
A Fully Parallel Particle Filter Architecture
for FPGAs

Fynn Schwiegelshohn(B), Eugen Ossovski, and Michael Hübner

Embedded Systems for Information Technology, Ruhr-Universität-Bochum,
Bochum, Nord-Rhein-Westfalen, Germany

{fynn.schwiegelshohn,eugen.ossovski,michael.huebner}@rub.de

Abstract. The particle filter is a nonparametric filter which approxi-
mates the posterior system state through a finite number of state sam-
ples i.e. particles drawn from a probability distribution. It consists of
three steps which are motion update, sensor update and resampling.
The first two steps are easily parallelized since the calculations do not
depend on other particles. The resampling step however requires all par-
ticles to determine the particle set for the next iteration of the particle
filter. In this paper, we introduce a novel FPGA optimized resampling
(FO-resampling) approach to solve the parallelization problem of the
resampling step by introducing virtual particles. Compared to multino-
mial resampling, FO-resampling achieves similar results with the added
benefit of being able to completely parallelize all the steps of the par-
ticle filter. Additional to evaluating our approach with simulations, we
implement a particle filter with FO-resampling on an FPGA.

Keywords: Particle filter · FPGA · Resampling · Parallelization ·
Robotics · Localization · Sensor update · Motion update · FPGA
optimized resampling

1 Introduction

The particle filter is an alternative to the common and well known Kalman filters
which use Gaussian techniques for state estimation. They have been successfully
employed in a wide variety of robotic application scenarios [9]. Since they do
not make strong parametric assumptions on the posterior density, they are able
to represent complex multi-modal beliefs. Due to this fact, particle filters are
often used in robotics when a robot might face data association problems which
result into several different system hypothesis. The accuracy of the state esti-
mation depends on the amount of samples that are drawn from the probability
distribution by the particle filter. An infinite amount of samples lets the par-
ticle filter converge to the correct posterior state. Therefore, the particle filter
usually operates with a large number of particles. In [8], the authors state that
autonomous robots can benefit from FPGAs as processing platforms due to their
ability to execute tasks in parallel and to fully utilize elastic algorithms. In order

c© Springer International Publishing Switzerland 2015
K. Sano et al. (Eds.): ARC 2015, LNCS 9040, pp. 91–102, 2015.
DOI: 10.1007/978-3-319-16214-0 8

92 F. Schwiegelshohn et al.

to achieve the best performance from a given processing platform, the algorithm
has to be adapted accordingly. If the robot is able to execute the particle filter
algorithm in parallel, the localization accuracy would only influence the particle
filters processing time slightly compared to a sequential implementation.

A lot of research has been conducted on the parallelization of particle fil-
ters [3,4,6,7]. Gong et al. introduce a parallel resampling method for shared
memory architectures based on systematic resampling [4]. With the shared mem-
ory approach, they are able to eliminate the dependency between the left and
right boundary when choosing a particle from the particle set and thus are able
to parallelize the resampling step. Through the use of shared memory, this solu-
tion is not easily implemented on FPGAs but is useful for graphical processing
units (GPU). Choppala et al. propose to use a random network as fixed resam-
pling unit for the particle filter [3]. Here, each particle will interact with a fixed
set of other particles provided by the network. The resampler then samples one
particle form the respective set either deterministically or stochastically. Miao
et al. developed a parallel particle filter architecture for FPGAs which uses inde-
pendent Metropolis-Hastings sampling to increase performance on the root mean
square error value [6]. They successfully achieved high speed and accurate per-
formance with their implementation. However, only several processing elements
responsible for 250 particles each are used thus no full parallelization is imple-
mented. Mountney et al. present another parallel particle filter architecture for
neural signal processing [7]. Here, the time needed to execute the particle filter
is independent of the number of particles. This is not the case in the other par-
ticle filter architectures since they use processing elements to calculate several
particles. We aim to let the processing time be independent from the number of
particles.

