. [56] compared a parser-based (e.g. Stanford parser), a super-
vised multi-classification [58] and a relation-based [60] species disambiguation
approach. Promising results are obtained by training a machine learning model
on syntactic parse trees, which is then used to decide whether an entity belongs
to the model organism denoted by a neighboring species-indicating word (e.g.
yeast). The parser-based approaches are also compared with a supervised classi-
fication method and results indicate that the former are a favorable choice when



Linking Biomedical Data to the Cloud 229

domain portability is of concern. The best overall performance was obtained by
combining the strengths of a syntactic parser (i.e. ENJU-Genia), a relation clas-
sification model, and a supervised classification model. Their method does not
function well if no species term co-occurs with the gene mentions in a sentence.
Similarly, the method cannot handle the articles that lack species mentions.

A comparison between rule-based and machine learning approaches shows
that machine learning approaches attain satisfying results. However, the avail-
ability of training data is often limited, and the available data sets tend to be
imbalanced and, in some cases, heterogeneous.

6 Open Problems

This chapter lists the open problems for linking biomedical data to the cloud,
categorized into problems with the data (Sect. 6.1) and algorithm-related prob-
lems (Sect. 6.2).

6.1 Dataset Related Problems

Annotated corpora for training linking algorithms contain surface forms linked to
entities from different KBs and namespaces (e.g. Uniprot, UMLS, SnomedCT).
This implies that algorithms trained on one specific corpus with its respective
KBs are only able to link to these KBs. Depending on the application scenario,
however, references to different KBs might be required. Although the Semantic
Web standard accounts for connections between two repositories in the Linked
Data Cloud by special types of relations, e.g. the owl:sameAs relation, the major-
ity of the biomedical linked data repositories (65.71 %) is not linkable to other
repositories (see Sect. 5.1). Thus, an open problem is the missing links between
the various available repositories, also termed ontology alignment. High-quality
automatic ontology alignment is still an open problem, while semi-automatic
approaches seem to yield promising results [62], but require considerable human
effort.

Further problems root in the missing provenance and licensing information of
the Linked Data Cloud repositories. As described in Sect. 5.1 for the life sciences
domain, only 3.37 % of the data sets provide licensing information in RDF and
pose a challenge for fully automatic exploitation of these KBs. Applications using
Linked Data repositories rely on the actuality and correctness of the represented
knowledge, but only the minority of the life sciences data sets in the Linked Data
Cloud (23.60 %) contain provenance information.

6.2 Algorithm Related Problems

Analyzing available disambiguation algorithms shows three major, important
and open problems which have been addressed insufficiently so far.
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Inter-domain Entity Disambiguation. Scientific literature is being published in
various domains (e.g. biomedical, computer science domain). Consequently, these
documents comprise entities from different domains. Generally, existing dis-
ambiguation systems are able to disambiguate entities belonging to a specific
domain, either generic entities as available in Wikipedia or special knowledge
entities (e.g. biomedical entities). Zwicklbauer et al. [23] showed that large-scale
and heterogeneous entity KBs may mitigate disambiguation results significantly.
An open problem is how different entity repositories from different domains can
be combined while providing reliable disambiguation results.

Supervised or Unsupervised Classification. Disambiguation tasks (i.e. intra-
species and inter-species gene name ambiguity) may be interpreted as classi-
fication tasks. Thus, many approaches rely on supervised classification, which
needs a non-negligible amount of training data. The availability of training data
is often limited, and the available data sets tend to be imbalanced and, in some
cases, heterogeneous [60]. Another problem of making extensive use of training
data is that new biological entities are discovered very quickly. There may be no
surface form in the previous existing literature for that sense or for that symbol
[51]. Unsupervised or rule-based algorithms are either not available or do not
provide similar results as supervised algorithms [58]. The question remains how
algorithms provide reliable results despite requiring less or no training data.

Multiple Species Assignments. As shown in Sect. 3, a surface form of genes
or proteins may belong to several different species (e.g. the proteins in sen-
tence “human and mouse CD200R-CD4d3+4 and rCD4d3+4 protein” belong to
the species human, mouse and rat). Hence, these surface forms refer to multiple
entities. Existing algorithms usually extract the corresponding species provid-
ing the highest score. Furthermore, a static threshold often denotes the top-n
relevant species to be extracted. However, existing approaches lack algorithms
to investigate how many and which species belong to surface forms of genes or
proteins.

7 Conclusion and Outlook on Future Work

Biomedical entity disambiguation has benefited from substantial interest from
researchers and from practical needs of several domains (e.g. smart hospitals,
infectious disease researchers), especially in the last ten years. In this work we
provide an overview of biomedical entity disambiguation, with a special focus on
annotated corpora, term disambiguation algorithms as well as gene and protein
disambiguation algorithms.

As stated in the section above, there is a need for disambiguation systems for
entities across several domains (e.g. entities from computer science and biomed-
ical domain). A first important step would be to investigate how to combine
two KBs, comprising entities from different domains, without mitigating disam-
biguation results due to an increase of heterogeneity and quantity.
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Another important direction to add more flexibility to disambiguation sys-
tems is in reducing the necessity of training data by intelligent algorithm design
and data exploitation. Most works are built upon supervised algorithms and
need a huge amount of annotated data sets. Promising approaches avoid using
expensive manually annotated data for each new domain and thus achieve better
portability, e.g. [60].

With the entity linking approaches becoming more and more sophisticated,
the application tasks shift to more complex recognition tasks. This shift can
for instance, be observed in the community challenges issued by the BioNLP
consortium. Starting with 2011, the event detection task additionally involved
co-reference resolution and relation identification, and assumed a correct entity
disambiguation system as prerequisite [8].
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1 Introduction

Diabetes mellitus (DM) is a growing global disease which highly affects the individual
patient but it also represents a global health burden with financial impact on national
health care systems. In 2013 approximately 382 million people were suffering from
diabetes. It is estimated that this number will have reached 592 million in 2035. In
addition, approximately 175 million diabetes patients are estimated to remain undiag‐
nosed. In the U.S., the total estimated costs for diabetes were $174 billion for the year
2007 [1–3].

DM is a chronic illness of the metabolic system leading to high blood glucose levels.
DM can be classified into two main clinical categories. Type 1 diabetes mellitus
(T1DM) is caused by the loss of β-cells which are responsible for the storage and release
of insulin and it mainly occurs in children, adolescents and young adults. In contrast,
type 2 diabetes mellitus (T2DM) is determined by insulin resistance and develops due
to a progressive insulin secretory defect, mostly in elderly people with overweight or
obesity [4].

In both conditions continuous medical care is required to minimize the risk of acute
(e.g. ketoacidosis) and long-term complications (e.g. diabetic foot syndrome, nephrop‐
athy, retinopathy, cardiovascular diseases or stroke) [5]. T1DM can only be treated with
insulin, whereas a wide range of therapeutic options are available for patients with T2DM
[4]. Adhering to therapy in chronic diseases like T2DM requires active participation and
is often very burdensome for patients. Furthermore the effects of non-adherence are not
immediately evident. Long-term complications like a diabetic foot syndrome or retin‐
opathy take years to develop [6]. Diabetes therapy is complex and therapy decisions
comprise various medical and life-style related information.

The availability of smart health technology [7] like continuous glucose monitoring
(CGM) [8], physical activity detection [9], location and movement data, image recog‐
nition for planned meals [10], data from computerized diabetes diaries offer large data
sets which can be used for therapy initialization or the further improvement of the
therapy of an individual person suffering from diabetes. The large amount of generated
data shows the importance of knowledge discovery in data handling/processing for
therapy personalization [11]. Computerized decision support systems (CDSS) aim to
improve the treatment process in the hospital [12] as well as at home [13].

In this work we cope with the potential of CDSS in the personalization of diabetes
therapy to support the therapy process in different health care sectors and the role of
machine learning. Moreover, open problems and challenges for the personalization of
the diabetes therapy focusing on CDSS and machine learning technology are identified.

2 Glossary and Key Terms

Clinical Computerized Decision Support systems (CCDSS): ‘Clinical Decision Support
systems link health observations with health knowledge to influence health choices by
clinicians for improved health care’ - this definition has been proposed by Robert
Hayward of the Centre for Health Evidence.
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Computerized Physician Order Entry (CPOE) is a specialized sub-category of hospital
electronic patient records for the management of physician orders. Such systems in
general can offer reminders or prompts or even go further and perform calculations and
offer decision support [14].

Diabetes Mellitus (DM) is a group of metabolic diseases in which high blood sugar
levels over a prolonged period occur. DM is classified into two main clinical categories.
Type 1 diabetes mellitus (T1DM) results from the body’s failure to produce enough
insulin. This form was previously referred to as “insulin-dependent diabetes mellitus”
(IDDM) or “juvenile diabetes”. The source is unknown. In contrast, type 2 diabetes
mellitus (T2DM) develops due to a progressive insulin secretory defect in mostly
elderly people with overweight or obesity [4, 6].

