
© Springer International Publishing Switzerland 2015
K. Sano et al. (Eds.): ARC 2015, LNCS 9040, pp. 65–76, 2015.
DOI: 10.1007/978-3-319-16214-0_6

Operand-Value-Based Modeling of Dynamic Energy
Consumption of Soft Processors in FPGA

Zaid Al-Khatib() and Samar Abdi

Electrical and Computer Engineering, Concordia University, Montreal, Canada
z_alk@live.concordia.ca, samar@ece.concordia.ca

Abstract. This paper presents a novel method for estimating the dynamic en-
ergy consumption of soft processors in FPGA, using an operand-value-based
model at the instruction level. Our energy model contains three components: the
instruction base energy, the maximum variation in the instruction energy due to
input data, and the impact of one’s density of the operand values during soft-
ware execution. Using multiple benchmarks, we demonstrate that our model has
only 4.7% average error and 12% worst case error compared to the reference
post-place-and-route simulations, and is more than twice as accurate as existing
instruction-level models.

Keywords: Energy modeling · Soft processors · Power estimation

1 Introduction

Processor core energy consumption is a first order metric for FPGA-based embedded
system design, due to its direct impact on battery life. Early and accurate modeling of
soft-processor performance and energy consumption, for a given application, is
needed to perform early design space exploration with reasonable confidence. A fine-
grained and rapid estimation tool is also important for reconfiguration and customiza-
tion of system architecture as well as optimization of software implementation for
energy consumption.

Modeling the dynamic energy consumption of a soft processor remains a major
challenge. Power measurement techniques typically used with ASIC processors, as in
the work presented by Bazzaz et al. [1] cannot be adopted to measure the power dis-
sipated in the FPGA resources implementing the soft processor core, independent of
the other FPGA components. Hence, low level post-place-and-route models and simu-
lations are preferred as they enable capturing the switching activity of the final FPGA
logic resources [2]. However these are incredibly slow, thereby making the design
space exploration and SW optimization process impractical. Alternatively, energy
models based on processor power states are used for quick estimates but they can
be very inaccurate. Instruction-level models promise higher accuracy than mode-
based models, however, it is very difficult to accurately characterize the energy
consumption of individual instructions in soft processors implementations. In fact,
conventional methods used in previous work to isolate the energy consumed by an
instruction examine its execution under very unique states that do not accurately

66 Z. Al-Khatib and S. Abdi

reflect the energy it would consume when it is executed as part of a normal applica-
tion run. Our goal is to build a concise instruction-level model that can provide fast
and accurate estimates of dynamic energy consumption for soft processors in FPGA.
Using a heuristic approach, our model accounts for both the inter-instruction effects
and the operand values of the instructions for estimating the energy consumption.

Previous work suggest insignificant impact of operand values on processor power
dissipation in ASIC [3]. However, we observed that the operand values greatly impact
the energy consumed by soft processor cores in FPGA. This is due to the fact that
Soft-processor data-path units are implemented on several Configurable Logic Blocks
(CLBs) and DSPs. This requires the operand values propagate through much longer
routes between these block than in ASIC, giving them higher charge capacitance.
These signals are also frequently reset to Zero by instructions like the NOP and small
operand operations [4]. As such, there’s an increased probability of signals switching
after the execution of instructions operating with values containing many ones. The
higher density of ones in an instructions operands, the larger the probability of switch-
ing, hence higher power dissipation and energy consumption by the processor core. A
profiling and estimation tool is required to calculate this operand value metric and to
apply the energy models to large applications.

The novel contributions of this paper are as follows:

1. We designed a novel energy data model for a soft-processor FPGA implementation
that can be generated heuristically without analysing the processor architecture and
pipeline, using sets of applications described in Section 3.

2. We designed an estimation tool that analyses C code at the machine instruction
level, applies the energy data model and annotation techniques to estimate the en-
ergy of each instruction executed in a given run, as described in Section 4.

2 Related Work

There are several modeling techniques to estimate energy consumption of soft proces-
sors. They can be categorized based on the model’s abstraction level. The most accurate
models simulate the processor at the gate level using post-place and route simulations,
tracking the switching rate all internal signals. Examples of tools, based on such models,
include Xilinx’s XPower Analyzer XPA [1], [5] and Synopsys’s Power Compiler [6].
Accurate, low level simulation models suffer from very slow simulation speeds. In fact,
in order to estimate the energy consumed executing the Dhrystone benchmark [7] on a
Microblaze processor core [8] using XPA took over 2 days of simulation time. This
simulation was done on a quad-core i7 PC with 16 GB RAM.

