
Preemptive Hardware Multitasking in ReconOS

Markus Happe(B), Andreas Traber, and Ariane Keller

Communication Systems Group, ETH Zurich, Zürich, Switzerland
{markus.happe,ariane.keller}@tik.ee.ethz.ch, atraber@student.ethz.ch

Abstract. Preemptive hardware multitasking is not supported in most
reconfigurable systems-on-chip (rSoCs), which severely limits the scope
of hardware scheduling techniques on these platforms. While modern
field-programmable gate arrays (FPGAs) support dynamic partial recon-
figuration of any region at any time, most hardware tasks cannot be pre-
empted at arbitrary points in time, because context saving and restoring
is not supported out of the box by the vendors. Although hardware
task preemption techniques have been proposed in the past, they can-
not be found in today’s rSoCs. In this paper we therefore propose a
novel methodology for preemptive hardware multitasking that does not
require any changes at the task level and show that our approach can be
seamlessly integrated to an established execution environment for rSoCs,
called ReconOS. Our experimental results show that we can successfully
capture and restore the states of all flip-flops and block RAMs in a recon-
figurable region on a Xilinx Virtex-6 FPGA at arbitrary points in time.
Context capturing/restoring can be performed at a bandwidth of 22-
28 MB/s, which allows for context switches in the order of milliseconds.

Keywords: Preemptive hardware multitasking · Context save and
restore · Partial reconfiguration · Reconfigurable system-on-chip · ICAP

1 Introduction

Dynamic partial reconfiguration (DPR) is one of the most exciting features
of modern field-programmable gate arrays (FPGAs). DPR allows to reconfig-
ure partial regions of the FPGA fabric without affecting the rest of the sys-
tem. Reconfigurable systems-on-chip (rSoCs) combine processor(s) with multiple
reconfigurable hardware regions (slots) on a single chip and use DPR to dynam-
ically switch between multiple hardware tasks in a slot. For instance, rSoCs
can dynamically map the most used tasks to hardware according to the current
workload to increase the system performance. However, hardware tasks can not
be preempted in most rSoCs and either have to run to completion or need to
be terminated during execution, before they can be replaced by other hardware
tasks. This severely limits the scope for hardware multitasking, where multiple
hardware tasks share the same reconfigurable slots over time.

In contrast to this, software systems support preemptive multitasking where
multiple software tasks share a single processing unit. A scheduler selects the next
c© Springer International Publishing Switzerland 2015
K. Sano et al. (Eds.): ARC 2015, LNCS 9040, pp. 79–90, 2015.
DOI: 10.1007/978-3-319-16214-0 7

80 M. Happe et al.

software tasks which should be executed on the processor by following a given
scheduling algorithm. Using preemptive multitasking, a scheduler can preempt
and resume all tasks at arbitrary points in time and therefore ensure fairness
amongst competing software tasks, minimize starvation and improve the respon-
siveness of the tasks by applying smart scheduling algorithms. Unfortunately,
we do not see similar benefits for most reconfigurable hardware systems to fully
exploit the DPR feature on today’s FPGAs, preemptive hardware multitasking
should be supported in rSoCs. One major challenge of preemptive hardware mul-
titasking is the saving/restoring of the task’s context. Unlike software tasks that
have a well-defined context, the context of a hardware task is stored in a large
number of state-holding elements, such as flip-flops, DSP blocks, LUT-RAMs
and block RAMs, which complicates context switching.

Several research projects have developed preemptive hardware multitask-
ing techniques, which either follow a (i) task-specific or a (ii) bitstream
read-back preemption technique. The task-specific techniques add dedicated
hardware structures to the hardware tasks, e.g. scan-chains [2,5], such that the
context of a task can be extracted/inserted. However, task-specific methods gen-
erate a considerable overhead in hardware resources and require modifications
of the tasks at source code or netlist level. It would be highly preferable, if the
hardware tasks do not need to be modified at all (similar to software tasks).

The second class of preemptive hardware multitasking techniques reads-back
the current configuration of the slot area over the internal configuration access
port (ICAP). Related work has shown that preemptive hardware multitasking is
possible using bitstream read-back for Virtex-e [4], Virtex-4 [3] and Virtex-5 [8]
FPGAs. Unfortunately, the bitstream read-back methods have to be tailored to
the FPGA families, since the FPGA architectures and bitstream format change
from one FPGA family to the next. Most proposed methods require modifications
at the task-level, which complicates their integration to existing rSoCs.

