
Hierarchical Dynamic Power-Gating in FPGAs

Rehan Ahmed1,2(B), Steven J.E. Wilton1,2,
Peter Hallschmid1,2, and Richard Klukas1,2

1 The University of British Columbia, Vancouver, Canada
2 Blackcomb Design Automation, Vancouver, Canada

{rehan.ahmed,richard.klukas}@ubc.ca, stevew@ece.ubc.ca,

peter.hallschmid@blackcomb-da.com

Abstract. Dynamic power-gating has been shown to reduce FPGA
static leakage power significantly. In this paper, we propose a high-level
synthesis (HLS) compiler-assisted framework that automatically detects
the hierarchical power-gating opportunities, and turns off accelerators
when they are not required. Unlike previous work which considers turn-
ing off entire accelerators when they are not required, our technique is
more fine-grained, in that it allows turning off a portion of an accelera-
tor when other parts of an accelerator are running. Results on CHStone
benchmarks show that hierarchical power-gating can save up to 31 %
of static energy when the parent and descendant accelerators are power-
gated independently. An additional savings of up to 25 % can be achieved
if the parent accelerator is power-gated while the sub-accelerator runs.

1 Introduction

As Field-Programmable Gate Arrays (FPGAs) are migrated to advanced pro-
cessing nodes, power has become a first-class concern for many applications.
Compared to an Application-Specific Integrated Circuit (ASIC), an FPGA
implementation typically dissipates 14x more power [7]. One of the most effective
techniques to reduce the power dissipation in an FPGA is to turn off (power-
gate) part of the design when it is idle. Recent work has presented techniques
for dynamic power-gating (DPG) [3], in which parts of the FPGA can be turned
off at run time, under control of an on-state power controller.

Dynamic power-gating, however, presents a formidable challenge to a
designer. In ASIC design, in which power-gating is common, power-gating oppor-
tunities are identified manually and typically described in a standard format,
such as Unified Power Format (UPF). For FPGAs, many designers may not be
willing or able to invest the effort into this manual identification, reducing the
effectiveness of overall power-gating. Although techniques have been proposed
for identifying some power-gating opportunities from a netlist or dataflow graph,
these techniques typically focus on power-gating opportunities which are as short
as several cycles [2,6,8], limiting the effectiveness of power-gating. Automatically

c© Springer International Publishing Switzerland 2015
K. Sano et al. (Eds.): ARC 2015, LNCS 9040, pp. 27–38, 2015.
DOI: 10.1007/978-3-319-16214-0 3



28 R. Ahmed et al.

identifying significant power-gating opportunities from a netlist or RTL design
remains a difficult challenge.

Identifying power-gating opportunities can be much easier, however, if the
design is created using a higher-level design tool. In particular, high-level syn-
thesis (HLS) methodologies are increasingly being used to raise the abstraction
level of a design and improve designer productivity. In such a methodology, a
designer specifies a design using a language such as C, and the tool generates
a circuit. Importantly, the overall architecture of the resulting digital system is
determined by the high-level synthesis compiler. The compiler not only knows
about the structure of the circuit, but also its temporal behaviour which can be
used to identify power-gating opportunities automatically.

In [1], a methodology is presented in which the schedule from a high-level
synthesis tool is used to determine the idle periods of individual hardware accel-
erators in a synthesized system. The predicted length of these idle periods is
used to determine whether the power saved by power-gating the accelerator is
more than the overhead of turning the accelerator off and then on again at the
end of the idle period. Based on this knowledge, individual accelerators can then
be power-gated when it is deemed profitable. In this previous work, however, the
granularity of power-gating is fixed at the accelerator level. An entire accelerator
is turned off or on as a unit. For very large accelerators, it may be profitable to
power gate at a finer granularity. If an accelerator has many phases, each of which
is implemented by a separate logic circuit (which we call a sub-accelerator), then
it may be desirable to turn off individual sub-accelerators when parent or other
sub-accelerators are running.