Therefore, this paper proposes a novel, fully parallel particle filter architec-
ture. It’s main contribution is a new resampling scheme to fully parallelize each
step of the particle filter for each particle. This new resampling scheme is based
on the idea of Gibbs sampling and does not require the complete particle set
to execute the resampling step. In order to adapt each state hypothesis to the
current sensor data, virtual particles are generated that randomly move through
the state space. If one virtual particle achieves a higher importance factor than
the actual particle, the real particle assumes the state hypothesis of the virtual
particle. The performance of this new resampling approach has been evaluated
against the multinomial resampling scheme through MATLAB simulations. The
implementation of the particle filter is done on a Zynq7000 System on Chip
where further performance measurements and evaluations are conducted. There,
we analyze the frequency at which the particle filter can be driven, the amount
of real particles that can be utilized when using the complete chip area, and
the performance of the particle filter on hardware compared to the MATLAB
implementation.

In the following section, we will introduce each component and in our archi-
tecture before explaining our implementation in Section 3. Section 4 presents our
results with several test cases for the particle filter with FO-resampling. Finally,
we will conclude our work in Section 5.

A Fully Parallel Particle Filter Architecture for FPGAs 93

2 Architecture Design

In order to be able to parallelize the particle filter, it is necessary to examine the
algorithm and detect the parallelizable parts. Code 1 shows the basic particle
filter algorithm and its functionality.

Code 1. Algorithm of the Particle Filter

1: particle_filter(χt−1, ut, zt)
2: {
3: χ̄t = χt = ∅
4: for m = 1 to M do

5: sample x
[m]
t ∼ p(xt | ut, x

[m]
t−1)

6: w
[m]
t = p(zt | x

[m]
t)

7: χ̄t = χ̄t + 〈x[m]
t , w

[m]
t 〉

8: endfor
9: for i = 1 to M do
10: draw i with probability

11: add x
[i]
t to χt

12: endfor
13: return χt

14: }

χt−1 resembles the set of particles from the particle filter iteration, ut

describes the most recent control input, and zt stands for the current sensor
measurement. In Line 5, the algorithm generates a first state hypothesis for the
current particle based on the particle x

[m]
t−1 and the control input ut. In robotic

localization, this step is also known as the motion update step. In Line 6, a
weight is then calculated for the sampled particle from Line 5 with the help of
the sensor measurement zt. The function with which the weight is calculated can
be an environment model or a simple Gaussian distribution function. Calculation
of the importance factor is generally called sensor update step in robotics. Line
8 simply saves all sampled particles with their respective weights in a temporary
set χ̄t. The last step, which involves the Lines 9 to 12 of Code 1, is called the
resampling step and is the most important one of the particle filter. Here, the
algorithm draws M particles from the temporary set χ̄t. The probability for each
particle to be selected is defined by the respective weight wm

t which has been
calculated in Line 6. Therefore, each particle can be selected multiple times, thus
changing the composition of the final set χt compared to the temporary set χ̄t.
After the resampling step, all particles have uniform weights until the sensor
update step is executed again.

2.1 FPGA Optimized Resampling

Instead of replacing particles with a small importance factor through parti-
cles with a high one, FPGA optimized resampling (FO-resampling) requires the

94 F. Schwiegelshohn et al.

particles to increase their weight by themselves. This approach eliminates the
possible interrelationship between each particle from the former particle set χt−1

to the current particle set χt. Code 2 shows the FO-resampling algorithm in
pseudo code with N being the number of particles.