Diabetes Therapy: The success of a diabetes therapy depends on various factors. Regular
measurement of the blood glucose level is the basal requirement for patients suffering
from diabetes. The amount of necessary measurements depends on the intensification
of the therapy and the progress of the diabetes disease. In contrast to type 1 DM that can
only be treated with insulin, a wide range of therapeutic options are available for patients
with type 2 DM. These are in the best case lifestyle change with change of diet and
increased physical activity, but therapy options also include oral or injectable antidia‐
betic drugs and insulin administration. Furthermore insulin therapy itself opens a wide
variety of different treatment options. The options range from an once-daily injection
of a basal insulin dose (least intensive insulin therapy) to basal-bolus-insulin therapy,
where a basal insulin dose and several bolus insulin doses are administered every day
(intensified insulin therapy).

Glycated Hemoglobin (HbA1c) is a laboratory parameter which serves as a biomarker
for the average blood glucose levels in patients over the previous 2 to 3 months prior to
the measurement. In specific situations it can also be used as a measure of compliance
with diabetes therapy. In diabetes mellitus, higher amounts of glycated hemoglobin have
been associated with increased risk for microvascular complications (nephropathy,
retinopathy) and to a lesser extend with macrovascular complications [6].

Glycemic Variability (GV) is the fluctuation of the blood glucose values and it is used
as an indicator for the quality of diabetes management, as a high GV leads to increased
risk of hypo- and hyperglycemic episodes.

Machine Learning (ML) is an algorithm-based and data-driven technique to automati‐
cally improve computer programs by learning from experience. Training of machine
learning is performed by the estimation of unknown parameters of a model by using
training sets. Literature separates between three main ML groups: supervised, unsuper‐
vised and reinforced learning.

Towards Personalization of Diabetes Therapy 239



3 Personalization of Diabetes Therapy

Individualized glycemic management of diabetes patients using insulin or oral antidia‐
betics is only possible due to recent advances in diabetes therapy, which increased the
therapy safety and efficacy. The development of new insulin analogs led to a more
predictable behavior of the drugs’ blood glucose lowering effect [15, 16]. The first type
of oral antidiabetic agents were developed in France in the 1940s [6]. Since then a
multitude of new oral antidiabetic agents has been developed using different pharma‐
cological and physiological strategies. Furthermore a paradigm shift happened in
diabetes therapy over the past decades which led to patient empowerment and therapy
personalization due to improved patient education.

The choice of therapy and potential personalization especially depends on the DM
type. T1DM patients exclusively get insulin treatment. They either receive insulin via
pump or by multiple daily injections. Here, personalization is possible by fine-tuning
the parameters which drive the algorithms for the patient’s individual insulin dose
calculation [17]. Patients with a high risk of developing T2DM (pre-diabetes) are treated
by lifestyle changes (diet change and increase of physical activity). T2DM patients have
a broader array of therapeutic choices. Early onset of T2DM is treated by lifestyle
changes or oral antidiabetic agents. If an intensification of the diabetes therapy is neces‐
sary different strategies involving insulin are treatment options. Here, personalization
is possible by setting different treatment goals for the different stages of intensification
(stepwise approach) of the insulin therapy [4, 16]. Less intensive insulin therapies
comprise fixed insulin doses once a day, either adjusted by the physician at the next
routine appointment or by the patient according to a schema. More intensive insulin
regimens require multiple insulin doses per day and the consideration of carbohydrate
intake and correction insulin for blood glucose levels outside of a target range. Here,
personalization is also possible by fine-tuning the parameters which drive the algorithms
for the patient’s insulin dose. These algorithms are usually less complex than the ones
used for T1DM and consequently they allow fewer options for personalization.

Recent guidelines recommend individualized diabetes therapy goals for people with
DM [4]. In the current position statement for the management of T2DM the American
Diabetes Association (ADA) and the European Association for the Study of Diabetes
(EASD) placed great emphasis on patient-centered and personalized diabetes care [18].
Personalization of glycemic control targets is based on clinical parameters, including
age, duration of DM, prevailing risk of hypoglycemia, presence of DM associated
complications or co-morbidities and eco-system components [19]. In specific situations,
the patient’s glycated hemoglobin (HbA1c) serves as a measure of adherence with
diabetes therapy. It is a biomarker for average blood glucose levels over the 2 to 3 months
prior to the measurement. In diabetes therapy, certain blood glucose target values and
HbA1c targets are defined for the patient’s therapy. These targets are also determined
by the choice of the patient’s therapy option. Insulin for example is very effective in
lowering HbA1c but insulin administration also increases the risk of hypoglycemia [16].

Individual therapy goals are set to avoid co-morbidities caused by poor glycemic
control. To avoid the deterioration of a retinopathy, a better glucose control which means
achievement of lower blood glucose levels and HbA1c targets is recommended [20, 21].
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Two other important factors in personalizing diabetes therapy are age and diabetes
duration. Consequently, lower targets should be achieved in younger patients to reduce
the long-term risk of DM associated complications. In contrast, therapy should aim for
safer targets and achieving them more slowly in older patients [22].

The setting in which the therapy is performed also strongly influences the therapy
targets. Patients in a nursing home setting have typically less stringent targets to
avoid hypoglycemia and less frequent blood glucose monitoring compared to
patients in intensive care units [23]. Even though the exact therapy goals for patients
in intensive care units are discussed controversially, intensive insulin therapy to
maintain blood glucose at lower targets reduces morbidity and mortality in critically
ill patients [24, 25].

In this article we focus on personalization of diabetes treatment rather than on all
strategies of Personalized Medicine for Diabetes (PMFD), because widespread adoption
of this global approach will only occur when the identification of risk factors through
genotype or through biomarkers is accompanied by an effective therapy [26]. PMFD
uses information about the genetic makeup of a person with diabetes to customize strat‐
egies for preventing, detecting, treating and monitoring their diabetes.

The vast amount of parameters for personalization makes diabetes management
increasingly complex and diabetes complications remain a great burden to individual
patients and the society [27]. Therefore it is hypothesized that the quality of these
medical decisions can be enhanced by personalized decision support tools that summa‐
rize patient clinical characteristics, treatment preferences and ancillary data at the point
of care [28].

4 Towards Personalization Using Decision Support Systems

Diabetes therapy takes place in different health care sectors. Every sector has different
goals for the patients’ diabetes therapy, as mentioned in the previous chapter. This
results in specialized solutions for diabetes management available on the market, each
specifically targeting a particular sector. Diabetes decision support systems are used in
the following sectors:

1. Patient self-management

a. At home
b. Primary care
c. Outpatient care

2. Institutional care

a. Nursing homes
b. Hospital

i. Inpatient care
ii. Intensive care
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Decision support aiding health care professionals can primarily be found in insti‐
tutional care, whereas decision support targeting decisions performed by patients can
mostly be found in the patient self-management sector. DM patients outside of insti‐
tutional care settings are on average younger, more independent and the focus of the
therapy lies predominately on the diabetes disease. Patients in institutional care are
primarily not admitted because of having DM, but for the complications associated
with having DM (diabetic foot syndrome, nephropathy, retinopathy, cardiovascular
diseases or stroke). DM is mostly regarded as concomitant disease and should therefore
cause the least possible additional effort. Strategies for personalization of the diabetes
therapy are therefore very different in the health care sectors. The following chapters
summarize decision support systems and tools which facilitate a personalization of the
diabetes therapy.

4.1 Diabetes Decision Support Applications for Self-Management

Medication support and therapy control: Self-management of the patient’s insulin
therapy requires the frequent measurement of blood glucose levels and the adjustment
of the patient’s medication. In insulin therapy, the calculation of the required insulin
dose involves the use of more or less complicated mathematical formulas. Therefore
mathematical aides, integrated into insulin pumps and glucose meters, have been devel‐
oped which model evidence based protocols for insulin dosage [29], so called Automated
Bolus Calculators (ABC). A recent review summarized the current state of the art on
‘Glucose meters with built-in automated bolus calculator’ [30]. The authors concluded
that ABC incorporated in glucose meters can be regarded as bringing real value to insulin
treated patients with diabetes. Software apps are not recommended up to now as they
generally are of poor quality [31]. ABC allow very detailed personalization of the insulin
dosing decision support. Aside from blood glucose levels, ABC also consider carbohy‐
drate intake and physical activity or health events to estimate insulin requirements.
‘Automated’ bolus calculation means that no manual bolus calculation is necessary. The
identification of the correct parameters for personalization of the bolus calculation is a
very individual and time consuming process for every user [29].

In the context of insulin-based diabetes therapy, a controller is an algorithm that
controls the blood glucose values by titrating the amount of insulin. ABC are either rule
or model based open-loop diabetes control methods. Independent of the used diabetes
control method, it is categorized open-loop system, when a patient has the final power
of decision [32].