Higher level modeling of processor energy and power is typically done by charac-
terizing the workload of the processor. These can be divided in three broad groups
based on the number of contributing factors in each model. We will refer to these
groups as first, second and third order models. They are identified as follows:

• First order models are state-based, in which the energy consumption is derived
from the state of the processor. An average dynamic power value is assigned to

 Operand-Value-Based Modeling of Dynamic Energy Consumption of Soft Processors 67

each power state. The dynamic energy is then estimated by multiplying the
weighted average power by the total execution time. Jouletrack implements a very
simple first order model [3]. System level estimation tools like Softwatt [9],
Wattch [10], and other state-based estimation techniques [11] use first order proc-
essor models because of their simplicity. Energy aware scheduling techniques
using first order models have also been proposed utilizing such models [12]. How-
ever, first order models do not reflect the processor energy savings from software
optimizations independently of performance. For example, re-ordering assembly
instructions to increase the number of repeating instructions reduces energy con-
sumption. This effect cannot be observed by first order models.

• Second order models assign an estimated average energy value for each instruction
in the processor’s instruction set. The energy required to execute a program is then
estimated as the sum of the energy values assigned to all the executed instructions.
Many completed works use this technique such as [3], [13], [14]. More work
however is required to prove the accuracy of these models to estimate large appli-
cations running on soft processors. In fact, we observed very negligible accuracy
improvement over the first order models.

• Third order processor models incorporate inter-instruction energy effects. When
analyzing the energy required for completing an instruction, the neighboring in-
structions are also accounted for. The reasoning is that neighboring instructions in-
dicate the state of the processor before and after executing an instruction. Several
processors, including an Intel 486DX2 processor [1] and a Fujitsu DSP [15], have
been modeled using this approach. VLIW processors have also been modeled using
third order models [16]. Third order models have been applied to estimate system-
level energy consumption [17]. However, third order models do not take the effects
of input data for the application into account, which can lead to significant errors.

The techniques proposed in these works were adopted to generate three models of
an implementation of the Microblaze processor implemented on a Xilinx Virtex5
FPGA. The Microblaze instruction set architecture is similar to the RISC-based DLX
architecture [18]. We used these models to evaluate the applicability of these tech-
niques on a modern soft processor. The results presented in this paper demonstrate
significant errors in excess of 100%. In the quest of identifying the causes of these
inaccurate results, we derived results showing significant impact of operand value on
energy consumption. The following section describes the proposed model, generated
using a novel instruction characterization technique.

3 Operand-Value-Based Processor Energy Model

This section describes the proposed methodology for creating an Operand-Value-
Based Model (OVBM) for a processor implementation consisting of:

• The base energy cost for each instruction, with zero operands,
• The maximum energy variance, due to operand values, for each instruction, and
• Linear parameters, slope and intercept (m and b) modeling the correlation between

the one’s density and the energy consumed in the processor data-path signals.

68 Z. Al-Khatib and S. A

Fig. 1. Location Based Energy
Multiply)

A single OVBM is suffi
tion running on a given imp
for alternative design config

3.1 Base Energy Cost o

The minimum dynamic ene
defined as the base energy
operation of the instruction
to executing the instructio
instruction energy effect. N
same type to consume less e

Most instruction energy
measuring or estimating

Table 1. Base energies and

Inst. Base energy a
Arithmetic & L

add 0.1147
rsubk 0.3461
mul 0.1233
idiv 0.1850
and 0.0892
xori 0.3257
cmp 0.1821
nop 0.1343
lwi 0.7680
swi 0.8159
srl 0.1628
sra 0.1571

Abdi

y Profile of three instructions (Load Word, Shift Right Logic,

cient to estimate the processor energy cost of any appli
plementation of the processor. A separate model is requi
gurations and optimizations of the processor.

of Instructions

ergy required by the processor to complete an instructio
y cost of the instruction. It is determined by the type

as well as the state of the processor’s internal signals p
on. This state dependency is referred to as the in
Normally, we expect two consecutive instructions of
energy than two of different types.

