
A Flexible Multilayer Perceptron Co-processor
for FPGAs

Zeyad Aklah(B) and David Andrews

Computer Science and Computer Engineering, University of Arkansas, Fayetteville,
AR 72701, USA

{zaklah,dandrews}@uark.edu
http://www.hthreads.uark.edu

Abstract. Implementing a custom Artificial Neural Network (ANN) in
hardware lacks the scalability and the flexibility of changing from one
topology to another at run time. This paper presents a Multilayer Per-
ceptron Co-processor (MLPCP) targeting FPGAs that is configurable
during design time and programmable during run time. The MLPCP
can be reprogrammed at run time to rapidly change network topologies
and use different activation functions. This allows application developers
to change parameters of a given network without the need to resynthe-
size. This also allows the MLPCP to be used for different applications
during run time. Run time results show the MLPCP can deliver perfor-
mance levels close to those of a custom ANN, and can execute network
topologies that cannot fit into FPGAs with limited resources. Perfor-
mance comparisons against software versions show up to 70x speedup
compared to a MicroBlaze running at 100 MHz, and 4x compared to a
Zynq running at 667 MHz.

1 Introduction

Researchers have been exploring the performance benefits of implementing cus-
tom Artificial Neural Networks (ANNs) within FPGAs [1][10][9][8][3][7]. Although
FPGA densities are growing their finite set of resources will limit the size and accu-
racy of the ANN. Investigations have occurred to reduce the resource footprint
required to implement a custom ANN [9],[1],[6].

However constructing a custom ANN requires that the topology of layers,
as well as the types of arithmetic and activation functions used in the neu-
ral network be defined before synthesis. This prevents run time changes to the
topology of the network as well as key parameters that effect accuracy such as
arithmetic precision and types of activation functions implemented in the neural
network[11]. Clearly it would be desirable to synthesize once, and then reuse the
neural network under different configurations for different applications.

Esmaeilzadeh et al. [4] addressed this lack of flexibility by proposing a pro-
grammable neural network co-processor targeted for implementation as an Appli-
cation Specific Integrated Circuit (ASIC). The co-processor is first optimized
through design space exploration prior to fabrication. Once a design is selected
c© Springer International Publishing Switzerland 2015
K. Sano et al. (Eds.): ARC 2015, LNCS 9040, pp. 427–434, 2015.
DOI: 10.1007/978-3-319-16214-0 39

428 Z. Aklah and D. Andrews

and fabricated it can then sequence the execution of multiple topologies at run
time.

This paper presents a configurable and programmable Multilayer Perceptron
Co-Processor (MLPCP) for implementation on FPGAs that extends the con-
figurability of the design reported in [4]. During the design phase the number
of PEs, data representation (floating point or fixed point), Activation Func-
tion (AF) implementation approach (BRAM lookup tables or synthesized using
Vivado HLS) can be configured by setting parameters. Once configured the
MLPCP co-processor design automatically scales the register set and intercon-
nect to support the number of PEs specified. Once synthesized the MLPCP is
then programmable at run time to implement any topology (up to a set max-
imum) and use mixes of different types of activation functions. This provides
the flexibility to change the precision and accuracy of results, or reuse the co-
processor to support the needs of multiple application domains without having
to resynthesize hardware.

The results in section(4) show the benefits as well as performance costs of
this flexibility. Performance results show the flexibility and reprogrammability
of the MLPCP do come at a modest decrease in peak performance compared to
fully custom implementations of small to modest sized neural networks. Results
then show the same MLPCP can continue to compute larger neural networks
that exceed the resource limitations of the FPGA for a custom implementation.

2 MLPCP Architecture

Figure 1 shows the generic structure of an MLPCP core. The MLPCP archi-
tecture consists of a linear array of Processing Elements (PEs), a scheduler,
controller, configuration registers, local memory and three external interface con-
nections. Both input data and weights are transferred through the same input
channel. The MLPCP

is automatically generated based on a set of configuration parameters pro-
vided by the user. The main parameters are the number of PE’s, type of acti-
vation functions, and arithmetic precision. Designers can vary these parameters
to explore area and performance tradeoffs for a particular FPGA. Once the
parameters have been set, the core scales itself and can then be synthesized.
Regardless of how the parameters are set, all configurations are still run time
programmable and will support different topologies, number of neurons, and
activation functions (up to a set maximum). Thus designers can perform cost
performance tradeoffs to arrive at an MLPCP tailored for their FPGA and set
of system requirements.

