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Abstract. LSIs are designed in four stages including architectural de-
sign, logic design, circuit design, and physical design. In the architectural
design and the logic design, designers describe a hardware in RTL. How-
ever, they generally use different languages. Typically a general purpose
programming language such as C or C++ and a hardware description
language such as Verilog HDL or VHDL are used in the architectural
design and the logic design, respectively. In this paper, we propose a new
hardware description environment for the architectural design and logic
design which aims to describe and verify a hardware in one language. The
environment consists of (1) a new hardware description language called
ArchHDL which enables to simulate a hardware faster than Verilog HDL
simulation and (2) a source code translation tool from ArchHDL to Ver-
ilog HDL. ArchHDL is a new language for hardware RTL modeling based
on C++. The key features of this language are that (1) designers describe
a combinational circuit as a function and (2) the ArchHDL library imple-
ments non-blocking assignment in C++. Using these features, designers
are able to write a hardware in a Verilog HDL-like style. The source code
of ArchHDL is able to convert to Verilog HDL by the translation tool
and is able to synthesize for an FPGA or an ASIC. We implemented a
many-core processor in ArchHDL. The simulation speed for the processor
by ArchHDL achieves about 4.5 times faster than the simulation speed
by Synopsys VCS. We also convert the code to Verilog HDL and esti-
mated the hardware resources on an FPGA. To implement the 48-node
many-core processor, it needs 71 % of entire resources of Virtex-7.

1 Introduction

VLSI chips such as high performance processors and SoCs with many hardware
elements are designed in the flow of (1) architectural design, (2) logic design,
(3) circuit design, and (4) physical design. In architectural design and logic
design, simulations in register transfer level (RTL) are indispensable for efficient
debugging and logical verification. For these RTL modeling and simulation, some
hardware description languages such as Verilog HDL and VHDL are often used.

Architectural design and logic design are also important for hardware FPGA
implementation. Available hardware resources in FPGAs are increasing, and
requirements to implement a large scale hardware are also increasing. So, the
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elapsed time of an RTL simulation for such large scale design is becoming very
long even if using a fast RTL simulator. Therefore, CAD systems which realize
high-speed RTL simulation are strongly required.

We have proposed ArchHDL[11] as a new hardware description language for
RTL modeling and high-speed architectural simulation. In this paper, we propose
a new hardware description environment for architectural design and logic design
which aims to write and verify a hardware in one language. This environment
comprises of (1) a hardware description language called ArchHDL which enables
to simulate a hardware faster than Verilog HDL simulation and (2) a source code
translation tool from ArchHDL to Verilog HDL.

ArchHDL is a hardware description language for hardware RTL modeling
based on C++. The key features of this language are that (1) a combinational
circuit description is handled as a function call and (2) non-blocking assignment
support in C++ by the ArchHDL library. The goal of the proposed environment
is to attain following three points.

– Easy hardware modeling in RTL
– High-speed simulation compared to Verilog HDL simulation

In the previous work, we found that RTL simulation speed using ArchHDL
is much faster than a Verilog HDL simulation using Icarus Verilog[6] which is a
well known free software. However, the simulation was performed with a simple
hardware like 8-bit counter circuit, and it was not a practical evaluation to
confirm the usefulness of ArchHDL. In this paper, we implement a many-core
processor as a practical hardware in ArchHDL and evaluated the simulation
speed. The source code of ArchHDL is transformed into Verilog HDL by the
translation tool and the Verilog HDL code is synthesized for an FPGA. We
convert the many-core processor code to Verilog HDL using the translation tool
and measure the hardware resources on an FPGA.

2 A New Hardware Description Environment

We propose a new hardware design environment which consists of a new hard-
ware description language called ArchHDL[11] and source code translation tool
from ArchHDL to Verilog HDL. In this section, the hardware description in
ArchHDL and development of the translation tool are delivered.

2.1 Concept of ArchHDL

ArchHDL is a hardware description language based on C++. It provides a C++
library to describe hardware in RTL. The library includes definitions of Module
class, reg class, wire class, and functions for simulation.