Artificial pancreas systems are used for automated insulin injections. This type of
diabetes control is characterized as closed-loop. Using these systems, model-predictive
control algorithms are applied which use predictions of future glucose levels to estimate
insulin requirement in insulin-pump therapy [33]. In these applications the input for the
prediction models is continuous glucose monitoring data of T1DM patients.

Models of glucose dynamics for predictive purposes can mainly be divided into two
categories; physiologically-oriented models and data-driven methods. The latter
approach can furthermore be divided into time series analysis, using auto regressive
models and machine learning methodologies [34]. Physiological models for blood
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glucose estimations are very accurate for short time predictions. They achieve a predictive
capacity with a root mean square error (RMSE) of 3,6 mg/dl for a prediction horizon of
15 min [35]. Main advantages of these models compared to data-driven models are that
there is no need to train these models and that their output is physiologically explainable.
The main disadvantage is that if the difference is not explainable with the input variables
no personalization of the algorithm is possible. Data-driven glucose prediction is a
relatively new methodology compared to physiological glucose prediction. Similar to the
development of the personal computer these technologies advanced in the late 1990s [36].
Main advantages of these models are that they are adaptive (self-learning) and patient
specific without the need for developing a physiological model. Main disadvantages are
that the system depends on the training data quality (garbage in and garbage out problem)
and that the output of the system is not physiologically explainable.

For artificial pancreas systems relatively short prediction horizons and therefore a
comprehensive monitoring using CGM are needed to enable closed-loop diabetes
control [37]. But also patients without CGM which are not so intensively monitored
could benefit from the prediction of future blood glucose levels. In [38–40] the authors
devised an engine that predicts the expected blood glucose level at the next meal and
the pending risks of hypoglycemia. They performed a study for safety and efficacy of
using predicted data in dosing decision support for routine patient care. The prediction
engine was used in patients who were referred to begin basal-bolus-insulin therapy.
HbA1c levels fell significantly from 9.7 ± 1.7 % (baseline) to 7.9 ± 1.2 % (end of study),
and hypoglycemia dropped fourfold.

Decision support tools for physicians: The patient’s diabetes therapy is performed in
close collaboration with primary care physicians and/or outpatient clinics. In [41] a
computer application which helps primary care physicians in diabetes therapy decision
making was developed and validated in a cluster-randomized clinical trial. The appli‐
cation was used to make decisions when starting, continuing or changing insulin and its
dosage. The HbA1c in the intervention group was significantly reduced by the use of
the decision support application (–0.69 %; p = 0.001). Electronic decision support tools
for primary care physicians are summarizing information about patients’ diabetes state,
they provide reminders to required diabetes care and a support to patient education [42].
In [66] a CDSS was designed to help outpatient clinicians manage glycaemia in patients
with T2DM. A rule-based expert system generates recommendations for changes in
therapy and accompanying explanations. As mentioned earlier, T2DM is in contrast to
T1DM a disease where a variety of different treatment options exist. Therefore, the
system considers 9 classes of medications and 69 regimens with combinations of up to
4 therapeutic agents. The program is integrated in a web-based system for diabetes case
management and supports a method for uploading data from glucose meters via tele‐
phone network. The system provides a report to the clinician regarding the overall
quality of glycemic control and identifies problems, e.g., hyperglycemia, hypoglycemia,
glycemic variability, and insufficient data.

Therapy aids and lifestyle support: To aid diabetes patients in the difficult task of esti‐
mating the correct personalized insulin requirement and to meaningful perform person‐
alized control of therapy several tools are available.
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Carbohydrate estimation: The success of the patient’s insulin therapy is significantly
dependent on the correct estimation of how nutrition influences insulin requirements
[43]. This relationship is used in insulin therapy and it is called the Carbohydrate
Factor. The factor is patient specific and may vary over the time of the day. Once accu‐
rate patient specific factors have been developed for different times of the day, correct
estimation of the number of carbohydrates in a meal represents another obstacle in
insulin therapy. Many patients might not estimate carbohydrates accurately and
commonly either over or underestimate carbohydrates in a given meal [44, 45]. Another
source of inaccuracy in estimating the patient’s insulin requirement for meals based on
carbohydrate counting is the composition of foods. Not only the number of carbohy‐
drates influences the physiological glycemic response but also how the meal is absorbed.
For example rich-in-fat meals need more time to be absorbed. Therefore these meals
lead to prolonged hyperglycemia or the risk of hypoglycemia, if the insulin dose to cover
the expected blood glucose rise for these meals is administered at once [46]. To approach
the these problems, bolus calculators with nutrition data base software integrated into
an insulin pump have been developed which are able to control the type of bolus [47].
In rich-in-fat meals the bolus is administered using a wave profile to administer insulin
over a longer period of time compared to a single bolus.

For easier estimation of the meals’ carbohydrate content, it has been proposed to
implement nutrition data bases in food recognition systems. These systems use machine
learning algorithms to categorize images of food [10, 48]. Therefore it is possible to
identify the food by taking a picture of the meal using a smartphone. The systems are
now able to detect food with an accuracy of up to 81 %. The final systems for diabetes
therapy should include food segmentation such that images with multiple food types can
also be addressed. Furthermore, to be eligible for diabetes therapy, the food volume
should be estimated using multi-view reconstruction and the carbohydrate content
should be calculated based on the computer vision results and nutrition data bases.
Activity recognition: The patient’s insulin requirement and therefore the blood glucose
levels are strongly influenced by the amount of physical activity and the health status.
In diabetes therapy, establishing health benefits from physical activity is primarily done
on the basis of self-reported data; typically surveys asking patients to recall what phys‐
ical activity they performed according to their diabetes treatment plan. This is usually
performed in T2DM patients. In T1DM patients using bolus calculators, physical
activity often plays a major role in insulin calculation. The extent of change rate of the
insulin dose depends on the intensity and duration of physical activity and varies among
the patients [49]. Currently, this estimation process is very imprecise due to inaccurate
reporting of physical activities. One solution to improve the accuracy of reporting could
be automated activity recognition. Such systems consist of [50]:

(1) A sensing module that continuously gathers information about activities using
accelerometers, microphones, light sensors, heart rate sensors, etc.

(2) A feature processing and selection module that processes the raw sensor data into
features which categorize by activities.

(3) A classification module that uses the features identified in the previous data proces‐
sion step to infer which activity has been performed.
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Methods to predict activity-related energy expenditure have advanced from linear
regression to innovative algorithms capable of determining physical activity types and
the related metabolic costs. These novel techniques can measure the engagement in
specific activity types [51]. Integrated into T2DM therapy, the therapy adherence to
physical activity lifestyle interventions could be monitored. In T1DM, these new tech‐
niques could help to estimate the possibly required insulin reduction prior to sports using
earlier recordings of similar intensive activities.

Activity recognition can also be implemented in a smart home-based health platform
for behavior monitoring. In order to recognize activities being performed by smart home
residents, machine learning algorithms could be used to classify sensor data streams.
The smart home platform could be used to monitor the activity, diet, and exercise adher‐
ence of diabetes patients and evaluate the effects of alternative medicine and behavior
regimens [52].

Lifestyle support/promotion: In T1DM patients, the loss of the insulin-producing beta
cells of the islets of Langerhans in the pancreas results in the body to fail to produce
insulin. T2DM is characterized by insulin resistance which, as the disease progresses,
may be combined with a relatively reduced insulin secretion [6]. Therefore, the patho‐
genesis of T2DM, as a not rapidly progressing disease, can be prolonged by lifestyle
interventions. Lifestyle intervention options are diets and/or increase of physical activity
used to effectively manage patients in the pre-diabetes phase. Nevertheless, lifestyle
management remains challenging for both, patients and clinicians. To track lifestyle
events a variety of web- or mobile phone-based diabetes diaries are available. Petrella
et al. developed a lifestyle support system which facilitates personalized, data-driven
recommendations for people living with pre-diabetic and T2DM conditions [53]. The
system suggests subtle lifestyle changes to improve overall blood glucose levels. To
improve and support therapy adherence, a mobile phone app with lifestyle diary for
coaching of the patient based on multiple psychological theories for behavior change
has been recently developed. The user automatically receives generated messages with
persuasive and personalized content [54]. Such systems can be used to enforce patient’s
therapy adherence and to help the patient to better understand their diabetes.

Pattern recognition for optimization of insulin therapy: Diabetes therapy leads to an
accumulation of data. Sources are glucose data from blood glucose meters or CGM
devices, records of diabetes diaries and therapy plans in more or less structured forms
and data from different kinds of therapy aids like bolus calculators. The sources of data
are often complex and weakly structured resulting in massive amounts of unstructured
information. The data interpretation by the physicians and the patients is often performed
without or with only weak decision aids. Currently few products enable data analysis
using state of the art technologies which could be found for example in predictive
analytics.