Processing Elements Figure 1.b shows a block diagram of the neuron PEs.
Each PE contains support for three types of AFs: a step function, log sigmoid,

and tangent sigmoid. During the design phase, designers can choose to imple-
ment the AFs as either computed functions (synthesized hardware) or using

A Flexible Multilayer Perceptron Co-processor for FPGAs 429

BRAM
Weights and
inputs/outputs

Controller

Config.
Registers
#Layers

#Inputs

#Outputs

#Neurons_L1

·
··

#Neurons_L2

#Neurons_Ln

AF_L1

·
··

AF_L2

AF_Ln

Scheduler

Routing &
Switching

AXI4 Stream

AXI4 Lite

PE0

Start
I
W
O
Done

PE1

Start
I
W
O
Done

·
··

PEn

Start
I
W
O
Done

#Inputs

#Inputs

#Inputs

AXI4 Stream

(b)

(a)

Step fun.

tan sig.

log sig. MUXSum

(c)

Out

Add
multiply AR AF

ControllerStart

Inputs
Weights

Output
Done

#Inputs

PE

Fig. 1. MLPCP Architecture; (a). MLPCP structure; (b). a PE structure (AR: Accu-
mulation Registers); (c). AF unit.

LUTs. Each layer can utilize different AFs programmed through the configura-
tion registers at run time. This provides the flexibility to implement different
networks at run time.

Scheduler The scheduler divides each layer into group(s) of neurons equal in
size to the available number of PEs.

Thus for some topologies, the number of neurons in a layer is not divisible
evenly by the number of PEs. In these cases, the remaining neuron(s) will be
assigned to the first PE(s) during the next cycle. For example, with 8 PEs and
20 neurons in a layer, the scheduler will sequence two groups of eight neurons
and one group of four. All neurons in a group are processed concurrently, with
different groups processed sequentially. Based on the scheduler assignment, the
controller aligns weights and inputs for each neuron in each PE’s FIFO. Figure
2 illustrates how the scheduler computes neurons in an MLPCP with four PEs.
The network is divided into 7 groups (G1 to G7). The scheduler then assigns
each group sequentially onto the PEs. The outputs of each group within a layer
are saved in the Layer Buffer, and assigned as inputs to the next layer.

Controller The controller is responsible for organizing weights and inputs for
the neurons. During setup time, if AFs are not built in HW (synthesized), the
controller reads the AFs values throughout the streaming input channel and
stores them in PEs’ local memory. Also, it calculates the number of weights
that will be streamed to the MLPCP based on the configured registers. The
controller divides the weight matrix into groups equal to the number of PEs and
aligns them into each PE’s FIFO. The controller also aligns the outputs of each
layer with the appropriate weights to be used in the next layer. At the output
layer, the controller streams the results out of the programmable MLPCP and
generates “last” signal.

430 Z. Aklah and D. Andrews

Inputs

Outputs

Inputs B
uffer

W
eights B

uff.

O
utputs B

uff.

Scheduler

Controller

inputs
weights

output

Layer Buffer

Outputs

Layer 1

Layer 2

Layer 3
(Output Layer)

Fig. 2. Scheduling neurons in MLPCP with four PEs

Configuration Registers The following programmable registers are provided:

– #Layers: number of layers in the network.
– #Inputs: number of inputs.
– #Outputs: number of outputs.
– #Neurons L1: number of neurons in first layer.
– #Neurons L2: number of neurons in second layer.
– #Neurons Ln: number of neurons in nth layer.
– #AF L1: the type of activation function in first layer.
– #AF L2: the type of activation function in second layer.
– #AF Ln: the type of activation function in nth layer.

The number of registers scales based on the maximum network settings such
as: Maximum Number of Layers (MNL), Maximum Number of Neurons (MNN),
Maximum Number of Neurons in Largest Layer (MNNLL), Maximum Number
of Inputs (MNI), and Maximum Number of Outputs (MNO).