In this paper, we present a HLS compiler-assisted framework that automat-
ically detects the hierarchical power-gating opportunities from an application
expressed in C language. We present a study in which we vary the granularity
of power-gating and quantify the benefits of making power-gating decisions for
each sub-accelerator separately, rather than simply at the accelerator level. We
show that for some applications, this finer-granularity results in more effective
power-gating, providing more power savings than the previous technique.

When determining whether an idle period is long enough to make power-
gating worthwhile, [1] assumes a static schedule constructed using a single set of
input vectors. If these input vectors change, the idle times experienced during
the run of the application may deviate from the predicted idle times, potentially
leading to sub-optimal power-gating decisions. For the accelerators considered
in [1], the idle periods are long enough that this is not likely to be a concern.
Finer-grained power-gating, however, implies shorter idle periods, meaning the
optimal power-gating decisions may be more sensitive to changes in the inputs.
In this paper, we investigate whether this is an issue as the granularity of power-
gating decreases. Thus, this paper has three contributions:

1. We enhance the design framework in [1] to support hierarchical power-gating.
Section 3 presents our compiler-assisted framework for automatically gener-
ating hierarchical power-gating decisions.



Hierarchical Dynamic Power-Gating in FPGAs 29

2. We study the impact of reducing the power-gating granularity to consider
power-gating sub-accelerators as well as accelerators. Section 4 quantifies the
impact of hierarchical power-gating.

3. We investigate whether the compiler-assisted power-gating approach used
in [1] is sufficient as the granularity of power-gating decreases. Section 5
presents our findings across a large number of input patterns.

2 Context

Although our work will apply to any FPGA which provides dynamic power-
gating control, and any high-level synthesis tool, we describe it in the context
of the Dynamic Power-Gated FPGA architecture from [3] and the LegUp high-
level synthesis tool from [4]. In this section, we present a brief background about
each.

2.1 Dynamic Power-Gated Architecture

The DPG architecture from [3] is a typical island-style FPGA in which the logic
and routing fabric have been augmented with header switches and associated
control logic that allow regions of the chip to be selectively powered-down, under
the control of signals from elsewhere on the chip (typically from a power-state
controller). A Power-Gated Region (PGR) is the basic unit of power-gating which
is turned on or off as a unit. Each of these regions consists of a small number of
CLBs, as shown in Fig. 1. The flip-flops within each logic element are not turned
off as this allows for a more rapid power-up sequence since state is retained.
Table. 1 shows the simulated architecture parameters used in our experiments.

CLB

SB

SB

SB

SB

CB

CB

CB

CB CLB

SB

SB

CB

CB

CB

CLB

SB SB

CB

CB

CB CLB

SB

CB

CB

VDD

0
1 PG_CNTL

Bordering connection block 
and isolation buffers

Fr
om

 b
or

de
rin

g 
co

nn
ec

tio
n 

bl
oc

ksSRAM

SRAM

Power gating 
multiplexer

Power switch

Example CLB input 
pins that drive the 
power gating mux

Fig. 1. Example power gating
region supporting DPG [3]

Table 1. Simulated Architecture Parameters
used in Experiments of Sect. 4

PGR SB

P1→0 Power to Turn-Off 1.22E-04 1.45E-05

P0→1 Power to Turn-On 5.98E-04 5.53E-05

T1→0 Time to Turn-Off 6.59E-09 4.12E-10

T0→1 Time to Turn-On 7.14E-09 4.46E-10

PON−leak On Leakage Power 6.70E-05 5.36E-06

POFF−leak Off Leakage Power 2.03E-06 2.93E-07



30 R. Ahmed et al.

2.2 LegUp High-Level Synthesis Framework

Our work is based on LegUp, a high-level open source synthesis framework [4].
LegUp automatically generates an SoC consisting of a MIPS processor and one
or more accelerators from an application expressed in C. The application is first
profiled on a hardware profiler to identify the functions that would benefit from
hardware implementation. Based on this information, the tool then compiles each
identified function into a hardware accelerator. The portions of the algorithm that
are not selected for acceleration are mapped to the MIPS processor and will run
as software. These accelerators and a MIPS processor are then combined using
an Avalon fabric, creating an accelerated version of the original C code.