In a state of the art article targeting emerging applications for intelligent diabetes
management, machine learning classification of blood glucose plots was highlighted
[55]. The authors cope with the identification of excessive glycemic variability (EGV).
The focus of diabetes therapy is to mimic physiological blood glucose profiles as close
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as possible. This means to avoid too high and too low blood glucose levels. But, to
some extent high and low blood glucose levels are physiologically normal e.g. blood
glucose rise after meals. Both upward (postprandial) and downward (interprandial)
acute fluctuations of glucose around a mean value activate oxidative stress. As a conse‐
quence, it is strongly suggested that a global antidiabetic strategy should be aimed to
reduce HbA1c, pre- and post-prandial glucose, as well as glucose variability to a
minimum [56]. To the best of our knowledge no guideline-defined metric for classifying
glycemic variability exists [57], nor a decision support system which aids in the detec‐
tion of EGV [58]. Wiley et al. describe an automatic approach to detect EGV from
CGM data [59]. Therefore, two physicians independently built a knowledge data base
from CGM data which was used for the training of machine learning algorithms for
EGV detection. The best performing prediction model achieved an accuracy of 93.8 %.
The results of EGV predictions could inform clinical disease management, if a patient
used CGM for the week preceding a routine appointment and therefore propose a
personalization of the diabetes therapy approach.

Pattern recognition can be used to meaningfully identify blood glucose patterns,
highlighting potential opportunities for improving glycemic control in patients who self-
adjust their insulin [60]. Skrøvseth et al. conducted a study to identify how self-gathered
data can help users to improve their blood glucose management [61]. The participants
were equipped with a mobile phone application, recording blood glucose, insulin, dietary
information, physical activity and disease symptoms in a minimally intrusive way. Data-
driven feedback to the user in form of graphic representation of results from scale-space
trends and pattern recognition methods may help patients to gain deeper insight into
their disease. Blood glucose pattern analysis can also be found in ABC.

Long-term disease management: During the last decades, research in medicine has
given increasing attention to the study of risk factors for diabetes complications. A
practical application of risk factor studies is the development of risk assessment models
(UKPDS model [62], Framingham model [63]). These models are able to provide a
prediction, based on patient characteristics, of the patient’s risk to develop diabetes
associated complications [64].

In care management, which is facilitated from a payer perspective by health insur‐
ance companies, patients receive a personalization of care according to risk stratification.
Stratification focuses on whether patients are ill enough to require ongoing support from
a care manager. Having less serious chronic conditions warrant more intensive inter‐
ventions to prevent them from worsening. Fairly healthy patients just need preventive
care and education [65].

Risk preventive modelling enables the prognosis of future high-risk and/or high-cost
patients, in patients having a chronic disease like T2DM. The models use a combination
of factors, such as demographics, clinical parameters, lifestyle factors, family history of
diabetes and metabolic traits [66]. Several machine learning techniques have been
applied in clinical settings to predict disease progression and have shown higher accu‐
racy for diagnosis than conventional methods [67]. Risk models have been integrated
in guidelines and are increasingly advocated as tools to assist risk stratification and guide
prevention and treatments decisions in diabetes care [68, 69]. It is hypothesized that with
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the prior knowledge of disease risk, the incidence of T2DM could be reduced consid‐
erably by implementing preventive measures in high-risk patients [4].

4.2 Diabetes Decision Support Applications for Institutional Care

Systems used in hospitals for management of diabetes care are very generic and they
are designed to operate safely for the majority of patients. Currently personalization
for patient characteristics plays a secondary role due to two factors: (1) A short length
of stay does not allow the empiric development of patient specific factors which are
crucial for the personalization of diabetes therapy. (2) Rigid hospital workflows and
excessive workload of clinical personnel often prohibits the implementation of indi‐
vidualizations in diabetes therapies. Nonetheless, aside from these restrictions person‐
alization is possible to some extent. Clinical computerized decisions support systems
(CCDSS) often model evidence based guidelines which facilitate personalization of
the estimation of medication requirements according to laboratory and demographic
parameters [70–73].

Medication and workflow support: Clinical physician order entries (CPOE) are a speci‐
alized sub-category of hospital electronic patient records for the management of physi‐
cian orders. They can be configured to support glucose management besides many other
things. Such systems generally can offer reminders or prompts or go even further and
perform calculations and offer decision support [14].

A recent review dealing with CCDSS’ impact on healthcare practitioner performance
and patient outcomes displayed significant evidence that CCDSS can positively impact
healthcare providers’ performance with drug ordering and preventive care reminders
[74]. Furthermore, a recent diabetes guideline emphasizes the use of CCDSS and CPOE
for insulin dosing [75]. This is a particularly important field of decision support because
the correct handling of insulin in diabetes patients is prone to error. In a recent audit
which investigated the quality of inpatient diabetes care, 36.7 % of the patients experi‐
enced at least one diabetes medication error during hospital stay [76]. A current review
estimated that an adoption of CPOE systems in hospitals alone without decision support
function leads to a 12.5 % reduction in medication errors [77]. A Cochrane Review
assessed whether computerized advice on drug dosage has beneficial effects on patient
outcomes compared with routine care. The review led to the conclusion that computer‐
ized advice on drug dosage (oral anticoagulants and insulin) results in a physiological
parameter more often in the desired range. Furthermore, it tends to reduce the length of
hospital stay compared to the length of hospital stay in routine care. Furthermore
comparable or better cost-effectiveness ratios were achieved with computerized advice
on drug dosage [78]. Diabetes medication CCDSS in the hospital range from adminis‐
tering and managing oral antidiabetic agents in non-critically ill patients to adjusting
insulin infusion in critically ill patients. Insulin infusion in intensive care units is
performed according to paper based nurse-directed insulin nomograms that adjust rates
of insulin infusion according to the current rate of infusion and the blood glucose reading.
These nomograms usually do not take patient-specific blood glucose trends into consid‐
eration and patients may oscillate between hypoglycemia and hyperglycemia [79].

Towards Personalization of Diabetes Therapy 247



By using a computerized insulin infusion algorithm in a CCDSS which also takes
into account the patient’s sensitivity to insulin, this system was used to safely achieve
near normoglycemia in hospital inpatients. Additionally, there was lower incidence of
hypoglycemia compared to initial studies [80].

The success that a CCDSS or CPOE is accepted by clinical staff greatly depends on
the implementation into existing workflows [81, 82]. Automatic provision of decision
support should be performed as part of the clinicians’ workflow. Overall, the use of
CCDSS and CPOE systems lead to a standardization of processes in clinical workflows.

Recently, a survey to map the current state of implementation of CPOE and CCDSS
in Switzerland was performed. According to this survey, the introduction of CPOE in
Swiss healthcare facilities is increasing. The types of CCDSS currently in service usually
include only basic decision support related to drug, the co-medication or the setting, and
only scarcely taking into account patient characteristics [83]. Future decision support
tools must be designed to account for both clinical and patient characteristics [28].

5 Decision Support Using Machine Learning Technology

5.1 A Glimpse into Machine Learning Methods for Health Care

Advances in medical signal, image and text acquisition led to an extensive improvement
of available patient-related medical data. These amounts of data make it difficult for
health care professionals or patients to provide a timely treatment decision [84]. CDSS
support the medical decision making process in diagnostics, therapeutics and prognos‐
tics in main medical disciplines [74]. Typical CDSS applications can be found for
example in radiology, emergency medicine and intensive care, cardiovascular medicine,
internal medicine or oncology [85–91].

In CDSS machine learning is an important underlying technology in many applica‐
tions. For example radiology-based CDSS usually apply pattern recognition techniques
based on machine learning for detection of medical conspicuities [92–94]. ECG signal
processing used in cardiology is another promising machine learning approach in
medical decision support applications [88, 95].

Machine learning is concerned with the question how computer programs automat‐
ically improve with experience [96]. Witten et al. [97] proposed “Things learn when
they change their behavior in a way that makes them perform better in future.” Practi‐
cally, training of machine learning algorithms is performed by estimation of unknown
parameters using training sets.

Duda et al. [98] separates between supervised, unsupervised and reinforced
learning. In supervised learning (classification) category labels are manually assigned
to each pattern by human experts. The set is divided into a training and a test set. The
algorithm learns from the training set, which means that discriminating features of the
patterns are identified. The test set is used for evaluation of classification quality. High
accuracy means, that the features maximize the difference between patterns of different
categories and underline the similarity of patterns in the same category. Typical super‐
vised machine learning models are for example Support Vector Machines (SVM), k-
Nearest Neighbors (K-NN), Decision Trees, Naïve Bayes, Random Forests and Neural
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Networks. Unsupervised learning (clustering) is important if no human expert could or
should label patterns. Unsupervised learning models build clusters based on the features
of patterns. K-means, hierarchical clustering or expecting-maximization are typical
algorithms to solve clustering problems. Reinforced learning follows a feedback mech‐
anism. A feedback is given if a category is correct or incorrect. Based on this feedback,
the algorithm should ‘take new paths’ and consequently improves with experience.

In the following section, typical applications of machine learning in the field of
diabetes therapy are presented.

