
A Vector Caching Scheme for Streaming FPGA
SpMV Accelerators

Yaman Umuroglu(B) and Magnus Jahre

Department of Computer and Information Science,
Norwegian University of Science and Technology, Trondheim, Norway

{yamanu,jahre}@idi.ntnu.no

Abstract. The sparse matrix – vector multiplication (SpMV) kernel
is important for many scientific computing applications. Implementing
SpMV in a way that best utilizes hardware resources is challenging due
to input-dependent memory access patterns. FPGA-based accelerators
that buffer the entire irregular-access part in on-chip memory enable
highly efficient SpMV implementations, but are limited to smaller matri-
ces due to on-chip memory limits. Conversely, conventional caches can
work with large matrices, but cache misses can cause many stalls that
decrease efficiency. In this paper, we explore the intersection between
these approaches and attempt to combine the strengths of each. We
propose a hardware-software caching scheme that exploits preprocessing
to enable performant and area-effective SpMV acceleration. Our exper-
iments with a set of large sparse matrices indicate that our scheme can
achieve nearly stall-free execution with average 1.1 % stall time, with
70 % less on-chip memory compared to buffering the entire vector. The
preprocessing step enables our scheme to offer up to 40 % higher per-
formance compared to a conventional cache of same size by eliminating
cold miss penalties.

1 Introduction

Increased energy efficiency is a key goal for building next-generation comput-
ing systems that can scale the ”utilization wall” of dark silicon [1]. A strategy
for achieving this is accelerating commonly encountered kernels in applications.
Sparse Matrix – Vector Multiplication (SpMV) is a computational kernel widely
encountered in the scientific computation domain and frequently constitutes a
bottleneck for such applications [2]. Analysis of web connectivity graphs [3] can
require adjacency matrices that are very large and sparse, with a tendency to
grow even bigger due to the important role they play in the Big Data trend.

A defining characteristic of the SpMV kernel is the irregular memory access
pattern caused by the sparse storage formats. A critical part of the kernel depends
on memory reads to addresses that correspond to non-zero element locations of
the matrix, which are only known at runtime. The kernel is otherwise charac-
terized by little data reuse and large per-iteration data requirements [2], which
makes the performance memory-bound. Storing the kernel inputs and outputs in
c© Springer International Publishing Switzerland 2015
K. Sano et al. (Eds.): ARC 2015, LNCS 9040, pp. 15–26, 2015.
DOI: 10.1007/978-3-319-16214-0 2



16 Y. Umuroglu and M. Jahre

high-capacity high-bandwidth DRAM is considered a cost-effective solution [4];
however, the burst-optimized architecture of DRAM constitutes an ever-growing
”irregularity wall” in the quest for enabling efficient SpMV implementations.

Recently, there has been increased interest in FPGA-based acceleration of
computational kernels. The primary benefit from FPGA accelerators is the abil-
ity to create customized memory systems and datapaths that align well with
the requirements of each kernel, enabling stall-free execution (termed stream-
ing acceleration in this paper). From the perspective of the SpMV kernel, the
ability to deliver high external memory bandwidth owing to high pin count
and dynamic (run-time) specialization via partial reconfiguration are attractive
properties. Several FPGA implementations for the SpMV kernel have been pro-
posed, either directly for SpMV or as part of larger algorithms like iterative
solvers [5,6], some of which present order-of-magnitude better energy efficiency
and comparable performance to CPU and GPGPU solutions thanks to streaming
acceleration. These accelerators tackle the irregular access problem by buffering
the entire random-access data in on-chip memory (OCM). Unfortunately, this
buffer-all strategy is limited to SpMV operations where the random-access data
can fit in OCM, and therefore not suitable for very large sparse matrices.