3 Hierarchical Power-Gating

As described above, LegUp automatically identifies functions in the input C
code that are suitable for acceleration. The work in [1] considers each of these
accelerators, along with a static schedule, and determines whether the benefit of
turning off the accelerator is more than the overhead of doing so. In our work,
we consider not only each function in the C code, but their sub-functions as
well. In the hardware generated by LegUp, each sub-function is implemented
as a separate hardware unit (which we refer to as a sub-accelerator) and our
approach considers turning off each of these hardware units separately.

Our framework is shown in Fig. 2. We identify all the profitable idle phases
across all the hierarchical accelerators and generate a static power-gating sched-
ule. This is then passed on to HLS compiler which then generates Verilog descrip-
tions of the datapath and controller circuit. The various phases of the framework
are discussed below.

Identify 
Accelerator 
Hierarchy

Idle Phase 
Detection

Idle Phase 
Pruning

Generate 
PowerGating

Schedule

Application
(C)

LegUp 
Framework

Verilog RTL
(Hardened 

Logic)

A

B C

D

SE: Start Event
FE: Finish Event
PG: Power-Gating

D

EXE IDLE EXE IDLEA

IDLE EXE
:

IDLE EXE

SE FE

D

EXE IDLE EXE IDLEA

IDLE EXE
:

IDLE EXE

D

No Power-Gating PGA

PG
:

No Power-Gating

Fig. 2. HLS Compiler Assisted Hierarchical Power-Gating Framework



Hierarchical Dynamic Power-Gating in FPGAs 31

3.1 Identifying Accelerator Hierarchy

The (HLS) compiler operates on a C program and converts annotated (prof-
itable) C-functions into hardware accelerators. In doing so, if the function has
descendant functions, they are also converted into sub-accelerators. We keep
track of the function calls in the program and build a hierarchical call tree for
all the functions (annotated for acceleration) in the program. This enables us
to identify all the hierarchical accelerators in the program, which later get syn-
thesized into hardware modules. In this paper, we refer to the top accelerator
in the hierarchy as a parent accelerator and the accelerators called by the top
accelerator as child accelerators.

3.2 Idle Period Detection

Each accelerator (parent or child) typically has active and idle periods. The
idle periods are potential power-gating opportunities. The goal of this phase
is to identify all idle periods based on a static schedule, as determined by the
scheduling algorithm in the HLS compiler, and to identify the start and end
events associated with each idle period. Note that the actual duration of the idle
period will typically vary from run to run as input patterns change. In Section 5,
we evaluate the impact of changing inputs on the number of idle periods and
their duration.

3.3 Pruning Idle Periods

The previous phase produces a list of all potential power-gating opportunities.
However, many of these may not be profitable. Powering down (and later pow-
ering up) a power-gated region incurs both energy and delay overhead. Thus,
for each power-gating opportunity, we must determine whether a power-gating
event should be generated.

In general, an accelerator should be turned off when idle if the power saved by
power-gating the accelerator is more than the overhead of turning the accelerator
off and then on again at the end of the idle period. To make this determination,
we first find the accelerator’s energy break-even time – the minimum idle time
at which the leakage-savings compensate the energy penalty for mode transition.
If the predicted idle time duration, as determined in Section 3.2, is more than
break-even time, we generate a power-gating event. Below, we briefly describe
how we find an accelerator’s break-even time.