The key features of this language are: (1) implementing combinational cir-
cuits as functions and (2) supporting non-blocking assignment to registers. To
describe a combinational circuit as a function, the lambda expression which is
newly added to the C++ standard library called C++11 is used. Non-blocking
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Fig. 1. A block diagram of sample circuit used for explanation of hardware description
in ArchHDL. (Xorshift random value generator)

Fig. 2. A sample description of Xorshift random value generator in ArchHDL

assignment, which is generally supported in hardware description languages such
as Verilog HDL or VHDL, is not supported in general purpose programming lan-
guages. ArchHDL implements non-blocking assignment by the library in C++.

ArchHDL realizes an RTL hardware description with Verilog HDL-like style
by these features and defined classes in the library. A source code described in
ArchHDL is able to compile with general C++ compilers, then the simulation
of the hardware is delivered by the execution of the binary file. The simulation
speed is faster than the simulation using Verilog HDL simulator.

2.2 Hardware RTL Modeling in ArchHDL

Fig. 1 is a block diagram of the sample circuit used for explanation of Arch-
HDL hardware description in this section. The circuit is a 32-bit pseudo random
value generator using Xorshift algorithm. It employs four registers and gener-
ates random value by XOR and shift operations. Initialization mechanisms of
register values and input of seed, which are contained in the sample description
we present later, are omitted in this figure.

Fig. 2 is a sample description of Xorshift random value generator in Arch-
HDL. Descriptions about inclusion of standard libraries are omitted.



56 S. Sato and K. Kise

A hardware module is declared as a subclass of Module class which is defined
in the ArchHDL library. Behavior of a hardware module is mainly described using
reg class, wire class, Assign function, and Always function, which are defined in
the library. A class defined by inheriting Module class corresponds to a module
in Verilog HDL. Here, Xorshift class is declared as a subclass of Module class
and it represents the hardware module.

An instance of wire class and reg class can be regarded as a wire and reg
in Verilog HDL respectively. These classes are implemented as a template class
in the ArchHDL library. Therefore, users must specify the data type into the
angled bracket when they declare an instance of wire or reg. In Fig. 2, uint 1
and uint 32 are used as data types for wire and reg. The number at the end
of these data types represents the bit width of the data, and is intended to
simplify the analysis by the source code translation tool. These data types are
defined in the library. However, these are actually implemented as an alias of
unsigned int. Therefore, a value declared with these data type is not masked by
the represented bit width. Also, user defined structure is able to use as a data
type for a wire class and reg class instance. The wire class and the reg class are
implemented as functional objects in the library, so a value of these instance can
be referred by a function call of the class instance.

A module description in ArchHDL does not employ ports. Therefore, the
description about connections between modules is implemented by referring
directly to wire or reg class instances declared in a module. To simplify the
analysis by the translation tool, some naming rules are applied. As indicated
from the 3rd line to the 6th line in the Fig. 2, an instance name starting from
”i ” is an input port and an instance name starting from “o ” is an output port.
These rules are also applied to an instance which declared using array.

Combinational circuits are defined by assigning a functional object to a wire
class instance. All of assignment statements to instances are written in Assign
function as denoted from the 14th line to the 17th line in the Fig. 2. In the
case of this example, combinational circuits which are able to describe in the
Verilog HDL assign statement are only used. However, using the lambda expres-
sion of C++11 denoted in the 15th line, designers are able to define various
combinational circuits in ArchHDL.

The ArchHDL library supports non-blocking assignment of a reg class in-
stance. Statements of non-blocking assignment are described using “<<=” oper-
ator, and they are written in Always function as indicated from the 18th line
to the 32nd line in the Fig. 2. The Always function is equivalent to “always
@(posedge CLK)“ in Verilog HDL.

2.3 Testbench in ArchHDL

Fig. 3 shows a sample testbench in ArchHDL for the random value generator
shown in Fig. 2. Descriptions of inclusion of standard libraries are omitted. This
code is to display generated random values for 30 cycles. The seed value for the
random value generator is set at 1.
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Fig. 3. A sample testbench for Xorshift in ArchHDL

In the main function from the 40th line, the TestTop module is generated
and then the Step function provided by the library is called in the do-while loop.
At the time of the TestTop instance is generated, all of reg, wire, and Module
class instances are stored in a data area prepared in the ArchHDL library. The
Step function calls the Always function of all Module class instances stored in
the library data area, Therefore, the call of the function simulates the hardware
behavior in one cycle.