To address this problem, we propose a specialized vector caching scheme for
area-efficient SpMV accelerators that can target large matrices while still pre-
serving the streaming acceleration property. Using the canonical cold-capacity-
conflict cache miss classification, we examine how the structure of a sparse matrix
relates to each category and how misses can be avoided. By exploiting prepro-
cessing (which is quite common in GPGPU and CPU SpMV optimizations) to
specialize for the sparsity pattern of the matrix we show that streaming accel-
eration can be achieved with significantly smaller area for a set of test matrices.
Our experiments with a set of large sparse matrices indicate that our scheme
achieves the best of both worlds by increasing performance by 40% compared to
a conventional cache while at the same time using 70% less OCM than the buffer-
all strategy. The contributions of this work are four-fold. First, we describe how
the structure of a sparse matrix relates to cold, capacity and conflict misses in a
hardware cache. We show how cold misses to the result vector can be avoided by
marking row start elements in column-major traversal. We propose two methods
of differing accuracy and overhead for estimating the required cache depth to
avoid all capacity misses. Finally, we present an enhanced cache with cold miss
skip capability, and demonstrate that it can outperform a traditional cache in
performance and a buffer-all strategy in area.

2 Background and Related Work

2.1 The SpMV Kernel and Sparse Matrix Storage

The SpMV kernel y = A · x consists of multiplying an m × n sparse matrix
A with NZ nonzero elements by a dense vector x of size n to obtain a result
vector y of size m. The sparse matrix is commonly stored in a format which
allows storing only the nonzero elements of the matrix. Many storage formats for



A Vector Caching Scheme for Streaming FPGA SpMV Accelerators 17

Fig. 1. A sparse matrix, its CSC representation and SpMV pseudocode. The random-
access clause to y is highlighted.

sparse matrices have been proposed, some of which specialize on particular spar-
sity patterns, and others suitable for generic sparse matrices. In this paper, we
will assume an FPGA SpMV accelerator that uses column-major sparse matrix
traversal (in line with [4,6,7]) and an appropriate storage format such as Com-
pressed Sparse Column (CSC). Column-major is preferred over row-major due
to the advantages of maximum temporal locality on the dense vector access and
the natural C-slow-like interleaving of rows in floating point multiplier pipelines,
enabling simpler datapaths [6]. Additionally, as we will show in Section 3.2 it
allows bypassing cold misses, which can contribute significantly to performance.
Figure 1 illustrates a sparse matrix, its representation in the CSC format, and the
pseudocode for performing column-major SpMV. We use the variable notation
to refer to CSC SpMV data such as values and colptr. As highlighted in the
figure, the result vector y is accessed depending on the rowind values, causing
the random access patterns that are central to this work.

2.2 FPGA SpMV Accelerators and Result Vector Access

The datapath of a column-major SpMV accelerator is a multiply-accumulator
with feedback from a random-access memory, as illustrated in Figure 2a. New
partial products are summed into the corresponding element of the result vector,
which can give rise to read-after-write (RAW) hazards due to the latency of the
adder, as shown in Figure 2b. Addressing this requires a read operation to y[i]
to be delayed until the writes to y[i] are completed, which is typically avoided
by stalling the pipeline or reordering the elements.

With growing sparse matrix sizes and typically double-precision floating point
arithmetic, the inputs of the SpMV kernel can be very large. Combined with the
memory-bound nature of the kernel, this requires high-capacity high-bandwidth
external memory to enable competitive SpMV implementations. Existing FPGA
SpMV accelerators [4–6] used DRAM as a cost-effective option for the storing the
SpMV inputs and outputs, which is also our approach in this work. These designs
typically address the random access problem by buffering the entire random-
access vector in OCM [5,6]. Random accesses to the vector are thus guaranteed
to be serviced with a small, constant latency. Unfortunately, this limits the
maximum sparse matrix size that can be processed with the accelerator. To
deal with y vectors larger than the OCM size while avoiding DRAM random
access latencies, Gregg et al. [4] proposed to store the result vector in high-
capacity DRAM and used a small direct-mapped cache. They also observed
that cache misses present a significant penalty, and proposed reordering the
matrix and processing in cache-sized chunks to reduce miss rate. However, this



18 Y. Umuroglu and M. Jahre

Fig. 2. A column-major FPGA SpMV accelerator design

imposes significant overheads for large matrices. In contrast, our approach does
not modify the matrix structure; rather, it extracts information from the sparse
matrix to reduce cache misses, which can be combined with reordering for greater
effect. Prior work such as [8] analyzed SpMV cache behavior on microprocessors,
but includes non-reusable data such as matrix values and requires probabilistic
models. FPGA accelerators can exhibit deterministic access patterns for each
sparse matrix, which our scheme exploits for analysis and preprocessing.