Determining Accelerator’s Energy Break-Even Time: Every time an
accelerator transitions between the sleep and execution modes, there is an energy
penalty. An accelerator should only be power gated if it will be idle long enough
to compensate for this penalty. The energy break-even time is the minimum idle
time for which an accelerator should be power gated, and can be calculated as:



32 R. Ahmed et al.

Tbreak−even =
(P1→0 × T1→0) + (P0→1 × T0→1)

PON−leak − POFF−leak
(1)

where P1→0, T1→0, is the power and time required to enter power-saving mode.
Similarly, P0→1 and T0→1 is the power and time required to exit the power-
saving mode. PON−leak and POFF−leak is the leakage power in the turned-on
and turned-off state respectively.

In context of our target DPG architecture, as discussed in Sec.2.1, the power-
gated region (PGR) is the basic unit of granularity. Thus, an accelerator occupies
an integral number of PGRs and switch-blocks (SBs). Therefore, the switching
energy and power-saved can be expressed as,

(2)Eswitch = NumPGR× (PswitchPGR × TswitchPGR)
+ NumSBs× (PswitchSB × TswitchSB)

(3)Psaved = NumPGR× (PPGR−on−leak − PPGR−off−leak)
+ NumSBs× (PSB−on−leak − PSB−off−leak)

where in (2) and (3), NumPGR and NumSBs is the number of PGRs and
SBs, respectively, occupied by the accelerator. We find this by performing an
initial mapping of the accelerator to the fabric, however, estimation techniques
could also be used.

3.4 Power-gating Schedule Generation

Once all the profitable power-gating opportunities across all the hierarchical
accelerators have been identified, a schedule with these decisions is generated.
The power-gating schedule records the conditions (start and end events) that
trigger a particular idle period in an accelerator. Each time these conditions are
met at run-time, power-gating is triggered which would put the accelerator in
sleep mode.

4 Experimental Results

4.1 Experimental Setup

We use the CHStone benchmarks suite developed for C-based high-level synthesis
(HLS); these benchmarks represent diverse real-world application domains. The
C-based source of each benchmark was provided as input to the Legup HLS
framework, augmented with our tool flow, as shown in Fig.2. The RTL output
from the framework, which contains datapath, controller and hierarchical power-
gating schedule, is then mapped to the dynamic power-gating FPGA architecture



Hierarchical Dynamic Power-Gating in FPGAs 33

from [3] to get the number of PGRs and SBs occupied by the accelerators. Since
we have not fabricated an FPGA with our power-gating architecture, we do not
generate a bitstream. However, the HSPICE simulated architecture parameter
values, given in Table. 1, allows us to quantify the impact of hierarchical power-
gating.

4.2 Hierarchical Power-Gating Evaluation

In order to quantify the impact of hierarchical power-gating, we apply the fol-
lowing power-gating policies to the parent and child accelerators in CHStone
benchmarks suite [5] and compare their impact:

Accelerator-Level Power-Gating; Policy-P1: In this policy, the entire
accelerator, including all the sub-accelerators of this accelerator, is consid-
ered as one power-gating unit. The sub-accelerators have no separate power-
gating control. Whenever the parent accelerator is active at the end of it’s
idle period, all it’s sub-accelerators in the hierarchy become active as well.
This approach is similar to [1] and serves as the reference.

Parent Runs while Child Runs; Policy-P2: This approach represents
intra-accelerator power-gating in which the parent and descendant accelera-
tors are treated as independent units for power-gating i.e. each hierarchical
accelerators can be switched independently. In this policy, the parent accel-
erator remains active and does not sleep after initiating the sub-accelerator.
The sub-accelerator is power-gated, however, if only the parent is required
to be active.

Parent is Power-Gated while Child Runs; Policy-P3: This approach
also represents intra-accelerator power-gating. In this approach, we power-
gate the parent accelerator after it is has started a sub-accelerator. Once the
sub-accelerator has finished processing, the parent accelerator is woken up.