Although preemptive hardware multitasking seems to be highly beneficial,
no advanced execution environment for rSoCs seems to support any of these
techniques. Therefore, we show in this paper that our novel preemptive hard-
ware multitasking technique can be integrated into a multithreaded execution
environment called ReconOS. To the best of our knowledge, this is the first paper
that investigates hardware task preemption on Virtex-6 FPGAs using bitstream
read-back over the ICAP interface.

This paper provides the following contributions:
1. We give detailed instructions how to capture and restore flip-flops and block

RAMs on Virtex-6 FPGAs, revealing many information that cannot be found
in the official Xilinx documentation. Our novel preemptive hardware multi-
tasking technique does not require any changes at task level.

2. We extended the ReconOS execution environment for rSoC architectures to
support our preemptive hardware multitasking technique. For this purpose,
we implemented a new hardware ICAP controller that supports all required
functionality for capturing/restoring a task’s context.

Preemptive Hardware Multitasking in ReconOS 81

3. Finally, we show in our experimental evaluation on a ReconOS system that
we can efficiently restore the contexts of four different hardware threads on
a Virtex-6 FPGA at arbitrary points in time.
The paper is structured as follows: Section 2 discusses related work and

Section 3 presents our preemptive hardware multitasking methodology. In
Section 4 we show how the presented multitasking methodology can be embedded
to the ReconOS execution environment. Finally, Section 5 presents our experi-
mental results and Section 6 concludes the paper.

2 Related Work

Several context save and restore approaches have been studied in the past 15
years. Simmler et. al. [9] first proposed a technique for transparent context sav-
ing and restoring by bitstream read-back and manipulation. By refining these
concepts, Kalte and Porrmann [4] implemented an architecture for relocatable
hardware tasks which allows the extraction of state values from an FPGA’s stor-
age elements and their injection into partial bitstreams for reconfiguration in a
different location on the device. Their approach is transparent to the hardware
module’s designer, but was tailored to outdated Xilinx Virtex-e FPGAs.

More recent related work has demonstrated that context saving and restor-
ing can also be performed on newer Xilinx FPGAs, such as Virtex-4/5 FPGAs,
by reading back the configuration data over the ICAP interface. For instance,
Jozwik et al. [3] have used a Virtex-4 FPGA to capture and restore the con-
text of hardware tasks. However, in contrast to our approach they needed addi-
tional combinational logic inside the reconfigurable regions to be able to restore
the task’s context. Morales-Villanueva and Gordon-Ross [8] have presented a
technique to capture and restore the context of hardware tasks over the ICAP
interface on Virtex-5 FPGAs. They have also demonstrated that it is possible
to relocate hardware tasks between reconfigurable regions. Our work fits well to
the approaches that read-back all registers of a reconfigurable region over the
ICAP interface [3,8]. Unlike related work, we focus on newer Virtex-6 FPGAs
and additionally capture and restore the state of block RAMs.

As an alternative approach, Jovanovic et. al. [2] as well as Koch et al. [5]
proposed linking registers together in a serial scan-chain that can be used to
read or write a hardware module’s context in a transparent manner. Compared
to the previous preemption techniques, the time overhead for a task preemption
is reduced at the cost of additional hardware. Although the scan-chain approach
can be applied to all FPGA families, it requires modifications of the hardware
modules. In contrast to this approach, we can preempt hardware tasks without
any modification at the source code or netlist level.

Lübbers and Platzner [7] extended the multithreaded programming model
provided by ReconOS to support cooperative scheduling techniques. In coopera-
tive multitasking a hardware thread informs the operating system
whether it can be preempted. At thread preemption the thread saves its context
to a shared memory that can be accessed by the operating system. This approach

82 M. Happe et al.

can significantly reduce the thread context and allows for thread migrations to
other reconfigurable regions. However, in contrast to our approach cooperative
multitasking requires deep modifications of the hardware threads at source code
level and does not allow for thread preemptions at arbitrary points in time.