PortConnect function is used to connect ports of Xorshift module as denoted
from the 15th line to the 20th line. The role of this function is same to Assign
function mentioned above. However, it is necessary to describe PortConnect
function and Assign function separately to simplify the analysis of the translation
tool. From the 24th line to the 28th line, register initializations are described in
Initial function. This function is equivalent to the initial block in Verilog HDL.

2.4 Advantages and Disadvantages of ArchHDL over Verilog HDL

The advantages of ArchHDL are (1) the intuitive module description by object-
oriented programming and (2) the flexible testbench description using C++
standard environment.

Hardware resources on LSIs or FPGAs are increasing, and opportunities to
describe a hardware which implements a lot of the same module like many-core
processors are also increasing. Designers are able to declare modules, registers, or
wires using an array in ArchHDL. Therefore, they also able to use for statements
to describe the behavior of such hardware intuitively.
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Architectural verification needs plenty of simulations using various parame-
ters, and requires a flexible description to the testbench. The testbench descrip-
tion in ArchHDL is able to use the random value generators, variable-length
array and so on which are included in C++ standard library. Therefore, the
flexibility of the testbench description is equal to typical software simulators.
Furthermore, the simulation speed is faster than Verilog HDL simulation which
described in same abstraction level.

To simplify the implementation of ArchHDL library and the source code
translation tool, the current ArchHDL has some restrictions compared with the
description capability of Verilog HDL. The main restrictions are (1) the described
hardware may use only one clock signal, (2) the assignment of value to a register
is done only in a positive edge of the clock and (3) the designers describe registers
and wires using C++ integer type like 32-bit int or 64-bit int.

ArchHDL supports a hardware which allows assigning a value to a register
in a positive edge of a single clock. Therefore it does not support to use multiple
clocks and to assign a value in a negative edge of a clock. Although SFL[9] has
similar constraint, it was used for variety of hardware descriptions[5,7].

ArchHDL uses C++ integer type like 32-bit int or 64-bit int for the data type
of registers and wires. The declaration of registers and wires of any bit width
are not supported. ArchHDL supports C++ common operators, and does not
support the bit selection operation and the bit concatenation operation which
are supported in Verilog HDL.

The ArchHDL library is implemented with about 200 lines of source code
and it is simple. Users are able to expand the library to introduce other clock
signals or data types. We think that these restrictions are caused by an initial
stage implementation of the library. Therefore, they will be eliminated with the
progress of this work.

2.5 Translation Tool from ArchHDL to Verilog HDL

We are developing a code translator from ArchHDL to Verilog HDL. It is able
to automatically generate a Verilog HDL code from ArchHDL.

As shown in some examples of hardware description in ArchHDL, its descrip-
tion style becomes Verilog HDL-like description style by using classes such as reg
class or wire class provided by the library. Especially, designers are expected to
describe the same statement about an assignment and an arithmetic expression
in ArchHDL and Verilog HDL. Thus, the code translation from ArchHDL to
Verilog HDL can be delivered without any optimization.

Fig. 4 shows the translation flow from ArchHDL code to Verilog HDL code.
The tool receives ArchHDL code as an input and outputs the Verilog HDL. The
translation is delivered as follows: (1) code scanning, (2) information generation
for Verilog HDL code by string replacement and parsing.

In the parsing process, statements which are not able to describe in Verilog
HDL syntax are analyzed. Basically it is not necessary to parse statements writ-
ten in ArchHDL in detail, because they must be the same statements in Verilog
HDL.
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Fig. 5. M-Core Architecture used as a practical hardware for evaluation

The main restrictions of description in ArchHDL which can be converted to
Verilog HDL are as follows: (1) using only reg class or wire class as a data type
and (2) using up to 2-dimensional array for instance declaration.

In particular, the reason of the limitation for the array depends on that the
Verilog HDL syntax limitation and the multidimensional array is not supported
in some Verilog HDL simulator. We think that we can describe a practical hard-
ware sufficiently in ArchHDL under such restrictions.

3 Experimental Results

We evaluate our proposed hardware description environment which consists of
ArchHDL and the source code translation tool in two aspects: (1) The simula-
tion speed of a hardware described in ArchHDL, and (2) The FPGA resource
utilization of a hardware synthesized from Verilog HDL code generated by the
the source code translation tool.