The proposed power-gating policies are evaluated based on the total leakage
energy consumed by an accelerator in power-gating mode, denoted as E PG, in
which the accelerator is turned-off during it’s idle period if it is deemed prof-
itable. The leakage energy in all execution and idle phases is added together to
estimate E PG. By design, the DPG architecture in [3] suffers a 10% perfor-
mance degradation due to the presence of power-gating circuitry; to account for
this, we increase the idle and execution time periods by this degradation factor
when calculating E PG. Of the circuits in the CHStone suite, we present results
for two benchmarks below.

JPEG: The hierarchical call tree of JPEG benchmark is shown in Fig. 3. There
are three parent-level and two child-level accelerators. We evaluate the above
mentioned power-gating policies for Decode Block (DB) accelerator as it has two
descendants. The occupancy stats of various JPEG accelerators are reported in
Table. 2. The columns labeled DTF show the number of power-gated regions
(PGRs) and switch-blocks (SBs) for each accelerator that can be dynamically



34 R. Ahmed et al.

JPEG
[main]

Write4Blocks
(W4B)

[Parent]

Huff_Make_Dhuff_tb
(HMDtb)
[Parent]

Decode_Block (DB)
[Parent]

DecodeHuffman
(DB_DH)

[Child]

Buf_Getv
(DB_BGv)

[Child]

Fig. 3. JPEG Hierarchical Call Tree

Table 2. JPEG Occupancy Stats

Accelerator Total PGRs SBs EBT EBC W.Cyc
PGRs (DTF) (DTF)

W4B 162 139 1576 4.43E-08 3 4
DB 222 155 659 6.01E-08 4 4

HMDtb 48 28 260 4.78E-08 4 1
DB DH 31 21 96 5.91E-08 4 1
DB BGv 25 19 54 6.50E-08 5 1

turned off (DTF) (typically not all PGRs and switch blocks can be turned off
even when an accelerator is idle, since routing switches within a switch block
or other parts of a PGR must remain active to implement parts of the circuit
that have not been turned off). The fifth column shows the accelerator’s energy-
break even time (EBT) which is converted into energy-break even cycles (EBC)
assuming a 66Mhz clock. The last column is the number of cycles to transfer
from sleep to normal execution mode, denoted as wake-up cycles (W.Cyc), and
are used to quantify the impact on execution length.

Fig. 4a shows the execution and idle time percentages across the three power-
gating policies. The Decode Block (DB) appears as a single accelerator in policy
P1, as the parent and it’s descendants are treated as one combined hardware
module, while it’s descendants are visible in the other two policies. As can be
observed from Fig. 4a, the descendant accelerators executes briefly and remain
idle most of the time during which they can be power-gated. The parent accel-
erator is power-gated in P3 while it’s descendants are running which presents
an additional power-savings opportunity. Fig. 4b shows the E PG consumption
comparison across power-gating policies. The E PG for the parent and child
accelerators are added together in P2 and P3. As can be observed in Fig. 4b,
E PG in P2 is 31.88% less than E PG in P1 which indicates that in JPEG
benchmark it would be worth considering the parent and child accelerators as
stand-alone units for power-gating. Further, in this benchmark, the child accel-
erators have significant execution times, meaning that by turning off the parent
when the children are executing (policy P3), further power reductions are pos-
sible. As shown in Fig. 4b, E PG in P3 is 49.30% less than E PG in P1.

SHA: The hierarchical call tree of SHA benchmark is shown in Fig. 5 and it’s
accelerators sizes are given in Table. 3. Note that the Sha Tansform accelerator
appears as both parent and child, and is instantiated twice when hardware is
generated. We distinguish the child-level Sha Tansform (SU ST) accelerator by
adding its parent name before it.