3 Methodology: How To Preempt Hardware Tasks

This section introduces our novel methodology for hardware task preemption on
Xilinx FPGAs at arbitrary points in time. We assume that the vendor design
tools are used to generate an rSoC, which contains at least one reconfigurable
region. The Xilinx design tools for partial reconfiguration [10] generate (i) a
full bitstream that contains the configuration of the entire FPGA fabric and
(ii) multiple partial bitstreams that contain task-specific configurations of the
reconfigurable regions (slots). At system start, the full bitstream has to be down-
loaded to the FPGA configuration memory, which contains the entire rSoC con-
figuration. At run-time, the rSoC can dynamically replace a hardware task in a
reconfigurable slot by downloading the partial bitstream of the next hardware
task over the ICAP interface. We assume that the partial bitstreams are stored
in external memory, e.g. a compact flash card. It is important to note that the
RESET AFTER RECONFIG attribute has to be set for all reconfigurable regions in
the user constraint file (UCF), when the vendor tools are executed. Otherwise
the state of the FPGA resources can not be restored for these regions.

Fig. 1. Preemptive hardware multitasking approach for a reconfigurable region

The Xilinx approach for partial reconfiguration does not support saving and
restoring a task’s context out of the box. Therefore, we propose a novel method-
ology for Xilinx FPGAs which captures/restores the context of a partial region to
allow for preemptive hardware multitasking. Our methodology does not require
any modification of the hardware tasks, but we assume that each task has a
clock and a reset signal. Our preemption methodology relies on the capabilities
of the ICAP interface and the bitstream format of the FPGA family. Currently,
we only support the Xilinx Virtex-6 family. Figure 1 shows the main stages of
our multitasking approach for one reconfigurable region. The four stages of our
methodology are described in the following subsections.

3.1 At Task Creation: Parse All Partial Bitstreams

In an initial stage, we parse all partial bitstream of a reconfigurable region
to identify certain configuration metadata. The partial bitstreams of a Xilinx

Preemptive Hardware Multitasking in ReconOS 83

Virtex-6 contains three different kinds of configuration frame blocks: (i) con-
figurable logic blocks (CLBs), input/output blocks, clocks, (ii) BRAM contents
and (iii) a CFG CLB block. The CFG CLB block defines which part of the FPGA
needs to be reset or reconfigured. It only appears in a partial bitstream, if the
RESET AFTER RECONFIG attribute has been set for this region [10,11]. Figure 2
shows an abstract overview of a partial bitstream with three frame blocks.

Fig. 2. Parsing metadata of a partial bitstream

We store the frame address register (FAR), the number of 32-bit words and
the offset inside the partial bitstream of each frame block as metadata. This
metadata is required when we want to capture the context of a hardware task.
Furthermore, the rSoC creates a working copy of each original bitstream at run-
time, called ’captured bitstream’. This working copy is stored in main memory.
It gets updated, whenever the corresponding task is preempted, to store the
captured context. It can be deleted, when the task terminates. Similar to Liu et
al. [6], we replace the cyclic redundancy check (CRC) at the end of the captured
bitstream with a ’no operation’ command, thus we do not need to update the
CRC value at task preemption. Note that this might cause reliability issues.

3.2 At Task Start: Write Original Bitstream

In the second stage, we configure a hardware task for a first time. Hence, no
context needs to be restored. Therefore, we only need to write the original par-
tial bitstream that has been generated by the Xilinx bitgen tool to the ICAP
interface. Details on how to write (partial) bitstreams to the ICAP interface can
be found in the corresponding user guide [11].

We set the reset signal of the hardware task during the reconfiguration pro-
cess. This reset signal should also be connected to the static interfaces that
connect the hardware task to the rest of the system. If the static interfaces to
the reconfigurable region are active during reconfiguration, it might happen that
data is sent accidentally from the partial region to the interfaces.

3.3 At Task Preemption: Capture Bitstream

In the third stage, a hardware thread is preempted and we need to store the
contents of its state-holding elements, such as flip-flops (FFs) and block RAMs

84 M. Happe et al.

(BRAMs). We deactivate the clock of the hardware task during the capturing
process to freeze the task execution.