To concentrate on the random access problem, we base our work on a decou-
pled SpMV accelerator architecture [7], which defines a backend interfacing the
main memory and pushing work units to the frontend, which handles the com-
putation. Our focus will be on the random-access part of the frontend. Since
we would like the accelerator to support larger result vectors that do not fit in
OCM, we add DRAM for storing the result vector, as illustrated in Figure 2c.

2.3 Sparse Matrix Preprocessing

The memory behavior and performance of the SpMV kernel is dependent on
the particular sparse matrix used, necessitating a preprocessing step at runtime
for optimization. Fortunately, algorithms that make heavy use of SpMV tend
to multiply the same sparse matrix with many different vectors, which enables
ameliorating the cost of preprocesing across speed-ups in each SpMV iteration.
This preprocessing can take many forms [9], including permuting rows/columns
to create dense structure, decomposing into predetermined patterns, mapping
to parallel processing elements to minimize communication and so on. We also
adopt a preprocessing step in our scheme to enable optimizing for a given sparse
matrix, but unlike previous work, our preprocessing stage produces information
to enable specialized cache operation instead of changing the matrix structure.



A Vector Caching Scheme for Streaming FPGA SpMV Accelerators 19

Fig. 3. Example matrix Pajek/GD01 b and row lifetime analysis

3 Vector Caching Scheme

To tackle the memory latency problem while accessing the result vector from
DRAM, we buffer a portion of the result vector in OCM and use a hardware-
software cooperative vector caching scheme that enables per-matrix specializa-
tion. This scheme will consist of a runtime preprocessing step, which will extract
the necessary information from the sparse matrix for efficient caching including
the required cache size, and vector cache hardware which will use this informa-
tion. Our goal is to shrink the OCM requirements for the vector cache while
avoiding stalls for servicing requests from main memory.

3.1 Row Lifetime Analysis

To relate the vector cache usage to the matrix structure, we start by defining a
number of structural properties for sparse matrices. First, we note that each row
has a strong correspondence to a single result vector element, i.e y[i] contains
the dot product of row i with x. The period in which y[i] is used is solely
determined by the period in which row i accesses it. This is the key observation
that we use to specialize our vector caching scheme for a given sparse matrix.

Calculating maxAlive: For a matrix with column-major traversal, we define
the aliveness interval of a row as the column range between (and including) the
columns of its first and last nonzero elements, and will refer to the interval length
as the span. Figure 3a illustrates the aliveness intervals as red lines extending
between the first and last non-zeroes of each row. For a given column j, we define
a set of rows to be simultaneously alive in this column if all of their aliveness
intervals contain j. The number of alive rows for a given column is the maximum
size of such a set. Visually, this can be thought of as the number of aliveness
interval lines that intersect the vertical line of a column. For instance, the dotted
line corresponding to column 5 in Figure 3a intersects 8 intervals, and there are
8 rows alive in column 5. Finally, we define the maximum simultaneously alive



20 Y. Umuroglu and M. Jahre

rows of a sparse matrix, further referred to as maxAlive, as the largest number
of rows simultaneously alive in any column of the matrix. Incidentally, maxAlive
is equal to 8 for the matrix given in Figure 3a – though the alive rows themselves
may be different, no column has more than 8 alive rows in this example.

Calculating maxColSpan: Calculating maxAlive requires preprocessing the
matrix. If the accelerator design is not under very tight OCM constraints, it
may be desirable to estimate maxAlive instead of computing the exact value
in order to reduce the preprocessing time. If we define aliveness interval and
span for columns as was done for rows, the largest column span of the matrix
maxColSpan provides an upper bound on maxAlive. The column 3 in Figure 3a
has a span of 14, which is maxColSpan for this matrix.