3 Evaluation and Results

The MLPCP was written in C++ and generated using Xilinx’s Vivado-hls 14.2
tools. We configured, synthesized and ran four versions of the MLPCP and com-
pared their performance against software implementations for three applications.
Comparisons were performed against a 660 MHz diffused ARM processor on the
Zedboard(xc7z020clg484-1) and a 100 MHz soft IP MicroBlaze processor.

Performance results for these tests are presented in Section 3. We then imple-
mented two custom neural network versions of three different test applications
on the Zedboard for size comparisons. These results are presented in Section 3.1.

MLPCP Configurations: The following four versions of the MLPCP were
used in our evaluations:

1. MLPCP-1: Four PEs, arithmetic floating point, AFs: synthesized (Vivado-Hls).

A Flexible Multilayer Perceptron Co-processor for FPGAs 431

Table 1. Execution times for software (MicroBlaze, ARM) and MLPCP-x

Func. Network SW(µs) MLPCP-1 MLPCP-2 MLPCP-3 MLPCP-4
Order Topology Microbl. ARM run run run run

time(µs) time(µs) time(µs) time(µs)

Sched.

1 9,2,6 52.36 2.52 5.91 5.24 5.04 4.6
2 9,4,6 78.43 4.82 6.5 5.7 5.42 4.9
3 9,16,8,6 296.49 17.84 17.63 11.22 12.22 8.7
4 9,40,6 449.83 30.40 29.8 17.96 19.54 13.72
5 9,12,27,6 510.91 31.54 29.8 17.96 20.22 15.93

JPEG

6 64,16,64 1319.48 94.86 83.66 50.31 58.45 39.36
7 64,32,16,64 2848.89 158.9 137.93 81.58 93.19 60.74
8 64,32,16,32,64 4021.37 279.62 190.2 112.67 125.91 80.15
9 64,32,16,48,40,16,64 6682.37 411.32 213.41 133.84 143.32 95.52

2. MLPCP-2: Eight PEs, arithmetic floating point, AFs: synthesized (Vivado-Hls).
3. MLPCP-3: Four PEs, arithmetic fixed point, AFs: lookup table in BRAM (100

samples with 8-bit resolution).
4. MLPCP-4: Eight PEs, arithmetic fixed point, AFs: lookup table in BRAM (100

samples with 8-bit resolution).

Both MLPCP-3 and MLPCP-4 used (sign=1,word size=8,fraction=4) inputs,
(1,17,8) weights, (1,29,16) weighted sum, and (1,8,4) outputs in fixed point data
representation. The configuration parameters were set to the following values
to bound the maximum network size that each MLPCP would run: MNL=6,
MNN=348, MNNLL=64, MNI=64, MNO=64.

Test Applications Three applications were used in our evaluations. The first
is inversek2j an inverse kinematics application for a 2-joint arm[4].

The second is an adaptive smart-scheduler reported in [2]. The third is a
standard JPEG encoder. Each application was first trained offline on a desktop
PC in MATLAB. Different topologies were evaluated during the training phase.
The topologies used in this study are not guaranteed to provide the best efficiency
and accuracy.

Performance Evaluation The four versions of the MLPCP were evaluated
against software implementations on both a MicroBlaze and ARM .The soft-
ware source code could be found in [5]. It was modified and optimized to run
on embedded processors. Data and instruction caches were turned on for both
processors. Input data sets were transfered using DMA into local BRAMs for
all test cases (processors and MLPCPs). The reported time in Table 1 included
transfer and execution time.

Table 1 lists execution times for the smart scheduler and JPEG encoder
applications trained using nine different topologies. Each of the four MLPCP
systems were programmed at run time to implement each of the topologies.
For a given topology, the first number represents the number of inputs. The

432 Z. Aklah and D. Andrews

91 2 3 4 5 6 7 8

80

0

10

20

30

40

50

60

70

Topology

Sp
ee

d
up

 o
ve

r
M

ic
ro

bl
az

e
 MLPCP-1

MLPCP-2

MLPCP-3

MLPCP-4

91 2 3 4 5 6 7 8

5

0

1

2

3

4

Topology

Sp
ee

d
up

 o
ve

r
A

R
M

MLPCP-4

MLPCP-3

MLPCP-2

 MLPCP-1

Fig. 3. Speed up over software on MicroBlaze (left) and ARM (right) processors

cardinality of the n− 1 remaining integers represent the number of layers, with
each integer representing the number of neurons in that particular layer.