5.2 Application of Machine Learning for Diabetes Therapy

Diabetes therapy depends on medical, demographic and lifestyle-related parameters.
These parameters include diabetes type, age, weight, diabetes duration, co-morbidities,
blood glucose, physical activity and diet, to name a few examples. Latest innovations
in sensor technology (CGM, clothes integrated movement sensors, smartphone-based
image recognition) together with improved documentation effort of medical history in
electronic patient records, diabetes-related patient diaries or telemonitoring systems
provide large and valuable datasets for therapy-related decision making. Machine
learning is regarded to be a helpful technology to support diabetes therapy. In the
following, selected fields of machine learning in diabetes therapy are described.

Data-driven blood glucose prediction: No information about the physiology of diabetes
is necessary in the data-driven blood glucose prediction. This is in contrast to systems
which simulate the human physiology of the glucose-insulin regulatory systems. Data-
driven techniques mainly rely on collected data and exploit hidden information in the
data to predict future blood glucose levels [99].

With the availability and improved accuracy of tight glucose monitoring using CGM
devices, research postulated the question if recent and future blood glucose values can
be predicted from glucose history [100]. If this would be possible, hypoglycemic events
could be detected or short and long term medication could be titrated.

The data-driven prediction of blood glucose can be considered as nonlinear regres‐
sion problem between medication, food intake, exercise, stress etc. as input parameters
and blood glucose value as output parameter [34]. Besides regression models [101,
102] and time series analysis [103], especially machine learning methods like artificial
neural networks (ANN) [102, 104–107], support vector machines [108] and Gaussian
models [105] have proven to be successful. Daskalaki et al. [109] presented a prom‐
ising ANN model with a RMSE of only 4.0 mg/dl for a prediction horizon of 45 min
for adults with T1DM. 94 % of the predictions were clinically accurate in the hypo‐
glycemic range. Instead of conducting evaluation with real patients in a clinical study
already measured data from patients were used for training and evaluation of the
models. Thus, real patient data is needed for a final conclusion on the very good
performance of the model. Pappada et al. [110] reported a RMSE of 43.9 mg/dl in his
study with ten T1DM patients using a neural network model. The model predicted
88.6 % of normal glucose concentrations (>70 and <180 mg/dl), 72.6 % of hypergly‐
cemia (>=180 mg/dl), but only 2.1 % of hypoglycemia (<=70 mg/dl) correctly within
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a prediction horizon of 75 min. Data-driven prediction approaches often lack on esti‐
mation of hypoglycemic and/or hyperglycemic events due to limited data on low and
high blood glucose values [110]. Another problem of blood glucose prediction is the
decreasing performance with increasing prediction horizon. Sufficient prediction is
only possible in a 5 to 75 min. range [34, 109].

Data-driven prediction methods depend on the frequency and accuracy of available
data. CGM measurements are not state-of-the-art in diabetes therapy due to the lack of
accuracy and the missing reimbursement by health insurance companies [111].

Hypo-/Hyperglycemia detection: In contrast to the regression problem of blood glucose
prediction, the detection of hypo- or hyperglycemic events can be treated as a typical
classification problem. For a given set of input parameters, the model should detect if a
hypo- or hyperglycemic event will take place. The prediction can be reduced to a binary
classification problem which is easier to achieve than a continuous prediction of blood
glucose values.

Sudharsan et al. [112] showed that the detection of hypo- and hyperglycemic events
for patients with T2DM is achievable with high accuracy, even if only sparse blood
glucose values based on self-monitored blood glucose (SMBG) readings once or twice
a day are available. They trained the model with data from approximately 10 weeks.
The prediction, if a hypoglycemic event will occur within the following 24 hours was
achieved with a sensitivity of 92 % and a specificity of 70 %. By including medication
information of the past days the specificity was improved to 90 %, although the predic‐
tion was narrowed to the hour of hypoglycemia.

Machine learning can also be used to improve the accuracy of CGM systems. Espe‐
cially in the hypoglycemic range incorrect measurements can occur. Bondia et al. [113]
successfully used Gaussian SVM to detect incorrect CGM blood glucose values with a
specificity of approximately 93 % and sensitivity with 75 %.

Glycemic variability detection: Glycemic variability (GV), the fluctuation of blood
glucose values, is an indicator for the quality of diabetes management due to increased
risk of hypo- and hyperglycemic episodes [114]. In order to rate the quality of GV,
numerous metrics have been defined in the last decades. Rodbard [58] rated metrics
according to their importance and concluded that many metrics are overlapping. He
suggested the following five metrics as the most relevant:

(1) SDT (total variability in data set), (2a) SDw (the average of the SDs within each
day), or (2b) MAGE (average amplitude of upstrokes or downstrokes with magnitude
greater than 1 SD), as a measure of within-day variability, and (3a) SDb hh:mm (average
of all SDs for all times of day), or (3b) MODD (mean difference between glucose values
obtained at the same time of day on two consecutive days under standardized conditions)
as a measure of between-day variability.

Based on these metrics automated classification tasks can support healthcare profes‐
sionals to identify patients at risk and to provide therapy suggestions [58]. Detection of
GV is usually based on CGM signals which provide a comprehensive dataset of blood
glucose values. Machine learning proved to be a valuable method to support the
consensus building for a GV metric and to categorize CGM data according to this metric.
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Marling et al. [57] applied multilayer perceptrons (MPs) and support vector
machines for regressions (SVR) on 250 CGM plots of 24 h on a consensus perceived
glycemic variability metric (CPGV) which have been manually classified into four CV
classes (low, borderline, high, or extremely high) by twelve physicians. The manual
classification was averaged and ten-fold cross validation was used for evaluation. SVR
performed better than MPs. This CPGV metric obtained an accuracy of 90.1 %, with a
sensitivity of 97.0 % and a specificity of 74.1 % and outperformed other metrics like
MAGE or SD.

Controller for insulin-based diabetes therapy: Besides rule-based and model-based
control methods, machine learning can be used to control blood glucose values. Machine
learning is categorized as model-free method which means that it does not need a math‐
ematical model of the glucose-insulin interaction [32, 115].

Zitar et al. [116] applied two different artificial neural network models; the
Levenberg-Marquardt training algorithm of multilayer feed forward neural network
(LM-NN) and a polynomial network (PN) as controller for insulin dose titration.
Simulations were performed with a data set of 30,000 BG samples from 70 different
patients. LM-NN proofed to be superior over PN. The authors stated that LM-NN has
the potential to be used as model-free insulin controller.

Lifestyle support: Carbohydrate intake and physical activity are important parameters
for the treatment of diabetes. While the former case increases the blood glucose values,
the latter is glucose-lowering. Anthimopoulos et al. [10] presented an automated food
recognition system using computer vision. They adapted the well-known bag-of-words
approach from natural language processing to describe the identified features of the
images. The classification was performed with three different supervised classifiers:
SVM, ANN and Random Forests (RF). In total 5,000 images of typical European food-
sets were available in 11 food classes. 60 % of the images were used for training and the
remaining 40 % built the evaluation set. SVM performed best with an overall accuracy
of 78 % for the image classification task. Future work will include automated food
segmentation and food volume estimation to count carbohydrates. A smartphone-based
real-time mobile food recognition system was presented by Kawano et al. [48]. They
used bounding boxes to identify food items which have been classified in one of fifty
food categories using SVM. Accuracy was 81.55 % taking the top five candidates into
account. The automated system also showed better performance than the manual food
selection from a hierarchical menu which has been tested in a small user study.

Physical activity detection is an important pre-requisite to estimate the energy
expenditure. Ruch et al. [117] used a tri-accelerometer together with parameters like
age, gender and weight, to train a decision tree based activity-specific prediction equa‐
tion (Tree-ASPE) and an artificial neural network for energy expenditure estimation
(ANNEE). Tree-ASPE outperformed ANNEE.

Ellis et al. [118] showed that RF classifier can be used to predict physical activity
type and energy expenditure using accelerometers. In this study wrist accelerometers
were more successful in physical activity detection, while hip accelerometers were
superior in energy expenditure estimation.
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6 Open Problems

In this chapter we highlight the main challenges for personalization of diabetes therapy.
The focus lies on the problems regarding technical implementation rather than on the
medical issues of therapy personalization.

Problem 1: Often DM is regarded with secondary importance especially in the clinical
domain. This is very understandable because primarily the patients are not hospitalized
because of having DM and the clinicians need to focus on the reasons for the admission.
The clinicians are often not able to spend much time for the patient’s diabetes therapy
due to heavy workload and rigid clinical workflows. Therefore one focus in development
of CDSS is the optimization of the devices’ usability. In a systematic review investi‐
gating features critical to the success of CCDSS, the authors discovered that 75 % of
interventions succeeded when the decision support was provided to clinicians automat‐
ically. None succeeded when clinicians were required to seek out the advice of the
decision support system [82].