In a first step, we capture the current state of all flip-flops in hidden registers
in the configuration memory (INIT0/INIT1) by calling the GCAPTURE command
over the ICAP interface. The hidden registers INIT0/INIT1 contain the initial
states of all FFs and are used during the initial configuration of the FPGA. The
GCAPTURE command must be sent over ICAP to the device, which replaces the
initial values of the FFs with the captured values, see [10,11] for more details.
Per default this command operates on the entire FPGA fabric. Therefore, we
need to define constraints for the reconfigurable region by writing the CFG CLB
configuration frame block of the original bitstream to the ICAP interface.

In a second step, we read back the configuration frame blocks of the recon-
figurable region as defined by the metadata in Section 3.1 (with an exception
for the CFG CLB block). We update the captured bitstream of the hardware task
by overwriting the configuration frames with the captured configuration frames.
Instructions for reading back configuration frame blocks can be found in [11].

In a final step, we need to modify certain configuration bits in order to
restore the BRAM contents at a later point. We believe that these bits define
for each BRAM whether its memory contents should be restored. We have found
out that these bits follow a certain pattern by investigating the bitstreams for
different reconfigurable regions. Hence, this step can be automated. According
to our observations, we have to modify a single bit of specific 32-bit words in
the configuration frame blocks for BRAMs by following this equation:

w′
i(j) =

{
0, if ∃k ∈ N0 : i = 81k+36

8 ∧ j = 17
wi(j), otherwise

where wi(j) is the j-th bit of the i-th configuration word (31 downto 0).

3.4 At Task Resumption: Restore Bitstream

In the final stage, we write a captured bitstream back to the reconfigurable region
to restore the previously preempted hardware task. After this reconfiguration
we need to trigger the global set/reset port of the STARTUP VIRTEX6 primitive.
Otherwise, the states of the FFs and BRAMs will not be restored. The partial
bitstreams contain a GRESTORE command, which is probably supposed to call this
startup primitive. However, similar to [8] we have observed in our experiments
that the GRESTORE command did not restore the states of the FFs and BRAMs.
Therefore, we manually trigger the startup method over the global set/reset
(GSR) port over the STARTUP VIRTEX6 interface after writing back the captured
bitstream. Furthermore, we set the reset signal of the hardware task in order
to prevent unexpected behavior of the hardware task during reconfiguration of
the reconfigurable region. We unset the reset signal before we trigger the GSR
event. Similar to the capturing stage, we disable the clock in this stage.

Preemptive Hardware Multitasking in ReconOS 85

4 ReconOS Architecture For Hardware Multitasking

We have integrated our multitasking methodology to the operating system
ReconOS. Although ReconOS supports the dynamic reconfiguration of hardware
modules (hardware threads) out of the box, there was no support for preemp-
tive hardware multitasking. In this section we describe the ReconOS architecture
and introduce our new ReconOS ICAP hardware controller and software sched-
uler, which can preempt and resume hardware tasks in reconfigurable regions at
arbitrary points in time.

4.1 ReconOS Multithreading Approach and Architecture

The operating system ReconOS [1] extends the multithreaded programming
model to the domain of reconfigurable hardware. Instead of regarding hardware
modules as passive coprocessors to the system CPU, they are treated as indepen-
dent hardware threads on an equal footing with software threads running on the
system. ReconOS allows hardware threads to use the same operating system (OS)
services for communication and synchronization as software threads, providing
a transparent programming model across the hardware/software boundary. The
hardware threads are represented by delegate threads in software, which call the
operating system services on behalf of the hardware threads.

ReconOS has been implemented as an extension to (embedded) operating
system kernels, such as Linux or Xilkernel. ReconOS is targeted at platform
FPGAs integrating microprocessors and reconfigurable logic. It takes advantage
of the dynamic partial reconfiguration capabilities of Xilinx FPGAs to reconfig-
ure hardware threads during run-time. This allows multiple hardware threads to
transparently share the reconfigurable resources.

Figure 3 shows the hardware architecture of a ReconOS system that supports
preemptive hardware multitasking. The architecture contains a single recon-
figurable hardware region (reconfigurable slot), which can hold one hardware
thread at a time. A dedicated hardware OS interface (OSIF) handles the hard-
ware threads OS requests and forwards them to the operating system kernel
running on the CPU. It also manages the low-level synchronization. Each hard-
ware thread is connected to the memory subsystem over a memory interface
(MEMIF), such that each thread can autonomously access the main memory.