3.1 A Sample Hardware for Practical Evaluation

We implemented M-Core Architecture[12], a many-core processor employs
scratchpad memories, as a sample hardware for evaluation. Fig. 5 shows the
M-Core Architecture. Each node of the M-Core Architecture is composed of a
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core and a router. The core consists of a Processing Element (PE), a memory
controller (MC), a local memory, and a Network Interface Controller (NIC). The
PE is a 32-bit five-stage pipelined MIPS processor[10]. Each node is connected
to the mesh network via the router. The router architecture is the conventional
Input-buffered Virtual Channel router[3] with five-stages pipeline, four virtual
channels per input port, and 4-flit buffer per virtual channel.

For a data transfer between cores, DMA transfer is used. DMA command is
send from a PE to its NIC via memory-mapped IO. NIC reads data from the
local memory using these information. After that, packets are generated and
injected into the network. When a packet arrives a node, the information of the
packet is used to write the received data to the local memory.

3.2 Evaluation of Simulation Speed

We implement the many-core processor introduced in the previous section in
ArchHDL and measure the simulation time while running an application on the
processor. The simulation time is compared with the time of Verilog HDL simu-
lation using Synopsys VCS. The Verilog HDL code used in the VCS simulation
is automatically generated from the ArchHDL code by our translation tool. For
ArchHDL source code compilation, GCC and Intel Compiler are used. The com-
piler optimization option is -Ofast for both compilers. The detailed computer
environment for simulation is as follows

– CPU: Intel Xeon E5-2687W
– Memory: 32 GB
– OS: Ubuntu 13.04 x86 64
– GCC (g++): version 4.7.3, optimization -Ofast
– Intel Compiler (ICPC): version 14.0.1 optimization -Ofast
– Synopsys VCS: version H-2013.06

In the simulation, various number of cores (from 2×2 to 10×10) of the many-
cores processor are used. The many-core processor executes an application that
every cores communicate with each other in every 100 cycles. The total execution
cycles of the simulation is 100,000 cycles. The simulation is performed 10 times
for each configuration, and the average simulation time of them is used as the
final result.

ArchHDL simulation can be parallelized using OpenMP. This parallelization
is supported by the ArchHDL library and users do not need to change their
source code. The parallelized simulation accuracy is same as that of before par-
allelization. For the parallelized simulation, we use a computer which has the 8
physical cores (16 logical cores using SMT) CPU.

Fig. 6 illustrates the simulation results in case of using 1 thread. The X-axis
indicates the node counts of the sample many-core processor and the Y-axis
represents the simulation time in second.

We can see that the simulation time increases when the number of nodes
increases. The simulation by VCS is fastest (maximum 2.9 times faster than GCC
and maximum 2.7 times faster than Intel Compiler). However, the speedup of
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Fig. 6. The simulation time comparison using just single-threaded

the VCS simulation compared to other simulations (GCC and Intel Compiler)
decreases when the number of nodes increases, In particular, the speedup is
maximum when the number of nodes is 4 (2×2 network) and minimum when
the number of nodes is 100 (10×10 network).

Fig. 7 shows the simulation results in case of parallelized simulation (with
8-thread and 16-thread). “VCS” and “ICPC 1 thread” in Fig. 7 are same as ones
illustrated in Fig. 6.

We can see that every parallelized simulation is faster than the VCS sim-
ulation. The parallelized simulation is 4.5 times faster in maximum than the
VCS simulation when using 16-thread. The simulation results also show that the
speedup of the parallelized simulation compared to the VCS simulation increases
when the number of nodes increases.

3.3 FPGA Resource Utilization of the Many-core Processor
Synthesized from Converted Verilog HDL Code

Here, we estimate the FPGA resource utilization of M-Core architecture. The
target device is Xilinx Virtex-7 XC7VX485 on the evaluation kit VC707.

The number of nodes to implement is 48 (8×6). The register files on the
Processing Element of each node is implemented using LUT-RAM. The local
memory in each core and the input buffers in each router are implemented using
Block-RAM. Parameters of the local memory on each core are 32-bit data width,
32 KB total size, and 3 port (2 read, 1 write). Parameters of the input buffer
are 38 bit data width, 16 entry (4 entry for each 4 virtual channels in a port),
and 2 port (1 read, 1 write). The number of router port except the edge node
of the processor is 5. Therefore, five Block-RAMs are used for input buffers in a
router.