Problem 2: Modelling the human insulin system is a complex task. Different approaches
have been developed in recent decades. The artificial pancreas is still a field of research
and no end-consumer system is available on the market. The main reason for this is that
precision and usability of continuous blood glucose (CGM) in daily use currently does
not meet the needs for such a system.

Problem 3: Diabetes therapy is complex and varies from patient to patient. Success of
diabetes therapy depends on many different factors. Nutrition intake, physical activity and
current health status influences the specific therapy. Whereas T1DM can only be treated
with insulin, for patients with T2DM a wide range of therapeutic options are available. The
combination of factors influencing the therapy and the therapeutic options makes person‐
alized therapy initialization and optimization a complex task. In addition, physicians and
patients are often reluctant to start insulin donation and to intensify insulin treatment
regimens due to the fear of hypoglycemia. Thus, the use of continuous monitoring with on-
body sensors (blood glucose, nutrition intake, physical activity, health status) together with
intelligent therapy prediction and optimization models can help to initiate and to optimize
therapy with reduced risk of safety critical events like hypoglycemia.

Problem 4: Currently there are many freestanding software applications (apps) available
for smartphones which calculate bolus doses of insulin. These apps regulate dosing of
potentially dangerous insulin, which puts them in the domain of the Food and Drug
Administration (FDA). But none have been approved by the FDA. Patients should not
use such non-approved medical software because of the risk of being instructed to
administer an unsafe dose of insulin [31]. Also in the institutional care sector, systems
with decision support functionality are developed in this “grey area”. CPOE systems in
Europe have not yet been classified as Medical Devices [119]. A discussion is on-going
whether vendors classify their products as Medical Devices Class IIa, Class I or not at
all. The development process of CDSS is complicated and expensive due to requirements
of Medical Device Directive (MDD) conform development.
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Problem 5: Especially for the personalization of insulin therapy new sensor technologies
integrated in applications like wearable devices are very promising. Using intelligent
controllers which are available for example in integrated machine learning approaches
[120] in combination with an arrangement of different sensors can lead to a significant
improvement of insulin therapy. However, the problematic lies in the accuracy of
currently available minimal intrusive sensor systems. Sensors have to be very accurate
to prevent errors in insulin dose calculations. Also food and activity recognition systems
have to be improved to be eligible for insulin therapy. Closed loop systems, such as
artificial pancreas systems face the same problem. Currently, the biggest obstacle for
safely running these systems is not the controller algorithm but the accuracy of CGM
sensor systems.

Problem 6: Personalization of the patient’s diabetes treatment demands patient involve‐
ment. The development of factors for personalization requires frequent documentation
of relevant events (e.g. blood glucose, meals, physical activity, health status etc.) and
adherence to the therapy goals. This human-in-the-loop situation demands special adap‐
tations of CDSS [121]. For elderly, or unexperienced or less motivated patients this may
quickly lead to a therapy overload. Unfortunately, the majority of T2DM patients are
part of this group. The main challenge is the development of therapy aids which are as
least intrusive and interactive as possible.

Problem 7: The treatment of diabetes takes place in different health care sectors (at
home, outpatient care, nursing home, hospital care …). Borders between the health care
sectors make it difficult to provide a decision support that can be seamless used in every
sector. Consequently, the developed CDSS are focused on a special sector and usually
interfaces for data-transfer are lacking. These developments make it difficult for patients
and for healthcare professionals to initialize and optimize therapy. Future research
should focus on cross-border treatment of patients with diabetes.

Problem 8: Machine learning is used to predict blood glucose values. As machine learning
is a data-driven method quality of prediction depends on the quality of available data.
Very low blood glucose (hypoglycemia) is an adverse event. Consequently, data is sparse
which leads to unsatisfactory prediction results for these safety critical situations.

7 Future Outlook

Recent DM guidelines and advances in research and development of diabetes therapy
highlight the importance of therapy personalization.

The ultimate goal of technical research in the field of diabetes therapy is to develop an
artificial pancreas system. But as long as artificial pancreas systems are still a research field
and no commercial product is available, CDSS are valuable tools to assist in the personal‐
ized decision making process. On the one hand, machine learning used within the CDSS
(e.g. short-term glucose prediction, pattern recognition, physical activity detection) has
proven to be a valuable method to support personalized therapy, but on the other hand it has
shortcomings in terms of accuracy and usability in the daily routine (e.g. long-term blood
glucose predictions, energy expenditure calculation, carbohydrate estimation).
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Consequently, future CDSS using machine learning need to improve to be eligible
for DM therapy. Personalization of DM therapy using CDSS is a promising future issue
and various promising research routes exist.
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Abstract. Biobanks are essential for the realization of P4-medicine, hence indis‐
pensable for smart health. One of the grand challenges in biobank research is to close
the research cycle in such a way that all the data generated by one research study can
be consistently associated to the original samples, therefore data and knowledge
can be reused in other studies. A catalogue must provide the information hub
connecting all relevant information sources. The key knowledge embedded in a
biobank catalogue is the availability and quality of proper samples to perform a
research project. Depending on the study type, the samples can reflect a healthy
reference population, a cross sectional representation of a certain group of people
(healthy or with various diseases) or a certain disease type or stage. To overview
and compare collections from different catalogues, we introduce visual analytics
techniques, especially glyph based visualization techniques, which were success‐
fully applied for knowledge discovery of single biobank catalogues. In this paper,
we describe the state-of-the art in the integration of biobank catalogues addressing
the challenge of combining heterogeneous data sources in a unified and meaningful
way, consequently enabling the discovery and visualization of data from different
sources. Finally we present open questions both in data integration and visualization
of unified catalogues and propose future research in data integration with a linked
data approach and the fusion of multi level glyph and network visualization.

Keywords: Biobank catalogue · Linked data · Minimum information about
biobank data sharing (MIABIS) · Knowledge discovery · Visualization · Glyph

1 Introduction

Biobanking is a relatively new concept that has been evolving over the years to become
an essential part of biomedical research. Thousands of biobanks worldwide have been
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collecting bio-specimens, clinical and research data from millions of individuals in
different stages of their lives, before, during and after disease. All this information is a
great source of knowledge for fundamental biomedical research and has the potential to
dramatically contribute to the development of better predictive, preventive, personalized
and participatory (P4) healthcare.

The biobanking landscape is evolving from insulated local biospecimen repositories
to robust organizations providing services that cover a large part of the biomedical
research cycle, from the biobanking processes up to large scale molecular profiling.
High-throughput technologies are more accessible to research-biobanking and the
number of biobanks providing services that require large storage capability and parallel
data analysis is increasing.

One of the major challenges in biobank research is to close the research cycle in such
a way that all the data generated by one research study can be consistently associated to
the original samples and hence data and knowledge can be reused in other studies.

Another challenge is to achieve a real informatics integration of biobanks. Even when
the technical conditions are created to establish networks of biobanks where bio-
resources can be visible to clinicians and researchers regardless of the geographical
location, the harmonization process is still in a very early state, not only due to the
heterogeneous representation of biobank data but also and most importantly, to the lack
of standards for representing and implementing governing policies for ethics and regu‐
lation involving sharing of biobank human samples and data (Fig. 1).

Fig. 1. Example of biomedical research cycle involving biobanking. Data generated in several
steps of the research process should be associated to the original samples in the biobank for further
reuse.

A high level of collaboration is necessary in the biobank community to gather suffi‐
cient resources to be pooled in order to reach statistical significance and hence derive
consistent associations and meaningful knowledge. At the same time, data disclosure
should be carried out in compliance with legal and regulatory issues at different levels:
national, institutional, biobank, study participant, etc. Harmonization, standardization
and regulations need to be in place in order to stimulate the development of infrastruc‐
tures for biobank interoperability in such a way that all these resources can be visible to
the biomedical research community.

Several initiatives are on-going in that direction. For instance, MIABIS: Minimum
Information About Biobank data Sharing [1] defines guidelines where several components
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represent different actors in the biomedical research process involving biobanking. Each
component has a minimum list of attributes required to provide valuable information.

At the European level, an increasing number of countries and projects are imple‐
menting biobank catalogues aiming to make their bioresources visible and hence stim‐
ulate biobank data sharing. MIABIS is being implemented by several of these initiatives
as part of their data models.