y estimation techniques suggested in the literature rely
the average power consumed by the processor wh

maximum energy variations for Microblaze in Nanojoules (nJ

after instruction from class: Max. instr. Energy Variance
Logic Memory Shift

0.4882 0.1608 1.0034
1.0352 0.7762 0.7872
0.4819 0.4019 0.9795
0.5401 0.4419 0.7602
0.5306 0.4213 0.6977
0.6345 0.5921 0.6977
0.7108 0.5727 1.0456
0.4808 0.1959 0
0.3536 0.9858 0.5310
0.4108 0.9761 0.2208
0.5550 0.1124 1.0782
0.5836 0.1899 1.0373

and

ica-
ired

n is
and
rior

nter-
the

y on
hile

J)

 Operand-Value-Based Modeling of Dynamic Energy Consumption of Soft Processors 69

repeatedly executing an instruction or a pair of instructions in either an infinite loop
or in very long programs of the repeating instructions [1], [3], [13, 14, 15, 16]. This,
however, accounts for a very special and limited execution case of the instruction, not
representative of its expected executions in real applications. The inaccuracy of such
models is clearly demonstrated in the Section 5.

In order to accurately characterize the base energy required by an instruction while
also accounting for inter-instruction effect, we designed a reference application that
executes a single basic block of approximately 100 diverse instructions operating on
changing values in an infinite loop. This is done to represent a general and diverse envi-
ronment in which we examine the energy characteristics of the instruction. A set of
benchmarking applications is created for each instruction. In each application, an in-
struction is inserted between a different pair of instructions in the reference application.
To ensure a minimum energy consumption, we set the operands values of this instruc-
tion to zero. Hence, we create as many applications per instruction as there are instruc-
tions in the reference application. The low level model of the processor is then used to
evaluate the increase of the energy consumed as a result of the inserted instruction. Pre-
sented graphically, we plot the energy of the instruction when it was inserted after the
instruction of reference application as shown on the horizontal axis as in Figure 1. We
refer to each plot as the Location-Based Energy Profiles (LBEP) of the instruction.

We derived LBEPs for all Microblaze instructions, three of which are shown in
Figure 1. We observed a strong similarity in the patterns of instructions that utilize the
same processor data-path units. The energy consumed by each instruction is minimum
when it is inserted after an instruction of the same type, and varies when inserted after
other types of instructions. This implies that the Microblaze instruction set can be
grouped based on the data-path units they utilize. These groups are: memory access,
shift operation, and arithmetic and logic operations. Figure 1 illustrates the LBEP of
three instructions: memory load (lwi), logical right shift (srl) and integer multiplica-
tion (muli). The X-axis represents the sequence of instructions of the reference appli-
cation. The Y-axis is the increase in energy consumption due to the insertion of the
instruction before the reference application instruction on the X-axis. The LBEPs for
the arithmetic and logic instructions are similar to that exhibited by (muli). Similarly,
the LBEPs of the shift and memory instructions are similar to those for (srl) and (lwi).

To derive the base energy cost of instructions from its LBEP, we consider only the
sample points in which the instruction is inserted between instructions of the same
type. Thus, we obtain three base energy costs for each instruction, one for each case
where it executes following instructions of one of three groups identified. For in-
stance, from the energy profile of the load word instruction (lwi) given in Figure 1,
we first consider the energy values corresponding to the lwi instruction inserted be-
tween pairs of logic or arithmetic instructions. The average of these energy estimates
is recorded as the base energy cost of the load instruction following a logic or arith-
metic operation. Similarly, estimates for the base energy cost of the lwi instruction
following memory and shift instructions, are also evaluated. The second group of
columns in Table 1 presents the three base energy costs of Microblaze instructions
when they follow an instruction from one of the three groups. This constitutes the first
parameter of the OVBM.