As can be observed in Fig. 6a, the child accelerator, Sha Tansform (SU ST),
is busy executing most of the time; during this time, it’s parent, Sha Update
(SU), can be turned off (Policy P3). The value of E PG for each policy is shown
in Fig. 6b. As can be seen, E PG for policy P3 is 46.11% less than for policy
P1, as the parent remains turned off 89% of the time. This comparison suggests
that it is best to treat the parent and child as independent accelerators which, if



Hierarchical Dynamic Power-Gating in FPGAs 35

83.05

83.05

22.20
6.31

54.55

22.20
6.31

16.94

16.94

77.80

93.69

45.44

77.80

93.69

0 20 40 60 80 100

DECODE_BLOCK

DECODE_BLOCK

DECODEHUFFMAN

BUF_GETV

DECODE_BLOCK

DECODEHUFFMAN

BUF_GETV

P1
P2

P3

PERCENTAGE [%]

PO
LI

CI
ES

EXE AND IDLE PERCENTAGE IN DIFFERENT POLICIES
EXE % IDLE %

(a)

5.59E-04

3.58E-04

2.60E-04

1.68E-05

1.68E-05
6.33E-06

6.33E-06

0.00E+00 1.00E-04 2.00E-04 3.00E-04 4.00E-04 5.00E-04 6.00E-04

P1

P2

P3

E_PG [JOULE]

PO
LI

CI
ES

COMPARISON OF E_PG IN DIFFERENT POLICIES
DECODE_BLOCK
DECODE_BLOCK_DECODEHUFFMAN
DECODE_BLOCK_BUF_GETV

(b)

Fig. 4. JPEG Benchmark (a) Percentage of Execution and Idle Times (b) Comparison
of Total Leakage Energy Consumed - in various Power-Gating Policies

SHA
(main)

Sha_Transform 
(ST)

[Parent]

Sha_Update
(SU)

[Parent]

Sha_Transform 
(SU_ST)
[Child]

Fig. 5. SHA Hierarchical Call Tree

Table 3. SHA Occupancy Stats

Accelerator Total PGRs SBs EBT EBC W.Cyc
PGRs (DTF) (DTF)

SU 52 38 350 4.79E-08 4 1
ST 79 65 476 5.17E-08 4 2

SU ST 75 68 570 4.95E-08 4 2

are power-gated during their respective idle times can reduce, the leakage energy
by 46%. Therefore, in case of SHA benchmark, policy P3 remains best overall.

99.61

99.61

89.57
10.05

89.57

10.43

89.95
10.43

0 20 40 60 80 100

SHA_UPDATE

SHA_UPDATE

SHA_UPDATE_SHA_TRANSFORM

SHA_UPDATE

SHA_UPDATE_SHA_TRANSFORM

P1
P2

P3

PERCENTAGE %

PO
LI

CI
ES

EXE AND IDLE PERCENTAGE IN DIFFERENT POLICIES
EXE.CYC% IDLE%

(a)

1.04E-04

3.40E-05

4.40E-06

5.17E-05

5.17E-05

0.00E+00 2.00E-05 4.00E-05 6.00E-05 8.00E-05 1.00E-04 1.20E-04

P1

P2

P3

E_PG [JOULES]

PO
LI

CI
ES

COMPARISON OF E_PG IN DIFFERENT POLICIES
SHA_UPDATE SHA_UPDATE_SHA_TRANSFORM

(b)

Fig. 6. SHA Benchmark (a) Percentage of Execution and Idle Times (b) Comparison
of Total Leakage Energy Consumed - in various Power-Gating Policies



36 R. Ahmed et al.

0.05

0.01

0.01

0.17
0.09

0.20
0.30

4.64
0.94

0.92

0 1 2 3 4 5

GET_MOTION_CODE

GET_MOTION_CODE_FLUSH_BUFFER

SHA_UPDATE

SHA_UPDATE_SHA_TRANSFORM

DECODE_BLOCK

DECODE_BLOCK_DECODEHUFFMAN

DECODE_BLOCK_BUF_GETV

M
O

TI
O

N
SH

A
JP

EG

PERCENTAGE INCREASE IN RUN-TIME

IMPACT OF POWER-GATING ON RUN-TIME
POLICY P3 POLICY P2

Fig. 7. Impact of Power-Gating on Run-Time

4.3 Impact of Power-Gating on Execution Run-time

Each power-gating event incurs extra cycles to transition between power-gating
modes. Fig. 7 shows the percentage increase in run-time for various accelerators
due to power-gating overhead in policy P2 and P3. In policy P3 the power-
gating of the parent while the child runs introduces more idle periods for the
parent which increase the overall overhead. As a result, the execution length of
the parent accelerator increases more in P3 than in P2. As shown in Fig. 7, the
run-time of the decode-block in policy P3, which is a parent accelerator in JPEG,
is increased by 4.6% due to large number of calls to the two child accelerators
during which the parent is power-gated.