Code 2. Algorithm of FPGA optimized resampling

1: foreach particle i ∈ {1, . . . , N}
2: fo_resampling(xi,wi)
3: {
4: for n = 1 to B do
5: sample r ∼ U(−1, 1)
6: x̂i,n = xi + σxi

· r
7: ŵi,n = p(zt | x̂i,n)
8: if ŵi,n > wi then
9: xi = x̂i,n

10: wi = ŵi,n

11: endif
12: endfor
13: return xi

14: }

In FO-resampling, every particle has a constant number of B opportunities
to increase its weight wi, see Line 4. In every opportunity, a virtual particle
x̂i,n will be randomly generated around the actual particle xi. This is shown
in Line 5 and 6. First we draw a random number r from a uniform distribution
with the boundaries [−1, 1]. This random number is multiplied with the standard
deviation σxi

and then added to the current particle state xi. The standard devi-
ation σxi

is used to define the spread of x̂i,n around xi. If the initial importance
factor is very low, a higher standard deviation can be chosen in order to poten-
tially reach regions where higher weights can be achieved. If the initial weight
is already very high, a smaller value for σxi

should be chosen since the position
with the highest probability is close by and only minor corrections are required
in order to reach the highest possible weight. Consequently, if the importance
factor ŵi,n of the virtual particle achieves a higher value than the corresponding
factor wi of the real particle, xi will be replaced with x̂i,n. If ŵi,n < wi is true,
the real particle is not replaced and the virtual particle from the next iteration
will be compared to the real particle again. In Code 2, Line 8 to 11 show the
replacement of the real with the virtual particle parameters. After B iterations,
all particles xi are incorporated into the posterior estimation.

In this resampling method, no operations are used which require a rela-
tion between all particles xi. This enables the design of a complete parallel
particle filter architecture and is thus optimized for parallel architectures
such as FPGAs. One of the main benefits from this architecture is that each
component is reused for creating and evaluating the virtual particles for each
particle. Generally, the motion and sensor models of particle filters are com-

A Fully Parallel Particle Filter Architecture for FPGAs 95

putationally the most complex components. This leads to a high processing
time when these components are reused on a general purpose processor. When
implemented on an FPGA, these components consume a lot of chip area when
implemented as hardwired logic circuits but do not have a high processing time.
Therefore, we do not add additional components to the particle filter for resam-
pling but use the components which are already implemented. This leads to an
efficient chip area usage on FPGAs and is the reason why we call this resampling
technique FO-resampling.

An argument against our novel resampling technique is that FO-resampling is
biased since it does not eliminate particles with low weights through replacement
and the iteration value B is finite. We will empirically show in Section 4 that an
estimation of the iteration value B can be made in order to achieve satisfactory
weight quality for each particle.

3 Implementation

As mentioned in the previous section, the particle filter consists of the three
components motion model, sensor model, and FO-resampler. We will discuss
the implementation of each component in this section. The particle filter receives
as input control data ut, sensor data zt, and random numbers from a random
number generator (RNG). The particle’s state hypothesis is represented by the
parameter triple xi = (x, y, θ), with x and y being the coordinates in a 2D space
and θ being the orientation of the object which is to be localized, in this use
case the robot.

All particle filter components have to be connected to each other in order to
create the parallel particle filter architecture. Figure 1 shows the particle filter’s
architecture. Here, the parallel calculation of each particle can be clearly seen as
well as the reuse of the motion and sensor model components. The RNG, which
is required by the motion model, is implemented as a linear feedback shift reg-
ister. The RNG generates normally distributed random numbers. Since several
random number have to be available at once, we decided to let the RNG run
continuously and fill a shift register with it’s random numbers. When the motion
model components require the random numbers, three of them for each system
state parameter will be sent to each component. This approach enables us to use
only one RNG for the complete particle filter and not one RNG for each parti-
cle. After the resampling step is completed, the particle set has to be interpreted
in order to gain a position estimation. This is done through calculation of the
mean for each parameter of all particles. This approach is only feasible when no
multi-modality is present in the system but is easily adaptable to support multi-
modality when required. After calculating the mean, the position estimation is
ready to be sent to an output for further processing.