3.2 Avoiding Vector Cache Misses

We now use the canonical cold/capacity/conflict classification to break down
cache misses into three categories and explain how accesses to the result vector
relate to each category. For each category, we will describe how misses can be
related to the matrix structure and avoided where possible.

Cold Misses: Cold (compulsory) misses occur when a vector element is ref-
erenced for the first time, at the start of the aliveness interval of each row. For
matrices with very few elements per row, cold misses can contribute significantly
to the total cache misses. Although this type of cache miss is considered unavoid-
able in general-purpose caching, a special case exists for SpMV. Consider the
column-major SpMV operation y = Ax where the y vector is random-accessed
using the vector cache. The initial value of each y element is zero, and is updated
by adding partial sums for each nonzero in the corresponding matrix row. If we
can distinguish cold misses from the other miss types at runtime, we can avoid
them completely: a cold miss to a y element will return the initial value, which
is zero1. Recognizing misses as cold misses is critical for this technique to work.
We propose to accomplish this by introducing a start-of-row bit marked during
preprocessing, as described in Section 3.3.

Capacity Misses: Capacity misses occur due to the cache capacity being
insufficient to hold the SpMV result vector working set. Therefore, the only way
of avoiding capacity misses is ensuring that the vector cache is large enough
to hold the working set. Caching the entire vector (the buffer-all strategy) is
straightforward, but is not an accurate working set size estimation due to the
sparsity of the matrix. While methods exist to attempt to reduce the working
set of the SpMV operation by permuting the matrix rows and columns, they are
outside the scope of this paper. Instead, we will concentrate on how the work-
ing set size can be estimated. This estimation can be used to reconfigure the
FPGA SpMV accelerator to use less OCM, which can be reallocated for other
components. In this work, we make the assumption that a memory location is

1 The more general SpMV form y = Ax + b can be easily implemented by adding the
dense vector b after y = Ax is computed.



A Vector Caching Scheme for Streaming FPGA SpMV Accelerators 21

in the working set if it will be reused at least once to reap all the caching ben-
efits. Thus, the cache must have a capacity of at least maxAlive to avoid all
capacity misses. This requires the computation of maxAlive during the prepro-
cessing phase. If OCM constraints are more relaxed, the maxColSpan estimation
described in Section 3.1 can be used instead. Figure 3b shows the row lifetime
analysis for the matrix in Figure 3a and how different estimations of the required
capacity yield different OCM savings compared to the buffer-all strategy.

Conflict Misses: For the case of an SpMV vector cache, conflict misses
arise when two simultaneously alive vector elements map to the same cache line.
This is determined by the nonzero pattern, number of cachelines and the chosen
hash function. Assuming that the vector cache has enough capacity to hold the
working set, avoiding conflict misses is an associativity problem. Since content-
associative memories are expensive in FPGAs, direct-mapped caches are often
preferred. As described in Section 4.2, our experiments indicate that conflicts
are few for most matrices even with a direct-mapped cache, as long as the cache
capacity is sufficient. Techniques such as victim caching [10] can be utilized to
decrease conflict misses in direct-mapped caches, though we do not investigate
their benefit in this work.

3.3 Preprocessing

Having established how the matrix structure relates to vector cache misses, we
will now formulate the preprocessing step. We assume that the preprocessing
step will be carried out by the general-purpose core prior to copying the SpMV
data into the accelerator’s memory space.

One task that the preprocessing needs to fulfill is to establish the required
cache capacity for the sparse matrix via the methods described in Section 3.1.
Another important function of the preprocessing is marking the start of each
row to avoid cold misses. In this paper, we reserve the highest bit of the rowind
field in the CSC representation to mark a nonzero element as the start of a row.
Although this decreases the maximum possible matrix that can be represented,
it avoids introducing even more data into the already memory-intensive kernel,



22 Y. Umuroglu and M. Jahre

Fig. 4. Design of the vector cache

and can still represent matrices with over 2 billion rows for a 32-bit rowind. At
the time of writing, this is 18x larger than the largest matrix in the University
of Florida collection [3].