70 Z. Al-Khatib and S. A

Fig. 2. Maximum energy v

3.2 Maximum Instruct

The dynamic power consum
is dependent on the operan
incorporate the influence o
OVBM, called maximum i
difference between the ene
struction’s base energy cos
marks used to generate the
The operand values of the
positive values of 0x7fffffff
the instruction. The two plo
base energy profiles of the
presented as a bar graph in

As seen in Figure 2, the
ergy does not vary signifi
small variance is due to the
reference loop. The differe
energy variance for each in
modeled using equation (1),, is the base en
maximum energy variance
fraction of the maxim energ

Abdi

variance, maximum, and minimum LBEP of an and instruction

tion Energy Variance

med by the soft processor cores implemented on an FP
nd values of the instruction as discussed in Section 1.
of operand values, we introduce a new parameter to
instruction energy variance. It is defined as the maxim
ergy cost of an instruction with large operands and the
st. To observe this variance, a copy of the energy ben
e LBEPs, described in the previous subsection, is crea
e inserted instructions are then changed to the maxim
f instead of zero, generating a maximum energy profile
ots in Figure 2 illustrate the location-based maximum
e (and) instruction. The difference between the profile
Figure 2.
difference between the maximum energy and the base

icantly with the location of the inserted instruction. T
e different average one’s densities of the instructions of
ences are averaged to obtain a single value of maxim
struction. The total energy consumed by an instruction
. , ·

nergy of instruction following instruction . is
of instruction , and is a factor that determines the w

gy variance of instruction i given the operand values.

n

PGA
To
the

mum
e in-
nch-
ted.

mum
e for
and

es is

en-
The

f the
mum

 is

(1)

the
what

 Operand-Value-Based Modeli

Fig. 3. Relation between the en
input values

3.3 Energy Impact of O

As described in Section 1, t
consumed by soft-processo
set of benchmarks where a
increasing densities. An ap
loop with instructions is to
operations using it is first i
from it, in each the array va
ing the same number of o
estimated using reference e

Figure 3 demonstrates a
densities. The lowest value
value is in fact only 0.4% l
the benchmark (which eva
tional energy consumed, be
of energy consumed in the
mark (the · term in
a linear function of the one’
operands of instruction , is

By substituting k using e
energy of a basic block of
mated energy consumed for∑ ∑

ing of Dynamic Energy Consumption of Soft Processors

nergy consumed running an application and the one’s count o

Operand Values

the density of ones in the operand value impacts the ene
ors. To examine this correlation, we generated a differ
a fixed set of varying instructions operate on values w
pplication containing a source array of 10 elements an
o load a value from the source array and perform seve
implemented. A total of 30 applications were then deri
alues were initialized to different positive integers conta

ones. The energy required to execute these application
stimation tools, plotted in Figure 3.
linear correlation of the energy consumption and oper

, at 194.7 nJ, corresponds to the least dense operands. T
less than the sum of the base energies of the instruction
aluates to 195.4 nJ using values from Table 1). The ad
eyond the base energy cost of 195 nJ, is the accumulat
data-path signal result of the of instructions in the ben

n equation (1)).The factor in equation (1) is expressed
’s density as given in equation (2). The one’s density of
s denoted by with slope and y-intercept b. ·

equation (2) into equation (1) we can express the estima
f instruction using equation (3) as the sum of the e
r each instruction making the basic block. ∑ , 1 ∑ · · ∆

71

of its

ergy
rent
with
nd a
eral
ived
ain-
n is

rand
This
s in
ddi-
tion
nch-
d as
f the

(2)

ated
esti-

(3)

72 Z. Al-Khatib and S. Abdi

Application
C / C++

Processor
Energy Model

Detailed Application
Execution Energy Report

Annotated
Executable

ISS or
Target Device

Phase II - Application Energy Estimation
Applying the energy model on execution metrics

Operands
Metrics Log

Execution Trace
[Basic Block
Sequence]

List of Basic
Blocks

Phase I – Prepare Profiling Executable
Application Basic Blocks & Operands Annotation

Estimation Tool

Fig. 4. Proposed automated application analysis, annotation, and energy estimation tool

In order to derive the values for m and b for a given processor, we equated the lin-
ear approximation equation in (3) to the reference energy estimation for each of the
30 applications, generating a system of 30 linear equations. Substituting in the known
values from the OVBM in Table 1, we are able to calculate the sum of base energies
and energy variance for the fixed instructions in all 30 applications. The average
one’s densities of each instruction are found using the profiling stage of the estimation
tool described Section 4 instead of the one’s density of the input array. This results
with an over-determined system of 30 equations and two unknowns, m and b. An
approximate solution at m = 0.016 and b = -0.061 for the Microblaze processor is
determined once and added to the model parameters.

