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Abstract. This paper presents a novel method for estimating the dynamic en-
ergy consumption of soft processors in FPGA, using an operand-value-based 
model at the instruction level. Our energy model contains three components: the 
instruction base energy, the maximum variation in the instruction energy due to 
input data, and the impact of one’s density of the operand values during soft-
ware execution. Using multiple benchmarks, we demonstrate that our model has 
only 4.7% average error and 12% worst case error compared to the reference 
post-place-and-route simulations, and is more than twice as accurate as existing 
instruction-level models. 
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1 Introduction 

Processor core energy consumption is a first order metric for FPGA-based embedded 
system design, due to its direct impact on battery life. Early and accurate modeling of 
soft-processor performance and energy consumption, for a given application, is 
needed to perform early design space exploration with reasonable confidence. A fine-
grained and rapid estimation tool is also important for reconfiguration and customiza-
tion of system architecture as well as optimization of software implementation for 
energy consumption.  

Modeling the dynamic energy consumption of a soft processor remains a major 
challenge. Power measurement techniques typically used with ASIC processors, as in 
the work presented by Bazzaz et al. [1] cannot be adopted to measure the power dis-
sipated in the FPGA resources implementing the soft processor core, independent of 
the other FPGA components. Hence, low level post-place-and-route models and simu-
lations are preferred as they enable capturing the switching activity of the final FPGA 
logic resources [2]. However these are incredibly slow, thereby making the design 
space exploration and SW optimization process impractical. Alternatively, energy 
models based on processor power states are used for quick estimates but they can  
be very inaccurate. Instruction-level models promise higher accuracy than mode-
based models, however, it is very difficult to accurately characterize the energy  
consumption of individual instructions in soft processors implementations. In fact, 
conventional methods used in previous work to isolate the energy consumed by an  
instruction examine its execution under very unique states that do not accurately  
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reflect the energy it would consume when it is executed as part of a normal applica-
tion run. Our goal is to build a concise instruction-level model that can provide fast 
and accurate estimates of dynamic energy consumption for soft processors in FPGA. 
Using a heuristic approach, our model accounts for both the inter-instruction effects 
and the operand values of the instructions for estimating the energy consumption.  

Previous work suggest insignificant impact of operand values on processor power 
dissipation in ASIC [3]. However, we observed that the operand values greatly impact 
the energy consumed by soft processor cores in FPGA. This is due to the fact that 
Soft-processor data-path units are implemented on several Configurable Logic Blocks 
(CLBs) and DSPs. This requires the operand values propagate through much longer 
routes between these block than in ASIC, giving them higher charge capacitance. 
These signals are also frequently reset to Zero by instructions like the NOP and small 
operand operations [4]. As such, there’s an increased probability of signals switching 
after the execution of instructions operating with values containing many ones. The 
higher density of ones in an instructions operands, the larger the probability of switch-
ing, hence higher power dissipation and energy consumption by the processor core. A 
profiling and estimation tool is required to calculate this operand value metric and to 
apply the energy models to large applications. 

The novel contributions of this paper are as follows:  

1. We designed a novel energy data model for a soft-processor FPGA implementation 
that can be generated heuristically without analysing the processor architecture and 
pipeline, using sets of applications described in Section 3.  

2. We designed an estimation tool that analyses C code at the machine instruction 
level, applies the energy data model and annotation techniques to estimate the en-
ergy of each instruction executed in a given run, as described in Section 4. 

2 Related Work 

There are several modeling techniques to estimate energy consumption of soft proces-
sors. They can be categorized based on the model’s abstraction level. The most accurate 
models simulate the processor at the gate level using post-place and route simulations, 
tracking the switching rate all internal signals. Examples of tools, based on such models, 
include Xilinx’s XPower Analyzer XPA [1], [5] and Synopsys’s Power Compiler [6]. 
Accurate, low level simulation models suffer from very slow simulation speeds. In fact, 
in order to estimate the energy consumed executing the Dhrystone benchmark [7] on a 
Microblaze processor core [8] using XPA took over 2 days of simulation time. This 
simulation was done on a quad-core i7 PC with 16 GB RAM. 