5 Impact of Input Patterns on Static Power-Gating
Decisions

As discussed in Sec.3.4, a single set of input vectors is used when constructing
the static power-gating schedule. When the application is run, it may experience
different input patterns than those assumed during scheduling. This may cause
changes in the idle periods of accelerators and sub-accelerators. This may mean
that power-gating decisions made during scheduling are sub-optimal. If the idle
period of an accelerator is much smaller than predicted, it may be that more
energy is wasted turning off and on the region than is saved while power-gated.
If the idle period of an accelerator is longer than predicted, it may be that the
scheduler decides that power-gating is not worthwhile, when in actuality, it would
have been. To investigate this concern, we vary the input vectors ten thousand
times and observe the impact on the number and duration of idle periods in
an accelerator. In particular, we are interested in whether the change in input
can reduce the idle period duration below energy break-even cycles leading to a
sub-optimal decision.



Hierarchical Dynamic Power-Gating in FPGAs 37

6188 6190 6192 6194 6196 6198 6200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
(a) Get-Motion-Code; Idle-Period-1

Idle-Period Length

N
um

be
r 

of
 In

pu
t V

ec
to

rs

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000
(b) Get-Motion-Code; Idle-Period-2

Idle-Period Length
N

um
be

r 
of

 In
pu

t V
ec

to
rs

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

8000
(c) Get-Motion-Code; Idle-Period-3

Idle-Period Length

N
um

be
r 

of
 In

pu
t V

ec
to

rs

5

Fig. 8. Histograms showing the Variation in the Idle-Period Duration of Get-Motion-
Code Accelerator (a) Idle-Period-1 (b) Idle-Period-2 (c) Idle-Period-3

We performed the experiment across nine accelerators in three of the CHStone
benchmarks circuits. For each accelerator, we varied the input pattern by ran-
domly selecting values for each input independently (the allowable range of val-
ues for each input was determined by examining the program). Ten thousand
input sets are generated, and for each, the total number of and the duration of
idle periods were recorded.

We found that in eight (out of nine) accelerators, there was no variation in
the number of idle periods and the duration of each idle period remained the
same. As a result, for these accelerators, the static power-gating scheduler makes
the optimal decisions.

The ninth accelerator, Get Motion Code (GMC) in the Motion benchmark,
exhibited variation in the duration of idle periods. This particular accelerator has
three idle periods and the static power-gating schedule determines that power-
gating is appropriate for all of them. Changing the input vector 10K times
reveals the variation as illustrated in the histograms of Fig. 8. The X-axis of
each histogram represents the number of idle cycles in an idle period and the
Y-axis is the number of input vectors that led to that number of idle cycles.
The first idle period does not show any variation, however, the second and third
idle periods do show variation. In both cases, the periods were either 5 cycles
long or 100 cycles long, depending on one of the input signals. For period 2,
about 40% of input samples led to an idle period of 5 cycles. In this accelerator,
the energy break-even point is exactly 5 cycles. As a result, the static scheduler
always assumes that the accelerator should sleep for this idle period. If the period
happens to be 5 cycles, the overall cost and benefit of power-gating are equal,
but if the idle period is 100 cycles, significant power savings are obtained by
power-gating. In either case, however, the decision to power gate during this idle
period is optimal. This situation is the same for the third idle period, in which
20% of input vectors lead to long idle periods.