The control logic, for enabling each component is not present in Figure 1. It’s
state machine is designed as a Moore machine and is presented in Figure 2. Here,
the value ”calc en” stands for the enable signal for the motion and sensor model
and the value ”res en” stands for the enable signal for the resampling compo-
nent. The state machine is in the state ”undefined” directly after initialization,

96 F. Schwiegelshohn et al.

Action input Observation input
RNG z-1

z-1

z-1

Motion
model

random [0:2]
Sensor
model FO-

Resampler

z-1

z-1

z-1

Ø Estimation
output

xi+1

wi+1

recalc

wi

xi

Random number
generator and shift

register
Particle filter

State estimation
through particle

mean

Action input
Observation input

Motion
model

random [0:2]
Sensor
model FO-

Resampler

recalc

Fig. 1. Complete particle filter architecture

reset=1 event: input_valid = 1 event: clk = 1
event: clk = 1

&& counter < B

event: clk = 1
counter >= B

recalc
calc_en: 1
res_en : 0

resamp
calc_en: 0
res_en : 1

calc
calc_en: 1
res_en : 0

idle
calc_en: 0
res_en : 0

rr

undefined
calc_en: 0

res_en : 0

Fig. 2. The control logic to enable the respective component for each particle filter
state

as undefined signals may be present on the control logic inputs. The particle
filter is brought to a defined state through the ”reset” signal. This signal also
lets the state machine transition from the ”undefined” state to the ”idle” state.
In this state, all components of the particle filter are locked and wait for valid
input signals. The ”input valid” signal indicates that valid inputs are available
for the particle filter and that the motion and sensor model can start processing
the inputs. This is shown in the state machine by the transition from the ”idle”
state to the ”calc” state through the ”input valid” signal. The results of both
components are available after one clock cycle and the state machine can tran-
sition at the clocks rising edge ”clk=1” to the state ”resamp”, where evaluation
of the particle state hypothesis through FO-resampling takes place. The state
machine will alternate between the ”recalc” and ”resamp” state for the creation
and evaluation of the B virtual particles. After B iterations of both states, the
final particle state hypothesis has been calculated and will be sent to the output
of the FO-resampling component. The state machine will then transition from
the ”resamp” state into the ”idle” state, where it will wait until the next valid
input is available for processing.

A Fully Parallel Particle Filter Architecture for FPGAs 97

4 Evaluation and Results

Since FO-resampling is a novel resampling approach, it’s accuracy performance
should be compared to other established resampling methods. Traditional resam-
pling methods only have the number of particles to increase accuracy. In FO-
resampling however, both the number of real and virtual particles can be adjusted
in order to reach the desired accuracy. For this purpose, we investigate the accu-
racy performance of FO-resampling at first in simulation, see Section 4.1, before
evaluating the implementation, see Section 4.2.

4.1 Simulation of FO-resampling

We employ a well established model for evaluating resampling methods [1,2,6]
with the following functions

xk+1 =
xk

2
+

25 × xk

1 + x2
k

+ 8cos(1.2k) + vk (1)

zk =
x2
k

20
+ nk. (2)

xk describes the current actual state the device under test (i.e the robot) is in.
zk are the sensor readings which the particle filter receives. vk and nk are zero
mean Gaussian random variables with the variances σ2

vk
= 10 and σ2

nk
= 1. This

system model’s equation (1) has a high nonlinearity which makes localization
very challenging. We compare FO-resampling with multinomial resampling on
this system model. The number of particles in both particle filters is N = 100
and additionally, the particle filter with FO-resampling is executed with B = 10
virtual particle iterations. The variance of the motion update is σ2

mot = 1 and of
the sensor model σ2

z = 0.05 The results are depicted in Figure 3.
When comparing both estimations with the true system states, it is apparent

that both resampling method perform satisfactory in accuracy and robustness.
Even when estimations prove to be very wrong, both resampling methods man-
age to recover and regain a correct estimation for the system state. Since the
model for the sensor data induces a dual-modality to the system through x2

k, the
performance of both particle filters can be increased when a more sophisticated
clustering scheme is used to determine the posterior system state. In order to
quantify the performance of the particle filter, we use the Root Mean Square