Higher level modeling of processor energy and power is typically done by charac-
terizing the workload of the processor. These can be divided in three broad groups 
based on the number of contributing factors in each model. We will refer to these 
groups as first, second and third order models. They are identified as follows: 

• First order models are state-based, in which the energy consumption is derived 
from the state of the processor. An average dynamic power value is assigned to 
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each power state. The dynamic energy is then estimated by multiplying the 
weighted average power by the total execution time. Jouletrack implements a very 
simple first order model [3]. System level estimation tools like Softwatt [9], 
Wattch [10], and other state-based estimation techniques [11] use first order proc-
essor models because of their simplicity. Energy aware scheduling techniques  
using first order models have also been proposed utilizing such models [12]. How-
ever, first order models do not reflect the processor energy savings from software 
optimizations independently of performance. For example, re-ordering assembly 
instructions to increase the number of repeating instructions reduces energy con-
sumption. This effect cannot be observed by first order models.  

• Second order models assign an estimated average energy value for each instruction 
in the processor’s instruction set. The energy required to execute a program is then 
estimated as the sum of the energy values assigned to all the executed instructions. 
Many completed works use this technique such as [3], [13], [14]. More work  
however is required to prove the accuracy of these models to estimate large appli-
cations running on soft processors. In fact, we observed very negligible accuracy 
improvement over the first order models.  

• Third order processor models incorporate inter-instruction energy effects. When 
analyzing the energy required for completing an instruction, the neighboring in-
structions are also accounted for. The reasoning is that neighboring instructions in-
dicate the state of the processor before and after executing an instruction. Several 
processors, including an Intel 486DX2 processor [1] and a Fujitsu DSP [15], have 
been modeled using this approach. VLIW processors have also been modeled using 
third order models [16]. Third order models have been applied to estimate system-
level energy consumption [17]. However, third order models do not take the effects 
of input data for the application into account, which can lead to significant errors.  

The techniques proposed in these works were adopted to generate three models of 
an implementation of the Microblaze processor implemented on a Xilinx Virtex5 
FPGA. The Microblaze instruction set architecture is similar to the RISC-based DLX 
architecture [18]. We used these models to evaluate the applicability of these tech-
niques on a modern soft processor. The results presented in this paper demonstrate 
significant errors in excess of 100%. In the quest of identifying the causes of these 
inaccurate results, we derived results showing significant impact of operand value on 
energy consumption. The following section describes the proposed model, generated 
using a novel instruction characterization technique.  

3 Operand-Value-Based Processor Energy Model 

This section describes the proposed methodology for creating an Operand-Value-
Based Model (OVBM) for a processor implementation consisting of: 

• The base energy cost for each instruction, with zero operands,  
• The maximum energy variance, due to operand values, for each instruction, and 
• Linear parameters, slope and intercept (m and b) modeling the correlation between 

the one’s density and the energy consumed in the processor data-path signals.  
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repeatedly executing an instruction or a pair of instructions in either an infinite loop 
or in very long programs of the repeating instructions [1], [3], [13, 14, 15, 16]. This, 
however, accounts for a very special and limited execution case of the instruction, not 
representative of its expected executions in real applications. The inaccuracy of such 
models is clearly demonstrated in the Section 5. 