4 Energy Estimation and Annotation

We have developed a tool to automatically apply the proposed model to an embedded
application. The tool works in two phases as shown in Figure 4.

In the first phase, the tool annotates the source code with instructions aimed to
identify the instructions that will execute, and run-time operand value metrics (one’s
density). It also identifies the basic-blocks of the application. After executing the
annotated application, the logged profiling data is sent to the host PC for processing in
the second phase. These annotations:

 Operand-Value-Based Modeling of Dynamic Energy Consumption of Soft Processors 73

1. Record the execution sequence of the basic blocks,
2. Record the opcode of each instruction executed, as well as the values of their des-

tination registers,
3. Calculate the average of the one’s densities of all values used by each non-

repeating shift instruction, and
4. The tool also generates a list of the basic blocks and the instructions in each basic

block. Using an object-dump utility [17] the exact machine instructions of each ba-
sic block are identified

The second phase of the estimation tool uses the processor energy model, parame-
ters obtained from the execution of the annotated application, and list of basic blocks,
to estimate the energy consumed by each executed instruction using equation (3) de-
scribed in Section 3. The estimated energy consumed by each basic block is then be
evaluated as the sum of the estimated energy of all its instructions. The total energy
consumption is then found using the estimated energy of the basic blocks and the
execution trace.

Table 2. Baseline energy estimates using XPA [5]

Application Time (µs) Power (mW) Energy (mJ)
Dhrystone 39.35 33.35 1.31
Quicksort 164.20 33.78 5.55
ReadBMPBlock 251.61 39.96 10.05
DCT 166.68 30.84 5.14
Quantize 58.20 25.52 1.49
Zigzag 25.33 30.98 0.78
Huffman Encode 471.95 40.70 19.21
JPEG 973.77 37.66 36.67

5 Experimental Results

To evaluate the proposed estimation method, we developed an OVBM of the Micro-
blaze soft processor implementation on a Virtex5 FPGA as described in Section 3.
The processor was implemented without cache, connected via a Local Memory Bus
(LMB) to 64 kB block RAM, which stores the program and data of the application.
The system clock is operating as a frequency of 125 MHz. To compare OVBM to the
state of the art, we also developed three different energy models using the techniques
surveyed in Section 2. We implemented the estimation tool described in Section 4 to
automatically annotate and analyze applications targeted for a Microblaze processor.
The automatic annotation tool was expanded to accept all generated energy models.

5.1 Estimation Accuracy

We examine the accuracy of the models using a set of 8 application benchmarks listed
in Table 2 re used. The execution time and average dynamic power consumed by the
processor for each benchmark were obtained using Xilinx XPA [5] and used to calcu-
late the energy consumed by each benchmark. These estimations are highly accurate

74 Z. Al-Khatib and S. Abdi

and can be used as baseline to compare the accuracy of all models. The benchmarks
are Dhrystone, an implementation of the Quicksort algorithm, and five functions of a
JPEG [19] encoder: Read BMP Block, Discrete Cosine Transfer (DCT), Quantize,
Zigzag, and Huffman encode.

Table 3. Estimated energy in Millijoule (mJ) and estimation error, relative to references in
Table 2, comparing the accuracy of proposed model to 1st, 2nd, and 3rd order energy models
generated using previous work methods.

Application
1st Order 2nd Order 3rd Order OVBM
E Err E Err E* Err E Err E* Err E Err