In Figure 3 the hardware thread A is configured to the reconfigurable slot.
However, a software scheduler can replace the currently running hardware thread
with another thread (B, C, or D). The original and captured partial bitstreams
of all available hardware threads (A–D) are stored in the main memory. The
captured bitstreams include the captured states of the FFs and the BRAMs.

In ReconOS a hardware thread is connected to its delegate thread and to
the memory subsystem over FIFO-based interfaces. The threads should not be
preempted while the thread sends/receives data to/from the FIFO interfaces,
since this data is currently not captured (and restored). Hence, the scheduler
should wait until all FIFO interfaces of a thread are empty, before it preempts
the thread. We assume that our hardware threads are computing for the majority

86 M. Happe et al.

Fig. 3. ReconOS architecture with one hardware slot and four hardware threads (A–D)

of the time and only access the OSIF/MEMIF interface once in while. Hence, we
believe that this restriction of the interruptibility can be neglected in practice.

4.2 ReconOS ICAP Controller

We have implemented a new hardware ICAP controller and a software scheduler,
which support preemptive hardware multitasking in ReconOS. The scheduler is
a Linux user-space task that controls all stages of our multitasking method-
ology and performs the required modifications of the captured bitstreams. The
ReconOS HW ICAP controller was implemented as a ReconOS hardware thread,
such that the controller has a separate interface to the main memory. Therefore,
the software scheduler only needs to send read/write commands and main mem-
ory addresses to the ReconOS HW ICAP thread to read-back or write partial
bitstreams. The scheduler can also set the reset signals and enable/disable the
clock signals for all reconfigurable hardware slots. Furthermore, the scheduler
can trigger the global set/reset port of the STARTUP VIRTEX6 interface, which is
instantiated in the ReconOS HW ICAP thread.

Figure 4 shows the block diagram of the ReconOS HW ICAP controller. The
ICAP interface is connected to a local dual-port memory which is controlled
by a separate finite state machine (ICAP FSM) that manages the transfer of
the bitstream between the local memory and the ICAP interface. This local
memory can be accessed by a second finite state machine (Reconos FSM) that
manages the communication with the operating system and the main memory.
The local memory is not large enough to hold a complete bitstream. Thus, the
ICAP controller splits the bitstreams into chunks. We use double-buffering for
writing original/captured bitstreams and single-buffering for reading back the
configuration frame blocks of a slot.

Preemptive Hardware Multitasking in ReconOS 87

HW_ICAP_Controller

GSR
ReconOS_FSM ICAP_FSM

ICAP

Local_RAM

(Dual-Port)

STARTUP_VIRTEX6

O
S
IF

M
E
M
IF

Fig. 4. ReconOS HW ICAP controller

5 Experimental Results

In this chapter we present experimental results for our preemptive hardware
multitasking approach on Virtex-6 FPGAs. We have performed all measurements
on a Xilinx Virtex-6 ML605 evaluation board (XC6VLX240T FPGA).

In our experiments, we have used a ReconOS design with a single reconfig-
urable slot as depicted in Figure 3. The processor, all hardware modules and
hardware threads were clocked at 100 MHz. We have tested four reconfigurable
hardware threads: ADD, SUB, MUL, and LFSR, which are described below:

1. The ADD thread contains three 32-bit registers R1−3. The thread continu-
ously computes R3 = R1 + R2. The registers can be accessed by a software
application over the OSIF interface.

2. The SUB thread is similar to the ADD thread, but computes R3 = R1 − R2.
3. The MUL thread computes the product of R1 and R2 in R1 steps. The (inter-

mediate) result is stored in R3. The result R3 is computed as the addition of
R2 with itself R1 times, i.e. R3 =

∑R1
i=1 R2. In each step, R1 is decremented

by one and R3 is updated to the current intermediate result. Hence, we can
preempt the thread during computation and validate if the register values
have been correctly captured/restored. This thread is used to validate the
cycle-true state restoration of flip-flops.