In order to accurately characterize the base energy required by an instruction while 
also accounting for inter-instruction effect, we designed a reference application that 
executes a single basic block of approximately 100 diverse instructions operating on 
changing values in an infinite loop. This is done to represent a general and diverse envi-
ronment in which we examine the energy characteristics of the instruction. A set of 
benchmarking applications is created for each instruction. In each application, an in-
struction is inserted between a different pair of instructions in the reference application. 
To ensure a minimum energy consumption, we set the operands values of this instruc-
tion to zero. Hence, we create as many applications per instruction as there are instruc-
tions in the reference application. The low level model of the processor is then used to 
evaluate the increase of the energy consumed as a result of the inserted instruction. Pre-
sented graphically, we plot the energy of the instruction when it was inserted after the 
instruction of reference application as shown on the horizontal axis as in Figure 1. We 
refer to each plot as the Location-Based Energy Profiles (LBEP) of the instruction. 

We derived LBEPs for all Microblaze instructions, three of which are shown in 
Figure 1. We observed a strong similarity in the patterns of instructions that utilize the 
same processor data-path units. The energy consumed by each instruction is minimum 
when it is inserted after an instruction of the same type, and varies when inserted after 
other types of instructions. This implies that the Microblaze instruction set can be 
grouped based on the data-path units they utilize. These groups are: memory access, 
shift operation, and arithmetic and logic operations. Figure 1 illustrates the LBEP of 
three instructions: memory load (lwi), logical right shift (srl) and integer multiplica-
tion (muli). The X-axis represents the sequence of instructions of the reference appli-
cation. The Y-axis is the increase in energy consumption due to the insertion of the 
instruction before the reference application instruction on the X-axis. The LBEPs for 
the arithmetic and logic instructions are similar to that exhibited by (muli). Similarly, 
the LBEPs of the shift and memory instructions are similar to those for (srl) and (lwi).  

To derive the base energy cost of instructions from its LBEP, we consider only the 
sample points in which the instruction is inserted between instructions of the same 
type. Thus, we obtain three base energy costs for each instruction, one for each case 
where it executes following instructions of one of three groups identified. For in-
stance, from the energy profile of the load word instruction (lwi) given in Figure 1, 
we first consider the energy values corresponding to the lwi instruction inserted be-
tween pairs of logic or arithmetic instructions.  The average of these energy estimates 
is recorded as the base energy cost of the load instruction following a logic or arith-
metic operation. Similarly, estimates for the base energy cost of the lwi instruction 
following memory and shift instructions, are also evaluated. The second group of 
columns in Table 1 presents the three base energy costs of Microblaze instructions 
when they follow an instruction from one of the three groups. This constitutes the first 
parameter of the OVBM. 
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Fig. 4. Proposed automated application analysis, annotation, and energy estimation tool 

In order to derive the values for m and b for a given processor, we equated the lin-
ear approximation equation in (3) to the reference energy estimation for each of the 
30 applications, generating a system of 30 linear equations. Substituting in the known 
values from the OVBM in Table 1, we are able to calculate the sum of base energies 
and energy variance for the fixed instructions in all 30 applications. The average 
one’s densities of each instruction are found using the profiling stage of the estimation 
tool described Section 4 instead of the one’s density of the input array. This results 
with an over-determined system of 30 equations and two unknowns, m and b. An 
approximate solution at m = 0.016 and b = -0.061 for the Microblaze processor is 
determined once and added to the model parameters. 

4 Energy Estimation and Annotation 

We have developed a tool to automatically apply the proposed model to an embedded 
application. The tool works in two phases as shown in Figure 4.  

In the first phase, the tool annotates the source code with instructions aimed to 
identify the instructions that will execute, and run-time operand value metrics (one’s 
density). It also identifies the basic-blocks of the application. After executing the 
annotated application, the logged profiling data is sent to the host PC for processing in 
the second phase. These annotations:  
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1. Record the execution sequence of the basic blocks, 
2. Record the opcode of each instruction executed, as well as the values of their des-

tination registers, 
3. Calculate the average of the one’s densities of all values used by each non-

repeating shift instruction, and 
4. The tool also generates a list of the basic blocks and the instructions in each basic 

block. Using an object-dump utility [17] the exact machine instructions of each ba-
sic block are identified 

The second phase of the estimation tool uses the processor energy model, parame-
ters obtained from the execution of the annotated application, and list of basic blocks, 
to estimate the energy consumed by each executed instruction using equation (3) de-
scribed in Section 3. The estimated energy consumed by each basic block is then be 
evaluated as the sum of the estimated energy of all its instructions. The total energy 
consumption is then found using the estimated energy of the basic blocks and the 
execution trace. 