Table 1 shows the hardware resources of the processor which are delivered
during place and route. The processor occupied 54,509 slices which is 71% of
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Table 1. Hardware Resource of a 64-node many-core processor on Virtex-7

Slice Reg LUT BRAM (RAMB36E1))

Used 54,509 79,641 158,103 1,007

Utilization 71% 13% 52% 97%

entire resources, and runs at 114.9 MHz according to the synthesis report. The
number of slices for each element in a node are about 460 slices for Processing
Element, about 25 slices for Memory Controller, about 280 slices for Network
Interface Controller, and about 400 slices for router.

From the result of hardware resources, we found that the scale of the hard-
ware generated by the converted Verilog HDL code by the translation tool is
appropriate.

4 Related Works

Chisel[2], SystemC[1], and MyHDL[4] are hardware description languages that
are able to compile as a program of general-purpose programming language.
Although hardware designers are able to describe hardware in RTL in these
languages, the hardware description style in those languages is very different
from the style of Verilog HDL.

SystemC is designed based on C++ and it is implemented as a C++ class
library. The hardware described in SystemC is able to compile and execute as a
C++ program. Hardware designers describe hardware using classes and macros
which are provided in the SystemC library. While most of the HDLs like Ver-
ilog HDL, VHDL and proposed ArchHDL support the RTL of design, SystemC
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originally supports the design at a higher abstraction level to model large hard-
ware systems.

MyHDL is designed based on Python. The hardware described in MyHDL
is compiled and is executed as a Python program. The project provides a tool
to convert a source code in MyHDL to Verilog HDL and VHDL for hardware
synthesis. It is reported that the architectural simulation speed of MyHDL is
about 3 times faster[8] than the speed of Verilog HDL compiled by Icarus Ver-
ilog. Although this project is unique using Python, MyHDL has not been used
extensively.

Chisel is designed based on Scala. The hardware description in Chisel is con-
verted to C++ code for high-speed simulation, and also is converted to Verilog
HDL code for ASIC synthesis. It is reported that the simulation speed of Chisel
C++ simulation is 7.8 times faster against Synopsys VCS.

SFL[9] is a unique language and PARTHENON is a high-level CAD tool for
SFL developed by NTT(Nippon Telegraph and Telephone Corporation). In SFL,
the designer does not describe a clock signal explicitly and the system assumes
the existence of the global clock implicitly. This strategy is the same as ArchHDL.
Although SFL is an attractive language, the development and maintenance of
PARTHENON system had stopped.

5 Conclusion

In this paper, we propose a new hardware description environment for architec-
tural design and logic design which aim to write and verify a hardware in one
language. The environment comprises of (1) A hardware description language
called ArchHDL and (2) A source code translation tool from ArchHDL to Ver-
ilog HDL. The goals of the proposed environment are to attain following: (1)
Easy hardware modeling in RTL, (2) Realizing the environment which is able
to verify both architectural design and logic design in one description, and (2)
High-speed simulation compared to Verilog HDL simulation.

We evaluate our proposed hardware description environment in two aspects:
(1) The simulation speed of hardware described by ArchHDL and (2) The
amount of resources usage of hardware when synthesizing Verilog HDL code gen-
erated from ArchHDL code by the translation tool. For practical evaluation, we
implemented a many-core processor in ArchHDL and also converted the source
code to Verilog HDL by the translator. The simulation speed of ArchHDL was
about 4.5 times faster than the simulation speed using Synopsys VCS which is
one of the fastest Verilog HDL simulator. The resource utilization of the 48-node
many-core processor on Virtex-7 was 54,509 in occupied slices. From the result,
we found that the scale of the hardware generated by the converted Verilog HDL
code by the translation tool is appropriate.

As future works, we consider about that: (1) The detailed verification of
the converted code from ArchHDL to Verilog HDL, (2) To develop a source
code translation tool from Verilog HDL to ArchHDL to obtain the first RTL
simulation, and (3) Implement the hardware described in ArchHDL into FPGAs
and confirm its behavior.



64 S. Sato and K. Kise

References

1. IEEE standard for Standard SystemC Language Reference Manual. IEEE std.
1666–2011 (2011)

2. Bachrach, J., Vo, H., Richards, B., Lee, Y., Waterman, A., Avižienis, R.,
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