For the case of computing maxAlive, we can formulate the problem as con-
structing an interval tree and finding the largest number of overlapping intervals.
Algorithm 1The values inserted are +1 and -1, respectively for row starts and
ends. maxAlive is obtained by finding the maximum sum the sorted values dur-
ing the iteration. We do not present the algorithm for finding maxColSpan, as
it is simply iterating over each column of the sparse matrix and finding the one
with the greatest span.

3.4 Vector Cache Design

The final component of our vector caching scheme is the vector cache hardware
itself. Our design is a simple increment over a traditional direct-mapped hard-
ware cache to allow utilizing the start-of-row bits to avoid cold misses. A top-level
overview of the vector cache and how it connects to the rest of the system is
provided in Figure 4a. All interfaces use ready/valid handshaking and connect
to the rest of the system via FIFOs, which simplifies placing the cache into a
separate clock domain if desired. Row indices with marked start-of-row bits are
pushed into the cache as 32-bit-wide read requests. The cache returns the 64-bit
read data, as well as the requested index itself, through the read response FIFOs.
The datapath drains the read response FIFOs, sums the y[i] value with the lat-
est partial product, and writes the updated y[i] value into the write request
FIFOs of the cache.

Internally, the cache is composed of data/tag memories and a controller,
depicted in Figure 4b. Direct-mapped associativity is chosen for a more suit-
able FPGA implementation as it avoids content-associative memories required
for multi-way caches. To increase performance and minimize the RAW hazard
window, the design offers single-cycle read/write hit latency, but read misses are
blocking to respect the FIFO ordering of requests. To make efficient use of the
synchronous on-chip SRAM resources in the FPGA while still allowing single-
cycle hits, we chose to implement the data memory in BRAM while the tag



A Vector Caching Scheme for Streaming FPGA SpMV Accelerators 23

Table 1. Suite with maxColSpan and maxAlive values for each sparse matrix

memory is implemented as look-up tables. The controller finite state machine is
illustrated in Figure 4c. Write misses are directly transferred to the DRAM to
keep the cache controller simple. Prior to servicing a read miss, the controller
waits until there are no more writes from the datapath to guarantee memory
consistency. Regular read misses cause the cache to issue a DRAM read request,
which prevents the missing read request from proceeding until a response is
received. Avoiding cold misses is achieved by issuing a zero response on a read
miss with the start-of-row bit set, without issuing any DRAM read requests.

4 Experimental Evaluation

We present a two-part evaluation of our scheme: an analysis of OCM savings
using the minimum required capacity estimation techniques, followed by perfor-
mance and FPGA synthesis results of our our vector caching scheme. For both
parts of the evaluation we use a subset of the sparse matrix suite initially used
by Williams et al. [2], excluding the smaller matrices amenable to the buffer-all
strategy. The properties of each matrix is listed in Table 1.

4.1 OCM Savings Analysis

In Section 3.2 we described how the minimum cache size to avoid all capacity
misses could be calculated for a given sparse matrix, either using maxColSpan or
maxAlive. The rightmost columns of Table 1 list these values for each matrix.
However, a vector cache also requires tag and valid bit storage in addition to
the cache daha storage, which decreases the net OCM savings from our method.
We compare the total OCM requirements of maxColSpan- and maxAlive-sized
vector caches against the buffer-all strategy. The baseline is calculated as 64 ·m
bits (one double-precision floating point value per y element), whereas the vector
cache storage requires (64+�log2(W )�+1)·W bits to also account for the tag/valid
bits storage overhead, where W is the cache size. Figure 5a quantifies the amount
of on-chip memory required for the two methods, compared to the baseline. For
seven of the eight tested matrices, significant storage savings can be achieved by
using our scheme. A vector cache of size maxAlive requires 0.3x of the baseline
storage on average, whereas sizing according to maxColSpan averaged at 0.7x of
the baseline. It should be noted that matrices 2, 4 and 6, which have a more



24 Y. Umuroglu and M. Jahre

Fig. 5. Results from vector caching scheme evaluation

regular structure with elements clustered around the diagonal, already gain sig-
nificant storage benefits from the low-overhead maxColSpan estimation. On the
other hand, the irregular matrices 1 and 3 have no storage reduction benefits
by using a maxColSpan-sized cache, so maxAlive must be used. For matrix #5,
even maxAlive is only 17.6% smaller than the entire y, and therefore the savings
from vector caching is not large enough to offset the tag overhead.