The execution times from Table 1 are replotted in Figure 3 to show the speed
up over software implementations run on the MicroBlaze and ARM processors
respectively.

The MicroBlaze was running at 100 MHz, the same clock frequency as the co-
processor. The ARM however, was running at 667 MHz, 6.6x faster than the 100
MHz MLPCP. Even with the 6.6x advantage, the MLPCP begins outperforming
the ARM at topology (3); a relatively small and simple neural network with
three layers and 30 neurons. In both cases, speedups generally increase as the
size and complexity of the topology increases.

3.1 Resource Comparisons

Generalization typically comes with performance and resource efficiency costs
compared to customization. This analysis shows the performance and resource
efficiency costs associated with the programmable MLPCP. We quantified these
costs by building and then comparing the following two custom designs with our
four MLPCP systems.

Custom hardware Designs: The following two custom hardware design
approaches are from [1],[10] and [6]:

1. CNN1: A fully parallel network (the number of PEs equal to the number of neurons
in the network) with pipelining between layers.

2. CNN2: A network with the number of PEs equal to the number of neurons in the
largest layer. Each layer was then multiplexed on the array of PE’s.

Table 2 shows the resource usage for our four MLPCP systems on the Zed-
board.

Comparisons Between MLPCP-4 and CNNx : For comparisons we imple-
mented the two custom networks on the Zedboard. One specific topology was
used for each application and then implemented using the CNN1 and CNN2

A Flexible Multilayer Perceptron Co-processor for FPGAs 433

Table 2. Resource Utilizations on Zedboard

Version PEs AF BRAM 18k DSP48E FF LUTs

MLPCP-1 4 Synth 8.9% 37% 6.59% 16.21%

MLPCP-2 8 Synth 13.2% 74.09% 12.13% 31.15%

MLPCP-3 4 LUTs 4% 4% 0.2% 3.2%

MLPCP-4 8 LUTs 8.2% 7.7% 2.9% 4.9%

Table 3. Resources Comparisons for MLPCP-4 and CNNs on Zedboard

Function Design PEs BRAM 18k DSP48E FF LUTs Performance
(µs)

Inversek2j CNN1 6 0 2.2% 1.1% 6% 2.29
(2,4,2) CNN2 4 0 1.3% 0.9% 4.9% 2.49

MLPCP-4 8 7.5% 7.2% 2.9% 4.9% 3.86

Scheduler CNN1 16 0.3% 13.6% 4.2% 16.32% 3.8
(9,10,6) CNN2 10 0.3% 9.0% 3.4% 12.6% 4.4

MLPCP-4 8 7.5% 7.2% 2.9% 4.9% 5.9

JPEG CNN1 72 25.7% 37.7% 15.4% 122% -
(64,8,64) CNN2 64 22% 30% 11% 100% -

MLPCP-4 8 7.5% 7.2% 2.9% 4.9% 25.67

approaches. Inversek2j was first trained and then implemented using fixed point
arithmetic and lookup tables for the AFs. The MLPCP-4 system was chosen for
comparison.

Several interesting results can be drawn from the comparisons in Table 3. The
inversek2j application represents a very small custom neural network with fewer
than the eight PEs contained within MLPCP-4. Thus the MLPCP-4 includes two
PEs and additional control and sequencing logic not used. For this case the CNNs
were more resource efficient. The smart scheduler and JPEG applications show
the MLPCP-4 becoming more resource efficient as the size of the neural network
exceeds its 8 PEs. Both custom designs showed how the resource requirements
grow with size of the network topology compared to the MLPCP-4. It can be seen
in Table 3 that the custom implementations for the JPEG application exceeded
the LUT resources available on the Zynq and could not be synthesized.

Table 3 shows the performance cost of programmability. As would be expected
a fully custom, pipelined implementation (CNN1) outperformed the customdesign
that limited PEs to the largest layer (CNN2) as well as a very general and pro-
grammable co-processor (MLPCP-4).