The key question when searching a biobank catalogue is where one can get the proper
samples to perform a research project. Depending on the study type, the samples should
reflect a healthy control population, a cross sectional representation of a certain group of
people (healthy or with various diseases) or a certain disease type or stage. To support
this first level of a query, harmonized disease and phenotype ontologies are needed. The
typical next step of a query is which samples are available. Different study types require
different types of samples (e.g., blood, serum plasma, tissue, urine, isolated biomolecules,
such DNA, RNA, or proteins), and depending on the planned analytical challenge since
currently there is no unique description of sample quality available. However the level
of compliance with ISO and CEN standards as well as results from spot check quality
testing will provide a common description of key quality-relevant parameters. Most
research projects not only require access to samples but also access to detailed informa‐
tion on the sample and donor. To provide this information in an internationally standar‐
dized manner requires an enormous international collaborative effort addressing many
as yet unsolved issues of health care informatics. The next level of information required
to initiate a biobank-based research project refers to ethical and legal conformity and
terms of access. All this above mentioned information should be provided in an aggre‐
gated manner to avoid privacy issues. However, the level of detail should be appropriate
in order to allow the definition of a research project and to obtain approval by a research
ethics committee or to pass scientific review. Finally, after successful approval of a
research project by the respective bodies and after signature of a material transfer agree‐
ment, coded data related to individual samples and donors should be made available to
users. All these different steps should be efficiently supported by an integrated biobank
catalogue, thereby minimizing the time period from the first query to a biobank catalogue
to the actual release of samples and data to start the research project. This time period is
the most important performance indicator for biobanks.

Fig. 2. Different levels of a biobanking catalogue. These levels correspond to the steps of user
access needs.
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To overview and compare collections from different catalogues and to search for
new hypotheses, we must find unexpected patterns and interpret evidence in ways that
frame new questions and suggest further explorations. Multilevel glyphs and visual
analytics methods will help us to (1) overview collections within a catalogue as the
human visual sense is optimized for parallel processing, (2) connect the global view
with detail information, (3) provide different contextual views depending on users’
needs and experience levels and (4) deal with heterogeneous data sets and different
levels of data quality.

Current research highlights the need for interactive data visualization of biobank
catalogues, while first approaches of visualization are already emerging [2, 3]. To further
address this need it is essential to combine results of knowledge discovery in biobank
catalogues and make use of visualization to benefit from the high visual data analysis
capacities of humans in order to achieve new fundamental findings for predictive
analytics in the medical domain.

2 Glossary and Key Terms

BBMRI-ERIC: is a pan-European distributed research infrastructure of biobanks and
biomolecular resources. BBMRI-ERIC facilitates the access to biological resources as
well as biomedical facilities and support high-quality biomolecular and medical
research.

Biobank: is a collection of biological samples (e.g. tissues, blood, body fluids, cells,
DNA etc.) in combination with their associated data. Here this term is mostly used for
collections of samples of human origin.

BioSampleDB: The BioSamples database of the EMBL-EBI aggregates sample infor‐
mation for reference samples (e.g. Coriell Cell lines) and samples for which data exist
in one of the EBI’s assay databases such as ArrayExpress, the European Nucleotide
Archive or PRoteomics Identificates DatabasE.

Glyph: In the context of data visualization, a glyph is the visual representation of a piece
of data where the attributes of a graphical entity are dictated by one or more attributes
of a data record [4].

Linked Data: describes a method of publishing structured data so that it can be inter‐
linked and become more useful through semantic queries. It builds upon standard Web
technologies such as HTTP, RDF and URIs, but rather than using them to serve web
pages for human readers, it extends them to share information in a way that can be read
automatically by computers. This enables data from different sources to be connected
and queried.

MIABIS: Minimum Information About Biobank data Sharing is an attempt to harmonize
biobank and research data for sharing. MIABIS defines guidelines where several compo‐
nents represent different actors in the biomedical research process involving biobanking.

P4 Medicine: Preventive, Participatory, Pre-emptive, Personalized, Predictive, Perva‐
sive (= available to anybody, anytime, anywhere).
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TNM staging: The TNM Classification of Malignant Tumours (TNM) is a cancer staging
notation system that gives codes to describe the stage of a person’s cancer, when this
originates with a solid tumor: T describes the size of the original (primary) tumor and
whether it has invaded nearby tissue: N describes nearby (regional) lymph nodes that
are involved: M describes distant metastasis.

Sample Collection: A collection of biological specimens (tissue, blood, blood compo‐
nents, cell lines, biopsies, etc.) having at least one common characteristic.

3 State-of-the-Art

3.1 Tools and Data Structure for Catalogue Harmonizations

3.1.1 State of the Art Publications
Data integration is about combining heterogeneous data sources in a unified and mean‐
ingful way, enabling the discovery and monitoring of data from different sources. Data
integration is synonymous with sharing. When it comes to biomedical data, complexity,
diversity and sensitivity are major factors driving the modelling of the integration
process. An additional factor is the need to comply with the ethics and regulations for
sharing clinical data or research data involving human samples.

The DataSHaPER (Data Schema and Harmonization Platform for Epidemiological
Research) is both a scientific approach and a suite of practical tools. Its primary aims
are to facilitate the prospective harmonization of emerging biobanks, provide a
template for retrospective synthesis and support the development of questionnaires and
information-collection devices, even when pooling of data with other biobanks is not
foreseen. [5].

The integration of biomedical data is preceded by harmonization and standardization
processes. The BioSHaRE project [6] demonstrated how retrospective harmonization
could make it possible to perform complex statistical analysis on distributed data without
compromising personal data protection when using DataSHIELD method [7]. Another
interesting sharing tool is eagle-i [8] that allows bio-resources discovery among research
institutions. Eagle-i uses the ontology approach to model research resources as instru‐
ments, platforms, protocols, bio-specimens, etc. in a distributed environment.

MIABIS is the BBMRI-ERIC’s approach to harmonize biobank data for sharing.
MIABIS 1.0 standardized high-level biobank data. The main components were
“Biobank” and “Sample Collection” [1] (level 1 and level 2 as in Fig. 2). MIABIS paved
the way for the creation of the first ontology for biobanking: omiabis [9]. These two
steps in the biobank harmonization process have raised interest from the biobank
community. Projects such as BiobankCloud (http://www.biobankcloud.com/), BioMed‐
Bridges (http://www.biomedbridges.eu/) and RD-Connect (http://rd-connect.eu/) are
implementing MIABIS in their data models. Several catalogue initiatives from BBMRI-
ERIC member states and BCNet (http://bcnet.iarc.fr/) are also implementing MIABIS.
MIABIS 2.0 is currently being designed and a widespread adoption of this standard in
Europe is expected.

In the biomedical research domain, integration and interoperability strongly depend
on good methods and open source tools that facilitate the adoption of standards and
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hence stimulate the sharing culture. Harmonization is frustrating hard work that requires
significant human intervention. Biomedical informatics systems are not easily modifi‐
able or adaptable to new standards. We need best practice guidelines for semantics and
data formats which at the same time, allow biobanks and researchers to continue using
their own idiosyncratic semantics. Biobank management systems should be queried to
discover what data they can offer and they should return references to data in the form
of URIs (Uniform Resource Identifiers). In that way, biobanks and researchers will use
their own semantic annotations rather than imposed specific labels and attributes. At
some point the biomedical research domain will need to embrace the Internet of Thing
(IoT) concept which is perfectly adaptable when it comes to cataloguing biobank and
research bioresources.

Started in the BBMRI Netherlands, the MOLGENIS/catalogue tool was developed
as a unified framework to create and federate local and national biobank catalogues. The
result is an open source software that is now collaboratively developed between BBMRI,
CTMM/TraIT, LifeLines, BioMedBridges and RD-Connect to name a few. The cata‐
logue can host four levels of information: (1) biobank/study descriptions using custom
or MIABIS standard format; (2) data schema/data dictionary of data elements; (3)
aggregate data/sample availability counts and (4) the individual level data ready for
analysis. Increasingly bigger datasets are required for epidemiological and genetic anal‐
ysis and hence it is important to enable pooling of data from multiple biobanks.

The MOLGENIS/catalogue is building on the open source MOLGENIS platform
[10]. This platform was chosen because its data structure can be completely configured
using a meta-data definition in the Excel file. It offers pre-build components that allow
users to (i) upload data (ii) visualize the data in aggregated or tabular form (iii) securely
share the data through a comprehensive security model (iv) integrate data from different
domains. In addition there are programmatic interfaces in R for statisticians and in
javascript for systems integrators, which also allows data federation of multiple
MOLGENIS/catalogues as demonstrated in the BioMedBridges project.

In collaboration with BioSHaRE, Biobank Standardisation and Harmonisation for
Research Excellence in the European Union, MOLGENIS also addresses the challenge
of data harmonization and integration via the BiobankConnect [11] toolbox aids,
designed to assist with this arduous task.

3.1.2 Advantages and Disadvantages of Data Exchange Scenarios
With the growing possibilities of biobank data sharing, (associative) studies can achieve
the power necessary to unveil biologically relevant associations for complex traits or
diseases. However, sharing phenotypic and genotypic information opens up a complex
world of regulatory compliance and privacy concerns. When this information is shared
and can be linked back, re-identification of the subject becomes a real concern. Minimal
information models help to reduce the risk of re-identification by reducing the available
parameters. Study subject selection for most associative studies can be performed on
coarser information that aggregates subjects in larger cohorts of similar patients and
therefore protects their privacy.

Standardisation of the data items in the models improves the ability to find and reuse
biobank data, but simplification of complex phenotypic information in coarse data
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vocabularies can lead to a loss of precision. Data vocabularies and ontologies need to
be extensive and up to date with the current insights into the biology of diseases. A
linked data model provides the ability to maintain the precision of rich ontologies by
using linkage instead of tying a data model to a specific ontology.