38 R. Ahmed et al.

It is possible that this could occur if the minimum idle phase duration goes
below energy break-even point, however, in none of our experiments did this
occur.

6 Conclusion and Future Work

This paper demonstrates the potential of hierarchical power-gating to save static
leakage power. We show that fine-grained control over the sub-accelerators allow
them to sleep when only the parent context is required. Similarly, power-gating
the parent accelerator when the child is running, creates more power saving
opportunities but increases the program length. Reducing the granularity, how-
ever, reduces the duration of the idle periods. We show that the compiler-assisted
power-gating decisions remain optimal as long as the idle period experienced at
run-time is greater than the break-even point. The static power-gating predic-
tions can be greatly improved if the application workload is known at compile-
time. Adapting the power-gating decisions with varying workload at run-time,
however, would require a dynamic power-gating predictor which is an interesting
area for future investigation.

References

1. Ahmed, R., Bsoul, A.A.M., Wilton, S.J.E., Hallschmid, P., Klukas, R.: High-
level synthesis-based design methodology for dynamic power-gated fpgas. In: 24th
International Conference on Field Programmable Logic and Applications, FPL 2014,
Munich, Germany, September 2–4, 2014, pp. 1–4 (2014). http://dx.doi.org/10.1109/
FPL.2014.6927433

2. Bharadwaj, R., Konar, R., Balsara, P., Bhatia, D.: Exploiting temporal idleness to
reduce leakage power in programmable architectures. In: Proceedings of the 2005
Asia and South Pacific Design Automation Conference, ASP-DAC 2005, vol. 1, pp.
651–656, January 2005

3. Bsoul, A., Wilton, S.J.E.: An FPGA architecture supporting dynamically controlled
power gating. In: Proc. of the 2010 Intl. Con. on Field-Programmable Technology
(FPT), pp. 1–8 (2010)

4. Canis, A., Choi, J., Fort, B., Lian, R., Huang, Q., Calagar, N., Gort, M., Qin, J.J.,
Aldham, M., Czajkowski, T., Brown, S., Anderson, J.: From software to accelera-
tors with legup high-level synthesis. In: Proc. of the 2013 Intl. Con. on Compilers,
Architecture and Synthesis for Embedded Systems (CASES), pp. 1–9, September
2013

5. Hara, Y., Tomiyama, H., Honda, S., Takada, H., Ishii, K.: Chstone: a benchmark
program suite for practical c-based high-level synthesis. In: ISCAS, pp. 1192–1195.
IEEE (2008). http://dblp.uni-trier.de/db/conf/iscas/iscas2008.html#HaraTHTI08

6. Ishihara, S., Hariyama, M., Kameyama, M.: A low-power FPGA based on
autonomous fine-grain power gating. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems 19(8), 1394–1406 (2011)

7. Kuon, I., Rose, J.: Measuring the gap between FPGAs and asics. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems 26(2), 203–215 (2007)

8. Usami, K., Ohkubo, N.: A design approach for fine-grained run-time power gat-
ing using locally extracted sleep signals. In: International Conference on Computer
Design, ICCD 2006, pp. 155–161, October 2006

http://dx.doi.org/10.1109/FPL.2014.6927433
http://dx.doi.org/10.1109/FPL.2014.6927433
http://dblp.uni-trier.de/db/conf/iscas/iscas2008.html#HaraTHTI08

	Hierarchical Dynamic Power-Gating in FPGAs
	1 Introduction
	2 Context
	2.1 Dynamic Power-Gated Architecture
	2.2 LegUp High-Level Synthesis Framework

	3 Hierarchical Power-Gating
	3.1 Identifying Accelerator Hierarchy
	3.2 Idle Period Detection
	3.3 Pruning Idle Periods
	3.4 Power-gating Schedule Generation

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Hierarchical Power-Gating Evaluation
	4.3 Impact of Power-Gating on Execution Run-time

	5 Impact of Input Patterns on Static Power-Gating Decisions
	6 Conclusion and Future Work
	References