Dhrystone 1.31 0.0% 3.6 171% 1.31 0.0% 3.3 155% 1.31 0.0% 1.30 -0.7%

Quicksort 5.48 -1.3% 16 185% 5.07 -8.7% 13 128% 4.95 -10.7% 5.37 -3.2%

ReadBMPBloc 8.39 -16% 25 145% 7.90 -21% 22 116% 8.50 -15% 8.82 -12.3%

DCT 5.56 8.2% 18 253% 5.82 13.2% 18 253% 7.12 38.5% 4.96 -3.5%

Quantize 1.94 30% 6.4 329% 2.04 38% 4.0 169% 1.57 5.4% 1.47 -0.9%

Zigzag 0.84 7.7% 2.3 195% 0.74 -5.3% 2.3 194% 0.90 15.3% 0.78 -0.6%

Huffman Enc. 15.74 -18% 51 164% 16.26 -15% 48 148% 18.68 -2.7% 17.64 -8.2%

JPEG 32.48 -11.4% 102 179% 32.76 -11% 94 156% 36.77 0.3% 33.67 -8.2%

Average error 13.4% 203% 16% 165% 12.6% 4.7%

Std. Deviation of error 9.5% 60% 11% 43% 12.8% 4.3%

Table 3 presents the dynamic energy estimations obtained using the four models
for the examined benchmarks. The first order model uses the average dynamic power
consumed by Microblaze executing the Dhrystone benchmark as the average power
parameter. The estimated energy consumed by the remaining benchmarks are the
products of the execution times by the average power. Naturally, the error in estimat-
ing the Dhrystone benchmark using this method is zero. The error in estimating the
other benchmarks ranges between -18% and 30.7%, when compared to the reference
values in Table 2. It is important to note that the accuracy of the first order model
depends on the choice of the average power paramter used. In this instance, using the
average power of Dhrystone resulted in reasonable estimates for benchmarks like
quicksort and ReadBMPBlock, however, as it’s tested with more applications, the
unpredictablitiy of this method becomes apparent.

The second and third order models, initially, produced large errors. The energy for
an instruction in the second order model is obtained using low level simulations of the
given instruction in a loop as done in [3], [13, 14, 15, 16]. Similarly, the energy for a
pair of instructions in the third order model is obtained using low level simulation of
the instruction pair in a loop. Clearly, this technique does not produce accurate esti-
mates of the energy cost of an instruction. As suggested in [3], the models are cali-
brated using the Dhrystone estimation error. However, despite calibration, the second
and third order models generated worst case errors of up to 37.6%, and 38.5% respec-
tively. The average errors were also high at 16% and 12.6%. Furthermore, the high
deviation of estimate errors further demonstrates that these models cannot be used
with confidence.

The energy estimates generated using our approach are given in the final column,
titled OVBM. It outperforms other models, both in terms of average accuracy and
estimation confidence. The worst case error obtained is -12.3%, with an average error

 Operand-Value-Based Modeling of Dynamic Energy Consumption of Soft Processors 75

of only 4.7%. Therefore, dynamic energy estimates obtained using the proposed ap-
proach can be used with confidence for early design space exploration as well as sys-
tem and software reconfiguration and optimization efforts.

Table 4. Execution time of PVBM-based estimation tool compared to Post-place-and-route
simulation (XPA)

Application
OVBM Tool (Seconds)

XPA
(Minutes) Phase 1 + 2

(Host)
Execution
(Target)

Total

Dhrystone 0.03 7.49 7.53 72
Quicksort 0.01 23.08 23.09 147
ReadBMPBlock 0.21 5.88 6.08 202
DCT 0.03 10.85 10.88 148
Quantize 0.01 8.40 8.41 85
Zigzag 0.01 4.41 4.42 65
Huffman Encode 0.07 65.04 65.11 340
JPEG 0.28 104.24 104.52 638

5.2 Estimation Speed

In addition to having a higher average accuracy and confidence over other instruction-
level models, the proposed estimation technique generates energy estimates within
seconds. Table 4 compares the time required by our tool to XPA [5] to derive the
presented estimations. The simulation host was utilized a Nehalem based Intel i7
quad-core processor and 16 GB of DDR3 RAM. The time presented includes the time
required to execute both estimation phases presented in Section 4 and the execution
time of the annotated application. In our experiments, we used a Microblaze imple-
mentation on a Xilinx Virtex5 FPGA development board to run the annotated execu-
table. The total time required to complete the two phases running on the host for the
JPEG benchmark was under one second. The time needed to run the annotated execu-
table and transfer the logs to the host was under two minutes. As such, the total esti-
mation time this benchmark was under two minutes. In contrast, it took over 10 hours
to obtain the baseline estimate using XPA. As such, our model demonstrates 3 orders
of magnitude speedup over post-place-and-route models.