Error (RMSE) value RMSE =
√

1
k

∑k
t=0(xt − x̂t)2. The RMSE is traditional

measure of performance for Bayes filters. The RMSE value was determined with
different numbers of particles N for multinomial resampling and with different
numbers of particles N and iterations B for FO-resampling. The system model
described in the equations (1) and (2) was used for each simulation. The param-
eters σ2

mot, σ2
z , σ2

vk
, and σ2

nk
have not been changed. Table 1 shows the RMSE

results for 1 to 10000 particles.
A poor performance with a small number of particles is expected. Even with

a small number of 10 particles, a significant improvement in the RMSE value can

98 F. Schwiegelshohn et al.
x k x k

time k

true system state
true system state

estimation
estimation

time k

10 iterations

Multinomial resampling FO-resampling

Fig. 3. Comparison between multinomial resampling and FO-resampling

Table 1. RMSE values for multinomial resampling dependent on the number of par-
ticles

Number of particles N 1 5 10 50 100 1000 10000
RMSE 0.220 0.159 0.062 0.065 0.044 0.049 0.045

be seen. With a particle number above 100, we see the RMSE value converging
towards σz without any indication for further improvement. Table 2 shows the
RMSE values of FO-resampling dependent on the particle number N and the
number of virtual particles B.

Table 2. RMSE values for FO-resampling dependent on the number of particles and
the number of iterations

RMSE Number of particles N
/ 1 5 10 50 100 1000
1 0.381 0.216 0.206 0.292 0.244 0.267

Number 5 0.069 0.148 0.140 0.163 0.151 0.152
of 10 0.097 0.077 0.071 0.114 0.104 0.092

iterations B 50 0.031 0.037 0.043 0.046 0.036 0.039
100 0.042 0.033 0.041 0.044 0.048 0.030

If FO-resampling is compared to multinomial resampling solely based on the
particle number N (B=1), multinomial resampling is far superior. This is due
to the fact that multinomial builds the final particle set out of the particles with
the highest weights and therefore is able to converge faster to the true system
state. However, as the number of virtual particles increases, we can see that even
with a small number of particles a similar RMSE performance is achieved. With

A Fully Parallel Particle Filter Architecture for FPGAs 99

B = 50 and N = 10, the RMSE value is in the same region as with multinomial
resampling. Furthermore, we can see that at certain values for N and B no
significant improvement regarding the RMSE value is made. This shows that
FO-resampling converges towards a final estimation even with small values for
N and B. This is especially attractive for parallel hardware implementations, as
the N defines the chip area usage of the particle filter.

4.2 Performance of FO-resampling on Real Hardware

We implemented the particle filter with FO-resampling on the programmable
logic of a Zynq7020 [5]. In order to send data to the particle filter, the ARM
Cortex-A9 dual core processor has to communicate with the programmable logic.
This is done with an AXI-Lite bus. The ARM processor executes a program
which sends simulated sensor and motion data to the particle filter. When the
position estimation is complete, the particle filter will send its result to the
processor. In order to determine how many particles we are able to use for our
test case, we synthesize our implementation with different number of particles.
Table 3 shows the resource requirements for N = 1, N = 10, and N = 14.

Table 3. Resource usage of the particle filter with N = 1, N = 10, and N = 14
particles

N = 1 particle N = 10 particles N = 14 particles
Resources Used in % Used in % Used in % Available
Slice LUTs 4079 7.66 28860 54.24 52412 98.51 53200

Slice Registers 1549 1.45 4636 4.35 5934 5.57 106400
DSPs 22 10 220 100 214 97.27 220

It can be seen that a maximum of N = 14 particles is possible on a FPGA
from the Artix-7 family. With 14 particles, the slice lookup tables (LUT) have
almost been fully utilized with 98.51%. The particle filter does not require that
much slice registers, but fully utilizes the available DSPs. The DSPs are used
for calculating the estimations in the motion and sensor model as well as in the
RNG. What is interesting to point out is, that all of the DSPs are already used at
N = 10, but at N = 14 only 97.27% are utilized. This is due to the synthesizing
process, which remaps some components to LUTs when the preferred component
is not available.