4. The LFSR thread stores the values of several linear feedback shift registers
(LFSRs) in a local memory of 8KB and continuously shifts their register
values. The thread only implements a single 16-bit linear feedback shift reg-
ister, which processes all LFSRs sequentially. For this purpose, the hardware
thread loads the value of one LFSR at a time from the local memory, shifts its
16-bit register for one bit and stores the register value back to the local mem-
ory; and then continues with the next LFSR. Figure 5 shows the overview
of the LFSR thread.
The initial values for the LFSRs are copied from the main memory to the
local BRAMs over the MEMIF interface. The LFSR thread is used to validate
the cycle-true state restoration of flip-flops and BRAMs. In our experiments,
we have stored four LFSRs in the local memory.

The ADD, SUB, and MUL threads also contain an 8KB local memory each, which
can be accessed from software over the MEMIF interface in order to test, if the

88 M. Happe et al.

Fig. 5. LFSR hardware thread

BRAM entries have been captured and restored correctly. However, these threads
do not alter their local memories internally during computation. Hence, we can
not validate a cycle-true state restoration of the BRAMs for these threads.

In extensive experiments, we validated that all hardware threads could be
successfully preempted and restored at arbitrary points in time. For the MUL and
LFSR thread, we could validate that the state restoration was cycle-true for both
FFs and BRAMs. Table 1 shows the results of our performance measurements
for two bitstream sizes. We have randomly selected two regions on the FPGA
fabric, where the first region covers about 2% of the FPGA area (bitstream size:
361 KB) and the second region covers about 4% of the FPGA area (bitstream
size: 741 KB). It can be seen that context capturing takes longer than context
restoring and that the execution times depend linearly on the bitstream size.

Table 1. Context capture/restore performance

bitstream size tcapture trestore ttotal bandwidth max swaps/s

741 KB 16.0 ms 9.7 ms 25.7 ms 28 MB/s 38
361 KB 10.3 ms 5.5 ms 15.8 ms 22 MB/s 63

The capture time tcapture of a partial bitstream depends on the number and
size of reconfiguration frames and the overhead to trigger the readback requests
over the ICAP interface. For performance reasons, successive reconfiguration
frames can be combined to a single readback request, which lowers the overhead
caused by the ICAP interface. For both cases, the partial bitstreams can be
read back with two readback requests only, one for the CLB configurations and
one for the BRAM configurations. Since the performance overhead for the two
readback operations is the same for both bitstream sizes, the relative bandwidth
is higher for the larger bitstream size in Table 1. However, the maximum number
of task swaps per second is lower for the larger bitstream.

Scheduling algorithms for reconfigurable hardware threads are not in the
scope of this paper. However, we have performed an example measurement over
time for a manually-defined schedule that uses all four hardware threads, which
is shown in Figure 6. In this example, all four threads are scheduled periodically
in the following sequence: ADD→SUB→LFSR→SUB→ADD→MUL). The individual
time slices have been predefined manually (not by a scheduling algorithm) and
we assume that the threads are independent from each other. We can see that it
is possible to swap several times between the hardware threads in the interval of

Preemptive Hardware Multitasking in ReconOS 89

MUL

LFSR

SUB

ADD

 0 100 200 300 400 500 600 700 800

time (ms)

restore run capture

Fig. 6. Preemptive multitasking with four hardware threads

Table 2. Resource consumption

component #FFs #LUTs #BRAMs

HW slot 5616 2808 7
ADD/SUB 375 603 2
MUL 474 751 2
LFSR 474 810 2
ReconOS HW ICAP 323 741 2
XPS HWICAP 750 804 1

a single second. The partial bitstream size was 361 KB in this example, which
corresponds to about 2% of the FPGA area.

Table 2 lists the resource consumption for the partial reconfigurable slot,
for our reconfigurable hardware threads and for the ReconOS HW ICAP con-
troller. It can be seen that our hardware threads only use a fraction of the actual
slot area. However, we always capture and restore all flip-flops and BRAMs of
the partial region. Hence, the capture and restore times for this slot are always
the same. This means that we could implement more complex threads than
the ADD,SUB,MUL,LFSR thread for this slot without increasing the capture/restore
times. The ReconOS HW ICAP controller represents the entire hardware over-
head of our multitasking approach, since we do not introduce any extra logic
to the hardware threads in contrast to most related work. However the resource
consumption of our HW ICAP controller is comparable to the resource con-
sumption of the Xilinx XPS HWICAP controller. Hence, we conclude that the area
overhead of our approach is negligible.