6 Conclusion

We presented a novel dynamic energy modeling technique for soft processors in
FPGA based on the operand values of instructions. We showed that energy estimates
obtained from our model are significantly more accurate than the state of the art en-
ergy models. The energy model can be used for early software optimization, system
architecture reconfiguration and customization as well as design space exploration. In
the future, we expect to validate our model with more applications and other embed-
ded processors.

76 Z. Al-Khatib and S. Abdi

References

1. Bazzaz, M., Salehi, M., Ejlali, A.: An accurate instruction-level energy estimation model
and tool for embedded systems. IEEE Trans. On Instrumentation and Measurement 62(7)
(2013)

2. Xilinx Inc, Power Methodology Guide UG786 (2011). http://www.xilinx.com/
support/documentation/sw_manuals/xilinx13_1/ug786_PowerMethodology.pdf

3. Sinha, A., Chandrakasan, A.P.: JouleTrack-a web based tool for software energy profiling.
In: Proceedings, Design Automation Conference pp. 220–225 (2001)

4. Krishnaswamy, A., Gupta, R.: Dynamic coalescing for 16-bit instructions. ACM TECS
2005, 3–37 (2005)

5. Xilinx Inc, XPower Analyzer (2011). http://www.xilinx.com/products/design_tools/logi
c_design/verification/xpower.htm

6. Synopsys Inc. Power Compiler (2012). http://www.synopsys.com/Tools/Implementation/
RTLSynthesis/Pages/PowerCompiler.aspx

7. Weicker, R.P.: Dhrystone: a synthetic systems programming benchmark. Comm. of the
ACM 27, 1013–1030 (1984)

8. Xilinx Inc.: LogiCORE IP, MicroBlaze micro controller system. http://www.xilinx.
com/tools/microblaze.htm

9. Gurumurthi, S., Sivasubramaniam, A., Irwin, M.J., Vijaykrishnan, N., Kandemir, M.: Us-
ing complete machine simulation for software power estimation: The SoftWatt approach.
HPCA, pp. 141–150 (2002)

10. Brooks, D., Tiwari, V., Martonosi, M.: Wattch: A framework for architectural-level power
analysis and optimizations. ISCA, pp. 83–94 (2000)

11. Ahmadinia, A., Ahmad, B., Arslan, T.: A state based framework for efficient system-level
power estimation of costum reconfigurable cores. In: Proceedings, SOC Conf., pp. 1–4
(2008)

12. Chen, J., Thiele, L.: Task partitioning and platform synthesis for energy efficiency. In:
Proceedings. RTCSA, pp. 393–402 (2009)

13. Brandolese, C., et al.: Software energy estimation based on statistical characterization of
intermediate compilation code. Symposium. Low Power Electronics and Design
(ISLPED), pp. 333–338 (2011)

14. Tiwari, V., Tien-Chien Lee, M.: Power analysis of a 32-bit embedded microcontroller.
ASPDAC, pp. 141–148 (1995)

15. Tien-Chien Lee, M., Tiwari, V., Malik, S., Fujita, M.: Power analysis and minimization
techniques for embedded DSP software. IEEE VLSI, (5), pp. 123–135 (1997)

16. Roy, S., Bhatia, R., Mathur, A.: An accurate energy estimation framework for VLIW pro-
cessor cores. In: Proceedings. ICCD, pp. 464–469 (2006)

17. Kim, J., Kang, K., Shim, H., et al.: Fast estimation of software energy consumption using
IPI(inter-prefetch interval) energy model. In: VLSI-SoC, pp. 224–229 (2007)

18. Sailer, P.M., Philip, M., Kaeli, R.: The DLX Instruction Set Architecture Handbook (1st
ed.). Morgan Kaufmann Publishers Inc., CA, USA (1996)

19. Wallace, G.K.: The JPEG still picture compression standard. IEEE Trans. On Consumer
Electronics 38, xviii–xxxiv (1992)

	Operand-Value-Based Modeling of Dynamic Energy Consumption of Soft Processors in FPGA
	1 Introduction
	2 Related Work
	3 Operand-Value-Based Processor Energy Model
	3.1 Base Energy Cost of Instructions
	3.2 Maximum Instructtion Energy Variance
	3.3 Energy Impact of Operand Values

	4 Energy Estimation and Annotation
	5 Experimental Results
	5.1 Estimation Accuracy
	5.2 Estimation Speed

	6 Conclusion
	References