Another important attribute of the hardware implementation of the particle
filter, is the operating frequency that can be achieved. We therefore simulated
the complete particle filter after synthesis to analyze the number of clock cycles
needed to perform one position estimation. Figure 4 shows a snippet of the
cycle accurate simulation. Here, the signals ”clk” for the clock, ”action[0:2]” for
the control data input, ”observ[0:2]” for the measurement, ”x estimate[0:2]” for
the particle state estimation, ”random” for the random number generation, and

100 F. Schwiegelshohn et al.

Fig. 4. Excerpt of the implemented particle filter simulation

”global state” for the control logic state machine are depicted. The calculation
of a new random variable takes three clock cycles. This random variable is then
written to the shift register which updates all of the other shift register’s con-
tents. The process of calculating a new particle state estimation ”x estimate[0:2]”
calc state requires both control logic states resamp and calc. calc can only be
executed after the random variable shift register is updated, as it requires unbi-
ased random variables. Therefore, one iteration of resamp and calc determines
the time for calculating one iteration of ”x estimate[0:2]”. As can be seen in
Figure 4, this takes six clock cycles. We can determine the processing time with
the equationtpf = 6 × B × 1

fmax
, with B being the number of iterations for

FO-resampling and fmax being the maximum operating frequency of the syn-
thesized design on the Zynq7020 for N = 10 particles. Based on the information
from the Synthesis tool, we are able to operate the particle filter at a clock
frequency of fmax = 150MHz. With B = 100, this leads to a processing time
of tpf = 6 × 100 × 1

150MHz = 3.996μs for one final position estimation by the
particle filter.

While the maximum number of particles seems rather small,we can still
achieve a comparable performance to multinomial sampling with N = 1000
particles when we execute our particle filter with N = 10 particles and B = 100
virtual particles. These are our architecture parameters for the use case valida-
tion. First we evaluate our implementation with five very simple test cases. The
initial position for all particles is xinit = (0, 0, 0), with the parameters being
the x-, the y-coordinate, and the rotation θ respectively. In every test case, the
particle filter receives the motion control input u = (1, 1, 1). The sensor measure-
ment z is different with each test case in order to analyze the performance of the
implemented particle filter, when the initial position estimation is increasingly
inaccurate. Here, we assume that the measurement z does not suffer from severe
interferences and closely resembles the actual system state. The results of these
test cases are presented in Table 4.

The results from xest shows that particle filter can reach an accurate state
estimation even when the measurement z is far off compared to the control
input u. In our final use case, we assume the particle filter is performing the
localization step of a robot. The robot follows a trajectory which resembles a
hexagon. After each time step Δt, the robot performs localization based on it’s
odometric model with the control data ut for respective time step. The particle
filter receives the actual system state overlayed with white Gaussian noise with

A Fully Parallel Particle Filter Architecture for FPGAs 101

Table 4. Test cases to determine the performance of the particle filter with increasing
inaccurate initial state estimations

Initial state Control input u Measurement z Estimated state xest

(0, 0, 0) (1, 1, 1) (1, 1, 1) (1.0190, 1.0281, 0.9896)
(0, 0, 0) (1, 1, 1) (1.35, 1.35, 1.35) (1.3784, 1.3926, 1.3329)
(0, 0, 0) (1, 1, 1) (1.5, 1.5, 1.5) (1.4502, 1.4829, 1.5159)
(0, 0, 0) (1, 1, 1) (1.75, 1.75, 1.75) (1.7451, 1.7633, 1.7548)
(0, 0, 0) (1, 1, 1) (2, 2, 2) (1.8904, 1.8987, 1.8320)

a variance of σ2 = 1. The following Figure 5 shows the localization results of the
particle filter. The starting point of the robot is the position (0, 0). It then follows