6 Conclusion and Future Work

In this paper, we have shown a novel methodology that allows for preemptive
hardware multitasking on Xilinx Virtex-6 FPGAs without requiring modifica-
tions at the task level. Our approach reads back the contents of all FFs and block
RAMs of a predefined reconfigurable region on an FPGA fabric over the ICAP

90 M. Happe et al.

interface. We have integrated our preemptive hardware multitasking approach to
the ReconOS operating system. In our experiments, we could successfully cap-
ture and restore the context of four different hardware threads at a bandwidth
of 22-28 MB/s, which allows for multiple tasks swaps per second.

In future work we plan to extend our context capturing / restoring mecha-
nisms to LUT-RAMs and DSP blocks and experiment with real-world applica-
tions. We plan to port our hardware multitasking approach to further FPGA
families, such as Xilinx Virtex-7 FPGAs or Zynq SoC boards. Finally, we want
to investigate how task relocation techniques can be integrated to ReconOS.

References

1. Agne, A., Happe, M., Keller, A., Lübbers, E., Plattner, B., Platzner, M., Plessl, C.:
ReconOS - An Operating System Approach for Reconfigurable Computing. IEEE
Micro 34(1), 60–71 (2014)

2. Jovanovic, S., Tanougast, C., Weber, S.: A hardware preemptive multitasking
mechanism based on scan-path register structure for FPGA-based reconfigurable
systems. In: NASA/ESA Conf. on Adaptive Hardware and Systems (2007)

3. Jozwik, K., Tomiyama, H., Honda, S., Takada, H.: A novel mechanism for effective
hardware task preemption in dynamically reconfigurable systems. In: Int. Confer-
ence on Field Programmable Logic and Applications (2010)

4. Kalte, H., Porrmann, M.: Context saving and restoring for multitasking in recon-
figurable systems. In: FPL Conference. IEEE (2005)

5. Koch, D., Haubelt, C., Teich, J.: Efficient hardware checkpointing: Concepts, over-
head analysis, and implementation. In: FPGA Symp. ACM (2007)

6. Liu, S., Pittman, R.N., Forin, A.: Minimizing partial reconfiguration overhead with
fully streaming DMA engines and intelligent ICAP controller. In: ACM/SIGDA
Int. Symposium on Field Programmable Gate Arrays (2010)

7. Lübbers, E., Platzner, M.: Cooperative multithreading in dynamically reconfig-
urable systems. In: FPL Conference. IEEE (2009)

8. Morales-Villanueva, A., Gordon-Ross, A.: HTR: On-Chip Hardware Task Reloca-
tion for Partially Reconfigurable FPGAs. ARC 2013. LNCS, vol. 7806, pp. 185–196.
Springer, Heidelberg (2013)

9. Simmler, H., Levinson, L., Männer, R.: Multitasking on FPGA coprocessors. In:
Int. Workshop on Field Programmable Logic and Applications. Springer (2000)

10. Xilinx: Partial Reconfiguration - User Guide UG702 v14.5 (2013). http://www.
xilinx.com/support/documentation/sw manuals/xilinx14 7/ug702.pdf

11. Xilinx: Virtex-6 FPGA Configuration - User Guide UG360 v3.7 (2013).
http://www.xilinx.com/support/documentation/user guides/ug360.pdf

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug702.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug702.pdf
http://www.xilinx.com/support/documentation/user_guides/ug360.pdf

	Preemptive Hardware Multitasking in ReconOS
	1 Introduction
	2 Related Work
	3 Methodology: How To Preempt Hardware Tasks
	3.1 At Task Creation: Parse All Partial Bitstreams
	3.2 At Task Start: Write Original Bitstream
	3.3 At Task Preemption: Capture Bitstream
	3.4 At Task Resumption: Restore Bitstream

	4 ReconOS Architecture For Hardware Multitasking
	4.1 ReconOS Multithreading Approach and Architecture
	4.2 ReconOS ICAP Controller

	5 Experimental Results
	6 Conclusion and Future Work
	References