4 Conclusion

This paper presented a new Multilayer Perceptron Co-Processor (MLPCP)
designed for implementation on FPGAs. The MLPCP provides the advantages of
reuse and scalability over custom designed ANNs. Once synthesized for a

434 Z. Aklah and D. Andrews

particular FPGA, the MLPCP can be configured through a programmable set of
registers at run time to assume different topologies and achieve different accuracy
of results. This allows the MLPCP to be used for different sets of requirements
and across different applications.

References

1. Canas, A., Ortigosa, E., Ros, E., Ortigosa, P.: FPGA implementation of a
fully and partially connected MLP. In: Omondi, A., Rajapakse, J. (eds.)
FPGA Implementations of Neural Networks, pp. 271–296. Springer, US (2006).
http://dx.doi.org/10.1007/0-387-28487-7 10

2. Cartwright, E., Sadeghian, A., Ma, S., Andrews, D.: Achieving portability and
efficiency over chip heterogeneous multiprocessor systems. In: Proc. of the 24th
Intl. Conf. on Field Programmable Logic and Applications (FPL), pp. 1–4 (2014)

3. Cheung, K., Schultz, S., Luk, W.: A large-scale spiking neural network accelerator
for FPGA systems. In: Villa, A., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.)
ICANN 2012, Part I. LNCS, vol. 7552, pp. 113–120. Springer, Heidelberg (2012).
http://dx.doi.org/10.1007/978-3-642-33269-2 15

4. Esmaeilzadeh, H., Sampson, A., Ceze, L., Burger, D.: Neural acceleration
for general-purpose approximate programs. In: 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 449–460, December
2012

5. Gure, A.: Multilayer perceptron neural network in c. https://github.com/
sanjeevk001/workingfiles/tree/master/mlp-bp-fxp-5

6. Himavathi, S., Anitha, D., Muthuramalingam, A.: Feedforward neural network
implementation in FPGA using layer multiplexing for effective resource utilization.
IEEE Trans. on Neural Networks 18(3), 880–888 (2007)

7. Jung, S., Kim, S.S.: Hardware implementation of a real-time neural network con-
troller with a DSP and an FPGA for nonlinear systems. IEEE Transactions on
Industrial Electronics 54(1), 265–271 (2007)

8. Krips, M., Lammert, T., Kummert, A.: FPGA implementation of a neural net-
work for a real-time hand tracking system. In: Proc. of the 1st Intl. Workshop on
Electronic Design, Test and Applications, pp. 313–317 (2002)

9. Misra, J., Saha, I.: Artificial neural networks in hardware: A survey of two
decades of progress. Neurocomputing 74(13), 239–255 (2010). Artificial Brains
http://www.sciencedirect.com/science/article/pii/S092523121000216X

10. Moussa, M., Areibi, S., Nichols, K.: On the arithmetic precision for implementing
back-propagation networks on FPGA: a case study. In: Omondi, A., Rajapakse, J.
(eds.) FPGA Implementations of Neural Networks, pp. 37–61. Springer, US (2006).
http://dx.doi.org/10.1007/0-387-28487-7 2

11. Ortega-Zamorano, F., Jerez, J., Franco, L.: FPGA implementation of the c-mantec
neural network constructive algorithm. IEEE Trans. on Industrial Informatics
10(2), 1154–1161 (2014)

http://dx.doi.org/10.1007/0-387-28487-7_10
http://dx.doi.org/10.1007/978-3-642-33269-2_15
https://github.com/sanjeevk001/workingfiles/tree/master/mlp-bp-fxp-5
https://github.com/sanjeevk001/workingfiles/tree/master/mlp-bp-fxp-5
http://www.sciencedirect.com/science/article/pii/S092523121000216X
http://dx.doi.org/10.1007/0-387-28487-7_2

	A Flexible Multilayer Perceptron Co-processor for FPGAs
	1 Introduction
	2 MLPCP Architecture
	Processing Elements
	Scheduler
	Controller
	Configuration Registers

	3 Evaluation and Results
	MLPCP Configurations:
	Test Applications
	Performance Evaluation

	3.1 Resource Comparisons
	Custom hardware Designs:
	Comparisons Between MLPCP-4 and CNNx

	4 Conclusion
	References