x

y

true position
estimated positionx

o

x

x

x

x

xxx

x

x

x

x x o

o

o

o

ooo

o

o

o

o o

Fig. 5. State estimation in the robot use case

a hexagon form counterclockwise until it is at the starting point again. It can be
clearly seen that the particle filter is able to follow the robot’s trajectory very
closely and that the estimated positions do not have a large deviation from the
true position. This can also be seen by the RMSE value of 0.0469 of this use case.
The particle filter with FO-resampling managed to generate accurate estimate
in several different scenarios. Of course more tests have to be conducted with
different parameters, but for an initial evaluation, the particle filter performed
satisfactory.

5 Conclusion

In this paper, we introduced a novel resampling scheme, FO-resampling, for par-
ticle filters. Normally, the resampling step cannot be fully parallelized, since the
next particle set is created out of the current particle set based on each particles

102 F. Schwiegelshohn et al.

importance factor. FO-resampling eliminates this bottleneck by treating each
particle individually. In order to gain a better importance factor without consid-
ering every other particle in the set, we FO-resampling introduced the concept
of virtual particles which are spread around the initial particle estimation. The
importance factor of these virtual particles is compared to the importance fac-
tor of the real particle and replaced if the virtual particle’s weight is higher.
FO-resampling shows promising results in terms of accuracy and stability for
the test cases we conducted. However, more use cases have to be implemented
and different motion and sensor models have to be implemented in order to fully
evaluate this new resampling scheme. This will be done in our ongoing research.
Furhtermore, we aim to implement this architecture on larger FPGAs such as
Virtex-7 or a rapid prototyping machine like Chipit, in order to better evaluate
the implemented particle filter’s performance with a larger number of particles.

References

1. Arulampalam, M., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters
for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal
Processing 50(2), 174–188 (2002)

2. Carlin, B.P., Polson, N.G., Stoffer, D.S.: A monte carlo approach to nonnormal
and nonlinear state-space modeling. Journal of the American Statistical Association
87(418), 493–500 (1992)

3. Choppala, P., Teal, P., Frean, M.: Particle filter parallelisation using random network
based resampling. In: 2014 17th International Conference on Information Fusion
(FUSION), pp. 1–8 (July 2014)

4. Gong, P., Basciftci, Y., Ozguner, F.: A parallel resampling algorithm for particle
filtering on shared-memory architectures. In: 2012 IEEE 26th International Parallel
and Distributed Processing Symposium Workshops PhD Forum (IPDPSW), pp.
1477–1483 (May 2012)

5. Inc., X.: Zynq 7000 all programmable soc. Tech. rep.. (http://www.xilinx.com/
products/silicon-devices/soc/zynq-7000.html)

6. Miao, L., Zhang, J., Chakrabarti, C., Papandreou-Suppappola, A.: A new parallel
implementation for particle filters and its application to adaptive waveform design.
In: 2010 IEEE Workshop on Signal Processing Systems (SIPS), pp. 19–24 (October
2010)

7. Mountney, J., Silage, D., Obeid, I.: Parallel field programmable gate array par-
ticle filtering architecture for real-time neural signal processing. In: 2010 Annual
International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), pp. 2674–2677 (August 2010)

8. Schwiegelshohn, F., Huebner, M.: An application scenario for dynamically recon-
figurable fpgas. In: 2014 9th International Symposium on Reconfigurable and
Communication-Centric Systems-on-Chip (ReCoSoC), pp. 1–8 (May 2014)

9. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics, chap. Chapter 4.3 The
Particle Filter, pp. 96–112. Intelligent Robotics and Autonomous Agents series,
The MIT Press (2006)

http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

	A Fully Parallel Particle Filter Architecture for FPGAs
	1 Introduction
	2 Architecture Design
	2.1 FPGA Optimized Resampling

	3 Implementation
	4 Evaluation and Results
	4.1 Simulation of FO-resampling
	4.2 Performance of FO-resampling on Real Hardware

	5 Conclusion
	References