4.2 Vector Cache Evaluation

We use Chisel [11] to create a parametrizable hardware description for the vector
cache, which is converted to Verilog via the Verilog backend. The generated
Verilog code is fed into XST for FPGA synthesis in order to obtain frequency
and area results for the cache, and passed through the Verilator tool to generate
a cycle-accurate SystemC model. The model is used in a in-house SpMV frontend
simulator, which is stimulated with inputs corresponding to the chosen sparse
matrix and models the behavior of the accumulator datapath and DRAM for
performance assessment. We assume a 100 MHz clock for the frontend, with
delays of 7 cycles for the accumulator datapath and 10 cycles for DRAM reads.



A Vector Caching Scheme for Streaming FPGA SpMV Accelerators 25

Area and Frequency: We report area and frequency results from synthesis
for a Xilinx Spartan-6 LX45 FPGA with -2 speed grade, chosen to demonstrate
the potential of the technique with mediocre OCM. Our results indicate that
the cold skip enhancement is with very little extra hardware cost (less than 1%
in logic LUTs for the largest tested design), hence we do not report separate
results for a baseline cache without this enhancement. Figure 5b shows the per-
cent utilization of BRAM, LUTRAM and logic resources for a range of vector
cache sizes, and the maximum frequency Fmax reported by the synthesis tool.
A vector cache of 128 KB can fit on this relatively small FPGA, which is large
enough to accommodate the maxAlive-sized working set of 5 of the 8 tested
matrices. As can be expected, the utilization of BRAM and LUTRAM increases
linearly with cache size, and the LUTRAM used for cache tags ultimately limits
scaling to larger caches. Due to the simple design, the LUT utilization for imple-
menting logic is rather small and occupies about 5% of the available resources
for the largest design, which leaves plenty of room for implementing the more
logic-intensive parts of the accelerator. The maximum attainable frequency is
between 106 – 133 MHz for the tested designs, which is similar to the operating
frequencies of previous SpMV accelerator designs. Further Fmax improvements
can be achieved by using a more powerful FPGA or design optimizations.

Cache Stall Time: As our goal is to enable a stall-free cache, we evaluate the
impact of cache stalls with our scheme. Figure 5c depicts the percentage of total
execution time the accelerator with up to 1 MB of cache is stalled due to cache
misses. The maxAlive of each matrix is indicated with numbered lines in the
background. For 6 of the 8 matrices, allocating at least a maxAlive-sized cache
with cold miss avoidance capability is enough to remove almost all cache misses,
also indicating there are very few conflict misses. #3 is an exception, which
suffers from conflict misses even with a large cache due to its nonzero pattern.
The web connectivity matrix 1 has a working set larger than the maximum tested
cache size, although its miss rate is already quite low. Low miss rates with cache
sizes smaller than maxAlive is also observed for matrices 8 and 7, indicating
that more relaxed working set definitions could be used for further reduction in
required storage. Overall, by allocating at least maxAlive-sized caches, the cache
stall time for our scheme is only 1.1% averaged across the test suite.

Cold Miss Avoidance: To show the gains from the cold miss avoidance
technique, we plot the overall performance improvement due to removal of cold
miss stalls in Figure 5d. The baseline for each data point is a vector cache of
equal size without cold miss avoidance capabilities. The average performance
improvement for at least maxAlive-sized caches is 28.6%. As the cache grows
larger, fewer capacity misses are encountered and cold misses make up a larger
percentage of the total. This increases the benefit from cold miss avoidance,
until there are no cache misses left and the benefit levels off. Since larger sparse
matrices exhibit more cold misses due to large y size, the greatest benefit is
observed for the large matrices 1, 2 and 4, with up to 40% improvement. For
matrix 5, the number of capacity misses with small caches is very large and very
little benefit is observed until a cache size of 16K elements.