Table 2. Baseline energy estimates using XPA [5] 

Application Time  (µs) Power (mW) Energy (mJ) 
Dhrystone 39.35 33.35 1.31 
Quicksort 164.20 33.78 5.55 
ReadBMPBlock 251.61 39.96 10.05 
DCT 166.68 30.84 5.14 
Quantize 58.20 25.52 1.49 
Zigzag 25.33 30.98 0.78 
Huffman Encode 471.95 40.70 19.21 
JPEG 973.77 37.66 36.67 

5 Experimental Results 

To evaluate the proposed estimation method, we developed an OVBM of the Micro-
blaze soft processor implementation on a Virtex5 FPGA as described in Section 3. 
The processor was implemented without cache, connected via a Local Memory Bus 
(LMB) to 64 kB block RAM, which stores the program and data of the application. 
The system clock is operating as a frequency of 125 MHz. To compare OVBM to the 
state of the art, we also developed three different energy models using the techniques 
surveyed in Section 2. We implemented the estimation tool described in Section 4 to 
automatically annotate and analyze applications targeted for a Microblaze processor. 
The automatic annotation tool was expanded to accept all generated energy models. 

5.1 Estimation Accuracy 

We examine the accuracy of the models using a set of 8 application benchmarks listed 
in Table 2 re used. The execution time and average dynamic power consumed by the 
processor for each benchmark were obtained using Xilinx XPA [5] and used to calcu-
late the energy consumed by each benchmark. These estimations are highly accurate 
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and can be used as baseline to compare the accuracy of all models. The benchmarks 
are Dhrystone, an implementation of the Quicksort algorithm, and five functions of a 
JPEG [19] encoder: Read BMP Block, Discrete Cosine Transfer (DCT), Quantize, 
Zigzag, and Huffman encode.  

Table 3. Estimated energy in Millijoule (mJ) and estimation error, relative to references in 
Table 2, comparing the accuracy of proposed model to 1st, 2nd, and 3rd order energy models 
generated using previous work methods. 

Application 
1st Order 2nd Order 3rd Order OVBM 
E Err E Err E* Err E Err E* Err E Err 