3.2 Visual Analytics for Biobank Catalogues

3.2.1 State of the Art Publications
When dealing with the integration of biological data for analysis, visualization plays a
major role in the process of understanding and sense-making [12, 13]. An overview
about the state of the art in the visualization of multivariate data is given by Peng and
Laramee [14] as well as Bürger and Hauser, where they discuss how different techniques
take effect at specific stages of the visualization pipeline and how they apply to multi-
variate data sets being composed of scalars, vectors, and tensors. Moreover they provide
a categorization of these techniques with the aim of a better overview of related
approaches [15], with an update published 2009 [16].

Visual data exploration methods on large data sets were described by several
authors, and particularly Keim [17], Hege et al. [18], Fayyad, Wierse and Grinstein
[19], Fekete and Plaisant [20], and Santos and Brodlie [21] provide a good introduction
to this topic. A recent state-of-the-art report on glyph based visualization and a good
overview on theoretic frameworks, e.g. on the semiotic system of Bertin, was given
by Borgo et al. [22].

Krzywinski et al., [23] introduce a network structure called hive plots, a graph
visualization with nodes as glyphs in the context of systems biology. The layout and
format of their glyphs is extensible and editable. Genes that connect cancer subsystems
to other systems are represented differently. Another interesting application of glyphs
for a visual analytics is an approach for understanding biclustering results from micro‐
array data that has been presented by Santamaria, Theron and Quintales [24] and
another one by Gehlenborg and Brazma [25] and Helt et al. [26] and a recent work by
Konwar et al. [27]. The closest work to using glyphs with an adaptive layout is the
work of Legg et al. [28] in the application domain of sport analysis. Here the data space
is event based, and the adaptive layout strategy is focused on overlapping events with
so called “macro glyphs”, which combine several glyphs into one. In the “macro
glyph” approach only scaling and no level of detail suitable for different screen spaces
are applied. Maguire describes a taxonomy based glyph design with an application of
biological workflow analysis [29, 30]. Last but not least Müller et al. [2] also show the
usage of data glyphs in a visual analytics application and provide an outlook to a
biomedical web visualization scenario, the combination of focus and context principle
and different level of details are shown in Fig. 3.

A glyph visualizes the mortal state, disease free survival time and the T-Staging of
a diagnosis, related to a sample, see Fig. 4.
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Fig. 4. Mapping of sample attributes to a 3D glyph

Fig. 5. Comparison of two sample collections of the Biobank Graz

In Fig. 5 the comparison of two sample collections of the Biobank Graz, each
covering the same time range of 25 years is shown. The spatial arrangement of the
glyphs is done in an age pyramid. All male cancer patients are on the left side and
female patients on the right side. The vertical position of a glyph is determined by
the patients’ age and the horizontal position by the T-staging. We can clearly see the
differences in the overall number of rectum and prostate cancer cases as well as the

Fig. 3. Visualization of a collection of approx. 10.000 colon cancer samples, shown in 4 zoom
levels [2]
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different distributions of T-Staging. Beside of the overview and comparison of two
medium size groups, outliers and data errors can be identified easily, e.g. patients with
age of 0 years and female prostate cancer cases.

3.2.2 Advantages and Disadvantages of Glyph Visualization
Glyph visualization is a natural way to map information about a sample to a visual
symbol (glyph). However, the data density in this application area is very high, therefore
we propose higher dimensional (2,5D and 3D) visualization methods. There are certain
advantages and disadvantages when using 2D, 2.5D and 3D glyph visualizations,
including different possibilities for placement strategies, linking and brushing, mapping
low- to high-dimensional data, projection and interaction, up to benefitting from depth
perception while dealing with issues such as occlusion and overlapping glyphs. A
comprehensive comparison of 2D, 2.5D and 3D glyphs are still a matter to be researched:
Systematically comparing visual complexity levels of 2D, 2.5D and 3D glyph visuali‐
zation and methods for smooth transitions between different levels of graphical
complexity are therefore fundamental research questions yet to be solved [2, 22].

Nonetheless, glyph based visualization is less abstract for effectively conveying
information compared to other (visual) representations. By combining glyphs with
graphs, certain visualization issues can be solved. For instance, by presenting complex
glyphs as nodes in a network, the network itself shrinks and glyph visualization benefits
from the graph’s spatial arrangement.

Compare also Sect. 4 regarding Challenges and Sect. 5 regarding the fusion of Glyph
and Network visualization.

4 Open Problems

Challenge 1: Harmonization of data is a huge challenge in the interchange of biobank
data. Minimal data models such as MIABIS are a first attempt to harmonize the field,
however, cannot solve the problem of harmonizing the data between different institutes.
There is a difference in the definition of data items.

Challenge 2: tightly connected with challenge 1 there is also a difference in the manner
in which data is encoded. Data is often encoded in non-standardized text (often called:
“free text”) and in the respective national language and there is a plethora of incompat‐
ible or only partially compatible ontologies and thesauri, often with merely a national
scope.

Challenge 3: Legal and ethical requirements in the protection of patient privacy and
concerns about losing control of research data lead to hurdles for sharing of data. Even
though technical solutions exist to pseudonymize data, manual code lists are often used,
which leads to risk of privacy breaches.

Challenge 4: At the same time sharing and linking data can lead to re-identification
through combination of data from different sources.
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Challenge 5: When the data elements are (well) structured and connected to ontologies
we can analyse and compare collections in a catalogue. For this purpose glyph visuali‐
zation techniques can be applied, i.e. for visual comparison, hypothesis generation and
quality control. Here an appropriate glyph design is important, the development of glyph
assessments algorithms and a comparison of visual complexity levels of 2D, 2½ D and
3D glyph visualization has to be done.

Challenge 6: Additionally to challenge 5, we have to find methods for smooth transi‐
tions between different levels of graphical complexity. The main research question
here is, on how a high-density design (along with the challenges of the realization of
such aspects, e.g. occlusion, depth perception and visual cluttering), indeed influence
the user perception and recognition rate in glyph visualization. In particular it is neces‐
sary to look at the composition and interferences of visual variables and to carry out a
systematic evaluation of shape/placement methods. There are a lot of studies comparing
2D versus 3D visualization techniques in the visualization of spatial related data, e.g.
medical renderings or geographic data. However, for abstract information no inherent
mapping of the data either to the 3D shape of a glyph nor the spatial position is given,
which would be a natural model for visualization. In current solutions the glyph
rendering method is changed due to the glyph size in the screen space. Future work
should focus on methods for automatic glyph transitions (fusion of semantic and graph‐
ical zoom) and evaluate the results in a study.

Challenge 7: After the open problems of dimensionality and transitions of level of
details are solved, algorithms for the optimization of the sample/catalogue attribute
mapping to visual variables and methods for the spatial arrangement of glyphs
derived from network structures have to be developed.

Challenge 8: In the fusion of glyph and network visualization a central research question
is, how a network topology can be mapped to glyph attributes (e.g. relations of a
sample to several studies) and/or to spatial positioning (e.g. temporal relation of a sample
within a disease trajectory).

5 Future Outlook

A major task in the integration and harmonization of biobank catalogues is the provision
of a terminology mapping service to overcome the non comparability of data from
different sources. This results from the circumstance that institutions usually define their
own best fitting data schema for sole use. As a consequence, they often omit to describe
the exact meaning of their data, because they don’t take into account, that it could be
useful for future research performed by others. However, for the correct interpretation
of data, especially for third parties, this is essential. Another problem is the fact that the
partnering scientists have to consent on a common data schema, which is time-
consuming and assumes willingness for compromises.

Within a terminology-mapping service attributes of structured data sets are described
in a detailed both formal as well as descriptive manner. This should, in an ideal world,
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be done by data creators, who usually know their domain well. Future research will
develop methods to support this process as well as motivating the users in doing it. This
can e.g. be done with a visual analytics application, which indicates possible matches
between attributes from different data schemas already during the data creation process
and supports the description of data schema by presenting possible existing metadata
sets matching as a starting point.

In the terminology mapping data elements are described by a set of overlapping
ontologies, which can are modelled as Linked Data objects and stored together with
sample attributes in a (federated) triple store. A toolbox for the curation of a triple store
is essential to describe and improve data quality and completeness of a biobank cata‐
logue. For the visualization part of such a toolbox glyphs together with focus and
context techniques can be applied. To overcome certain issues with spatial placement
of glyphs and benefitting from the fact that common graphs are easy to read, glyph
visualization together with network visualization of Linked Data and enrichments on
linked data graphs should be combined. In addition, nesting graphs by putting related
biobank data into a formal graph structure may enable further exploration. With the
emerging standards in biobank data sharing, this approach can be applied to visualise
unified biobank catalogues and consequently, unveil and make sense of biologically
relevant associations.
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