26 Y. Umuroglu and M. Jahre

5 Conclusion and Future Work

We have studied how matrix structure relates to cache misses, and proposed a
scheme that uses preprocessing to enhance the operation of a traditional hard-
ware cache for FPGA SpMV accelerators. Specifically, we have proposed two
methods to estimate required cache depth to avoid all capacity misses, and a
way of enhancing the matrix representation to avoid all cold misses. Our exper-
iments with a suite of large sparse matrices indicate that the scheme can service
random accesses to the result vector with no or few stalls, while avoiding cold
miss penalties that hamper traditional hardware caches. Future work will include
evaluating the vector caching scheme in a complete FPGA SpMV accelerator
context.

References

1. Taylor, M.B.: Is dark silicon useful?: harnessing the four horsemen of the coming
dark silicon apocalypse. In: Proc. of the Design Automation Conference (2012)

2. Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., Demmel, J.: Optimization
of sparse matrix-vector multiplication on emerging multicore platforms. Parallel
Computing 35(3) (2009)

3. Davis, T.A., Hu, Y.: The University of Florida Sparse Matrix Collection. ACM
Trans. Math. Softw. 38(1) (2011)

4. Gregg, D., Mc Sweeney, C., McElroy, C., Connor, F., McGettrick, S., Moloney, D.,
Geraghty, D.: FPGA based sparse matrix vector multiplication using commodity
DRAM memory. In: Int. Conf. on Field Prog. Logic and Applications (2007)

5. Fowers, J., Ovtcharov, K., Strauss, K., Chung, E.S., Stitt, G.: A high memory
bandwidth fpga accelerator for sparse matrix-vector multiplication. In: IEEE Int.
Symp. on Field-Programmable Custom Computing Machines (2014)

6. Dorrance, R., Ren, F., Marković, D.: A scalable sparse matrix-vector multiplication
kernel for energy-efficient sparse-BLAS on FPGAs. In: Proc. of the ACM/SIGDA
Int. Symp. on FPGAs (2014)

7. Umuroglu, Y., Jahre, M.: An energy efficient column-major backend for FPGA
SpMV accelerators. In: IEEE Int. Conf. on Computer Design (2014)

8. Temam, O., Jalby, W.: Characterizing the behavior of sparse algorithms on caches.
In: Proc. of the ACM/IEEE Conf. on Supercomputing (1992)

9. Toledo, S.: Improving the memory-system performance of sparse-matrix vector
multiplication. IBM Journal of Res. and Dev. 41(6) (1997)

10. Jouppi, N.P.: Improving direct-mapped cache performance by the addition of a
small fully-associative cache and prefetch buffers. In: Proc. of the Int. Symp. on
Computer Architecture (1990)

11. Bachrach, J., Vo, H., Richards, B., Lee, Y., Waterman, A., Avižienis, R.,
Wawrzynek, J., Asanović, K.: Chisel: constructing hardware in a scala embedded
language. In: Proc. of the Design Automation Conference (2012)


	A Vector Caching Scheme for Streaming FPGA SpMV Accelerators
	1 Introduction
	2 Background and Related Work
	2.1 The SpMV Kernel and Sparse Matrix Storage
	2.2 FPGA SpMV Accelerators and Result Vector Access
	2.3 Sparse Matrix Preprocessing

	3 Vector Caching Scheme
	3.1 Row Lifetime Analysis
	3.2 Avoiding Vector Cache Misses
	3.3 Preprocessing
	3.4 Vector Cache Design

	4 Experimental Evaluation
	4.1 OCM Savings Analysis
	4.2 Vector Cache Evaluation

	5 Conclusion and Future Work
	References