Dhrystone 1.31 0.0% 3.6 171% 1.31 0.0% 3.3 155% 1.31 0.0% 1.30 -0.7% 

Quicksort 5.48 -1.3% 16 185% 5.07 -8.7% 13 128% 4.95 -10.7% 5.37 -3.2% 

ReadBMPBloc 8.39 -16% 25 145% 7.90 -21% 22 116% 8.50 -15% 8.82 -12.3% 

DCT 5.56 8.2% 18 253% 5.82 13.2% 18 253% 7.12 38.5% 4.96 -3.5% 

Quantize 1.94 30% 6.4 329% 2.04 38% 4.0 169% 1.57 5.4% 1.47 -0.9% 

Zigzag 0.84 7.7% 2.3 195% 0.74 -5.3% 2.3 194% 0.90 15.3% 0.78 -0.6% 

Huffman Enc. 15.74 -18% 51 164% 16.26 -15% 48 148% 18.68 -2.7% 17.64 -8.2% 

JPEG 32.48 -11.4% 102 179% 32.76 -11% 94 156% 36.77 0.3% 33.67 -8.2% 

Average error  13.4%  203%  16%  165%  12.6%  4.7% 

Std. Deviation of error 9.5%  60%  11%  43%  12.8%  4.3% 

Table 3 presents the dynamic energy estimations obtained using the four models 
for the examined benchmarks. The first order model uses the average dynamic power 
consumed by Microblaze executing the Dhrystone benchmark as the average power 
parameter. The estimated energy consumed by the remaining benchmarks are the 
products of the execution times by the average power. Naturally, the error in estimat-
ing the Dhrystone benchmark using this method is zero. The error in estimating the 
other benchmarks ranges between -18% and 30.7%, when compared to the reference 
values in Table 2. It is important to note that the accuracy of the first order model 
depends on the choice of the average power paramter used. In this instance, using the 
average power of Dhrystone resulted in reasonable estimates for benchmarks like 
quicksort and ReadBMPBlock, however, as it’s tested with more applications, the 
unpredictablitiy of this method becomes apparent. 

The second and third order models, initially, produced large errors. The energy for 
an instruction in the second order model is obtained using low level simulations of the 
given instruction in a loop as done in [3], [13, 14, 15, 16]. Similarly, the energy for a 
pair of instructions in the third order model is obtained using low level simulation of 
the instruction pair in a loop. Clearly, this technique does not produce accurate esti-
mates of the energy cost of an instruction. As suggested in [3], the models are cali-
brated using the Dhrystone estimation error. However, despite calibration, the second 
and third order models generated worst case errors of up to 37.6%, and 38.5% respec-
tively. The average errors were also high at 16% and 12.6%. Furthermore, the high 
deviation of estimate errors further demonstrates that these models cannot be used 
with confidence.  

The energy estimates generated using our approach are given in the final column, 
titled OVBM. It outperforms other models, both in terms of average accuracy and 
estimation confidence. The worst case error obtained is -12.3%, with an average error 
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of only 4.7%. Therefore, dynamic energy estimates obtained using the proposed ap-
proach can be used with confidence for early design space exploration as well as sys-
tem and software reconfiguration and optimization efforts. 

Table 4. Execution time of PVBM-based estimation tool compared to Post-place-and-route 
simulation (XPA) 

Application 
OVBM Tool (Seconds) 

XPA 
(Minutes) Phase 1 + 2 

(Host) 
Execution 
(Target) 

Total 

Dhrystone 0.03 7.49 7.53 72 
Quicksort 0.01 23.08 23.09 147 
ReadBMPBlock 0.21 5.88 6.08 202 
DCT 0.03 10.85 10.88 148 
Quantize 0.01 8.40 8.41 85 
Zigzag 0.01 4.41 4.42 65 
Huffman Encode 0.07 65.04 65.11 340 
JPEG 0.28 104.24 104.52 638 

5.2 Estimation Speed  

In addition to having a higher average accuracy and confidence over other instruction-
level models, the proposed estimation technique generates energy estimates within 
seconds. Table 4 compares the time required by our tool to XPA [5] to derive the 
presented estimations. The simulation host was utilized a Nehalem based Intel i7 
quad-core processor and 16 GB of DDR3 RAM. The time presented includes the time 
required to execute both estimation phases presented in Section 4 and the execution 
time of the annotated application. In our experiments, we used a Microblaze imple-
mentation on a Xilinx Virtex5 FPGA development board to run the annotated execu-
table. The total time required to complete the two phases running on the host for the 
JPEG benchmark was under one second. The time needed to run the annotated execu-
table and transfer the logs to the host was under two minutes. As such, the total esti-
mation time this benchmark was under two minutes. In contrast, it took over 10 hours 
to obtain the baseline estimate using XPA. As such, our model demonstrates 3 orders 
of magnitude speedup over post-place-and-route models. 

6 Conclusion 

We presented a novel dynamic energy modeling technique for soft processors in 
FPGA based on the operand values of instructions. We showed that energy estimates 
obtained from our model are significantly more accurate than the state of the art en-
ergy models. The energy model can be used for early software optimization, system 
architecture reconfiguration and customization as well as design space exploration. In 
the future, we expect to validate our model with more applications and other embed-
ded processors.  
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